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Chapter-l
INTRODUCTION

This thesis analyses certain problems in Inventories
and Queues. There are many situations in real-life where we
encounter models as described in this thesis. It analyses
in depth various models which can be applied to production,
storag¢, telephone traffic, road traffic, economics, business
administration, serving of customers, operations of particle
counters and others. Certain models described here is not a
complete representation of the true situation in all its
complexity, but a simplified version amenable to analysis.

While discussing the models, we show how a dependence structure
can be suitably introduced in some problems of Inventories and
Queues. Continuous review, single commodity inventory systems
with Markov dependence structure introduced in the demand

quantities, replenishment quantities and reordering levels
are considered separately. Lead time is assumed to be zero
in these models. An inventory model involving random lead
time is also considered (Chapter-4). Further finite capacity
single server queueing systems with single/bulk arrival,
single/bulk services are also discussed. In some models the
server is assumed to go on vacation (Chapters 7 and 8). In
chapters 5 and 6 a sort of dependence is introduced in the
service pattern in some queueing models.



This chapter reviews briefly some of the important
developments in Inventories and Queues. It also explains
the technical terms and notations used in this thesis.
Further a brief outline of the work on which this thesis
is based is also given towards the end of this chapter.

1.1. Historical background:-Inventory Theggy

The study of the quantitative analysis in inventory
systems is considered to be originated with the work of
Harris (1915) and he obtains a formula for the optimal produc
tion lot size given by the square root function of the fixed
cost, holding cost and the demand. This formula referred
to as the economic order quantity (EOQ) is popularised by
Wilson. After World War II several authors have discussed

the stochastic behaviour of the inventory in the case of
scheduling the use of stored water to minimise the cost of
supplying electric energy. Pierre Masse (1946), a French
engineer is considered to be the first to achieve a satisfactory
result regarding this problem. Arrow, Harris and Marschak(l95l)
have showed that the total expected cost incurred from use of
an (s,s) policy satisfies a renewal equation. Further Dvoretzky,
Kiefer and Wolfowitz (1952) have given some sufficient condi
tions for establishing that the optimal policy is an (s,s)
policy for the single-stage inventory problem. A detailed
account of the developments that have taken place till 1952



is given by Whitin (1953). Bellman, Glicksberg and Gross(l955)
determine the optimal policy for the case in which the order
ing and penalty cost are both linear. Gani (1957) studies
some problems arising in the stochastic theory of storage
systems.

A systematic account of (s,S) inventory type is first
provided by Arrow, Karlin and Scarf (1958). Their approach
is based on renewal theory. It is natural to enquire how
these models could be applied in practical situations.
Hadley and Whittin (1963) provides an excellent account of
the applications. A lucid survey of this field through 1962
is given by Scarf (1963). A complete computational approach
for finding optimal (s,S) inventory policies is developed by
Veinott and Wagner (1965). There is an excellent review
by Veinott (1966) which summarizes the status of mathematical
inventory theory. He focusses his attention on the determina
tion of optimal policies of multi-item and/or multi-echelon
inventory systems with certain and uncertain demands.
ikuterand Kamisky (1967) find the limiting distribution of
the number of units in the storage for a basic single commodity
storage system by applying the theory of regenerative stochastic
processes. The cost analysis of different inventory systems
is given in Naddor (1966). Kaplan (1970) and Gross and
Harris (1971) also make distinct contributions in these direct
ions. Inventory systems with random lead time is discussed by



Ryshikov (1973) in his monograph.

Sivazlian (1974) considers the case of a continuous
review inventory system with unit demand, zero lead time and
arbitrary interarrival times of demands. He obtains the
transient and steady state distribution for the position
inventory and shows that the limiting distribution of the
position inventory is uniform and is independent of the inter
arrival time distribution. Richards (1975) proves the same
result for the case with random demand size. Srinivasan(l979)
extends the result of Sahin (1974) to the case in which lead
times are i.i.d random variables following a general distribu
tion. This is further extended by Manoharan, Krishnamoorthy
and Madhusoodanan (1987) to accommodate the case of non

identically distributed interarrival times.

An (s,S) inventory system with demand for items dependent
on an external environment is studied by Feldman (1978). Constant
lead time (S,s) inventory policy with demand quantities forming
non-negative real valued random variables is anslysed by
Sahin (1979). Ramaswami (1981) obtains algorithms for an (s,S)
model where the demand is according to a versatile Markovian

point process. Further, Sahin (1983) obtains the binomial
moments of the time dependent and limiting distributions of
the deficit in the case of a continuous review (s,S) policy with
random lead time and demand process following a compound renewal



process. Single product inventory systems relating to

{production process is seen in the works of De kok, Tijms
and Van der Duynschouten (1984).

Thangaraj and Ramanarayanan (1983) discuss an inventory

system with random lead time and having two reordering levels.
Again Ramanarayanan and Jacob (1986) consider the same problem

with varying reordering levels; but in their model passage to
the limit is rather difficult. Also inventory system with
varying reordering levels and random lead timeis discussed by
Krishnamoorthy and Manoharan (1991). They obtain the time

dependent probability distribution of the inventory level and
the correlation between the number of demands during a lead
time and the length of the next inventory dry period.

A review of the work done in perishable inventory until
1982 can be had from Nahmias (1982). Kalpakam and Arivarignan

(1985) consider the case of an inventory system with arbitrary
interarrival time between demands in which one item is put into
operation as an exhibiting item (they have assumed that an
exhibiting item has exponentially distributed life time) and
obtain the transient and steady state distributions for
position inventory. Again the same system having one exhibiting
item subject to random failures with failure times following
exponential distribution and unit demand is dealt by the same
authors (1985) and the expression for the limiting distribution



of the position inventory is derived by applying the techniques
of semi-regenerative process. Manoharan and Krishnamoorthy(1989)

consider an inventory problem with all items subject to decay
and derive the limiting probability distribution. In this the
quantities demanded by arrivals are i.i.d.r.vs and interarrival
times have a general distribution.

Ramanarayanan andeJacob (1987) analyses an inventory

system with random lead time and bulk demands. They use the
matrix of transition time densities and its convolutions to
arrive at the expression for the probability distribution of
the inventory level. Inventory system with random lead times
and server going on vacations when the inventory becomes dry
is introduced by Daniel and Ramanarayanan (1987, 1988).

Jacob (1988) deals with bulk demand inventory models and server
vacation. Further Krishnamoorthy and Manoharan (1990) investi
gate an inventory problem in which the quantities demanded by
successive arrivals are assumed to follow distributions
depending on the availability of the items. They obtain the
limiting distribution of the inventory level. A stochastic
inventory system with Poisson demand and exponentially
distributed delivery time is discussed by Beckmann and
Srinivasan (1987).



1.2. A brief account of the Inventory theorx

An Inventory is a measured stock of some goods which
is held or stored for the purpose of future sale or production.
So it varies in quantity over time in response to a'demand'
process which operates to diminish the stock and a ‘replenish
ment’ process which operates to increase it. The obvious
applications to stocks of physical goods are light bulbs, raw
materials to be used in some production process etc. whereas
the number of engineers employed by a company, the number of

students enrolled in a college or the amount of equity capital
available for corporate growth are all regarded as inventory.
When production is involved, the inventory problem might require,
for example, determining how much wheat to plant per year or
how much gasoline of certain variety to have blended. The
amount of water to be released from a dam for electricity and
irrigation purposes is also an inventory problem. Again inventory
problems may involve scheduling, production, determining efficient
distribution of commodities in certain markets, finding proper
replacement policies for old equipment, determining proper prices
for goods produced, or combinations of these elements.

Demand

Inventories are held for the ultimate purpose of satisfy
ing demands. Usually the demand is not subject to control, but
the timing and magnitude of the replenishments may be regulated.



Various models of natural attrition comprise what we call the
demand process and the hiring or recruitment constitute the
replenishment process. Inventory theory is concerned with the
analysis of several types of decisions relating primarily to
the problem of when to buy and how much to buy of a given item.
The analysis involves consideration of when the item should be
manufactured and problems of transportation and distribution of
stock etc.

Motivation fo£;Inventor1

(a) Inventories are frequently held because of economies
of scale in production or procurement. If the average cost of
purchasing stock decreases when larger quantities are purchased,
then it is economical to purchase in relatively large quantities.
The result is the accumulation of stock prior to actual need.

(b) The requirements for items may vary substantially over
time and this itself may serve as an incentive for holding
stock. It is advantageous to procure the item before it is
needed at a lower marginal cost, thus contributing to the
formation of inventories. This motive for holding inventories
will be reinforced if the cost function displays decreasing
average cost.



(c) Another motive for holding stock is that the costs
may themselves be a function of time.

(d) Uncertainty of future requirements is also a strong
motive for holding inventories.

Inventory policies and objective function

In an inventory problem that lasts for some length of
time, cost will generally be incurred at various moments of
time. The main costs involved are: (i) the ordering cost
which is composed of a cost proportional to the amount ordered
plus a set up cost which is constant when the amount 2 ordered
is positive and zero for 2:0, (ii) storage cost or holding cost
which is incurred by the actual maintenance of stocks or the
rent of storage space or a measure of .obsolescence or spoilage.
The cost of repairing a defective item is also considered as a
storage cost, (iii) penalty cost or shortage cost which arises
when supply including both current output and accumulated stocks
from the past, exceeds demand. If a demand occurs beyond the
available inventory, it is met by a priority shipment or it is
backlogged and satisfied when the commodity becomes available.

These costs involved in the inventory are to be summarised to
a single number so that alternative policies can be compared.
An inventory policy is a set of rules that defines when and how
much quantity to be ordered.



10

when any inventory model is investigated first we
analyse the model to get the inventory equation which represents
the inventory level at any instant of time. The purpose of
obtaining the inventory equation is to determine the optimal
policy. A policy is called optimal if it maximises the
objective function when the objective function is a profit
function or minimises the total expected cost per unit time if
the objective function is a cost function. Several policies
can be used to control an inventory system; but if it is known
before hand that the policy has a particular form, then the time
to compute optimal policies can be cut substantially. The most
widely used policy is the (s,S) policy where the variables s and
S are the two decision variables. The variable s is referred
to as the reorder level while the variables s and 8 together
stand for how much quantity to be ordered. Whenever the inventory
position is equal to or less than s for the first time after a
replenishment, a procurement or replenishment is made to bring
the inventory to its maximum capacity 5.

An inventory system can be either a continuous review or
a periodic review system. In a continuous review policy the
inventory position is monitored continuously over time whereas
this is done at specified points of time in a periodic review
system. We concentrate only on continuous review single
commodity inventory systems.
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An important element in the mechanism of inventory

.process is the lag in delivery of the commodity after an
order is placed or decision is made to produce. This time
lag is called the lead time. If replenishments take place
instantaneously we say lead time is zero so that the possibility
of penalty cost may not occur. In some cases lead time is fixed
whereas in others it is a random variable with known distribu

tion. The time interval for which the inventory is empty is
termed as a dry period.

1.3. Queueing:Theory

Queueing theory had its origin in the pioneering work
done by Erlang (l909) on the application of probability theory
to telephone traffic problems. It soon drew attention of
many probabilists. We can have a queue of broken-down machines

waiting for repair at a repair shop, a queue of customers at
a store cash counter or a queue formed by planes circling above
an air port waiting to land. These provide obvious examples
of queues. Often we have cases where a physical queue is
absent, such as the waiting list of passengers for a railway
or air line ticket or of persons who register their names for
the purchase of a car which is not readily available and is
to be supplied from future production. So queueing is a
mechanism that is used to handle congestion.
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‘A system consisting of a service facility, a process of
arrival of customers who wish to be served by the facility,
and the process of service is called a queueing system. A queue
or waiting line develops whenever the service facility cannot
cope with the number of units requiring service. The units
arriving for service are called customers in a generic sense.
Thus a queueing system is regarded as an arrangement where the
customers requiring service form the input, the serviced customers
the output and the service rendered the transformation process.

Historical review

Since the work of Erlang (1909) with telephone engineering,
applications have expanded into several areas. Interesting and
fruitful interactions between theoretical structures and practical
applicationshave led to the rapid development of the subject in
areas like production planning, inventory control and maintenance
problem. For about two decades various researchers and practition
ers have looked at models either to solve particular problems at
hand or to develop understanding of the stochastic processes that
arise from them.

In any analysis of a queueing system one or more aspects
like the queue length, the waiting time and the busy period are
studied through their probability distributions, from which
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moments like mean, variance etc. can be obtained. For an
ordinary M/M/l queueing system, the system size probabilities
are obtained by solving difference-differential equations.
But for most of practical applications of the queueing model,
a steady state or a state of statistical equilibrium solution
is necessary. The time dependent or transient solution is
first given by Bailey (1954 b) making use of generating
function whereas Ledermann and Reuter (1956) obtain the solution

with spectral theory. While Champernowne (1956) uses combinatorial
method,Conolly (1958) uses difference equation techniques for
the time dependent solution to an M/M/1 system. Pegden and
Rosenshine (1982) also deal with the transient solution of
M/M/1 queues. Parthasarathy (1987) provides a very simple and
elegant approach to obtain the time-dependent solution to the
M/M/l queue. Again Parthasarathy and Sharafali (1989) extends
this to the M/M/s queue. Syski (1988) shows that the result
of Parathasarathy (1987) is equivalent to that obtained by
Cohen (1982).

For an M/M/1 queueing system we do not have to take into
account the time since the last arrival or the elapsed service
time of the unit in service because the negative exponential
distribution possesses the Markovian or the forgetfulness
property and so the queue length process is Markov_
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Several methods are available for the analysis of
nonqmarkovian processes. These include:

(i) the use of regeneration points ie. of an embedded
Markov chain. The behaviour is considered at a discrete set
of time instants chosen in such a way that the resulting
process is Markovian.

(ii) Erlang's method, in which life (service time) is
divided into fictitious stages such that the time spent in
each stage follows an exponential distribution

(iii) supplementary variable technique, whereby the inclusion
of sufficient supplementary variables such as expended life
time, in the specification of the state of the system to make
the whole process Markovian in continuous time.

The system size process, at arbitrary time points, in
M/G/l and GI/M/l queueing systems are in general a non-Markovian
processes. For an M/G/l queue the successive departure instants
constitute regeneration points whereas for a GI/M/l queue the
successive arrival epochs are the regeneration points. Thus
a Markov chain is embedded at these regeneration points.
Kendall (1951, 1953) makes use of this method. For an M/M/1
system, all time points are regeneration points so that the
whole process in continuous time is Markovian. Cox (1955)
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usethe supplementary variable technique to analyse non
Markovian stochastic processes. The method of supplementary
variable investigated by Cox (1955) is found in the thesis
of L. Kosten in 1942. Lavenberg (1975) derives an expression
for the Laplace-Stieltjes transform of steady-state distribution
of the M/G/1 queueing systems.

Queueing systems with server vacation arise in many
computer, communication, production and other stochastic
systems. Welsch (1964) characterises the transient and
asymptotic distributions of the queue size, waiting time and
waiting-plus service time of an M/G/1 queue in which he assumes
that the first customer arriving when the server is idle has a
distribution different from that when the server is busy.
Miller (1964), Avi-Itzhak, Maxwell and Miller (1965), Cooper
(1970, 1981), Levy and Yechiali (1975), Heymann (1977),

Shantikumar (1980, 1982), Scholl and Kleinrock (1983), Ali and
Neuts (1984), Doshi (1985) all deal with vacation models. An
extensive survey of the queueing system with vacation to the
server is given by Doshi (1986). Daniel (1985) studies some
queueing models with vacation to the server where the server
takes rest either after serving a certain fixed number of
customers or whenever the system becomes empty, whichever occurs

first. A finite capacity M/G/1 queue with server vacation is
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ycmnsidered by Lee (1984) where the vacation is initiated if

igither the queue is empty or M customers have been served
xhuing a busy period. Manoharan and Krishnamoorthy (1989)

also consider a model similar to Lee (1984) and obtain the
time dependent queue size distribution and virtual waiting
time distribution. Ramachandran Nair (1988) analyses extensively
queueswwith vacation to the server after serving a random number
of units. Jacob (1988) and Madhusoodanan (1989) deal extensively
vdth several queueing models with server vacation and derive
their time dependent behaviour.

Over the past two decades steady progress has been made
towards solving increasingly difficult and realistic queueing
models. Lack of results suited for ready practical implementa
tion is observed in several areas in queueing theory. One such
class of models is distinguished by the presence of a specified
feature, namely, that customers arrive in groups of random size
and are served in groups that are themselves of random size.
Queueing models belonging to the above category are termed

‘bulk queues" in literature.

Bailey (l954a) is the first to carry out the mathematical
investigation of queues involving batch service. He studies the
stationary behaviour or the system in terms of probability
generating function. This is followed by a series of papers
with group arrival and/or batch service. Gaver (1959) seems
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to be the first to handle queues involving group arrivals.
He is followed by Jaiswal (1960, 1962). Saaty (1961) provides
an excellent account of some of these works. Miller (1959)
is the first to examine a queueing system in which customers
arrive in groups and are served in groups. He obtains the
stationary distribution of the number of units in the system
making use of embedded Markov chain method. Bhat (1964)

studies the equilibrium behaviour of the MX/GY/1 and the
GIX/MY/1 systems using fluctuation theory. Again bulk service
queue with infinite waiting room is investigated by Bhat (1967)
to obtain the busy period and the busy cycle distribution of
the queue length process. Further Teghum, Loris—Teghum and
Lambotte(1969) also deal with bulk arrival, bulk service
queueing model. Chaudhary and Templeton (1981) obtain the
limiting behaviour of an M/GB/l queueing system. The books by
Chaudhary and Templeton (1984) and Medhi (1984) give a detailed
account of the work done in bulk queues. Jacob (1988) and
Madhusoodanan (1989) also deal extensively with several bulk

service queueing models. Morse (1955), Takacs (1961, 1962),
Cohen (1969), Prabhu (1965, 1980), Gnedenko and Kova1enko(l968),

Cooper (1972), Gross and Harris (1974, 1984), Bagchi and
Templeton (1972) and Asmussen (1987) analyse in depth
several queueing problems.
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Liu, Kashyap and Templeton (1987) deal with an infinite
server queueing system providing both individual service and
batch service and obtain the transient results for the first
two moments of the system size distribution. Waiting time
distribution and steady state results are also computed by
them.

Another important feature of a bulk queue is that the
system follows a general bulk service rule with range (a,b)
and with or without vacation. In 1942 Kosten discussed a

deterministic service time system with capacity range (a,w).
Further Neuts (1967), Borthakur (1971 a,b), Medhi (1975, 1984),

Holman et. al. (1981), Kambo and Chaudhary (1982), Easton and
Chaudhary (1982), Chaudhary and Templeton (1981) all consider
bulk service queueing system with range (a,b). Fabens (1961,
1963) studies the transient state of the system by identifying
the underlying semi-Markov process. Most of these works require
the application of Rouche's theorem. Neuts (1979) develops an
algorithmic method for the solution of M/Ga’b/1 system. His
approach involves only real arithmetic and avoids the calcula
tion of the complex roots based on Rouche's theorem. Cohen(l982)
seems to be the only author to have developed waiting time
results for bulk arrival and bulk service queue where the
server becomes idle when the system is empty. His results
are given in terms of integrals. Most of the above mentioned
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works concentrate on the steady state behaviour of the system.
Jacob, Krishnamoorthy and Madhusoodanan (1988) obtain the

time dependent solution to M/Ga’b/1 queue with finite capacity
and the same model with server vacation is analysed by Jacob
and Madhusoodanan (1987). Manoharan (1990) extends their

result to Bk/Ga’b/1 queue with server vacation. Transient
solution and virtual waiting time distribution are discussed
by him. He also considers a queueing situation where-the
service is carried out either singly or in batches depending
upon the number of customers waiting for service in the
waiting room. Steady state behaviour of the system is
examined by him.

Another notable feature in the queueing system is the
state dependence of the service characteristics. Hiller
et.a1. (1964), Gupta (1967) and Rosenshine (1967) examine
queueing systems in which the service rates are an instant
aneous functions of the system state. Harris (1967) considers
the standard M/G/1 system in which the service time parameter
is a random variable dependent upon the state of the system
at the moment the customer's service is begun. Murari (1969)
and Harris (1970) discuss bulk arrival queue with state
dependent service rate. Ponser (1973) investigates a queueing
model in which the service time of a customer depends upon his
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waiting time in the queue and at the same time independent of
all other parameters associated with the system size.
Shantikumar (1979) discusses a class of queueing models in
which the service time of a customer at a single server
facility is dependent on the queue size at the onset of its
service. He extends Harris's two state, state dependent
service to M/G/l queue.

1.4. Relation between Queues and Inventories

Applications of and fruitful connections between queueing
theory and inventory theory occur numerously. Steady progress
has been made to solve problems which are difficult but realistic
in inventory and queues. Similarities between the mathematical
formalisms of both models have been observed from early times.

The amount of goods or material held in stock for future
purpose can be identified as a group of customers waiting for
some sort of service at a service facility. The arrival of an
order or a demand for an item is likened to a service completion
since such an arrival or demand results in the departure of a
customer in the queue which corresponds to the depletion of the
inventory level. The demand for an item to an inventory arrives
singly or in batch of fixed or variable size. The bulk demand
corresponds to the bulk arrival in queueing theory and single
demand that of single arrival. The interarrival times of demands
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regarded as the service time.

A better correspondence between an inventory system and

queueing system is seen by regarding the demands occuring to
the inventory system as the arrival of customers to the queue
because both of these are more or less uncontrollable. The
Sinventory replenishment time or leadtime can be compared to

-'*i*the service time of the queueing system and both of these are,

5in general controllable by the management of the system.

