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ABSTRACT

This thesis investigated the potential use of Linear Predictive

Coding in speech communication applications. A Modified Block Adaptive

Predictive Coder is developed, which reduces the computational burden and

complexity without sacrificing the speech quality, as compared to the

conventional adaptive predictive coding (APC) system. For this, changes in

the evaluation methods have been evolved. This method is as different from

the usual APC system in that the difference between the true and the

predicted value is not transmitted. This allows the replacement of the high

order predictor in the transmitter section of a predictive coding system, by

a simple delay unit, which makes the transmitter quite simple. Also, the

block length used in the processing of the speech signal is adjusted

relative to the pitch period of the signal being processed rather than

choosing a constant length as hitherto done by other researchers. The

efficiency of the newly proposed coder has been supported with results of

computer simulation using real speech data.

Three methods for voiced/unvoiced/silent/transition

classification have been presented. The first one is based on energy,

zerocrossing rate and the periodicity of the waveform. The second method

uses normalised correlation coefficient as the main parameter, while the

third method utilizes a pitch-dependent correlation factor. The third

algorithm which gives the minimum error probability has been chosen in a

later chapter to design the modified coder.



The thesis also presents a comparazive study beh-cm the

autocorrelation and the covariance methods used in the evaluaiicn of the

predictor parameters. It has been proved that the azztocorrelation method is

superior to the covariance method with respect to the filter stabf-it)‘ and

also in an SNR sense, though the increase in gain is only small. The

Modified Block Adaptive Coder applies a switching from pitch precitzion to

spectrum prediction when the speech segment changes from a voiced or

transition region to an unvoiced region. The experiments cont;-:ted in

coding, transmission and simulation, used speech samples from .\£=_‘ajr2_1a:r1

and English phrases. Proposal for a speaker reecgnifion syste: and a

phoneme identification system has also been outlized towards the end of

the thesis.
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Chapter 1

INTRODUCTION

1.1 Background

Speech is the principal means of human communication.

“Speech is civilisation itself. The word, even the most contradictions word,

preserves contact — it is silence which isolates" — Thomas Mann, The Magic

Mountain, 1924 [1]. It is a fascinating human attribute, which can be

analysed, synthesised and recognized. It can be compressed, stored and also

enhanced by digital signal processing techniques.

Right in 1780, Professor Christian Kratzentein had designed

a vox humana , capable of producing the vowel sounds, from a set of

tubes of different shapes [1]. In the later years, coming to the actual

representation, storage and transmission of speech data, it was understood

that digital processing techniques are superior to their analogue

counterparts. Digital signals are less sensitive to noise and can reliably be

transmitted over noisy channels. They are easy to store and regenerate, to

encrypt and error-protect, and to multiplex, mix and packetize [2]. Starting

from the earliest electronic speech synthesizer, the ’Vocoder’ of Homer

Dudley in 1939, we have a myriad type of digital speech communication



systems. Digital speech technology has already been applied to telephony

systems which can access the computer data bases and receive relevant

information from stored or synthetic speech [1]. The talking calculator,

reading machines for the blind, etc. are some other applications of the

computer voice-response systems [3,4,5,6]. A more flexible method is the

interactive speech recognition, where Artificial Intelligence is used for

Automatic Speech Recognition and Speech Response (synthesis). Now-a-days,

Artificial Neural Networks are being used to improve speech recognition and

understanding. Digital services such as the transmission of data, fascimile,

vision and videotex are beginning to proliferate on a global basis, with the

help of a variety of optical cables, satellites and radio systems [1].

In digital speech processing, the speech signal is sampled,

quantized and then processed by appropriate processing techniques, depending

on the nature of applications. Finally, the speech signal is reconstructed

from its digital form using a decoder.

Digital speech coding algorithms can be broadly classified into

three basic categories: waveform coding, vocoding (parametric coding) and

hybrid coding. Wavefonn encoders follow the original signal waveform

faithfully, by directly digitizing the speech signals. They require bit rates in

the range 16 kbit/s to 64 kbit/s.

In parametric coding, the speech signal is represented as the

output of a speech production model, which is excited by a source. The



coder analyses the input speech samples and estimates the vocal tract

parameters, which are related to the individual speech sounds, and the

excitation parameters, which are related to their source. These parameters

are transmitted to the decoder which retrieves them and synthesizes the

speech signal. Vocoders operate at very low bit rates (less than 4.8 kbit/s)

but gives only synthetic quality speech and hence is inadequate for general

purpose voice communication.

Hybrid coders combine the features of waveform and

parametric coders and operate at bit rates between the two. Many hybrid

coders employ an analysis--by-synthesis procedure, to derive the codec

parameters.

Based on the above techniques, we have the simplest and the

oldest method, the Pulse Code Modulation (PCM) operating at 56-64 kbit/s,

to the Adaptive Differential Pulse Code Modulation (ADPCM) giving good

quality speech at 24-28 kbit/s, and the Adaptive Predictive Coding (APC)

and the Adaptive Transform Coding (ATC) techniques operating at 16 to 32

kbit/s to give good quality speech [7]. Some complex ATC coders operate

at bit rates of the order of 4-8 kbits/s.

1.2 Motivation

Encoding of the speech signal and recognition of the encoded

signal are two important aspects of speech processing. In speech encoding,

we develop a suitable method to encode and transmit a signal, while in



speech recognition we try to identify the synthesized speech obtained from

the encoded parameters.

For efficient coding and transmission of speech signals, the

channel capacity required to transmit a given signal, with a given fidelity

should be minimised. When low bit-rate codecs are considered, they become

highly complex, and also complex algorithms requiring heavy computation,

will become essential, if the quality of the reconstructed signal is to be

maintained high. the low bit-rate vocoder outputs are usually poor in

quality, though they are intelligible. Modem processing techniques have

improved the quality of the reconstructed speech to a better level of

acceptability. When these coders are used in practical applications, a

compromise has to be achieved between quality, robustness, delay,

complexity and low bit rate. Adaptive Predictive Coding (APC) analysis is a

potential area in the low bit rate coding, which can deliver good quality

speech.

In the APC method, using both spectrum and pitch predictors,

an estimate of the samples is made at the encoder and the residual is

transmitted to the decoder along with the predictor parameters. In the

modern version of the APC - example, Code Excited LPC (CELPC), regular

pulse excited LPC (RPELPC), multipulso LPC (MPLPC), sell excited vocoder

(SEV), etc. - a code index of the best suited residual vector, or the

appropriate pulse positions and amplitudes need only be transmitted. But the

amount of computations needed is enormous. lt is reported that [8], in a



CELP system, the number of multiples/adds is 80 MFLOPs, while in SEV, it

is 4 MFLOPs. In SEV, the decoder is more complex with the introduction of

an additional pitch predictor. The maximum segmental signal-to-noise ratio

(SNRSEG) for a CELPC is around 13.8 dB (an SNR of 18 dB) at a bit

rate of 2.8 kbps and with quality almost same as the original [9]. An

SNRSEG value of about 10 dB is obtained at 4.8 kbps for an SEV [8],

while an SNR of 14.5 dB to 18.5 dB is obtained at 9.6 kbps to 16 kbps

using a variable bit rate APC [10].

The present modified coder is an attempt to obtain an almost

good quality speech reconstruction, with a reduction in complexity and

computational burden, and increase in data transmission, as compared to the

above mentioned systems. In the modified block adaptive coder (MBAC), the

residual signal is not transmitted at all. Only a coded version of the first

few sample values is transmitted along with the predictor parameters. Hence

not much computation is needed other than that required for evaluating the

predictor parameters. Also, the high-order predictor can be removed from the

transmitter side, which in turn reduces the coder complexity. To reduce the

computational burden still further (as compared to an APC), changes in the

evaluation methods are introduced. ’l‘he SNRSEG value obtainable is around

10 to 12 dB, at a transmission rate of 6.2 kbps to 11 kbps.

1.3 Brief Overview of the Work

A brief review of the previous works in the field of speech

recognition, for the efficient transmission of speech signals, is presented in



chapter 2. Special stress is given to the Linear and Adaptive Predictive

Coding techniques. The objective as well as the subjective tests that are

useful for the determination of the coder performance are also included in

this chapter. Of these, the SNRSEG measurement is used in this work, as

the criterion of the coder performance.

Chapter 3 describes the basic theory of linear predictive

coding. The basis and the need for considering the long-term prediction, is

also explained. in Linear Predictive Coding [1l,l2,l3,l4], the vocal tract is

represented by a linear time-varying digital filter. A set of parameters is

extracted from the speech signal, to specify the filter transfer function,

which will give the best match to the signal to be coded. The minimum

mean square error criterion is used. The modified coder is presented in the

latter part of the chapter.

Chapter 4 presents the details of the speech data used for

the simulation study and also the actual simulation work of the modified

coder. Voiced/unvoiced/silence/transition classification is to be done first.

Three methods have been developed. In the first method, parameters like

zero crossing rate (ZCR), energy, periodicity of autocorrelation functions

(ACF), and Sr” to Smean ratio, are to be evaluated on a short-term
basis. All possible cases of overlapping between the different regions have

been taken into account in the method. The approach has shown to give a

high recognition score. In the second method, ZCR, energy and energy-ZCR

product are used to first eliminate the silent region. Then, based on the



value of the normalised correlation coefficient for lag 1,
voiced/unvoiced/transition classification can be done. In the third method, the

detection of the silent region is as in the above method. Periodicity of the

ACI-"3 nml n fnctor  . determining tho correlation between the snmplos,

from one pitch period :0 [I10 next, are made use of in the final

classification. For the above detection process, blocks of 160 normalised

samples are used.

The actual simulation process of the modified coder is

presented next. Once the block is detected to be voiced, the value of M,

the number of samples in one pitch period of the signal, is found by

noting the position of the maximum value of the ACF, R(.l) for lags J

above 15. The block length is then fixed as N = 4M and the predictor

parameters are evaluated. These predictor parameters and the first few

sample values are suitably encoded and transmitted to the receiver.

Prediction is done at the receiver, based on the earlier predicted values.

The predictor is updated by transmitting the parameters afresh every block.

For transition segments N = 2M. For unvoiced samples prediction is based

on the nearby samples only. No processing is needed for the silent region.

The actual simulation results of the modified block adaptive

coder is presented in chapter 5. An average SNRSEG value of 8 to 12 dB

is obtained on the whole. The results of the trial on the applicability of

this modified coder to phonemes in our regional language - Malayalam ­

which are not normally present in English, are also presented. The sound



/n/ -‘ENN’, with the nasal /n/ following a vowel gives the highest

gain, around 30 dB.

A close examination of the results arrived at the different

stages of the simulation work of the modified coder, revealed that phoneme

identification as well as speaker identification are possible, using certain

sets of the coder parameters. An adaptive knowledge-based speaker

recognition system and an adaptive phoneme identification method are

developed. The work done in this direction is presented in chapter 6.

Chapter 7 is the concluding chapter, wherein, the observations

and the inferences already brought out in the earlier chapters are

summarised. An attempt to reduce the complexity of the coder and the

computational burden, has been attained. A good quality speech

reconstruction has been attained at a transmission rate of 11.9 kbit/s. The

suggestions for further work are also presentedu



Chapter 2

REVIEW OF THE PAST WORKS IN THE FIELD

2.1 Introduction

'l‘he pursuit of artificial speech synthesis and recognition hogan

long back in the seventeen eighties [1]. But the first electronic synthesis of

speech was achieved only in 1936. The earliest attempt at voice recognition

was the voice-operated phonographic alphabet writing machine brought forth by

J. Flowers, in 1916 [1]. Attempts in the direction of electronic speech

recognition took place in 1950’s, which were mainly concentrated on the

recognition of spoken digits [1]. An accuracy of nearly 95% is recorded from

these early systems [15]. These devices used analogue circuits to perform the

spectral analysis by filtering and decision logic, to make the pattern match

between the uttered word and the reference word.

During the decade of 1960-70, it became practicable to represent

information--bearing waveforms digitally, and to do signal processing on these

digital representations. In April 1965, Cooley and Tukey put forth an algorithm

for computing the Discrete Fourier Transform, which gave a tremendous

impetus to this emerging field [16].

2.2 Review of Speech Waveform Coders

In this section, the results obtained by different researchers, in

the field of waveform coding is presented. Different Pbrsons use different
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speech samples and different criteria for judging the performance of their

coders.

’l'ho qnnlilntivo efficiency of an encoder is charnctorizotl by the

terms- toll, communication and synthetic quality [7]. Toll quality is the quality

comparable to that of an analogue speech signal, band-limited to 20(l-3200 Hz

and having a signal-to-noise ratio of 30 dB and less than 2.3% harmonic

distortion [7]. It can also be considered as the speech quality as in a long

distance telephone call on the analogue PSTN [1]. CCITT recommendations

currently include 64 kbit/s PCM and 32 kbit/s ADPCM as standards for

comparison [1]. The term, communication quality [7], is used to connote

detectable distortion, but its degradation in intelligibility is only very little

(from toll quality). Synthetic quality, is the lowest in the hierarchy of speech

quality levels, where there will be a substantial loss of naturalness and

robustness with respect to speakers and speaking environments.

Some of the objective and subjective tests used in measuring the

performance of a coder, is presented in section 2.4.

A comparative study of DPCM-AQB and log-PCM speech coders,

over a wide range of bits/sample is presented by Cumminskey, Jayant and

Flanagan [17]. A 6-bit log-PCM system, though superior to a 4-bit ADPCM in

a signal-to-noise ratio (SNR) sense, is ranked interior from a subjective point

of view. Similarly a 3-bit ADPCM system is superior to a 5-bit log PCM

under subjective ranking, but is inferior in an SNR sense. Since, values of
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SNR and segmental SNR (SNRSEII) [2] (explained in section 2.4) are closer in

DPCM, than in log PCM (SNRSEG values are 4 to 6 dB less than SNR

values), SNRSEG tends to be a better indicator than SNR for quality

measurement [2]. Thus, low—complexity DPCM can provide communication

quality speech at 24 to 32 kb/s.

In the paper on speech waveform coding, Jayant [18] has studied

ADPCM, log-PCM and ADM coders. ADPCM at a bit rate of 16 kbit/s gives

the best performance with an SNR around 11 dB. In a later paper [19],

Jayant compares a regular ADPCM using a three tap fixed predictor, with a

pitch-adaptive DPCM. Both coders used adaptive quantization. The average SNR

value of four utterances from two male and two female speakers were 11.5 dB

for ADPCM at a transmission rate of 16 kbit/s and 15.25 dB for pitch-­

adaptive DPCM at a rate of 17 kbit/s.

Noll [20] has performed a good comparative study of the various

waveform encoding schemes, like log PCM, Adaptive PCM, and DPCM with

various combinations of fixed/adaptive predictor, and fixed/adaptive quantizer. It

is reported [20] that a DPCM system using fixed prediction and adaptive

quantisation displayed a sharp increase in SNR (of the order of 5 to 10 dB)

over the PCM and DPCM systems. Using a 12th order adaptive predictor and

an adaptive quantizer, the SNR of an ADPCM system was around 17 dB at

16 kb/s, 27 dB at 32 kb/s and 35 dB at 40 kb/s.



An ADPCM system in which the predictor is updated at each

sample instant, using gradient techniques, is presented by C.S.Xydeas et al

[21]. The system, though very complex, performed better than a standard

ADPCM system, with an SNRSEI} [2], of 13.5 dB at a rate of 2 bits/sample.

A relative performance study of Sub-Band Coding (SBC) of

speech, with standard ADPCM at 16 kb/s and ADM at 9.6 kb/s has been

presented by Crochiere et al [22]. At 16 kb/s, though the SNR for SBC

(11.1 dB) and ADPCM (10.9 dB) was comparable, 94% of the listeners

preferred SBC to ADPCM. As compared to the 8.2 dB attained by ADM at

10.3 kb/s, the SBC achieved an SNR of 9.9 dB at 9.6 kb/s. Using

Quadrature-Mirror Filter (QMF) partitioning principle, SBC encoders attained MOS

scores of 4.3, 3.9 and 3.1 (on a scale of 0 to 5), at bit rates of 32, 24 and

16 kb/s [23]. Supplementing an SBC with a fourth order spectrum predictor

and pitch predictor, the MOS score goes to 3.5 at l6 kb/s and 4.0 at

24 kb/s [24].

Crochiere et al in their paper on Tandem connections of

Wideband and Narrowband speech communication systems [25], have presented

the performance of a tandem connection of a conventional Linear Predictive

Coder (LPC) operating at 2.4 kb/s and a Continuously Variable Slope Delta

modulator (CVSD) operating at a bit rate of 16 kb/s. 'l‘he LPC synthesized

speech (using a predictor of order 12), is the input to the CVSD system. It

is reported [25] that when rectangular (broadened) LPC excitation source was

used, an improvement of 1-2 (B in the SNR value was observed over the
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usual CVSD system, in the slope overload region. But the subjective quality of

speech did not improve. It is also noted that the performance of n widel)and­

-to-narrowband link is worse than a 2.4 kb/s LPC synthesizer [26].

Crochiere et al [22, 27], have designed low bit rate sub-band

speech coders, where the selection of the sub-bands (from 200 to 3200 Hz)

was done based on the perceptual data contained in the articulation index

(Al). The quality of the speech produced at 7.2 kb/s was nearly same as that

of an 18 kb/s ADM speech [27]. Later, they have presented a variable-band

coding scheme [28], where the centre-frequency of the upper two bands is

varied in accordance with the dynamic movement of the resonances F2 and F3

of the vocal tract. It is reported that the quality of the 7.2 kb/s fixed--band

coder is only slightly better than a 4.8 kbps variable-band coder.

Amano et al [29] have designed a TC-MQ (Time Domain

Compression ADPCM-MQ) speech codec, at 8 kbps, using time domain

compression on an ADPCM with a multi-quantizer. The SNRSEG obtained for

short Japanese sentences were 13--l6 dB. The MOS—score was 2.68, on a scale

of 0 to 4, ns compared to the score of 2.93 of :1 I6 kbps Al)l’CM-Ml).

Zelinski and Noll [30] compared the performance of a TC-log

(Transform Coding) speech system with a TC—AQF and ATC—AQF systems. An

increase in the SNR value, of about 4 dB was obtained for a TC—AQF system

(22.7 dB) and about 7.5 dB for an ATC-AQF (25.8 dB) system, over the TC­

-log (18.3 dB) system. Comparing with the DPCM--AQF-APF system with an
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SNR of 22.5 dB, TC--AQF has a very close SNR value, while ATC-AQF was

3 dB better [2]. Subjectively, the ATC shows a MOS of 4.1, on a scale tn‘ 1

to 5, at a bit rate of 24 kbps, 3.8 at 16 kbps and 2.4 at 9.6 kbps [31]. The

SNRSEG value achieved by an ATC varied from 12.3 dB to 14.9 dB for

various speakers [32].

Tree and Trellis encoding of speech was studied by Anderson

and Bodie [33]. They considered a search algorithm with fixed number of paths

at each level, throughout the code tree. The performance obtained on a speech

signal of 2 sec duration was 21 dB at 2 bits/sample and 12 dB at

1 bit/sample. Stewart et al [34] have reported that their Tree and Trellis

speech coders obtained an SNR of 13.5 dB “outside” and 16 dB “inside" the

training sequence, at a bit rate of 2 bits/sample and 8.7 dB “outside” and

12.2 dB “inside” when transmission rate of 1 bit/sample is considered. (The

tenn “inside the training sequence” is used when the data considered are the

same as that used for the encoder design and “outside the training sequence”,

otherwise).

Fehn and Noll [35] studied the performance of different tree and

trellis encoding schemes at 1 bit/sample and got on an average an SNRSEG

value of 12 dB.

Marcellin et al [36] have investigated the effect of Trellis coded

quantisation (TCQ) on a predictive speech coder, using different combinations

of fixed/adaptive prediction and fixed/adaptive residual encoding. It is noted
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tllat for a 16 kbps fully adaptive speech coder, the SNRSEG obtained was in

the range of 17.5 to 20.2 dB. The SNRSEG gain achieved by a Predictive TCQ

system over the scalar DPCM was 1.24 dB to 2.69 dB for the 4 state trellis

and 2.86 to 4.69 dB for the 256 state trellis [36]. Gibson and Haschke [37]

studied the perfonnance of eight fully adaptive DPCM-—based code generators,

at 16 kbps, using exhaustive searching. It is reported that the maximum SNR

obtained was 15 to 18 dB when the searching depth was 5.

