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SYNOPSIS
Eitfl

There is a recent trend to describe physical
phenomena without the use of infinitesimals or infinites.
This has been accomplished replacing differential calculus
by the finite difference theory. Discrete function theory
was first introduced in l94l. This theory is concerned with
a study of functions defined on a discrete set of points in
the complex plane. The theory was extensively developed for
functions defined on a Gaussian lattice. In 1972 a very

suitable lattice H: {Ci qmxO,I qnyo), X0) 0, X3) 0,
O < q < l, m, n 5 Z} was found and discrete analytic function
theory was developed. Very recently some work has been done
in discrete monodiffric function theory for functions
defined on H.

The theory of pseudoanalytic functions is a
generalisation of the theory of analytic functions. When the
generator becomes the identity, ie., (l, i) the theory of
pseudoanalytic functions reduces to the theory of analytic

functions. Theugh the theory of pseudoanalytic functions
plays an important role in analysis, no discrete theory is
available in literature. This thesis is an attempt in that
direction. A discrete pseudoanalytic theory is derived for
functions defined on H.

iii
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In the first chapter an outline of the theory of
pseudoanalytic functions in the classical continuous case
is given, also emphasising the importance of discretisation.
With a historical survey of the discrete function theory,
the present developments have been stated. A gist of the
results established in the thesis is also given.

The second chapter deals with the definitions of
Holdermtype discrete functions and generating vectors. Their
properties have been examined. Using qmdifference equations
modulo—g where g is a generating vector, definitions of
discrete gmpseudoanalytic functions of the first and second
kind are given and their properties studied. We denote the
class of all discrete gmpseudoanalytic functions of the first

kind in a discrete domain D by lPD(gi and that of second kind
by 2PD(g). The real and imaginary parts of the elements of
2PD(g) satisfy a linear elliptic system of partial qudifference
equations of the second order with Holderutype coefficients.

Concepts of g and pguintegration in the discrete
system are introduced and their properties examined. It is
established in chapter 3 that the guintegral of a discrete

function is an element of lPD(g) and pgmintegral of a discrete
function is an element of 2PD(g).
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Solutions of partial qadifference equations
modulomg and an analogue of Beltrami's equations are
discussed. Properties of solutions thus obtained are
established through examples in the fourth chapter.

The discrete gwderivative of an element of lPD(g)
is not in general an element of lPD(g). However there does

(1)exist a generating vector g such that the discrete
gmderivative is an element of lPD(g(l)). We call g(l), a
successor of g and g, a predecessor of g(l). It is shown

9 9
that if g = [gl g2] then [ Ti Eg ] is a successor of g.. 91 9 .
Also any generating vector equivalent to [ E- if-] is also
a successor of g. We have discussed the concept of a
generating sequence and the periodicity of the generating

sequence. It is established that if w g;lPD(g) is not a
gmpseudoconstant then g can be embedded in a generating

sequence of minimal period one if and only if the first
component of the generating vector is equal to the product
of the second component and a function of y alone. It is
also established that any generating vector g can be
embedded in a generating sequence of minimal period 2.

A product of two elements of lPD(g) is not in
general an element of lPD(g). In the last chapter we have. I I D I U 2found some sufficient conditions under which w , aw + b
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are elements of lPD(g), where w e lPD(g), a, b are_complex
constants. Denoting aw + b by w* and taking the power«:2 I o o 0]: 1 5 ­(ww) we obtain sufficient conditions for a quaoratic to be

an element of lPD(g). Also we obtain sufficient conditions
thrfor a cubic and in general an n‘ degree polynomial to be

an element of lPD(g).

In conclusion some applications and further
roblems of stud are sue ested.49

A bibliography containing 70 references is also
listed.
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CHAPTfiH I

INTRODUCTION

This thesis is an attempt to formulate a basic
theory for discrete pseudoanalytic functions defined on a
geometric lattice of the form

'\

O O O 0
Accordingly, a brief summary of the work done in the fields
of the theory of pseudoanalytic functions, generalised
analytic functions, discrete analytic functions, qmdifference
functions and qmanalytic functions is sketched here and a
oist of the results obtained is given.

