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Chapter-l

INTRODUCTION

The theory of multivariate analysis had its
inception in the early thirties with the main emphasis
placed on the multivariate normal distribution and the
same trend prevailed for the next three decades as well
without any worthwhile competition from other models.

The intractability of the mathematics required for the
analysis under non—normal alternatives, optimum proper­
ties enjoyed by several multivariate techniques under
the assumption of normality, robustness of techniques
under moderate departures from the usual assumptions,
importance in their own right of the classical methods
used in the procedures, existence of tests and graphical
procedures for investigating normality etc. can be cited
as the reasons for the popularity enjoyed by the multi­
variate normal distribution. Despite the validity of
these observations, it was obvious that analysis of
data arising out of different contexts cannot always
be brought under the umbrella of normal theory and that
alternative models would become necessary. However,

investigations free from normal straitjacket had to
wait until l95O.when multivariate extreme value

distributions were introduced and this set the beginning

l



of the appearance of non-normal models. Bivariate
exponential distributions, the properties of one such
model form the focal theme of the present investigation,
were investigated by Gumbel in 1960 in which he pointed
out several fundamental differences of his models with.

that of the multinormal. For example, the regression
lines in his model were neither linear nor intersect
at the mean and the dependence mechanism is not solely
dependent on the coefficient of correlation. Based on
physical characteristics that warranted non-normal
models and also by way of extending desirable properties

of univariate models into higher dimensions several types
of multivariate exponential models were constructed by
researchers like Freund, Marshall and Olkin, Moran,
Downton, Block and Basu, Raftery, Sarkar, etc. The
properties of these models vis a vis their ability to
explain real world phenomena are taken up elsewhere in
the present study.

The preliminary and perhaps most important step
in analysing statistical data is to locate an appropriate
model followed by it. This enables the analysis of the
original problem into a comparatively simpler one as one
can make use of the specific properties of special



distributions in reaching at reasonable inferences.
The natural question as to how fully such a reduction
in effort can be attempted by utilising the special
nature of a distribution has paved the way for detailed
investigation on the inherent properties of probability
distributions in mathematical statistics. Thus if one
knows the experimental situations or properties of
stochastic variables that can uniquely determine or
characterize a distribution, such information is highly
useful in checking whether a particular distribution is
a good choice for explaining a real situation.

The search in this direction has necessitated

the formulation of characterization theorems concerning
all important distributions that could hope to be
realistic models. As in the case of the evolution of
distribution theory, in the area of characterization
also the normal law attracted early attention with the
work of Polya in 1926. Though the importance of the
exponential distribution in present day literature is
next only to that of the normal, the versatility of the
latter was recognised a little late, perhaps with the
pioneering worksof Sukhatme (1937), Epstein and
Sobel (1953) and Renyi (1956). These authors laid the

foundation for the lion share of characterizationsthat



appeared subsequently on the three basic characteristics
of the exponential distribution namely lack of memory
property and its variants, its relation with the Poisson
process and the properties of its order statistics.

Compared to the voluminous literature available
on the characterization of the univariate exponential
law, very little work has been done relating to their
multivariate forms. In view of this, the present
investigation is an attempt to study the following
problems.

It is highly desirable that any multivariate
distribution possessescharacteristic properties that
are generalisation in some sense of the corresponding
results in the univariate case. Therefore it is of
interest to examine whether a multivariate distribution
can admit such characterizations. In the exponential
context, the question to be answered is, in what meaning—
ful way can one extend the unique properties in the
univariate case in a bivariate set up? Since the lack
of memory property is the best studied and most useful
property of the exponential law, our first endeavour
in the present thesis, is to suitably extend this
property and its equivalent forms so as to characterize



the Gumbel's bivariate exponential distribution.
Though there are many forms of bivariate exponential
distributions, a matching interest has not been shown
in developing corresponding discrete versions in the
form of bivariate geometric distributions. Accordingly,
attempt is also made to introduce the geometric version
of the Gumbel distribution and examine several of its

characteristic properties. A major area where exponen­
tial models are successfully applied being reliability
theory, we also look into the role of these bivariate
laws in that context.

The present thesis is organised into five
chapters of which after the present one, a review of
literature on bivariate exponential and geometric
distributions is taken up in chapter II. We devote
chapter III to present some new results on the general
properties of the Gumbel's type I bivariate exponential
distribution. After introducing a slightly more general
model than that prescribed by Gumbel and several of its
characteristics in Section 2, the problem of finding new
characterizations is attempted in the subsequent sections
The characterizations include those based on local lack

of memory, truncated moments, measures of dispersion and
geometric compounding. These are essentially results



that are extension of the corresponding univariate
properties in a specific bivariate set up. Some
characteristic properties that has relevance only to
the bivariate models, along with some general results
such as recurrence relation for truncated bivariate
moments and necessary and sufficient conditions for
the unique determination of a bivariate models by
conditional distributions also form part of the same
chapter. In chapter IV the discrete analogue of the
Gumbel's bivariate exponential distribution is developed.
After pointing out the general properties of this bi­
variate geometric law we turn to prove some characteriza­
tion theorems concerning the model, some of them extensions
of the exponential results to the discrete sample space.
One area of scientific activity where the exponential and
geometric laws are of potential activity is reliability
and life testing. A concept that can be used in assessing
the role of these models is that of bivariate mean residual
life. Mention has been made of the definition of this
concept in earlier literature, but a systematic study
relating to its properties has not yet been made.
Accordingly, we present in chapter V the concept of
bivariate mean residual life, its properties and role in
the choice of reasonable models for bivariate failure time
data; and some characterization using its properties.



The present study ends with section 5.5 in which
some of its limitations and problems for future
work are pointed out.



Chapter-2

REVIEW OF LITERATURE

2-1 lntsedustiee

The history of multivariate exponential distributions
is confined to a period of only three decades, mainly due
to the rather late recognition of the univariate exponential
model as a credible alternative in non~normal situations.

Although the ideas of multivariate exponential distributions
are explicit in the works of Gumbel on the extension of the
extreme value distributions and also in some earlier develop­
ments concerning multivariate gamma distributions, a real
thrust in this area seems to have begun with the l960 paper
of Gumbel on bivariate exponential distributions. In this
paper he gave three forms of bivariate exponential distribu~
tions and their role in situations where the parent population
is non-normal. This was followed by several papers describing
different varieties of multivariate exponential distributions
based on the physical characteristics that warrent their
introduction. A brief review of the major developments in
this area constitute the theme of the present chapter.

2-2 Gumbsl'§,9iverie§s e&29esnt1al_di$tribvt1¢n

Gumbel (l96O) has introduced three bivariate models

each with exponential marginals. The first of those is

8





equal probability density are not ellipses nor the
regression curves linear that intersect at the
common means With increasing values of one of the
variables, the conditional expectation of the other
remains within finite limits. As regards the
coefficient of correlation, it tends to zero as 9 tends
to zero and as 9 increases, the correlation decreases
reaching a minimum value of - 0.40365 at O = l.

Although this distribution has appeared in 1960
and has a simple mathematical form, there has been
only very few attempts to investigate its properties
including characterizations. Seshadri and Patil (1964)
was the first to offer characterizations based on this
distribution. Their results may be summarised as follows

Theorem 2.1

If (Xl,X2) is a bivariate random vector such that
f(x2|xl) has the form in equation (2.2), then

fxl(xl) = exp (-xl), xl > O

if and only if

fx2(x2) = exp (—x2), X2 > O



It is to be noted that a characterization of
the bivariate distribution itself can be obtained if
a conditional density of the above form is assumed

along with the marginal distribution of X2. The
conditional distributions considered here are not
exponential or even conform to a well known standard

distributional form, to be able to make a worthwhile
use of the last remark. Seshadri and Patil (1964)
also show that a similar result does not hold for the
Gumbel's second bivariate form specified by (2.MD)­

Another characterization of the Gumbel distribu­

tion is based on a property of bivariate failure rates.
In the univariate case if the random variable possesses
a density f(.), the failure rate function is defined as

r(x) = ,3“-fie} (2.3)
where R(x) = P [x > x]

It is common knowledge that r(x) is constant if and only
if the distribution is exponential. A generalisation of
this concept to higher dimensions can be effected in
more than one way. Basu (1971) used the scalar quantity



f(i)r(x) = ——-- (2-4)" R(§)
to define the multivariate failure rate where

§ = (x1,x2,...,xn), f(§) the joint probability
density function of (5) and R(.) is the survival

function defined as R(§) = P[Xi > xi, i=l,2,...,n].
He proved that there is no absolutely continuous
distribution possessing exponential marginals with
constant failure rate other than the one with
independent (exponential) marginals.

Another interesting result in this connection is
that of Puri and Rubin (1974) which states that the ahiy
absolutely continuous distribution satisfying

1'()_(.) = )\

are mixtures of exponential distributions given by
on oo ['1

f(Xl,X2,aa.,Xn)  000 ‘g  €
D(d Al ... d Ah)

Xj Z O, j =7 1'2, O00’ no

and D is a probability measure located on the set
n

A = [ "=1" A.=/\, A. > 0, j=1,2,...,h]1:1 J 3



An alternative vector valued multivariate

failure rate proposed independently by Block (1973),
Esary and Marshall [in Marshall (l975)] and Johnson
and Kotz (1975) is defined as

§(§) = (hl(§), h2(§) --- hn(§)) (2.5)
where hr(x) = -oi9%;5L3J, r = 1,2,3,...,n

I.‘

It follows immediately that a constant failure rate
of the form

Q(§) = c

where 9 = (cl,c2,...,cn) is an absolute constant with
respect to the variables if and only if 5 has multivariate
exponential distribution with independent exponential
marginals.

The two definitions are indicative of the fact
that absolute constancy of failure rate in higher
dimensions will provide only trivial multivariate exponen—
tial distributions. On the other hand if the absolute
constancy is relaxed to local constancy, a meaningful
bivariate exponential distribution can be arrived at.
The relevant results are stated in the following theorem,
proved in Galambos and Kotz (l§78).



Theorem.2.2.

The multivariate hazard rate h(§) is continuous

and of the form (2.4) with nr(;) independent of xr if
and only if

n
R(§) = exp[- 29.x + Z 9 x x + ... +- {i=1‘ i i<j 15 1 3

91..." xlxzti. xn} ] (2.6)

Equation (2.6) is easily recognised as the multivariate
extension of the Gumbel's form.

In a recent paper Zahedi (1985) introduces the
concepts of increasing mean residual life (IMRL) and
decreasing mean residual life (DMRL) class of multi­
variate survival distributions. Among the different
types of such classes he calls a p dimensional
probability density function to belong to the decreasing
(increasing) multivariate mean residual life DMMRL (2)
[IMMRL (2)1 class if for 1=1,2,3,...,n.

ri(tl,t2 ... ti_l, ti+£>, ti+l ... tn) g ( 3 ) ri(t)

forall A>,0,t ,ti>0
where ri(t) is the ith element in the vector

;_(1=>-=1-¢[,>_<-tIg_<>§_1 (2.1)



Based on this concept the following characterization
theorem is proved.

Theorem,2.3

An n-dimensional continuously differentiable

probability density function f is DMMRL (2) and
IMMRL (2) if and only if f corresponds to the distribu­
tion in (2.6).

Nair and Nair (1988) considered the bivariate
form of (2.6) to arrive at the following result.

Theorem 2.4

The joint distribution of x = (x1,x2) admitting
probability density function in RE has bivariate
exponential distribution with

—% x -.A x - Ox x
P[Xl > xl, x2 > x2] = e 1 1 2 2 1 2 (2.8)

if and only if

E [z<.-it I x > 11 = [al(t2). a2(tl>1 (2.9)

where ai's are non-increasing functions, such that ai(tj)
is independent of ti for i,j=l,2 and j£i for every tl,t2>O
satisfying al(o) =,XIl and a2(o) =-K51 .



Gumbel (1960) has introduced two more bivariate

exponential distributions of which one is derivable
as a special case of the Morgenstern (1956) model
with given exponential marginals. Here the joint

distribution function of (Xl,X2) is given by

F(xl,x2) = (1-e_xl)(1-e—x2)[l+ae-(xl+x2) ] (2.10)

where xl,x2 > O and la] < 1.

It may be noticed that X1 and X2 are independent when
d='-Q.

The third model is specified by the distribution
function

-x -x 1/m
F(x1,x2) = 1-e 1-e 2 + exp[-(x? + xg) ] (2.11)

The case mnl leads to the independence of the component
variables.

The main motivation in introducing the above
bivariate distributions seems to be towards providing
an alternate model that could be used in situations
where the properties of the multivariate normal distribu­
tion are not true. Gumbel does not suggest any specific
problems where these models can arise in a natural way





failure of either component changes the parameters of
the life distribution of the other on account of the
fact that whenever A failsextra stress is placed on B
resulting in the life distribution of B changed to
exponential distribution with parameter B‘. Similarly
if B fails the life distribution of A is changed to
exponential distribution with parameter a‘. Under these

assumptions the joint density of X1 and X2 is shown to be

a5‘ exp [-B'x2—(a+B-B')xl] if O$xl<x2

1 2 Ba‘ exp [-a‘xl-(a+B—a')x2] if O$x2<xl

For this distribution the marginal distributions are
not exponential, in the special case where a = a‘ and

B = B‘, X1 and X2 are independent exponential variates
and the regression of Y on X and X on'Y are generally
non-linear although the conditional expectation as a‘
tends to infinity is

E(Y/X) == x + -—--—(-I---—' B'(¢+B)
The expression for correlation coefficient obtained by
direct calculation is

r ,___  B‘   f
\/a7+2aB + B‘2



In spite of the physical meaning attached to
the model, it has evoked only limited response in
subsequent investigations. One can attribute the
primary reason for this to the fact that the marginal
densities are not exponential which is generally taken
to be a primary requisite for a bivariate form. Further
the distribution fails to accommodate most of the

properties of the univariate exponential distribution
when extended to higher dimensions as will be evident
from the future discussions.

2.4. Marshall and Olkin distribution

Among bivariate exponential distributions that
one which has induced considerable interest is the

model suggested in Marshall and Olkin (1967). The
primary reason for its popularity lies in the fact
that it can be related to a suitably defined Poisson
process and also that it satisfies a bivariate version
of the lack of memory property,characteristic of the
exponential model.

In the univariate case, a non-negative random
variable X has the lack of memory property if and only
if for all s,t g O for which P(X > t) > O, the
condition
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P(X >, t+s | x ; 1;) = P(X >, 5) (2.13)

or equivalently, in terms of survival function,

R(t+s) = R(t). R(s) (2.14)
holds. An obvious extension of (2.14) to the bivariate

case is that (Xl,X2) satisfies the condition

R(tl+s1, t2+s2) = R(tl,t2). R(sl,s2) (2.15)

for all tl,t2,sl,s2 g 0.

This is a too strong generalisation to be of any
practical use as the solution of (2.15) leads to the
trivial bivariate exponential distribution which is
the product of two exponential marginals. In view of
this Marshall and Olkin (1967) relaxed (2.15) in the
form

R(sl+t, s2+t) = R(sl,s2) R(t,t) (2.16)

for all sl,s2,t g 0 to represent bivariate lack of
memory. They arrived at the unique solution of (2.16)
under the assumption that marginal distributions of



X1 and X2 are exponential as

R("1"‘2) "" “P [‘ ’\1"1 ">‘2"2 " >‘12“‘a"("1"‘2)] (247)

where A 1, A2 and A12 are non-negative.

The marginals of (2.17) are exponential with

mean (351 + Al2)'1 and ( 32 + 312)'l and variances

( 31»+»%l2)“2 and (3\2 + %l2)'2 respectively. Further
the correlation coefficient between X1 and X2 is

y = e/‘12
"‘1"‘2> A 1 -1-A2 otlg

which lies between O and 1, both inclusive.

The Marshall-Olkin distribution can be viewed

in the context of shock models as follows. Suppose
that the components in a two component system die after
receiving a shock which is always fatal. Independent

Poisson processes Z1(t%l), Z2(t; A2), Z12(t; A12)
govern the occurrance of shocks. Events in the

process Zl(t; Al) are shocks to component 1, events
in the process Z2(t; A2) are shocks to component 2
and Zl2(t; A12) are shocks to both components. If



X and X denote the life of the first and second1 2 _
components

R(s,t) = P [xl > s, x2 > t ]

= P [zl(s;.Al) = 0, z2(t
Zl2(maX($,t);,x12)

= exp[-)\ls - 7\2t - A12

The distribution can also be arrived at considering
a non-fatal shock model for which occurrance of shocks

are governed by independent Poisson processes with the
modification that shocks are non-fatal

6A2) =09
= O

max(s,t)]

The main characterization theorems of the

distribution are summarised in the following theorems

Theorem 2.5.

X = (Xl,X2)hac a bivariate Marshall-Olkin
distribution if and only if there exists random variables

U U and U such that X = min(L&,U ) and X =min(U2,U1' 2 12 l 12 2
Theorem 2.6 [Block 1977]

A bivariate random vector (Xl,X2) has Marshall-Olkin



distribution if and only if

(a) (Xl,X2) has exponential marginals

(b) U = min(Xl,X2) is exponential

(c) U I min(Xl,X2) is independent of V=Xl-X2.