Vector quantisation of speech, using search algorithms, have been

presented by several other researchers also [38,39,40,4l,42]. They have obtained

an SNR value around 13.5 dB and 12.7 dB for “inside” and “outside” the

training sequence at 2 bits/sample and 9.7 dB and 8.8 dB respectively, at l

bit/sample.

Recently, Chouly and Sari [77] have outlined a family of six­

dimensional(6-D) trellis coded modulation (TCM) schemes, which involves a 2­

step partitioning of the constituent QAM signal alphabet. With infinite

constellations without shaping, the asymptotic gain is 3 dB for the 2-state

code, 4 dB for the 4 and 8-state codes, and 5 dB for the 16 and 32-state

codes which involve a smaller alphabet expansion.

A comparative study of the different waveform coders described

above, is given in Table 2.1.

Considering the overall performance of the waveform coders
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presented above, it can be noted that the maximum signal-to-noise ratio

attainable by an ADPCM system is about 12 to 17 dB at 16 kbps. I-lighly

complex schemes like ATC can achieve an SNR value of 21 to 25 dB at 2

bits/sample and 10-12 dB at I bit/sample.

2.3 Review on the Present State of Art of Adaptive Predictive Coders

This section discusses the current state of art of Adaptive

Predictive coders. They are low-bit rate, highly complex, hybrid coders, which

are robust to background noise [1, 43]. They usually work at a transmission

rate of 9.6 to 2.4 kbps.

The fact that adjacent speech samples have high correlation

among themselves have induced researchers to apply Linear Predictive analysis

techniques to speech processing. Atal and Hanauer [14] performed a listening

test on the speech reconstructed using predictors of order p between 2 and

18. It was noted that there was no significant differences in the quality of

speech for p above 12. Here, the analysis segment length was one pitch

period for voiced sections and 10 msec for unvoiced regions. A bit rate of the

order of 7.2 to 2.4 kbps is achieved.

in adaptive predictive coding (APC) [l,8,44,45], pitch prediction

and noise shaping are included and the residual samples are quantized and

transmitted. A bit rate greater than 16 kbps is needed for good quality

speech. Atal and his colleagues investigated an APC [44] system using an

eighth-order adaptive spectrum predictor and first order pitch predictor and a
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one-bit adaptive quantizer. Subjective testing showed that the speech

reconstructed using their system was superior to a log-PCM speech with S

bits/sample. The equivalent gain of the system was around 25 dB. A bit rate

of around 10 kb/s was needed for transmitting the binary difference signal and

the predictor parameters, when the sampling was done at 6.67 kb/s [44].

Later, they studied the performance of an APC system with noise feedback

coding (APC-NF) [2,45,46]. Using an entropy-coded 3-level quantizer, the

system gave an average SNR of 21 dB [2]. This is higher than the SNR of

13 an of an opeu—loop DPCM [47] or D*PCM coder [2,43], but lower than the

SNR of 23 dB in DPCM, with all the three coders operating at 19.2 kb/s.

According to Daumer [23], a 16 kb/s APC-NF system provided a MOS score

of 4.0.

A variable rate embedded-code ADPCM system, using Time

Domain Harmonic Scaling (TDHS) algorithms is investigated by Copperi [49].

The TDHS algorithms change the speech rate by discarding or repeating short

pieces of the waveform, having a length at least equal to a pitch period.

Here, the sampling frequency of the input signal has been halved by the use

of the TDHS algorithm. Subjective tests taken from 20 listeners showed that

the TDHS-ADPCM coder at 9.6, 12.8 and 16 kb/s are equivalent to robust

conventional ADPCM coders at 24, 32 and 48 kb/s respectively, for all

probabilities of error less than 0.5% [49]. in another paper, Copperi [50]

presents two schemes for providing highly intelligible acceptable quality speech

at 4.8 kbps, using TDHS algorithm and ADPCM systems. in one scheme,

speech signals sampled at 7200 Hz, are frequency divided by a factor of 3,
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by using a two-step compression algorithm, and is fed to a 2 bit/sample

ADPCM. In the next case, signal is sampled at 6400 Hz. Pitch values are also

transmitted. lt is shown that the output of a TDHS-ADPCM, with a 4-level

quantizer closely matches the original one. The maximum SNR obtained was

l3.8l dB, for female voice with an error probability equal to 0.0 [50].

Bertorello and Copperi [51] have designed a 4.8/9.6 kbps base­

band LPC coder, using split-~band and with vector quantisation in both the

vocal tract modelling and residual representation. This system is slightly

inferior to a 9.6 kbps coder using ADPCM and TDHS algorithm. But a 4 kbps

base-band coder with vector quantisation is very superior to a 4.8 kbps LPC

and channel vocoders, in preserving both intelligibility and naturalness.

A variability on the APC are the residual excited linear

predictive coding (RELP), the multipulse LPC (MPLPC), the regular pulse

excited LPC (RPELPC) and the code excited LPC (CELPC) [52]. These coders

require still more complex algorithms but the performance is better.

ln RELP coding [53], the prediction error is low-pass filtered

and down—sampled, so that only fewer samples need be transmitted. At the

decoder, by using non-linear distortion techniques, a full-band signal is

obtained. The speech quality deteriorated, at bit rates below 8 kbps.

Bnice Fette et al [54] have implemented a high quality RELP

coder at 4.8 kbps. They have coded the LPC representation of the spectrum,
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the energy and a frequency domain representzticn cf the residual, within the

base—band of 100-1000 Hz. The quantisation ncise of the residual coding is

passed through the LPC synthesizer and synthesized into speech, just as the

actual residual excitation is synthesised. By coding only the base band

frequencies, the effective number of bits per sample is raised by a factor of

6.4 [54].

In the MPLPC of Atal and Re-.:de [55], a series of non­

uniformly spaced pulses, typically eight per perioc? [43], of different amplitudes,

is used to excite the filter. No distinction '5 made between voiced and

unvoiced speech, with respect to the excitation sigma. The pulse positions and

amplitudes, yielding the lowest error over a blocir, fcrm the optimum excitation

signal. Even for a very small block size and only a few pulses per block, the

computational load is too much. Hence, sub-optimal methods to find the pulse

positions and amplitudes one at a time, have been developed [55,56,57].

Singhal and Atal [58] developed a .\[PLPC, using long-term

prediction and perceptual weighting. This reduces the number of pulses

required per pitch period to obtain the same speech quality. It has been

reported by Ozawa and Araseki [59] that MPLPC coc‘-ecs operating at bit rates

from 8 kb/s to 16 kb/s, produced good quality speed, as equivalent to those

from higher bit rate codecs. Ono and Ozawa [60] have developed a good

synthetic quality speech, using pitch prediction MPLPC, at 2.4 kb/s.

In the regular pulse excited (RFD LPC coder [61], excitation
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signal pulses are spaced uniformly. The quantized pulse amplitudes and an

index indicating the best excitation vectors, must be transmitted to the

decoder. The speech quality obtained using RPE and MPLPC coders, are

similar, at the same bit rates.

The code excited LPC (CELP) or the stochastic coder [62] is a

modification of the MPLPC. Here, an ’innovation’ sequence, consisting cf 51

samples (typically 32 samples [I]), of white gaussian noise forms the enzitziion

function. At the encoder, from a code book of many such sequences, the

optimum one is selected by filtering each of these sequences, by pasing it

through a pitch filter and then an LPC vocal tract filter, and choosing the one

which produces the minimum weighted mean squarred error. An index :u;:nber

to identify the selected sequence is transmitted to the decoder, where the

block of M reconstructed speech samples is obtained by filtering, as at the

encoder. CELP codecs operate at 4 to 8 kbps, but computation time is

enormous, about 100 times more than real time on a Cray 1 Computer [62].

Copperi [9], has reported that, using a rule-based speech

analysis to CELP coding, he obtained an average SNRSEG of 13.8 dB at 2.3

kbit/s. The coded speech quality was almost same as the original one.

Some improvements on the CELP coder is presented by Kroon

and Atal [63] and Kleijn et al [64]. It is reported that, a two-stage vector

quantization, using an adaptive and a stochastic codebook, provided a maximum

SNRSEG of 12.1 dB.
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Davidson and Gersho [65] have tried a multistage vector

quantisation of the input speech vector, in a vector excited coder (VXC). The

SNRSEG obtained using a 2-stage codebook was 14.8 dB (or an SNR of

16.7 dB) and for a 4-stage code book was 15.0 dB (or an SNR of 16.8 dB).

Hernandez et al [66] have extended vector excitation techniques over to speech

coding in the transform domain and have developed an efficient Vector

Adaptive Transform Coder (VATC). The perceived quality of the VATC speech

is slightly inferior to that of the CELP coded speech, though the SNR values

are almost same.

Recently, Cuperman et al [78] have outlined a low-delay vector

excitation coding (LD-VXC) algorithm at 16 kb/s, which provides high quality

speech with less than 2 ms of coding delay and is robust to transmission

errors. The algorithm combines techniques such as vector quantization,

analysis-by-synthesis, perceptual weighting, together with backward adaptive

linear predictive encoding and a long-term predictor employing backward

adaptive tracking. Using a LD-VXC, with a 20th order lattice predictor, the

subjective speech quality obtained was comparable to a 7-bit PCM with a MOS

of about 4.0 [78]. The SNR value obtained was 18.48 dB.

Similar to the RELP coder of Bruce Fette et al [54], Kondoz

and Evans [67] have applied CELP coding to the base-band residual (CELP­

BB). Vector quantization is used to code the decimated baseband residuaL At

the decoder, received base-band is up-sampled by inserting zero-valued
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samples after each sample and then filtered through the LPC synthesis filter,

to produce continuous good quality speech. An SNRSEG of 8.5 dB was

achieved at 7 kbps [67]. Informal listening tests proved that a CELP-BB, a

CELP and a vector quantized transfonn coder at 7 kbps, have a quality

comparable to the original speech [67].

Rose and Barnwell [8] have presented a “near toll-quality”

self-excited vocoder (SEV) at 4.8 kbps. In this SEV, no excitation signal is

transmitted to the decoder, alter initialization. The current source excitation is

derived from the past history of the excitation signal itself, using two long­

term predictors instead of the single one at the encoder. The initialization was

done by using a Gaussian excitation sequence for the first 100 ms of a 3-s

utterance and then setting the input to zero. Comparing the performance of an

SEV, MPLPC and CELPC, all working at 4.8 kbps, it was seen that [8, 68],

the objective performance of a CELPC (SNRSEG = 10.45 dB) is slightly better

than that of an SEV (SNRSEG = 9.93 dB). The performance of a non­

homogeneous (NH) coder (SNRSEG = 11.22 dB) is better than the above two.

But subjective tests [Paired Acceptability Rating Method—PARM (explained in

section 2.3)] showed SEV to be the best, with a score of 57.3 on a scale of

0 to I00, followed by CELP, with 55.6 and NH with 52.9. The computation

needed in SEV is only 4 MFLOPs compared to the 80 MFLOPs in ordinary

CELPC [8].

Very recently, Dedes et al [10] developed an APC, which can

change bit rate on a packet-by-packet basis. Using more than one quantizer
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to quantize the residue, an almost toll quality speech was produced at rates

between 16 kb/s and 9.6 kb/s [10]. Dedes et al have obtained an SNR

value between 14.5 and 18.55 dB, a log-likelihood ratio (LLR) of 0.0850 to

0.2071 and a log-area ratio (LAR) of 0.0513 to 0.0833 at 16 kbps, and 10.3

to 14.65 dB, 0.0748 to 0.1202 and 0.1618 to 0.3578 respectively at 9.6 kbps.

This SNR value is 10 dB more than the gain of a conventional APC of Atal

[45] (The SNR value obtained for the APC of Atal, using the above same

sentences, was only 2.60 to 3.60 dB [10], though Atal [45] has claimed a gain

of 12 dB).

A comparative study of the various types of predictive coders

explained above is presented in Table 2.2.

To summarise, the best perfonnance quoted of an hybrid coder

is that of the CELP coder, which gives a SNRSEG value of 13.8 dB at 2.8

kbps and a quality almost same as the original. But this is achieved at the

expense of an enormous amount of computational burden. The SEV and the

NH coder show an objective performance almost equivalent to that of the

CELP coder, at 4.8 kbps, with a reduction in computation, by an order of

magnitude.

2.4 Measurement of Coder Performance

It is a difficult task to assess the performance of different

coders on a single scale, as they differ in their basic operations. As yet, it is

not completely understood how the human ear interprets the sound signals that
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reach its cochlea. Hence a mathematical expression to quantify the “speech

quality” has not been completely possible. However, based on the present

knowledge of speech perception, many performance measurements have been

evolved. They are mainly classified as: objective measures, using Jiathematical

expressions and subjective measures based on listening tests. Obfective quality

measurements like SNR and SNRSEG give a good indication of tie subjective

rating of a coder at high bit rates, but at low bit rates, where high

complexity coders are considered, they do not correlate with subjective quality

[10].

2.4.1 Objective Measurements

There are mainly three categories of speech coding systems. Of

these, the waveform coders, try to preserve the shape of the speech

waveforms, while the vocoders try to mimick the speech sotmés. Due third

type, the hybrid coder, have characteristics common to both. I: suit these

‘distinct types of coders, two types of objective measures are used. Die

spectral distance measures are better suited to vocoders and lryzrid coders,

while the SNR and related measures are highly suited to wavefour coders.

2.4.1.1 Signal-to-Noise Ratio (SNR)

It is the ratio of the input signal variance to the 1'4.-cnstructicn

error variance. lf x(n) is the coder input at sampling instant 11, 1nd y(n) is

the corresponding coder output, then the reconstruction error is _z"r'-1-.1 by

l‘(I1) = Y(fl) - x(n) (2-1)
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The original signal variance is computed asN N
Bi = 313 Zlx(n) 2115 2 x<n)12 (2.2)n=1 n=1

The error signal variance isN N
Bf = Ilqz [r<n)~_§_ 2 ram’ (2.3)=1 n=1

where, N is the number of samples in the interval for which the S.\'R is

calculated.

2:Hence, SNR = __ (2.4)
B2r

It is expressed in dB as

SNR(dB) = 10 log10(SNR) (2.5)

2.4.1.2 Segmental Signal-to—Noise Ratio (SNRSEG)

Speech signals are, by nature, non-stationary, and the same

amount of noise has different perceptual values depending on the ambient

signal level. To take these facts into consideration, a segmental SNR

(SNRSEG) measure is evolved. The SNRSEG [69] is based on dynamic time­

log-weighting, so that very high SNR values of the well-coded large-signal
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segments do not camouflage the coder performance with the weak segments. To

compute the SNRSEG, divide the speech signal into segments of short duration,

and evaluate the SNR(m) dB, where m = l,2,....M corresponds to the block

number. Then, the segmental SNR is given by

M

SNRSEG (dB) =  SNR(m) dB (2.6)
nr=l

2.4.1.3 Articulatim Index (Al)

Noise in certain frequency bands is less harmful than that in

other bands of an input signal. In speech, in the region from 100 to

1000 Hz, error perception in a speech coding system increases as a function

of increasing frequency. Hence, a frequency-weighted SNR index called the

articulation index (Al) was used in early speech work [2]. To compute the Al,

the speech signal is subdivided into 20 sub-bands, and the signal—to-noise

ratio SNRi(dB) for each band “i” is calculated. Limiting the SNR to a
maximum value cf 30 dB, the Al is calculated as

20

Al = $7, Z [min(SNRi, some] (2.7)
i=1

14.1.4 ltakura-Saito’s Log-Likelihood Ratio

The lmman ear is not very sensitive to the short-term phase

[43] and hence in vocoders, only the magnitude of the speech spectrum is

usually preserved. So, the vocoder output waveform might be quite different

from the original speech, but still it will be quite intelligible, and sound the

same. Hence, distance metrics, sensitive to spectral differences are to be used



35

to measure the fidelity of the vocoder outputs. These measures are often used

for the LPC method.

Let al be the predictor coefficient vector and R1 the

autocorrelation matrix of the input speech. Let a2 and R2 be the
corresponding quantities of the coder output speech. Then the likelihood ratio

is defined as [10]:

T
a2R1a2

dLR ‘‘ T
""1R1"1

_ a:fR2a1 (2 8)
9§R2a2

The log likelihood ratio is the logarithm of the above expression, and is

written as

dLLR = 1" ‘°31o dLR

2.4.1.5 Log-Area Ratio

The Euclidean distance metric is defined as [10]:

1 P_ 2 ‘/
dLAR = [P  (LARH-LAR2i) 1’ (2.9)

1=1

where, the subscripts 1 and 2 correspond to the input and output speech
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respectively and p is the order of the Autoregressive model.

The log-area ratio LARi is given by

. = og —— .LAR 1 hki (2 10)
1 10 1_ki

where  are the PARCOR coefficients.

2.4.2 Subjective Measurements

In the perception of any communication signal, the main

mechanism for noise measurement is the human perception mechanism. Hence,

perceptual and subjective testing procedures, for determining the quality and

intelligibility, should supplement the objective measurements, while determining

the efficiency of a coder. A good quality output is highly intelligible, but the

converse is not true.

2.4.2.1 Quality Tests

The assessment of low bit rate speech codecs is more difficult

than those of the wavefonn codecs used at higher bit rates, since the

distortions produced by low bit rate codecs are very diverse in nature and

these degradations will be assessed by different persons in a varied manner.

The Mean Opinion Score (3105) is a systematic approach to

determine the speech quality. In this test, an ensemble of well-trained

listeners are asked to classify a stimulus (coder output) on an N-point quality
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scale, for signal quality or impairment. Or else, a particular number or value

can be associated with each category, say,

Ntmber scores Quality scale

5 Excellent4 Good3 Fair2 Poor1 Bad
The MOS value, is a pooled average judgement for the ensemble of Listeners.

A 64 kbps PCM speech output has a representative MOS value of 4.53 and a

standard deviation of 0.57 [23].

Another speech quality measurement is the Modulated Noise

Reference Unit (MNRU) [1,2], as recommended by the CCITT. Here, the

speech which is passed through the codec is compared with speech to which

distortion has been added by a “modulated noise reference unit”. The .\£\‘RU

is calibrated in terms of signal-to-correlated-noise ratio (Q). If one

quantization distortion unit (1 qdu) is defined as the distortion from one

commercial A-law or p-law PCM codec, then the qdu and the Q values can

be related as [1]

qdu = 10 (37-Q)/15 (2.11)
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The subjective equivalent distortion given by the above formula,

has been found to give reliable results for the 64 kbps PC“ and 32 kbps

ADPCM [1,2].

7.4.2.2 intelligibility Tests

In intelligibility tests, the infonnation-bearing contrast features of

the decoded word is tested.

In the Diagnostic Rhyme Test (DRT) of Voters [70], a set of 96

rhyming pairs are considered. The subject is presented with a coded word and

is asked to recognize the possible stimulus from a given pair, by noting the

extent or the presence of each of the six attributes of consonant phonemes,

like voicing in “vast versus fast” and nasality in “moot versus boot’ [2]. The

coded word is intelligible if the response from the listener is correct.

The DRT score is given by

P = —— 100% (2.12)

where,

EU ll number of right answers

2‘ in number of wrong answers

and T = total number of items involved.
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The typical DRT score is between 75 and 95, and for a “good”

system, the DRT score must be 90.

In the Modified Rhyme Test (MRT), the listener is presented with

one coded word from a closed rhyming set of six words (example, meat, feat,

heat, seat, beat, neat), differing in the beginning consonant, and is asked to

select the word.

From table 2.2, it can be noted that all the researchers on

predictive coders [2, 10, 23, 27, 44, 45, 46, 50-68], have used SNRSEG as the

objective measure of their coder performance, with mere listening tests to

supplement the quality detennination. Also, some researchers [66-68] have

shown that the SNRSEG tests and the quality tests (by mere listening) are

showing almost same coder performance. Only two researchers have used

concrete subjective tests in addition to the objective SNRSEG test. Daumer

[23] has used MOS value and Rose and Bamwell [8] have used a Paired

Acceptability Rating Method (PARM) to determine the subjective performance of

their coder. It is also reported that [2], the SNRSEG shows more closeness to

the subjective rating of the speech coders than the usual SNR. Hence, from

among the performance measurements explained in section 2.4, in this thesis,

the objective measure, based on the segmental signal-to-noise ratio is used.