1. flheory of pseudoagalytic functions

In this section we give a brief outline of the
theory of pseudoanalytic functions introduced by Bers [l}.
The theory of pseudoanalytic functions was developed from

the point of View of partial differential equations, much
of the motivation being provided by problems in mechanics
of continua.



A linear partial differential equation:

all(x,y) axx + 2al2(x,y) ax + a22(x,y) aY Y3’
+ al(x,y) mx + a2(x,y) av + a(x,y)e = O l(l)

is called elliptic if by a transformation of the independent
variables it can be brought into the form:

.a + a 1 + bl(x,y) ax + b2(x,y) ay + b3(x,y)a = 0
1(2)

bwhere b 2, b3 are continuous.13

The simplest elliptic equation is the Laplace equation

axx + ayy = O l(3)
The theory of this equation is well developed as

solutions of l(3) are the real or imaginary parts of analytic
functions. Bers developed the theory of pseudoanalytic
functions which bears the-same relationship to the general
elliptic equation as classical function theory does to Laplace's
equation. Vekua [l} established the theory of 'generalised
analytic functions‘ that satisfy a nonhomogeneous elliptic
system of linear partial differential equations'of the second
order.



In classical analysis a function w(z) satisfies
a Holderecondition with constant K and exponent e,

O < 613 1, if |w(z) uw(zO)i 3 K I Z —zOIa at 20. The
function is said to be Holdermcontinuous at zo if it satisfies
a Holdermcondition at 20.

Suppose that F and G are two Holderncontinuous

functions satisfying the condition

Im(FZz)e(2))> o in D. 1(4)
If F and G are Holdermcontinuous in a domain D and

1(4) is satisfied in D then (F,G) is called a generating
pair in D.

We know that if w(zO) is a complex constant then it
is of the form y.l + poi where y and p are real constants.
The theory of pseudoanalytic functions is based on assigning
the part played by l and i by two Holderucontinuous functions
satisfying the condition 1(4).

It follows from 1(4) that for every 20 in D we can
find unique real constants yo, no such that

VZ -'2 F2 +“( 0) Yor( 0) “oG(Zo)

We say that w(z) possesses at 20 the (F,G) derivative ®(zO)



if the (finite) limit

_ w(z) »yOF(z) ~pOG(z)
w(zO) = lim ~-«~wij:m§ww»~Tww-~Zfiplo 0 l(5)

exists.

A function w(z) will be called regular (F,G)~
pseudoanalytic of the first kind in a domain D (or simply
pseudoanalytic) if fi(z) exists everywhere in D.

If W(zO) exists then at 20, wz and WE exist and
w at 20 satisfy the equations

w? 2 aw + bG 1(6)
@ 2 wz mAw » Bw l(7)

where

m (Peg » FEE)
a --- >.--_-3.-.--1-_-5;:---r ..1.. 1 .; . . n .a. -.

Fe 9 Fe
1(8)

FG~ w FwGl3 ._ .um§J_,,§“ l(9)
" FE N Fe

u (Fe a F G)A _. h._i;iEi:i.Efli 1(1o)
PG w PG

.5 4 "Cand 3 H .,i%_ ix- l(ll)



We denote them by a(r p)? b(F’G), A(F,G) and B(FgG)_",u

respectively.

Equation 1(6) is equivalent to the real system

X ' ‘y ‘l. >- _l(l2)
U  ‘I :3  ':'°

with real Holder continuous aij(x,y). In a certain sense
every elliptic equation l(l) is equivalent to a system of the
form l(l2).

If w : YF + pG is pseudoanalytic of the first kind
in a domain D then y + in is called pseudoanalytic of the
second kind in D.

The class of all pseudoanalytic functions satisfies
many of the properties of the class of analytic functions,
however product of two pseudoanalytic functions and the (F,G)
‘derivative of a (F,G) pseudoanalytic function are not in
general (F,G) pseudoanalytic functions.