For an extension of (2.17) to n dimensions and
characterizations thereof along the lines of the above
theorems we refer to Galambos and Kotz (1978).

Inspite of the above interesting properties,
the model has a limitation in that it is not absolutely
continuous and involves a singular component. in fact

P[)(l=X2] = (,\l+)\2-+7; 12 )-1 0 The authors
justify the appearance of this singular term by

arguing that in reliability context the event Xl=X2
can occur when failure is caused by a shock simultaneously
felt by both components. However, this is to be seen as
a serious drawback since the distribution is usable only
when this particular requirement is met with by the
system. It is for no other reason that several modifica­
tions have been offered to this model in subsequent
research.



2-5 -M°¥Et.“_$__.¢_i_$t.Ei_g‘%;t?'_p_‘_.!_

Moran (1967) has constructed a bivariate
exponential distribution with exponential marginals
as the joint distribution of

__1 2 2 _1 2 2X1 - 5 ( ul + u2 ) and X2 - Q ( u3 + u4 )

where ul,u2,u3 and u4 are unit normal variables.
(ul,u3) and (u2,u4) are mutually independent, but each
pair has a bivariate normal distribution with correla­
tion coefficient m. The density function is

f<><l.><2> = 3:0 w [;£§°<-1>g(g><g:>'1xk° e x“}1

(2.18)

The means and variances of the component variables

in (2.18) are unity and the correlation coefficient is
m2. We observe that Moran's model is a particular case
of the multivariate gamma distribution discussed in
Johnson and Kotz (1972 p.22O)and consequently inherits
the properties mentioned therein. The distribution is
of limited application in reliability context because of
its connection with normal distributions while its form is
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not encouraging from the point of view of characterizations.
Further, the coefficient of correlation is always non­
negative, a feature that is not always realised in reliability
studies of two component systems.

2 - 6 - Ilewnt9na‘§d1$i@r1bvti.°n

In contrast to Moran's model, the one proposed by
Downton (1970) introduces more stress on applications in
reliability. Eventhough the Marshall-Olkin distribution
possesses the lack of memory property in two dimensions,
it appears to be disadvantageous in the sense that in a
two component system correlation could often arise
because one component possesses in some sense a memory
of time to failure of the other. The model relies on
the theory that successive damages of the components
leads to its ultimate failure instead of the usual
assumption in the renewal process that successive damages
accumulate until it reaches a level to cause failure.
Assuming that the interval between successive shocks

received, Ti, are independent and identically distributed
exponential random variables with parameter »K and the
number of shocks to failure N is geometric with generating
function

no =



it follows that

1I[¢(s)] == -(T_T8-'jQ_);—);­

where ¢(s) is the Laplace transform of Ti. When
generalised to higher dimensions, the two components
behave in such a way that the number of shocks to
failure follow a bivariate geometric distribution with
probability generating functions

fl(zl,l) = (i-pl)zl- zP11

(1-"P2) Z2= 1 VzVzH—
l-p222

and the interval between successive shocks are independent

and exponentially distributed with scale parameters ‘X1
and A.2 for each component and the joint distribution
function of life times F(tl,t2) with generating function

A1 A2
‘P ($1, $2) = W [ {I-;*§I .‘§E-;"§E 1

Downton used this generating function to derive the Laplace



transform of F as

V P
W  = i'—i—' ;  "1   "ii  "—""—*'*"

(p1+sl)(n2+s2)-?sls2

where M A2"1-‘i1raI;» P2- ‘r:§:?'a"d

‘P _ dB + BY +1“ + Y + Y2
(l+a+y) (l+B+yii

This gives the joint density function as

“1"2 "1t1*"2t2 2J}"152t1t2
f<*v’°2> = TI"? "PP ‘raise ) Io(l-Q a)

(2.19)

with p.1,p2 > O, O Q pg l and Io is the modified Bessel
function of the first kind of order O. Distribution
(2.19) happens to be a particular case of an infinitely
divisible gamma distribution. The marginal distributions
are exponential and the regression is linear with

.. __1-Q 15.2
E(1:|t2 ) - pl + Q ‘ll t2
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and conditional variance

1-? 1-Q ‘*2
v("rl|t2) .. --HI-. ( -5? - 29;; 1:2)

The Downton distribution describes adequately a realistic
physical situation and offers an alternative to the
Marshall-Olkin distribution when the bivariate lack of

memory property fails to hold. However, further explora­
tion of the model in terms of the pattern of failure it
represent in the reliability context is necessary in
order to assess its potential as a worthy competitor to
the other models.

2-7- P¢e;§2ni=d1§tr1hvtien

Paulson (1973) proposes a bivariate exponential
model by adopting the standard technique of suitably
extending a univariate characterizing property to higher
dimensions. Let qr(t) be the characteristic function of
a random variable u satisfying P(u Z O) = l and
P(u=O) < l and v be another random variable such that

P(v 2 O)=l, P(v=O) < 1. Using the fact that the functional
equation

¢<*=> =¢<t> =- E [wow] (2020)
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where expectationis with respect to v, characterizes
the exponential model, he took

T = (ti, t2)
\p'(t) = E[exp(it1ul + it2u2)] and
¢(t) = E[exp(itx + ity)]

to form the multivariate analogue of (2.20) as

¢(T) = mym E[¢(Tv)1

The choice of

V =

/""\O0
O0

‘E--’
/-I?

CH—

OO
?._/
/"‘\O0
I-O%/
Or~
1--O

g__,./
L____J

with probabilities a,b,c,d respectively (a+b+c+d=l,
b+d < 1, c+d < 1) yields

‘F (t) = (l-iOltl)'l (1-ie2t2)'1

= “Fi(t,0) x‘T§(o,t2)[a+b ¢(tl.o) +
c ¢(o,t2) + d ¢(T)] (2.21)

Setting ti=O, i=l,2 and solving for ’\f‘(tl,o) and "\}"(o,t2)



leads to marginal distributions that are exponential.
The bivariate exponential distribution is identified as
that one with characteristic function (2.21) with

parameters (a,b,c,d,9l,Q2).

The random variables X and Y with bivariate

exponential distribution (a,b,c,d,Ol,O2) are independent
if and only if ad-bc = O. Applying inversion theorem
the probability density function is

b '* /“ “*2/"2
f(xl,x2) = [a+ E19 1 ix, + fig e y*]

_ £_,_i_9 9 ax x
5-5-2 2 1 2<2J-55-) (2.22)1 2 ° 1 2

where x Z 0, Y Z_O and

( % )V+2k
W’ = ;2ir—‘;;2;i2

is the modified Bessel function of the first kind and

of order v. The sumbols x* and y* are to be interpreted
as operating on the function of x and y postmultiplying
the term in brackets and represent the operation of
convolution over x and y respectively, which is defined

for two functions hl(x,y) and h2(X,Y) by

hl * I12 = Zhl( ‘$937) h2(X“"§’9Y)d{f O
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Block and Basu (1974) observed that the assumption
of absolute continuity in addition to the assumptions of
lack of memory property yields a bivariate exponential
distribution with independent (exponential) marginals
only. Accordingly they relaxed the assumption of
exponential marginals to that of mixtures of exponential
distributions to arrive at a bivariate exponential distri­
bution specified by the survival function>‘ A

R(xl,x2) = xI;1;; exp[-hlxl -32x2 - 12max(xl,x2)]

M2
- ETIIXE exp[-5\max(xl,x2)] (2.23)

where A1, A2. 312 > 0; >1= Al.» >\2+ >~l2; xl,x2 > 0.

This distribution’referred to in literature as the ACBVE,
turns out to be the absolutely continuous component of
the Marshall-Olkin distribution.

Considering the fact that exp(-lhz) for z > O is
the singular component of the bivariate exponential
distribution (2.17) and that the marginals are respectively

exp[- (.Rl+.3l2)xl] and exp[- ( %2+ %l2)x2], the marginals



oonsidered in the derivation of the ACBVE are given by

P[Xl>x1] = (l+a) exp[-(%l+ ?&2)xl]-a exp[-loxl]
for xl > 0

and P[X2>x2] = (l+a) exp[-(%2+ >12)x2]-a 8Xp[—l\X2]
for x2 > O

This assumption of the lack of memory property implies
that these marginals have the form>\ A2R(X)="'—'-'eX['-(7\ 1

1 >\l+7\2 P 1+ >\12)Xl] - ;\-1'13‘; @><p(- 7*><1)
for x > O. >\ 7312=-—-——— - -'—————— -»%

R(x2) ‘A1+m2 exp[ (%2+ h12)x2] ‘hl+;\2exp( X2)
for x2 > O

Using the condition

exp(- Qx2)§1l(xl-x2) if xl ) x2 ) OR(X )­1"‘2 " .
exp(- Qxl) R2(x2-xl) lf x2 >/ xl >/ O

which is equivalent to the lack of memory property, the

form of R(xl,x2) is realised as in (2.23).



The model can also be derived using the Freund's

approach discussed in Section 2.3. Assuming (Xl,X2) to
denote the life length of a two component system with

X1 and X2 individually having exponential distributions
with means a“1 and 5'1 and that if component 1 fails
extra stress is placed on component 2, reducing its
mean life time to B"l when B‘ > B and similarly if
component 2 fails, using Freund's derivation for

“ =21 *h12[)’1/(>‘1*"2)]' °" "‘%1* A12’

B =7\2 +7\l2[>\2/( )\l+7\2)], B‘ -=7\2 +)\l2, where Al,
ATA12 > 0 it followsthat <1 < <1‘, 5 < 5' and (x;_,x2)

has density as given in (2.23).

If (Xl,X2) has distribution function given by
(2.23),the corresponding density function is

F>\1g>§("2?*s>‘12s) e')‘1"1"(*2*>‘12)"2 if < X,i>1+>~2   *1 2
f(xl,x2)=<

>\)(>\+>s ) -(A-M )X—?\Xl —']'2<~ e 1 12 1 2 2if x > xK )\l+)\2 1 2
with means, variances and co-variance given by

% Aml) =___._1 +  2 2
A 1* /\ 12 A (;\l+>»2) (>~l-012)



_  1% M2 *1
EH2) _ >‘2* >12 + -(>‘w1*>52T("2‘* “M27

A A [2>\ A + A. 3 1var(x >= e  2 + lg 22 5  legs
1 (>*1* M2) >, (A102) (>\l+ A12)

A A [2)\ )\+.A A ]
Var(X2)=   e2 + 21% ti fig  1212

("2* M2) >~ 01+ >\2) (/\2+ >32)

‘>3 * *3) /‘12>‘*e "f1"2 A32 2COV(Xl,x2) I-=   V   -- -— ­
>\ (>‘1*>‘z)("1*7‘12)("2* A12)

The moment generating function of the ACBVE is given by

A

“(S-" = >753‘; r-'=c"§m

7§1§"2* 5,1223 2 P‘ 11751227" 2
»\2+ii>~1».¢1 - to * /\ 1+ 512 + Q

Further the ACBVE (A 1, A 2, A12) has the following
interesting properties

1. min(Xl,X2) follows exponential distribution
with parameter )\ =)» 1+/\ 2+ A 12.
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2. (X1-X2) has distribution function
/\1————— A X 'Al+A2 exp [( 2+ 12):] if z 5 O

F(z)=

1--[>\2/ >\1+?\2]exp[-()\l+ Al2)z] if z > 0

3. Min(Xl,X2) is independent of Xl—X2 (and also IXI-X2|)

exp(-,Xx2).Rl(xl-x2) if 0 < x2 < xl

exp(-»Xxl).R2(x2-xl) if 0 < xl < x2

where R(x,y) = P( X > x; Y > y)

% *'% X
5. P(X1 > xl) = -1;-3 R1(x) + -3%-3 exp(->\xl) if xl > 0

X +'% A
P(X2 > X2) -.= -133-31 R2(x2)+ -31-3 exp(- M2) if x2 > 0

A characterization of the distribution, is stated in the
following theorem.

Theorem

Let (Xl,X2) have a non—negative bivariate distribution
which is absolutely continuous} Then the lack of memory

property holds if and only if for U = min(Xl,X2) and
V = Xl—X2 there is 9 > O such that



(1) U and V are independent

(2) U follows exponential distribution with
parameter 9

Fl(t) + 0 lfl(t) if t 1 0
(3) PW S t] = 1-1=2(-1:) -- e"1f2(-t) if t < 0

The bivariate failure rate of Basu is calculated
as

>‘1()‘2 * A12)
,\1-giz e><p[-,\1(x2-><l)'] if *1 ‘ *2

r(xl,x2) =
1*-A12)  * if x < x

A - >12 exp[-A 2(Xl--X2) 2 1

r(x1,x2) is constant along the line x2 = xl+a for any 0­
and that if one of xl and x2, say x, is held fixed,
then for values of x2 < g, r(xl,x2) is increasing and
for values of x2 > xl, r(xl,x2) is decreasing.

Block (1974) has extended the distribution to the
multivariate case as well.



From the above discussions it is obvious that
the bivariate extension of Block and Basu (1974)
preserves in higher dimensions certain interesting
aspects of the univariate exponential distribution.
It satisfies the lack of memory property and has a
meaningful reliability interpretation. However, a
major limitation is the non-exponentiality of the
marginals. This prevents one from assuming the lack
of memory property for the marginals and we have a
situation where there is lack of memory for the two
variables together without either components having
the same. The expression for marginal densities as
mixtures has implied in it the fact that each variable
is composed of two different types of behaviour. This
hidden assumption had to be justified in a practical
situation for one to be able to choose the Block and
Basu model.

2.9. Béfteryls Model

Raftery (1984) has introduced a multivariate
exponential distribution which can model a full range
of correlation structures that attains the Frechet's
bounds in the bivariate case. Further he claims that
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it arises as a model that is easy to simulate and
useful in studies on reliability and failure due
to shocks. It is analogous to the multivariate
normal distribution by being based on linear combina­
tions of independent exponential random variables with
marginals having the same form as the population.

To describe the model, let Yl,Y2 and Z be
independent exponential random variables with parameter >3

and I1 and I2 binary 0-1 random variables with joint
distribution

pjk = P [ 11:30 I2=k 19 jtk =09]­

where P [li=l] = xi, i = l,2.

The bivariate exponential model for (Xl,X2) is

xi =   +  1 = 1'2
A further extension is possible by replacing Z

in the equation defining X2 by a random variable Z‘
having exponential distribution and maximum negative

correlation with Z to yield

xl = (1-1:1 ) Y1 + 112 (2.25)



Different versions of the model can be arrived at by

assigning suitable values for the parameters nl,x2 and pll

For this distribution, the marginal distributions

of X1 and X2 are exponential with parameter ii and the
correlation is

r9 = 2pll - nln2 for (2.24)
(l-c)pll-nlxz for (2.25)

“Q
where c = - corr(Z,Z') = 5- - l.

The form of the probability density function given by
the author is of a complicated form and is therefore
not reproduced here.

2 - 10 - §a raiser‘ S e qsnsralised models

The latest member of the class of bivariate
exponential distributions seems to be the one proposed
in Sarkar (1987) which is a modification of the Block
and Basu distribution. Instead of relaxing the assumption
of exponential marginals as in Block and Basu (1974) in
the derivation of the ACBVE, Sarkar abandoned the lack

of memory Property while retaining the condition of



exponential marginals. The distribution which he calls

the ACBVE2 is specified by the survival function

R(xl,x2) = exp {--(A2-+ >\12)x2}

{1-[Am 1><,>1'Y [A<»1><l>11*Y}

if O < xl‘§ x2

= °"P{" U‘ 1* >‘12)"1}

{1-[Ao\2xl)]'Y [A(>.2><2)11*Y}

if X1 2 X2 > O (2027)
>\

where Y = ~———ig and A(Z) = 1-exp(-Z) for Z > O
*1*%2

when_A 12 = O, X1 and X2 are independent.

The derivation of the ACBVE2 is based on the
following characterizing properties

(i) The marginal densities of X1 and X2 are exponential
with means ()\l-M12 )-1 and (A2+)\l2)"]‘ respectively

(ii) Min (Xl,X2) is exponential with mean (J\1+X2+ 3l2)'l



and (iii) Min(X1,X2) is independent of g(Xl,X2)
for some g 6 C where

C ='{g(xl9x2)i g(x1axl) = O9 g(xl9x2)
is strictly increasing (decreasing)

in x1(x2) for fixed x2(xl) . }

Further it is assumed that the distribution function

F(.) of g(Xl,X2) satisfies

P(g(xl0x2)) =

for some ¢i(.) Z O,

The density function of the ACBVE2 is given by

¢1(x1) ¢2(x2) if X1 3 X2

1 -¢3(xl) ¢4(x2) if xl > x

‘i = 1,2,a,4.

X A

f(xl,x2) = ziifgggi exp{i-Xlxl -(A2+.Al2)x

w( (7\2+   X exp('_>$lx

[Ac»lxl11* [A<A1x2>1"1**)

if O < xl < x2



Agg)

= ?;—:j;;;2 exp{'<A2x2-(Al+>12)x2_}1

><{ (>~1+A2)(>\1+/\12)-Al>\ X e><p(-/\2><l)}

[A(/\2X2)]Y [A()\2x1)]'(l+7)

if xl > x2 > 0.

A characterization of the ACBVE2 is given in the following
theorem.