Chapter 3

PREDICTIVE CODING METHOD FOR THE ANALY§S

AND SYNTHESIS OF SPEHIH SGNALS

3.1 Introduction

The aim of efficient coders, is to use minimum channel

capacity to transmit a signal, within a given time, with a specified fidelity.

For this, the redundancy of the transmitted signal should be reduced.

Predictive coding [44] is one technique to reduce redundancy. In this

method, redundancy is removed by subtracting from the signal that part

which can be predicted from its previous samples. The difference sigial

itself, or a related version of it, is transmitted.

ln linear predictive coding (LPC) [l1,I4], the speech waveform

is represented as the output of a linear time-varying filter which is excited

by an appropriate excitation signal. Or in other words, the current sample

can be approximated as a linear combination of its past values.

3.2 The Human Speech Production Mechanism

The human speech production apparatus consists of the vocal

tract, terminated at one end by the vocal cords and at the other end by

the lips. The nasal tract can be connected or disconnected to the vocal

tract, by the movement of the velum. The shape of the vocal tract is

determined by the position of the lips, jaw, tongue and velum. The human

40
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vocal system is shown in Fig.3.1.

The air we inhale in, is pushed out of the lungs, through the

trachea, past the vocal cords and into the pharynx, and finally comes out

through the mouth or nose or both, and is perceived as speech [72,73]. If

the air, on its way out, causes the vocal cord to vibrate in a periodic

manner, and this vibration is transmitted on to the vocal tract, then a

voiced sound is produced. If the source of vibration is a turbulent one,

produced by forming a constriction or complete closure within the tract, and

then the sudden release of pressure, then we perceive an unvoiced sound.

These sources create a wide—band excitation of the vocal tract, which acting

as a linear time-varying filter, imposes its transmission properties on the

frequency spectra of the sources. Only the first three fonnants are

important in determining the sound that is heard [16, 44].

3.3 The LPC Speech Production Model

Speech production models usually treat the vocal tract and the

air entering the vocal tract (that is, the “excitation”) separately [52]. In the

LPC analysis [11], the time-varying linear digital filter, representing the

vocal tract, represents the effects of the lip radiation, the glottal pulse

shape and the nasal cavity coupling (wherever required). A set of

parameters are extracted from the speech signal, to specify the filter

transfer function, which gives the best match to the speech signal that is

being coded. It is noted that, in the spectral envelope of the short-term

speech signal, there are a number of peaks at frequencies closely related to
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the formant frequencies; that is, the resonant frequencies of the vocal tract.

Similarly, it is the spectral peaks (that is, the resonances represented by

the poles of the filter) and not the spectral troughs (that is, the

antiresonances represented by the zeroes) that are most significant to

speech perception [43, 52]. Hence, an all-pole filter of order p, in the

range 10 to 20, is a good model, relating to the way in which the speech

is produced and perceived [52].

A digital model for speech signals is shown in fig.3.2. For

voiced speech sounds, the filter is excited by a quasi-periodic pulse train,

in which the spacing between the impulses corresponds to the fundamental

period of the glottal excitation. For unvoiced speech, the filter is excited by

a random number generator that produces flat spectrum noise. The

amplitude control regulates the intensity of the input to the filter. The

filter parameters determine the spectral characteristics of the particular

sound, for each type of excitation.

3.4 A Predictive Coding System

The block diagram of a predictive coding system [44] is shown

in fig.3.3. The input signal S(t), is sampled at the Nyquist rate, to produce

in

of the present value Sn of the signal, based on the past samples of the

/\
the samples SSH} At the transmitter, the predictor makes an estimate S

reconstructed signal, rn_1, rn_2, .....-The difference between the actual and

the predicted value, cl“ = Sn -"Sn, is quantised, encoded and transmitted

to the receiver. At the receiver, the transmitted difference signal is decoded



m_a:m_m zuoumm Ho. _o_uo2 _3_m_Q

A|| 3:: _2_m:.m mE.Cm> 0E_.H

Afiflofimama Est .3033=2oEo8 3:: .335

3.»:

uoumuucoonon E :2 Eon as mHoEuo:...Oom_=n_E_

a
8:3 55



Til Eoum>m mcfiuou w>auo..;.uwum o no Emummwmv xuoam m.m.mw.m

umimomm umuufiemcmue

ca.

uouuwvwum

no UH on 34c .

5 I u .0 uwwoow 41%

4

CW I

+

+AlT Ea ...T.\ + uwmoowo;/Pl I I I I A . uwcoocm uwuflucmsm : + c uwamemmmnl3 4 E55 ,3. .0 n 3m

Hmufimflo



46

and added to the predicted value of the signal to tom the reconstructed

samples r which are then low pass filtered to produce the output signalml

rl_(t). The predictor used at the receiver, is made identical to that at the

transmitter by transmitting the predictor parameters also. To follow the

non-stationary nature of speech signals, the predictor is updated at regular

intervals.

In the original LPC system of Atal and Hanauer [14], only

the predictor parameters are transmitted to the receiver. The signal is

reconstructed using these parameters. The predictor is updated every pitch

period for voiced sounds and every 10 msec for unvoiced sounds.

3.5 Signal-to-Quantizing Noise Ratio

For the system in fig.3.3, let

P be the mean square value (MSV) of the input signal

samples Sn ,

P d be the MSV of the difference signal samples dn,

Pq be the MSV of the quantizing noise in the decoded difference

signal dm and

P be the MSV of the quantizing noise in the reconstructed

signal rm.
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Then, the signal-to-quantising noise ratio of the reconstructed signal is

given by

SNR =_P§ = fi _ E; (3.1)
Pe Pd Pe

In the absence of digital channel transmission errors, P6 = Pq.

P PSNR = _§. ._d (3.2)
Pd PC]

For speech signals, P S/Pd is nearly 100 [44], and hence from

equation (3.2), it can be seen that, using predictive coding, an improvement

of about 20 dB in the SNR value can be expected, over a PCM system,

using identical quantising levels.

3.6 The Linear Predictive Coder — Using Spectrum Prediction

3.6.1 Theory

In an all—pole (auto—regressive AR) model, the nth sample Sn

is represented by [2,3,ll,14]

Sn = Z ak Sn-k + Gun (33)

where,
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Fig.3.4 The Auto Regressive Model of a Linear Predictor
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Un is the excitation,

G is the gain factor,

ak’s are the filter coefficients, and

p is the order of the filter.

p should be 12 for voiced speech but need be only 6 for unvoiced sounds

[14]. Equation (3.3) can be implemented using the AR model of fig.3.4.

If the input Un is totally unknown, then the estimated value

of Sn is

P/\

k=l

3.6.2 Parameter Estimation

The filter (predictor) parameters are determined by minimising

the total or mean squared error between the actual and the predicted‘

value, with respect to each of the parameters, in the time interval over

which the predictor is to be optimum.

The total squared error E is given as

2E = 2 En = Z (Sn-’s‘n)2 _ (35)n n
Setting 3E/Sai = 0, leads to the equation,
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P

2 ak Z Sn—kSn—i = Z Snsn-i’ Lfiisp 6'6)k:]_ Fl n
The above equations (eqn. 3.6), called the nonnal equations, form a set of

p equations in p unknowns. They can be solved for the predictor

coefficients, ak, IS ks_p , which minimise the error E. The minimum

total squared error E , is obtained by substituting eqn. (3.6) in eqn. (3.5)
P

and is given by

P_ 2
ED -% s“ + E ak Zn snsn_k (3.7)

Depending on the range of summation over n in ..the above

equations, two distinct cases arise.

3.6.2.1 Autocorrelatim Method

Here n is assumed to have infinite duration and eqn. (3.6)

reduces to the form,

P

Z ak R(i-k) = R(i), léigp (3.8)k=l

where I
00R(i) = Z snsmi, (3.9)

n= -00

is the autocorrelation function of the signal {$3.
The coefficients R(i-k) form an autocorrelation matrix. But in practice, a

window function wn is used to limit the signal to some interval,
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0.<_ngN-1. Then equation (3.9) reduces to the form:

u—1-1

R(i) = *2 sn’ sn’+i, i; 0 (3.10)
n=0

where,

Sn’ = snwn, 0$néN-1
0, otherwise (3.11)

The ilape of the window can be altered.

3.6.2.2 Covariance Method

In this method, only a finite segment of speech is considered,

such that 0.<_ng_‘{-1. Equation (3.6) now reduces to

D

Z ak (fa = Qoi, léisp (3.12)
k=l

H-1

E
ii: = n=O Sn—iSn-k

where,

(3.13)

is the covariance ii the signal{ Sn}.

The coefficients (Pm form a covariance matrix. The covariance

matrix is symmetric; but unlike the autocorrelation matrix, the terms along

each diagonal are not equal. Compared to the autocorrelation coefficients,
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for the computation of the covariance coefficients, p samples preceeding the

current window are also required.

The method for computing the gain factor G, is given in

Appendix 1.

Comparing the autocorrelation method and the covariance

method, the following points can be noted. The covariance method is quite

general and can be used without any restriction. But the resulting filter

may not be stable, which is not a severe problem. In the autocorrelation

method, the filter is guaranteed to be stable, but due to the windowing cf

the time signal, parameter inaccuracy arises. This creates problem if the

signal is a portion of an impulse response. Since the antocorrelation matrix

is symmetric Toeplitz, the number of matrix elements that are to be

evaluated is very less compared to the covariance method (that is, only p

instead of p(p+l)/2).

Speech signals are non-stationary in nature. It is seen that,

speech waveform is nearly periodic during voiced regions, and hence the

current signal value can be predicted based on the signal value exactly one

period earlier. But the period of the speech signal varies with time and

therefore, the predictor must be updated periodically. These varying

coefficients must also be transmitted to the receiver. This does not

consume excessive channel capacity because the coeffidents tolerate coarse

quantisation and slow updating [2].
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3.7 The Linear Predictive Coder - Using Pitch Pretfictitn

The two main causes of redundancy in speech are: (D quasi­

-periodicity during voiced segments and (ii) lack oi flatness of the short­

time spectral envelope [44]. It is the pitch excitation that produces the

quasi-periodicity in the amplitude-time waveform and also the fine structure

in the short—time log-spectrum of voiced speech segments [2]. The near

sample based predictor (spectrum predictor) does not consider this fine

structure; they exploit only redundancies in the spectral envelope. Hence the

prediction error sequence is not white, but is structured in accordance with

the speech periodicity. To remove this periodic structure, a second stage cf

prediction, called the pitch prediction, exploiting the correlations between the

speech sample being coded and a sample, or a set of samples one pitch

period away is considered.

3.7.1 Theory

Considering a voiced segment of speech, the nth sample can

be expressed as [44]

9

Sn = E1 akSn_k + U“ (3.14)
where

ak’s are the predictor coefficients,

p is twice the number of formants of the vocal tratt, in the

frequency range of interest, and

U n is the input (excitation) to the filter.
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U“ can be written as [44]:

on = ,3 un_M (3.15)
where M is the period of the excitation signal and is the pitch period of

the voiced speech segment. [55 is the “pitch gain” [2] which takes

account of the variations in the amplitude of the signal from one pitch

period to the next. Neglecting the variations in the coefficients ak from one

pitch period to the next, we obtain:

P

Sn-P Sn-M : Z ak(Sn—k "p Sn—k-M) ‘L Un "'8 Un-M
k=lor p

Sn = '3 Sn-M ‘‘ E1 ak(Sn-k ‘/Bsn-k-M) (3-15)

The above equation determines the structure of the linear

predictor, using both spectrum and pitch prediction.

The prediction equation (3.16) can be implemented by the

predictor configuration given in fig.(3.5).

P1(Z) = /3 Z'M removes the quasi-periodic nature of the

speech signal and P2(Z) = %_l akZ'k removes the formant information
from the spectral envelope. The first predictor is just a gain and delay

arrangement, while the second one forms a linear combination of the past p

values of the difference between the actual signal value and the value
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predicted by P1(Z).

The predictor parameters - M, )6 and ak’s - should be
readjusted periodically to match the varying characteristics of the input

speech signal.

For unvoiced sounds, U n represents a noise-like excitation.

For practical purposes, neglecting the effect of zeroes, equation (3.16) can

represent the prediction for unvoiced sounds too, if ,8 is assumed to be

Z8l'0.

3.7.2 Parameter Estimation

The predictor parameters are detennined by minimising the

mean square error between the true and the predicted values of the speech

samples, with respect to each of the parameters, in the interval over whid1

the predictor is to be optimum.

The details of the parameter estimation method are given in

Appendix I. The relevant equations are noted below. The predicted value of

the nth sample is given by [2,44].

P

/S\n = t3 Sn-M + :k:—1 ak(Sn—k -I8 Sn-k-M) 6'17)

The correlation parameter /3 is expressed as
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fl = < Snsn-M>m, / <Sn2-M>av 6'18)

where,< >2“, denotes the averaging over all the samples in the intervaL

The optimum value of M is obtained by locating the position of the

maximum of the normalized correlation coefficient f7 given by:

-)0 (M) = <snSn-M>av/Z(4Si21>av <Sfi-i\/Dav} I/2’ M> 0 6'19)

Using these values of M and 5 , the predictor coefficients ak’s are
obtained by solving for the vector “a” from the matrix equation.

g5 B. = 9V (3.20)
where, $25 is a p by p matrix with its ijth element given by

? ij = < vn-i Vn-j>av (321)
and

vn = 5" - /3 sn_M (322)

(ID is a p by 1 vector, with its jth component given as

Yj = < Vnvn-j>av (323)
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3.8 Development of the Modified Coder

The main aim of this work is to reduce the computational

burden and the complexity of the coder, and to reduce the transmission

rate, for a moderate SNR value of the reconstructed signaL The modified

block adaptive coder (MBAC) is a modified version of the adaptive

predictive coder of Atal and Schroeder [44].

To start with, samples from the word “JOE”, sampled at 8

KHz and encoded to 12 bits were used. 64 samples in the voiced region

were considered and the algorithm of equation (3.17) was applied. The value

of M was determined by locating the position of the first maximum cf the

normalised correlation coefficient )0 (M), for M> 0, and the values of

[8 and hence ak’s were evaluated. The SNR value was computed for

values of p from 2 to 12. It was noted that the SNR value was almost

same above p = 4. That is, the order of the filter required for prediction

need only be equal to the number of formants in the frequency range of

interest and not twice that number, as hitherto dictated [44]. But the value

of SNR was very low (around 1 dB).

On scrutiny, it was noted that the value of M was less than

p and hence it did not correspond to the actual pitch period of the signal,

but only to the position of the nearest maximum correlated sample. Also,

for values of M less than p, the terms inside the bracket on the right

hand side of equation (3.17), cancel each other, causing high error.
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Considering M as the position of the second maximum in the

normalised correlation function, a value of M equal to 38 was obtained and

the SNR value increased to 10 dB, when the first (p+M) sample values

alone were considered known. When the difference signal was also used, as

in an APC system, the SNR value went upto 14 dB. This gave an insight

to direct the research in the line, as to try to predict the sample values

based on the earlier predicted values alone, without transmitting the

difference signal. If the prediction is good enough, the error values will be

very low and it would be possible to get a good representation of the

signal, without transmitting the error samples, Edn} . This will provide a
good saving in the transmission rate. With these ideas, the modified coder

was developed.

33 Steps Towards a Modified Predictive Coder

The various modifications that have been done on the adaptive

predictive coder (APC) are explained below.

3.9.1 Reduction in the Cunputational Load

Preliminary simulation studies on the APC, revealed that the

computational load involved in the evaluation of the predictor parameters

can be reduced by making certain changes in the evaluation methods. The

changes that evolved, are explained below.

3.9.1.1 Pitch Period Determination

The first step in the implementation of the predictor
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algorithm, is to divide the input data into different blocks, and check

whether the block belongs to voiced, unvoiced, silent or transition region.

Once the block under consideration is detected to be voiced, the first

parameter to be computed is M, which represents the number of samples

within a pitch period of the signal being processed. Or in other words, Bl

gives a measure of the pitch period.

Many researchers have put forth different methods for the

determination of pitch period. In the inverse filtering approach [14] and the

PARCOR approach [14], pitch is determined by noting the peak positions in

the linear prediction error signal. For this, the predictor coefficients are to

be first evaluated and then the error signal (that is, input to the inverse

filter l/H(z)) is to be retrieved. The SIFT (simplified inverse filter tracking)

algorithm [74] is another method. Here, the amount of processing required

is reduced by pre-filtering the speech signal to about 1 KHz, dorm

sampling and performing an inverse filtering of the resultant signal. This

signal is then autocorrelated and a peak-picking method is employed as in

the above two approaches. The parallel processing method (PPROC) of

Rabiner et al [75] is yet another method of pitch period determination,

which is very tedious.

Atal and Schroeder [44] have considered the periodicity of the

normalised correlation coefficients, for evaluating the pitch-period. Sondhi

[76] has used autocorrelation coefficients (ACF) of the centre-clipped signal

samples. Amano et al [29] have reported that normalised autocovariance
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function is a better parameter. But the author has found that by just

checking the periodicity of the peak positions of the ACF’s, formed from the

direct samples, we obtain exactly the same results as those got from the

methods of Sondhi and Ata! and Schroeder. Care was taken not to use

overlapping windows while segmenting the data samples. This was done to

reduce the chances and hence the effect of including the different regions

in the same block, while performing the detection of the relevant region in

the block.

The results of the work done in this direction are shown in

Table 3.1. For each block under consideration, the normalised correlation

coefficients F (J), the ACF’s R(J) of the original samples and the

ACF’s Rc(.l) of the centre-clipped samples [76] were evaluated. In the

centre-clipping method of Sondhi [76], within each block, the maximum

absolute value A0 of the samples is found every 5 ms (here, every 40

samples, as the sampling frequency used is 8 KHz), and all portions of the

signal, between +0.3Ao and —0.3A0 were removed, to obtain the clipped

samples. ACF’s of such 160 centre-clipped samples were computed.

The correlation coefficients are given by the following

equations. N N N
f(J) = snsrh]/{(Zsfi).(Z  (324)n=J+1 “=1 l'I=J +1
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N

R(J) = 2 snsn_J (3.25)
n':J+1

N_ 1 1Rc(J) - E1 snsrh} (3-25)
where, Sn) is the clipped samples and N = block length in samples = 160.

(The reason for choosing 160 samples is explained in section 4.2.1).

Under natural speaking conditions, the minimum pitch period

is 2 msec [43]. For a sampling rate of 3 KHz, this value corresponds to

16. Hence the value of M was determined by locating the maximum value

of the correlation coefficients, for J >15. To check for the periodicity of the

correlation coefficients and also to check the consecutive pitch periods of

the signal being processed, the positions of the first, second and third

maxima were found with respect to all the functions—f’(.l), R(.l) and

Rc(J). The number of samples within adjacent peak positions were noted

as M1, M2 and M3 (as shown in Fig.3.6). It can be seen from Table 3.1

that the values of M1, M2 and M3 obtained from all the above three

evaluation methods are identical. While using these above values for the

detection of the voiced/unvoiced/silent/transiticn regions in the speech signal

(explained in chapter 4), the voiced regions were found to be detected

correctly.

Computational Savings

Considering the computational savings achieved in this case, it
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Table 3.1

Pitch number of samples obtained from the different
correlation functions, for voiced speech segments

No. of samples within peak positions, obtained from
Data Segments
files RC(J) P (J) R(J)

M1 M2 M3 M1 M2 M3 M1 M2 343

1 32 33 32 32 32 33 32 32 33
2 32 32 32 32 32 32 32 32 32

F1 3 35 35 35 35 35 35 35 35 35
4 35 34 35 35 34 35 35 34 35
5 36 36 36 36 36 36 36 36 36
1 38 39 38 38 39 38 38 39 38
2 41 42 41 41 42 41 41 42 41

M1 3 39 38 39 39 38 39 39 38 394 51 50 51 51 50 52 51 50 -­
5 54 54 -- 54 54 —- 54 54 -­
1 46 45 46 46 45 46 46 45 46
2 38 38 38 38 38 38 38 38 33

33 3 49 49 49 49 49 49 49 49 494 47 47 47 47 47 47 47 47 47
5 51 50 -— 51 50 52 51 50 51

Note: F1, M1, B3 are different speech files, specified in
Tables 4.1 and 4.2. Number of samples in a block = N=160.
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can be noted that, compared to the normalised correlation coefficient

method, the use of the ACF’s saves (2N+l) multiplications, (ZN-2)

additions, 1 square rooting and l division, for each value of J, where N is

the total number of samples in the block under consideration. This saves a

good amount of computational burden. The centre-clipping method needs an

additional amount of computation, at the beginning of each block, which

comes on an order of N additions or subtractions (computational values

arrived at are shown in Appendix 11).