1.5. Renewal process

Let {)(n, n--1,2,... } be a sequence of non-negative
independent and identically distributed random variables with

Xl,X2,X3, ... representing the times between successive
occurrences of a fixed phenomenon. Then S°=O; Sn+l=Sn+.Xm_l ,
n=0,l,2,... define the times of occurrence of 1st, 2nd,...
events, assuming that the time origin is taken to be an

instant of such an occurrence. Then Sn's are called renewal
times.

Let F(.) denote the distribution of the interrenewal

times. Assume that Pr [Xo=0} < 1. Since Xn's are non-negative
E(Xn) exists.

Define N(t) as Sup {nlsnst}. Then the process {N(t),t>,O}
is called a renewal process or a counting process. Obviously
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the state space of the renewal process consists of a single
element. The random variable N(t) gives the number of

renewals in the interval (o,t]. The distribution of Sn is
given by Pr-{Sn4x}= Fh(x), where Fn(x) = F*n(x), (since Xi's

are i.i.d random variables)and F#n(.) denotes the n-fold
convolution of F(.) with itself. (F*°(.) 21).

It is easily verified that

N(t) 2.n¢=aSn( 1:
so that the distribution of N(t) is

Pr {N(t) = n} = s*"(t) — p*("+1)(t).

Using this distribution, the expected number of renewals in
(o,t] denoted by M(t) is given by

Mm = E[~(t>1= 3 r=*“<t)
n=l

M(t) is called the renewal function.

Consider a stochastic process Z = {Z(t), t)O)'with
state space E. Assume that every time a certain event occurs,
the future of the process 2 after that time is a probabilistic
replica of the future after time 0. Such times are called
regeneration times of Z and the process Z is said to be a

regenerative process. If Tl,T2,T3, ... constitute a sequence
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of regeneration points, then ii“, n=l,2,.... J forms a
renewal process and the time between successive renewal
points is called a cycle of the process. Cox and Smith (1961),
Cox (1962), Feller (1965), Ross (1975), Cinlar (1975 b),
Bhat (1984) give a detailed account of renewal theory.

1.6. SemieMarkov and Markov renewal process

Consider a stochastic process which moves from one state
to another of a countable number of states in such a way that
the successive states visited forms a Markov chain. Assume

that the process remains in a given state for a random length
of time whose distribution depends upon the state being visited
and the one to be visited next. Such a process is defined as
a semi-Markov process since it is a Markov chain with the time
scale being randomly selected. Thus a semi-Markov process
identifies or gives the state of_the process at each time

point. For the same stochastic process, let Ni(t) denotes the
number of transitions or renewals into the state i (E be the
state space of the Markov chain) which occur in (o,t]. Set

N(t) = ((Nl(t), N2(t), )
Then the stochastic process {N(t), t)O]-is a Markov renewal
process. Thus a Markov renewal process is a counting process
which records at each time point t the number of times each
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of the possible states have been visited. Such a process
becomes a Markov process if the sojourn times are all exponen
tially distributed independent of the next state to be visited;
it reduces to a Markov chain if sojourn times are all equal to
one, and becomes a renewal process if there is only one state.

This means that a stochastic process {(X,‘I')}={(Xn,‘1'n), neN}
defined over a finite set E is a Markov renewal process if

Pr {(Xn+1=j; 'rn+l-Inst | xo,xl,...,xn;To,Il,...,Tn}

= Pr[x T -Tngt | xn} for all n e N and 1,3‘ e Eand t)O (l)n+l=j3 n+l

Denote the R.H.S. of (l) by Q(i,j,t), if Xn=i.
Clearly

Q(i.J.t) >»0; 1.3 6 E; tbo
2 Q(i9j9°'°) = l

jeE

The family of probabilities

@={Q(1,j,t), i,j e E; t>,o} is called a semi—Markov
kernel.

For this Markov renewal process, the expected number of returns

to state j in an amount of time t given that the system has
started from state i is the Markov renewal function R(i,j,t)
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which is given by

-IQ “(i,j,t) where
O

R(i9jot) =
urasfl

Q(i,k,du) Q*“(k,j,t-u) for n)0
O‘1w*

Q*(n+l)(i9jvt) = 2
k€.E

and

Q°(i’j’t) -_-{E if i=-jif ifj

Define the process Y ={Y(t), t30}with state space E by
Y(t) = xn for Tn-$ t < Tn+l. Then the process[v(t), t)0Jis
called the semieMarkov process defined over the state space E

with the semi-Markov transition kernel @1_={Q(i,j,tfl. Thus
the semi-Markov process Y provides a picture which is convenient

in describing the Markov renewal process underlying it.

Markov renewal equations

Let (X,T) be a Markov renewal process defined over a
finite state space E with the semi-Markov kernel Q(i,j,t) and

Markov renewal function R(i,j,t), i,j E E, t z'O. Let R+ and
R denote the set of non—negative real numbers and real numbers
respectively. Assume that f is a function defined by

f: E x R+ -—--> R such that for every i E. E, the mapping
t--9 f(i,t) is Borel measurable and bounded over finite

intervals. Let;¥' be the class of functions f. Then a function
fe Jris said to satisfy the Markov renewal equation if f(i,t)
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can be written as

t
f(i,t) = g(i,t) + 2 f Q(i,j,du) f(j,t—u),

j E E o ieE,teR+ (2)
for some function gig}? . Here Q(i,j,t) and g(i,t) are known
and so the problem is to solve for f(i,t). Further the Markov
renewal function (2) has one and only one solution given by

f(i,t) = _z R(i,j,du) g(j,t-u), ieE, teR+3e.E 0‘wrr

Levy (1954) and Smith (1955) independently introduced semi

Markov processes.- A detailed description of the Markov renewal
process is given in Pyke (1961 a,b). Cinlar (1969, '75 a,b)
provide a detailed account of Markov renewal and semi—Markov

processes. Inventory and queueing models based on the theory
of semi—Markov process is studied by Fabens (1961, '63).
Further Schal (1971) analyses M/G/l and G/M/1 queues and obtains
their assymptotic behaviour and rates of convergence. His
approach is also based on the theory of semi-Markov process.

1.7 A brief account of the results in this thesis

The aim of the thesis is to study the time—dependent
and steady state behaviour of certain problems in Inventories
and Queues. This is achieved by identifying the underlying
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semi-Markov processe and the embedded Markov renewal process

of the basic process. It is assumed that the inventory
(assumed to be single commodity) is continuously monitored
over an infinite horizon period. In the case of some of the
problems discussed we have analysed certain control problems

associated with them. All queueing problems investigated
deal with finite capacity.

Chapter 2 deals with an (s,S) inventory policy where
each arrival demands a random number of items, the maximum

size being a with ags. We assume that the successive quantities
demanded form a Markov chain. Replenishment is instantaneous

and the quantity replenished is such that the inventory is
brought back to its maximum capacity 8. The probability
distribution of the stock level at arbitrary time points and
also the steady state inventory level distribution are obtained.
The optimal value of the pair (s,S) is computed.

In chapter 3, the dependence structure is introduced in
the (s,S) inventory problems in two different ways. Model I
discusses a bulk demand inventory policy*with the successive
quantities replenished forming a Markov chain. Model II studies
a unit demand (s,S) policyvvith the successive reorder levels
varying according to a Markov chain. In Model II, the replenish
ment quantity is always equal to M=S-s. In both Models lead time
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is assumed to be zero. The inventory level at arbitrary time
tint and its limiting distribution are computed for both

iodels. Some control problems associated with the Models are
énvestigated.

Ef Some numerical illustrations are provided at the end of
chapters 2 and 3.

Chapter 4 considers a bulk demand inventory problem with
Ezenalead time and the server taking vacation each time the
finventory becomes dry after the previous replenishment. The
system size probabilities and the reliability of the system at
arbitrary time epochs are obtained.

Chapter 5 introduces a class of finite capacity single
server queueing models in which the server offers a random
number of stages of service to each unit depending upon the
system size at the onset of its service. A three dimensional
Markov chain with the first coordinate representing the system
size, the second one representing the number of stages of
service given to the unit undergoing service and the third one
denoting the number of stages of service completed by the unit
underoing service is identified. The system size probabilities
and the limiting distributions are computed. Numerical
illustration is also provided.



29

Chapter 6 generalises the M/Ga’b/l queueing system
with finite capacity. The services are in batches of sizes
between a and b and is such that the size of a batch to be
served is determined based on the time taken to serve the
previous batch. System size probabilities and steady state
analysis are carried out. Distribution of the busy period and
the busy cycle are gtudied. Virtual waiting time distribution
is also derived. A control problem associated with the model
is discussed.

In chapter 7, we consider two cases of single server
queueing systems of finite capacity. Model I discusses a

G/Bk/l queueing system whereas Model II investigates a queueing
system of general bulk service rule with batch size varying
from a to b. Expressions for the time dependent system size
probabilities at arbitrary time point for Model I and II,
Limiting distribution for Model I and virtual waiting time
distribution for Model II are obtained.

Chapter 8 discusses a bulk arrival,bulk service queue
of finite capacity b. We assume that a service commences only
when the system is full and then only a random number of units
are taken for service. On completion of the service of a batch
if the system is not full, the server goes for vacation of random



duration. System size probabilities are computed. In this
model the time duration for which the system remains non~

empty continuously is defined as the busy period of the
system. Expressions for the distribution of the above
defined busy period gives an upper bound for the virtual
waiting time. By restricting b=2, the virtual waiting time
at time t is computed.



Chapter-2
AN INVENTORY MODEL WITH MARKOV DEPENDENT

DEMAND QUANTITIES*

2.1 Introduction

In this chapter we deal with a continuous review (s,S)
inventory model in which it is assumed that the quantity
demanded by each arrival depends on the quantity demanded by

the previous arrival and the maximum quantity demanded is

a 5 s. Specifically, the quantities demanded by the successive
arrivals form a Markov chain. some work have been done earlier

in which the assumption of independence on the quantities
demanded is relaxed. Karlin and Fabens (1959), Iglehart and
Karlin (1962) consider the case of a discrete-time inventory
model where the demands are assumed to arise from a Markov

process. They assume that at the beginning of each period

the system is in one of N states labelled l,2,...,N which are
observed by the inventory manager before he orders. If the
demand process is in state j in a period, a demand distribution,

irj will be operative in the period. The demand process changes
state according to known transition probabilities with the
transition from period to period governed by a Markov process.

* Appeared in Cahiers du C.E.R.0., Vol.33, 1991.
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when the demands at each arrival epochs are dependent
the structure of the (s,S) optimal policy is not changed;
but the main difference is that the choice of the quantity
replenished at an order placing epoch will depend upon the
demands in the cycle just completed. So the demand process
changes the state of the inventory level according to a set
of known transition probabilities with the transition at each
demand epoch governed by a Markov chain defined over a state

space {l,2,...,a.}.

Section 2.2 deals with the description of the model.
The various notations used in the sequel are also explained
in that section. Section 2.3 discusses the analysis of the
model. Limiting distribution of the system is investigated
in Section 2.4. The model discussed here can be suitably
applied in situations like bonus demands in major companies
on recurring basis. The aim of the management is to minimise
the total cost by distribution of optimum amount to the
satisfaction of both the employees and the employer. An
optimisation problem associated with the model is discussed
in Section 2.5. A numerical illustration is done in the last
section.

2.2. Description of the model

An (s,S) inventory model with the maximum capacity of
the warehouse being fixed as S units with zero lead time is
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is considered. It is assumed that each arrival demands a
random number (integer valued) of items; but the maximum

quantity that can be demanded is restricted to a with a-{ s.
The basic assumption of our model is that the quantity
demanded by each arrival depends on the quantity demanded

by the previous arrival so that the quantities demanded by
the successive arrivals form a Markov chain defined over the

state space {l,2,...,a]~. The interarrival times of demands
are independent and identically distributed random variables
following distribution function G(.) and probability density
function g(.) with mean u (assumed finite). Replenishment
is assumed to be instantaneous and such that whenever the

inventory drops to s or below for the first time after each
replenishment an order is placed to bring the stock level
back to 8. To avoid perpetual shortage it is assumed that
S > 2s. The following notations are used in the sequel:

I(t) - On-hand inventory level at time t.

* denotes convolution. For example (F*G)(t) = f F(t)dG(t-u)
U-X

g*k(.) - k-fold convolution of g(.) with itself.

E denotes the set {l,2,...,a]

E1 = {s+1, 2+2,..., s-1, 5 }
No [o,1,2,... }



34

Pi(n,t) .-. Probability that I(t)=n given that the initial
reordering level is i.

[x] denotes the largest integer less than or equal
to x.

% 0 if i is a positive integer
[1] _ 1 otherwise

1 if [5-$1 _ 0O S-n = . S—n,0} 0 1f  > 0
2.3 Analysis of the model

Let 0 = To < Tl ( T2 < ... be the successive demand
epochs and Xo,Xl,X2, ... be the quantities demanded by the
successive arrivals at these epochs. Then by our assumption

{Xn, n E No] constitutes a Markov chain defined on the state
space E with the initial probability

pi = Pr (Xo=i), i E E.

Let us assume without loss of generality that pi = l and
p. = 0 for j # i, j E E.

J

We assume that the Markov chain {Xn, n 6 No} to be irreducible
and aperiodic with the one—step transition probability
matrix
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)), ia3€ E where

pi,j= Pr{xn+l=j I xn=i}

Let Y0,Yl,Y2, ... be
demands at TO,Tl,T2,

Y -Xn—l n

“ s
From the description

the stock levels just after meeting the
. Then

if Yn-Xn g s

of Xn and Yn, n = 0,l,2,... we easily see
that the two dimensional stochastic process {(Xn;Yn),n€.N°}
constitutesa Markov chain defined over the state space E x E1.
The corresponding one-step transition probabilities associated

with the Markov chain {(Xn,Yn), n e No} can be generated from
the given one-step transition probabilities associated with the
demand process.

Theorem 1

The stochastic process {fiX,Y),T} ={fiXn,Yn),Tn; ne;N°} is
a Markov renewal process defined over the state space E x El
with the corresponding semi-Markov kernel given by

{o{(:.I). (j.J).t}. 1.36 E; I.J<-:51. t >0}
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where

o{(i.I).(j.J).t} -—- Pr{(Xn+l=J. v,,+1aI);

Tn+l-Tn'$ t I (Xn=i’ Yn=I)}
t

3 .C{ Pl,‘-j 9(U)dU

= pi’J G(t)
?roof:

The interarrival times of demands are positive,
independent and identically distributed random variables.
Hence the demand epochs constitute a renewal process. By
our basic assumption that the successive quantities demanded

forms a Markov chain, the demand magnitude at Tn+l depends

only on the demand magnitude at Tn and not on Tr,
r'= 0,l,2,...,n-1. Further the demand magnitudes are
independent of the stock levels. Hence considering two

successive demand epochs say Tn and Tn+l

Pr [(x =3’, Ym_l=J); Tn 1-Tn\<t I (X0,YO),(Xl,Yl),...,n+l +
(Xn=i, Yn=I); To,Tl,...,Tn }

2 pr {(Xn+l=j’ Yn+l=J); Tn+l_Tn 6 tl(xn=iiYn= I)}
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Since T Tn, n=O,l,2,..., are i.i.d random variables withn+1"

probability density function g(.) and fxn, n e N°} is a
Markov chain which is independent of {Yn, n e No},

Pr[(X -T \< 1:] (Xn=i, vn=I)}n+l=j’ Yn+l:J); Tn+l n

Did 9(u) du

u I

0“ad

pi’j G(t)

Q{(i,I), (j,J),t]which proves the theorem.

As soon as the stock level falls to an element in

{s—a+l, s—a+2,..., s—l,s} for the first time after each
replenishment, next order for replenishment is placed so as
to bring the inventory level back to S. Initially due to a
demand of magnitude i(i 6 B) we assume that the inventory

level falls to s or below so that X0 = i and Y0 = 8. Looking
at the successive time epochs O = TO(l), Tl(l), T2(l), ...

at which the inventory level is brought to 5, let
z={(i,s), (j,S),t } denote the probability that two consecutive
replenishments take place in an amount of time-s t such that
the initial demand is for a quantity i and the next demand
that leads to replenishment is for a quantity j; i,j 6 E.
Then
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. S-s *n .
F[(1.s).(j.s).t}= 23 S Q {(i.s),(g,s),t};

n.—.['*'5-*]+S[§_a:5.] i’j 6 E; t >/ 0

Now define the function a{(.),(.),t} by

a{<s..s>.<j.s>.t}= EEO F*’“{<i.s>.(:;.s>.t}
with

1 if i=j ,i,jeE,tg,0
Fo{(i1s)9(j9S)9t} 2 {O if

F*m[(i,S),(j,S),t }is obtained from the recursive relation

*(m+l) . . t .
I= {(1.s).(3.s).t}=ke2E J‘ 1={(1.s).(1<.s).du}O

1=""‘[(k.s).(j.s).t-u} .i.jeE;
t >,o.

Since I(t) denotes the onhand inventory level at time t,

I(t) = Yn for Tn.$ t < Tn+l, so the process [I(t),t 3 O}is a
semi4Markov process defined on the state space El.

Defining Pi(n,t) as Pr {I(t)=nlXo=i] with neEl and i € E we
see that Pi(n,t) satisfies the Markov renewal equations
(Cinlar 1975a). Thus
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Pi(S,t) = Pr {I(t)=s; T1>t|X°=1] + Pr[I(t)=S;TI$tIXo=i}

K]-_(s9t) +  E E F{(i9S)v(j2s)9d‘-3} Pj(S9t‘u)
where

Ki(S,t) = Pr{I(t)=s; Tl>tlXo=i} = l-G(t), and

(ii) for n = 3+1, s+2,..., s-1

Pi(n,t) = Ki(l)(n,t) + j£EE E QKi,S),(j,S-j),du}Pj(n,t-u)
where

K§l)(n,t) = Pr [I(t)=n; Tgl) > tIX° = i}

= ,1/E sgn 2 Q*m{(ivS)9(jsn)9du}
o =[§_-_n_]+6 jeE

3 {[5—;“-1.0}

[1-G(t-u)]

The solutions are given by

Pi(S9t) = 2 ../t. R{(i9S)9(jts)9du] Kj(S9t""u)E 0j E
and for n = 3+1, 5+2, ..., S-1

Pi(n,t) = E } R[(i,S),(j,S),du}’Kgl)(n,t-u).j€:E o



2.4 Limiting distribution

To compute the steady state probabilities it is
necessary that at each demand epoch, not only the quantities
demanded but also the corresponding inventory levels after
meeting the demands are to be known. From the given
probabilities governing the demand process, the transition

(1)
probability matrix (( P (i,I)’(£,L) )) corresponding to

the two dimensional Markov chain {(Xn,Yn), n-e No} can be
derived where

pEi3I).(8,L) = Pr {(x““1=2' Y“*1:L)l(X“=i'Y”:I)]

1,17. e E, I,L e E1

The state space of this Markov chain is (i ,I ) i =l,2,...,a;l l 1
I1 = s+l,s+2,...,S-l}[J{(l,S),(2,S),...,(a,S)} with il+Il $ S.(l) . . . .
(( p(i,I)’(E’L) )) 1S computed and 18 given in Table-l.

We have assumed {Xn, ne NO} to be irreducible and
aperiodic and hence is the Markov chain {(Xn,Yn),n:e No}.
Let n be the stationary probability vector of the Markov chain

{(xn,vn),n e N°}.

That is n = {n(l,s+l), n(2,s+l),...n(a,s+l), n(l,s+2), n(2,s+2),
n(1.s-1). n(1.s), n(2.s).  n.(a.s)}
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These satisfy the relation

1r(IZ L) — E 2 1t(i 1) (1)9 "' 9 Pi=1 I=s+l ((i,I),(Z,L))
with

>3 2 1:(i,I) -.- 1
ie E Ie E1

The uniqueness of n follows from Bhat (1984). For, we

have assumed a g s and so the state space E of the Markov

chain [Xn, n.e No} is finite. Hence the state space of the
Markov renewal process [(X,Y),T} has only a finite number

of elements in it. Further [(Xn,Yn), ne No} is irreducible
and aperiodic since {Xn,n«e No} is irreducible and aperiodic.
Hence the invariant measure n is unique.

Since the interarrival times of demands are i.i.d.
random variables, the mean sojourn in any state is equal to
the mean of the interarrival time distribution of the demands.

So the mean sojourn time in state (2,L), 36 E, Le.El is

m(£,L) = f (l--G(t))dt = p (assumed finite)
0

Following Cinlar (l975a) the limiting probabilities are
obtained as given below.
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(i) for n = S,
,3 was) m(j.s>

lim Pi(S,t) 1:1U s St" ” 2 2 n(€,L) mC€,L)
2:1 L=s+l

a
= 2 “(j9S)

j=l

(ii) for n = S-ael, S-a+2,...,S-2,S—l,

lim Pi(n,t) = 2 n(j,n)‘t--900 j=l

['1 =  S+27\oo,
a

lim Pi(n,t) = 2 n(j,n)t —~»m j=l

We note from the above that the limiting probabilities are
independent of the initial state i, as is expected from the

theory of Markov chains. Let lim Pi(n,t) = P(n). Thet —#'m '
following theorem easily follows from the above discussion.

Theorem 2

If the demand quantities are independent and identically
distributed random.variables on the set E, then the limiting
stationary distribution is discrete uniform.
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2.5. Qptimisation problem

For any inventory model the decision variables are
to be so chosen that the objective function associated with
that model attains the minimum value at these values of the

decision variables. Here the objective function associated
with our model is the total expected cost (for any cycle)
per unit time under steady state. The decision variables
are s and S for a given fixed value of a.