Theorem

(1) min(Xl,X2) is exponential with mean >\ 1 and

(2) min(Xl,X2) and Xl—X2+k(Xl,X2) where

>‘12
R(xl,x2) = Ixi%Aé;tX2+Si27 log{A(Alxl)/A(Alx2)}

if 0 < X15 'x2

A12

if xl Z x2 > Oand >3 ::>\l
are independently distributed, and the distribution

function of Xl€X2 + k(X1,X2) is given by



>\

F(z) = X-fig-5 exp{_(>\2+},l2).z} if z < 0

>\2= -—--—-— -A >\ '
pl Al+A2 exp { ( 1+ l2)z} if z g_O

Another property of the ACBVE2 is stated as

Theorem

Let Zl,Z2,Z3 and V be independent random
variables distributed as exponential with parameters

,\l, )2 and>,12 respectively and U(o,l). Define

>4 = xl + {l-l(zl>z2)}{)\1lA-l(\/1/l+YA(}\1Xl)-X2}

Y = X2 + I(zl > z2){>\§'1 A'l(Vl/“Y A(/\2Xl)-X2}

where X1 = min(Zl,Z3) and

Then (X,Y) in ACBVE2( >\l,A2, A12)

It is to be noted that there is no closed form
for the distribution function of this bivariate
exponential distribution. The physical characteristics
vis a vis its applications, that leads to the present
model has also not been explained or easily deduced
from the properties enjoyed by it. However, it rectifies
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one important limitation of the ACBVE of Block and Basu

by bringing out marginals that are exponentials. In
doing so the bivariate lack of memory property is
sacrificed, but it is more than compensated by adhering
to the same property for the components which is more
meaningful. A more detailed study of the distribution
is needed to ascertain its applicability. Some attempts
in this direction will be made in fa subsequent work.

2~l0- BivériateiG2Qm2i£i£_di&tnibn1ians

Compared to the literature on bivariate exponential
distributions, only very little work seems to have been done
in developing multivariate geometric distributions as is
the case with discrete distributions in higher dimensions,
in general. Since the discrete analogue of the exponential
distribution is the geometric distribution, it is natural
that the characteristic properties of the exponential holds
good for a corresponding geometric as well.

Lukacs and Laha (1964) defines a p dimensional
random vector X to follow the multivariate negative
binomial distribution if the probability mass function
is given by

|a+N p -a-N p xj
p(xl9x2!°°°9x ) =""""" (-1'" 2 9-) T 2 2" F6? j=l 3 j=l ( ° 7)

.?<_L:°
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where a > O; Qj > O(j=l,2,...,p); xl,x2,...,xp= 0,l,2,..,,
00 3091,29 000

+
X

‘QC

:2

A special case of (2.27) obtained by taking p=2 and a=l
gives rise to a bivariate geometric distribution specified
by the probability mass function

x +x x x -(x +x2+1)

X]-,x2 = O'].,2’ooo,; Q1,  > O0

Pauison and Uppuluri (1972) has proposed another bivariate
geometric distribution obtained by generalising to two
dimensions a functional equation involving the characteristic
function, that characterizes the univariate geometric law.
The basic property under consideration is stated as follows.

Let ¢(t) and NP(t) be characteristic functions and
V be a random variable with distribution function G(v).
The solution ¢(t) of the equation

¢(t) = N’(t) E[ ¢(tv) ] (2.29)
is the characteristic function of the geometric distribution
if and only if W’(t) is the characteristic function of a



geometric distribution and G(v) is such that

P[V=o] = a; 1>[v=1] = b; a+b = 1; 0 < a 5 1

Extending to the bivariate case, let v be a
matrix valued random variable taking values in the set

{(22), (2 2). (22).(22)}

with probabilities a,b,¢,d respectively,

a+b+c+d = l, b+d < 1, c+d < 1 and let T = (tl,t2)

Let'Y“(t ) and ¢(t) be characteristic functions defined by

‘V   [.%*1*~ "221
itY +itY¢(1:)=E[e ll 22]

The bivariate analogue of (2.29) is given by

MI) = \V(T) E[¢2(Tv)] (2.30)
Choose X/(T) of the form

‘t -1 '2 -1
‘Y (T) =[ 1+ T_%;<1-el 1)] [1+ £11-2'“ 2)]

2‘ Y ]_(tp°) XY2(°9t2)



Now (2.30) can be written as

¢(T) '=\)/l(1-510°) {Y-/2(o9t2)[a+b ¢(tl9°)'|'C ¢(°ot2)+d¢(T)]

(2.31)

The bivariate geometric distribution is identified as
that one with characteristic function (2.31). Setting

tl,t2 = O in (2.31) verifies the fact that the marginal
distributions are gQQmetri¢§ . Also

s<vi) = oi
V(Yi) = ei(1+ei); 1 = 1,2.

Cov(YiY2) = 2%E§£ 91 92 where

Q1 = p [(1-p>(1-b-d)1‘l and

Q2 = q [<1-qm-C-<:>1'1.

Recently Pathak and Sreehari (1981) considered
bivariate extensions of some of the properties of the
univariate geometric distribution that could characterize
a bivariate geometric distribution with probability mass
function

x +x x xl 2 1 2
p(xl9x2) =( xl ) pl p2 (J-"’pl"p2) (2032)

= 0,1,2, 000; O <  (   < 1
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The univariate characterizing properties

x,n =

P[X=x+l | x Z 1] = P[X=x]
P[ Ygn 1 - P[X+Y 5 n] = 5 P[X+Y=n]

(2.33)

0']-,2’ 000

when extended to the bivariate case reads

and

where

P[Xl=xl+l, x2=x2+1|xl;1, x231] = P[Xl-xl,X2=x2](2.34)

P[Y§n] - P[X+Y$n] = B P[X+Y = n] (2.35)

X = (xl,X2); Y = (Yl¢Y2); n = (nl,n2)

= 0,1,2’ 000

Observing that (2032) does not satisfy (2.34), the
author establishes that there does not exist a random
vector satisfying (2.35).

In continuation of these investigations,
Nagaraja (1983) extended (2.33) in the form

where

P[X=(xl,x2)] = cl P[X=(xl-l,x2)]+c2 P[X=(xl,x2-1)]

xl,x2 = 0,1,2 ... (xl,x2) £ (0,0) (2°36)

cl > 0, c2 ) O, cl+c2< 1



and.

P[X = (xl,x2)] = O

whenever xl < O, x2 < O and

P[Y=n] = (1+a) P[X+Y=n] - as P[X+Y = n-I1]

- (1- e)s P[X+Y = n-I2] (2.37)

and has shown that these properties also characterize
(2.32). The rest of the paper involves the proof of

the result that if X = (Xl,X2) is a bivariate random
vector with support I2 then any of the statements,
equation (2.36), X1 and X2 are independent, X1 and X2
are geometric random variables imply the rest.

It is interesting to note that the above bivariate
geometric distribution can be deduced from Lukacs and

Laha (1964) by setting pl ~ 9l(l+ 91+ 92) 1 and_ -1p2 _ 92(l + 91 + Q2) in (2.28).

In this chapter we have presented a brief review
of the literature on bivariate exponential and bivariate
geometric distributions, obtained as a result of
investigations in the past three decades. A striking



feature of these investigations is that in most papers,
interest is shown in generating new models than in
assessing the various properties and implications of
the existing models. In the succeeding chapters our
endeavour will be towards this end, by investigating
the properties of the Gumbel's bivariate exponential
distribution and its corresponding geometric version.



Chapter-3

CHARACTERIZATIONS OF THE GUMBEL'S

BIVARIATE EXPONENTIAL DISTRIBUTION

3.1 Modified Qumbelfs_form

Instead of utilising the original Gumbel
distribution as given in (2.1), in the present study,
a more flexible model obtained by introducing two
additional parameters is investigated. The motivation
for considering this modified version arises from the
observation on the original model made in Section 2.2.
Accordingly the distribution of the random vector

(Xl,X2) considered throughout the present study is
specified by the probability density function

f(x1,x2) = [(a2+9xl)(a1+9x2)- 0] exp(-a1x1-a2x2­9x182) (3.1)
xl,x2 > 0; al,a2 > 0; 9 Z O.

The corresponding distribution function and survival
functions are respectively

F(xl,x2) = l-exp(-alxl) - exp(-a2x2)
+exp(-alxl-a2x2- Qxlxz) (3.2)

and =  (303)
51



Although the distribution in the above form
has appeared in Galambos and Kotz (1978) in
connection with bivariate failure rates, a detailed
investigation of its properties does not appear to
have been undertaken so far. Therefore as a prelude
to the focal theme of the present investigation,
namely characteristic properties of the model, we
examine some of its basic properties that are of
relevance in the sequel. Most of the characterization
theorems we present subsequently are motivated by these
properties.

3.1.1 Marginal and conditional distributions

When the random vector (xl,x2) has distribution
(3.1), the marginal distributions are of the usual
exponential form namely

"“i*1 .
with means ai'l.

The conditional distributions of Xi given Xj=tj
have density

-1
f(xi|Xj=tj) = [(ai+9tj)(aj+9xi)— 9]aj exp[-(ai+Otj)x

xi > 0; 1,3 = 1,2; 1 é j (3.5)



so that the means and variances are

E(x1|xJ=tj) = (¢i+etj)”1 + ea31(ai+etj)‘2 (3.6)

V(X |X =tj) = (ai+9tj)_2 + 20 a;1(a1+ Otj)_31 J 2 -2 -4
It is to be noted that throughout the present investiga­
tion the suffixes i and j will be used in the manner
explained in equation (3.5).

It is of considerable interest in our future
investigation to introduce conditional distributions
of a different kind than (3.5) in which the exceedences

Xj > tj is taken as the conditioning event. The
conditional survival function of Xi given Xj > tj is

R(xi|Xj > tj) = P(Xi > ti | xj > tj)
R(tl,t2)

= exp[-(ai + Otj)]xi (3.8)

From (3.8) the corresponding density is stated as

f(xi|Xj>tj) = (ai+ Otj) exp-[(ai+Qtj)xi] (3.9)
which is in the univariate exponential form.



Thus the marginal and conditional distributions
(in the above sense) of the bivariate exponential i
distribution are exponential. The result (3.9) plays
an important role in the characterizations of (3.1)
by giving scope to extend theorems in the univariate
case to higher dimensions. Further from the application
side also the same condition remains quite meaningful.

When (Xl,X2) represents the life time of a two component

system, the exceedences Xj > tj denote the survival of
the component after time tj. Accordingly the condition
enables to look at the life distribution of one of the
components in a two-component system when the other is

known to be performing adequately its intended function.
In chapter 5 we examine in detail the implications of
these observations, in connection with reliability
analysis.

3.1.2 Local lack of memory

One of the most well studied property of the
exponential law that forms the basis of many theoretical
and applied researches is the lack of memory. It is
therefore, important to investigate how our model
accommodates this property in the bivariate set up.



We presently establish that for the model (3.1), the
extended version of memorylessness in the form

P[Xi>ti+s;|Xi>s;, xj>tj] = P[Xi>ti | xj > tj] (3.10)
ioj = 1023 1 £ J

holds.

To verify this, we take i=1 and note that the
above statement is equivalent to

R2(t2) R(tl+sl,t2) = R(sl,t2) R(tl,t2)

where R(x1,x2) is as defined in (3.3) and

a2(t2) = P [x2 > :2] '
= exp (-@2112)

Substituting the relevant expressions from equation (3.3)
the result is seen to hold for i=l. The proof for i=2
is similar.

The above result indicates that each of the

components Xi lacks memory and depends only on the other
component or in other words the residual life of each
component depends on the life time of the other. This
property will be referred to as the local lack of memory



of bivariate distribution and it will be shown in a
subsequent section that the only absolutely continuous
bivariate model that exhibits this property is (3.1).

3.1.3 Moments

When the random vector (Xl,X2) has distribution
(3.1), the (r,s)th order raw moment

F

“rs = E(xlr X25)

simplifies to

ués = s1 [alJ(r,s) + Os J(r,s+l)]

where

o*»8
x

H
i?

M?

-a x
J(r,s) = + Oxl)-S e 1 1 dxl

In particular

ago = E(x1r) = r: al" and

pas = s(x2s) = 5: a2"5

The characteristic function of the distribution is



itl -I 112 -l
¢(tlvt2)= (-1-"’_a""")+(l"""('i_""’)"]~1 2

- t1t2o'1 exp[(al-it1)(a2-it2)9-1]

sl[(al-1zl)(a2-1t2)e*1] (3.11)
where

x*a8
0

El(x) = “z 2'1 dz (3.12)
Bivariate distributions are primarily intended

to provide models when there is some kind of dependency

between the underlying variables. It is therefore
important to look at the correlation structure associated
with (3.1) to be able to know the type of random phenomena
it can represent reasonably well. We first notice that

the regression equation of xi given xj is

E(x.|x , = s<“1*°*1’;? (3.13,
1 J aj(a1 + Gxj)

which are non-linear. The above function is ever

decreasing and crosses the xi axis at aiaj+ O/ajaiz.
The xj axis becomes an asymptote when xj increases
indefinitely. The regression curves does not intersect
at the means of the variables as in the normal case,
except when 9 = 0 in which case the variables are
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independent. On the other hand, the correlation
coefficient is

Cor(Xl,X2) = ala2e'1 exp(a1a20_l)El(aia29_l)-l (3.14)

3.1.4. Truncated moments

Another type of moments that are of interest in
practical applications is the truncated version defined

as follows. For a random vector X=(Xl,X2) admitting
absolutely continuous distribution in the support of
the first quadrant

Q = {(xl,x2); xl Z 0, x2 Z_0 }

of the two dimensional space R2, we define its (r,s)th
bivariate truncated moment as

¢"8(tl,t2) = E[(xl-:1)’ (x2-z2)s I x > t]
O1‘

R(tl.t2) ¢"*‘(t1.t2) = f f (x1-ti)’ (x2-*¢2)*"dP (3015)
tl *2

Taking s = O, we get

¢"°(tl,t2) = E[(xl-:1)” | x > t] (3.16)



Notice however that this is different from the rth

truncated moment of the component variable X1, which
is in fact

¢f(zl) = E[(Xl-t1)r | xl > tl] (3.17)
= ¢r'°(t1-0°)

when X has the Gumbel distribution ¢r’°(tl,t2)
simplifies to13,0 -I‘¢ (tl,t2) = r2(al + et2) (3.18)
which is independent of tl.

A symmetric expression is available corresponding to
1‘ = O in

A detailed discussion of some properties associated
with bivariate truncated moments in general and also

some features peculiar to the bivariate exponential
distribution will be taken up in Section 3.3.

3.1.5. Partial moments

The (r,s)th partial moment of the random variable X
defined in Section 3.l.4is given by

N’ "5 <tl.@2>= suxl-t1>*1” [<><2-t2>*1“ (3.19)



where

(xi-t1)* = max(xi-ti,0) for 1=1,2.

From (3.19)

Q7*=8

8

‘“$' "s(t1,t2) = ti (xl-tl)r(x2—t2)s dF (3.20)

and from (3.15)

0*" "‘(t1.t2) = R(t1.t2) ¢r$(t1.t2) (3-21)
In particular for s=O in (3.19)

"°(t1.t2) = E [(x1-t1)*]’ (3.22)
'3“

ti {Q (xl tl) dF

We distinguish this with the rth partial moment

of the random variable X1 which is

FY; r(tl) = Z (xl-tl)r fl(xl)dxl (3.23)
1

‘:3 "\r'r'o(tl0O)



For the Gumbel model from (3.18) and (3.21)

qy "°(1;l,t2) = exp [-alt,-a2t2-otltzj(a1+et2)" (3.24)

3.1.6 Distributions of maxima and minima

In life length studies of two component systems,
certain systems operate on the condition that it fails
when one of the componentsfails. In such situations,

the random variable of interest is Y = min(X1,X2). The
distribution of minimum is also useful in other contexts
as well. From the formula

FY(Y) = Px1(v) + FX2(Y) — Fxl’X2(Y»Y)

the distribution of Y for the Gumbel distribution is
represented by

2
fY(y) = (a1+a2+2Qy) exp(-aly-a2y—Qy ) (3.25)

The distribution (3.25) reduces to the standard Rayleigh
distribution under the transformation

t - a + a + 9 2

However, when the system fails only when both

components fail, its life time is Z = max{Xl,X2).



For the particular distribution (3.1), Z has density
function

fZ(z) = al exp(-alz) + a2 exp(-azz)

-(al+a2+2Qz) exp(-alz-a2z- 922) (3 26)

3»? Chasecfieziazetivnrroblews

It is evident from the review of literature,
in the previous chapter, that most characterizations
on bivariate exponential distributions revolve around
suitable extension of the properties in the univariate
case. Since such extensions can be achieved in a

variety of ways our aim is to find meaningful defini­
tions analogous to the concepts in one dimension that
can characterize the Gumbel's form. The properties
of the distribution discussed in the previous section
form the basis of our investigation. In the following
sections we identify those properties that are unique
to the Gumbel's bivariate exponential distribution
and which have meaningful physical interpretations
related to real world phenomena.

The theorems that follow in the succeeding
sections are broadly classified under three heads



(i) those based on properties of truncated moments,

(ii) by geometric compounding and (iii) by form of
conditional distributions.