3.9.1.2 Covariance/Autocorrelation Matrix Evaluation

The next step in the direction of reducing the computational

burden, was to see if the covariance matrix could be reduced to an

autocorrelation matrix, in the evaluation of the predictor coefficients.

In the distant-sample based prediction method (pitch prediction

method), the matrix elements are computed from V" = Sn-BSn_M. Since

Sn_M is the sample most correlated with Sn and [B is approximately equal

to 1, the value of gvni is very small, and theoretically it makes no
difference if the covariance matrix is replaced by the autocorrelation matrix.

But it reduces much of the computational work.

The distant sample based algorithm (of equation 3.17) was

tried on both voiced and transition segments, using both the autocorrelation

method and the covariance method, for various values of p, the order of

the predictor, and the average SNR and SNRSEG values were computed. The
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effect of the spectrum predictor alone (of equation 3.4) was also studied.

It has been noted that the pitch period of a voiced sound

remains constant for 3 to 4 consecutive pitch positions (as seen from the

values of M1, M2, M3 in Table 3.1). Hence, the block length was taken as

4M, since it is always better to choose a block length relative to the pitch

period of the signal being processed, rather than choosing a constant block

length of 5 or 10 msecs, as hitherto done. It was assumed that the

predicted value of the first (P+.\l) samples is the same as that of the

original samples. For n > (P+M), the earlier predicted values were used.

The difference signal is considered unknown. The above same processes

were done using a block length equal to 3M also. The results of the work

done in this direction are shown in Tables 3.2 and 3.3.

From Table 3.2(a), it can be noted that, using pitch

prediction, for voiced segments, the value of SNRSEG varies from 4.82 dB

to 12.95 dB (or SNR varies from 4.98 to 16.1 dB), for the various data

files and various speakers, as the order of the predictor p, is increased

from 4 to 12. Also, when covariance method was used for the evaluation of

the predictor coefficients, actually the SNRSEG value decreased, though only

marginally by about 0.2 dB to 0.3 dB. In some cases, the predictor became

highly unstable and the predictor coefficients went to 1: 5 and above ,and

the algorithm did not work (It has been reported [2] that the covariance

method gives better and steadier SNR values than the autocorrelation

method). Table 3.2(b) shows the result of spectrum prediction on voiced
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Table 3.2(a)
Comparison of the SNR values obtained by using pitch

prediction on voiced segments

.-lutocorrelation method COVaf-‘lance methcd
Data
files N = 3M N = 4M N = 4M

AV.SNR AV.SNRSEG AV.SNR Av.SNRSEG Av.SN Av.SNR:3G

4 12.81E 11.129 9.937 9.100 9.495 8.662
13.537 11.854 10.130 9.283 8.776 9.594

F1 8 13.817 12.159 10.241 9.662 8.940 9.558
10 13.822 13.820 10.327 9.859 8.949 9.565
12 14.114 12.513 10.438 9.506 8.800 9.500

4 6.066 5.160 4.981 4.822 5.007 4.838
6.086 5.168 5.190 5.004 5.037 4.869

M1 8 6.012 5.186 5.356 5.218 5.129 4.998
10 6.245 5.301 5.957 5.856 5.511 5.430
12 6.651 5.613 8.019 7.932 5.310 5.350

16.563 15.142 14.900 12.570 9.560 8.546
16.836 15.444 15.827 12.712 15.580 12.430

33 8 17.052 15.703 16.101 12.839 15.646 12.470
10 17.005 15.631 15.918 12.884 15.779 12.656
12 16.981 15.907 15.527 12.949 10.751 9.602



68

Table 3.2 (b)

Comparison of the SNR values obtained by using
Spectrum Prediction on Voiced Speech Segment

Autocorrelat ion method Covariance method
Speech 1file 5 N Z 40 N = 40

P

Av.SNR Av.SNRSE2G AV-SNR AV-SNRSEG

0.783 0.7139 0.790 —.421
1.521 1.398 1.503 1.770F1 8 2.328 2.078 -- -_

10 3.474 2.936 1.451 1.447
12 5.028 3.657 1.730 ‘ 2.025

4 0.707 0.670
1.133 1.086

M1 8 2‘O73 1'862 Obtained only lower
10 2'249 l'997 values wherever the
12 3°l15 2'55O algorithm worked. In

1.021 0.929 ma“Y Cases! the
l_553 1_4l4 system does not work,

B3 8 4_628 3_577 as the prediction
10 5.575 4_570 coefficient values
12 7_753 6.122 shoot upto :5 and

above.
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Table 3.3(a)
Comparison of the SNR values obtained by using

pitch prediction on transition segments

Speech
Autocorrelation method Covariance method

files P N = 3M N = 2M N = 2M
Av.SNR Av.SNRSEG Av.SNR Av.SNSEG Av.SNR Av.SNRSEG

9.697 9.420 11.546 11.124 11.041 10.858
9.940 9.731 11.962 11.583 11.032 10.949

Fl 10.389 10.261 12.786 12.378 12.749 12.515
10 10.354 10.250 13.145 12.586 12.750 11.709
12 10.442 10.341 15.086 14.445 12.900 11.960

4.810 5.701 5.900 6.500 7.813 6.779
6.123 6.231 7.501 8.001 7.659 6.914

Ml 7.935 7.898 8.598 8.396 7.721 6.771
10 8.712 8.599 9.386 9.130 -— ­
12 9.351 9.112 10.114 9.732 8.489 7.252

11.807 10.568 11.232 10.560 11.791 10.267
11.881 10.473 13.594 12.423 12.751 14.154

B3 12.150 10.532 14.139 12.982 12.344 12.521
10 12.352 10.824 14.316 13.192 12.150 12.980
12 12.351 10.910 15.203 13.789 9.601 12.010
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Table 3.3(b)

Comparison of the SNR values obtained by using
spectrum prediction on transition segments

Autocorrelation method
Speech pfiles N = 40 N = 40

Av. SNR AV . SNRSEG

0.6109 0.4924Fl 6 2-0380 1.78383.1924 2.615510 3.6936 3.162512 4.8313 4.3043

2.4915 2.1622
3.4687 2.9835
5.4610 4.4753M1 10 6.8182 5.541112 7.2321 5.9598
2.4855 2.18066 3.3194 2.7500
4.4572 3.8858B3 10 6.3400 5.373012 7.0958 5.9886
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Table 3.4
Comparison of the SNR values obtained by using

spectrum prediction on unvoiced segments

Autocorrelation method Covariance method

Speech P N = 40 N = 40files
Av . SNR. Av.SNRSEG AV . SNR AV-SNRSEG

4 0.7089 0.6269 -9.8790 0.2491
6 1.1016 1.0242 -9.5520 0.3880

F1 8 1.5320 1.4598 —9.0792 1.0011
10 2.5568 2.3733 0.7093 0.9601
12 3.2550 2.9366 0.9112 0.6732

1.2890 1.0768 —- -­
6 2.2217 1.6753 -6.4130 0.2430

M1 8 5.1197 3.2377 1.1606 0.6468
10 5.9155 4.0600 1.8100 0.9501
12 8.6048 5.1051 1.0601 1.0610

4 0.5020 0.4937 —- -­
6 0.9608 0.9030 0.4650 0.3601

B3 8 1.5041 1.4042 1.0515 0.2172
10 1.9021 1.8213 1.0671 0.2869
12 2.2594 2.1624 1.0122 0.5241
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segments. Comparing Tables (3.23) and (3.2b), it can be seen that the

introduction of a pitch predictor increases the SNRSEG value by around 8

to 9 dB.

Similar results are obtained for the transition segments also

(Table 3.3). For unvoiced regions, the correlation factor 5 tends to zero

and the pitch prediction algorithm is reduced to the spectrum prediction

algorithm. Here also (Table 3.4), the autocorrelation method turned out to

be better, in terms of both SNR value and stability of the filter.

In the transition regions, the changes in the sample values is

abrupt and hence, for transition segments, the processing block length is

chosen to be N = 2M, while for voiced segments it is 4M and for unvoiced

regions, it is taken as 40 (that is, 5 msecs duration).

It was further noted that, for unvoiced segments, SNR

increases as p increases and p = 12 is optimum, in an SNR sense. For

voiced regions, the increase in SNR for values of p equal to, and above 4,

was only marginal (about 0.2 dB). Hence p = 4 is chosen as optimum.

Similarly, p = 3 seems to be optimum for transition regions. Thus, a

switching between the two algorithms - pitch prediction and spectrum

prediction - is to be done when the speech segments change from the

voiced or transition regions to the unvoiced region. Silent region needs no

processing.
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Figures 3.7(a to j) illustrate the variations in the value of

SNRSI-13 for various parameters like, the order of predictor p, and k, the

segment number. of the speech data used.

To obtain a comparative view of the original and the

reconstructed waveforms, the reconstructed waveforms are plotted for 3

nearly optimum values of p, for the different regions (please refer figs.3.8

to 3.10). The reconstructed waveforms are quite acceptable.

Computational Savings

When the covariance matrix is reduced to the autocorrelation

matrix, it can be noted that the number of matrix elements that are to be

evaluated is reduced from p(p+l)/2 to p, where p is the order of the

predictor. That is, for p = 8, the number of matrix elements to be

evaluated reduces to just 8, from 36. This means that a reduction in

computation, from (p2+p)N/2 multiplications and additions to pN

multiplications and additions, is possible (Above values are derived in

Appendix II).

3.9.1.3 Evaluation of the Predictor Coefficients

Gauss-Jordan elimination method was used to solve for the

vector a, from the equation ¢ 21 = 9/ .

It has been noted that (as explained in Appendix 11), using
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this method, the evaluation of the predictor coefficients, requires

approximately (p2/2 +3p/2) divisions, multiplications and subtractions. The

square-root or Cholesky decomposition method requires p3/6 + O(p2)

operations, while Durbin’s method requires p2+O(P) operations [11]. Hence,

the elimination method used was comparable to that of Durbin’s method.

3.9.2 Reduction In the Complexity of the Coder

In the modified coder, as mentioned earlier, the difference

between the actual and the predicted value of the signal samples is not

transmitted to the receiver. At the transmitter, using a block of sample

values, the predictor coefficients are evaluated, and they are transmitted to

the decoder (receiver) along with the decoded version of the first few

sample values. At the receiver, using these parameters, the present value

of a sample is estimated based on the earlier predicted values. The

predictor at the receiver, is updated by transmitting the predictor parameters

afresh every block.

3.9.2.1 Coding of Side Informations

The coding of the side informations (corresponding to the

amplitudes of the first few samples every block), is achieved by a

transformation or mapping.

A one-to-one mapping between the present sample value Sn

and the corresponding difference value Dn, between the present and the

preceding sample value) is used. The first sample value S1, the step size
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A , and the codes corresponding to the difference samples 301% are to be

transmitted.

It is stated that [2] short time pdf’s of speech segments are

described by a bell-shaped Gaussian pdf, irrespective of whether the speech

segments are voiced or unvoiced. For a signal with Gaussian probability,

only 32% of the instantaneous sample values will go above the standard

deviation of the samples considered. Using these facts, the mapping was

developed.

Let D“ = Sn-Sn__1 be the difference signal and let c'"‘d be

the standard deviation of these difference samples. Then for voiced

segments,

‘/2PM

6*-d =[ 2 (Dn ‘$95)n=2 (3.27)

where -13“ is the mean value. The upper limit of the summation changes to

p, for unvoiced segments. The difference samples are to be coded and

transmitted to the receiver. The quantisation levels were made relative to

the standard deviation of the difference samples.

Different levels of quantisation - 3-level, 7-level and 8­

level —were tried and an 8-level quantizer was found to be optimum. The

effects of the quantisation on the SNR values are shown in Table 3.5.
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The Sn—to-Dn mapping using an 8-level quantiser, in fig.3.11.

Using a mid-rise quantizer, based on the pdf of the difference signal as

explained earlier, the values of D“ below o—d are quantised into 3 equal

steps, at °"'d/6, 3o-d/6 and 5-a—d/6. The values of Du above «-5, is
taken as equal to 2a-—.

The above Sn-to-Dn mapping and further encoding is summarised

as follows:

1. S1 should be transmitted.

2. Find standard deviation a—d and fix up step size A = rd.
Th .3_ en,

a) If D” > er; , then Dnq = 24
b) If 212/3éDn .4_ 9;] , then Dnq = 514/;
c) 1r .,—aL/331311.: za-;L/3, then Dnq = 0/1

d) If 0 -3 Dn4°'zt/3 , then Dnq = 4/;
e) If _.?_/_,_g Dn< O , then Dnq = -A/{
t) It —-zc-4/§$Dn-<v -oz/3 , then Dnq =—0/7.

g) If -67 \< Dn< — 2-°Zz/3, then DM = - s‘4/5
_ _. ‘LAh) If Dn /\_,_d, then D M —

Dnq is the quanfised version of DH.

4. Transmit codes corresponding to Dnq, to the decoder.
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5. At the decoder, decode to obtain Dnq and hence the final
version of the coded Sgs; from which the predicted estimate is computed.

Thus, the high—order predictor at the transmitter of an APC

system is replaced by a simple delay unit, thereby reducing the hardware

complexity of the system. The computational load is also reduced much, as

a prediction is not needed at the transmitter, and the system becomes more

real-time. Also, if needed, the time interval in between the transmission of

the predictor parameters, can be effectively used for time-division

multiplexing between other signals or systems.

3.9.3 Reduction in Bandwidth Requirement

At the first glance, one might expect a minimum reduction in

bandwidth of the order of fs KHz (is is the sampling frequency of the

signal), over the APC system of Atal and Schroeder, as the difference

signal is not transmitted. But a coded version of the first few sample

values have to be transmitted every block, to maintain a better SNR value.

But the predictor parameters and side iniormations tolerate coarse

quantisation and slow updating and hence much excessive channel capacity

is not required. The work done in this direction is explained, in detail, in

the following chapters.

3.10 The Modified Block Adaptive Coder

The block diagram of the modified block adaptive coder
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(MBAC) is shown in I-‘ig.3.12. The input signal s(t) is low pass filtered to 4

KHz, sampled at 8 KHz and encoded to 12 bits, to form the speech

samples {Sn}. Using blocks of data values, of appropriate length, the
predictor parameters are computed and are suitably encoded and then

transmitted to the receiver.

At transmitter, the difference between the adjacent sample

values is obtained, for the first few sample values, using a delay unit as

shown in figure 3.12. These difference sample values are quantised, encoded

and transmitted. They are also decoded, and used at the transmitter to form

the reconstructed samples r , from which the next delayed version of the

sample is obtained. This reduces the quantisation error effect.

At the receiver, the difference signal is added to the previous

reconstructed values to obtain the predicted values of the first few samples.

(The first sample S1, is to be transmitted). For the rest of the samples,

the predictor forms an estimate, based on the predictor parameters received.

They are low-pass filtered to get the reconstructed speech signaL The

predictor is updated every block of 45:! samples. The value of .\l may

change from block to block, depending on the correlation of the input

samples.

The actual simulation of the modified coder is explained in

the next chapter.
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3.11 Signal—to-Noise Ratio of the Modified Coder

The signal-to-noise ratio representation of the modified coder

is not straightforward as in a DPCM system with a linear predictor, or the

APC system, as explained in section 3.5. The total error in the

reconstructed signal is due to (i) error i.n prediction (ii) en'or due to the

new prediction estimate being based on the earlier predicted vahies and (iii)

the error in quantising the predictor parameters and side inforrnations.

The performance of the system can be measured in terms of

the standard segmental signal-to-reconstruction error ratio, given by

M

SNRSEG (dB) = 31- Z SNR(m) dB (3.29)
m=l

where,

E:SNR(m) = _ (3.30)
E2

1'

2
E is the variance of the signal in the current block and E3 is thes

variance of the corresponding prediction errors.

To summarise, a predictive coding system is presented in the

first half of this chapter. The latter part presents the actual modifications

involved in the development of the modified block adaptive predictive coder.



Chapter 4

SIMULATION STUDY ON

THE MODIFIED BLOCK ADAPTIVE CODER

The actual simulation process of the Modified Bloc: _-xdaptiwrz

Coder is presented in detail in this chapter.

4.1 Speech Data Used

To study the feasibility of the coder on all types It’ sou:«r.\:

and phonemes, in the English language, the speech data base is so chaser

as to contain almost all the phonemes in English. Two sets :1’ s_1ee-:11 tezz

are used in the work. In the first set, consisting of four phrase; shown II

Table 4.1, care is taken to include more of vowels and nasals, wiicir are 11

a great extent speaker dependent. Here it can be noted that one word am

at one region and the next word starts at a different region, difi.lItI1"..‘_T ar_::—i::

in the vocal tract, so that merging of words is avoided. The zecmd 3

consists of eight sentences, shown in Table 4.2, with a total duraicn of 2]

secs. These sentences are chosen since they are phonetically wel-‘J.2laric:-r.

For both‘ sets, speech data from a male and a female spsmra we.-5

collected.

Speech data were collected using a PC based speech iighzer. 1.

* Data set 1 was obtained from Dr.Babu P.Anto and data 5?.’ 2 was
obtained from Dr.N.K.Narayanan, both former research scl1ol:—rs of
Department of Electronics, Cochin University of Science and Teénmiogy.
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Table 4.1

Phrases used Male Female

1. Drop coin after tone Bl T1
2. Push blue after speech B2 T2
3. Close door after party B3 T3

4. Right move close lock 34 E4
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Table 4.2

Sentences used Male Female

1. The pipe began to rust while new Ml Fl

2. Cats and dogs hate each the other M2 F2

3. Oak is strong and also gives shade M3 F3

4. Thieves who rob friends deserve jail M4 F4

5. Open the crate but do not break the M5 F5
glass

6. Add the sum to the product of these M6 F6
three

7. Joe brought a young girl M7 F7

8. A lathe is a big tool M8 F8
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dynamic microphone was used as the input to the system. An ordinary No

room was chosen for the work. The system noise was adjusted to a minimum

at the beginning of the data acquisition session. In real life environment,

there will be a lot of background noise and hence it will be always better

to study the performance of a system in a noisy environment. Hence an

ordinary A/c room was chosen as the venue for the data acquisition. It is

reported by Babu P.Anto [79] that when an anechoic chamber was chosen as

the speech chamber, the absence of normal ambient noise tends to make the

speaker speak with slight difficulty.

The speech waveform was band-limited to 4 KHz, sampled at 8

KHz and encoded to 12 bits and stored in the system RAM and then

transferred and stored as files on disks. These sampled data were later used

for the processing.

4.2 Voiced/Unvoiced/Silent/Transition Classificaticn

As explained in section 3.2, depending on the statistical

properties of the speech waveform, there are mainly two different categories

of speech sounds, namely voiced and unvoiced. The vowels and the nasals

(like /a/, /i/, /I/, /e/, /‘x/, /W, /u/, /o/, /J/, /m/, /n/, /7/ etc.) are
voiced sounds with high energy and high correlation, whereas, the fricatives

and plosives (like /s/, /f/, /f/, /0/, /p/, etc.) are unvoiced sounds with

low energy and low correlation.
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Speech is a non—stationary quasi-periodic wavefmn. Though it

is not fully periodic, the voiced regions remain periodic for about 4 to 5

pitch periods [14]. Unvoiced regions are almost uncorrelated, while transition

regions show sharp and sudden changes. Hence, while processing speech

segments based on parametric methods, special care must be taken to

classify the different regions. The silent regions do not have much signal

information, and hence no processing need be done for those regions. Hence

it was thought feasible to develop a method which will detect all the four

regions correctly. This is actually a difficult problem in speech analysis.