The expected inventory level E(I) at any instant of
time is

S
13(1) = 2 n.B(n)

n=s+l

a S-a S-n S-l
= E {_ Z n n(j,n) + S n(j,S)]+ 2 2 n n(j,n)j=l n=s+l j=l n=S—a+l

We shall call the time elapsed between two successive demands

that result in the replenishment of the inventory as the
length of a cycle. Suppose in the steady state the quantity
replenished at a demand epoch is M and Z denotes the length of
the cycle just completed. The joint density function of M and 2

be denoted by fj(m,z). Then

fj(m,z) = Pj{M=m, z.$ Z < z+dz}

where j is the quantity demanded by the last arrival in the
previous cycle.
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S—s

f.(m,z) = 2 {P.[(M=m, z$Z<z+dz) k arrivals demandedJ k=[_S__-3111+ <0’ 3 totally m(>(S-s))a [§:Q] units of which thea first (k-l) arrivals
demanded less than
(S~s) units ]

x Pr (k arrivals demanded totally m(>(S-s)) units
of which the first (k—l) arrivals demanded less

than (S-s) units)}

S-5= is 3. . . p3*i1 pi1'i2°"pik-1'ik“=[§T:'m]*Ss
11+ 12+. 0 .+1k=m

S
l.._l‘3‘

ll+12+...+lk_l<S-S

9*k(z)

Hence the expected quantity replenished per unit time is

M m S-S-i-6--l m
E.("Z' ) = £ mr-E-S -E fj(m,z)dz

The probability density function of the duration of a cycle is

S-s+a—l

2 f.(m,z)m=S-s 3
Therefore, the expected length of a cycle is

S +a—1w —s
E (Z) = f z E f.(m,z)dzJ o m=S-s 3
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Let K be the fixed ordering cost, c be the variable procure
ment cost and h be the holding cost per unit per unit time.

So the total expected cost per unit time is ?j(s,S) and is
given by

-I;j(s,S) = K + cs. (-25).» h E(I)1=_.(z) 3
J

where

Ej(Z), Ej(%) and E(I) are as already defined. Thus
for given K,c,h, one-step transition probability matrix
of the demand process and interarrival time distribution, the
optimal value of the pair (s,S) can be computed.

2.6. Numerical illustration

Let the one-step transition probability matrix
associated with the demand process be

P 0.3 0.7= 0.4 0.6

and let the interarrival times of demands follow exponential
distribution with mean ?\= 0.5.

The stationary probability vector u is computed and E(I)

obtained. Then Ej(Z), Ej(%) and ?j(s,s) for j=l and K=l0,
c=l, h=l are computed and tabulated as follows.
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M ..(5.3) n 5(1) 81(2) 51(2) Fl(s,S)

(2,5) {.02, .41, .08, .17, .32} 3.82 1.81 2.06 10.49
(2,6) {.12, .11, .04, .26, .15,.08, .24} 4.56 2.04 1.84 12.02
(2,7) (.09, .05, .09, .11, .04,

.13, .15, .06, .28} 5.34 1.23 0.95 17.10
(3,7) (.106, .1, .043, .233,

.143, .071, .304} 5.68 2.86 2.97 11.90
(3,8) {.05, .16, .11, .06, .02,

.25, .08, .08, .19} 6.03 1.11 1.21 19.25
(3,9) {.06, .09, .05, .12,.o7,.o7,.03’ .16, .10, .05’
From the above table, we see that corresponding to the pairs
(2,5), (2,6) and (2,7), the total expected cost per unit time
is minimum for the pair (2,5) and corresponding to (3,7),(3,8)
and (3,9), the optimal pair is (3,7) and corresponding to
(2,7) and (3,7), the optimal pair is (3,7) for the given set
of values of K,c,h and 7\ .



Chapter-3
SOME INVENTORY MODELS WITH MARKOV DEPENDENCE*

3.1 Introduction

In the previous chapter, the assumption of Markov
dependence was made on the quantity demanded by successive

arrivals. in this chapter the dependence structure is
introduced in the (s,S) inventory models in two different
ways. In Model I, the successive quantities replenished are
dependent— dependence being on the just previous replenished
quantity only, whereas in Model II the reorder levels vary
according to a Markov chain. Both models deal with zero lead
time. Model I considers the case of bulk demands and Model II
that of unit demand

Ever since the book by Arrow, Karlin and Scarf appeared

(1958), many researchers have formulated discrete or continuous
review inventory problems through (s,S) policy. Sahin (1983)
examines an (s,S) inventory model with bulk demands and random
lead time. She obtains the binomial moments of the time

dependent and limiting distribution of the inventory deficit.
This is also analysed by Ramanarayanan and Jacob (1987) where

they examine only the time dependent behaviour of the system.

* Model II discussed in this chapter appeared in Opsearch,
Vol.27, No.1, l990.
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An (s,S) policy with the quantity demanded not exceeding what

is available in the stock is examined by Krishnamoorthy and
Manoharan (1990). They have derived the system size distribu
tion in the steady state.

In this chapter we consider two Models. In Model I
the inventory level is not necessarily brought back to its
maximum at a replenishment epoch; instead the successive

replenished quantities are assumed to form a Markov chain defined
over a state space to be specified. Such a situation arises in
the case of financing companies which give loans for building
constructions, purchase of vehicles etc. where a fresh loan
quantity depends upon the previous loan amount which have been
already availed.

Ramanarayanan and Jacob (1986) discuss the case of
an (s,S) inventory model with unit demand, random lead time and
varying ordering levels. The method suggested by them is not
,computationally tractable and further, passage to the limit is
extremely difficult. Krishnamoorthy and Manoharan (1991) discuss
the same model and obtain the correlation between the number of

demands during a lead time and the length of the next inventory
dry period. Model II is on an inventory policy with Markov
dependent reordering levels.
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Section 3.2 dealsxuith the description of Model I.
System size probability distribution at arbitrary time point
and steady state behaviour are obtained. Illustration by a
numerical example and cost function over a cycle are examined
in the same section.

Section 3.3 is concerned with the description and
analysis of Model II. System size probabilities and the
limiting distribution are obtained. An optimal decision rule
is also discussed. Further a numerical example is also given.

The following notations are used in this chapter:

I(t) — Inventory level at time t (t ; O)

* - Convolution. For example (F*G)(t) = f F(t) dG(t-u)

f*n(.) - n-fold convolution of f(.) with itself.

pk stands for the probability that k units are demanded by
an arrival, k = a, a+l,..., b-1, b.

a and b represent the minimum and maximum number of items that

will be demanded by an arriving customer. We assume that

O<a\<bandO\$s-b+l\< s.

E = {c, c+l, c+2, ..., S-5] ; c y b.
A =  S’b+2,ooo,

=  $+2,ooo, }
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-E. -1 {O’l’2,Ooo, 5}

I = {1,2,..., s_}
No = {o,1,2,...,}
[x] - The largest integer less than or equal to x.

P(i I)(n,t) - Probability that I(t)=n given that the!

initial quantity replenished is i units
and the initial ordering level is I.

Pi(n,t) — Probability that I(t)=n given that the
initial ordering level is i.

3.2. Model I

This model considers an inventory policy where the
quantity demanded by an arriving customer lie between a and b

with a and b positive integers and agb, 5-b+l ).O. The demand
quantities are independent and identically distributed random

variables having the discrete distribution pk, k=a,a+l,...,b-l,b.
We assume that the time between demands are independent and

identically distributed random variables, independent of demand
magnitudes, with distribution function G(.) which is absolutely

continuous and g(t)dt = dG(t) with first moment pl (assumed
finite). Lead time is zero and shortage is not permitted. The
maximum capacity of the warehouse is fixed to be S units.

Due to demands that take place the inventory position
decreases and as soon as the level falls to A due to a demand
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for the first time after each replenishment, an order is placed
to bring the inventory to its maximum ie. if at the time of
ordering the onhand inventory is i, i.€ A, then the quantity
ordered is (S-i) units. Replenishment is instantaneous with
the assumption that the successive quantities replenished form
a Markov chain defined on the state space E. Let the one-step
transition probability matrix associated with this Markov chain
be

[P = ((q

Analysis

Suppose O = To < Tl < T2 < ... < Tn < ... are the
successive time epochs at which the ordering level falls to A
for the first time after the previous replenishments. Specifically

let Y0,Yl,Y2, ... be the ordering levels and XO,Xl,X2, ... be
the quantities replenished at these epochs. Then by our assump

tion {Xn, n=O,l,2,... } forms a Markov chain defined over the
state space E with the one-step transition probabilities qi.J
as defined in (1).

Initially at time To = 0, due to a demand, let Yozs
so that a replenishment by a quantity say X0 = S-s occurs at
the instant of commencement of inventory. (One can as well

proceed with the assumption Xo=i with probability qi, i € E).
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Identify O = T = T To o,o’ T =T0,1-"00.,   T T1,0’ 1,1’ 1,2’
... as the successive demand epochs.ooo,Tl,rl ,0’

Then {Tn’i—Tn,i_l, i=l,2,...,rn ; nca No} is a sequence of
positive, independent and identically distributed random
variables and so forms a renewal process. Introduce yet another

sequence of random variables iZn’i, i=l,2,...,rn; nta No}
where Zn 1 represents the inventory level just after meeting9

).the demand at Tn,.. The process [(X,Y,Z)}= {(Xn,Yn,Z1 n,i
i = l,2,..., IT‘ rae No} turns out to be a three dimensionaln)
Markov chain. Then we have

Theorem-l

The stochastic process {(X,Y,Z),T:}=={(Xn,Yn,Z ),Tn,i n,i;
i = l,2,..., rn; n G NO} is a Markov Renewal Process
defined over the state space E x A x H with the semi-Markov

kernel defined by ((Q{fi3,L,k)(j,J,m),t‘})) where

(i) between two consecutive demand epochs both of which
are not replenishment epochs

Q{(j9J9k) 9(j9J9m) pt]: prixnzj 9Yn='-J92
T

n,i+l=m;

Tn.f$tlxn=j’Yn:J’Zn '=k'}n,i-+-1" ,1
pk__m g(u)du, j€E; JG A; m,k e I-I; t >, OH

0‘ad

and
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(ii) between two successive demand epochs in which the

current demand epoch happens to be a replenishment epoch
as well

o[(2.L.1<)(i.J.m).t]= Pr{Xn+1=J'. Yn+l=J. z,,+1=m;

T -Tn.rn‘I$tIxn=e’qYn=L’Zn.rp-1=k}n+1

U
0 “ud

pk_J qgj g(u)du. 3.J’€E; L.J€A; k.meI-I;
1'} 7- O,1.’2,ooo

Proof

The interarrival times of demands Tn’i - Tn,i_l,
i = l,2,...,rn; n e N0 are assumed to be independent and
identically distributed random variables following distribution
function G(.) and density function g(.). Further the demand
quantities are independent and also does not depend upon the
length of the time elapsed between demands. Hence considering

and T+ (T+ . represents the timetime epochs like T+ n,i, “,1T1,
epoch just after meeting a demand) i = l,2,...,rn—l, n € NO

£”:{Xn=j’ Yn=J’ Zn,i=m’ Tn,i-Tn,i-I$t|Xo’Xl’°'"Xn=j 3

YO,Yl,Y2,...,Y =J; z zn n,l’ :k;n,2""’Zn,i-l

Tn,l'Tn,2’ "" Tn,i—l]

I1
pi~{(xn=j, Yn=J, zn’i=m); Tmi-Tn’i_l\<tI(Xn=j.Yn=J.Zn,i_l=k)_}

Q{(j.J.l<). (i.J.m).t} . jet-2; JeA. m.keH; t >0
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Here exactly one demand occurs and the demand is for a
quantity (k-m) so that

0‘sd

o{(j.J.1<), (j.J.m),t} = pk_m g(u)du

POI case (ii) we consider demand epochs like

T+ and TE+n,rn_l Due to a demand at Tn = Tr the stock’ nl’ n+l’
level drops to JEA so that the demand is for a quantity k-J

where k is the inventory level prior to the demand at Tn+l.
The replenishment at Tn+l is by a quantity j and the just
previous replenished quantity is 3 where j,.P.e E. Then by
the assumptions of our models,:° : :' -- :2‘
Pr{(Xn+l 3’ Yn+l J’ Zn+l m’ Tn+l Tn,rn—I$tl Xo’Xl"'°’Xn ’

YO,Yl,ooo,YnZL ; Zn’lp Zn,2,ooo,Zn’rn-1: k;Tn’l’Tn’2,oooTn’rn~l

= pr{xn+l=j’ Yn+l:J’ Zn+l=m; Tn+l"Tn,rn-Istaxnz iYn:L’Zn,rn-l=kd?

Q{(£.L.I<). (j.J.m).t}
t

'3 .£pk_J  g(U)dU

Hence the theorem.
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The next step is to obtain an expression for the Markov
renewal function. To this end we proceed as follows.

Consider two successive replenishment epochs Tn and
T Define F{(E,L,«3+L), (j,J,j+J),t} as the probabilityn+1’

that Tn+l—Tfi{t and the replenished quantity and ordering
level at 'l‘m_l are, respectively, j,J conditional onfl and L
as the replenished quantity and ordering level respectively

at Tn, %,j e. E and L,J e A. Thus

F{(P,,L,£+L), (j,J,j+J),t ]= {Pr x
T

Y =J, Zn+l=j+J;n+l:j’ n+l
n+l—Tn\<tIXn=3, Yn-—-L, Zn: £+L}

E,jeE; L,JeA-, t >,0.

3+L-(s+l)+l *
= 2  m{_(2’9L9R+I-)9 (j9Joj+J)!t}

m=£-4-‘E,-*1

£+L-(s+l)+l . .... . dg*m<u> qzj 2 P1 P1 9 ”

Define

a {(£,L,£+L),(j,J,j+J),t}= 32° 1=*”{(£.,L,£+L),(j,J,j+J),t}n=o

with

1 for (%,L.€+L)=(J.J.j+J)

1=°{(E.L.8+L) .(j.J.j+J).t ={0 otherwise
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and F*n{(R,L,3+L), (j,J,j+J),t} is obtained from the recursive
relation

t
1=*‘“*'1’{(e,L,2+L),(j,J,j+J),t}= 2 2 fF1(2,L,2+L),(i,:,:+1),au}ieE IeA o

F*“{(i,I,1+1),(j,J,j+J),t-u],
2,j eE, L,Jc-A; t >,o.

Since I(t) denotes the inventory level at time t,._ _ o
I(t) — Zn’i for Tn’i\$ t < Tn’i+l, i_1,2,...,rn, n e N and so
{I(t),t ), O] is a semi-Markov process defined over 1-1.

Let P(S_s’sfn,t) = Pr {I(t)=nlXo=S—s, Y°=s] for ne H, t)0.

Then P(S_S S)(n,t) satisfies the Markov renewal equations’

(Cinlar 19753).

Thus we have

(i) for n=S

II
t

P(S_s’S)(S,t) K(5_5’S)(S,t)+i§E IEA { F{(s-s,s,s).

(i,I,i+I),du}

p(i’I)(S,t'-U)
where

K(S_S’s)(S,t) = Pr [1(t)=s, TO,l>tIXo=S-s,‘Yo=s}
l-G(t)
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(ii) for n = S—l, S-2, ..., s+l1) t
P(S_S’S)(n,t) =1<§S (n,’c) + 2 2 f z={(s..s,s,s),-3'5) ieE IEA o

(i,I,i+I),du]

P(i’I)(l'1,'t-U)
-where

K(l) (n,t) = } E Q*m{(S-s,s,S),(S-s,s,n),du}[l-G(t-u)]
(S-3,5) O m=E§%g]+l

Hence the solutions are given by

P (S,t) = } R[(S—s,s,S),(S-s,s,S),du} K (S,t-u)(S‘593) 0 (S"3v3
n ‘F’-'° S"'l, S-'2’ 0 0 0 ’

P (mt) = 2 2 }R{(s-s.s.s).(j.J.j+J).du} K”) (n.t-u)(5-5:3) JGE 353 0 (3:3)
j+J ).n

where

K Q1) (nyt) = E j+g‘n Q*m[(j9J9j+J)v(j9Jsn)9du}(Joj) 0 rn=[$]+l
[1-G(t-u)]
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Steady state analysis

Let lim P (n,t) = §(n) for n e H
t —-> on (S-s,s

To obtain the limiting probabilities of the system size we
proceed in the following manner.

).we have seen that the three dimensional process {(X ,Y ,Z .n n n,i
i=l,2,...,rn; n 6 No} forms a Markov chain with state space

[(i,j,k)li=c,c+1,...,M; j=s-b+1, s-b+2,...,s—i,s;
k=s+l, s+2,...,j+i-1, j+i}

where k~$ S. From the given one-step transition probabilities
associated with the replenished quantities, the one-step

= (( p (1)transition probability matrix E32 (i’j’k)’(i',j"k')
associated with the three dimensional Markov chain can be

obtained. The stationary distributions are then computed as.. _ .. (1)
n(l"J' k‘) G if; jEA k§H n(l’3’k) p(i.j.k).(i'.j'.k')'

i'eE, j'eA; and k'eI-1.

Since the transition to any state takes place at a demand epoch,
the mean sojourn time in any state is given by

m(i9jok) = ? (l'G(t)dt = P10



which is the mean interarrival time between demands. The

limiting probabilities are now computed as follows:

n(S—s,s,S) m(S-s,s,S)2(5) = . . . .2 2 2 W(19Jsk) m(1939k)
ieE jeA keH

= n(S-s, s,S)

Similarly

s
g(s-1): 2 (n(S—s,j,S—l))+ n(s-s—1, s,S-1)

j=s-ls s
P(S-2): 2 (n(S—s.j.S-2))+ Z (n(S—s—l.j.S-2))+ n(S—s—2.s.S-2)' j=S-2 j=S-1
. S-5 5P(s+l)= 2 2 n(i,j,s+l)" i==c j$—b+1

Thus

S-s s
P(n) = )3 Z 1;(j_,j,n), n=s+l,s+2,...,s-b+l+c* i=c j=s-b+l
and s s
P(S“m)= 2 (“(S‘59jsS‘m)) + 2 (fl(S'5'l9j!S‘m))+ °°0’ j=s-m j=s-(m-1)

S

* Z (”(S‘5‘(m‘l)ojaS'm)) + fl(S‘5‘m:5vS“m)v
j=s—l

HFO,l,2,...,5-(S-b+l)-(C+l).
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Cost function over a cycle

For the inventory model under consideration, a cycle is
the length of duration between two successive replenishment
epochs. A typical plot of the stock level is shown in Fig.1.

'Z:S[

4”Zn 2’
"31

2-9.; 7
x.=S-sl

WXah—1__.

iiiujfijfi-:-Z31

rar

>< oi

7h )%I: : 73 JI I' a0 ll I I I. _L a 1 4} J . 1 1 1 . gé ‘ 1 J _L
cycle

Fig.1.

The total cost over a particular cycle assuming j as the
replenishing quantity under steady state is computed as follows:
The objective function is the total expected cost per unit time
over a cycle under steady state which is so chosen that it
attains a minimum value corresponding to the quantity replenished.
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Considering two successive replenishment epochs, let
Y denotesthe ordering level at the current replenishment
epoch, Z be the length of the cycle just completed. Then the
conditional density function of Y and Z given that X is the
reordering level and j is the quantity replenished at the
beginning of the cycle is denoted by

fj9x(y’z)

Hence

x+j-(s+l)+l k demands occurred,_ _ totall consuming
fj’x(y,z)dz - 2x+. Pj,xEY—y,z$Z<z+dz (x+j_Y items and Jk=E—Bl] (k-l) demandsconsumed less than

(X+j—s) items.

4

X prfk demands occurred totally consuming (x+j— )items}cand (k_l)demands consumed less than (x+j-s items

x+j—(s+l)+l= 2 _ g*k(z) 0 _ 2 . pi pi  pi dzk=E§%l] 1l,12,...,1k l 2 k
il+...+ik=(x+j-y)

Hence the conditional expected value of a cycle "

Ej.x‘Z’ ‘
0“a8

s

z( 2 f. x(y,z))dzy=s-b+l J '
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The conditional expected inventory level over a cycle =

x+jE. I = Z P I= 'J’x( ) rF$+l n r{ rd3,x}

x+j= 2 n n(j,x,n)
n=s+l

Hence the conditional expected total cost over a cycle per
unit time is

._ 5 K+yj X+jF. = 2 ' ' h 2 ‘
J,x(c) {y:S_b+l §3:;(;) n(J.Y.Y+J))+ n:S+$ fi(J.X.n)

where K is the fixed cost of ordering, y is the procurement cost
per unit and h is the holding cost per unit per unit time.

Clearly the above function is convex.

Numerical example

Let the one—step transition probability matrix associated
with the given Markov chain constituted by the successive
quantities replenished be given by

H) _ (( )) — 1/2 1/2‘ ‘ qij ‘ 1/5 4/5
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with the maximum capacity of the warehouse being 5:4 and

let s=l. Let a=l and b=2 with pl = 1/3 and p2 = 2/3.
Assume that the interarrival times of demands follow exponential
distribution with parameter 7\= 0.5.