3-3 Charesteriaetéens based @n-trun¢§ted wemen$s'*

TheO1‘8m 30 1

Let X = (Xl,X2) be a vector of non-negative
random variables admitting probability density function

with respect to Lebesgue measure given by f(xl,x2) such
that E(Xik) < ». Then x follows the Gumbel's bivariate
exponential distribution specified by (3.1) if and only
if for all positive integers k

E[(Xi-ti)k | xl>tl, x2>t2] = ak(i)(t3_i) (3.27)
where

ak(i)(t3_i) = s [xik | x3_i > ¢3_i 1 (3.28)

are non-increasing, ak(i) is independent of ti for
all ti > O with

a§i)(o) = azl (3.29)
* Some results in this section have appeared in the

Annals of the Inst. Stat. Math. Vol. 40(2) (1988)
p.267-27l.(Reference 36 )



Proof

(>4

When the conditions of Theorem 3.1 are true,
equation (3.27) can be written as

ak(i) (t3_i) {; {2f(xl,x2)dxldx2

all
**‘*8

Taking i=1

g? (xi-ti)k f(xl,x2)dx1 dx2 (3.30)2

a£1)(t2) R(tl,t2) =  (xi-ti)k géa-6- dxl dx2(3.31)tl t2 1 *2
where R = R(tl,t2) is the survival function of
(Xl,X2) given by

a(t1,t2) = P[Xl > ti, x2 > t2] (3.32)

Integrating the right side of (3.31) with respect
to x2

a£l)(t2) R(t1'*2) =‘?’(*1"‘1)k 6%"[F1(*1)'F(*1’t2)]dxtl 1 1
(3.33)

where Fl(.) and F(.,.) are the distribution functions of



X1 and X respectively. Differentiating (3.33) with
respect to tl

°1(<l)(*-2) £551’ ' I "("1""1)k~l 3%; [F1("1)'F("1"2)]°"‘1
1

and performing the same operation successively

a£"<*2> °—k3|l:%1 = <-1>""‘ *<= 7 <==1-*0 £­‘ btl tl 1
[F1(x1)“F(x19t2)] dxl

X’
‘D

= (“l)k-1 Z [F1(xl)“F(xl|t2)]dxl
1

OI‘

k

a£l)(t.2) 31-1:-E = (-1)“ kt n(1;l,t2) (3.34)
For k=l, equation (3.34) reduces to

6 lo R _ (—%5t ' 11 al (t2)
The solution of this equation is

-t
R(tl,t2) = c1(t2) exp [ alrT)%t2) ] (3.35)



When tl tends to zero in the last expression,

1 "' F2(1'-2) = Cl(t2)

where F2(.) is the distribution function of X2.
Substituting in (3.35)

R(tl,t2) =,l—F1(tl) - F2(t2) + F(tl,t2)

= [1-F20-2)] exp [ Fgt-5 1 (3-36)1

To obtain a general solution of (3.34), notice that
the equation may be rewritten in the form

(1) kak (t2) § R(t1.t2) _
(_l)kk:  otlk _ a<tl,t2) (3.31)

which is satisfied by the function

b (t2)tlR(tl,t2) = :3‘ ¢.(1:2) ej (3.38)i=1 J

where cj(t2) are arbitrary functions independent of tl
and bJ(t2) are the k solutions of the auxiliary equation



(1)3 (t )
?%I;E-i? mk = 1 (3.39)

For k=3, the equation (3.39) takes the form

(am3 + 6) = 0

whose solutions are a negative root with value -(2)1/3
and two complex roots

.1.-.1.

% a 3 63 ( 1 :.Y51 3

_. (1)where a - a3 (t2)

Since a > 0, the real parts are positive and accordingly

b.(t )t
| e J 2 1 | -—-9» ~ as tl ———+ <~

Since R(tl,t2) tends to zero as tl tends to infinity,
we must have c2(t2) = c3(t2) = O in (3.38). Thus

R(tl,t2) = ¢1(t2) exp[—bl(t2)tl] (3.40)

When k=4, the equation to be considered is

(EH4 "'  = 0



with real roots
l

m = ¢_<Z;1>“

and imaginary roots

1

m = ¢1<?g~‘->4

with real parts zero.
124 I .

When m ==( E?-) , argulng as before c4(t2) = 0.

For the two imaginary roots, the expression

b (t )t b (t )t
c2(t2)e 2 2 1 + c3(t2)e 3 2 1

has to decrease to zero for large tl and hence once
again we have the form in (3.40) for R(tl;t2). For
k = 5,6, ... the argument is similar and therefore the
general solution of (3.39) is

R(rl.t2) = cl(t2) exp-[b1(t2)]t1

As tl --—) O in the above equation

¢l(t2) = 1 - F2(t2)



Hence from (3.36) and (3.40) we find

= _’81 (*2

for all values of k

Equation (3.36) can

e lee
(If ,
O

also be written as

l-F1(tl)-F2(t2)+F(tl,t2) = [1;F2(t2)]exp[;(l;%t)]2

As t2 tends to zero

1-sl(tl)

or

F1(t1)

Similarly

F2(t2) =
Thus from (3.41)

R(tlrt2) =

1

(3.41)

t
e>=p[;5§7-31o

exp (-altl), using (3.29)

1-exp(-altl)

l-exp(-a2t2)

*1

exp [““2t2 ' al(1)(t2)] (3.42)



On similar lines one can show by taking i=2 and k=l
in equation (3.30) that

t2R(t ) = exp [-a t — ]1't2 1 1 ;;T§T?;I;

Equating the expressions for R(tl,t2) in (3.42) and
(3.43) results in the functional equation

a2t2 + (t% *+ = altl + ~ (2;2al (t2) 31 up
To solve (3.44) we write it in the form

f'“1a§l)(‘2) 1““2“i2)(t1)=i'T5T___'t2°§l)(t2) t1a1 (*1)

Since (3.45) has to be true for all tl,t2 ) 0

l'°‘1a§i) (‘*3-11 _ 9
ta-1 a1(ij(ta-1)

a constant, independent of tl and t2 for i=l,2.

70

(3.43)

(3.44)

(3.45)

(3~45)



Hence

(i) _ so _l
a1 (ta-1) "' <11 +'o£§;§

and therefore, the survival function of X is

R(tl,t2) = exp(-altl - a2t2 - 9tlt2) (3.47)

and this completes the proof of the necessity of

the condition. From the monotonicity of al(t2) we
have 9 2- 00 Further for the marginals of the bivariate
exponential distribution to be proper densities we

should have a1,a2 > O.

The sufficiency part follows from the actual
expression

exponential

for truncated moments of the bivariate

distribution namely

E[(Xi-ti)k|X>t] = kl (ai + et3_i)‘k,

from where, it is easy to verify that the conditions
of the theorem are true.

Corollary-1

Takin

characteriz
g k=l in equation (3.27) we get the
ing property

E[(Xi-ti)|X1>tl,X2>t2] = E[Xi|Xj>tj] (3.48)



of (3.1) which is proved in Nair and Nair (1988 ).

Corollary-2

Setting i=1 and allowing t2 to tend to zero the
relationship

E [(xl-ti)“ | xl>t1] = E(Xl)k (3.49)

for k=l,2,3,... characterizes the univariate exponential
distribution with survival function

P [X1 > xl] = exp(-alxl)

the result due to Sahobov and Geshev cited in Galambos

and Kotz (1978).

Corollary-3

When k=l in (3.49), we have

E[Xl—tl | xl > tl] = E(Xl) (3.50)
which is the well known constancy property of the mean

residual life function of the exponential distribution
proved in several investigations as Reinhardt (1968),
Shanbhag(l97O), Gupta (1975) etc.



In the following theorem we prove that the local
lack of memory property explained in Section 3.1.2 is
characteristic of the distribution (3.1) in the class
of absolutely continuous bivariate models.

Theorem 3.2

The random vector X in Theorem 3.1 has the

Gumbel‘s bivariate exponential distribution if and only

if for all ti,si Z 0, there holds the relations

P[Xi>ti+si|X1>t1, x2>t2] = P[Xi>si|Xj>tj] (3.51)
1:102: 1 é j

Proof

It is enough to establish the equivalence of
(3.51) and (3.48). To prove this we note that when
i=1 (3.51) is equivalent to

R(t2) R(tl+sl,t2) = R(sl,t2) R(t1,t2) (3.52)
where

R(t2) = P[X2 > :2]

Integrating (3.52) with respect to sl

O“w8
tn

8

1 f(tl+sl|X>t)dsl = £sl f(sl|X2>t2)dsl



which is the same as

£f(s1-tl) f(sl|X>t)dsl = £ slf(sl|X2>t2)dsl1

O1‘

E[X1—t1 | x > t] = E[Xl|X2 > t2]

as stated in equation (3.48).

The proof for i=2 is similar. The converse follows by
retracing the steps and this completes our assertion.

We notice that

(i) for i=l, and t2,s2 tending to zero (3.51) becomes

the lack of memory property of the random variable X1.

(ii) The condition (3.48) is weaker than (3.51) as the
former requires only the knowledge of the expected values
while the latter requires the entire truncated distribution

(iii) In (3.48) the existance of the mean is a necessity
while in (3.50) only the distribution function need be
known.



3.3.2 Properties of truncated moments.

The property (3.27) that characterizes the
bivariate exponential distribution requires that it
must be true for every positive integer k which appears
to be a rather stringent condition when one wishes to
verify the property to identify the distribution in a
practical situation. It is therefore of some interest
to enquire whether a relaxation of the requirement can
be accomplished. An investigation in this direction
necessitates a more detailed study of the properties
of bivariate truncated moments. To begin with we
establish a recurrence relation satisfied by truncated

moments ¢r’s(tl,t2) defined in Section 3.1.3.

Theorem 3.3

The truncated moments ¢r's satisfy the recurrence
relation

(¢r,s)-2 [D¢rs_ rs E ¢r,s] = (¢r-l,s-1)-2

[v¢""s'1-(r-1><s-1)

E¢I.'-l,S—1]
r,s Z 2.



where

1! 1 6 we  E 1}551 i a O0 E01

, E E =6¥I3E;l T 10 11 ¢

B33+»

OI
K)

U

r s _ r-m,s-mand Emu ¢ ' - ¢

Proof

From the definition in equation (3.15)

H

Q7~=s

w 2b

R(tl,t2) ¢r's £I(Xl—tl)r(X2~t2)s6;I%;; dXl dX22

= °'° °° _ r-1 _ s-l
rs€{ {%(xl tl) (x2 t2)

R(x1,x2)dxl dx2 (3.55)
by partial integration. Logarithmic differentiation

in-(3.55) with respect to tl and then differentiation
of the resulting expression with respect to t2 yields
after some involved algebra to the equation

2 O 9 O
_ rs[ ¢I,$ ¢I-1,$—l_ ¢I—l9$ ¢r,s—l]}.

2

= R'2[ R §;%3{2 - §%l§%; 1 (3.56)



or . v \r r's Z ¢r,s ¢r-I,s

~31’?

(¢r,s)-2i. ~ 2 r 1 —rs %\  ¢I,$"-1 ¢1""l,S-'1 !
i

on x
5’°1

1;

‘t R

2 R-2 2
s on 02aIn 3? *1 2 ~6 at

or

(¢r’s)'2 D¢r’s - rs E ¢r’8 = R_2 DR (3.57)

Since the right hand side is independent of both r and s,
the recurrence relation (3.53) is immediate if we change
r and s respectively to (r-1) and ( s-1) and substract the
resulting~equation from (3.57).

Theorem 3.4

The truncated moments ¢r’°(tl,t2) satisfy the
recurrence relation

-59-‘I’ -(r-1) W )/v >+r=o (sass)tl r,o r,o r-1,0

H
Q
O

where Y = Q____r,o gr-1,0
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Proof:

By definition, coco 2
R"‘1"2) ¢r'°('°1"°2) = I I "‘1""17r g?<B?>'>T d"1d"2

Q r OR
= tf (*1-H) 6;; “*11

= if r(xl-tl)r-1 R(xl,t2)dx1
1

Logarithmic differentiation yields

(3%; ¢"° + r ¢"°>/¢"'° = - < §%l> / R (3.59)

Changing r to (r-l) in (3.59) and substracting the
resulting equation from (3.59) leads to (3.58) after
simplification.

In an identical fashion one can also prove that

6%;\F;’s - (s-1) (Y’o,s /Y’o(S_l)) + s = 0, s Z 2 (3.60)

Theorem 3.5.

When X is a random vector which satisfies the

conditions in theorem (3.1), X follow the Gumbel
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distribution if for two specific integers r and s
( r,s Z 2 )

¢"°(t .1: )4 2 fee = a (t ) (3.61)r ¢1‘*'l,O(tl’t2) 1 2 ~
d ¢°’s(tlIt2)

"" s¢<=-==-1<tl.t,> = W1’ ‘M2’
where ai(t3_i) are non-increasing in t3_i, i=1,2.

Proof:

The recurrence relation in theorem 3.4 can
be written as

r
gtl

-1
O + r¢1‘—1.,° fl + (r_l) ¢I'-2,01

» ewe M ~ eW = -weer MM eee@ee~~weeee (3.63)¢r,o ¢r-1,0
Using (3.63) in (3.61)

¢ra1,o= al(t2)(r—l)¢ “ ’



and hence

¢l,o(tl9t2) = a1(t2)

Similarly we can show that

¢°"ul.1=2> = 82(5)

Thus by corollary 1 to theorem 3.1, the distribution
of X is Gumbel's bivariate exponential distribution.
By virtue of theorem 3.5 it becomes evident that the
ratios of consecutive higher order truncated moments
satisfy the specified functional form is sufficient to
guarantee the bivariate exponential distribution, in
relaxation to the conditions in theorem 3.1.

The constancy of the coefficient of variation
of the residual life X-t|X > t of a continuous non­
negative random variable X is cited as a unique
property exhibited by the univariate exponential
distribution in several investigations eg.Nagaraja (1975)
Mukherjeeand Roy.*(l986) and Gupta and Gupta (1983).,
While this result focusses on a property of relative
measure of dispersion of Uuaresidual life, similar
characterizations exist if we consider various
absolute measures of dispersion also. Johnson and
Kotz (1970) points out the following results due to



Guerrieri.

(a) the variance of the conditional distribution I

given that the variable takes values exceeding x does
not depend on x.

(b) As for (a) “mean deviation“ replacing "variance".

(c) As for (a) "mean difference" replacing "variance".

In the remainder of this section we establish
some bivariate analogous of these results that
characterize the bivariate exponential distribution.

Theorem 3.6.

Let X = (Xl,X2) be a random vector admitting a
non-degenerate distribution function in Ré+ and
t = (tl,t2) be a vector of non-negative real numbers.
Then X follow the Gumbel distribution if and only if

¢2'°<tl.t2> ¢°'2<t1.t2>—eIs5»:<;ee~ 2 = ~ 6 lleeeeei 2 = 2 (2.64)[¢ ' (tl.t2)] [¢ ' (t1.t2)]
Proof:

When r=2, the recurrence relation in theorem 3.4
takes the form
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Qg2'° ¢1,01,0 Otl 2 1,0 2
g%TI— = - 1 + “a¢Q;6 ali + -Lg2T3l- (3.65)

Introducing (3.64) into (3.65)

‘§2“[ 2(¢1'°)2] 2[ ¢lo°]2° ¢l'° = -1 + -31,   +‘TI 2 ¢i3° 2[ ¢I'°1§
1,0' 1

For equation (3.66) to be true we must have

1,0
%’Y;=°

Integrating

¢l'°(tl.t2) = cl(t2) (3.61)
where cl(t2) is independent of tl. Proceeding on similar
lines one can also show that

¢°'l(t1.t2) = c2(tl) (3.68)
Noticing that (3.67) and (3.68) are essentially same as
(3.27) with k=l, the sufficiency follows. Conversely
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when X has distribution (3.1), utilising the expression
for truncated moments in (3.18) we arrive at (3.64).

Theorem 3.7

Let X = (X1,X2) be a continuous non-negative
random variable admitting absolutely continuous distribu­

tion with V(Xi) < w .

Denoting

v(xi|x > t) = vi(tl,:2) (3.69)
X follows the Gumbel distribution if and only if

vi(tl,r.2) = vi(t3__i) (3.70)
where Vi(t3_i) are non-increasing functions, independent
of ti, with

Vi(o) = a;2 ; i‘= 1,2.

Proof:

when (3.70) holds for i=l

v(xl-:1 I x > t) =vl(t2)

implies



V

Introducing

h(tl)

treating t2

q(h)

we get

QEQQ

and

Q9
an

8

8

us

7*‘-\
§7*w8

w“w8

Z?
I-'

l(t2) R2(tl,t2) = a(tl,t.2)t{ {2(xl-tl) dF - 2 -tl)d1=}

= - 2R(tl,t2)t?(xl-tl)[Fl(x1)-F(xl,t2)]dxl
1

..{t:/" [F1(x1)--F(xl,t2)]dxl}2 (3.71)1

the transformation

= f (xl-tl)[Fl(xl)-F(x1,t2)]dxl (3.72)
*1

as a parameter and writing

= ( %‘£1)2 (3.73)

= R(tl,t2) (3074)
d2h= 2 ---2
dtl

Equation (3.71) after effecting the transformation
reduces to
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2 2 2
v1(t2> ( £122 > = 2 < §;?2>h - < 3%; >2

OI‘

f'\

%l%
kl

2

r-\

3-‘[3’

\./
+

4 h 4 _<§IT;;T (tl) gzfggf 9 - 0 (3.75)
This is Clairant's equation with solutions

h1(tl) = CeXp(itl)
and

h2(t1) = -- VIT?-gr (21.1-+Cl)2 ­

)

°2

Of these, the only solution which meets the requirements
of a probability density function is

h(tl) = c(t2) exp [-t1[V(t2)]"% 1

where c(t2) is a constant independent of tl.