As such, many algorithms are available in the literature for

voiced/unvoiced detection. The aim of all these algorithms is to find out

certain features of the speech signal, that can help in this dflion. Atal and

Rabiner [80] have considered the voiced/unvoiced classification as a pattern

recognition problem. Five features like zerocrossing rate, correlation

coefficient, energy, LPC predictor coefficients and prediction error energy have

been considered. Rabiner and Sambur [81] have presented an LPC distance

measure for voiced—unvoiced-silence detectioiu Knoor [82] has proposed

another technique, by filtering the speech and comparing the rectified filter

outputs.

Three methods are presented for the detectim of

voiced/unvoiced/silent/transition regions. These algorithms are based on certain

basic statistics of the speech waveform and were developed after extensive

arithmetic work.
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In the first method, fixing up two threshold values for the

short-time zero crossing rate (STZCR), an initial silent/unvoiced detection is

done. Next, for blocks having values of STZCR in between the two

thresholds, periodicity of autocorrelation functions (ACF), product of STZCR

and short-time energy (STE), and Sm to Smean ratio are used for thes

further classification. In the next two methods also, the initial detection step

is the same as explained in method I. For the final detection, normalised

correlation coefficient )0] for lag l was used in method 11, while the

periodicifi of the ACF’s and the value of a correlation factor /3 were used
as measures for detection in the third method.

4.2.1 Algorithm I for Voiced/Unvoiced/Silent/Transition Detectim

The silent region in a speech waveform will have very low

energy. But certain unvoiced sounds like, /f/, /0/, /p/, /k/, /s/, etc. at the

beginning or end of a speech sequence, and also nasals at the end, have

very low energy [2, 83], and can be mistaken to be a silent region. But the

STZCR for a silent region is very low, compared to the other regions.

Energy of voiced speech is concentrated below about 3 kHz, while that of

unvoiced speech is found at higher frequencies. Hence the STZCR of

unvoiced segments should be higher than that of voiced segments. But there

are regions where overlapping can take place, in both the STE and the

STZCR domains [3, 80] of the voiced and the unvoiced segments. But voiced

regions show a periodic nature while unvoiced regions do not. Transition

regions can have energy and zerocrossing rate relatively at all levels,
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between the two extreme ends, for the silent and unvoiced regions. Transition

can occur between any combination, from among voiced, unvoiced and silent

regions, and hence the energy, ZCR and also the duration of the transition

regions will be relative to both the preceding and succeeding segments.

Three sentences, each of duration 2.5 secs, spoken by three

speakers, were considered for the training session. They were, the sentence

“The pipe began to rust while new”(data files M1 and F1 in table 4.2)

spoken by a male and female speaker and the sentence, “Close door after

party” (data file B3 in table 4.1) spoken by another male speaker. Typical

plots of the various regions, present in the above data files are shown in

figure 4.13 to 4.ld.

It is reported [14, 43] that the vocal tract ‘rings’ for a

duration of about 10 msecs. Also, under natural speaking conditions, the

pitch period can vary from 2 msec. for very hjgh—pitched females and

children, to 20 msec for very low—pitched males [3, 43, 44]. For a sampling

frequency of 8 kHz, it corresponds to a maximum of 160 samples. In the

present study, the maximum pitch period was less than 3 msec, and the

block length of 160 samples, helps in validating the periodicity in the peak

positions of the correlation coefficients, within a block. Hence the best block

length for the processing was fixed as 160.

The speech data were first grouped into blocks of 160 samples,

and each block was manually classified into the four different regions, by
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plotting on a VDU. Parameters like energy, ZCR, Sms to Small ratio

(RMR), ZCR to energy ratio (ZER), product of ZCR and energy (ZEP),

normalised correlation coefficient (NCC), periodicity of ACF’s, correlation

factor fl denoting change in amplitude from one pitch period to the next,

etc. were evaluated every block, and studied, and the following algorithm was

developed. The values of the different parameters obtained for the diiferent

regions of the different data files, are summarised in Table 4.3.

The different steps involved in algorithm I is explained below.

Step 1: Check for STZCR

(a) If S'I‘ZCR < 200, then Silent Region.

(b) If STZCR ,2 3500, then Unvoiced Region.

If STZCR is between 200 and 3500, then it can belong to any

of the four regions. Hence check for the periodicity of the speech segment,

by noting the consecutive peak positions of the ACF’s R(.l), of the original

samples, in the segment under consideration. It is verified by the author

(please refer Table 3.1), that the ACF’s of the unclipped sample values are

enough, for pitch period determination, as against the centre-clipped rzethod

developed by Sondhe [76], or the nonnalised correlation coefficient method :1’

Atal and Schroeder [44]. Let Ml denote the position of the first maxizna cf

R(.l), (leaving the peak at J = 0) and M2 be the distance, in number of

samples, between the first and second maxima. Or in other words, M1 and

M2 represent the number of samples within consecutive pitch periods [as



Nb 2 mm

0om...2. nm.+..§.. %:3......: was? n..S§.|m$ 2.... 2: mm 3 oemvaomm mm momw. R. n.::.m :. m..S:..m fin mm an em 88 a

$...$. 372. mo2...n..3 Sue. m:o:mTm.3 o.:..o.m 8 3 om 8818mm 9.

mm mm 2

5:3. m8.+:S... oo:....m..~d :o.wl..o.3 mu2G.Tm.c m.m..3 S 2 S. ofimnomvm E
Siam. 8:8. m2@.m..$ ~:..§.m..$ m..S$.mIE m.mnm~._ R 8 on oflnxomfl mm

$.44. 07$. wo:o.To~.V nno:o.m..n.: mnS8.mIm.. m.m..o.m E am 5 omfluomm Sou $...nm. mmrfl. mo5.u;.: ?2e.........c m:o:~.~..m.: m.m..m.m mm 3 we omonxaomu J,

mmrmm. $.18. mozmdumfl m..S8.m..S euo:m.T..m.c 2:5 3 R 3. omfluoom E

as 3 mm 3.

2.5%. $......R. oS:.muv.c .muo:o.n:3 m..o:o.m:mb 8.73 S 3 2 87.. E

as S. as 5 3 6 € 5 S 5 S E

.“ SE

a % man man mam mzm m: 9. E monam 33 nonom

uoubouuv uoEmu.nh\uuumm\uoo_o>n:\vou_o> H3 .8E 53 ofl .0 u_m.¢«n< ofi we nznmum

3. ~33.



xfiee Bfimnnm ..| M2».m._.mEvNHm ..I m u N
._. ma. Ho mnnuu E Anvm .ur._0< ofi Ho mcoufioa anon o>.u=uow.._oo couzuvn moo:.3m_Q I «S .n2 42

3.42.. 3.13. mo:m.m..m.: E73 m..o§.w.o.c “.84.: mm on mm 82.8w

3...}. 3.12. mS$¢..o.3 E...§ m..o:o.S..m.3 8:3 3. 5. 3 ofiuoom mm 1Hv278. Srmm. mo:8..o.t N612. m..o§.n..3 3.13 I 3 R cmfiuommn M£...om. mmrow. mo:3...3 m.w..o.m m..o5.m.s.3 313 I mp E ommnnooz :2 w...N

H 8.73. 5:8. ....S:.2ui 34. m..o§.o..3 Elan on S S omfluoon E

3 $ 9.

2.7.3. 3.4:. ..o:....2..o.8 munnfl m..SG.3..o.: m.mm..w.: mm am am 821%» mm

362. Srom. va§.m..m.$ ..2..2: n..Sa.To.a «.219: 3. 3 av omvmuoo: A3.4». R....&.. ..2:m..n.: 3:8 ~:SG.Tn.S v.mnnm.: um om E oomunooon m8.7%. 8.13. eo:m~.._.S $78 n..o:o.w..$ Em.4.3 3 an S. Sonnomz E M.

:.....t.. $.19. _.o:o.w.._.a $73 ~ao:...e..w.S 5:43 am an an oomuuomon3.75. 8.7:. ..S8.:..n.c 873: u..o:m.S..: 98.2 mm mm an 82.5?

8.73. 3:3. vo:o..m......u Sn: «-3373 o.mm..wmm em em 3 STSN E

as as as 5 8 E G. E E 5 5 3



112

shown in Fig.3.6].

A transition region, being influenced by its prececing and

succeeding regions, can show a periodic nature. So is the case wifin the

silent region also (Refer Table 4.4). The author has also noted tha under

rare conditions, especially for male speakers, the inter word and int: word

silence regions show a pseudo-random nature, with an ZCR value hi;-‘Le: than

usually expected (for example, STZCR goes upto 2900 for male rgeakers

while it is below 200 for female speakers).

Based on the above points, step 2 is evolved:

Step 2:

(a) If M2 gé Mliz, then Unvoiced Region or Transition raglan or

Silent Region.

(b) If M2 = M1 1: 2, then Voiced Regzim or Transtjon R:-.3i~or1 or

Silent Region.

In general, the amplitude of the data samples in tie silent

region is less than that in the unvoiced region, and that of the sangies in

the unvoiced region is less than those in the voiced region. Hence, 2 specific

relationship can be developed between the R313 and mean vahia :1’ the

samples in the different regions.
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The fact that the STZCR is larger for unvoiced speech than for

voiced speech, and also that, the STE is lesser for unvoiced speech compared

to voiced speech are made use in defining the ratio of STZCR to STE as a

parameter for voiced/unvoiced classification [84, 85]. The ratio STZCR to STE

(ZER) should be very distinct for the two regions, being very high for

unvoiced regions and very low for voiced regions. But the author has found

that, the values of STZCR and STE, in general, being both low for silent

region and both comparatively high for unvoiced region, will result in the

value of the ratio of STZCR to STE being almost of the same order, for

both silent and unvoiced regions. The author has also noted that the product

of STZCR and STE (ZEP) is a better parameter for the classification, in this

context [Please refer Table 4.5].

To take into consideration those unvoiced and silent regions

which go undetected by step 1, due to the STZCR value of the unvoiced

region being slightly less than the threshold value fixed for those regions,

and the STZCR of the silent region being slightly higher than that fixed

for those regions, step 3 has been evolved. The ratio of Srms to absolute

Smean value (RMR) has been taken as the parameter for detection. Similarly,

to take care of the rare instances, where a low energy unvoiced region

overlaps a silent region, step 4 has been formulated.

Step 3:

(a) If STZCR 2. 2800 and

0.0001 < STE < 0.1 and



Step 4:

(a)

(b)

(c)
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4 < RMR <14,

then Unvoiced Region.

If S'I‘ZCR < 2800 and

STE < 0.0001 and RMR < 4,

then Silent Region.

If STE < 0.0001 and ZEP < 0.1

then Silent Region.

If STE < 0.0001 and ZEP> 0.1

then Unvoiced Region.

Else, Transition Region.

Next, considering the second group (at step 2), consisting of

voiced/silent/transition regions, criteria at step 5 is evolved.

Step 5:

(a) If STE > 0.01 and ZEP > 10,

then Voiced Regitn.
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(b) If STE < 0.0001 and ZEP < 0.1,

then Silent Region.

(c) Else, Transition Region.

All the above steps need not be perfonned always. A flow

chart for the above algorithm is shown in Fig.4.2

4.2.2 Algorithm [1 - Voiced/Unvoiced/Silent/Transition detection, based on

correlation function

An elaborate classification as done in method I, is not always

essential. Hence a simpler algorithm was developed, which also makes a

voiced/unvoiced/silent/transition distinction. Algorithm II is explained by the

following steps.

Step 1:

(a) If STZCR 4 200, then Slent Region.

(b) If STZCR 2 3500, then Unvoiced Region.
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Step 2:

(a) If STE 4 0.0001 and ZEP 4 0.1,

then Silent Region.

(b) If STE < 0.0001 and ZEP > 0.1,

then Unvoiced Region.

Step 3:

(a) IF NCCI ( 0.3, then Unvoiced Region.

(b) If NCCl> 0.3 and ZEP > 10,

then Voiced Region.

(c) If NCCI > 0.3 and ZEP 4 10,

then Transition Region.

NCCI is the normalised correlation coefficient for lag 1.

Step 1 is the same as in Algorithm 1. Step 2 is intended to

take care of those silent regions which may go undetected by step 1, due to

their STZCR being greater than the threshold of 200. Also, those silent and

unvoiced regions whose short-time energy may coincide, can be distinguished

by using the energy ZCR product (ZEP) threshold set up in step 2.
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Unvoiced speech signals are highly uncorrelated and the normalised correlation

coefficient for lag l, for such signals is found to have a negative value or a

low positive value below 0.3 (Please refer Table 4.3). Data samples in the

voiced region are highly correlated and hence the value of the correlation

coefficient will be high. By fixing up a threshold value for ZEP, the

transition regions can also be detected. The flow-chart for algorithm II is

shown in Fig.4.3.

4.2.3 Algorithm Ill - Voiced/Unvoiced/Silent/Transition Classification based an

a pitch correlation factor

In this approach, a new parameter, a pitch correlation

factor /3 , which relates to the change in amplitude of the signal from

pitch-to-pitch, is introduced.

2

p = <SnSn-M\7av/<Sn-M av

where, the 4 )2” denotes averaging over all the samples in the block
under consideration. This factor is nearly equal to unity for the highly

correlated voiced speech segments. The steps involved are shown below, and

the flow-chart is given in Fig.4.4.

Step 1:

(a) If STZCR < 200, then Silent Region.

(b) If STZCR ?, 3500, then Unvoiced Region.



123

Step 2:

(a) If STE 4 0.0001 and ZEP < 0.1,

then Silent Region.

(b) If STE < 0.0001 and ZEP > 0.1,

then Unvoiced Region.

Step 3:

(a) If M2 = Mliz, then Voiced Region or Transition Region.

(b) If fl > 0.7 and ZEP > 10,
then Voiced Region.

(c) Else, Transition Region.

(a) If M2 55 M1 1*: 2, then Unvoiced Region or Transition Region.

(b) If p < 0.7 and STZCR > 2800, then Unvoiced Region.

(c) Else, Transition Region.



124

4.14 Simulation of the Algorithms

Two sets of speech data were used in this simulation

experiment (i) for the training session of the algorithm and (ft) for validating

the algorithm.

The speech data used for the training session were thme of the

speech files Ml, F1 and B3, shown in tables 4.1 and 4.2. Txese sentences

were specially chosen, since they contain most of the essential sounds like

vowels, nasals, fricatives, plosives etc. Hence a wider range on the different

parameters involved can be had, so that the algorithm developed can be

perfect. The data values of each of these sentences were nsrnmatised, such

that, the maximum value of the sample in the whole set is unity. The

normalised speech sequences were then divided into blocks of size 160

samples. (A total of 311 blocks were considered).

The different blocks were manually classified into voiced,

unvoiced, silent and transition blocks, by plotting on a graphirs VDU of the

computer. The algorithms were implemented on a PC using Turbo Pascal

routines.

To compute the STZCR, the number of zerocrcsings in each

block of length 160 samples is found as ZN. Then, the FEZCR can be

computed as the number of zerocrossings per second, using the formula,
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STZCR = ZN.fs/160 (4.1)

where is is the sampling frequency.

Now, the STE of each block is computed as the variance of

the 160 nonnalised samples in the block. The root mean square value (Sum)

and the mean value (S ) are also computed and the ratio of the R.‘-{S tomean

mean value is expressed as

RMR = Srms/abs(Smean) (4.2)

To check for the periodicity of the signal waveform, values of

M1 and M2 are computed as the number of samples within two consecutive

peak positions of the correlation coefficients R(J). Here, unclipped normalised

samples within a block are considered. The autocorrelation coefficient RU) is

computed as:

160

R0) = Z SnSn_J (4.3)
n=J+1

M1 is determined by noting the value of J for which R(J) is maximum, for

values of J greater than 15 (The minimum value of J = 16 is chosen (i) to

avoid the high values of R(.|) around J = 0, which may have values higher

than R(Ml), and (ii) taking into consideration that the lowest pitch period is

2 msec [3, 43, 44]). Similarly M2 is found by considering J > M1+l5. Direct

calculation method was used to compute R(J). The values of the above
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parameters in the different regions are tabulated in Table 4.6.

Using algorithm 1, the training sequence was first checked. All

the segments, corresponding to all the four regions were detected correctly.

To check the validity of the algorithm, it was tried on a speech data base

’outside’ the training sequence.

The sentences in Tables 4.1 and 4.2, other than Fl, M1 and

B3 used for the training session, were considered. Each of these utterances

were also divided into blocks of 160 samples, and were assigned as

voiced/unvoiced/silent and transition regions, by manually inspecting the

waveform. Detection of the various regions was then carried out using the

algorithm, and the results were compared with those obtained by manual

classification. It was observed that the total measured error probability of the

algorithm is 4.298% (A total of 884 segments were considered).

The same above processes were done using algorithm 11 also.

The parameter, normalised correlation coefficient for lag 1, was computed as

160 *2160 160
NCCI = Z snsn_1/éz 5: . 2 5:4} (4.4)"=2 n=1 n=2

Here, the measured error probability is 3.506%.

Algorithm 111 was next tested. The parameter [8 was
computed using the expression,
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160 160
2,5 = 2  2 sn—M own=H+l n=M+1

Here also, tl1e training sequence was first checked

algorithmically, and then the speech data outside the training sequence were

used to validate the algorithm. The total measured error probability was

obtained as 0.0% and 2.602%, for ’inside’ and ’outside’ the training sequence,

respecmely.

To summarise, three efficient algorithms, in the time domain,

for the classification of the four different regions in a speech waveform, are

presented Compared to the simple algorithms for voiced/unvoiced detection,

these algorithms require more number of computations, due to the introduction

of the periodicity checking. But the simple ACF periodicity check has been

found to be enough. The path length required for the detection of the

different blocks vary, depending on the ranges of the values of the different

parameters computed for that block. The third algorithm is found to give a

better performance from the point of view of error probability. Hence the

third algorithm is employed in the modified coder, for the
voiced/unvoiced/silent/transition classification.

4.3 Simnlaficn d the Modified Block Adaptive Coder (MBAC)

4.3.1 Smnlaficu Description

Speech signals sampled at 8 kHz and encoded to 12 bits are
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used. As mentioned earlier, based on the existence of the correlation between

the speech samples and also on the maximum pitch period of humans, the

data samples are grouped into blocks of 160 samples.

It is reported by Harris [86] that it is a standard teclmique to

use a tapered window function for Weighting the data prior to spectral

analysis, to reduce the leakage from other parts of the spectrum. Later,

Paliwal [87] has proved that spectral flattening techniques like centre-clipping

and inverse filtering deteriorates the pitch estimation performance. In the

present work, care is taken not to use overlapping windows. This reduces the

chances of mixing up of different regions within a block. If non—overlapping

rectangular windows of specific length are used, wherever the full block does

not belong to a particular region, based on the majority of the samples in

the block, it can be correctly classified. This allows the correct and easy

processing of the blocks further.

The blocks are next classified as voiced/unvoiced/silent or

transition region, using the third algorithm explained above. If the block is

detected as voiced, the first step is to determine the number of samples M

in one pitch period of the signal. This is done by locating the position of

the maximum value of the ACF’s R(.l), of the samples, for lags J above 15.

The block length is now fixed as N = «N, and /3 the correlation coefficient

is calculated using the expression given by
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:8 =<SnSn-M>av / <St21-M>av (45)

where < )av denotes the averaging over all the samples in the block,
(N = 4M).

The block Of {V n} samples where Vn = Sn-lBSn_M,
are next calculated.

The autocorrelation coefficients R(.l) for J= 0 to p are

evaluated using the equation

R0) = (VII - Vn_J)av (4.7)

p is taken as 4. The matrices Q5 and (Ia are next formed from the

coefficients RU). 315 is the p by p autocorrelation matrix and (IV is a
p by one vector.

The predictor coefficients ak’s are obtained by solving for the matrix a in

the matrix equation,

gt a = cu (4.3)
The predictor parameters-ak's, /3 and M-)and the first (p+.\t)

samples are transmitted to the decoder, after suitably encoding them.
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At the decoder, the parameters are decoded and used for the

prediction of the sample values. The predicted value of the first (p+M)

samples is the decoded version of itself. From n = (p+M+l) onwards, the

sample values are predicted based on the earlier predicted values. The error

in prediction and hence the SNRSEG are evaluated.

The predictor at the receiver is updated by transmitting the

predictor parameters afresh every block.

If the block of samples under consideration is unvoiced, the

block length is fixed as 40 samples and g is reduced to zero (ie., use
sp ectrum predictor alone).