The set E = [2,3} so that q22 = 1/2; q23 = 1/2; q32 = 1/5

From F>l we compute E32 defined over the state space

{(2,0s2), (29193): (2»l:2). (390.3). (3.092). (3,194). (391.3).
(3,l,2)] as follows:

pm = P2 Q22(2.0.2).(2.0.2)(1) =
(2:O92)v(29l93) pl q22

(1) 2
(29O92)s(29l92)

pm
(29092) !(37O92)

p(l)
(2.0.2).(3.l.3)

p(l)
(2.0.2).(3.l.2)
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(1) _
p<2.o.2).(3.o.s> '" P2 Q23

(1)p = P1 q23(2.0.2).(3.l.4)

p(l)
(2,l,3)(2,0,2)pm ‘
(2.l.3).(3.0.3)

pm
(29l93)a(39O92) $ = O

p(l)
(2.l.3)X3,l.3)

pm
(2,1,3)13,1,2) J(1) _

p<2.1.s>.<2.1.s) P2 Q22(1) z
p<2.1.s>.(2.1.2> pl

PE%21,3),(3,1,4) = P2 Q23

The other transition probabilities can be obtained in a
similar way. Hence
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1/3 1/6 0 1/3 0 1/6 0 0 1
0 1/3 1/3 0 0 1/3 0 0
1/3 1/6 0 1/3 0 1/6 0 0

[P w 0 2/15 0 0 1/3 8/15 0 02 — 2/15 1/15 0 8/15 0 4/15 0 0
0 0 0 0 0 0 1/3 2/3
0 2/15 0 o 0 8/15 0 1/3

L 2/15 1/15 0 8/15 0 4/15 0 o J

From E32, the stationary probability vector u and then g(n)

are computed. Finally Fj x(c) for x=l and j=2,3 are9

calculated and tabulated as follows.

n n .§(n) J Ej’l(z) Ej,l(I) Fj’l(c)° IE:fi'K. £0.11, 0.5, 2 0.34 2 2.67 1.84 4.58
new 0.17, 0.12,"‘ " 9 0004, 0003,
'7,'<;,‘C,? 0.01, 0.02] 3 0.63 3 2.93 0.2 0.87.C'..Q

, .€7;? 4 0.03
>-(D ~

I’)« ~\0 ~01
o—+r-4 I!
II ll 01

yficoo.
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For the given inventory problem, the conditional expected total
cost per unit time over a cycle is minimum corresponding to the
replenishing quantity j=3.

Qgscription

Model II deals with a continuous review single commodity
inventory problem where we assume that each demand is exactly

for one unit. The interarrival times of demands are independent
and identically distributed random variables following distribution
function G(.) with density function g(.) and having finite first
moment a . The maximum capacity of the warehouse is fixed as 5
units. Lead time is zero and no shortage is permitted. Further
we assume that the reorder levels vary according to a Markov

chain with state space [O,l,2,...,s], sgs-1. The quantity replenis
ed is always equal to M=S-s. In the present analysis we identify
a two dimensional Markov chain in the underlying process, thereby
gaining more information about the process.

Analysis

The assumption of our model is that the reordering levels

are governed by a Markov chain. Denoting Xo,Xl,X2, ... as the

initial, first, second, ... reordering levels, {Xn,n=O,l,2,... }
forms a Markov chain defined over {O,l,2,...,s}w~ith initial
probability
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Pr'(X0=s) J. and
IIPr (X0=i) o, i=O,l,2,...,s—l

The one—step transition probability matrix “)3 is given by

E’
3 (( pij )) where

Pr[Xn+l=j|Xn=i} , 1,3 = O,l,2,...,s
ij 0 for i,j > s

Let 0 = To < Tl < T2 < ... be the successive demand
epochs and Y0,Yl,Y2, ... be the corresponding inventory levels
after meeting the demands at To,Tl,T2, ... . Then I(Tn+) = Yn.

The process {I(t), t)O} is a semi—Markov process defined on
{1,2,...,S}. The next procedure is to get the embedded Markov
Renewal Process. For that we should have the information regarding

the most recent reordering level ie. considering the pair (Xn,Yn),
ii'Xn denotes the last reordering level just prior to Tn, then the
process {(X,Y),T} = {(Xn,Yn),Tn; neN°} forms the associated
embedded Markov Renewal Process defined over the state space E x K.

The semi—Markov kernel is given by (( Qi(j,k,t))) where

Qi(j,k,t) = pr{Y k; Tn+l-Td$tIYn=j, Xn=i}n+l=

i = 0,l,2,...,s
j,k = l,2,...,S, tgo,
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where Xn stands for the reordering level just prior to Tn.
The maximum value that j can take is i+M where i+M.$ s+M so

that Qi(j,k,t), i=O,l,2,...,s; j,k = l,2,...,S are given by

Fl—G(t), j=i+M; k=j
G(t), j=k+l; k>s
G(t)(l-pik), j=s+l, k=s
G(t)pik, j=s+l, k=s

Q'(j9k9t) 7' *
1 G(t) l—(pij+pik) , j=s,s-l,...,l, k=j-l

G(  {L-(‘pis+piS_]_+° ° '+pij

G(t){1‘(P1s+Pis-1+°°°*Pij+1)}P1j‘ i

To obtain the Markov Renewal function, we proceed as follows.
Initially at the commencement of inventory the stock level is
s and an order is placed; a replenishment occurs instantaneously

so that Y0=S and X0=s with p(s) = 1.

Define F(i,j,t) as the probability that an order is
placed when the level is i and the next order is placed when
the level is j, i,j=O,l,2,...,s and the time duration in these
is less than or equal to t.

ie. F(i,j,t) = Qi*i*M‘3(i+M,j+M,t), jg 1+M.4 s+M.
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The Markov Renewal function is given by

co 3 *a(s.j.t) = 2: i 2 F’“(i.j.t) * F(s.j.t).o i o
j=O,l,2,...,s, t)O.

where

1 1:30 . . _ ’
F (193913) " {Ch

F*m(i,j,t) is obtained from the recursive relation

F*(m+l)(i,j,t) F(i,k,du) F*m(k,j,t-u) (Cinlar 1975a)II P1

°'*;c'+k=o

Define Ps(n,t) Pr {I(t)=n1x0=s}, n=S,S—l,...,M+l, M, M—l,...
5+1, S,S"l’ooo,lo

PS(n,t) satisfies the Markov renewal equation so that

t
PS(n,t) = l—G(t) + f Qs(S,S-l,du) PS(n,t-u)o

Hence the solution is given by

PS(S.t) = } R(s.8.du) (l-G(t-u))
O
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Similarly for n = S-1,1: s t .
Ps(S—l,'t) 2 J. . Z l R(s’J-’du) f  (M+j’S_l’V_u)0 3:5

Ll-G(t—v)3 dv

for n = M+l, t s t .
Ps(M+1.t) = I .21 a(s.j.du) f o’JT""*3""‘*“’(:.a+j. M+1, v_-U)o 3: u

[l—G(t-v)] dv

In general t s t . .
Ps(M+i.t) = f _ElR(s.j.du) f Qj*(M*3‘(M*1))(M+j,M+i,v—u)o 3: u

[1—G(t—v)]dv , i=l,2,...,s.
and

t s t * 3 ._
PS(n,t) = f .2 R(s,j,du) f Qj (&+J n) (M+j,n,v-u)0 3:0 u

[1-G(t—v)]dv , n=l,2,...,M

Limitigg distribution

Let H34 denotes the one—step transition probability matrix
corresponding to the Markov chain [(xn,Yn),n=o,1,2,...} with

O,l,2,...,s;II[P 4 ‘ “ "Ei2j).<e.1<) ”' 1'8
j,k = 1,2,...,s with

(1)
(1 J) (3 K) : pr[(Xn+l=2’ Y +l:k) ‘ (Xn=i’ Yn:'-U}T1
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“D4 is computed fromiFg in the following way

1 , i=0,l,2,...,s; j=1,;E=o, k=M
1 9 i:O9l92v°°°933 j=5+2: 5+3s°°-95+M;

2:1, k=j-l

T3‘-J:-»E—'__-— ’ 1:09]-929°--95; .j=2v39°'°rS; 2:3.-13E p k=M+j-1r=o or
P(.l) - —
(:,3).(e.k) ii p

1-E:Tl§—— , i=O,l,2,...,s; j=2,3,...,s;-8:1;2 p k=j—lr=O or

pis , i=O,l,2,...,s; j=s+l;3=s; k=M+s

l—piS , i=O,l,2,...,s; j=s+l,8=i; k=s
B

The stationary distributions are given by

as = {n(o,1), n(o,2),...., 1:(O,M), 1:(l,l), ...., 1:(l,M+l),...,
n(s,1) n(s,2), .... n(s,S)}

where

S S (1)7t(‘€uk) = 2 2: 7t(i9j) P 9 ‘Q’: O9l929°'°959 k:-I-929°°°9si=0 5:1 (iaj)a(3pk)
The mean sojourn time in a state (£,k) where 2 is the last reorder
ing level and k is the stock level after meeting a demand is
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? (l—Q%(k,k—l,t)) dt, 2?: o,1,2,...0
953

k: 1,2,..., s.
X

= f (1—G(t))dt
O

The limiting probabilities are given by

lim
t -a»w

Similarly lim
t —#'w

In general

£(n)

and

g(M+i)

Pr (I(t)=SIXo=s) = limt -9 w

“($95) m(5os)s S
2 2 n(£,k) m(z,k)2:0 k=1

= n(s,S).

Ps(s-1.t) = £(s-1)

n(j9S'1)

= 2 ”(jon)9 n=l929°°°9M
J=°

. n(j,M+i), i=l,2,...,s.
1

II
flbdmJ

Ps(S.t) ;_2(S)(sav)
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Optimisation

The objective function is the total expected cost per
unit time in the steady state. The decision variable, M
should be so chosen that the objective function is minimum
for that value of M.

The expected time elapsed between two successive

demands = f (l—G(t)) = a < w. Under steady state,0 .
assuming j, j = O,l,2,...,s as the reordering level, the
expected time elapsed between two successive orders is
(j+M-j)a = Ma. Therefore the expected number of orders per

unit time = ‘$3. The expected inventory level at any instant
of time is given by

E(I) = n _F_’(n)
IIMCO F‘D

Therefore the total expected cost per unit time in the steady
state is

s S
?-'(m) =2: K21 {-1%-§’—‘} n(2,,1<) + h E(I):0 = s S S

= 5%-M} 2 2 u(2,,1<) +h 2 n_P(n)8:0 k=l n=l
where K is the fixed order cost, c is the variable procurement
cost per unit, h is the holding cost per unit per unit time.
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The optimal value of M is that value of M for which

?(M) is minimum. It is readily verified that'?(M) is a
convex function in M. The optimal value of M is obtained from
the two relations

?(M).g t?(M+1)

) .s ‘HM-1)
Illustrations

—T1) Let E? .7 .2 .1 1

with s=2 and a = 0.5

Keeping 5 fixed, M is allowed to vary and the conditional
probabilities in each case are obtained. For K=50, c=l, h=l,
we have the following table.

Value of M ?(M)
‘if9 2 56.83g; 3 38.26<§ 4 30.78” 5 25.947f 6 23.12'5 8 19.5975 10 18.106° 11 17.623‘ 12 17.99Q 13 24.128
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The optimal value of.M is 11 for the given range of M.

2) For Markov chain fxn, n=o,1,2,...] with state space
[o,1,2] let

0.3 0.5 0.2
P3 = 0.4 0.3 0030.2 0.1 0.7

3 : O05.
Proceeding on the same line as in Problem 1 with K=lO,

c=1 and h=1, we obtained the following table.

% Value of M ?(M)U) _.7 3 13.80
.C‘.. 4 10.77
1o 5 9.34sf 6 9.71
:2

The optimal value of M is seen to be 5 for the given range of M.



Chapter-4

BULK DEMAND INVENTORY SYSTEM WITH RANDOM

LEAD TIME AND SERVER VACATION

4.1 Introduction

Apart from the previous chapters which deal with zero
lead time inventory problems, the present chapter investigates
an (s,S) inventory model with random lead time. One more
factor that plays a role here is the server vacation which is
initiated as soon as the inventory becomes dry. This type of
model fits into a number of real situations corresponding to
the seller's market.

Random lead time inventory problems as treated as a

stochastic process is analogous to a queueing problem (see
chapters 15-17 of Studies in Mathematical Theory of Inventory
and Production by Arrow, Karlin and Scarf (1958)) with random
arrivals (deliveries) and departures (demands). Scarf (1960)
treats a dynamic inventory model with random lead times, but
under the restriction that a new order may be placed only at
a time when there are no outstanding orders. Detailed
analysis of continuous review (s,S) inventory systems have
been carried out by several other authors and results relating
to the pfobability distribution of the inventory level and
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the optimal choice of the levels s and 5 have been discussed.
Sahin (1979) treats an inventory model where the demand
quantities follow a continuous distribution with lead time
remaining a constant.

Daniel and Ramanarayanan (1988) is the first to introduce
server vacation to inventory models. They assume that the
quantity demanded by each arriving customer is exactly one.
Madhusoodanan (1989) considers a model similar to that of our

present model in which he extends the technique of Ramanarayanan
and Jacob (1987) to the situation where the server goes for
vacation. This method has a drawback, namely that it uses the
matrix of transition time densities and its convolutions to

arrive at the expression for the probability distribution of
the inventory level. Here we give an expression for the system
size probabilities using a simple technique.

Section 4.2 introduces the model and explains notations
and the assumptions of this chapter. Section 4.3 shows how the
nwdel is analysed by embedding a Markov renewal process in the
random process representing inventory level. The system size
probabilities and also the reliability of the system at
arbitrary time point are obtained in Sections 4.4 and 4.5 respectively

4.2. Description

We consider a continuous review (s,S) inventory system
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with quantity demanded by each arriving customer following

a discrete distribution on the set E = {l,2,....,a:} with a
as the maximum quantity that can be demanded. The interarrival
times of demands are independent and identically distributed
random variables having distribution function G(.) which is
absolutely continuous with density g(.). The maximum capacity
of the store is fixed as S units. Due to demands that take
place over time, the level of the inventory falls and when the
level reaches s or below for the first time an order is placed
for replenishment. If the ordering level is i, then the
ordering quantity is S-i. The lead times are assumed to be
independent and identically distributed random variables with
distribution function F(.) and density function f(.). These
are independent of the demand process and the ordering level.
If order materialisation does not take place when the inventory
level falls to zero, the server goes on vacation for a random
duration having distribution function H(.) having density
function h(.). On return if the server finds that the order
has not materialised he again goes for vacation of random
duration which is independent of and having the same distribu
tion as the previous one. This process continues until on
return he finds the order having realised. The demands that

gemanate during a dry period will not be met and therefore
mull be deemed to be lost. The vacation durationsare also
gamnmmd to be independent of the demand process and lead times.
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The notations used in this chapter are explained below.

[x] denotes the largest integer less than or equal to x.

G(.) and g(.) respectively, represent the distribution function
and density function of interarrival time of demands.

F(.) and f(.) stand, respectively, for the lead time distribution
and density.

H(.) and h(.) are the distribution function and density function
of vacation times.

pi = Probability that i units are demanded by an arriving
customer (i=l,2,...,a)

* denotes convolutiona .
¢(S) = E pisli=l

pi(b) = Probability of b consecutive demands consuming i units.
This is the coefficient of si in [¢(s)]*b

91, for i=l,2,....,a denotes the probability of at least (of
course not more than a) i units being demanded by a customer.

"_(n)pl stands for the probability of at least i units being
demanded by n customers.
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m(.) = 2 h*n(.) ie. the renewal density of vacation.
n=o

A(.) = The renewal density of lost demands (during a dry
period).

I(t) = Inventory level (onhand inventory) at time t, t30.

B is the set of points {s-a+l, s-a+2, ...., 3-1, s }

Assumptions

We assume that the maximum quantity demanded by an

arriving customer is a with l<a<s. Also it is assumed that
S > 25. These assumptions are made to avoid perpetual shortage.
Nevertheless, they are not explicitly used. Even when quantity
demanded exceeds what is available, the customer goes off with
the available number of items.

4.3. Analysis

Suppose O = T < Tl < T2 < ... < Tn ... be the successiveo

time points at which orders are placed for replenishment and

Xo,Xl,X2,....,X ... be the corresponding inventory levelsn9

(ordering levels), X(Tn ) = X“. Assume that X(o) = i, for
i = s-a+l, s-a+2,...,s-l, s and hence an order is placed at the
instant of commencement of inventory. Then we have
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Theorem

(X,T) = {(Xn,Tn), n=O,l,2,...} forms a Markov Renewal
process (MRP) with semi Markov kernel

Q(i9j9t) =P1-‘ix -3.; TMr $t|Xn=i} ,i,j e B and t;On+l‘Tn

Proof follows easily from the definition of MRP.

To get Q(i,j,t) we proceed as follows:

The event {X T $tIXn=i]' can occur in twon+l=j; n+1-Tn
mutually exclusive ways ( and these are exhaustive):

(1) Before an order materialisation the inventory level
drops to zero due to demands and so there is a dry
period and hence the server goes on vacation.

(ii) No dry period between order placement and its
materialisation.

Hence

Q(-ivjvt) = Q1(-ivjot) + Q2(j-ojvt)

where,

Ql(i,j,t) represents the transition probability from
1 to j in time less than or equal to t with order placed when
level is at i, not materialising before the system emptying

and Q2(i,j,t) that without any dry period between transition
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from i to j, that is, in this case the order which is placed
when level reaches i(i$s) for the first time after the
previous replenishment, materializes before the system becomes
empty and then due to a number of demands the next replenish
ment order is placed when the inventory level reaches j(j$s)
for the first time after replenishment.

We have, 1; '-1 b A
f ( 12 8 g*r(z)p£r)g(u-z)pi_b

Y2‘.U b=1 r=max{l,[§]]
fi‘sd fi*sd

t x
Ql(j-yjvt) = :1: wfZ0 2 U W

m(w-u) h(x-w) (§%%%%%&%}l A(y-u)

5-%‘j G*n(t_Y)_G*(n+l)(t_¥l pénz .
n=max{l’[§;%:i]} (l-G(x-YJ) -1vJ

dy dx dw du dz (1)
1-1 b

o2<:.:.t> = F .r 2 2 g*r<u>
u=o v=u =0 r=[§]

P (r) f(v) ~°"*,§' G “Lt )-e*‘“*”(t uz

(n) dv du (2)
where we define po(°) as l and pb(°)= O for b > 0.
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The right hand side of (1) is arrived at as follows:

The inventory level drops to i 6 B (B being visited for
the first time after the previous replenishment). We take this
as the time origin. Then r demands take place until time 2
(the rth being at 2) which together take away atmost 1-1 units
and the next demand that take place at time u makes the inventory
dry whereupon the server goes on vacation. There are a number
of demands lost, the last one taking place at time y (this is
represented by A(y—uD. The server returns after each vacation
to find the inventory dry and hence goes back for a fresh
vacation (this is represented by m(w-u)L The last vacation is
completed at time x since the replenishment takes place in (w,x).
Now the inventory level is (S-i). Exactly n demands take place
bringing down the inventory to j e 8 (this is the first visit
to B after the previous replenishment). Hence an order is
placed for (S-j) units. A similar argument yields the right
hand side of (2) except that in this case there is no dry period.

Now define R(i,j,t) = E Q*nki,j,t) which is the expected
n=o

number of visits to state j in {o,t] starting initially at i,
i,j e; B, t)O where

0.. lfori=j
Q{1-9J:t) '5 Oforj-#j
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4.4 gystem size_probabilities

The stock level {I(t),t)O] is a discrete valued
stochastic process defined on the state space {0,l,2,...,S}.
Define

Xkt) = Xn, for Tn-$ t < Tn+l

Let Z(t) = (ltt), X[t)). Then clearly {Z(t),t30} is a semi
regenerative process with state space iO,l,2,...,St] x
{s-a+l, s-a+2,....,s-1,5} and (X,T) is the Markov renewal
process embedded in it. Further assume that (X,T) is irreducible,
recurrent and aperiodic.

Let P«n,j),t) Pr [Z(t)=\n,j)}, for n=O,l,2,...,S and
j=s—a+l,...,s-l,s

Then

P({n9j)9t) Pr {Z-tt)=\n9j)sTl>t} + pr{Z(t)=(n9j) 9T_1_\<t}

KG n.j).t) + 2 }’Q(i.j.du) PKh.j).t-u) (3)
i€;B o

where for every (n,j)££ {O,l,2,...,S} x {s-a+l, ...., s—l,s}
the mapping t ——-+~ P«n,j),t) is Borel measurable and bounded

over finite intervals. Further K«n,j),t) is directly Riemann

integrable for every (n,j)e_{O,l,2,...,S} x is-a+l,...,s-l,s}.
Therefore the Markov renewal equation (3) has one and only one

solution given by
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t
f R(i.j.du).K«n.J).t-u). n=0,1,2,...,s;
O

P«n,j),t) = .216 j=s-a+l,...,s and tgo.B

From this we can compute P«n,j),t) for different values of n
and j.

K«n,j),t) for different values of n and j are computed as
follows:

Case Li): When n=S, K«S,j),t) = (l—G(t)) F(t), j 6 B

Case (ii): For S-j+l $n.( S

j 1 bt ' *
l<« n9j)9t) = fo in 3 3 (9 r(Z)P(r) )f(V)V: 2: 6:0 r=max{Q,[§]} C_ - *(

S E n G*b(§:é%;Ez)b+l)Lt“z) pégg-n dv dz
b=-max {1,[~°:—§:I1]} 1

It is to be noted that in this case, there can be no dry period
and this is taken care of by the probability of atmost c($j—l)
units being sold off until replenishment takes place.

Case (iii): For 5+1-s n~$ S-j
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x j-l cy y t x *l<((n.J).t)= f f f f f 3 13 9r(z)
z=o v=z x=v wzv y=v c=1 r=max{l,[§]}

p£r)9(v-2) /53-_C rn(w-v) h(x-W) IEFXW

A<y) S'3'" . G*b(t-Y)-G*(b+l)(t-ll p<b2
=max{l,[§:%:fl]} I l-G(x—y) S-3-n

dy dw dx dv dz

t t j-1 c *r (r)+f f C9 (z)pc f(v)
z=o v=o c=o r=max{p,[3]}

*b l_ *(b+1) ._
(6% gt fig? _ I (tori) p;E::n dv dz

In the above the first term on the right hand side represents
the situation where there is a dry period and the second term
is for the case with no dry period. The way in which they are
arrived at is on the same lines as that used for arriving at
(l) and (2) of Section 4.3.

Case Liy): For n satisfying the condition n=j=s—a+l,s—a+2,...,
3'1, S.