Using (3.74)

R<tl.t2> = ¢<t2> [v1<t2>1"1 exp£-t1rvl<t2>1- 5 1 (3.16)

As tl tends to zero

C(t2) = [ l'F2(t2) 1 Vl(t2)
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Equation (3.76), therefore turns out to be

1

R<tl.t2> = [1-F2(t2>] exp [-t1(vi(t2>1" 5 1 (3.11)

Similarly for i=2,

-a
R(tl|t2) = £1-"'Fl(1'-1)] exp ["'t2[V2(t1)] I (30-78)

In (3.77) and (3.78) as t2 and tl respectively tends
to zero

Fi(ti) = l-exp(-aiti) (3.79)
leading to the functional equation

.1. _l~.
“1t1‘“2t2 = t1[V1(t2)] 2 ' t2[V2(t1)] 2Or 1 1

[ ( >1 5 [ < >15=     __
1-¢2[v2(tl>]2 1-¢1[v1(t2)12

for all tl and t2. Proceeding as in (3045), the only
solutions that satisfy (3.80) are

v.(t ) = <- “e1ee»~e (3.81)1 3-1 (ai+



Substituting in (3.77) or (3.78) we get

The sufficiency follows from the fact that when
X has the proposed distribution

v(x |x>t) =1 (ai+ Qt3_i)2
which satisfy the conditions of the theorem.

3»4 Qharasterizatiens based Qn§eOm@tris Comeevndinq

Let X1,X2 ... be independent and identically
distributed random variables with common distribution

function F(x) and N be a random variable following the
geometric law

=  l"!=1,2,3¢¢¢
independently of the Xi‘s. If F*(x) is the distribution
function of 8* defined by

pS* =  +  + 000 + XNQ
the point of interest in geometric compounding models is



the relation between F*(x) and F(x). When the common

distribution of the Xi's is exponential, Arnold (1973)
has established that the distribution of pS* is identical

with that of X1. A detailed exposition of the geometric
compounding model and its relationship with the rare­
faction models of Renyi (1956) in renewal processes
and the damage models introduced by Rao and Rubin(l964)

is discussed in Galambos and Kotz (1978). Although these
models are of wide applicability in biology, analysis of
incomes, under reporting of accidents etc, there have
been only a few investigations (see Talwalker (1970)
and Patil and Ratnaparkhi (1975) ) that extend such
ideas to higher dimensions. Our aim in the present
section is to generalise the concept of geometric compound+
ing to two dimensions by using the bivariate exponential
distribution.

Theorem 3.8*

Let (Xk) be a sequence of non-degenerate,
independent and identically distributed random variables
admitting probability density function with respect to

Lebesgue measure, with components Xk = (Xlk, Xzk) and

support RE = {(x,y) | x,y > 0}such that the conditional.

* forms part of the paper "Characterizations of the
Gumbel's bivariate exponential distribution "
Statistics, Vol. 2l;(l99O)(Reference 39)
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expectations = . = 2 ,mJ(t3_j) s[xjk | x3_J K > t3_j], 3 1, (3 84)

exist for all real t1,t2 Z O and are non-increasing.
The relations,

P[ pSjN > x | x3_j’k > t3_J, lgk$N ]

= P [xjk > x | x3_j k > z3_J] (3.85)

N

where S = Z X and N is a random variable following1" k==l J"
the geometric law

P [N=n] = p(l-p)n'1, n=l,2,3 ...

independently of Xjk, are satisfied for all real x > O
and tl,t2 1,0 if and only if, Xk has bivariate exponential
distribution (3.1) with aj = [ mj(o) ]—l.

Proof:

The logic in the proof is the same as in the uni­
variate case (see Azlarov and Volodin (1986)) appropriately
adapted to the bivariate situation.



When Xk has the bivariate exponential distribution,
the density function of Xlk given Xzk > t2 is

f(x|X2k > t2) = (al + Ot2)exp[-(al+ Ot2)x],x > O

with characteristic function

A(s,t2) = [ 1 - is(a1 + otz) 1'1 (3.86)

Now, if B(s,t2) is the characteristic function of SjN
given Xzk > t2 for 1 5 k_$ N, we have

B(5¢t2) = :1 p(N=n) [A(P50t2)]nn=

= ; P(1“9)n_l [A(p50t2)]nn=1

= pA(ps.t,> [1-<1-p) A<ps.t2)1'1 (3.81)

Substituting (3.86) into (3.87) we find

A(s,t2) = B(s,t2) for all s,t2 ; 0 (3.88)
proving (3.85) for j=l. The proof for j=2 follows by
symmetry.



Conversely if (3.85) holds for j 1, (3 88)
is true sand therefore from (3.87)

A<s.t2> = p°A<p“s.t2>[1-<1-p“>A<p > "1 <3 89>

for all n = 1,2,3, ... Following the proof in the
univariate case given in Azlarov and Volodin (1986)
we write (3.89) in the form

[1-A<s.t2>1 A<s.t,>'1= [1~A<p"s.@,>1p'“[A<p s,t,>1'1

Taking limits as n tends to infinity

1“‘(s"2) um, 1""‘(pn$"‘2)
A[S’t2] pus -—) 0 pns A(pns,

Thus A(s,t2)

= _ lim _, nl A(pns t 1
ipns __>o A(p s,t2 p s

8i

—i
— A'(o,t2), since A(o,t2) = l

iml(t2)

[ l - isml(t2) 1-1



and whence the density function of Xlk given X2k > X2 is

f(xl|X2k>x2) = [ml(x2)]-1 exp-[m1(x2)]-lxl (3.90)

If we consider the relation (3.85) for j=2 arguments
similar to the above leads to

r<x2lx1k>xl> = [m2<xl>1“1 exp [mQ(Xl)]~1 :2 (3.91)

As X1 tends to zero in (3¢9l)

P [ X2k > x2 ] = exp [ -a2x2 ]

Accordingly

R(><l.x2) = TF0 [m1(x2)]'1 e><p[-m1(x2)]'l=<1
*1

exp[-a2x2] dxl

= exp {-a2x2 - [ml(x2)]-1 x2_} (3.92)

Similarly

R(xl,x2) = exp {- alxl - [m2(xl)]'l xll} (3.93)
leading to the functional equation

(“1*1““2*2) m1(*2)m2(*1) = *1m2(*1)“*2m1(*2) (3'94)



Under conditions imposed on the m's in the theorem,
proceeding as in theorem 3.1, the unique form of the
solution of (3.94) is

mj(x3__j) = ( aj + 9x3_J)-19 j:-102 (3¢95)

Using (3.95) in (3.92) or (3.93) we get the desired
form of the bivariate exponential distribution. The
result of Theorem 3.8 concerns the geometric sum of

the components of (Xk) that are independent and
identically distributed satisfying condition (3.85).
The question that arises now is, what can we say about

the distribution of (Xk) if we have two such partial
geometric sums that are identically distributed? The
only answer to the problem turns out to be that each

(Xk) has Gumbel's bivariate exponential distribution.
This we establish in

Theorem 3.9.

If (Xk) be the sequence of random variables in
theorem 3.8, then the conditions

P[pl sjN1 > xj | x3_j k > t3_j; igkg N1]

= P[p2 sjN2> xjl x3_J'k>t3_J, 1gkgu2](3.9s)

j= 1'2.



holds for all tj,xJ > O if and only if the common
distribution of (Xk) is the bivariate exponential
distribution (3.1) where Nj, j = 1,2 are geometric
variables with

n -l
P(Nj=nJ) = pj(l—pj) 3 , nj = 1,2,3... (3.97)

independently of Xjk.

Proof:

To prove the necessary part, following the
notation in the proof of theorem 3.8, the characteristic_

function A(s,t2) of Xlk given X2k > t2, when Xk has
distribution (3.1) is by (3.8)

A(s,t2) = [ l—i(al + et2)s]'1

The characteristic function Bl(s,t2) of pl SIN given
X2k > t2 for 1 5 k 3 N is given by (3.87) as

sl<s.i2> = pl A<p1s.i2> [1-<1-pl) A<p1s.i2>1 1

We see that

B1(s,t2) = A(s,t2) for all t2.



Likewise, the characteristic function of p2 S1" given2

X2k > t2, B2(s,t2), reduces to A(s,t2), proving (3.96)

for j=l. Since the proof for j=2 similar, the necessity
of the condition follows.

Conversely condition (3.96) implies that for
i=1

Bl($9t2) = B2($pt2)

That is

P1A(pl59t2)[1"(1-p1)A(pl5of-2)]-1

"= P2 A(P25ot2) [1-"'(1"p2)A(P259t2)].-1

OI

P15 A(P19ot2) : P25 A(P250t-2) (3 98)1-(T-P173(P1$.‘¢2) 1-(1-P2)75(P2$.t2) °

Equation (3.98) can be rearranged as

,l__ do e-1c“e_ re = .,L__ _ e. ,.l ,_I.::
1p2s 1p2s A(p2s,t2) 1plS ipls A(plS,t2)

for all 0 < pl, p2,( 1 so that



l also 1 e_
‘fig; ' j'pj—§ATpjsIt2) = *1“?

where k1(.) is independent of pj, j=l,2. This gives

“(Ps't2> = 1-klfizrfps
OI‘

*($'t2) = 1-isilitg)
\

This leads to

P[Xlk > tl I x2k > t2] = exp (—kl(t2)tl) (3.99)

and

P[Xlk > tl] = exp (-altl)

where al = k1(o).

Similarly the analysis for j=2 leaves

P[X2k > t2 I xlk > tl] = exp(—k2(tl)t2) (3.100)
and

P[X2k > t2] = exp (-a2t2), a2 = k2(o)

The rest of the proof is similar to that in the
previous theorem and the result is established.



In the last two theorems, while taking the
geometric sum of random variables, the parameter was
confined to a fixed value in the interval (0,1). We
presently examine the possibility of relaxing this
assumption by permitting p to be the value of a random

variable in (0,1) when the Xk's follow distribution (3.1).

Theorem 3.10.

Let the sequence (Xk) and thorandom variable N
be as in Theorem 3.8. If p is a random variable with
distribution function G(p) in (0,1), then the random

variables Xjk and p SjN have the same distribution if
(Xk) follow bivariate exponential distribution (3.1).

Proof:

Assuming Xk has bivariate exponential distribution,
in the notations used in theorem 3.8,

1

B($.t2) =.f P A(p$.t2) [l—(l-P) A(p$.t2)]'l dG(p)
O

=} P“-*P=*-<“1*‘-W1"  dG( ,
° l-(1-p)[l-ips(dl+ et2)]“1 P
l _  1

"-5 1-is(¢l+"et2)' "°'(P)

= A($9t2)



3»‘~‘> Chaxésigsriza1=i9n,_Prt_c€2;@_efeihssondcitienal
distributions

It is well known that a bivariate distribution
is not uniquely determined by its marginal distributions.
The best illustration of this fact is provided by the
bivariate exponential models reviewed in the previous
chapter. However, the form of marginal distributions
can be taken as the basis of constructing bivariate
versions as seen in the works of Morgenstern (1956)
and Farlie(l96O). However if we turn attention from
marginals to the conditional distributions, there is
possibility of uniquely determining the bivariate model
with specified conditional densities. Abrahams and
Thomas (1984) has shown that the conditional densities

fl(x|y) and f2(y|x) determines uniquely a bivariate
density f(x,y) if and only if

fl(><|Y) = 9(1) (3.101)
f2(><|v) h(Y)

where g(.) and h(.) are non—negative integrable functions
with equal marginals. In the case of distribution (3.1)
we see that
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f1<*1'*2> = I<“1+-€§2.?i;‘@+-.°*1>- °1@*Pl-<"1+°><2>*11
f2(x2|xl) [(al+ 9x2)(a2+ 9xl)- O] exp[-(a2+ 9xl)x2]

exp(-a x )= as see  all   (3. 102)
exp(—a2x2)

with the terms on the right side satisfy the required
conditions. Thus the two conditional densities confirm
to the model (3.1). However, we note that the form of
the conditionals are neither exponential nor reducible
to any well known standard model to be of any practical
interest. On the other hand if we consider the

conditional densities f(xi|Xj>xj) presented in equation
(3.9) which are exponential, a characterization in terms
of them could be more useful. In this section we present
a general result on a necessary and sufficient condition
that enable the determination of the joint density

f(x1,x2) in terms of the conditional densities f(xi|Xj>xj)
and then use it to characterize (3.1).

Theorem 3.11

Let X = (Xl,X2) be a random vector possessing
absolutely continuous distribution with respect to

Lebesgue measure in the support of Q={(xl,x2)|xi>0,i=l,2 _}



lOO

t = (tl,t2) a vector of non—negative reals and

Ri(t1|tj) = P[Xi>tilXj>tj] (3.103)
Q

i,j = 1,2; ifij. The density function of X is uniquely
determined by the survival functions Rl(tl|t2) and
R2(t2|tl) at those points for which these functions
are non-zero if and only if

R1(tllt2) = q(t1) (3.104)
R2(t2|t1) h(t2)

where g(.) and h(.) are non-negative real functions with

continuous derivatives in the subspace Q1 = {x|x > 0 }
satisfying

9(o +) = h(0 +)

Proof:

To prove the sufficiency we note that under the
conditions of the theorem, there exist functions u and v

in Q1 such that

gal) = T u(v)dY
*1

and

h(t2) '= { V(Y)dY2



101

Equation (3.104) is equivalent to

R (t i ) J "(Y)dYs-1~ ‘ 5 =  (3.105)
R2(t2|tl) I V(Y)dY

‘*2

Since g(o+) = h(o+), (3.105) can be written as

Tmww/ Yawn“1"°1"2’ =  _   r
R2(t2|tl) T v(Y)dY / ?V(Y)dYt2 o (3.106)

If we write

?\1(Y)dY
*1S('°1) " 1.;
f v(Y)dY
O

We see that S is non-increasing, S(+ w) =-O and
8(0) = 1. Further

:14-n M
8(tl+h) - $(tl) = f u(Y)dY / .r\-l(Y)dYtl o

so that S(tl+o) = S(tl), proving the right continuity
of S. Thus S is the survival function Rl(t1) of the
random variable X1 and similarly the denominator on
the right hand side of (3.106) is the survival function



R2(t2) of X2. Thus the survival function of X is
uniquely obtained as

R(tl,t2) = Rl(tl|t2) a2(t2)

and hence the corresponding density f(xl,x2).

The necessary part is obtained by writing

R(tl.t2)
“(HIV = W

< . )
R(t2'tl) = R—R£§—lt§­

taking their ratios and cancelling out common terms,

if any; to flfltl) and R§t2) to arrive at g(.) and h(.)

Corollary.

X follows the bivariate exponential distribution

(3.1) if and only if the conditional distributions of Xi
given Xj > tj are exponential.

Proof:

We see from equation (3.8) that

O2



R<*1|*2> ex?l£f(§lfM9t2)?L1fl
R<t2:t1> “ @*P"I-T@2+ Qtiiizl

s*P<-"rill
exp(-a2t2)

<J(t),, __1_
h(t2)

where g and h satisfy the conditions of the Theorem.

Observations.

l. Theorem 3.11 is quite general in character
and therefore applies to any bivariate distribution.

\

It can be used to characterize other bivariate distribu­
tions as Pareto [Mardia, 1962], Lomax [Lindley and
Singpurwalla, 1986] and Burr [Durling 1975]. Since
these results do not come under the scope of the
present thesis, they are not discussed here.

2. Unlike other characterizations presented in
Sections 3.3 and 3.4 which are extensions of the

corresponding univariate property in some sense, the
results in this section apply solely to bivariate
distributions.

O3



Chapter 4

BIVARIATE GEOMETRIC DISTRIBUTION

The role of the geometric distribution as the
discrete counterpart of the exponential distribution
in varied fields of theoretical and applied statistics
is well known. Accordingly several characterization
theorems of the univariate exponential distribution
have been extended to the discrete sample space to
prove similar results for the geometric distribution.
Even though several forms of bivariate exponential
distributions are discussed in literature, there has
not been a matching effort to evolve bivariate geometric
forms corresponding to them. One of the main reasons
for the lack of interest in evolving multivariate
geometric distributions is the fact that continuous
models are of general appeal in reliability studies,
the major field of application of the exponential model
and also the connection of this model with the Poisson

process. However, in recent times a lot of interest
is generated in the application of reliability concepts
in discrete time domain. Xekalaki (1983) advocates the
use of discrete models in life length studies on the
ground that inadequacies of measuring devices often

104



warrant measurement of survival times in discrete

time while Gupta (1985) cites example of discrete
random variable that occur naturally such as the
case with the time to failure in fatigue studies
measured in terms of the number of cycles to failure.
Further when data on life times are in grouped forms
discrete models becomes very much handy in their
analysis. These considerations have opened up
investigations towards characterizing discrete models
via reliability concepts. The importance of the
geometric distribution in such contexts as a basic
model cannot be over emphasised and therefore there
is enough scope for looking into possible generalisa­
tions of that law to higher dimensions.