If the (F,G) derivative of w is not pseudoanalytic

then a generating pair (Fl,Gl) can be found so that the
derivative is (Fl,Gl)~pseudoanalytic. (Fl,Gl) is called a
successor of (F,G) and (F,G) is called a predecessor of
(Fl-’Gl)0



Cfx

He proved that (Fl,Gl) is a succgssor of (P,G)
if

a F‘ P‘ 2 a N .3 1 1. f __(tlsgl) (F9 ) unc 0(Fi9 l) (F96)

A sequence of generating pairs

%(FV;Gvl} 9 V = 09 ii, i2,....is called a generating sequence‘V

if (F eV+l
have period p > 0 if (F

1. "1
V+l, ) is a successor of (FV,GV). {KP ,G )$is said toV1

-«J

0

v

G H) is equivalent t (FV,GV) andv+p’ v+
nonmperiodic if no such p exists. Bers did not study the
periodicity problem extensively. He considered only some
particular cases. But Protter [1] in his paper discussed the
problem in detail. He could find the necessary conditions for
a generatino vector to be embedded in a generating sequence of
a prescribed period, in a nonwperiodic generating sequence etc.

A basic result in the theory of pseudoanalytic
functions is the similarity principle proved by Bers [1].
The similarity principle states that with every pseudoanalytic

1function w can be associates an analytic function f (and vice“
versa). also it is found that mapping by pseudoanalytic
functions of the second kind is quasiconformal.

Vekua [1] developed a more general theory, the
theory of generalised analytic functions which are solutions
of a nonmhomogeneous elliptic system of partial differential



equations of tne first order. Vekua showed that pseudo—
analytic functions of the second kind satisfies a Beltrami‘s
system of equations. Generalised Cauchy's theorem, Cauchy's
formula, power series etc. were obtained. In l976 Withalm [l]
developed the heory of hyperpseudoanalytic functions.

2. Importance of discretigajggn_

The differential character of equations of motion
implies that a dynamical System is governed by laws operating
with a precision beyond the limits of detection by experiment.
This is too much of an assumption. It seems logical to
introduce the general principle that all physical phenomena_
can be described without the use of infinitesimals or
infinites. It requires use of finite difference calculus in
formulating basic physical laws.

For instance, according to Newton's Laws if at
a time t we know the position and velocity of a body the
equations predict the situation at time t + dt, but in order
to verify the prediction one would be obliged to distinguish
between two positions x and X + dx by making two measurements

separated by an infinitesimal time interval. But as a matter
of fact, we have no desire to find the situation after the
time dt, we wish to predict the state within limits, after the
finite time interval, and this we do by integrating the
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1equations of motion. Each couordinate may be expressed as
a continuous function of the time and we may calculate theI ' Iconfiguration at any time including infinity.

Ruack [lj feels that this may be accomplished
replacing differential calculus by the finite difference
theory. In the classical finite difference theory, functions
which are often defined only on a discrete set of points are
usually treated as functions of a continuous variable.
Recently methods have also been devised to treat functions
defined only at a discrete set of points in the complex plane.
Many eminent mathematicians have developed this theory.

Even though the theory of pseudoanalytic functions
plays an important role in analysis no discrete theory for
pseudoanalytic functions is available in literature. So
we have made an attempt in this direction and introduced a
theory, which is applicable to geometric difference functions.

3. Discrete analytic function theory

This basic theory is the study of functions defined
only at certain lattice points in the complex plane and the
lattice of definition is usually taken to be the set of
Gaussian integers. This they called ‘discrete analytic
function theory" does not need the concept of continuity.



In this theory the concept of a monodiffric function
plays an important role which was introduced by lsaacs[2]
by modifying monogeneity. Instead of derivative he used the
difference quotients both along the real and the imaginary
axes. In fact, he defined two types of monodiffric functions.
‘Functions satisfying the equation

f(z+l) mf(z) = f(Z+i% “f§?) 1(13)
are called ’monodiffric functions of the first kind‘ and
those satisfying the equation

f(z+l) =—f(z«~l) = f4(Z.';-i'E|2‘— '”f(?"il 1414)

‘monodiffric functions of the second kind‘. In both the
cases the lattice taken is the set of gaussian integers of
the form m+in, where m, n are integers.‘ Using these definitions
he introduced concerts of discrete contour integrals, residues,
powers, polynomials and a convolution which served as an

analogue for multiplication, provided one of them was a
polynomial.