K« J.J).t) = (l-G(t))(l-F(t»
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Case [V]: For 0<n<j

K(( n.5).t) = (1—P(t)) ii’ _ (G*"(t)-G""’*”(t)) p(.b)
b=max {l , [$1 } 3”“

and finally,

Case (vi): For n=0, we get

1<<<o.:).t) = (1-ml) 2 (e*'°<t)-e*“’*“<t)) pf”)
b=max {l,[§]] '

In the expression for P«o,j),t) we allow b to take arbitrary
large values. This only means that demands take place even
when inventory is dry and hence they are not met.

4.5. System Reliability

System reliability at time t denoted by Rl(t), is defined
as the probability that the system is working at time t. In this

case Rl(t) is the probability that the server is available and
hence inventory level is larger than zero.

aim = P2: {_z(t) :4 (o.j)}

The event .[Z(t) # (o,j)} can happen in three mutually
exclusive ways as follows:
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(i) Last order is placed in (u,u+du]; but no replenishment
until t and no dry period until time t.

(ii) Last order is placed in (u,u+du]; replenishment takes
place before inventory level becomes zero

(iii) Last order is placed in (u,u+du]; replenishment takes
place during a dry period; the server returns after
vacation before time t.

Therefore 1: t j-l b ,r (r)al(t) = _>: fR(i.j.du){(1-I=(t-u)) f 2 2 g (v—u)pb16.8 0 van b=--o r=[}3]a
(l—G( t-v)) dv}

+{} jg]. g g*r(v—u) pgr) f(v-u)dv}
v=u b=o r=[§]

+{.’/C‘ E .)/E E fr‘ j-1 b 9*(v-u)p,()r)9(z-V)
v=u z=v w=z x=w y=z b=l r=max{l,[§]}

/;\)j_b m(w-2) h(x-w) A(y-2) ( Fl:F’§ U )dx dy dw dz dv}}



Chapter-5

FINITE CAPACITY QUEUEING SYSTEMS WITH STATE DEPENDENT

NUMBER 0? STAGES OF SERVICE

5.1. Introduction

This chapter introduces a class of finite capacity
single server queueing models in which the server offers a
random number of stages of service say k, k=l,2,...,m to each
unit depending upon the system size at the onset of its service.
First we examine Model I in which the arrival pattern follows
Poisson process of rate A.. The distribution of service times
in all stages are independent and identically distributed
(i.i.d) random variables following distribution function G(.)

and probability density function g(.) with mean ul(assumed to
be finite). Thus the system under consideration generalises
the truncated (truncated at m) bilateral Phase-type distribution
(see Shanthikumar 1985) in which arrival takes place according
a Poisson process.

In Model II, the interarrival times follow a general
distribution F(.) with probability density function f(.) and
mean a (finite). Service times in each stage are i.i.d. random
variables following exponential distribution with parameter u(fini
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Consider a service facility manned by a single server
and providing m different types of services. The services are
given one by one by the same server with each unit demanding
m stages of service. The system is of finite capacity b so
that customers arriving when the system is full are lost to
the system. However, each unit at the commencement of its
service is offered a random number of stages of service (at
least equal to one and atmost m) depending upon the number of
units in the system at that epoch. Specifically, we assume
that the number k of stages of service offered when the
number of units in the system at the commencement of service

is j has probability qjk, j=l,2,...,b, k=1,2,...,m. We
encounter such a situation as modelled in this chapter in work
shops where machines of identical nature are brought for
overhauling.

In the queueing literature one can find that the service
characteristics change dynamically to accommodate variations in
the queue size. Hillier et. al. (1964), Gupta (1967) and
Rosenshine (1967) have examined queueing systems in which the

service rates are an instantaneous functions of the system state
Shantikumar (1979) discusses a class of queueing models in which
the service time of a customer at a single server facility is
dependent on the queue size at the onset of its service.

Bertsimas (1990) analyses the Ck/Cm/s system where C is thek

class of Coxian probability density functions of order k.
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Whereas he does not assume the state-dependent number of
stages of service we do make this assumption and further
assume that the service time in each stage has a general
distribution imn Model 1. Further service times in
all stages are i.i.d random variables independent of the
system size.

The following are the notations that are used in the
sequel.

Let. /\j(x) denote the probability that j arrivals take place
in an interval of duration x.

When interarrival times follow exponential distribution with
parameter ?x, we have

/\J.(x) = e""‘ < moi‘/3:. 3 = o.1.2.....b-1

and let ./—\b(x) be defined as

7-\b(X) = 2 e"7\x( ?~x)j/J1
j>b

E denotes §(o,o,ol} U &(i,j,k): i E. (l,2,...,b);
j G (lv29°°°om);

k e (o,1,2,....,j-1)}
X(t) — the system size at time t
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Y(t) - the number of stages of service offered at the
onset of service to the unit undergoing service
at time t.

Z(t) - the number of stages of service completed by the
unit undergoing service at time t.

The system is in (i.J'.k) means X(t)=i. Y(t)=J'. Z(t)=k. (i.J'.k)eE
when x(t)=o, then Y(t)=O and Z(t)=O.

* - convolution
N — the set of natural numbers

N° - {OEU N
Y“ r(u)— is the gamma density with parameters p and r,I

u > O and r = 1,2,...

Analysis, system size probabilities and the limiting
distribution of Model I are provided in Section 5.2. Section 5.3
deals with the analysis, system size probabilities and the
limiting distribution of Model II. The last section illustrates
computational problem associated with the models.

5.2. Model I

Analysis

Let 0 = To < Tl < T2 < ... < Tn ... be the successive
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stage service completion epochs, Xo,Xl,X2,...,Xn,... be the
number of units in the system just after To,Tl,T2,...,Tn,... .
Let‘Yo;Yl,Y2,... and Zo,Zl,Z2, ... respectively denote the
number of stages of service offered and the number of stages
of service completed by the unit undergoing service at time

Tn, n=O,1,z,... Then the process {(x,Y,z),I}={}xn;Yn,zn),Tn;ne.N°}

is easily seen to constitute a Markov renewal process defined
over the state space E.

Consider the epochs of successive stage completion (not
service completion) of a unit. Define

Q{(5-lsjvkl)vii-29j9k2=kl+1)9t}

= Pr {(Xn+l=i2’ Yn+l=j’ Zn+l=k2)’ Tn+l-Tn‘$ t|

(Xn=il, Yn=j, Zn=kl)}

0“ud /\i2_i (u) g(u)du, for il=l,2,...,b—1, i2=il+r11

where r1=0,l,2,...,b—il; j=l,2,...,m and
k =O,l’2,ooo'j‘21

II
__:c

7-\b__il(u) g(u)du, for il=l,2,...,b; i2=b
L j=l,2,....,m, kl=O,l,2,...,j-2

O‘ad
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In the case when the service commencement epoch of a
stage is such that it is the last stage for the unit under
going service, then

°{(i1*51*51‘1)'(i2'52-°)'t}= p’{(Xn+1‘i2' Yn+l=j2’ Zn+l=0

Tn+l-Tfistl(xn=il{Yn=jl’Zn=jl-1)}

du, for il=1,2,...,b-1,
O*ad /‘12-1l+1(”) Q1232 i =1 +r -l2 1 1

= J where rl=O,1,2,...,b-11

t
_f/\b_%fl(u) g(u) qi2j2du, for 11=l,2,...,b;L O i2=b9 jl!j2=l927°°°!m

with the provision that if 11:1 and 12:0, then

Q{_(l,jl,jl-l),(0,0,0),t} = e"“‘ g(u)du
0‘ad

For all n e N define

Qn{(il!j19kl)9(129j2vk2)9t}= pr[(Xn9Yn9Zn)'(i2!j29k2);Tfi$t

(xo9YOvZo)=(il9jlvkl)}
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Then we have the recursive relation

o""1(1'k)(1 -— b "‘[ 1'31’ 1 v 2v32"‘2)v’°}- ,5} ’? 3
1=1l-l 3:0 k=o,kl+1

t
I Q{fi1l9Jlokl)9(irjok)odu} dx§ioj9k)9(i29j29k2)ot’u}0

Finally define the Markov renewal function

ag:1.:1.x1>.<:2.j2.k2).t}= 3 o*“{(i1.5l.kl)(i2.32.k2).t}.t;on=o 

and (1-l9jl9kl)o(i29j29k2) E E

1 f (° .3 9k )=(° .3 .k )
with Q°{(ilojl9k1)v(i29j29k2)rt]: {I or 11 1 1 12 2 20 for (il9jlokl)%(i29j2vk2)

System size probabilities

Without loss of generality we may assume that at time

Tb=0 a stage service completion has just taken place so that the
state of the system is (X0,Yo,Zo) = (io,jo,ko) (assumed fixed).

Consider the three dimensional process L(t)=[x(t),Y(t),z(t)} .
Then the process {L(t), tgo} is the associated semi-regenerative
process with the Markov renewal process {flX,Y,Z),T:}embedded in
it.
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Define

P(io’J.O,ko)((i,j,k),t) .—.- Pr [L(t)=(1,j,k)|L(o)=(1o,j°,ko)_}

Then P(io’jO,ko)«ivj9k)9t) = Pr £L(t)=(i9j9k)3T1>tlL(°)=(ioojoskozl
Pr {L(t)=(i.j.k) ;Tl\<’9lL(0)=(io,Jo.ko)}

Let Pr {L(t) = (i,j,k); Tl ) tl L(o) = {io,jo,ko)} represents

K(i0’jo,ko)«i,j,k),t). Then

“(io.jo.ko)“ i'3°*“)"’ ‘ K(i°.jo.ko)« i'3'o"‘o’*"’

/\i_io(t) [1-em]. 1 aé b
T

/\b_io(t) [1—G(t)]. i=b

Now K( )(.,t) is bounded over finite intervals and directly
Riemann integrable. So P(i . k )«i,j,k ),t) satisfies09309 0
Markov renewal equation (Cinlar 1975 a).

Hence the solutions are given by
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(1) for (iojvk) # (09090):
t

((19j9k)9t)= I 2 R{‘io9jo9ko)s(il9j9k)9d“}(iovjovko) 0 1I$i
K  i9jok)9t"‘u)

(ilvjsk)
(11) Probability that the system size is zero at time t is

t

P(io,jo’k°)((°9°9°)yt) 3 £ R{(ioojonko)9(°9°9°)9du}/\o(t'U)

Limiting Behaviour

Wfle start with a given set of qij's, i=l,2,....,b—l;
j=l,2,...,m. From the given qij's, the one-step transition
probabilities corresponding to the Markov chain

{(X,Y,Z):}= {()(n,Yn,Zn), ne N°} is evaluated as follows.
Define

" P’{(X Yn-+1’ Zn+1)=(i2’j2’k2Hpa :1.j1.x1).(12.:2.x2)) “'1'
(xnoynazn) = (il:j1ak1)}

For il=0 and i2=0

co _ 7”‘ so= - )A < - >
p((il.J1.1<l).(i2.J2.k2) EC“ {Q11 9” ° ° V “ dv d"

j2=l,2,....,m
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on —)‘u onP = f 7%‘ fq g(v-u)/‘(V-u)q dv du((:,.:l.xl>,<:2.52.k2>) o u 11 1 132

Likewise the various transition probabilities can be computed

for different values of (il,j1,kl),(i2,j2,k2) e E. From these
the stationary probabilities n(i,j,k),(i,j,k)e E associated with
1me.Markov chain {(X,Y,Z)} are computed from the solution of the
equations

( > b m J14 ( )E i,j,k = Z 2 Z n il,jl,kl pil=° 11:0 klzo «il9j19kl)9(i9j9k»
b m j-1with Z Z Z l(i,j,k)=l

i=0 j=O k=O

The mean sojourn time in any state (i,j,k) is m(i,j,k) and

m(isjok) = E[Tn+l'Tn‘$ tl (Xn=i9Yn=j9Zn=k)]

= pl (assumed finite)

Define

Tx « i.j.k).t>dt as n<<:l.j.x>.(:.j.k>>O
Let lim P ((i,j,k),t) -.- _13(1,j,k)

t"")°'° (iovjotko
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Then‘§(i,j,k) is obtained as

2 “(j-lvjsk) n((il9j9k)o(j-yjok)
i1\<i2(i.j.k)= _ 1 (Cinlar 1975b)m 31b2 2 2 1I(iJ°k)m(iJ'k)
i1=o J1=o kl=o 1’ 1’ 1 1’ 1' 1

Hence for i#O,

£(i.J.k) = (ul)’1 E u(i1.j.k) n«i1.j.k)(i.j.k»
iI$i

and for i=0

£(°v°o°) ([41)-.1 7‘(°r°v°) .7/\o(t)dt0

Analysis

Let 0 = To,Tl,T2,... be the successive arrival instants;
X°,X1,X2, ... be the system size just prior to To,Tl,T2,...
and Yi,Zi, i=O,l,2,... are as defined in Model I. Then

the process {(X,Y,Z),T} = {flXn,Yn,Zn);Tn n e No} constitute
a Markov renewal process defined over the state space E with
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°1{(i1'51'k1)~(i2'52*k2)'t} ‘ PrI(xn+1=i2’Yn+l=j2'Zn+1=k2)3

Tn+l-Tngtl(xn=1l'Yn=Jl’zn=kl)}

t (11'i2)“
:2’: 232+ +k-'-' T k 2 (u)2 3 coo

. e‘”(t‘“) dF(u)
qi192 qi1‘193°°'qi232

f°r t20 and (il9jlskl)9(i29j29k2) # (09090)

and
m t

Qfik°o°9°)9(°9°v°)9t]'= j§=l £ dF(u) qljl Yp’jl(t“U)

The Markov renewal function is given by

O O 0 O * O 0 I
Rl{(1l9Jlokl)9(129J2sk2)st}: n Q n[(il9Jl9k1)9(129J29k2)at}otzflbd O

and (ilrjlskl)v(i29j2ok2) 5» Ev

§ystem Size Probabilities

Initially at time To=O, we assume that an arrival is just
taking place so that the state of the system is (1°,jo,ko) (fixed)
As before defining L(t) = {(x(t),Y(t),z(t))}, the stochastic
process {L(t),t)0;}is the semi-regenerative process defined over
the state space E. In this case also it is readily seen that
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c . . . . .
P(iol,)j°’k°)((1.3.k).t) = pr{L<t)=<:.,:.x)IL<o>=<1o.J°.ko>}

satisfies the Markov renewal equation so that the solution is
given by

(1) for (iojak) # (09090)
jl'1(1) . . _ t “ . .P «19J9k)9t) ‘ I E 2 2 R1{(1o93°oko)o(io,j°,ko O il)i jl=l kl=O

(il9jl9kl)odu} K(}) . (fiwj:k)9t'u
11'31'k1

where

x(:1’j K )(<:.j.k).t)= pr{;L<t)=<:.j.x>.r1>tIL(o)=<:1.:l.kl>}1' 1’ l

(i-il)mr t
[1-Fm] I 8 7p,jl-kl+z2+23+...+k(“)

= J 9-u(t—u) duo for (ilvjlikl) # (isjak)

[1-F(t)]e““t for <il.:1.kl>=<i.j.k)
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(ii) The probability that the system size is zero at time t
is given by

(1) t b m J1-1
P‘. . k )« o.o.o).t) =1‘ 12 ,2 1 k2 nl{(1o.50.n<o).1 9:] 9 0 =0 J = =00 o o 1 1 1

(1 oj ak )9du K (1) ((09090):1 1 1 .
(llsjlokl)

where (1) ’° 11'”
(1  k )((°9°9°)9t)= I:-1"F(t)] I 21’ 1' 1 o e2+z3+...+eil=11

Y _ (u)duo o
Limiting Behaviour

For this model also, given q1j's, i=1,2,....,b and
j=l,2,...,m, the one-step transition probabilities corresponding

to the Markov chain {(X,Y,Z)} are computed as in the case of
Model-I. Also the stationary distributions

x(l)(i,j,k), (i,j,k) 6 E are also evaluated as before. The
mean sojourn time in any state is

I
m(1’(1,j,k) = f [1-1=(t)]e"+”° dt, 1>o and

O

m(l)(o,o,o) =: 7' [1-F(t)]dt = a
O
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Let um P ”’ <<1.3.k).t) = p‘”<:.:.x).1: """"°° (iotjovko) 
Then the limiting probabilities are now computed as, for all
(i,j,k) E E,

1(1) =
B (irjok) n(l)(i’j’k) {1=(1)(i.J.k) n‘“((1.j.k).(i.J.k))+

b (1) . (1) . . .E_ 2 E 3 (1l9Jl9kl)n (11oJl9kl)a(19j9k»

where n(l)(11.Jl.k1).(i2.J2.k2)=7K (1) ((i2.J2.k2).t)dt.0 (ilrjlvkl)

for (i-l9.j]_okl)y(i29j29k2) e E

5.4. Numerical Illustrations

1. Consider the case when b=.-2 and m=.-2. For Model I, let

the parameter ?~ of the arrival process be equal to 1. Also assume
that the service time in each stage followsexponential distribution
with parameter p.=l. Let the probabilities determining the number

of stages be qll =- .3 and ql2 = .7.

From the given qiJ.'s, the transition probability matrix P
fiassociated with the Markov chain {(X,Y,Z) }defined on the state space

§{(o,o,o), (1,1,o), (1,2,o), (1,2,1), (2,2,1)} is computed as
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"0.15 0.045 0.105 0.35 0.35 -1
0.5 0.15 0.35 0 0

E3 = 0 0 0 0.5 0.50.5 0.15 0.35 0 00 0.3 0.7 0 0
The stationary probabilities are obtained as

n = {n(0,0,0)= 0.109, n(1,1,0)=0.129, u(1,2,0)=.232,

n(l,2,l)= 0.265, n(2,2,l)=O.265‘}

The limiting probabilities are given by

£(0,0,0) = 0.109
g(1,1,0) = 0.1707
g(1,2,0) = 0.1923
g(1,2,1) = 0.1325
g(2,2,1) = 0.3975

2. Considering Model II let the given set of probabilities

qij, i=1,2,3 be qll=O.l, ql2=O.2; q2l=0.2; q22=O.l; q3l=0.2;

q32=O.2 for b=3 and the maximum number of stages offered m=2.
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For simplicity assume that the interarrival times follow
exponential distribution with parameter7~=1 and the service
rate p in each stage be also equal to 1. The transition
probability matrix associated with-the Markov chain [(X,Y,Z)}

defined over the state space {(0,0,0), (1,1,0), (1,2,0),
(1,2,1), (2,1,0), (2,2,0), (2,2,1), (3,1,0), (3,2,0), (3,2,1)}

computed from the given qij's is as follows.

- .5 .1 .2 .2 0 0 0 0 0 0
.25 .05 .1 .1 .5 0 0 0 0 0
.05 .025 .05 .05 0 .5 .325 0 0 0.25 .05 .1 .1 0 0 .5 0 0 0
.2375 .0125 .025 .025 .1 .05 .05 .5 0 0

(1): .0125 .0125 .025 .025 .05 .025 .025 0 .5 .325
.2375 .0125 .025 .025 .1 .05 .05 0 0 .5
.475 .025 .05 .05 .2 .1 .1 0 0 0
.025 .0125 .025 .025 .1 .05 .05 0 0 .7125

[ .475 .025 .05 .05 .2 .1 .1 0 0 0
The stationary distributions are given by

a5n%{u(1)(0,0,0)=0.32, n(l)(l,l,O)=.O56, u(l)(1,2,0)dO.ll,
u(l)(l,2,l)=O.13, n(l)(2,l,O) = .009, t(l)(2,2,0)=0.08,

z51)(2,2,1)=0.13, x(l)(3,l,O)=0.004, n(l)(3,2,0)=0.04, u(l)(3,2,1)=



The mean sojourn time

m”’(i.j.k)

m(l)(0,0,0)

The limiting probabilities are computed and tabulated as follows:

71(1)“ j-l9j19kl)(i9jtk))
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II

It

1-» 9

y 1:
I 3‘!

n‘”((o.o.o). (o.o.o))

n(1)«l,1,0),
n‘1’<c2,1.o).

n(l)«2,2,0),
n”’((2.2.1).
n(l)«3,1,0),
n”)((3,2.o).
n(l)«3,2,l),

n(l)((l.2.0) .
n‘1’«2.1,o).
n(l)((2.2,0).
nu) -.((2:?.l) .

n(l)«3,l,O),
n(l)«3,2,0),
n(1)((3,2.l) .

(1,l,0))
(l,l,O))
(l,l,O))
(l,l,0))
(l,l,0»
(l,l,O))
(1,1,0))

(1,2,0))

(1,2,0))

(1,2,o))

(1,2,0))

(1,2,0»
(1,2,0))

(1,2,0))

2 i > 0

in any state

and

, i=0

II

II

II

.E(”(i.j.k)

1 _l3(09.09O) = 0032

0.5
0.009

0.0125

0.05 g(1)(1,1,0)= 0.05
0.003

0.002

0.003

0.5

0.1
0.025

0.1 P(1)(l,2,O) = 0.14
0.005 _
0.003

0.006
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n(l)((l929l)(-19291)) = 0.5
n(l)«2,l,O)(l,2,lD = 0.0125
n”)((2.2.0)(1,2,1)) = 0.0125
n‘1)«2,2,1)(1,2,1» = 0.025 g(1,2,1) = 0.13
n(l)«3,l,O)(1,2,lD = 0.003
n(1’«3,2,0)(1,2,1» = 0.001
n(1’«3,2,1)(1,2,1» = 0.003

n‘l)((2,1,0)(2,1,0)) = 0.5

n(l)«3,l,O)(2,l,OD = 0.1 P(2,l’O) = _O2
n(l)«3,2,0)(2,l,0D = 0.025 —
n(l)((3,2,l)(2,l,O)) = 0.1

n(l)«2,2,0)(2,2,0D = 0.5

n(l)«3,1,0)(2,2,0» = 0.05 p(2’2’0) = 0.08
n(1)«3,2,O)(2,2,OD = 0.0125 
n(1)«3,2.l)(2,2,0» .= 0.05

n‘1’(<2.2.1><2,2,1» = 0.5
n(l)«3,l,O)(2,2,1D = 0.0125(1) g(2,2,1) = 0.12n «3,2,0)(2,2,1» = 0.0125
n(l)«3,2,l)(2,2,1)) = 0.006

n(l)«3,l,O) (3,1,0» = .5 g(3,1,0) = 0.004
n(l)((3,2,0)(3,2,0)) -_- 0.5 g(3,2,0) = 0.03
n(l)((3,2,l)(3,2,l)) = 0.5 g(3,2,1) -_- 0.11



Chapter-6

A BULK SERVICE QUEUE WITH SERVICE TIME

DEPENDENT BATCH SIZE

6.1. Introduction

The present chapter generalises the M/Ga’b/l queueing
system with finite capacity. It is natural to expect a
dependence structure between the batch size to be served and
the time spent on serving the previous batch that has just
departed in various situations of business transactions.