In the present chapter our endeavour will be
to generalise the one dimensional geometric distribution
by considering a proper extension of the lack of memory
property enjoyed by that model to the bivariate case
so that the bivariate geometric distribution so derived
becomes the discrete analogue of the Gumbel's bivariate
exponential distribution discussed in the previous
chapter. Further, the characterizations in the continu­
ous sample space, established, are translated into
appropriate results in the discrete domain.
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4~1- E¥t§Q§i2"WPfeFh€l§EK_9§ memvrv 2:QPertx*

The well known lack of memory property that
characterizes the geometric distribution with
probability mass function

f(Y) = PY(l"P); 0 < P < 1 (4-1)

is that for a random variable Y with support 1+ ={O,l,2...}
the relationship

P [ Y Z t+s | Y Z t ] = P [Y Z s] (4.2)

holds good for all non-negative integer values of t and s.

An equivalent form of (4.3) in terms of the
expected values in [Nair (l983)]

E[ Y-t I Y 1 t ] = E(Y) (4.3)
In order to generalise (4.3) to the bivariate case

we consider a random vector X = (Xl,X2) in the support of

I; =.{(xl,x2); xl,x2 = 0,1,2 ...} having distribution
function F(xl,x2) and joint probability mass function

* The results in Sections 4.1 and 4.2 have appeared in
the Journal of the Indian Statistical Association (1986)
Vol. 26, p. 45-493 (Reference 37)



f(xl,x2). We define a vector valued function

£(£) = E [ X—t I X L t 1

with components

where 3 = (tl,t2) is a vector of non—negative integers,

107

ri(tl,t2) = E [xi-ti I x ;,t] (4.4)

X Z t stands for Xi ;,ti and i = 1,2. Notice that

Writing

we find

r1(o,o) = E(Xi)

R(tl9t2) = p[x1Zt1o X2Zt2]

ri(tl,t2) R(tl,t2) = g’ g (xi-ti) f(xl,x2) (4.5)
*1 *2

= E (xi-ti) P[xl=xl,x2;x2]
1

= Zls P[Xl=tl+s, X2 ;_t2]5:

= 2 R(tl+$,  (406)s=l
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Changing tl to (tl+l) in equation (4.6) and substracting
the resulting equation from (4.6) we arrive at the"
recurrence formula

R(tl,t2)rl(tl,t2)-R(t1+l,t2)[l+r1(tl+l,t2)]==0 (4.7)

A similar consideration of r2(tl,t2) leads to

a(tl,t2) r2(tl,t2)-R(tl,t2+l)[l+r2(tl,t2+l)]=O (4.8)

A straight forward generalisation of (4.3) to
the bivariate case provides us with the definition

=" (T-'l(°a°)o I-'2(o9°))

= (rlvrz) (4.9)
with both rl and r2 independent of tl and t2 for every
tl,t2 g_o. If we adopt (4.9) as our definition of
bivariate lack of memory, the implication is as follows:

Theorem 40 lo

The condition (4.9) is satisfied by a random

vector with support 1; if and only if xl and x2 are
independent and geometrically distributed.



Proof

when (4.9) is true, equation (4.7) can be
written as

Iteration for decreasing values of tl provides

r_..._l_..
R(tl+l,t2) - 1+ r R(tl,t2)1

109

z

R(tl,t2) = ( -1-f;f—,-51) 1 R(o.t2) (4.10)

Putting  = O in

Similarly using (4.8)

It follows from equations (4.10), (4.11) and (4.12)
that

where

1+:awe) = <5-1-Z15 (4.11)

t
R(<>.t2) = ( 31%-5 ) 2 (4.12)

a<t.t>=<-5-1->'°1 <-5%-$21 2 l+r l+r
ri = E(Xi)

1 2
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which is equivalent to

R(tl9t2) = R(tla°) R(°9t-2)

and

P[Xl2_t1, x2;_t2] --= P[xl;__tl] P[x2;_t2] (4.13)

for every (tl,t2) in IE. Hence X1 and X2 are independent
and further Xi are geometrically distributed with mean ri.

Conversely when X1 and X2 are independent

geometric variables with parameters pl and p2 respectively
direct calculations concurrs with equation (4.9) with

ri = pi(l-pi)—l, i=l,2 which does not involve tl and t2.

An immediate consequence of Theorem 4.1 is that

our search for the generalisation of (4.2) through the
definition given in (4.9) ends up with the constraint
that the variables must be independent for it to be
operative. Needless to say that this is highly
restrictive and does not contribute to models in which

the component life times have joint variation. Accordingly,
in our attempt to have a meaningful extension of lack of
property, analogue to (3.48), we introduce the concept
of local lack of memory property in the discrete domain



ll

by defining it as

E[Xi-ti;| x ;_t] = E[Xi I xj >_ tj] (4.14)
1,3 = 1.2; i ¢ 3

consistent with our objective spelt out at the beginning
of this chapter. The bivariate geometric distribution
we seek is that one which is characterized by the
property (4.14). The two equations given in (4.14)
can be restated as

ri(t1ot2) = ai(tj)§ isj = 1929 1 £ j (4015)

where ai(tj) are functions independent of ti.

4~2- liivareéetsefisealstris Diflributiee

The proposed characterization based on property
(4.15) which leads to a bivariate geometric distribution
is given in the following theorem.

Th901‘8m 4020

For all non-negative integers tl,t2, the conditions
(4.15) are satisfied by a random vector X = (Xl,X2) with
support IE, where al(t2) and a2(tl) are non-increasing
in the respective variables with

ai(o) = pi(l—pi)“1, i=l,2. (4.16)
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if and only if X has a bivariate geometric distribution
specified by the survival function

x x x x
R(xl,x2) = pl 1 p2 2 Q 1, 2; xl,x2 = 0,1,2... (4.17)

0 5 pl. P2 s ls 0 S 9 $ 1; 1 — 9 3 (1-p19)(l-P29)

Proof:

The first part of the theorem follows by
computing the required expectations in (4.15). When
the survival function of X is as in (4.17), the
distribution function of X is

x+l x+1 x-+1 x-+1 (x +l)(x +1)l 2 l 2 l 2
(4.18)

with joint probability mass function

x x x x --1 x +1 x +11 2 1 2 2 1f(xl9x2) = pl p2 9   )4’
(4.19)

From (4.5) with i=l and f(x1,x2) as in (4.19)

rl(tl,t2) R(tl,t2) = Z 2 (xl-tl) f(xl,x2)tl t2



= ogtxl-ti) Plxl[(l-P29 (P29 )l

x +1 w xl+l)x2]

X

‘ll-'

W"

XIX

- P1(l-P29 1 1 2 (P29
*2t t m t x2 2 2 l

= P2 (1"'P19 ) i(x1-tl) (P19 )
1t t t t1 2 2

= pl p2'°2€->1 P19 (1-P19 )

Substituting for R(t t ) from (4.17)1' 2
*2

t2 -1

113

(t ta -P19 (420)*1 1'2 -'_"lf2 ~
1-p19

Proceeding on similar lines one can also show that

t
P29 1

r2<w=2> = —-—--£­

It is easy to verify that (4.15) holds with the functions

ai(t3_i) satisfying the conditions specified in the theorem.

Conversely, let (4.15) hold. From (4.7)

R(t1.t2) al(t2) - R(1=l+1.t2)[1+al(t2)] =



O1‘

R(tI+l,t2) = —i¥£33l— R(tl.t§)
1+ al(§2)

Changing tl to (tl—1)

a1(t2) a(¢ -1,t2)_____—__ l
l+al(t2)

Iteration for decreasing values of tl gives
zal(t2) 1

(4.20) with t2 = 0 yields

R(tl9°) =t

where pl is as defined in (4.16). A similar considera­
tion of (4.8) gives

R(°9t2) =
*2

P2

Substituting for R(o,t2) in (4.21) we get

R(tl9t2) = ( al(t2) ‘) *1 p2t2 (4_22)l+al(t2)

14



Similarly
t

R(t1vt2) = -igiiél 2 P tl (4-23)l+a2(tl) 1

Equating (4.22) and (4.23) we have the functional
equation,

(  "s1a"°2).-_ >1/t2 =(uu_‘T2‘5‘1’ u )1/t1nl[l+al(t2)] p2[l+a2(tl)]

which is true for all tl and t2. Clearly

l

< —'   J“? — —_ ) ypi[l+3i(x) 1

is a constant, say O, for all integral values of x.

(4.24)

Thus

a.(x)1 =  Qx
1+ ai(x)

O1‘

P Oxai(x) = -—i—-—;- (4.25)
1-pi 9

From (4.22) we get t t t t_ 1 2 1 2R(tlrt2) " pl P2 9

ll5



as required. The conditions on the parameters can be

obtained as follows. From the monotonicity of al(t2)

P 9 P
_._L__..$__...__1.-...
l—plO 1- pl

OI‘

951
For R(xl,x2) to be non-negative, 9 ZbO. Also from (4.19)

r(o.<>) = e"[(1-p1e)(1-p20) + e -1]

which is non-negative if and only if

l - 9 _§ (1-p19) (l—p2O)

The proof of the theorem is thus completed.

It is informative to investigate what would be
the equivalent of (4.15) in terms of conditional
probabilities as the lack of memory is popularly
expressed in that form. This is established in the
next theorem.

ll



Theorem 4.3.

For all non-negative integers tl,t2 and s
the conditional probability statements

P[Xi 2 ti+s|X ;_t] = P[Xi 3 s|Xj ;_tj] (4.26)
ivj=102; ifij

hold good if and only if X has the bivariate geometric

distribution (4.17) with support 13.

Proof:

when the survival function of X is as in (4.17)

R(t » ) R( ¢t )
lslfsstz = _-i__2_ = pls estz (4.27)R(tl0t2) R(°9t2)

which is independent of tl. A similar expression
independent of t2 can be obtained for R(tl,t2+s)/R(tl,t2
Thus condition (4.26) which reads

!R(tf+s,tj) Rj(tj) = Hi(s) R(tl,t2), i=l,2

with R(ti+s,tj) as in (4.27) and Ri(s) = pis is
satisfied.

117



Conversely when (4.26) is true, for i=1

R(tl+s,t2) R(o,t2) = R(tl,t2) R(s,t2) (4.28)

Summation over s from 1 to w gives

R(o,t2) SE1 n<tl+=-.,t2) = R(tl’t2) s°;::la($,t2)

Using (4.26), the equation can be written as

R(°at2) R(t1ot2) I1(tlot2) = R(tlot2)R(°ot2)rl(°ot2)

OI‘

rl(tl,t2) = rl(o,t2)

Taking i=2 in (4.26) one can also show that

r2(tl0t2) = r2(t19°)

The necessary part now follows from theorem 4.2.

4~3 Preeertiss Ofetthe sdtstributiee

Having obtained the required bivariate model,
in the present section, we investigate some of its
basic properties. The motivation in this regard is two
fold; one is the importance of these results in their own

l



right and the second is their possible role in providing
further characterizations.

4.3.1. Marginal and conditional distributions

The marginal distributions corresponding to the
probability mass function (4.19) are

X.

ll9

O< pi <~l.

which are of standard geometric form. It is in this
sense that (4.19) was referred to in the earlier discuss­
ions as a bivariate geometric distribution.

The conditional distribution of Xi given Xj=tj is

f(XilXj-tj)-(l—pj) pi 9x.+l t +l
[(1-P39 1 )(1-P19 j ) + 9 - 1] (4.30)

with means

E[XllX2=t2] = a2rl(tl,t2) + (1-a2)rl(tl,t2+l)



and

E(X2|Xl=t1) = alr2(tl,t2) + (1-al) r2(tl+l,t2)
(4.31)

where aj = 1 + E(Xj) and rj(tl,t2); j=l,2 is as defined
earl iero

Further,

< Y2~ p P 9E(X x ) = 2  (4.32)1 2 X2e2 P1x =1 1­

The coefficient of correlation between X1 and X2 is

pl_ P2
I A(Q9pl9p2) - l_pl l_p2

(1-pl)§ ( 1-92 )2

1"§
= [(1“Pl)(l“p2) A(9;Pl,P2)-P1P2](PlP2)

where A(9§pl,p2) is the expression in (4.32). For fixed
pl and p2, r is a non-decreasing function of 9 as evidenced
from the sign of gé. This shows that the coefficient of cor­
relation of the distribution ranges from.O to -Vplp2, the value
zero, that corresponds to 9=l, being attained when and only
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when X1 and X2 are independent univariate geometric.
Thus the correlation always remains negative which
is to some extent a handicap when the distribution is
to be thought of as a model of life lengths in a two
component system. The physical constraint imposed
by the correlation structure is that the increased
life length of one component should necessitate the
inevitable decrease in the life time of the other.
Thus the bivariate geometric distribution can model
only life length data that exhibit this mode of
behaviour.

The random variables Xl and X2 are independent
when 9 = 1.

The conditional survival function of Xi given
t. iXj Z J s

t x.
P[Xi ;_ xi I xj Z tj] = (pi 0 3) 1, i=l,2 (4.33)

with corresponding probability mais function

tj xi t.
flxi I X3 2. ti) = (pie ) <1-pie J)

Xi =O’]-,2, one t.
which is again geometric with parameter (pi Q J).
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It may be noticed from (4.29) and (4.33) that
the marginal and conditional distributions of the
bivariate geometric distribution are geometric,
analogous to corresponding results in the Gumbel's
bivariate exponential distribution.

4.3.2 Moments

The expression for the (r,s)th order row
moment can be written as

ués = E xi [ A(xl,s) - A(xl+l,s) ]
1

where X X X X
A(sl,s) = pl l(l-p29 1) 2 X28 (p29 1) 2 (4.34)

X 2

The probability generating function of the
distribution is

x x
E(sl 1 S2 2) — 2 s xl[B(x s )-B(x +1 s )] (4.351_ l 1’ 2 1 ' 2

*1

where x x x1 -1
B(xlI$2) = pl l(l"p29 )(l“52p2 9 1 )

22
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The rth order truncated factorial moment of Xi
is defined as

¢§’)<tl.t2) = E [(xi-ti>") I X1 1 tl.x2 ;_t21.1 = 1,2. (4.36)
where

(xi-ti)(’) = (xi-ti)(xi-ti-1) ... (Xi-ti-r+l)
Equation (4.36) with i=1 can be written as

¢1"’<tl.t2>n<tl.t2> = El §:;2<xl-5)") r<><1.><2>

no caI

2 2 (*1't1)(r) P[X1=x1'x2 Z *2]
1

= 0% (xl"'tl)(r) [R(Xl1t2)“R(xl+l9t-2)]
1= O;l

tl+1

= I ti+l(xl-tl-1)(r'1) R(xl,t2) (4.31)



Changing tl to (tl+l) in (4.37) we get

¢§r>(tl+1,t2) a(tl+1,t2)= r § (xi-tl-2)(r'l)R(xl
tl+2

(4.38)

Subtracting (4.38) from (4.37) we arrive at the equation

¢§")(tl,t2) R(tl,t2) - ¢§‘)(tl+1,t2) R(tl+l,t2)

= 2 Z (xl—tl-l)(r'1) f(xl,x2)
tl+lt2

= R(tl+1.t2) ¢§"l)(t1.t2>
Or

124

.t2>

-- e — ¢£r)(tl’t2) _e» e s  (4 39)
R(tl,t2) r¢l(r'l)(tl+l,t2) + ¢§r)(tl+1,t2)

When the survival function of X is specified by (4.17)

R(tl+l,t2) Qtz“ P§rti;t2$ - 1
so that ¢§r)(tl,t2) is given by the relation

(r)¢1 (:1,e se( ;;Me~e t2) (£)e es he = pl etz -(4.40)r ¢l ‘*1 (tl+1,t2)+ ¢l (tl+1,t2)



It may be observed from (4.40) that ¢§r)(tl,t2) is
independent of tl.

Setting r = 0 in (4.40)

_1m_ = pl 9 2
1 + ¢1OI‘ t2
¢(l) = pl Q
1 l-plQE2

When r=2,

¢§2) ‘2
2¢*§1T+¢;f>- = P1“

O1‘

*2

¢(2) = 2(p1g )22

Proceeding like this

t2 r
(I) __= 0 _P_J-Q‘ D951 (tl,t2) 1:. (l_pl9£2 (4.41)Similarly tl r
(I) 1 ( p2 G )¢2 (121,112) = 1‘. 1-.p29#tl (4.42)
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4.3.3. Limiting form

A limiting form of our bivariate geometric

distribution can be obtained by setting pi=l-mini;
i=l,2; 9 = l—an where n = nlnz and considering

x x
Rfai, 3% ) as nl and n2 tend to zero. The expression
for the survival function under the above mentioned
transformations is from (4.17)/ / /

R(;%, E5) = (l-alnl)xl nl(l-a2n2)x2 n2(l-an)xlx2 n

Taking limits as nl and n2 tends to zero we get

R(xl,x2) = exp [-alxl-a2x2-axlx2]

xl,x2 > O; al,a2 > 0; a Z O

which is the survival function of the Gumbel's bivariate

exponential distribution discussed in the previous chapter.