In 1944 Ferrand [1] introduced the somcalled
'preholomorphic function’ using the diagonal quotient equality

Vf_(_Wz+l+ij -fLz_)~ __ '_-_f_g(_z_—:-w:_) -=f(z+l)l+i “ inl l(l5)
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which is equivalent to the definition of functions of the
second kind l(l4) given by Isaacs.

Later Duffin [1] using the definition of Ferrand
could establish convolution products, analytic continuation,
entire functions and application to practical problems. In
1970 Deeter and Mastin [1] showed that the solution of aL“

minimum problem in the theory of conformal mapping can be
Iapproximated oy discrete functions. They also showed that

the Bergman kernel function can be approximated, for certain
regions, by using these discrete functions. In 1977
Zeilberger [1] developed the theory for functions defined on
a nedimensional lattice. He introduced a certain class of
binary operations generalising a binary operation defined by
Duffin and Rohrer [1], in the set of solutions of partial
difference equations. He could find many interesting results

0* direction.‘J: n the"

Hayabara [1], Deeter and Lord [1] and MacLeod [1]
constructed an operational calculus for discrete analytic
functions and studied their properties.

Eminent Russian mathematicians like Abdullaev and
Babadianov [1], Meredov [1] and Fuksman [1] have also made a

study of the theory of monodiffric functions of the second
kind. Berzsenyi [1,2] studied several interesting convolution
integrals and algebraic structures for monodiffric functions.
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2] defined a rhombic lattice and studied
the theory. In 1972-Harman [1] defined a geometric lattice

m “ < l, m,n €Zof the form Ttiq'xO,iqnyO), X0 > 0, yo > O, O < H
and developed a discrete qmanalytic theory.

4 q:Diffierenge functions

The first mention of a qmdifference equation appears
to have been made by Laplace in l773, when he considered a
functional equation of t.e form

F(x,u(x), u(qx)) H

Babbage [1] in 1815 studied the properties of the
above equation and in particular he considered the equation=

Pincherle [1] in l88O studied the equation
J2‘i(X) = f(qx) and obtained a solution of the form

l(l6)H‘)
I''\

X \/ H >4

This function plays thewhich is called quperiodic function.
role of an arbitrary constant in qwdifference equations.
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Jackson [2] studiefl tne theoxv of qudifference1

equations extensively. In 1910 he introduced the concept of
ofqmintegration which he defined as the inverse the

(Z "5
/"'\

X
M../

H ‘C ’ *' ‘ «~'” -'><

However, it was only in 1949~51 that a real
interest in qeintegrntion was revived. Hahn [2] in 1949 and
Jackson [1] in 1951 studied the fundamental properties of the
inverse operation

9&1 f(X) =  S‘f(X) d(C[;X)

and showed that in the limiting case ie., when q-9-1, the
basic integrai is reduced to the ordinary fiiemannian
integral. The definite qmintegrals are defined by

f(x) mf(O)H

X

S e.,.f<x>c1<c;;x>O l\

S@Xf(:<)d(C£3X) = f(°°) ==f(><)
X

where

b a



If GP(x) : f(x), then
CO 3 ‘:

F(O) mF(x) 2 (q~l)X 2_qJf(qJx),
J=U

co _ __
F(w) ~F(X) : (qwl)x Z d‘3f(q"JX)

i=1

A complete bibliography of the Jackson's work is
given by Chaundy [17,

In l960, Abdi [2} developed the theory of q»Laplace
transforms which was used in solving certain qudifference and
qwintegral equations. He also introduced a bibasic functional
equation of the form:

a(z) f(pz) + b(Z) f(qz) + c(z) fiz) = 0

It may be noted that qndifference equations occur
in the theory of water waves and have been treated by
Williams [1] and Peters [l].

5. geanalytic functionwtheqgy

In l972 Harman [1] developed a discrete analytic
theory for geometric difference functions.