Bulk service queues with infinite waiting room (W.R)
capacity is investigated by Bhat (1967) and he obtains the
busy period and the busy cycle distributions of the queue
length process in a GI/M/l queue with service in groups of
random size. Easton and Chaudhary (1982) analyse bulk
service queueing systems with Erlang input. Manoharan (l990)
discusses a bulk service queueing system with Erlang input and
server vacation and obtains the time dependent behaviour
of the system. However, these works do not introduce any
dependence structure in the basic process. Shanthikumar (1979)
deals an M/G/1 queue with two types of service time distribu
tions depending on the system size and obtains the Laplace
transform of the waiting time distribution. Krishnamoorthy
and Rajan Varughese (1990 a,b) introduce Markov dependence
on the sizes of batches to be served in succession in
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M/Ga'b/l and G/Ma’b/l queues with finite capacity. They
obtain the limiting distributions of the systmnsize. Certain
measures of effectiveness are also discussed by them.

Section 6.2 sketches a complete description of the two
models under consideration. Notations used in the chapter
are explained at the end of the same section. Analysis of
the Models are carried out in Section 6.3. Section 6.4
deals with the system size probabilities and Section 6.5 the
steady state analysis of the Models. Distribution of the
busy period and the busy cycle are studied in Section 6.6.
Virtual waiting time distribution is derived in Section 6.7.
A control problem associated with Model II is discussed in
the last section.

6.2. Description of the models

An M/Ga’b/l queueing system with a waiting room (W.R)

of finite capacity c is discussed. The arrival process
follows a Poisson process of rate )\. There is a service
station (8.8) whose capacity is b. We assume that cgb.
Services are in batches whose sizes vary between a and b (a<b).
The size of the next batch to be served is determined on the
basis of the time spent on serving the batch that has just

departed. Let bk(t) be the probability that the size of
the next batch to be served is k given that the time taken
to serve the present batch is t, t>O and k=a,a+l,....,b.



Two models are discussed here.

In Model I if at a departure epoch the number waiting
for service is at least a and at most equal to the number say
k(a \< k \< b) determined by the specified rule, then all of
them are transferred to the S.S. If the number waiting is
larger than k, then the first k among the waiting units are
taken for service. Finally, if the number waiting is less than
a the server remains idle until there are a in the W.R.

In Model II, if at a departure epoch only less than the
batch size k determined by the rule is available in the W.R.,
then the server remains idle until there are k in the W.R. If
the number waiting is larger than k, the first k alone are
admitted to the S.S. In both the models service times of
batches are independent and identically distributed random
variables, independent of the batch size (this is assumed for
simplicity) following distribution function G(.) which is
assumed to be absolutely continuous and let g(t)dt = dG(t).

Let p = t g(t)dt (assumed finite)
0‘w8

The models described above find application in production
process, storage theory and so on.
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Notations

* denotes convolution. For eg. (F*G)(t) = f P(t) dG(t—u)

f\i(x) denotes the probability that i arrivals take place in
an interval of duration x.

Thus /\i(x) = [e'hx(7xx)i]/it, i = 0,l,2,...,c

and 7Rc(x) = ; [e-%x(‘Ax)i]/ ii
igc

7 denotes the Gamma density where

(x) = [e""" 73‘ xk-1]/(k-1):, k-_—1,2,...;>~>o

X

‘)"k(x) = £yNk(u)du, k=l,2,...°, 7~)0

N° is the set {o,1,2,3,... }

x+ _ 0 if x < 0" x if x ).O

bk(t)= The probability that the size of the batch to be
served next equal to k given that the batch that
has just been served out was served an amount of
time t; t>0; k=a, a+l,...,b.

b

Obviously Z bk(t) = 1k=a
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X(t) - Number of units in the W.R at time t.

0 if the server is idle at time tY(t) =
1 if the server is busy at time t

( ) Number of units in the S.S at time t if Y(t)=lZ t =
Number to be served as determined by the rule
if Y(t)=O

By saying that the system is in state (i,j,k) at time t,
we mean X(t)=i, Y(t)=j, Z(t)==k.

6.3. Analysis

Model—l

Let 0 = To < Tl < T2 < ... Tn < ... be the successive
departure epochs of the initial l,2,...,n,... batches. The
number of units in the W.R at 0+, Tl+, T2+ ..., Tn+,... be
specified by Xo,Xl,X2,..., Xn,... . Suppose Zo,Zl,Z2,...,Zn,
... are the number of units in the S.S.] the number to be
served next as determined by the specified rule at these
epochs if service cannot start at this point of time. We

introduce another sequence Yo,Yl,...,Yn,..., where Ynzl if
a service can start immediately after the departure of the

previous batch and Yn=O otherwise. Thus in Model I, for
example, if at the nth departure epoch at least a are in the

W.R. then Zn denotes the number transferred to the S.S. and
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so Yn=l. If the number waiting at the nth departure epoch
is less than a then Zn denotes the number to be served in
the next batch as determined by the specified rule and then

Yn=0. More precisely if Yn takes the value 1 at time Tn+,
then Xn and Zn respectively represent the number of units
in the W.R. and that in the S.S. at Tn+. Then we have

Theorem—l

The process {flX,Y,Z),T] = {KXn;Yn,Zn), Tn; n E N°]'forms
a Markov renewal process defined over the state space

E ={(i,j,k)|i=o,1,2,...,a-1; j=O; k=a,a+1,...,b}u{(1,j,k)|
i=O,l,2,...,c; j=l; k=a,a+l,...,b} with semi-Markov

kernel as described below.

Define,

Q {(i1'51'k1) '(i2*52"‘2) vt} “ pr{(xn+1=i2'Yn+1=52'Zn+1=“2)3
Tn+l-Tnstl(Xn=il’Yn=jl’Zn:kl)]

Then (i) for jl=O; il=0,l,2,...,a-1; j2=l, i2=O,l,2,...,c-k2;
a$kl, k2$b,

1'. t

Q{(il9°pkl)9(i29lpk2)9t} "_" £ .£ YA’a_il(U)/\i2+k2(V"U)

g(v-u) bk (V-u)dv du2
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(ii) For O£~il<a, jl=O, i2=0 and j2=l, a$1<l,k24b
kt t 2

Q{(il9°9kl)9(O9l9k2)!t}=If Z0 u£=a Yh’a_il(U)/\z(V-U)

b

g(v-u) Z bk(v-u)dv du
k=k2

(iii) For 1l=:2=o, j1=j2=0, a$kl, kggb

Q{_(°9°9kl) o(°9°9k2)vt} =
o‘~u+ c‘wd

YA’a(U) e"A(V"”)

g(v-u) bk (v-u)dv du2

(iv) For il=i2=0; jl=l, j2=O, a$kl,k2$b
t

Q{(0!l9kl)a(°r09k2)9t_}= yr g(u)e-Au bk2(U)dU0

(v) For il=O,l,2,...,c-kl; jl=j2=l; a$kl,k2$b

t
fg(u)/\. . (u) b (u)du0 12*k2‘11 *2

when i +k < c-k. . 2 2 2
Q{(1l9l9kl)9(3-29]-9k2)9t)l§ t
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(vi) For il=i2=O, jl=j2=l, a4kl,k24b

() K2 I bX

g u 6:8 /\e(u) kt bk(u)du0‘wmr

Q{(09l9kl)9(°9-I-9k2)!t] =
" 2

(vii) For il=l,2,...,c-kl; i2=O, jl=j2=l; a$kl,k2$b

bk(u)du
IIMU

t
Q{(j-ls]-okl) 9(0v-191(2) at] = J‘ g(U)’\k2__il(u)O k k2

The Q(.,.,t) defined above gives the semi-Markov kernel of
the Markov renewal process.

Further define

o*“{<:l.jl.k‘l>.<:2.:2.1<2).t}
OIIM8B-{(3.-l9jl9kl) 9(i2vj29k2) at} = n

This gives the expected number of visits to state (i2,j2,k2) up
to time t starting from (il,jl,kl) initially.

Model-II

For Nbdel II we continue to use the same notations

(Xn,Yn,Zn) to represent the state of the system at time Tn,
n=0,l,2,... However there is a difference in the meaning now

to be given to Zn if Ynzl, namely that now Zn stands for the
number in the S.S as determined by the specified rule. The
state space for this model is given by
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1=.l=[(1,o,k)]i=o,1,2,...,1<-1; k=a,a+1,...,b}u{(i,1,k)]
i=O,l,2,...,c; k=a,a+1,,..,b}. Here again the

{(Xn,Yn,Zn), Tn; n e No] constitutes a Markov renewal process
on El. But there is a slight difference in the semi-Markov
kernel of the process. The semi-Markov kernel in this case
is given as follows:

(1) For il=O,l,2,...,kl-l; i2=O,l,2,...,k2-l, a\<kl,k2\<b,jl=jqt t
Ql{flil,o,kl),(i2,o,k2),t}.= £'rA’kl_il(u) £ g(v~u)

/\i (v-u) bk2(v-u)dv du2

(ii) For il=O,l,2,...,c—kl; 12=il,il+l,...,k2—l; jl=l, j2=0,

t
Ql{(j-l9lykl)p (1-29°9k2)9t}=  __i (U) bk2(U) g(U)duO 2 1

(iii) For il=0,l,2,...,c-kl; jl=j2=l, a.s kl, k2-$ b

ft
,;/\i2+k2_- l( U)bk2(U)g( U)dU9

when i2+%§c-k2

Q]-{( ilol-9kl)9(j-29]-9k2) 9t}=J t

.Cf;Ki2+k2_il(u) bk2(u)g(u)du



118

(iv) Finally for il=O,1,2,...,kl-1; i2=O,l,2,...,c-k2;
j_]_=Oo j2=-I-9 a‘$kla k2\$bt t

Q1{(il9°9kl)o(j-29]-okz)at}: .33. Yh'kl_il(U) 1,1./\i2+k2(V"U)

b (V-u) g(v-u)dv du
*2

Define Rl{(il.il.kl).(i2.i2.k2).t}=*n . . . .
E Q1 {(1l9Jlokl)o(i29J2ok2)at} W3-th1'10

0 if il#i2, jl#j2, kl#k2
Qlo{(j-lojlvkl):(i2oj29k2) ft] = {I if i 1212' 51:52’ k1=k2

Rl{(il,jl,kl),(i2,j2,k2),t].gives the expected number of visits
in time t to the state (i2,j2,k2) starting from the state
(il,jl»kl)

The following theorem can be easily proved.

Theorem-2

A necessary and sufficient condition for the Markov chain

fixh,Yn,zn), n e N°} with state space E1 to be recurrent is that
1 > bk(t) > o for all t > 0 and k = a,a+l,...,b.

We assume that l>bk(t) ) 0 for all t ) O and k = a,a+l,...,b.
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6.4. §ystem size probabilities

In bothhhodels we assume that initially ie. at time

To=O, Xo=O, Yo=l and Zo=a. Consider the three dimensional

process L(t) = {X(t), Y(t), Z(t)]. Then the process {L(t),t;O}
is a semi-regenerative process with the Markov renewal process

{(Xn,Yn,Zn), T}" rue No} embedded in it.

Model-1

Let p(o,l,a,«:.j.k).t> = pr{L<t>=<i.j.k>IL(o>=<o.1.a>}.for i=O,l,2,...,c;
j=O,l; k=a,a+l,...,b.

The function P(o 1 a)«i,j,k),t) satisfies the Markov renewal9 9

equation ( Cinlar 1975a)

For i=O,l,2,...,c; j=l and k=a, write

Pr[L(t)=(i,l.a); Tl>tlL(o)=(0.l.a)} as K(o,l,a)K i.l.a).t)

The solution can be written as

(i) For i=O,1,2,...,c; j=l and k=a+l, a+2,....,b

. t min{c-k,i}
P(°,l,a)((1,1.k),t) =.£ iizo R{(o,1.a).(1l.l.k).du}

91‘-'u)
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(11) For i=O,l,2,...,a--1; j=O, k=a,a+l,...,b

( a—1)

11:

i
P(o’l,a)«i9°9k)9t) = E R{(09lv3)9(ilv°9k)7du}O

iiofik) 9t"'u)
(iii) For i=O,l,2,...,c; j=l and k=a, we get

[c-a,i}min

is [R{§o.l.a).(il.1.a).du}
1io*aap(o’l’a)((j-9]-!a)9t) = :0

K(il,l,a)«i9l9a)9t‘U)]

a—l

+ 2 [R{(09l9a)9(il9°9a)'du}
il=o

1<E§:’o,a)((1,1,a),t-u)]}
where

K(il’l'k)(fi,l,k),t) = Pr[L(t)=(i.l.k).Tl>tlL(o)=(il.l.k)}

=/\i_il<t) [1-em]

Similarly

K(il.o,k)(( i'°"‘)'t) ‘A1-il('°)
and

(1) (( 1 ) t) - :/C‘ (u)/\ (t..u)[1-G(t—u)]duK(il.0.a) 1' '3 ' ‘ 0 YAaa'i1 1-11
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Model-II

Here also the function P(o 1 a)« i,j,k),t) satisfies7 9

the Markov renewal equation . Thus the solution can be written
as_ t
(1) P(o,l,a)«o,o,k),t) = £ R{(o,1,a),(o,o,k),du}

K(0’o’k)(( 0,0,k) ,t-U)

(ii) For i=O,l,2,...,k-1; j=O, k=a,a+l,...,b

t .
p(O’l,a)« i,o,k),t) = £ i§=oR{(o,1,a),(il,o,k),du}»

K(il’o,k)« i9°9k)yt‘U)

(iii) For i=O,l,2,...,c; j=l, k=a,a+l,...,b

t m n ’
p(O,l,a)((i9]-9k)9t) =  E R{,(°9l9a)!(il’l9k)!du}

K(   ,t-U) +
k l
- [R{(°9l9a)9(j-lv09k)dU_}=011

K(-1) ((191-9k)9t"U)]}(il,o,k)

where K(.,.,t) are as defined earlier and are as follows:
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(1) s<(O,o,k)(<o.o.k>.t> = 6"‘=
(iii) K(il,l,k)«i.1.k).t) = /\i_il(t) [1-G(t)]

(iv) KEN (<:.1.k).t) = }Y . cu)/\.<t-u)1l,o,k) O )uk-11 1
[l—G(t-u)]du

6.5. Steady state analysis

To obtain the limiting distribution of the system size,
first we compute the one-step transition probability matrix F3

associated with the Markov chain {tXn,Yn,Zn), n e No}. The
one-step transition probabilities are obtained as

p (1)
((il.jl.kl).(i2.J2.k2D Pr{‘Xn+l:i2' Yn+l=j2’ Zn+l=k2)l

(xn=1l, Yn=jl, Zn=kl)}

f o{fil.jl.kl).(i2.52.k2).t}«dt,O

for (il,jl,kl) and (i2,j2,k2) e E (El) for Model I(Model II).

Using this we can easily compute the stationary distributions
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n(il,jl,kl) for ild0,l,2,...,c; jl=0,l;.a4klgb where

u(i,j,k) = i;Efi W Pr {(xn=i, Yn=j, Zn=k)](X0=o,Yo=l,zO=a)

Denote K(i kl)((j-29.jlskl)9t) dt 35 7!“ il9jlvkl)9(i2:jl9kl))lijlt
and ” 1 . . . . . .

ixfi’ j k <(12.32.k2>.t) at as n(l)(( 1l.;1.kl).(12.J2.1<2>)1’ l’ 1

Write

ii-m p(0,l,a)(( j-vjvk)ot) = q(( ivjsk» for (irjak) e-E(El)_...).a.,

Model I

The mean sojourn time in state (i,o,k) is

e‘”t dt —»$ - i=o,1,2,...,a-1; a$k$b31“ i9°9k))'-" "A !
0“w8

and that in state (i,l,k) is

m«i,1,k» = f [l—G(t)] e‘”* dt, i=O,l,2,...,c-k; agkgb
0

Hence

(i) for i=0,l,2,...,a-1, k=a,a+l,...,b
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a-l
_ 2 n(il9°9k) 1'1((il20:k).(i,0,1<))1 =0q«j.,O,k» = 1 C-1‘b a—l 1

[k)l:___a{ 1 _on(il.o,1<l)m((il,o,kl)) + 1}2_°1t(il,l,kl)rn((il,l,l<l))}1- 1"
(ii) for i=O,l,2,. ,c, k—a,a+l,. ,ba-l  C'''k. 2 n(il.o.k) n <(il.o.k),<:.1.k))+ .2 1t(il.l.k)n((i1.l.l<)(i.11 =0 1 =0. _ 1 1q((1-9]-ck» - b a-l . c_kl

[kg-8 $.12.-.o1‘(ll9o!kl) m((j-l9°9kl»"’ iz_7°‘( 5-lvl9kl)m((j-ls]-ski)1- 1” l
Model—II

The mean sojourn time in state (i,o,k) is

Vh~
m((i,o,k)) = J‘ e""t d_t = , i=O,l,2,...,k-1; agkgb

O

and that in_state (i,l,k) is

rn((i,l,k)) = f (1-G(t))e""° dt, i=0,l,2,...,c-k; a\<k.$b
0

Hence

i=0,l’2’ooo,k"l; k=a’a+l’ooo’b
k-l
2 “(j-loovk) n((il9°9k)9(3.-oosk»

11:0q(G>!O!k» = b  C_kl I
[k):=a{ iElL=o1t(1l,o,kl)m(1l,o,kl) + i2_1;(il,1,kl)m(il,1,kl)]]1
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and (ii) for i=O,l,2,...,c; k=a,a+l,...,b
k-1 . C K
E.1t(i1.o.k)n ((1l.o.k) . (1.1 .k)) +=1 .5 1t(il.l.I<)n((i1.l.k).(i.l.k))11:0 Ib k-l °'k1

[ 212 1t(il,o,kl)m(il,o,kl))t- 2 1t(il,l,kl)m(( 1l,1,k1))}]kl=a il=o il=o
q((i.1.k)) = 11

6.6 Distribution of the busy cycle and busyzperiod

A busy period for Model I is the time elapsed since the
transfer of a batch of size a to the S.S, thus terminating an
idle period, until at a departure epoch the system reaches a
state (i,o,j). For Model II, a busy period starts with the
number of waiting customers reaching the prescribed level until
at a departure epoch the specified number of customers are not
found in the W.R.

Let 0 = To(l), T51), Tgl), ... be the successive busy
period termination epochs for Model I/Model II. Correspondingly

Xfil) and Zfil), n=O,l,2,... respectively denote the number avail
able in the W.R and the number specified by the rule with

1)Y(n , n=O,l,2,... taking the value 0. Again let T,B and 1,
respectively represent the length of the busy cycle, busy period
and idle period. The corresponding distributions can be easily
computed by refering Table I for Model and Table II for Model II.
Assume that n departures occur in a busy cycle.
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Table—I

Batch size Batch size No.ofBatch of the determined arrivals
No. present by the during , No. in the system at aone rule for service service completion epochthe next

batch

1 a j2 Bl Riga; €&=min(c,21)
2 %£'when j2)§; j Z ggya; €2=min(c,g$+32)-glj2 when j2$ 1 3 2 6 )a; Z =min(c,8l+9§)—j2

3  for j3'>% j Z Q:§)a, £’_«3=min(c,3+33)-g
33 when J3\<f2 4 3 €§)a; 23.-—m1n(c,<»2+€3)-33

. 2 =min (c 8 +8 )-2 <a
1“ “£31 ghgg Jn+l En «.9 '22.-1 n 2.-1n ,Q_-1 2n=min (c,9n_l+£n)-jn<aJ when  Zn_l c-- H-I
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hhe distribution of the busy cycle is given by (refer Table I)
FE b a-1
fhd = Pr(I$x) = 2 Z Pr(T$xIthe state of the system is (i,o,jlD x3 jl=ai=o

Pr(the state of the system is (i,o,jlD

a-l b m b
= .2 .22 1I(i,0,jl) 2 O 2. 2 f f  fyaa_i(ul)1=o 3l=a n=l 32..Jn+l=a 31,2 ,...Bn ul u2 un+l '

9(”2“”1)”bi(“2‘”1) bj2(”2'“1)°°°9(”n+1’“n)’}h(“n+1'”n)

bjn+l(un+l'un) dul du2 "‘ dun+1

where the ranges of 3l,92,..., Zn can be obtained from
Table I.