4~4 Chaxacterizatiens baesd,Qn_prQP@r§i¢$ of
truncated moments

In this section we discuss characterization problems
associated with the bivariate geometric model based on
properties of truncated moments.



Theorem 4.4.

Let X = (Xl,X2) be a discrete random vector in

the support of I2 = {(xl,x2)|xl,x2 = O,l,2,..._} with
E(X§) < + w. X follows the bivariate geometric
distribution (4.17) if and only if for all positive
integers k

E[(xi-ti)(k)|xL;tl,x2;t2] = a§(tj), (4.43)
ivj = 102;

i # J
where

a§k)(tj) = E(x§k) I xj Z tj)

are non-increasing in tj and are independent of ti.

Proof:

When X follow the bivariate geometric distribution
from equation (4.41) we get

t.p o 3 k
E[(ri-ti)(k)|x Z :1 = kl ( I%;;;;j )

Further differentiating the identityt t -1
5 (pie jlxi = <1-p193)
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t
k times with respect to (piG j) and then multiplyingti tj kboth sides by (1-piQ )(Di9 ) , we find

1;..0 3 k
E [ x§") x _ t ] = ks ( <p‘e s---)1 I j > J l-pi Qtj

= a§k) (ti)

that satisfy the conditions of the theorem. The only
if part now follows. For proving the if part, we see
that when (4.43) holds, it can be written using (4.39)
as

R(‘1*lt‘2) _,a a§k)(‘2) its
a(¢l, t2 ) k al(k"17(t2)+ a1(k7(t2)

= Bl(t2), say
OI‘

R(tl+l,t2) = Bl(t2) R(tl,t2)

Iteration for decreasing values of tl gives

tlR(rl.t2) = [ Bl(t2> 1 R(o.t2> (4.44)
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Setting t2 = O in (4.44)
*1R(tl.0) = pl (4.45)

with

Similarly
t

Substituting for R(o,t2) from (4.46) in (4.44),

*1 *2R(tl.t2) = [Bl(t2)] P2 (4.4?)
Proceeding on similar lines one can also show that

R(t ) [B (t )]t2 tl (4 41"2 = 2 1 P1 ' 8)
From (4.47) and (4.48), the usual arguments for such
functional equations give

Bi(x) = pi 0* (4.49)
where 9 is a constant. It follows from (4.47) or
(4.48) that t t t tl 2 1 2R(tl9t2) = pl PQ 9
and this completes the proof.

2



Corollary-l

Using the relation between row moments and
the ascending factorial moments it follows that
the condition

Bttxi-ti>"|><1zt1. ><2z.1=;-,_] = E[><'{IXizt1.X22..’¢21 (4.50)

also characterizes the bivariate geometric distribution
analogous to theorem 301 for the Gumbel distribution.

Corollary-2

Taking k=l in (4050) we get the condition given
in theorem 4.2.

Corollary-3

Setting t2 = O in (4.43) it follows that the
condition

E[(Xl—t1)(k)|Xl > tl] =<: for all non—negative
integers t

where ¢ = E(X§k)) characterizes the univariate geometric
distribution

P [Xl=X] = P§(l-Pl)

In particular for k=l,



which

E[xl-:1 | xl 1 :1] d= E(Xl)

is the well known property of the geometric
distribution.

We snow prove another related characterization
of the bivariate geometric distribution basaion the

variance of the truncated variables Xi-ti|X1gtl, Xzgtz.
This result is intitutively clear from theorem 4.4;
but we give an independent proof.

Theorem 4.5

The random vector X = (Xl,X2) of theorem 4.4

with E(Xi2) < + w follow the bivariate geometric
distribution (4.17) if and only if

J

where

Proof

v(xi|x Z t) = vi(tj); 1,3 = 1,2, i¢3 (4.51)

Vi(tj) are non-increasing with

We have

v (xl | x ;_t) = "v(xl-tl | x Z t)
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P­@® Q22 E (xl-tl) f(xl,x2)
"1 *2

2 E f(x1,x2)1 2

= Al(tl,t2) + [rl(tl,t2)]2 (4.53)

y 0

t

I
t

F-'

P18
'6-‘D--\

PX

P18

8

(‘P
)—'

'6-4-l‘*'l

f(xl,x2)

‘*2
):

J

where rl(tl,t2) is as defined in (4.4) and A1(tl,t2) is
such that

Al<@1.t2> R<@1.:2> = € §<xl-t1>2 r<x1.x2> (4.54)l 2

When X follow the bivariate geometric distributions,
using (4.19)

m 2 X1
Al(tlot2) R(t1ot2) - €l(xl-tl) pl

X 6° X X
{<1-p29 1) >2 (P29 1) 2

*2

xl+l w xl x"P (1-p 9 ) E (P 9 ) J1 2 t 22t t Q t X2 2 2 2 l
= P2 (1“Pl9 ) i (Xl“tl) (P19 J

1

2+1 L
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t t t t ~1 t
= P 1 P2 2 9 1 2 2 [Y2*(Y-l)2] (P 9~2)Y1 1

Y=1

t t t t w €2 .=p ‘@291 EQWUWQZW1 Y=l 1t 1t t t 1 2(p 0 2) p 0 2 *11 1 2_ P p 2 Q 1 1
_ 1 2 (1-“P19 2)?-(1-Pl9t2

t 1 t 1 0t2(1+ Qtz)1 2 1 2 P1 P1

Substituting for R(tl,t2) from (4017) we get

1 12P 9 2 (1+ P 9 )

(1-"P19 2 )

Also by (4.20)
12(t 1 J pigr = ~~ =W~~<~@~

1 1' 2 l_ pl 9£2

Equation (4.53) now takes the form
T.2

pigv(x x_t) = M11111 (4.55)
1| > (l_plQ{2)Z
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On similar lines one can also show that

*1
P29

\/(X2 I X Z 1;) = -“~e~ ~=*t*
(1'P29 1)

so that the conditions of the theorem are sufficient.

Conversely (4.54) can be written as

Al(tl,t2) a(tl,t2) = 12 zt: f(t+1,x2) +
1

22 Z f(t+2,x2) +
*2

22 2 f(t+3,x3) + ... (4.56)t2 '
Changing tl to (tl+l) and subtracting the resulting

equation from (4.56)

Al(tl,t2) R(tl,t2) - Al(tl+l,t2) R(tl+l,t2)

% 2 Z
= 2 [(xl+l) -x12] 2 f(t1+xl+l,t2)xl=o x2=t2
= ; ; (2x +1) f(t +x +1 )x=ox=t21 11"?1 2
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= 2rl(tl+l,t2) R(tl+1,t2) + a(tl+1,t2) (4.57)

When (4.5.1) holds (4.53) takes the form

A1(t1't2) = V1(t2) * ’12(t1't2)

Substituting in (4.57)

[vl(t2) + rl2(tl,t2)]R(t1,t2)

= [v1(t2) + r12(tl+1,t2) + 2rl(tl+l,t2)+l]R(tl+l,t2)

-= [vl(t2) + (rl(tl+l,t2)+l)2] R(tl+l,t2) (4.58)

From (4.57)

1 (t 1,: )
R(tlot2) = +;i(tft-1:232‘ R(tl+-I-otz) (4059)

(4.58) can now be written as

mug) + rf<+=l.r2>1 [1+rl<tl+1,t_-,,>1

= rl(tl,t2)[Vl(t2)+(l+rl(tl+l,t2))2]



O1‘

l+rl(tl+1,t2)—rl(tl,t2)
v1(t2){—s—    )= 1+: (t +1,t)-1~(r,t)r1(tl,t2)[l+rl(t1+l,t2) 1 1 2 1 1 2

The solutions of (4.60) are

and

(4.60)

1 + rl(tl+l,§2) = rl(tl,t2) (4.61)

r1(t1,t2) [1+r1(tl+1,t2)] = Vl(t2) (4.62)

(4.61) gives

n(t1,t2) =6 R(tl+l,t2)

producing the result that R(t1,t2) is independent
tl which is clearly inadmissible.

From

rl(tl+1,t2 _  “ rl(t19t2)
' rl(tl,t2)

Y1(t2)“’1(‘1"1"2)
V1<*2> - “;"iri(tl;i;£5Y:i

Y1“2"’1“1“"‘2)
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=

[ 1*"1('F2) ]"1('°1"l"2) ‘V1("21

[1* ?"1(“2U ’1(i‘1'?"2' "i2)'V1(it2l[V1i(%t2)T1]

V1(t2) - r1(tl—l,t2)

‘ 1(5)-< 1+vl( t2) )i rl(t]_"2pT-2) 6 ' J

W1‘ *2) (1i*‘%’1i( "2)*2"1( P2)?*1]”1("1"3"2) "3192, [1*2Y1( ti? 1

Q

37

etc

[l¥Vl(t2)]Vl(t2) “[l+2V1(t2)]r1(t1_39tQ)

producing the result that r(t +1 t ) is 6 fun¢ti°" °f t2 °"1Y
That is

I l ' 2

r1(tl,t2) = r1(<>,tg)

Now from (4-59)

where

r (o,t2)
R(tl-1-1,112) = <  fi  )R(t~lvt2)

gl(t2)

= gl(t2) R(tl,i2) (4~63)

1+rl(o,t2 )

"'1§°"‘2) {

1+ rl(0,i2)

’12(°"‘2) _ , by (4.62)
vl(t2)
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Iteration for successive values of tl in (4.63) leads to

R(tl9t2) = [ gl(t2) ]tl R(°9t2) (4064)

As t2 tends to zero in (4.64)

*1Rl(t1) = [ gl(°) J
t=

where

rl(°r°)P = ’* We1 1+ r1(o,o)
r12(0.0)

V1(0)

Similarly

*2R2(t2) = P2

Substitution in (4.64) gives

tl :2R(tl,;2) = [ql(t2)] p2 (4.65)
Similarly

*2 *1R(tl9t2) = [g2(tl)] pl (4066)



From (4.65) and (4.66) we get

q(t)-L q(t)l­
(_%_ )t2 a (2551-)t1 (4.67)

whose Only solution is

‘Jgi(tj) = pi 9
FIOII1

t t t t2 1 2R(tl0t2) = pl 1 P2 9

which is the survival function of the bivariate geometric
distribution. Further

v1(t2)

or

l

It follows that

O S

r1(t1,t2) [1+rl(tl+l,t2)]

r1(o,t2) [1+rl(o,t2)]

rl(°9t2) + r€(°ot2)
\/1&2) \/1(5)

r 2(o,t )
--(-3-1 2 < 1
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That is

0 5 91(t2) 3 1
or

O 5 pl Q l

The value of 9 is deduced from the monotonicity of

Vi(tj) and the proof is completed.

4->5 Cherasterizertien ©a_Se_‘d-_-T_‘°_—I! =°_'i$3=1‘ib'D‘-iqflal Plgqeertiee *

Apart from the results that are extended versions
of the univariate case, there are certain properties that
arise from the bivariate set up itself. The three theorems
presented below belong to this category. First, we
establish a characterization of the bivariate geometric

distribution by the form of conditional densities of Xi

given xj L ti; i,j = 1,2, i £ J.
Theorem 4.6.

Let X = (Xl,X2) be a random vector with support
12+. X has bivariate geometric distribution specified by
(4.17) if and only if the conditional distribution of Xi
given xj ;_tj; 1,3 = 1,2, i £ J is geometric with
parameters pi(tj) which are non increasing functions of tj.

* The results in Section 4.5 along with some other results
concerning another Bivariate geometric distribution is
to appear in STATISTICA (1990).
(Reference 40)



Proof

14

when the conditional distributions of Xi given
t.*1?-J

of X1 gi

Setting

where

Now

are geometric, the conditional survival function

ven X2 is of the form

R(t1|t2) = P [xlgtl | x2;t2]
*1

= [ p1(t2) 1 ; O<pl(t2)<l, tl=o,1,2.... (4.68)
*2 = Q

R1(tl)
Qi P [xl 3 tl]

t
P1 1

P1 2 P1(°)

R(tl9t2) = R(t1|t2) R2(t2)t t
= [p,<t2>1 1 P2 2 (4.69)

By a similar argument concerning X2 given X1, we can
also get t t

R<tl.;2> = [p2<t1>1 2 pl 1 (4.10)



From (4.69) and (4.70) we get

Since (4.71) is true for all tl and t2, its solution
can only be such that

a constant independent of both tl and t2. This gives

which when substituted in (4.70) or (4.71) leads to
(4.17).

On the other hand

we have

14

t t t t
[ p1(t2) 1 1 P2 2 = [p2(t1)] 2 pl 1 (4-71)

p (t > 1/*2 p (t > 1/*11 2 2 1( -5I- ) = ( -5I- ) = 9 (4-72)

pi(tj)

R(tl.r2)

R(tllt2)

if

i1

1Q1

t

we assume

t t2 t t1 l 2p 9P1 2

R(tl.t2)
R2<t2>

1

t t t2p 1 9 1



The conditional probability mass function of X1 given
X2 > t2 is

f(xl|X2 3 x2) == R(t1|t2) -R(tl+l|t2)

= (p19t2)tl (1-p19t2)

‘2
which is geometric with parameter pl O . Also since
0 $ 0 § 1, 0 < p10t2 < 1 for all t2. Hence the conditional
distribution of X1 given X2 > t2 is geometric. Similarly
the conditional distribution of X2 given X1 Z_t2 is also
geometric.

The conditional densities discussed above are

of application in modelling reliability data. The
matter will be taken up in the succeeding chapter.

When the random vector X follows the bivariate

geometric distribution, we recall that the conditional

probability mass function of X1 given X2 = x2 is given
by (4.30) and the marginal probability mass functions
by (4.29). The form of the conditional mass function
(4.30) can be utilised to arrive at characterizations of
the univariate geometric model as well as bivariate
form (4.17).
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Theorem 4.7.

If X = (Xl,X2) is a random vector with support
12+ such that the conditional distribution of X1 given
X2 is of the form (4.30), then a geometric distribution
for X1 implies and is implied by a geometric form for X2.

Proof:

Assume that X2 is geometric. Then the probability
mass function of X2 is of the form

f2(x2) = p2x2(l—p2), x2 = 0,1,2, ... (4.73)

Using the expression for f(xl|x2) from (4.30) and that
of f2(x2) given above, the Joint probability mass function
of X turns out to be

x x2 x x -1 x +1
f(X1.&2) = P1 1 P2 9 1 2 [(1-019 2 )

x +1
(l—p2Q 1 ) + 0 - 1]

Summing over the support of X2,

*1fl(xl) = pl (l—pl), xl = O,l,2,... (4.74)

At the same time if the component X1 is taken to be
geometric of the form (4.74), the identity
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fl(xl) = xg=Of(xl|x2)f2(x2)

provides

x x x -1xl w p119 1 2 x2+1 xl+l
pl (1-"’p1) = xzzo "l_b£”_;___-_ (1_plg )(1""P19 )+9""'-1] f2 ( X2)2

OI"

w xlxz-1 xl+1 x2+l xl+x2-2
(1--p1)(1-p2)= 2:0 9 [9—p2° "P19 +0102‘? ]f2(x2)X2

-P 9 - l—P 9 )]f (X )w x x x x (x +1) x +1
x2=O

rx
Equating coefficients ofj0 1, r = 0,l,2,... on both sides,

*2=    = O’l’2,000
and our result is proved.

I

Corollary

The conditional distribution of Xi given Xj=xj is of
the form (4.30) and Xi is geometric is a necessary and
sufficient condition for (Xl,X2) to be bivariate geometric.



1

Theorem 4.8.

Let X = (Xl,X2) be a random vector with support
£2. x has bivariate geometric distribution (4.17) if
and only if the following conditions hold good.

(1) The marginal distribution of X1 is geometric, and

(ii) The conditional mean of X2 given X1 Z t, namely
*2 *1 -1

s(x2-tzlxgz) is p29 (l—p2Q- )

Proof:

Condition (ii) in the theorem can also be
written as

r2(t1) R(t1ot2) = i €2(x2-t2)f(x19x2)1

= Z R(t1,t2+s) (4.75)$=l

Changing t2 to (t2+l) and subtracting from (4.75)

r2(tl)[R(tl,t2)—R(tl,t2+1)] = R£tl,t2+l)

O1‘

(

R(tl,t2+l) = [ rztl) 1 R(t ,t2) (4.16)1
l+r2(t1)

4



Successive reduction for t2 gives

< > t
a<tl.t.2> = I -3-3l-- 1 2 Ru .0) (4.11)l+r2(tl) 1

When (2) holds,

er2(t1)s = p Qtll+r2(tl) 2

From condition (i) of the theorem

*1R(tl9°) = P1

(4.77) now reads as

t t t tl 2 1 2R(tl,t2) = Pl P2 9

Conversely when X follow the bivariate geometric
distribution, (i) and (ii) follows from (4.20) and
(4.29) and the proof is completed.