If the block is silent, no processing is needed and only the

code indicating the region is to be transmitted.

If the segment considered belongs to the transition region, then

the processing is the same as with the voiced segment, but with block length

N = 2M and order of predictor p = 8.

4.3.2 Rate ti Transmission of the Predictor Parameters and fide

lnformations

It has already been established that the reflection coefficients

[2, 44] or frequency and bandwidth of the poles [14] can be effectively
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quantized and transmitted, without producing any perceptible effect on the

synthesised speech. Atal et al [88] has reported that if predictor polynanial

roots are used for transmission, 5 bits per root are adequate to preserve the

quality of the synthesised speech so as to make it essentially

indistinguishable from the speech synthesised from the unquantized

parameters.

Based on the values, as suggested by Atal et al [88], the

number of bits required per frame is 33 for voiced blocks, 53 for transition

blocks, 62 for unvoiced frames and 2 for silent blocks, and the number of

bits per second is 1.452 kb/s, 4.717 kb/s, 12.44 kb/s and 100 b/s

respectively (Refer Appendix III).

From Table 4.7, it can be noted that on an average, in the

phonetically well—balanced sentences chosen for the simulation study, the

percentage of occurrences of the different regions are around, 40% for

voiced, 10% for unvoiced, 20% for silent and 30% for transition regions.

Hence, the total number of bits required to transmit the predictor parameters

is 3.2379 lrb/s (Computations shown in Appendix III).

Considering the transmission of the few difference samples

(Dn = S n-Sn_1) for every block, it has been verified in section 3.9.2 that, 3

bits per sample is adequate to retain almost same value of SNRSEG. (Refer

Table 3.5). Hence, the number of bits required per frame, for the

transmission of this side information, is 164 for voiced region, 176 for
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transition segments, 53 for unvoiced segments and nil for silent region. The

corresponding bits per second are 7.216 kb/s, 15.664 kb/s and 10.60 kb/s

respectively. The total number of bits per second required for the

transmission of the side information is calculated to be 8.6456 kb/s; or the

overall bit rate becomes 11.8835 kb/s. (Please refer Appendix Ill for details).

To brief the matters presented in this chapter, three algorithms

for voiced/unvoiced/silent/transition classification and their simulation results

are presented. The simulation procedure of the modified coder is also

described.

The results of the computer simulation of the modified coder

are presented in detail in the next chapter.



Chapter 5

SIMULATION RESULTS OF

THE MODIFIED BLOCK ADAPTIVE PREDICTIVE CODEZR

5.1 Introduction

The overall efficiency of any communication system depends cn

various aspects like the design simplicity of the coder/decoder, the

computational load involved in the analysis of the input signal, the

transmission capacity of the system and finally on the quality cf the

reconstructed signal. Taking all the above factors into consideration a modified

block adaptive predictive (MBAC) coder was developed. This coder is

explained in section 3.10. The reduction in computation and hardware

complexity attained over the standard APC system has also been explained in

chapter 3. The actual simulation of the coder is presented in chapter 4. The

various results obtained from the simulation of the MBAC is descnbed in this

chapter.

5.2 The Design Procedure for the Block Adaptive Coding Algcrithm

The complete design procedure for the block adaptive coding

algorithm can be summarised as follows:

1. Classify the given segment into voiced/unvoiced/silent/transition region.

2. If the segment is voiced, select distant sample-based prediction (DSP)

136
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method for analysis. Block length for processing is 451, where M is the

number of samples within one pitch period of the signal, and p, the order

of the predictor is taken as 4.

3. If the segment is unvoiced, select near sample based prediction (NSP)

for analysis. Block length is chosen as 40 samples and p as 12.

4. If the segment is a transition segment, then distant sample based

prediction method, with N = 2M and p = 8, is chosen.

5. If the segment is silent, then no processing is needed.

6. Evaluate the predictor parameters.

7. Perform the prediction of the samples using the decoded predictor

parameters, based on the earlier predicted values.

8. Evaluate the SNRSEG values to check for the quality of the

reconstructed signal.

The flow chart of the MBAC design algorithm is shown in

figure 5.1.

5.3 Experimental Results

The MBAC coder shown in Fig.3.12 was simulated on a
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computer using Turbo Pascal routines. Initially the .\lBAC coder was tried on

fully voiced speech segments. Regions corresponding to ten different voiced

phonemes were chosen. In continuous speech applications, phonemes within a

word suits the situation more than isolated phonemes. Hence such data

obtained from the speech files shown in table 4.1 were considered.

The data values were normalised and grouped into segments of

length 160 samples. The different predictor parameters- .\l, B and ak’s­
were evaluated for each block, as mentioned in section 4.3. Ijsing these

parameters, the speech samples were reconstructed, bmed on the earlier

predicted values and the SNR (dB) value was computed. This was repeated

for all the segments, in the data set, and the average values were

computed. The same was done using all the data sets. Speech data from

three speakers - 2 male and 1 female were considered. A list of the values

of the different parameters for the various speech sounds, of the different

speakers are shown in table 5.1

It was noted that long vowels, like /3 / in / d.')T/ ’door‘ and

/u/ in /muv/ ’move’ and /blu/ ’blue’ show higher and steadier gain (around

12 to 16 dB) than short vowels like /u/ in /drop/ ’dIop’ and /1r/ in

/p1rf/ ’push’ (around 12 to 14 dB). The phonemes /0—/ and /'1/ showed

still lesser gain (around 8 to 10 dB). The phoneme /l/ in ’rig,hr‘ gave the

lowest gain (around 5 to 7 dB). The same pattem was followed for the

different speakers though the gain varied slightly. These gain values clearly

indicate the extent of correlation that exists within speech samples, in the
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Table 5.1

Analysis-synthesis Results of Different Toiced Scunds,
for Different Speakers

Average values cf
51. Speaker Speech Sound"m M 5 553550

(58)(1) (2) (3) (4) .5) '5)
1 M1 51 2.93 5.516M2 /a/ in AFTER 57 1.00 5.418Fl 35 :.98 5.402

M1 47 3.94 5.9032 M2 /a/ in PARTY 57 :.92 9.559Fl 37 :.93 5.064
M1 46 2.96 12.1983 M2 /o/ in 'DROP' 46 2.98 5.24551 32 2.94 15.051
M1 45 3.97 16.7394 M2 /3 / in 'DOOR' 51 3.98 10.86151 33 3.98 12.877
M1 49 1.01 15.6675 M2 /0/ in ‘COIN' 53 :.96 9.611Fl 32 2.96 9.330

fcontd...)
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(1) (2) (3) (4) (5) :6)
M1 44 0.94 11.6906 M2 /1r/ in 'PUSH‘ 46 0.96 12.690F1 28 0.98 14.795
M1 45 1.01 15.5037 M2 /u/ in 'MOVE' 46 0.98 12.025F1 32 0.98 15.314
M1 43 0.99 15.3318 M2 /u/ in 'BLUE' 46 0.98 15.331F1 \2 0.96 14.665
M1 42 0.97 1:.5529 M2 /i/ in ‘SPEECH’ 49 0.96 13.837F1 38 0.88 3.695
M1 45 0.99 5.40410 M2 /I/ {n ‘RIGHT’ 50 0.98 “.042F1 36 0.90 5.036

Ml: Male speaker 1, M2: Male speaker 2, F1: Female speaker.
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Table 5.2

Results obtained on using the MBAC on the different
regions in a speech signal

Files Regions Av. SNR (dB) Av. SNRSEG (dB)

V 13.3285 11.55481 uv 2.1679 2.0843T 13.3640 12.0710V 7.8869 7.43432 UV 3.1992 2.7682T 12.5001 12.0186
V 10.4112 8.36783 UV 2.4502 2.2596T 9.1378 6.0317
V 4.8139 4.72154 UV 3.7593 3.0734T 8.8158 8.4415
V 11.2058 9.19015 uv 2.1864 2.0067T 18.1590 17.6841
V 7.6269 7.19176 UV 3.0022 2.7751T 5.9239 5.3228
V 6.8704 6.66237 UV 5.9533 5.4161T 11.0812 10.3102

V: Voiced region. UV: Unvoiced region, T: Transition region
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case of the different phonemes and also in the different contexts.

The modified coder was next tried on the various regions

present in speech signal. Voiced, unvoiced and transition regions of different

speech files in Tables 4.1 and 4.2, were separated and used for the

processing. It was noted that the average SNRSEG values for the voiced

regions ranged from 6.7 dB to 11.6 dB (SNR ranged from 6.9 to 13.3 dB),

for different voiced sounds and for different speakers. Similarly, transition

regions obtained an SNRSEG value from 5.32 dB to 17.69 dB, while the

unvoiced region showed a lower value, ranging from 2.08 to 5.42 dB. The

results obtained from this experiment is tabulated in Table 5.2.

The next step was to study the effect of the modified coder on

continuous speech. Speech signals of duration 1 to 2 secs. (from Tables 4.1

and 4.2) were used for this simulation study. As explained in section 5.2,

the system was made block adaptive with N = 4M and p = 4 for voiced

segments, N = 2M and p = 8 for transition regions and N = 40 (S msec

duration) and p = 12 for unvoiced segments. The predictor parameters were

evaluated and a final reconstruction was done. The SNR values were

computed for each block and a final average value (SNRSEG) was computed.

The gain values obtained for different speech data are shown in Table 5.3.

it can be noted that, on the whole, the SNR value varied between 6.41 dB

and 12.69 dB. Figures 5.2(a to f) give a comparative study between the

original waveform and the waveform reconstructed using the MBAC coder, for

the voiced, unvoiced and transition segments. It can be noted that the
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Fig.5.2(e—f) Plots of original and reconstructed waveforms - Using MBAC

system - Unvoiced region.
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reconstructed waveforms in the voiced and transition regions are very similar

to the original ones, proving the effitiency of the coder. The unvoiced

segments, though very low in number, exhibited only lower quality of

reconstruction.

A comparative study between an LPC system and the .\IBAC

system is presented in Table 5.4. It can be noted that the MBAC system is

far superior to the LPC system with a gain in SNR, of 5 to 8 dB when the

same data samples were used. The MBAC system requires more computations

and also the bit rate is higher, compared to an LPC system.

5.4 On the Applicability of MBAC System to Sounds in Malayalam

A trial on the feasibility of the coder on speedi sounds, in

our regional language, Malayalam, was thought of as a good idea. Phonemes

in Malayalam, which are not normally present in English are considered As a

coder, the performance for this special set of phonemes was very good.

The special sounds like /_r_/ in /vcL_>fa/ ’vara’, /_l/ in /va.fio./

’vala’, /_i/ in /ma_L_0c/ ’mazha’, /n/ in /tuig/ ’thoon’, /l/ in /vat; / ’vaal’,

/fi/ in /te:i1:a,/ ’thaenga’, /rT/ in /fio.r_1hr/ ’njantu’, /1_t/ in /ka.v_1a.l<U'/

’kanaku’, were some of the phonemes chosen. Of these, some are common to

Hindi. All the words chosen do not represent the full spelling d Malayalam

words. They were so chosen as to study the interaction between the different

sounds, in different contexts.
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Table 5.4

A Comparative Study between an LPC and a MBAC

System used
Parameters LPC MBAC

1. Method of Spectrum Pitch predictionprediction prediction

2. Order of 12 4 to 12 (adaptive)
predictor: p

3. Mode of Single pulse Multi—pulse (First pexcitation or P+M samples
known)

4. SNR (da) 1.6 to 4.0 6.7 to 12.0
5. Bit rate 7.2 kb/s 11.88 kb/s

6. Complexity Simpler Medium complexity
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Table 5.5 gives an idea of the different sounds in Malayalam

based on the position and manner of articulation. Depending on the place of

articulation, there are eight groups. They are bilabial, labiodental, dental,

dentialveolar, alveolar, retroflex, palatal and velar. Based on the manner of

production of the sound, they are grouped into stops, fricatives, nasals,

laterals, trills and approximant.

The results of the analysis of these special sounds are shown

in Table 5.6. It can he noted that the nasals /r_i/ (owx€,cm) in /tun/

’thoon’ and /ka.r,io.l<zr>’ ’kanalru’, /n/ (93 ) in /te:r'i:a./ ’thaenga’ and /F17

(gm) in /fi o.r_1tU‘/ ’njantu’ gave the maximum SNRSEG value, ranging from

15.47 dB to 21.168 dB. The sound /i_t/ (end) with the nasal /n/ following a

vowel, gave the highest SNRSEG value, with the maximum going upto 30 dB.

They were followed by the dental stops, /th/ (LOU ) in /ratha-/ ’ratha’ and

/dh/ (of) in /dho.nam/ ’dhanam’, giving an SNRSEG value of 13.6 as to

15.97 dB. The retroflex stops, /t_h/ (OV) in /pi:t_ho»/ ’peetta’ and /dh/

(cu; ) in /dri¢_tha./ ’dridda’, obtained a gain of 9.798 dB to 12.10 dB, while

the retroflex laterals, /_l/ (gr) in /vcL§a~/ ’vala’ and retroflex approxirnant

/_l/ (SFU) in /ma.fa./ ’mazha’ gave a gain of 3.395 dB to 11.92 dB. The

velar fricatives /ch/ (.215) in /ch.o«:ga/ ’chaya’ and /jh/ (aw) in /jho.:nsi/

’jhancy’ and the velar stops /l<h/ (GL7) in /no.kha./ ’nakha’ and /gh/

(4.23) in /me:gha«/ ’maegha’ obtained an SNRSEG of 7.345 dB to 14.314

dB. The results obtained, prove the fact that the nasals which are more

sonorant than the other consonants exhibit higher gain. Also, among the

stops, it is the voiced aspirated stops which show better gain values than the
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voiceless type.

It has been reported that [8,9,10,64,67] using self—excited

vocoders and code excited LPC’s, the SNRSBG values obtained are in the

range 8.5 dB to 13.8 dB. The computations required for a CELPC is 80

MFLOPS and that for SEV is 4 MFLOPs [8], while the MBAC requires only

O(p2+p) multiples and adds.

To summarise, the MBAC system developed, has comparable

quality with that of an SEV or CELPC system in an SNR sense, with much

lesser amount of computational burden. This is achieved that the expense d

a moderate increase in bit—rate.



Chapter 6

A PROPOSAL FOR A SPEAKER RIIIOGNITION SYSTEM

6.] Speaker Recognition

The problem of recognizing speakers from their voices were

studied long back in 1937. These works were mainly based on human

listening. Later, with the advent of computers, attention was focussed on

automatic recognition of speakers (ASR).

When selecting features for the speaker recognition problem, it is

essential to restrict the features to those which give discriminatory information

about the different speakers. There are different methods for feature evaluation

in speaker recognition problems. One among them is the ’knock out’ method

[89], where we select a subset of features from the main set of features

available, by knocking out, one by one, the features which do not contribute

to the recognition process. it has been reported by Su et al [90] that co­

articulation between /m/ and /v/ have strong speaker dependence. Atal [91]

has used 12 coefficients, including filter coefficients, impulse response, its

autocorrelation, the area function and the cepstral coefficients of the filter. The

essential features required for the speaker recognition problem can be selected

by analysing the different salient features of the speech signal.

Speaker identification is the process of determining whether or

not an utterance by an unknown speaker corresponds to stored versions of

158
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that utterance produced by a number of speakers. Speaker verification is to

determine whether a speaker is who he claims he is. A text-dependent

knowledge-based speaker recognition method is presented below.

While studying the different parameters evaluated, for voiced

speech segments, in the course of the development of the modified block

adaptive coder, it was noted that, by just checking the number of samples M,

that are present in one pitch period, the speakers can be grouped into male

and female. For each group, a range of values can be fixed for .\l, the

normalised correlation coefficients P1 and J0 M and the signal-to-noise
ratio; and this set is unique for each speaker.

6.1.! Feature Extraction

The speech data corresponding to the phrases given in Table

4.1, were used in the simulation study, for the feature extraction. Voiced

regions corresponding to the different vowels /a/, /i/, /I/, /o/, /J/, /v/, etc.

contained in the above data files were manually separated by plotting on a

graphic VDU, and were stored into different files.

For the “training session’ of the system, an acoustic pattern, or

a set of acoustic features is to be stored for each speaker. In the present

method, the most effective speaker dependent feaml-echosen, is the value of

M. As mentioned in chapters 3 and 4, the data are grouped into segments of

length 160 samples and the ACFs R(.l) are computed. The value of M is

determined by locating the position of the maximum value of the ACF R(J),
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for lags between 16 and 80. Next, fixing the number of samples in a block

as N = 4M, the predictor parameters p and ak's, and the correlation

functions f I and P M are evaluated. Fixing the order of the predictor as

p = 8, the predicted sample values and hence the SNR values G are

determined. This is repeated for the different blocks of samples present, and a

set of average values is computed. The results of the above evaluations are

shown in Table 6.1

On examinining the various parameters of the predictor, shown in

Table 6.1, it is observed that they provide good discriminating capacity,

particularly between male and female speakers and can assist in speaker

recognition. Using the predictor parameters, and also certain standard features

of speech signals, certain facts and rules can be formulated to constitute a

knowledge - base and this knowledge - base can be used for speaker

identification. The values for a|Iarg<'_e1numbe1' of phonemes for three speakers-‘2

2 male and 1 female — were studied.

Two methods have been formulated for speaker recognition. In

method I, male/female classification is done, by fixing the range of values for

M. It has been quoted that [3,43,44] under natural speaking conditions, the

pitch period of humans vary from 2.5 msec. to 20 msec. In the present

study, the maximum pitch-period is only around 8 msec, and hence the range

of values of M is fixed as explained below. If M is in the range 20 to 40,

the input signal belongs to a female speaker; if in the range 41 to 80, it

belongs to a male speaker, provided sampling has been done at the Nyquist
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rate of 8 KHz. Now, if M is from 28 to 38, the speaker is female speaker

F1, if M is in the range 42 to 45 the speaker is Male speaker M1; and if it

is in the range 52 to 57 it is Male speaker M2. If M is from 46 to 51,

check for f M and fl. If ?M > 571, then the speaker is M], if not, it
is M2. The above algorithm in the form of flow chart is shown in fig.6.l and

the knowledge-base is shown in Table 6.2.

This method works well for a small ensemble of speakers.

In method 11, provision for including more speakers and more

phonemes is considered. Initially, as in method I, male/female classification is

done by noting the value of M. The phonemes are then classified into four

groups, as shown in Table 6.3, by fixing up a range of values for fl. The

range of values of M, correlation coefficient ratio fl: fl/FM and G for
different speakers are then used for the final speaker identification.

For group 1, consisting of the phoneme /i/, fl = .70 1'. .003,

for group II, containing the phoneme /0-/, fl = .733:-02, for group III,

with phonemes /o/ and /3/, fl = .831 .04, and for group IV having

phonemes /U‘/ and /u/, fl = .915 :L’ .035.

I

It is seen that in group I, if f: fl/JOM = .73 32.01 and
H­M = 42 $1, then it belongs to speaker MI. If P’: 1.1 .1 and

II LIIo H­ 1 then, it is male speaker M2. In group II, if 3"’: .80 1 .01 and

H­M = 49:’: 2, then it belongs to speaker Ml. If F’: 1.03 .1 and
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Table 6.2

KNOWLEDGE-BASE FOR THE ALGORITHM OF METHOD I

(M (NO. OF SAMPLES IN 1 PITCH PERIOD OF THE INPUT SIGNAL))

(9 1, PM (NORMALISED CORRELATION COEFFICIENTS FOR LAGS I & M))
(M1, M2 (MALE SPEAKERS I & 2))

(Fl FEMALE SPEAKER 1))

10 IF M :6 50130
THEN ERROR IN INPUT

12 IF M = 50i30
THEN HUMAN VOICE

14 IF HUMAN VOICE = YES AND M < 41
THEN FEMALE SPEAKERS

16 IF FEMALE SPEAKERS = YES AND 23€Mé38
THEN FEMALE SPEAKER Fl

18 IF HUMAN VOICE = YES AND M > 40
THEN MALE SPEAKERS

20 IF MALE SPEAKERS = YES AND 42 S Mé 45
THEN MALE SPEAKER M1

22 IF MALE SPEAKERS = YES AND 52 $ M S 57
THEN MALE SPEAKER M2

24 IF MALE SPEAKERS = YES AND 46$. M_$5l AND FM > fl
THEN MALE SPEAKER M1

26 IF MALE SPEAKERS = YES AND 46 Q MQSI AND fM< Fl
THEN MALE SPEAKER M2 .
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Table 6.3

For Speakers M1 and M2
Group f1

M11 V1//ii.
I .70:.OO3 .70:.OO3 .73:.Ol 42:1/i/ l.lO:.lO 50:1
II .73:.O2O .73:.O2O .80:.Ol 49:2/a/ l.O3:.l0 57:1
III .83:.O4O .81:.O2O .835:.0l5 47:2/o///J/ .855:.o25 1.02:.o2 50:4

IV .9l5:1035 .885:.O05 .90:.O2 44:1/U1, /q/ .925:.O25 l.08:.O2 46:1
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M = 57: 1, then it is M2. In group 111, if fl = .31:-02 and
,0’ = .335 : .015 and M = 47 _t 2, then it is M1. If ,0, = .855: .025

and f’ = 1.02 : .02 and M = 50 1 4, then it is speaker M2. In group IV,

if j; = .885 1- .005 and 17': .90 3 .02 and M = 44 :1: 1, then it is M1.