The distribution of the busy period is B(x)=Pr(B$x)

C-jl b wBho==.2 _z 2 . ; _ 2 J‘ f‘... f
1=o 31:3 n=l J2,J3,...Jn+l 3l,B2,...,2n ul u2 un

g(ul)A£1(ul) bj2(ul) g(u2-ul)fiyé(u2-ul)bj3(u2-ul) ...

g(un-un_l)f\£n(un-un_l) bjn+l(un-un_l) dul du2 ... dun
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Table-II

Size of Size of Number
Batch the batch the next} of No. in the system atNo. undergoing batch arrivals a service completion

service determined during the epochby the service of
specified the presentrule batch

1 51 52 31 B1 9 52‘ e1="‘i“(°'e1)
2 52 53 32 92 3' 53‘ e2='“i“(°'e1"92)’52
3 53 54 83 3 ’/ 545‘ e3=‘“i“(°'e2+e3)"53

(n'l) jn-l jn en-1 €Q§l)jn;%Q7l=min(°’%g—2+%v4*
n jn jn+l an 2n=min(°’Eh-I+2h)'jn<jn+l
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j1’1 b _ +~ b
F(x) = Pr('l\<_x) = _2 .2 n(1.o,jl) 2 >3. . 2

i=0 31:3 n=1 j2,J3_,.Jn+l=a 9l,Z2,...€n

,,(jl—1)(”1)9(”2‘“1*“zl(”2‘“1)1 "2 “n+1

bj2(u2—ul) g(u3-u2)hv2(u3-u2) bj3(u3-u2)...g(un+l-q§)

/\£.(un+l-un) b (n jn+l -un)dul du2 ... duun+l n+1
Distribution of the busy period 8 is B(x) = Pr(B$x)

c-jl b w b
B(x)= _z 2 2 . g . _ 2 22 f’ f ...1=o jl--s-a n=l _]2,_]3,..._]n+l—.a 1, 2,...2n ul U2

'£n9(ul)/\e]-(ul) bj2(u1) g(u2-ul)/\¢2(u2-ul) bj3(u2-ul)...

g(un-un_l)Azn(un-un_l) bjn+1(un-un_l)dul du2 ... dun

where the ranges of values of 31,32, ...2nare given in
Table II.

From the two distributions, a measure of effectiveness can be
obtained as follows:

Define the server utilisation factor U as the ratio of
Wm busy period to the busy cycle

That is U = B/T
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Hence a measure of effectiveness is

E(B)/E(T)

since

which is always < l

E(T) = E(B) + E(I)

From the distributions of B and T, E(B) and E(T) can be computed
and hence E(B)/E(T).

6.7. Virtual waiting time distribution

Let W be the virtual waiting time of a customer in the

queue in the steady statefor Model II.

Pr(W\<w)

Pr(W=O) =

Pr(O<W$w)=

The first term on

Then

Pr(W=0) + Pr(0<W$w)

b

.2 n(j‘l9°9j)
J=a

(1)

j 2 b
2 {Pr(O<W$w)|the state of the system0 j=a is (i,o,jE

1:

x Pr (the state of the system is (1,o,j))}
c-1 b
2 Z [PI(O<W\<w]the state of the system is (i,1,j

i=o j=a

Pr(the state of the system is (i,l,j))]
j*2 b

the R.H.S is 1:0 jia n(i,o,j)F;:j_(i+l)(w)
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To find P(O<WéwI the state of the system is (i,l,j)) we proceed
as follows.

Assume that at the ‘time of arrival’ of the virtual
customer state of the system is (i,l,j) and that the present
batch has already been served for an amount of time u. Further
assume that n departures occur before the particular unit is
taken for service. During the service of the n batches all
together 3 arrivals take place in such a way that at each
departure epoch, the W.R contains ) the number specified and
just after the departure of the nth batch the state of the
system is (il,l,kl) in which the particular unit arrived is
being taken for service. If just after the departure of the
nth batch, the state of the system is (i2,o,k2) the server
remains idle till (K2-i2) customers arrive and the particular
unit is taken for service.

Now Pr(O<Wgw|system in (i,l,j))

u
nrafl f f ... f g(u1-u) bj2(ul) g(u2-ul)n 1 ul u2 un

u —u<wn \
bj (u2-ul) ... g(un—un_l) bj (un-un_l)3 n+1

°'k1 b»\ ( - ) 2 2 n(i l,k ) +g 2 un U [ i :0 k =3 1’ l1 1
-1 b

i:§o K:§a n(i2’O’k2) Y A’k2

k2

_i2(w-un)]du1 du2... dun
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Hence

P (o<w<) jtz :2) ( )I" () “J b\ = .9 9 -919r w 1:0 j=a n 1 0 j )“j_(i+l) w + 12° jia «(i J)

nil £;£2 ... {;g(ul-u) bj2(u1)g(u2-ul)bj3(u2-ul)...
un-u$w

g( un'un_l)  (un""un_l) é:  ( un'u)n+1

[ -kl b < ) k2“1 b c )Z Z n i 1 k + 2 2 n 1 o k. 1! I 1 2! 9 21 =0 k=a i =0 k =al 2 2
. "' d d 000 dY;,(k2-12) (w un) ] ul U2 un (2)

Hence Pr(W$w) is the sum of the right hand sides of (l) and (2).
A similar expression can be written for the virtual waiting
time for Model I with the difference that here the service is
initiated even when the W.R contains less than the number

determined by the rule provided that at least a units are
available at that epoch.

6.8. Control problem

In this section we indicate how to obtain the optimal value
of c for given values of a and b. We shall take the objective
function as the total expected cost per unit time in the steady
state. The decision variable is c which should be so chosen that
the objective function value is minimum for that value of c.
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The mean of the service time distribution is

f'[l-G(t)]dt = p. Suppose that at the departure epoch of a
o

batch, the system is in state (i,j,k). Conditioned on this,
we proceed to find the optimal value of c between this and
the next departure epochs.

Let h be the cost of waiting per unit per unit time

when service is going on; hl be the cost per unit loss due
to finite W.R capacity c; h2 be the cost of waiting per unit
per unit time due to no service; h3 be the cost associated
with the server's idleness.

Assume that the system is in state (i,l,k), i=0,...,c-k
immediately after the departure of a batch. This means (c-i)
more units can be admitted to the W.R during a service. The

first among these (c-i) units arrive on the average after %
units of time since the commencement of service. The next

after-2 units of time, .... Thus these units are to wait for7‘

atleast (u --% ), (p —'% ),...., (u- (ggé) ) units of time
provided at least (c-i) arrivals take place. Initially i
units are waiting. These are to wait on the average for u units
oftime to get a chance to enter the S.S after the completion
of the present service. Hence cost towards waiting over a
service time provided the state of the system is (i,l,k) just
after a departure is
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h {in + [u -3% ]+ + [I1 -§]+ + ---+ [u- (9-'7-:1-31+}

The expected number of units lost to the system during the

service is [ u - (gal) ]+7\. Then the expected loss to the
system during a service due to finite waiting room is

[L1 - (£%'j")]+?\ °h]_°

Assume that the system is in state (i,o,k) just after
the service of a batch, i=0,l,2,...,a-l for Model I or
i=O,l,2,...,k-1 for Model II. In particular consider Model I.
If the system is in (i,o,k) then (a-i) more arrivals should
take place in order that a service commences. Hence expected

cost due to servers idlensss is h3(3%% .

Since the system is in (i,o,k), (awi) more units have
to arrive to start service. These units arrive on the average

.1. 3 ..__a-i
% ’ % ’ . C .

epoch at the end of which the system is in state (i,o,k).
after units of time after last departure

Initially i units are waiting for service. Hence cost towards
waiting due to no service is

-' -°-1 2 1
{i(§'§Zl) * (§"2~1“" ) "  *X*?}"2

As soon as the (a-i)th arrival takes place, these a units
are transferred to the S.S and service commences. The
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expected loss to the system during the service of the
batch (of size a units), due to finite W.R capacity is

+ h[Lt-§]7\ 1
Thus the expected total cost to the system per unit

time, evaluated between two successive departure epochs,
under Model I, is

c-k
T-‘(c) =.~ 2 5? q ((i.l.k)) -E,-{h(iu + [u- 5%-]++[u-'3: ]++-o-+[u-(5-'7-3591+)i=0 k=a

-l b
+ ([ u - ('9-'5,"-:L)]+7~ -hl) + :0 kia q((i.o.k)){h3(-9%’-1-) +

n2[:(9—;-1-) + (9-=;\i-'-'-1-)+  + -§- 4,; 1+ I];-[p— -gfinl}

An expression for the cost function can be obtained for Model-II
in a similar fashion.

Now the optimal value c* of c can be calculated from
the relations

T-"(c*) \< 'l5( c*+l)and _ _
F(c*).$ F(c*-l)



Chapter—7

FINITE CAPACITY G/Ek/l AND M/33'”/1 QUEUEING svsnams

7.1 lntroduction

This chapter deals with two models of finite capacity,

single server queueing systems. Model-I is about G/Bk/1
queueing system in which the interarrival times of customers

areammumed to follow a general distribution. Each arrival
to the system induces an additional k phases and the service
times in each phase follow exponential distribution. Model-II
investigates a queueing system with general bulk service rule

with batch sizes varying from a to b. The system capacity
is assumed to be finite in both the Models.

There are many situations in real—life where we
encounter such types of queueing models as described above.
The transportation process involving buses, trains, aero
planes etc. all deal with such type of queueing systems.

Jacob, Krishnamoorthy and Madhusoodanan (1988) obtain

the time dependent solution to M/Ga'b/l model whereas the
same model with vacation is studied by Jacob and Madhusoodanan

(1987). Their approach is based on matrix convolution method.
Here we make use of a much more simplified tool- Markov

Renewal theoretic approach.
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Section 7.2 describes the models and notations used in

the chapter. Analysis, time-dependent system size probabilities

and the steady state distributions of the G/Ek/1 queueing
system are carried out in Section 7.3. Analysis of M/Ga'b/l
queueing model, its system size probabilities, steady state
behaviour and virtual waiting time distribution are derived
in Section 7.4.

7.2. Description of the Models

Model 1- The G/Bk/l system

The interarrival times of customers to the single
server queueing system are assumed to be independent and
identically distributed random variables following distribution
function G(.) with density g(.). The system is of finite
capacity b. The service pattern follows Erlang distribution
of order k(k)2). The queue discipline is FCFS. Here the
arrival of each customer induces additional k phases into the
system provided there are atmost (b-l) units in the system.
Service in each phase is exponentially distributed with same
rate p. Arrivals taking place when the system is full are
lost. The system size at any time point is the number of
phases in the system at that instant. The service mechanism
is such that the server becomes idle and stops serving only
when there is no unit in the system.
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Model II- The M/Ga’b/l Queue

We assume that the model under consideration has a

waiting room (W.R) and a service station (S.R) each of
capacity b. Customers arrive one by one according to a
homogeneous Poisson process of rate Px and join the W.R
subject to the capacity restriction. All arrivals taking
place when the W.R. is full are lost to the system. Service
times are independent and identically distributed random
variables following distribution function H(.) and density
function h(.). Services are in batches with at least a
customers and a maximum of b in each batch. when the service

of a batch is completed the server scans the W.R. and transfers
all those in the W.R. provided there are at least a customers,
to the S.S. On the other hand if the server finds less than a
customers waiting for service, he goes for vacation for a
random length of time following distribution function F(.) and
density function f(.). On return, if the system size is still
less than a, he takes another vacation immediately which is
independent of and identically distributed as the previous one.
This process continues until on return he finds at least a
units waiting for service.
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Notations

* denotes convolution. g*n(x) denotes the n-fold convolution
of g(x) with itself.

N denotes {1,2,3,4,.....}

No denotes the set {O,l,2,... }

E is the set. {0,l,2,..., k,k+l,...,bk]~
(Q(i,j,t)) for 1,3 e; E is a (bk+l)x(bk+l) matrix whose (i,j)th
entry is Q(i,j,t)

Pi(j,t) is the probability that at time t there are j phases
in the system given that the system has started with i phases
initially.

-)\x n= e   , 1'1-"=0,l,2,...,b-l
7\b(x) = 2 e-Armin)“n)b ’

7 denotes the Gamma density where

k -1
ymcx) = <e""‘,x x“ )/ck-1):. k=1.2,s....

E1 is the set {o,1,2,...,a-1}

E2 is the set {0,l,2,...Jo}
A
g(a) - the Laplace transform of g(t).

That is 3(a) = f e‘at g(t)dt
o
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(Ql(i,j,t» is a square matrix of order a whose (i,j)th
entry is Ql(i,j,t).

P(o’e)((i,j),t) is the probability that i units are under
going service and j units are in the W.R at time t under
the condition that at time zero the server went on vacation
as there were onlye (\( a-1) units in the system, with either
i=0 or a\<i\<b; j=0,l,2,...,b_.

.7.3. Model I: G/Ek/l Queue

Let Y ldenotes the number of phases in the system att
time t. Then the process {Yt,t)O} is a semi-regenerative
process with state space E. Identify 0=To,Tl,T2, ... as the
initial, first, second, ... arrival instants. Let X“
denote the number of phases present in the system just prior

to the nth arrival. Then the process [(X,T)}={KXn,Tn),ne:N°]
is the embedded Markov renewal process.

Define

Q(i,j,t) = Prf_Xn+l=j;‘I'n+l-Tn$t]Xn=i], 1,3’ 6. E,t;,0

Then (1) for o \< i\( (b-l)l<; j=O,l,2,...,i,....bk

o<:.j.t) = §<e‘“"<uu>‘i**‘3’>I(:+k-5):} g<u>du
O‘ad
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(ii) for (b—l)k < 1.g bk, j 5 1

o<:.j.t> = } {(e'**"<uu>i''J'/< 1-: ):}g<u)au
O

The semi-Markov kernel over E is

@

Let Q(t)

[o(i.j.t). me E. t >,o}
(Q(i.j.t)). i,j e E

For all n e N define

Q“(i,j,t) = Pr{Xn--j; ‘l'n\<t]Xo=1}, 1,3‘ e E, 1:900 1 if i=jwith Q (i,j,t) = I(i,j) = 0 if ifij

For all t>,0, n e N we have the recursive relation,

Q(iojvdu) Qn(j9m9t'u)
o'~.¢-+

Q""1(i.m.t) = 2
jeE

The Markov renewal function is given by

R(i.j.t> = 2 Q*“(i.J.t). 1.5 e E. t>,0
n=o

with the Markov renewal kernel 52 .

Let [R (t) = (R(i.5.t)) for 1.1 e E. t>,0
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Since E is finite, the Markov renewal kernel can be computed
by taking Laplace transforms.

gystem size probabilities

Assume that initially there are a units (ak phases)

in the system. Then Pak(i,t) satisfies the Markov renewal
equations so that

t
Pak(i,t) = z: E J“ R(ak,m,du) Km(i,t-u)m€ 0

where Km(i,t) ==Pr'{Yt=i, Tl>tIXo=m]. and is obtained as
follows:

(i) for 0 $ n1< bk, i=0

Km<:.t> = [(e'“‘<ut>m>/ma} [1-e<t)1

(ii) for 0 < nus (b—1)k. l<i<m+k

Km(i.t) = 9-“E§”1)m+k-1 [1-e(t)](m+k-i)1

(iii) finally for (b-l)k ( m~$ bk, l$i$m

Km(i.t) = e_%$£§}%m-1 [1-G(t)]
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Steady state distribution

To obtain the limiting distribution of the system
size, first we verify whether (X,T) is irreducible,recurrent
and aperiodic. For this we assume that the expected number
of phases L completed during an interarrival time is greater
than k. With this assumption (X,T) becomes irreducible and
recurrent.

8no .-pu
That is E(L) = f 22 8% g(u)du > k0 «BE ’
Also the sojourn time in state 0 has an exponentially
distributed component and so Q(o,j,t) is not a step function.
Hence all states are aperiodic in (X,T). So (X,T) is an
irreducible aperiodic and recurrent process. Further the
state space E is finite.

Let n be an invariant measure for X which gives the
stationary distribution of the process (X,T). This a is
obtained from the solution of the set of linear equations
fi=n subject to the condition uezl where n is a (bk+l)
component row vector and e = (l,l,...,l) which is a (bk+l)
component column vector.

Further”: = (( Pi J9

(bk+l) x (bk+l) where
D, i,j e E is a matrix of order
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PM = Pr{xn+1=ux..=:;= o<w>
I F’ = n implies that

E “(-1) pi ° =“(j)v j€Eie E .3
The expected sojourn time in state j is

= [1-‘ 2 Q(i9jot))dt
iE:EO“w3

Let I ={t(o),t(1), ..., ‘C(bk)}

We compute the limiting probabilities as

i
,2 am no.1)
J=°

lim P k(i,t) =_E(i) =t -#>w a . .Z n(J) ((3)
je.E

where n(j,i) = f Kj(i,t)dto

The limiting distribution of thesystem size probabilities
are also obtained by the method of Laplace transformations
as follows:

We have already obtained

Pak(1,t) = m::€E E’ R(ak,m,du) Km(i,t-u) (A)
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Let A “ _ .Pa(ak,i) = f e at Pak(1,t)dto

‘A M —atRa(ak,m) —_- f e R(ak,m,t)dtoand w
‘E (m i) - f e-at K (i t)dta ’ ” O m ’

Taking Laplace transform of both sides of (A) and applying
Tauberian theorem (Widder (1948)) we have

/\lim P (i t) = lim. P (ak i)t _q_w ak ’ a _é_o a ’. A /N
= 11m ( 2 Ra(ak.m) Ka(m.i))a -4>o meaE

7.4. Model—II- ~1zG"'b/lgueue

Let g(u)du be the probability that the service of a
batch which has started at time zero is completed in the
interval (u,u+du] and during this service time at least a
arrivals have taken place. Thus

g(u)du = V; /\j(u) h(u)du (1)O

J=a

where h(.) is the service time density function. Let X(t)
be the number of units underoing service and Y(t) be the
number of units waiting for service at time t.
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Define Z(t) =w{X(t), Y(t)}. Then the stochastic process
{Z(t), t)0]- is a semi-regenerative process defined over
the state space El x E2.

The time epochs at which the server goes for vacation
after a service with less than a units waiting for service

are the busy period termination epochs. Let O=To,T T1, 2,...
be the time epochs of successive busy period terminations

and Y“, n=0,l,2,... be the number of units in the system
(ie. in the W.R.) at time Tn+. Then the process
{(Y,T)} = {(Yn,Tn), n e N°} is a time homogeneous Markov

renewal process defined over the set E1. The kernal of the
semieMarkov process is

{c2l(i.j.t). 1.: e E1. t >0}

where the Ql(i,j,t) are given by

Ql(i,j,t) = Pr {Yn+l=j;Tn+l—Tn\<t|Yn=i_], i,jeEl, t)O

a-l—i
01; f*“(u) f(v-u) 2 /\ (MK . (Wu)0 u v n=o r=o r a-(1+r)

E g*(m-l)(w-V) h(t-w)/\.(t-w)dw dv du (2)m=l 3
The Markov Renewal function is given by

Rl(i.j.t) = 2 o'{“<i.3.t). meal. wo
I'1=O
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System size probabilities

We assume that initially, ie. at time To=O, the
server just enters a vacation period after completing a
busy period so that the initial state of the process is

Z(o) = [X(o), Y(o)]= (0,2) for some 86 El

Let p(m)(( i,j),t) = Pr{Z(t)=(i,j)lZ(o)=(o,Z)_} ,2 e E1.
Then

P(o’8)«i9j)9t) = Pr{Z(t)=(i9j)9Tl>t|Z(0)=(°9B)3

+ Pr{Z(t)=(i;§)pTl$tIZ(0)=(o.8)}Now t
Pr{Z(t)=(i9j)9 TrSt|Z(0)=(°9el}= 2 f01(e9k9du)

kefilo

P(o’k)((isj):t“U)
and

Pr{z(t)=(i.j);T1>tlz(o)=(o.e)}= K(o’e)((i.J').t)

Then P(° e%Ki,j),t) satisfies the Markov renewal equation.I

Hence the solutions are given by

t

p(o,e)(fivj)9t) = k§El £ Rl(€9k1du) K(o’k)«isj)9t‘u)
where
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(1) for a<i$b; j=0,l,2,...,b

. _ t t w in a—l-k _
K(o’k)((1.J).t) = {.5 niof (U)f(V"U)r:o/\r(U)/\a-(k+r)(V"'U)

8
*m_ t

9 l(w-v) J"h(x-w)/\i(x-w) [1-H(t-x)]
W

t
4} HMm 1

/\j(t-x)dx dw dv du

(ii) for i=a; j=0,l,2,...,b
w a-1-kt t ,,

1<(O,k,((i.j).t)) =  ngof “(u)f(v-u) rio /\r(u)

{/\a_(k+r) (v-u) [l—H( M) 1 A3. ( t-v)

X

m=l
g*‘m'1’(w-v) hty-w)

£'~.¢+

- t
+ /\a-( k+r) ( V-u) VI

/\a(y-w) [1-H(t-y)]/\j(t-y)dy aw} dv du

(iii) for i=0, j=k,k+l,...,b* 'l‘k 
f n(u)a Z /\m(u)[l-F(t-u)]n\ (t—u)duo m=o j-(k+m)K(o’k)((j-9j)9t) =

0'*u+ II P‘)n

and 0 otherwise
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Virtual waiting_time distribution

Let W(t) be the virtual waiting time of a customer
in the queue.

Let Pr[W(t)~$ x]Z(t) = (i,j), Z(o) = (o,€)}==B-{W(t).$ X}
Then

(i) for a<i<b; a—l$j<b-lt t or» ,n t a-l-k
B{W(t)<x} = f,f 2 Rl(€,k,du) 2 f (V-U)f"f(w-V) E A}(o u keEl =0 v r=oA A t+x

i_(r+k)(w--v) J.(t-w)[l--H(t-w)] {h(‘C)d‘r dw dv

(ii) for agiéb; o$j<a—1

B[W(t)$x} = } f 2 Rl(€,k,du) : f*n(v-u)o u keEl n=o
t a-l—k
£f(w—v) r:éAr(v-u)AE_(r+k)(w—v)

t+x ._
/\j(t-w) [1-H(t-w)] { h(‘C)/\a_(j+l)('(--t)d'C dw dv

(iii) for i=0, O(j<b-lt t+x _ ‘
B[w(t)<x} = :5 REE Rl(€,k,du) { f(v--u)/\J._k(t-u)/\a_(j+l)(v-t,l
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(iv) for a$i£b; jzb

1: t on *
B{W(t)\<x} = J‘ 2 Rl(€,k,du) f 2 f “(v-u)o keEl u n=o

t a-l-k
.‘!"f(w-v) rgo /\r(v-u) /\ i_(1.+k) (w—v)

_ t+x t+x __
/\b(t-w) { hft-w) f h(z—T)/\a_l(z-T)dz dt dw dvI

finally for i=0, j=b

t t+x __
B[W(t)$x} = { kEElRl(€.k,du)£ff(v-uM\b_k(t-u)

t+x _
J‘ h(w-v) /\a_l(w-v)dw dv
V

Next consider the case in which the server does not
go for vacation.