Q
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Chapter-5

CHARACTERIZATION BY RELIABILITY CONCEPTS

A considerable amount of results dealing with
characterization of the exponential distribution has
their origin in the mathematical theory of reliability.
The role of the univariate exponential distribution as
a model for life time data was brought to light in a
series of papers by Epstein and Sobel (1953, 54) who
popularised its role in reliability studies. It is
evident from the review of literature that a number
of bivariate exponential distributions have been
proposed to describe failure patterns in two-component
systems.

The basic concepts used to model life time
distributions are failure rate, mean residual life and
some other notions of ageing. While most works on
modelling consider the failure rate, defined as

h(x) = €%§} (5.1
where f(x) is the probability density function and
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R(x) = P [X>x], as the basic concept there is a strong
case for using the mean residual life function (MRLF)
to meet the same purpose. For the random variable X
representing the length of life of a component, (X-t)
given X > t is called the residual life and its
expected value

r(t) = e(x-t I x>t) (5.2)
is the mean residual life function, which represents
the average life time remaining for the component given
that it has survived upto time t.

Muth (1977) points out the important differences
while inferring ageing characteristics using MRLF's and
failure rate functions, although both are used for the
same purpose by researchers. Though positive ageing
corresponds to decreasing MRL (DMRL) and increasing

hazard function (IHF), the class of IHF distributions
forms a proper subset of DMRL family as DMRL implies

IHF but not conversely. The failure rate function cannot
have a unique inverse and consequently the age cannot be
inferred from the failure rate function. The essential
difference, however, is that while failure rate accounts
only for the immediate future in assessing the event
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component failure as evident from the equation

Mt) Rm =- --;,-‘—’;R(t).

the MRL accounts for the complete failure in view of
the equation

r(t) amt .-.= Ia(x)ox

When decisions are to be made on replacement policies,
the expected remaining life will be a more suitable
criterion to decide upon whether to replace or not
than the failure rate from which it is difficult to
earn even a suitable yardstick for the purpose. Apart
from these considerations arising out of reliability
context, the MRL concept when considered as a truncated
mean has enough potential in characterizing probability
distributions and also in modelling data in other areas
such as income analysis [ Kakwani (l98O)],manpower

planning [Bartholomew and Forbes (19so)], bio-statistics
and actuarial science to name a few.

Although the concept of MRLF has been extensively
discussed in univariate theory vis a vis its ability to
decide upon a useful choice of the model to represent



the life data, in the bivariate context this notion
does not seem to have been studied in depth although
some references to it are available in literature
(see p. l3 ). In this chapter the main focus of
attention is on bivariate mean residual life and its
potential in life length studies.

In a simple life testing experiment, a number
of items are subjected to test and the data consists
of the recorded lives of all or some of the items.
Since our interest is on bivariate distributions, we
consider a two-component system the life time of the

ith component is Xi, i=l,2. If X = (Xl,X2) denotes
the failure time of the device, the basic concepts
associated with X under review here are

(i) the reliability function
(ii) the failure rate, and

(iii) the mean residual life

The survival function R(tl,t2) has already been
defined as

R(tl,t2) =s P [xl>tl, x2>t2]
which denotes the probability of failure free operation
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of the device until t = (tl,t2). The function R(tl,t2)
can also be expressed as

where Fl(.), F2(.) and P(.,.) are the distribution
functions of X1,X2 and X respectively. This quantity
is a numerical measure of how far the system is reliable
and is referred to as the reliability function. One
aspect of interest in reliability studies is the precise
functional form of R(tl,t2).

The problem of extending the concept of failure
rate into higher dimensions has been considered by
Basu (1971) and Johnson and Kotz (1975). While the

former has given a single component for the failure
rate, the latter views it as a vector valued function.
The definitions have been given earlier in equations
(2.13 ) and (2.55 ). A characterization of the Gumbel's
bivariate exponential distribution by the local constancy
of failure rate due to Johnson and Kotz (1975) have been
reproduced in theorem 2.2.
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l5

5.1 Bivariate_mean residual life *

Let §_= (Xl,X2) be a random vector admitting
absolutely continuous distribution function in the

support of the octant Q =.{(xl,x2) | xi 2 0_} in the
two dimensional space R2. With 5 Z 5 denoting Xi 1 xi,
i = 1,2, the bivariate mean residual life function
of § is defined as the vector function

_1_;(_§) = Eu.-.2 l as > i ) (5.31

where_3 = (t1,t2) and ti are non-negative real numbers.
The survival functions of Xl,X2 and § are

Rl(t1) = 1- Fl(tl)
R2(t2) = 1- F2(t2)

R(_t) = 1- Fl(tl) - F2(t2) + F(tl,t2)

In the first place, a relationship enabling the
determination of the survival functions in terms of

;(t)will be established. To do so we notice that_5(t)
has two components, say rl(t) and r2(t), of which the

* Part of the material in this section has
appeared in I.E.EJETrans.Rel.Vol.38, No.3,(l989)

( Reference 38 )



former can be written as

11(3)

OI‘

R(3) rl(£)

= E(x1't1 I Z > i)

= fy I (x1—tl) f(xl,x2)dx1 dx2
tl £2

Q <@ 2_ _ 6 R
_ {Q {%(xl tl) 3;I6;; dxl dx2

=  (xl"'t1) [-&:  dX1

= Z R(x1,t2) dxl (5.4)
1

Taking logarithm of both sides and than differentiating

with respect to tl

6 log R(..’9.)~ »> +
atl

O1‘

__ 0 log R(j._

OI
H

r\
('9'

_1 __
rl%§§ 5t1 = rl%£§

> 1 brim
%0tl " = ;Iti7 [ 1+ —3¥I—— ] (5.5)
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A similar consideration on r2(t) leads to

- 6 log R(§) or (t)
*1 W  =  1+ -$2175-' 1 (506)r2 _

To solve the differential equations (5.5) and (5.6)
we use the gradient operator

6 6
V = < 5t1~1st2'>

Equations (SJ5) and (5.6) can be together written as

_l brl _l 6r2
Y7 (-109 R) = [ I1 (l+ 6?: ), I2 (l+~8€; )1 (5.7)

Since -log R is continuous in an open set containing
Q, for an arbitrary path which is orthogonal to the axis
connecting Q and t in Q, we can write

$Y(-log R)d3 = - log R(t) + log R(g)
E

f
2

= - log R(;) (5.8)
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From (5.7) and (5.8) we get

tl 6rl(xl,o) _l
-log R(3) = f (l+ ———3;I—— )(rl(xl,o)) dxlo

t o
+ £2<1+ ’2§:;'“1)><r2<t2.x,>>'1 dx2

OI

r (9) r2(tl,o) ti dxl *2 dx2_ 1 E iee,lrt _ _ _" slm
R(£) - rl(tl,o)r2(t) exp[ £ ’1{*1'°) £ ’2(t1'*27 1

(5.9)

We can also obtain the two equivalent forms for the
relationship as

R2(t ) r (o,t2) tl dx
Rkt) = -——%IT1§*————- eXp[— £ ;I(§;;§;) 1 (5.10)

R (t ) I (t ,0) t2 dX
= "ls lr2c§>l °*P [' { r2(T1?x2T 1 <5-11>

Observations:

(i) From (5.9 ) it is evident that r(§) determines
the distribution uniquely. By postulating a functional

form of rl(t) and r2(;) on the basis of known behaviour
one can obtain the failure distribution and the reliability
function.



For instance, if we take rl(t) and r2(t) as
constants independent of tl and t2, relationship (5.9)
leaves R(t) as a bivariate exponential distribution
with independent components. On the other hand taking

rl(tl,t2) as a function of t2 alone and r2(tl,t2) as a
function of tl alone in the form_ -1 __ -1rl(_§) - (‘=51 + Ot2) and 1'2 - (“T2 + Qtl)

(5.9) gives R($) as the survival function of the
Gumbel's bivariate exponential distribution.

(ii) The bivariate MRLF is related to the vector
valued failure rate function

h(_t) = V [- 109 R(1:,)]

If hj(§) are the components of h(§) we have

_l 0r-(1) _
nj(;c_> = [r3-(_:¢_)] [1+  1. J=1.2 (5-12)

(iii) The MRLF's of the component variables are

. t. = E .-t. X > 1;.mJ( J) [X3 J | J J]
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The conditions= rj(t)9 j=l92
holds if and only if X1 and X2 are independent.

Proof:

When X1 and X2 are independent, (5.4) can be
written as

Rial) a2<t2> rlw =1; [a1<><l> a2<t2>1 ax,1

giving

r1($) = §I%§I) £{ R1(x)dx

= ml(tl)

Similarly

r2(£) = m2(t2)

§onversely when (5.13) holds, from (5.10)

my = R2(t2) iii-:1) exp[-,1/il ff?) 1l 1 0 l
= R2(t2) Rl(tl)

from (5.10). Thus X1 and X2 are independent.
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(iv) From the bivariate MRLF} one can obtain the

MRLF's of the component variables. As t2 tends to 0
in (5.4)

Rl(tl) rl(tl,o) =2 R1(xl) dxl
1

= R1(tl) ml(tl)

which shows that

ml(tl) = rl(tl,o)

Similarly one can also show that

m2(t2) = r2(°ot2)

(v) In the univariate set up, the condition that the
MRLF is constant is a characteristic property of the
exponential distribution. Referring to the bivariate
case, the constancy of the components of r(t)can be
achieved globally and locally specified respectively

by the conditions rj(t) = aj where aj is independent
of both tl and t2 and rj(t) = aj(t3_j) with aj independent
of tj. It is shown in Nair and Nair (l988) that the
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former case is true if and only if X1 and X2 are
independent with means ml and a2 and the second

representation with aj(t3_j) monotone increasing is
a characteristic property of the Gumbel's bivariate
exponential distribution (see also theorem 3.1).

5-2 Qoneiiienssiorbivarlete MRLF

Extending the results in the univariate case
in Swartz (1973), we can obtain a set of necessary and
sufficient conditions for a vector valued function 5(3)
to be a bivariate MRLF. These are equation (5.9)
along with

(i) ;(t) Z»O implying ri(§) Z O, i = 1,2.

(ii) ‘£(g) = E(X)

6r»(t)
(iii) 1%? g -1, 3 = 1,2

O*w8
H

o.

as

°“w3
H

sa

arm
i-'

;j<

(iv) 1 Y’t and diverges
5.3 Asymptotic exponentiality

In view of the simple form and other interesting
properties that have relevance in reliability analysis,
attempts are seen in literatue to realise exponential



models either exactly or approximately. In terms of
the bivariate MRLF one can obtain transformations that

renders the conditional distribution of Xi given £ > 3
asymptotically exponential. The reliability of one
component, known that the survival times of both upto
given instants, can often be assessed by virtue of such
approximations.

Considering the reduced variables
X —t

Yi = ¥+T¥% which satisfy the conditions10$

lim rl(t +rlyl,t2)

lim r2(tl,t2+r2y2)

We can write

tR(tl+ylrl,t2) rl(;) 1*Y1r1 dxl»=a=~ws — = s~=<+es~:ee~ exp[— I ]RTt) rl(tl+ylrl,r2I tl FITITTET

Y

= sltlilii) g_ exp[_pfl’1(t)d“ 1rl(tl+ylrl,t2) 0 rlftl+url,t2T

6



As tl tends to infinity

P[Xl > tl+ylrllg > 3] = [al(t2)]'l exp[-al(t2)]'1y1

A similar result holds for the variable X2.

5-4 Eailvze reterene MEL in the dissrefie ease

Although continuous distributions are generally
explored and used in the context of modelling life time
data, some interest has been evoked recently in using
discrete models for the purpose as pointed out in the
introduction of chapter-4. In this section we introduce
the failure rate concept and the mean residual life
function in the discrete domain and use it as a tool
to characterize the bivariate geometric distribution.

Analogous to the definition in the continuous
case proposed by Galambos and Kotz (1978) we define

the bivariate failure rate as a two component vector,

_r1(t) = (him. h2<_;)> where

P(X.=’C. , X.}_t)
him = s * 11 1 . 1.1 = 1.2 1 #3

P(xlgtl, Xzgtz)

R (t2) f (t.|x. 3 z.)= 2R(tZ,tg)l :1 (5.14)



Notice that the conditional distribution on the numerator
is the one we have encountered in Section 4.2.

In the succeeding theorem we prove that local

constancy of hi(tl,t2) is a characteristic property of
the bivariate geometric distribution (4.17).

Theorem 5.1.

A random vector X = (Xl,X2) with support IE has
bivariate geometric distribution (4.17) if and only if
it has a failure rate function of the form

h(tl,t2) = [hl(t2), h2(tl)] where hl and h2 are non­
increasing functions in the respective variables, such

Proof:

To prove the necessary part, we have from (5.14)

R(tl0t2) hl(tltt2) = R(t]_9t2)"'R(t1+l9t2)

giving

R(tl+l,t2) =-. [ l-hl(tl,t2)] R(tl,t2) (5.15)
Similarly

R(tl,t2+l) = [ 1-n2(tl,t2] R(tl,t2) (5.16)
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Setting t2 = O in (5.15)

Rl(tl) = [ l-h1(tl-l,o)] R1(tl-1)

Iterating this equation for decreasing values of tl yields

*1

al(t1) - £11 [1-hl(t1-r.o)]

Also t2

a2(t2) = gii [l—h2(o,t2-r)] (5.17)

Further iterating (5.15) for decreasing values of tl
gives

t

R(t1It2) = Ti [1-"’h1(tl-r!t2)] R-(cot?) (5018)1‘:

Substituting for R(o,t2) from (5.17)*1 *2
R(tl,t2) = £21 [1-hl(tl-r,t2)£1l[l-h2(o,t2-r)]

(5.19)

(5.19), in fact, gives a general formula, that is
outside the framework of the present theorem, that
relate the failure rate function and the survival
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function. It expresses that the failure rate function
determines the corresponding distribution uniquely.

Under conditions of the the0Iem}(5.l8) reads as
Z

R(t1.t2) = [1-h1(r2)] 1 R2(r2) (5.20)

when t2 = O in (5.20) we get

ti

Employing the same technique, the relationship

t
ngtl) = [1-h2(tl)] 2 al(tl) (5.21)

gives

R2(t2) = P2t2

Equations (5.20) and (5.21) leads to the functional
equation t t t tl 2 2 1[l_hl(t2)] P2 = [l’h2(tl)] pl

whose solution is

3.... .4...
{ :%¥2)}‘2 ={:'h%§l)-} t‘ = Q <5-22>
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where 9 is independent of both tl and t2. (5.22)
provides us with the representation

‘Jni(tj) = l—pi e _ (5.23)
Introducing (5.23) into (5.20) or (5.21) we get

t t t ts 2 l 2
R(t_]_9t2) = pl 1 P2 Q

and accordingly (Xl,X2) has the bivariate geometric
distribution. Conversely, when X has bivariate
geometric distribution we have

tiRi(ti) = pi

and f(ti|Xj Z tj) is given by (4.33) so that from
(5.14)

‘Jni(tl,z2) = l—pi 9

which is independent of ti and the proof is completed.

In the discrete case, we define the bivariate
MRLF, QQE), as a vector with components

ri(tl,t2) = E[Xi-ti|XiZti, i=l,2 ] (5.24)

6



so that

ri(tl9t2) R(tl9t2) = i E (xi“ti) f(xl9x2)l 2

Using (4.7) namely

rl(tl,t2) R(tl,t2) = R(tl+l,t2)[l+r1(tI+l,t2)]

and (5.15) we see that hl and rl are connected by the
relation

( , )l-hl(tl,t2) = -?1tl+t2~- (5.25)
l+rl(tl+l,t2)

In terms of bivariate MRLF, theorem 5.1 can be stated
as follows.

Theorem 5.2.

The discrete random vector X in theorem 5.1 has

bivariate geometric distribution (4.17) if and only if
its MRLF is of the form

.£L£) = (rl(t2)9 r2(tl))

with both rl and r2 non-increasing in the respective
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variables with ri(o) = pi/l—pi .

The proof of the theorem follows directly
from (5.25) and theorem 5.1.

There is a simple and interesting relationship
between the product of the components of Q(t) and.;(3).
that characterizes the bivariate exponential distribution.

Theorem 5.3.

A necessary and sufficient condition for the
relationship

rim hj($) = 1. 1 = 1.2 (5.26)
hold for all_t ) 0 is that I the random vector X
is distributed as bivariate exponential with density
(3.1).

Proof:

From (5.12)

or (E)
Ij(i) hj(L) = l + "5%;"­

It follows that r(;) = (al(t2), a2(tl)) which is
characteristic of the bivariate exponential distribution.
We further note that there exist an analogous result in
the discrete case that characterizes our bivariate
geometric model.

8



5.5 Qonclusion

The characterizations so far established in
the present study are based on the localised lack
of memory and its variants viewed as a sort of
extension of the corresponding properties in the
univariate case. The results are specialised to the
Gumbel's type I model and its discrete version. The
properties of these two distribution in terms of
order statistics and the development of a bivariate
Poisson Process that corresponds to the bivariate
exponential distribution are two main problems that
await solutions. Further, there is the larger problem
of examining the characteristic properties of the
other bivariate exponential distributions reviewed ­
in Chapter-2. Some progress has already been made in
this direction and will be presented in a future work.
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