Ii 91 = .925: .025 and f’: 1.03 2.02 and M =46 2: 1, then it is
M2.

The flow chart and the facts and rules relating to this

identification method are given in Fig.6.2 and Table 6.4 respectively.

In a similar way, if valua beyond the above given ranges

appear at different stages hi the algorithm, while recognising new input

signals, then they can also be added to the knowledge base, as shown in

Table 6.4, to automatically adapt it to new speakers.

It has been verified that the above mentioned algorithm is very

simple and effective when the number of speakers considered is small. Further

work has to be done using more speakers and still more phonemes, to prove

the efficiency of the system. The author feels that it would also give good

recognition score to a wider class.

The above methods have not been tested and verified to a

greater extent, and sessions ’outside’ the training sequence were not

considered. This is beyond the scope of this thesis, because speaker recognition

as such, is a wide and deviated field from speech recognition. This is only a
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Table 6.4

KNOWLEDGE-BASE FOR THE ALGORITHM OF METHOD II

(M (NO. OF SAMPLES IN 1 PITCH PERIOD OF THE I1\T'UT SIGNAL))

((21, {M (NORMALISED CORRELATION COEFFICIENTS FOR LAGS 1 & M))

(pg (RATIO OF 9 1 T0 {7M))
(M1, M2 (MALE SPEAKERS 1 AND 2))

(F1 (FEMALE SPEAKER 1))

(n=2)
10 IF M ;e 501 so

THEN ERROR IN INPUT

12 IF M = so: so
THEN HUMAN vo1cE

14 IF HUMAN voIcE = YES AND M< 41
THEN FEMALE SPEAKERS

16 IF FEMALE SPEAKERS = YES AND M = 331 5
THEN FEMALE SPEAKER Fl

13 IF HUMAN VOICE = YES AND M > 40
THEN MALE SPEAKERS

20 IF MALE SPEAKERS = YES AND f’1= .7o:.oo3
THEN GROUP I

22 IF MALE SPEAKERS = YES AND fl= .73:.o2
THEN GROUP [1

24 IF MALE SPEAKERS = YES AND 101 = .33: .04
THEN GROUP III
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28

30

32

34

36

38

40

42

44
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IF MALE SPEAKERS = YES AND

THEN GROUP IV
ii: .915: .035

IF GROUP I = YES AND I”: .73:.o1 AND M = 42::
THEN MALE SPEAKER M1

IF GROUP I = YES AND .P'=1.1:.1 and M = 50:1
THEN MALE SPEAKER M2

IF GROUP I = YES BUT MALE SPEAKER :4 Ml TO Mn

THEN MALE SPEAKER Mn+1

IF MALE SPEAKER Mn+1

THEN ADD Mn+1 (M, P1, f’ ) TO THE DATA BASE AND :=':.—L

I

IF GROUP 11 = YES AND I’ = .3o:.01 AND M = 49: :
THEN MALE SPEAKER M1

I

IF GROUP 11 = YES AND P: 1.03-_+ .1 AND M = 57: 1
THEN MALE SPEAKER M2

IF GROUP [1 = YES BUT MALE SPEAKER # M1 TO Mn

THEN MALE SPEAKER Mn+1

IF MALE SPEAKER Mn” 1 ______
THEN ADD Mn“ (M, f; ,,0 ) TO THE DATA BASE AND _-L. ­

IF GROUP 111 = YES AND [91 = .31: .02
AND f" = .335:.o15 AND M = 47-: 2
THEN MALE SPEAKER M1
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46 IF GROUP III = YES AND fj = .855: .025
AND f’= 1,021.02 AND M = 50:4
THEN MALE SPEAKER M2

48 IF GROUP III = YES BUT MALE SPEAKER ¥= M1 TO Mn
THEN MALE SPEAKER Mn+1

50 IF MALE SPEAKER Mn+1 I ‘.
THEN ADD MIH1 OI, f1 ,f7) TO THE DATA BASE AND n=n+;

52 IF GROUP Iv = YES AND P1 = .335_+..oo5
AND f”= .9o:.o2 AND M = 442:1
THEN MALE SPEAKER M1

54 IF GROUP IV = YES AND 91: .925 3.025
AND j"= 1.08i.02 AND M = 451-1
THEN MALE SPEAKER M2

56 IF ‘GROUP IV = YES BUT MALE SPEAKER ¥= M1 TO Mn

THEN MALE SPEAKER Mn+1

58 IF MALE SPEAKER Mn+1
THEN ADD M (M, F ,f’) TO THE DATA BASE AND n=n+1­n+1 L
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side result obtained from the speech recognition system developed.

6.2 Phoneme ldentificatim

Phoneme is the basic unit which describes how speech conveys a

linguistic meaning. Or, in different terms, the set of phonemes in any

language is the set of units that are required to represent utterances in an

unambiguous manner. Roughly speaking, a phcneme is a group of similar, but

not identical, sounds that differ from one another in accordance with the

context in which each occurs [92].

Based on the mode of vibration of the source of excitation,

speech sounds are broadly classified as voiced and unvoiced. Depending on the

position of the different articulators in the process of the production of the

various sounds, they are again subdivided to form ten groups containing

altogether 36 phonemes, excluding the 9 dipthongs (in British English) [73].

Fig.6.3 shows the chart of the various phonemes in English.

The same phoneme, judged by phoneticians to be the ’same’ at

a phonetic detail level, when spoken by a male and a female speaker vary

much in their spectrogram and hence it is difficult for a machine to recognize

it, though a human brain is able to recognize it correctly. Hence

transformation of the spectrum has to be done using current knowledge

gleaned from psychoacoustic experiments and from electrophysiological

investigations of the response patterns of the auditory system [92]. Such

transformed spectra can offer a superior input to a speaker-independent
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Diphthongs

/i€,0u',Ir‘Ir,a.)r,ca,u'a,3'a,3i/{;;/

Vowels
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Phonemes

I
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/£11) Elal
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Consonants

Semi-vowels

1 c
1

Nasals Glides
Back /m’nJ77} /W/7) ‘L;

/“IV-/3/0/QJ

Fricatives

Voiced voiceless
/z,z,:s,v/ /s»f,<W~/

Plosives

Voiced voiceless Affricates/bzdlgl
The Phonemes of British English [73]
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speech system.

Recently, Ljolje and Levison [93] have developed a single ergodic

hidden Markov model to represent the acoustic-phonetic structure of English

language. The inherent variability of each phoneme is modelled as the

observable random process of the Markov chain, while the phonotactive model

of the unobservable phonetic sequence is represented by the state transition

matrix of the hidden Markov model. The recognition score was high enough,

using 43 states.

A speaker-dependent phoneme identification approach is presented

below. The salient features of the speech signal, like short time energy (STE)

short-tirne zero crossing rate (STZCR), correlation coefficients, pitch period,

etc. have been made use of, for the identification. The method can be

represented as an energy-based recognition, as the first parameter considered

in the knowledge base is the energy content in a particular phoneme

envelope. The fact that voiced phonemes corresponding to vowels and nasals

have higher energy than other phonemes forms the basis for the main

classification. Based on the average STE content in the phonemes, the 36

phonemes (in British English) are first categorised into three groups. Within

each group, a range of values are fixed up for the various parameters and a

final identification is done.

6.2.1 Feature Extraction for Creating a Knowledge Base

Three to four words each, were chosen for each of the 36



175

>mH.H Hm. mam. mn.v movv m.a>H mum mag. \ wxm~.H-H.H m~.1wh. mm.-mn. m~m.v-m~.v omo.oH-mnm> omN-ooH mwmflzovafi mH.-vH. \ Nxm.H-mH.H Hm.-mmn. wm.-~m. m»m.¢-m».v ommmnommw «oH|Hn omm-o>o m~H.nHH. \.¢\m.H-~.H ~n.-H». mHm.-Hm. m~w.v-m.v mmonuomao o>H-n~H mHoH-mvm ooH.-mH. \‘;\
mH.H:va.a ~m.-ow. mvmumm. ommwuomov mvfluoafl Nmnummm mmH.-nH. \ «\

ov.H mu. mom. .. oomm «ma mum ma.

oH.H mm. um. -- mvom oma Hmmfi wfi. \.u\
om.H-mo.H Nm.-»w. mm.-~m. nu o.mm-mpmn ommuomfi ommH-m»oH moH.-vH. xm \

No.H m».--w. om.-mm. mnm.v omnnuoomo omaumwa ommauomofi >mH.nmH. \ m\

mHo.H-o.H om.-wm. om.-mn. o.m oomofiuoomn ovmuofim ommfiumnvfi oH.-¢H. \\m\

m.H:H.H mm.-mn. vm.-Hm. oo.m-m~o.v ovflvupvov omH-HmH omflfiummn H~.-mH.

m.H-m.H mw.-mv. mwm.-mm. m»m.q omm.HH-onoh »mH-o~H mmqH-o¢HH mH.-mH. xn \

:3 E E A3 5 :1. 5 E 2.

STAR wk Ham 3 mmw mam muuam mam muwconm

cmwamcm cmwumum can mmemcocu mm wcu Ham .u.o mumnmmu mwmxamcn‘

m . © flame



176

mo.Tmo.H Sfmom. mm.u§. mfié mS~-ov3 mmzuoma onm w...m.uv~. \\3

mo; mwm. mmm. mfiv oonm S: mmm. 2::

8.734 3.13. mmmfmm. m$.Tm§.v o$~n33 P792 3mTm..m wmfwm. 5:~84 mmm. mmm. m.Tm§...v $3 903 mm. oom. \M\

3.73; omfmw. $m.ummm. m$.Tm.v wvwmummofi m~ToS Nomnmmw mmmtvmm.
9.; mm. mm. mn.Tm$.w. momm moa mum mod.

Km; K. 3.. m$.q 33 mi «mm 3. \N\3.T3.H 27-8. mmfvm. m$.vLKm.v o§Tomm~. omTm~H omm-m$ Luimom. \ mi
mm.H:N.H ms. SE3. .u.~.m-mB.v OETSQ 379: 33: mm flfmfi \>\

2..Tmo.H omfom. mmfom. I owvmnogm mmT¢m NSTHM “AIS. \\\3.T3.H Nwfom. mm.-$. nu omomuooma mmauowfi ofiuomm mmfmm. \ m \RH; E. 5. I «Sm ofiuofl mmfi v3. \ 3~.ToH4 mfiuon. mmiom. I ovnmummmm oflummfl omnumwm. Kim? \ “I
34 E. 2.13. I m$mTqSS STNS oofluoomq. flfmo. \>x\

R; 3. CV A3 :3 :1 A2 A3

A:



177

ooéumoé «mfg. 3. mmmé ovflémm ommuoma Ewuomv Gfvm. LCm.T..,o.H Nmfmn. mmfmm. m~.T...R.v mmmTomoH 3T2: oowéi. mvfmmw. \:\
mo.Tmo4 Nmfmm. 3.43. o.m-m$.v mRTomoH Smnmmfl mmquomv ovfmm. \E\

3.Tmo.H omfmmm. Efmmm. mfio..vum~...v mvomuammfi STE: mmwummv Emfmw. \:\2:784 mmfvm. mgfmvm. mé mmmauonoa 2N..m3 m3 mvfmm. xbx
mo; mmv. mmm. m.v fimnoo mmtomm 33 mm. \ 3mmmé mi. Rm. mmmé SS. $.mmH Em «S. \o \m.Tm~.H mmmfmti om.Lu.$. m».Tmmm-« omwmuomqm oflumma omfinooofl Efmmo. \e\mi; mom. em. m~...w ofim mfiowm mo» Hm. \m\I -- $.-$. m$.vumTu.v o:%T~m13 omT$.H omflnmmi mflffl. \< \

34 NR. mmmfmm. m._Tm~..-w omS-m$m ommémm Salim mmfvm.

S.T~.H E. mm. m5TmTu.w o$Tmmmm @343 Smnowm mmfmfi \ m.\3.~-m.H S. 8.12. Tm oqm.v~:omm.3 omméom mpmmuoofl EH30. \um\mm.TmN.H m>.-2.. 8. mmmé omETomov $Tm3 mnmlmmm mm.-3. xm \S..Tmo.H mmfom. mmmumm. R4... mmflmuflmm Eéflumfl mvwnmmm Zmfm. \H\
mmoé mmm. B. m~....w ommmuofifi 8702 mmmémm mmfmm. \ .1

3V 2: C. 3“ A3 3: A2 3. S.
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phonemes. The data corresponding to these words were obtained as in the

earlier cases, using a speech digitizer. The region corresponding to the

particular phoneme, was manually separated from each word, by plotting on a

VDU, and then re-checking it by reconstruction and listening. The data

corresponding to each phoneme were stored in different files.

The data were time-normalised and grouped into segments of

length 80 samples (since the vocal tract ’rings’ for 10 msec and this

corresponds to 80 samples at a sampling frequency of 3 kHz). The parameters

like STE, STZCR, ZCR-energy product (ZEP), STZCR to STE ratio (ZER),

normalised correlation coefficients for lags 1 and 2, f’ I and J7 2/ predictor

coefficients and reflection coefficients were evaluated for eadi segment and a

set of average values were computed for each phoneme, in the different words

considered. From these a range of values were obtained for each parameter,

for each of the 36 phonemes. At the outset, the parameters like predictor

coefficients and reflection coefficients were ’lmocked out’ or eliminated, as they

were not showing much of discriminative capacity among the phonemes. A list

of the values of the different parameters useful in the phoneme identification

process is given in Table 6.5.

Studying the energy ranges of the different phonemes, three

different ranges were fixed and the phonemes falling in a particular range was

grouped together. If a particular phoneme has STE values falling in two

different ranges, they are included in both the ranges and are finally identified

based on the parameters chosen in that particular group.
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The energy limits obtained in the study were 0.09 to 0.47. Three

different ranges - 0.09 to 0.17, .17 to .23, .23 to .47 - were fixed within the

extreme limits. The phonemes that come under the topmost energy group

(group I), that is, .23 Q STE S .47 are the vowels, nasals, and some of the

fricatives and affricates. They are /n/, /m/, /7}/, /c'/, /3/, /a/, /J/, /2r/,

/u/, /.3‘/, /f/, /bf/, /d.{/ and /2/. Similarly, the second energy group (group

II), .17$ STE < .23, contains the higher energy plosives, glides, low energy

vowels and a few of the lricatives. They are /b/, /t/, /k/, /i/, /f/, /6/, /6/,

/z/, /3/, /d3/, /I/, /e/ and /3/. These phonemes are comparatively low

energy phonemes with lower correlation than the high energy phonemes of

group I. (/l/ and /i/ have been proved to show low correlation among the

samples themselves and have proved to produce low SNR value of the order

of 5 dB, when used in the modified coder developed earlier). The third energy

group (group III), .09 Q STE < .17, contains almost all of the plosives, glides

and few of the very low energy Vowelsgphey are /b/, /d/, /g/, /p/, /t/, /w/,

/I/, /r/, /h/, /v/, /E /, /A/, /0»/, /o/. It can be noted that the phoneme /z/

overlaps all the three energy groups I while /dz/ and /3 / overlap groups I

and II and /b/ and /t/ overlaps energy regions of group II and III. Within

each group, various sub—groups are formed based on the zero crossing rate

and a final identification algorithm is developed using the different ranges of

values of ZEP, ZER, 5)], and the ratio f1/ F2. The detailed algorithm
developed is shown in Table 6.6.

If more and more words are considered for each phoneme, thai



180

Table 6.6

KNOWLEDGE-BASE FOR THE PHONEME IDENTIFICATION METHOD

(STE, STZCR ( SHORT TIME ENERGY AND SHORT TIME ZEROCROSSING

RATE OF THE INPUT SiGNAL))

(ZEP, zER (ZEROCROSSING RATE. ENERGY PRODUCT, AND ZEROCROSSING

RATE BY ENERGY»

(Kl (FIRST REFLECTION COEFFICIENT))
(PP (PITCH PERIOD OF THE INPUT SIGNAL))

(91, P2 (NORMALISED CORRELATION COEPPTCIENTS FOR LAGS 1 AND 2)

(yr (RATIO OF pl to j’ 2)

1 IF .23 s STEs .47
THEN GROUP I (3,)./',3,5,tf.m.n,r7.v, u.d1.2.c')

2 IF GROUP I = YES AND STZCR
OR zEP = 3702‘: 10
THEN PHONEME /3 /

15151‘ 10 OR ZER = 6000i 100

3 IF GROUP I = YES AND sTzCR = 9101100
OR ZEP = 225 .1 5

THEN PHONEME /3 /

4 IF GROUP I = YES AND STZCR = 310 1- 10
OR zER = 3400 1 100 OR zEP = 195 + 10

THEN PI-IONEME // /

5 IF GROUP I = YES AND srzcR = 710 _ 10
OR zER = 2200: 100 OR ZEP = 215 + 5
THEN PHONEME /3 /
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12
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IF GROUP I = YES AND srzca = 6M)1.70

AND f 2 = 31 1 £1
THEN PHONEME /3/

IF GROUP I = YES AND STZCR = 58o:'m

AND £2 = 34 1 £1
THEN PHONEME /d{/

IF GROUP I = YES MI) STZCR = 530 I 5

ma) fl = .87: .01
THEN PHONEME fi/

IF GROUP I = YES AND STZCR = 5001- 5

A_\D f’ 1 = 0.93 .1‘ .01
THEN PHONEME /tf/

IF GROUP I = YES and STZCR = 4801 5

A.\'D PP = 4.875I.l25 AND ZEP = 200: 20
THEN PHONEME /rn/

IF GROUP I = YES and STZCR = 48012
A_\'D PP = 4.03.125 AND ZEP = 165.‘! 50
THEN PHONEME /U‘ /

IF GROUP I = YES and STZCR = 450310
A.\'D PP = 4.25 3 .125

AND K1 = -.96 1'05
THEN PHONEME /Ll /

IF GROUP I = YES and STZCR = 490 $70

AND PP = 4.512125 AND Kl = -3451.05
TEEN PHONEME /2_/



14

15

16

17

18

19

20

21
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IF GROUP I = YES AND STZCR = 4553!.‘ 10

AND PP = 4.5 $.25

THEN PHONEME /n /

IF GROUP I = YES AND STZCR = 455110
AND PP = 4.125;’ 0

THEN PHONEME /r7/

IF .17 4 STE < .23

THEN GROUP II((:,¢9,3,j,3,5,I¢,15,1,E,z,a’1)

11-‘ GROUP 11 = YES AND srzcn = 1310: 20

OR ZER = 9:550:10 AND fl = .9os:.o5
THEN PHONEME /t/

IF GROLT’ II = YES AND STZCR = 1070.‘? 20

OR ZER = 55501 100 AND fl = .84i.05
THEN PHONEME / 0 /

IF snow II = YES AND srzcn

OR ZELR = 4750150 AND J’ 1
THEN PHONEME /3/

950:1: 20

.925 I .05

IF GROUP II = YES AND STZCR = 875320

AND ZE-R = 44601 50 AND fl = .9151 .05
THEN PHONEME /j/

IF GROUP II = YES AND STZCR = 850120

AND ZER = 4300'.-'1 350 AND P1 = .930.'L'.05
THEN PHONEME /3 /
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25

26

27

28

29
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11-" GROUP 11 = YES AND SrzcR = 315125

AND zER = 41001-50 AND fl = .925 1.15
THEN PHONEM1-: /b/

IF GROUP 11 = YES AND SI‘ZCR = 7701160

AND zER = 37501750 AND 191 = .945-_v-.05
THEN PHONEME /d /

IF GROUP 11 = YES AND ZCR = 740:: 60

AND ZER = 4150: 100 AND fl = .93:r.15
THEN PI-IONEME /k/

IF GROUP 11 = YES AND STzcR = 700160

AND ZER = 3540: 200 AND fl = .375:~15
THEN PHONEME /+' /

IF GROUP II = YES AND STZCR = 680 I20

AND ZER = 3700350 AND P1 = .935_:.o5
THEN PHONEME /d3/

IF GROUP II = YES AND STZCR = 535: 50

AND zER = 27501450 AND P1 = .39: .05
THEN PHONEME /1/

IF GROUP 11 = YES AND STZCR = 530: 20

AND zER = 1370: 20 AND fl = .37: .05
THEN PHONEME / g/

IF GROUP 11 = YES AND STZCR = 510 1"-10

AND ZER = 2600‘_" 20 AND fl = .925,‘_".10
THEN PHONEME /2, /
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IF .09 é STE 4 .17
THEN GROUPD-1(t: W: T: Va 2'9 0: badsga P2191132 9/\aa.)