As in the previous case, the semi—regenerative process

is {Z(t),t)Q} defined over the state space El x E2 . Let
0 = To,Tl,T2, ... be the successive time points at which the
server becomes idle with less than a customers waiting for

service and Y“ be the number of customers waiting for service
at time Tn so that Yn = Y(Tn+). Here also

{(Y,I)]= {(Yn,Tn), ne N°}
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is the time homogeneous Markov renewal process defined over

Elwith. . t t °° *( -1)
Q2(1.J.t)= 21; Y./\,a_i(u) flmgl 9 m (v-u) h(t-v)/\j(t-v)dv du
and

R2(i.j.t)= 2 o2*“(i.j.t) (3)
I'1=O

The system size probabilities in this case are given by

t

=   .£R2(29k9du) K(°’k)(j-9j)vt""'u)

where K(o k)“ i,j),t) is as defined earlier and the expressions’ .
are given by

(1) for a<i\<b, j=0,l,2,...,b

co * -1
[1;\’a_k(u) 219 m (v-u)In:o'~.«+ C“ad'

K(o,k)((i9j)vt) =

('0'

fh(w-v)/\i(w-v)[1-H(t-w)]Aj(t-wflpw dv duv

i=8, j=O,.1.,2,ooo,b

K(o,k)((i.j).t) = a__k(u){[l-H(t-u)]/\j(t-u) +Y)’

00

2 g*(m'1)g(v-u)n(w-v)
m 1

t
f
o

t t
f f
u v

/\a(w-v) [1-H(t-w)]/\j( t-w)dw av] du
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finally (iii) for i=0, j$a-1

K(o,k)((j-9j)ot) -"-’ /\j_k(t)

The virtual waiting time distribution in this case conditioned
on the system size are given below:

(i) for a£i<b; a-lgjsb-1

B{_W(t)$x} =
a l w

_k<v-u) 2 g*m‘1<w—v)m=l0‘ad c*wd <*ad IIMI
R2(€,k,du) 7A,ak 0

}h(y—w)Ai(y—w)[l-H(t-w)] t}xh(T)fi3(t-y) d1:dy dw dvw t
(ii) for a$i£b; O$j<a-1

B{W(t)$x] = t T. 8-]. 1'. 0° *(m_l)ff 2 a2(e.1<.du) v _k(v-u) J‘ 2 g (w-v)o u k=o “'3 v m=l
t
f h( Y-W)/\i( Y-w) [1-H( t-w)]
W

t+x Am — . 
5/c'n(-c) J(t y) y,ma_l_J(‘( t)dr dy dw dv

finally for i=0; o$j<a-l
t t

B [W(t)\<x]=  Z
t on

O U K681 B2(€.k.du) v,,a-k<v-u) 5 mil g*‘”'1’<w-v)t j t+x
£h(v-w) 1:0/\r(Y“W)/\j_r(t-Y) { YNa_(j+1)(Z,)dZ dv dw dr



Chapter—8

TRANSIENT SOLUTION T0 MX[GY[l/b QUEUE WITH VACATION*

8.1. Introduction

This chapter discusses a vacation queueing model in
which the system can be operated only when it is full, but

only a random number of units are taken in a batch for
service. Unlike the previous chapters, matrix convolution
technique is adopted here to arrive at the time-dependent
system size probabilities.

Chaudhary (1979) obtains the limiting probabilities
of queue lengths at random and departure epochs in the case
of an MX/G/l queueing system. The transient and stationary
behaviour of the M/G/l/k queue, with a fixed maximum number

of customers, k, in the system at any time is studied by
Cohen (1969). Bagchi and Templeton (1973) make use of
Cohen's method to generalise his results to MX/GY/l/k queue.

Section 8.2 deals with the description of the model
together with the notations and preliminaries used in this
chapter. Transition time densities and expressions for
renewal density are given in Section 8.3. Time dependent
system size probabilities and distribution of the busy period

*Appeared in Calcutta Statistical Association Bulletin,
Vol.39, March and June 1990, N05. 153-154, pp.2l—29.
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are derived in Sections 8.4_and 8.5 respectively. ‘Virtual
waiting time distribution is derived in the last section.

8.2 Description of the model

A single server queueing system with the arrival pattern
following a compound Poisson process is considered. The random
variable X represents the number of customers arriving in a
batch for service with the distribution of X defined as

pr{x=-1] = pi, i=l,2,...,b.
Let s = 2 p.sQ! < > b 11 1:1 1
Again customers in batch arrive at Poisson rate A and joins
the queue in the waiting room (W.R). The system is of finite
capacity b and arrivals occuring when the W.R. is full are
lost to the system. The service commences only when the
waiting room (W.R) is full (b) and then a random number of
units Y are taken in a batch to the service station (S.3)for
service. The service pattern follows a general distribution

GY(.) with density gY(.) where Y is the batch size taken for
service with the distribution of Y given by Pr {Y=r]= qr,. b k
r=l,2,...,b with ¢2(s) = kil qks . On completion of the
service of a batch, if the waiting room (W.R) contains less
than b customers, the server immediately takes a vacation
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for a random duration having general distribution H(.) with
density function h(.). The vacation policy is of the
exhaustive type- every time the server returns after vacation,
if the system size is less than b the server again goes on
vacation whose duration has the same distribution H(.). The
random variables X and Y are assumed to be independent.
Further the sizes of the arriving batches are independent,
so are the sizes of the batches taken for service.

Notations and preliminaries

ii
p. — the coefficient of s5 in [¢l(s)]iJ

N(t) represents the number of arrival instants upto time t
so that

ll MU E-‘
Pr{xl+x2+...+xN(t)=j} = . pj*i(e'”t (ht)i/it)1

=' /\.Denote Pr [Xl+X2+...+XN(t) J] as J(t)

Let :R~k(t) represents the probability that at least k
arrivals occur upto time t.

Let fi.(x) be the probability that a batch of size 1 takenJ

for service at time zero completes the service in (x,x+dx]
and j units arrive in (o,x] such that j+(b-i)zb. Hence
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j *k e_Ax(AxLk
fij(X) — kil Pj kg gi(x) qi

=/\j(x) gi(x) qi, j=i,i+l,...,b; i=l,2,...,b

Pji(t) represents the probability that at time t there are i
units in the W.R and j units in the S.S.

i = b"j, b”j+l,ooo,b; j=l’2,0oo’b

8.3 Transition time densities

For j<i and i=l,2,...,b, define fij(x)=0
Write

" fll(x) fl2(x) .. .. flb(x)
0 f22(x) .. .. f2b(x)

F (x) -_- o 0 f33(x) .. f3b(x)

_ O O O .0 fbb(x) J
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Introduce

fl0(x) 0 0 0 ... O
f20(x) f2l(x) 0 0 ...
f3O(x) f3l(x) f32(x) 0 ... 0O O I O C
fbo(x) fbl(x) fb2(x) . ... fbb_l(x)d

Let §i(x) = (0,0,0,....,O,fii(x), fii+l(x),....,fib(x)),. w *n .
for 1=l,2,....,b. Then (£1 * E E?‘ )(x) 18 a b-componentn=o

column vector. Taking the .2th co-ordinate of the above

vector and naming it as Kie (x) we see that the probability
that the system starting with the service of a batch of
size i(l$i$b) units initially, continues to work uninterruptedly
and finally the service of a batch of size 2 has been completed
in (x,x+dx] and 3 .arrivals have occured during this (last)
service time to make the system size full again.

Now (£1 * nio F'*n *fi==fl)(x) is a b-component row vector.

Let Fi(x) — (§i* niof?’ *&=fl)(x). This stands for the
probability that a busy period that has started with the



158

service of a batch of size i units initially and after
serving n more batches, has ended in (x,x+dx] with atmost
(b-l) units waiting for service. Let the eth coordinate
of the vector Fi(x) be denoted as F:(x). Hence FE(x)
represents the probability that the system starting with
the service of a batch of size i(l<i{b) units, the busy
period ends in (x,x+dx] with 3 units waiting for service,
B$,l,2,ooo o,b"’lO

Renewal density

The time points at which a busy period is initiated

after each vacation are regeneration points. Let Ti,i=l,2,...
represent the successive vacation completion points.

Let a busy period be initiated with the service of a
batch of size i (lsisb) units and 2 be the time epoch at
which the busy period has ended with atmost b-l units in
the W.R. Assume that m vacations complete in (z,v), the last
being completed in (v,v+dv) at which the system size is
again less than b and so the server goes on vacation which
is completed in (u,u+du). The service now starts as there
are b units waiting. Hence
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A(u) = Pr [u < Tn g u+du‘}

u b b-1 g u m * b-1-9
= f E 2 Fi(z) f'( 2 h m(v-2)) 2‘A (v—z)h(u—v)0 i=1 8:0 2 m=o j=o j
(U-V)dV dz

Therefore the renewal density is given by

M(u) = Pr {u < Tl+T2+ ... T -$ u+du}n

2 A*n(u)
n=l

8.4 System size probabilities

P0i(t) is the probability that there is no unit in the
5.8 and i units are there in the W.R, i=O,l,2,...,b-l,b.

(1) For i=l,2,...,b-l

P (t) — ,1/;'[§:)  Fe(u) 3:0 h*"‘(t-u)/\ (t-u) +O1 _ o a=1 =0 3 m=o 1'8
t b i 3 M *m

M(u) f 2 2 Fa (2-u) 2 h (t-z)”3_c(t-z)dz]du (1)u a=1 €20 m=o
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(ii) For i=b.

1: t b b--1 (2, m ,m b-1-6
Pob(t) = J‘ f [ 2 2 F (u) ,3 n (V-—u) 2 /\J.(v—u)0 U a=l 8:0 3 m=o j=o

7\b_(e+J.) ( t--v) [1-H( t-v)]

b b-1 g t on fin b-1-9
+ M(u)( Z 2 Fa(v-u) f 2 h (z—v) £;A.(z-VMR (t-2)a=lc=o v m=o j=o J b-(€+j
(1-H(t-z))dz]dv du (2)

(iii) For j=l,2,...,b; i=O,l,2,...,b

/\ t b b g
Pji(t) = (J-""Gj(t))qj i__(b__j)(t)+ ,£(M(U)+ ailggl Ka(U))

(1-GJ.(t-u))qj/\i__(b__j)(t-u) du (3)

and (iv) for j=i=o

t t b b e
POOH) = Gb(t) qb /\o(t)+  (M(u)+ 8:182:21 1<a(u))

{gb(v—u) qb/\o(t-u)m§o h*m(t-v)} dv du (4)

,8.5. Busy Period Distribution

For the present model, define the busy period of the
system as the time duration for which the system continuously
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remains non~empty. To obtain the so-defined busy period
distribution we proceed as follows:

Delete the first column of }=H(.) and represent the

corresponding (( b x (b-1) )) matrix by fl=fll(.).

0 O O ... O
f2l(x) 0 0  O
f3l(x) f32(x) O ... O

Him: 0 O I O
... ffb1(x) fb2(*) bb-l(x)j

Hence (£1 * niopfn * }4l)(x) is a (b-l) component row vector.

Denote this by F§l)(x) whose czth coordinate we write as

F§l)e(x). Then F§l)e(x) represents the probability that the
system starting with the service of a batch of size 1 units
(l(i$b) initially, the busy period ends in (x,x+dx] with 3
units waiting for service, 3=d,2,...,b-l.

Define oA(u) = Pr [u<Tn < u+du]U U b   °° *mThen 0A(u) = fif 2 2 F1 (2) 2 h (v-z)h(u-v)o 2 1:1 8:1 m=o
b-l-8 _

:0 /\j(V-Z)/\b_(€+j)(U-V) dV d23
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Further let

oM(u) Pr {u < Tl+T2+...+Tn.¢ u+du}

2 0A (u)Then oM(u) 11'}:

Now we derive the distribution of the busy period

\!o.col-Eon start: . t ‘mt ‘
with no unit in :2; $5) rnvo caficne. . to Sygtgm 21:; Pb’the 5155‘-""’ Last vocqhon  5¢‘-°""‘I 1 1 I I 1 1 . 1 I I g I' t O u. v W vs‘ 2 y

Fhfi
't¢.|:uvn
(may bet. b

uofla)

Suppose at time 0 the first arrival has occured (with a batch
size.$ b units) during the vacation where we assume that the
vacation has started with no unit in the system. The distribu
tion of the above defined busy period is given by B(y) where

B(Y) = P1‘ {Y < Y \< Y+dY}

2 f } f f O 2 (pjAe’At(h(t+u)* Z h*m(v-u)h(w-v))O U V  lTl=0
31 -Au k 32 a r

( 2 p*k e (?ul_ ( 2 e—A(v—u) (hgv-u)! p*r )k=l 81 k. r=l r! 22
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2

(v 2 5 (e—»<»~-v> <.s__u» w-,3» "p;n )e3=b-(j+3l+€2)n=l ‘ 3
y y b b 8

(9b(Y'*W)qb/\o(Y"W)+ {I .)f(' [0M(x-w)(i:l 32:1 Ki(z-x))fbo(v-2)

dz dx]).}dw'dv du dt (5)
8.6 Virtual waiting_timedistribution

By virtual waiting time at time t in the queue, we
mean the amount of time an arrival has to wait in the queue
before it being taken for service if it were to arrive at
time t (Takac's (1962)).

Let the virtual waiting time at time t be Wt.
Expression (5) is an upper bound for W We get sharpert.
bounds in (o,b—l). In this case,

P {wt \< x } is the probability that vacation is
completed at or prior to t+x and a batch of size b is taken
for service + probability that a batch of size (b-1) is
taken for service after completing the vacation and during
its service time which ends at or prior to t+x at least
(b—l) units have arrived + Probability that a batch of size
(b-2) is taken for service and .... + ... . We illustrate
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this by restricting b=2. The different possibilities for
the state of the system at time t in this case are
{(090)} (091)! (092)? (171)! (192), (290)! (291)?

(i) For1jO,01:

P{Wf$x} = E g2(u) q2Ab(t)t$x h(v—u) 7\l(v—t)dv du +

t 2 2 Q t
z W 5 g2<w-amt-~=>t+x _ t t
f h(v-w) .Al(v-t)dv dw du + f f M(u)g2(w-u)q2Wb(t—u).t o o
t+x _
{ h(v-w) /\1(v—t)dv dw du (1)

(ii) For §Q,l):

A1(Z‘5)3
t+x

{q2" IV 1-1uraa I-'

t+x
. flj(S-V) + f flO(s-v)h(z-s)3 s

t 2 2 Q
dz ds dv du + f ( z 2 Ka(u))o a=l 8:1
t
f(g2(w-u)q2’\1(t-u)+gl(w-u)q1’\o(t-u)) +
U
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tfx m t+x
{hkv-w) _2/\i(v-—t) {q2+ fV Z r .(s—v) +1=o ' 13J=1t+x m
f floks-v)h(z-s) 24“i(z—s)} dz dsdw dw du +S .1:1t t
f Mku) f(g2(w—u)q2/\lkt-u)+ gltw-u)ql/\°kt-u))O Ut+x 0° t-I-X
{ h(V-W) Z /\i(v-t) Ca2+ fV 2 f .(s—v) +1=o ‘= 13J 1

t+x

£ flO(s—v) htz-5) i:lf~i(z-s)} dz ds dv dw du

(iii) Fo:‘LO,2)

P {Wfsx]= }[g2(u)q2A2(t) + glku)ql/\lkt)]t}x h(v-u) ;/\i(v-t)0 ].=06+

t+x

f [ Z fzjks-v)+ X fljks-v)[ £ q2+ ; f .(z—s)] +v j=1 j=o ' 133=ot+X on
f f2O(s~v) h(z-s) _£l/\i(z—s)dz ds dv du +s 1=t 2 2 3 {
mg l: 2  Ka(u)] .r[g2(W"'u)q2  +U ..a: :: t+x w
gl(w-u) ql/\l(t-u)] { h(v-w) _21Ni(v-t)1:0

t+x on on t+x t+x 0°
[ { [ jil f2j(s—v)+ jio fljflsuv) [ £ q2+ £ j:ofij(z-5)]
t+x
f f2O(s-v) h(z—s) ‘E ”E(z-s)]] dz ds dv dw du5 21 l
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1:

+ }M(u) J‘ [92(w-u)q2 /\2(t-u)+9l(w-u)q1"1(t-u)]0 U
t+x no A t-1-x co co
{ h(v-w) 1:0 i(v—t){ KI!’ [jg-1 f2J.(s-v)+ jio flj(s-V)

114-): on 124-): co
[ i“ <q2+ 3,50 fljcz-sm + £ r20<s-v) h(z-s) i§__lAi<z-s)1}

dz ds dv dw du

For §;,ll
t+xt

P [Wt«x} =/\o(’c) .L:x91(u) q1[q2+ f flJ~(v-u)U .IIM3j 1t+x on
+ f flO(v-u) h(z-v) _£ /\i(z—v)dz dv duV =11

+}[§ E Ke(u)]/\(t-u) tj/:xg(v-u)o a=1€=l a 0 t 1t+x on t+x an
ql {q2+ ‘I: jg‘.-.1 flj(s-v) + { f1O(s-v)h(z-s)1:1/\i(z-5)}

dz ds dv du
t+x t+x no

+ .:M(u) /\°(t-.u) { gl(v—u) ql{q2+ .5 J31 flj(s—v)

t+x =0
+ f f (s-v) h(z-s) 2 /\ (z-s)} dz ds dv duS 10 1:1 1
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For (1,2)
t+x t+x an

P{W£gx} = WE(t) { gl(u) ql { jil f2j(v-u) +m t+x w
[ jio flj(v-u) [q2+ £ j:lflj(s—v) +

/\i(z—s)]] +
t+x

£ fl0(s-v) h(z—s) lfilt+x w
f f (v-u) h(z-V) 2 F»(z-v)dz ds dv du+V 20 1:1 1

2 2 3 ‘l'.+X°°
2

t+x
2 K (u)]IN (t-u) g (v—u) q 2 f .(w-v)+a=]. £.—.1 3 1 { 1 1'5 j=l 23

t
f [
o

[.
Jt+x m
g flO(s—w) h(z-s) 1:1/\i(z-s)] +

"r48 IIMS

t+x

flj(w-v)(q2+ i f1j(s-w) +o lJ

t+x N
f f20(w-v) h(z-w) ‘E /‘i(z-w)dz ds dw dv du +
w l=l

M u t—u g v-w q 2 f . w-v}()/\( >t}x() tfxw c)o 1 t 1 1 v j=l 23
7*" < )[°° c )< t?” < >% 2 f . w~v + 2 f . w—v q + 2 f.. s-w +v j=l 23 j=o 13 2 w j=l 13
t+x

/\i(z-s)] +£ flO(s-w) h(Z-9) 1-1
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t+x on
f f (w-v) h(z-w) Z /\.(z-w)dz ds dw dv duW 20 1:1 1

For 42,0) t+x t-0-x co
P {Wt~$x} =/\o(t) 5/; g2(u) q2 [/\o(u-t) 1/1' h(v-u) 1:1/\i(v-u)]

+ 2 /\i(u-t) dv du +i='-1t 2 2 8 t+x
{; [ailefil Ka(u)]’\o(t-u) { 92(v-u)q2{[/\o(v-t)t+x no as
f h(z-v) 2 /\i(z--v)] + 2 /\i(v-12)} dz dv du +v i=1 i=1
‘F ( t+x A t+xO M(u) A0 t-u) 46' g2(v-u) q2{[ o(v-t) ,5 h(z-v)

E /\i(z-v)] + .2 /\i(v-11)} dz dv dui l 1:].
For 2 1)

} /\ c )7” < ) [ tfx °° < )P W (x = t g u q q + 2 f . v-u +{t“ l t 2 2 2 U j=l 13t+x on
5 flO(v-u) h(z-V) 1:1/\i(z-v)] dz dv du

2 2 8 t+X co
2 /\i(z-s)]dz ds dv du +ufxr < m )S  5 V Z"'S 1:1
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t t+x t+x on
£.M(u) P1(t-u) { 92(v~u) q2[q2+ £ jil fij(s-V) +t+x M
f flO(s-v) h(z-s) E4Ni(z-s)]dz ds dv du3 i=1

For (2L21:

t+x t+x 0°
P{Wt\<x} 3/\2(t) { g2(1-1) g2{-‘I;  f2j(V"'U) 4'

2 f . v-u q + 2 f . s-v +°° c ) [ t?” < )j=o 13 2 v j=l 13t+x 00
f f (s..v) h(z,.—s) )3/\ (z-s)]} dz ds dv du +3 10 1:1 1
t 2 2 e A t+x t+x co
£(a:l £1 Ka(u)) 2(t-u) {A 92(v-u) q2{:{'j:l f2j(s-v)+on t+x no t+x
E0 flj(s-v)[q2+ f E flj(w-s)+ f flO(w-s)h(z-w)j- s j=l w

.;.Ai(z—w)]}dz dw ds dv du +1=1t t+x t+x on
£ M(u)/\2(t-u) { g2(v-u) q2+{ 5 jil f2j(s—v) +co t+x 00 t+x

jio flj(s-v) [q2+ £ jil flj(w—s)+ £ fl0(w-s) h(z-w)

2 ,\ (z-w)]} dz dw ds dv du
i==l 1
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