He defined a lattice with geometric spacing ie,. . , ., . o m i n
points or the form H = %1:q xo,.Lq yo);
0 < q < 1, X0, yo > O, m, n 5 2}. Functions defined on the
points of H are called discrete functions.
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Functions satisfying

C-iX,2.Y.),,  (X 2 ‘I’ ) “f (  9 Ci’? )(leqilv

where 2 = (x,y) C H, he called qmanalytic functions.

In his work analogues of contour integrals,
Cauchy’s integral formula etc. established. A.discrete
analytic continuation operation I? was devised which enables
functions defined on the real axis to be continued into the
complex plane as qmanalytic functions. This process in fact
is an analogue of Taylor's theorem. The continuation
operator is used to derive qmanalogues of multiplication, of

1']the function 2 ; n a nonmnegative integer. Several results
were obtained in connection with the representation of
quanalytic function as power series. A factorisation theorem

LTanalogous to the fundamental Lneorem of algebra was obtained
for the qmpolynomials.

He studied quanalytic solutions of linear
qmdifference equations with both constant and variable
coefficients and obtained some results in conformal mapping.

/“o. Qptline of chapters

In this thesis a discrete pseudoanalytic theory
for geometric difference functions is introduced. A brief

1outline of the basic results of the thesis is given.



Functions are defined on the set

~J(.'.*1q
‘s

and a class of functions analogous to Holder continuous

['11. - 1'1 _ ,­
XO9 -T-CI YO): 7* > 09 I> u, 0 < 0 < l, m, n e Z}­o 70

functions is of special importance in this work.

Thus, discrete functions satisfying the inequality
if(z) ~f(z'){ g k G” where Z‘ 2 (x‘,y’) s D, a discrete. \. ml ;domain, 2 5 N(z‘), o : (g ml) max (x',y'), O < u 3 l

t Z‘ s 0. If the(1)have been called discrete Holdermtype
above inequality holds for all z 5 D such that N(z)C: D,
then the function is called discrete Holdermtype in 0. dc

denote the class of such functions by fH (D). If gl,g2 5 jH(D),
then the row vector g = [g1 g2] is called a generating vector
in D if Im(gl go) > 0 throughout.

Definitions of discrete pseudoanalytic functions
of the first and second kind over a discrete domain are given.

The two classes are respectively denoted as lPD(g) and 2PD(g).
Both lPD(g) and 2PD(g) form vector spaces over the field of
real numbers. The real and imaginary parts of elements

of 2PD(g) are solutions of linear ellirtic system of partial
qudifference equations of second order with Holderutype
coefficients.

Concepts of discrete g and pquintegration analogous
to the integrals of Bers [1] are introduced. Properties of
the above integrals are studied. It is shown that g integral



of a discrete function is an element of lPD(g) and poaintegralJ

0 a discrete function is an element of OPD(g). Bers was
able to establish a generalisation of the Cauchy”s integral
formula for the pseudoanalytic functions but an analogous
result is not obtained in the discrete case.

Making use of Jackson's [3] basic int gral the
solutions of partial qwdifference equations modulomg and
.an analogue of a Beltrami's system are obtained. Properties
of the solutions are examined and some examples discussed.

we can see that the gmderivative of an element of

lPD(g) is not in general an element of lPD(g). However there
does exist a generating vector gl)such that the gmderivative

is an element_of lPD(d15. We discuss concepts like
successors and predecessors of generating vectors, generating
sequences, periodicity of the generating sequences. It is

shown that if w g lPD(g) is not a gupseudoconstant then g
can be embedded in a generating sequence of minimal period
one if and only if the first component of the generating
vector equal to the second component and a function of y
alone. Bers [1] did not discuss the periodicity problem in
detail, but in 1956 Protter [1] studied the problem
extensively. He has established the conditions when a
generating vector can be embedded in a generating sequence
with prescribed minimal periods and a nonwperiodic generating
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sequence. In our theory we have established that any
generating vector can be embedded in a generating sequence of
minimal oeriod 2.i

Product of two elements of lPD(g) is not in general
an element of lPD(g). we have found sufficient conditions. 2 fl .under which w aw + n where w 3 P; 0) a u comolex constants,9 I 1 D J 9 9 1 .