IF GROUP 111 = YES AND STZCR = 19401540 AND ZEP

OR zER > 13000 AND ,0’ = 1.351245
THEN PHONEME /ae/

220 I 15

IF GROUP 111 = YES AND STZCR = 1550: 100 AND zEP = 1751-15

OR ZER = 13300: 600, AND )0’: 2.751225
THEN PHONEME / A /

IF GROUP 111 = YES AND STZCR = 1510: 30 AND ZEP = 225: 15

AND ZER = 10050: 2500 AND F'= 1.01:.01
THEN PHONEME /of /

IF GROUP III = YES AND STZCR = 14001100 AND ZEP = 160,11‘ 40

AND ZER = 125003; 1400 AND f”= 1.8 .1
THEN PHONEME /h/

IF GROUP 111 = YES AND STZCR = 1400:: 250 and zEP = 205: 45

AND ZER = 9300: 1300 AND /" = 1.151.075
THEN PHONEME / /

IF GROUP III = YES AND STZCR = 12603200 AND ZEP = 140i” 10

AND ZER = 115001‘ 3500 AND fl = 1.451‘ .02
THEN PHONEME /a../

IF GROUP 111 = YES AND STZCR = 1300: 160 AND ZEP = 130: 10

AND ZER = 9500: 2000 AND f'= 1.61.3
THEN PHONEME / b /
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42
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44
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IF GROUP III = YES AND STZCR = 12001’ 150 AND ZEP

AND ZER = 30001 330 AND 1"= 1.33.15
THEN PI-IONEME /p/

IF GROUP 111 = YES AND STZCR =

AND ZER = 73001500, AND j"=
THEN PHONEME /3 /

1120 I5 100 AND ZEP

1.02 I .01

IF GROUP III

AND ZER =

THEN

= YES AND STZCR =
I

35001 1050 AND f =
PHONEME /v /

10801’ 220 AND ZEP

1.95;?’ .25

IF GROUP III = YES AND STZCR =
AND ZER = 65703 450 AND

THEN PHONEME /\u/

930 1 35 AND ZEP

f’ = 1.45‘_".15

IF GROUP III = YES AND STZCR = 980:‘ 10 AND ZEP
AND ZER =. 55003100 AND f'= I.I6:.05
THEN PHONEME /t/

IF GROUP III = was AND STZCR = 3552: 10 AND zap

AND ZER = 5300: 100 AND fl'= 1.2 $.05
THEN PHONEME /o/

IF GROUP III = YES AND STZCR = 305110 AND zap

AND ZER = 5750: 100 AND 19' = 1.131205
THEN PHONEME /2 /

IF GROUP III = YES AND STZCR = 750: 30 AND ZEP

AND 2512 = 6450: 200 AND j"= 1.175'_*.025
THEN PHONEME /T /

II

170 I 25

1301‘ 44

14015

90120
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the limiting ranges of the different parameters might change. Then, the number

of groups into which the phonemes are initially divided, based on STE, can be

increased, and the same procedure can be applied dlectively.

Increasing the size of the vocabulary requires more computation,

storage and time-consuming training sessions. The response time will also

increase linearly with the size of the vocabularies and the error rate tends to

become larger.

To summarise, a simple and efficient knowledge-based approach

to a speaker recognition system and a phoneme identification system have

been presented.



Chapter 7

THE CONCLUSONS

The underlying thread which runs throughout this thesis is

the continuing and the increasing need for effective communication systems

in the field of speech processing. A low bit rate coder which is simple,

but maintains a good level of speech quality, is a must in the present­

day man-machine communication, on a global basis.

This thesis presents a modified block adaptive predictive

coder (MBAC) which reduces the computational burden and complexity of

the coder by introducing certain changes in the evaluation and transmission

techniques of the predictor parameters. The fifference between the actual

and predicted values of the speech samples are not transmitted. Only the

predictor parameters and a difference signal which is a coded version of

the first few sample values, is transmitted to the decoder. This makes the

system more real time. At the decoder, the original samples are

reconstructed based on the earlier predicted values. The predictor at the

receiver, is updated by transmitting the predictor parameters afresh every

block. The block length for processing is made relative to the signal being

processed (that is, block length N is taken as equal to 4“, where M is

the number of samples within 1 pitch period of the input signal) rather

than choosing it to be a constant frame length. The aim was to achieve a

187
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reduced band width requirement and an SNR around 10 dB. This was

achieved as shown in the results section.

At the outset of speech data processing, using the coder,

one has to detect whether the block of data under consideration is

voiced/unvoiced/silent/transition. For this, three classification algorithms have

been developed. Of these, the third method, which gives the minimum

error probability of 2.6% was used to design the modified coder.

The results of the comparative study between the

autocorrelation method and covariance method, in the evaluation of the

predictor parameters, revealed that the covariance method tends to make

the filter unstable. Also the SNRSEG value obtained was lesser than those

obtained by using autocorrelation method, though only less by 0.2 to 0.5

dB. Another point is that the addition of a pitch predictor to the spectrum

predictor showed a marked improvement in the quality of the reconstructed

speech. The SNRSEG value increased by 8 to 9 dB. The unvoiced

segments gave a maximum SNRSEG of 5.11 dB using spectrum prediction.

Computer simulation of the MBAC system showed that for

different sounds and different speakers, an SNRSEG value of 7 to 18 dB

can be obtained in the voiced/transition region, while it is only 2 to 5 dB

in the unvoiced region. On the whole, the system gain obtainable is 3 to

12 dB. The applicability of the MBAC on certain special sounds in

Malayalam was also studied. The coder performance on these special
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sounds was very good. The sound /n/ ENN in ’thoon’, with the nasal /n/

following a vowel gives the maximum average SNRSBG of 21.96 dB, with

the segment maximum going up to 30 dB.

Compared to the SEV and CELPC coders [8, 9, 10, 64, 67}

which produce good quality speech with an average SNRSEG ranging from

8.5 dB to 13.8 dB; the performance of the MBAC system is good.

Computationally, the MBAC system is very simple. Whereas an SEV

requires 40,000 multiples/adds per frame (or 4 MFLOPs) and a CELPC

requires 800,000 multiples/adds per frame (or 80 MFLOPs) [8], the MBAC

requires just an order of (p2+p) multiples and adds ,where p is the crder

of the predictor. The bit rate achieved is 11.8835 kb/sec. An adaptive

knowledge-based speaker recognition system has been developed based on

the various parameter values obtained during the processing of the .\[BAC,

on voiced speech samples. A proposal for a phoneme identification system

has also been outlined.

Using the results of the study on speech sounds (English)

the methods developed has helped in studying the behaviour of these

parameters for Malayalam sounds. An expert system for this analysis will

be a worthwhile study.

Further improvement in the performance of the MBAC system

can be realized by increasing the number of bits per sample used for

encoding the first few sample values that are to be transmitted to the
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decoder. But this increases the transmission rate and hence a compromise

has to be done between the two. Hardware implementation of the coder

can be done to prove its performance and hence its credibility for use in

communication systems. The performance of the system developed, can be

tried on other signals like music, sounds of children and animals. The

feasibility of an implementation of the system using Artificial Neural

Network would be a desirable task.



APHHEHX I

PREDICTOR PARAMETER ESTIMATION

(i) Linear Predictive Coder--Using Spectrum Prediction

Gain Computation

In an all—po1e model, the nth sample Sn is repre­
sented by [2,3,l1,l4]:

P

Sn = 2: aksn-k + Gun (1)
k=l

where.

Un is the input or excitation,
G is the gain factor,
a ‘s are the filter coefficients, and
p is the order of the filter.

If the input Un is totally unknown: then the esti­
mated value of Sn is:

9

/S\n = Z akSn—k (2)
k=1

The error in prediction is
‘U
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Or] P

Sn = 2?: akSn_k + E
k=l

(3)
Fl

Comparing equations (1) and (3), it can be seen that

the only input signal Un, that will result in the same signal
Sn as the output, is where GUn = En. Since the filter is
fixed, the total energy in the input signal GUn must be equal

to the total energy Ep, in the error signal. Thus, it can be
shown that [11], the total energy in the input is given as

P

G = Ep = R(O) + :2: akR(k) (4)
k=l

From the above equation, gain G can be evaluated.

(ii) Linear predictive Coder -— Using Pitch Prediction­
Parameter Estimation

The predictor parameters are determined by minimiz­
ing the mean square error between the true and the predicted
values of the speech samples.
The predicted value of the nth sample is [2, 44]:

p

/S\n = /3 Sn—M J’ Z ak(Sn—k ’,BSn—k-M) (5)
k=l
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Hence the prediction error for the nth sample is

En = (Sn_,BSn—M)'Z ak(sn—k -:Bsn—k—M) (6)
k=l

The mean—square error in prediction is given by

/\ m
3 M

n
2|»­ Z33), <7)

Fl

where, the summation extends over all the samples in the
interval, during which the predictor is to be optimum.

The total error minimisation is done in two steps.

The parameters p and M are first determined to minimise
the error,

— l 2
E1 ‘ N % (sn - /B sn_M)

_ _ 2= <<s,. 25 Sn—M) >m, <8>
Thus, setting ‘BEH = 0, we obtain,

'3/3
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P =<SnSn—M>au- / < S:—M>c~_.,- (9)

Substituting the above value of ‘P in equation (8) it
can be seen that the optimum value of M can be determined by
locating the position of the maximum of the normalized
correlation coefficient ‘f I given by

f (M).-. snsD_M2w/€<sf]>m; <si_L>qy}yL) M o
(10)

Next, using these optimum values of M and fl I the total
error (‘E2 > is minimised, with respec: to each of then Q/gr

coefficients al; a2, .....ak, to obtain the optimum predictor
parameters.

Let] Vn '1 Sn ‘ P Sn_M
Then, 5:2 - - P ‘)2 (12)

< n>m, _ <(Vn E’ akvn—k 21.,»

2
3 En

Setting —-—--- = o, for j=1,2,...,p, (13)
3 aj

we get a set of [3 equations in p unknowns, which can be
written in matrix notation as:¢a = Y’ (14)
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where.

¢ is a p by p matrix, with its ijth term given by

¢ij = <Vn—iVn—j>> (15)av

(y is a p—dimensional vector with its jth component given as

9:“. = 4. vnvn__:> (l6\' ' av
‘a’ is the p-dimensional vector which directly gives the
values of the optimum predictor coefficients.

Solving for‘a'in equation (14), the optimum predi­

ctor coefficients al, a2, ....a are obtained.



APPENDIX II

COMPUTATIONAL SAVINGS IN THE PARAHETER ESTIMATION

(i) Pitch Period Determination

The normalised correlation coefficient of the data

Esng 1S given as

fw) = < snsn_J Q»/£45317“. <5i_J>q~3'/7. (17)

The autocorrelation function of the clipped samples

IRc(J) = <snSr,1-J>q,.,.. (18)

The autocorrelation function of the data samples Esng is
expressed as

R(J) = < snsn_J q (19)I)­

In all the above cases, <_)hwdenotes the averaging over all
the 'N' samples in the block under consideration. Also, the
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number of samples, Mlin one pitch period of the signal (which
gives a measure of the pitch period) is determined by
locating the position of the maximum of the correlation
coefficients.

For each value of J, computation of ‘f (J) requires;
(3N+l) multiplications, (3N—3) additions, 1 square—rooting
and 1 division, while R(J) requires only N multiplications
(N—l) additions.

In the present work, the correlation coefficient
chosen for the determination of M is R(J). Hence, comparing
between equations (17) and (19), the computational savings in

going from F (J) to R(J), is (2N+l) multiplications,(2N—2)
additions, 1 square—rooting and 1 division per coefficient or
lag ‘J'. This gives a good amount of computational savings on
the whole.

In the centre—clipping method, an additional amount

of computation, on the order of N additions or subtractions,
is needed at the beginning of each block.

(ii) Covariance/Autocorrelation Matrix Evaluation

The covariance matrix is a symmetric matrix, while
the autocorrelation matrix is a symmetric Toeplitz matrix.
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Hence the elements along each of the diagonals, are the same
in an autocorrelation matrix, while they are not, in a
covariance matrix.

The autocorrelation matrix is expressed as

RC  ODD‘.-OOOIOCIRI1

R R ............ _ ,Q5 : 1 O R;-4 40)
R R ..........Tp—1 p-2 ‘:

’ ¢11 ¢l2...........¢;;

¢ : ¢l2 ¢22.......... $2? :21)

¢P1 ¢P2""'°'-"'¢§? —_l

where. ¢.. = ¢. . p is the order of the filter considered.13
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Hence the number of matrix elements to be computed is, p in
autocorrelation matrix and p(p+1)/2 in covariance matrix. If
N is the number of samples in the interval considered, then
each matrix element needs nearly N multiplications and N
additions. Or, the autocorrelation matrix elements need, on
the whole, pN multiplications and additions while covariance

matrix elements need Eigill N operation5_

making int: consideration ‘the relatinnshig that
exists between elements along each diagonal, it is noted that
each element is obtained from its preceding element, by
adding and subtracting one product term each, as given by

where N

Hence)from the p elements (¢ll to ¢pP) in the first row, the
rest of the (p2 — p)/2 elements (that is, ¢ to ¢23 p—l,Q'  to

......, ¢2’p_1 to ¢3Ip and ¢2’p) can be evaluated¢p_2'p,
using equation (22).
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The computations needed for the elements ¢l1 to ¢pp is

= pN multiplications and p(N—l) additions

:3 pN multiplications and additions.

2The computations required for the other (p — p)/2 elements

= (p2 — p) multiplications and additions.

Therefore the total number of operations required

= (pN + p2 - p) multiplications and additions

£5 (pN + p2) multiples and adds.

In this case; the reduction in computational load is appre­
ciable only if N is low.

(iii) Evaluation of the Predictor Coefficients

In the Gauss—Jordan elimination method, to solve for

the predictor coefficient matrix a from the matrix equation

¢a = 9/, the matrix ¢(f is first reduced to an upper tri­
angular matrix and then the coefficients 'a' are evaluated.
The computations required for the formation of the triangular
matrix are:
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(p+1) + p + (p-1) + ....+3+2 divisions

( -1)
= 2p + E-§—" = [(p2/2) +(3/2)p ] divisions

and (p+1) + p + (p-1) + ..... + 3 multiples and subtracts

3(p—1) + [(p~1l(p~2)/2]

[(p2/2) +(3/2)p—4 ] multiples and subtracts.I1

Hence. on the whole, it requires on the order of [p2+0(p?:
multiples and adds.

Makhoul [11] has reported that the square-root or
Cholesky decomposition method requires p3/6 -+ O(p2) opera­
tions, while Durbin's method requires p2+O(p) operations. The
Gauss-Jordan elimination method is thus as effective as the
Durbin's method, in a computational sense.



APPENDIX III

RATE OF TRANSMISSION

(a) Predictor Parameter Transmission

(i) Voiced region

The parameters to be transmitted are fl , M,
voicedfunvoicedjsilent/transition parameter and ak s.

According to Atal et al [883, using predictor poly­
nomial roots, 5 bits per root are adequate to preserve the
quality of the syn:hesised speech. Hence, the total number of
bits needed per frame is

ak's (4 in number) 20 bits
V/U/S/T parameter 2 bitsfl 5 bitsM 6 bits
Total bits per frame 33 bits

Taking an average value of M as 50 for male speakers and 35
for female speakers, the average value of M on the whole will
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be around 45, so that the block length N = 4M is equal to

180. Since the sampling frequency fs = 8 KHz, the number of
blocks per second is 44 and the number of bits per second is
1.452 kb/s.

(ii) Transition region
Here, the optimum value of N = 2M and p = 8. Hence

the number of bits per frame is 53 (ak's #9 40 bits,
M .9 6 bits, Ag -9 5 bits, V/U/S/T parameter -9 2 bits), and
the number of blocks per second is 89 and the number of bits
required per second is 4.717 kb/s.

(iii) Unvoiced region
The optimum values of N = 40 and p = 12 and hence

the number of bits per frame is 62 and the number of bits per
second is 12.4 kb/s.

(iv) Silent region
The silent region needs no processing and only the

code for the region need be transmitted to the receiver. Thus
taking the frame length same as the initial block length of
160, the number of blocks per second is 50 and the number of
bits per second is 100;
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From Table 4.7, it can be noted that on an average,
in the phonetically balanced sentences chosen for the
simulation work, the percentage of occurrences of the various
regions are approximately, 40% for voiced, 10% for unvoiced,
20% for silent and 30% for transition regions. Hence, the
total number of bits required to transmit the predictor
parameters is

Voiced region—q l.452x.4 = 0.5808 kb/s
Unvoiced region -9 12.40x.l = 1.240 kb/s
Silent region —; O.lOx.2 = 0.002 kb/s
Transition region —9 4.7l7x.3 = 1.4151 kb/s

Total = 3.2379 kb/5 —
(b) Side Informations

(i) Voiced region
N = 4M and p = 4. As explained above, taking M as

equal to 45, the number of dn's required to be transmitted
per block is 49. Taking 3 bits per difference sample dn and
taking 12 bits for the first sample S of the block and 51

bits for the standard deviationjthe total number of bits per
frame

= 49 x 3 + 12 + 5 = 164 bits/frame.
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Taking 44 voiced frames per second. ntmber of bits per second
with respect to voiced frames

= 164 x 44 = 7.216 kb/s

(ii) Transition region
Taking M = 45, N = 2M and ; = 8, the total number

of bits per frame is 176 (ie., 53 I 3 + 12 + 5), and the
number of bits per second = 176 x 89 = 15.664 kb/s.

(iii) Unvoiced region
Here N = 40 and p = 12, and the number of bits per

frame is 53 (ie., 12 x 3 + 12 + 5). 35“? the number of bits
per second = 53 x 200 = 10.60 kb/s.

(iv) Silent region
No side information is needei.

Thus the total number of b;:s required per second
to transmit the side informations is given as

Voiced region 7.216 x .4 2.8864 kb/s
Unvoiced region 10.60 x .1 1.060 kb/s

4.6992 kb/sTransition region 15.664 X .3
8.6456 kb/sTotal
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The overall number of bits per second, required for
the transmission of both the predictor parameters and the
side informations is 11.8835 kb/s (that is,(3.2379 + 8.6456)
kb/s).



APPENDIX IV

SPEECH WAVEFORMS

Speech Waveforms of the utterances used in the

Fig.1

Fig.2

Fig.3

Fig.4

Fig.5

Fig.6

Fig.7

Fig.8

Fig.9

Fig.l0

Fig.1l

present work
(a) — male. (b) - female

The pipe began to rust while new.

Cats and dogs hate each the :ther.

Oak is strong and also gives shade.

Thieves who rob friends deserve jail.

Open the crate but do not break the glass.

Add the sum to the product cf these three.

Joe brought a young girl.

Drop coin after tone.

Push blue after speech.

Close door after party.

Right move close lock.

Fig.l2(a-j)Waveforms of the differen: words used for
phoneme identification.
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