"\

are elements of lPD(g). Denoting aw + p by w* and taking theV 2 . 3 . -,. . ,. .powers (WW) and (w*) we can find the SUiIlClCnt conoitions

for quadratic and cubic polynomials to be elements of lPD(g).
Thus we believe that under certain conditions on fl,f2, a, 5t . . ,
etc. an n h degree polynomial will QG an element of lPD(g).
No similar work is available in the classical continuous case.



(HilPTL£i 2

DISCRETE PSEUDOANALYTIC FUNCTIONS AND THEIR PROPERTIES

Discrete function theory is a theory of complex
valued functions defined at a discrete set of points in the
complex plane. Harman [1] used a particular lattice suitable
for qndifference functions. although the theory of pseudo»
analytic functions plays an important role in analysis, yet
no discrete analogue is available in literature. In this
chapter a class of functions analogous to pseudoanalytic

functions is defined and its properties studied.

l. The lattice

q=Difference functions of a complex variable are
usually defined on a set of points of the form H;F n i , _
flFiqmxO, ;q“yO), x0 > 0, yo > O, O <_q < 1, m, n s %} 2(1)

For convenience only the first quadrant of the
complex plane is considered. Extension to the other three
quadrants can be treated as in Appendix 1 of Harman [1].

lWe define the discrete plane H with respect to

some fixed point 20 2 (x /0) in the first quadrant as the09",

set of lattice points:

H1 {(qmxO, q“yO), m, n 5 Z x0 > o,

yo > O, O < q < l}-and 20 will be called the origin of H1.
2(2)

l8



In the sequel the following notation is used.F‘ 1­ouppose z 2 (x,y) e H . Then. I‘ g ml
3(2) = j(qxaY)y (qx,qv)9 (x,qy), (q 1x, my), (q x.y)9~ . '1ml H1 ml . ,wl '

(Q X, s V). (xyq V), (mxgq v)}
consists of all points adjacent to 2. 2(3)R =»l -»l r

M2) .—. {(qx,v>, <=<,qy>, (q X937), (m 3%)}­
the set of all points directly adjacent to 2. 2(4)

And

" ml . ml ml #4. 7
P(z) = %lqx,qv), (Q X,qV); (q x,q Y)» (qx.q Y)f‘s.- ‘I

is the set of points diagonally adjacent to 2. 2(5)

We see that 3(2) = N(z) [f P(z). The set of points
U}

z-\
N

ya’
I

{kx,y), (qx,y), (qx,qy), (x,qy;% and
T(z) = {{x,y), (qx,y), (x,qy)} are respectively called the

‘ triad of 2. Figute l shows the above notations.
2(6)

any union of tetrads is defined as a discrete
n

F

domain and is denoted by 0 ie. D== L) s(zi) where n can bei:l
infinite. A domain is said to be bounded if we can find

some k > 0 such that max ( Kl, |yj) < k for all z 5 Do 2(7)



Y AI xx x x x x x x
Z Z Z

8xxx x x x7 x6 x
2 z 21 5xx x x x x x x
Z2 Z3 24XXX X X X X X

XXX X X X X Xxx x x x x x xXXX X X X X Xxx x x x x x x
K

Figure l

1Take Z = (x,y) 5 H

A(z) = {Zl;Z2,Z3,Z4,z5,z6,z7,z8}_

N(Z) = {El,z3,z5,z%}

P(Z) “-2 {z2,z4,z6,z8}

S(Z) :2 JZ,Zl,Z2,Z3}

T(Z) = {?;zl,z?}

20



210 o u - l 0Since we are considering only H , x and y will
always be greater than zero. Therefore in that case we need
take only max (x,y) < k.

I0 - -r J. 1 I 1 I
A discrete curve in H z to zn is denoted Dy the

ordered sequence

C """""'""' < ZJ-9229015002-9 zi+l9ooooZn>J.

where‘zi,zi¢l, i = l,2,....nwl are directly adjacent pointsI

in H1. If zi £ zj for i # j, then the discrete curve is saidto be simple. 2(9)
If C = <zl,z2,....zn> is simple and 21 = zn then

C is called a simple closed curve. 2(lO)

Boundary and interiorypointg

Qefinitign_gQl)

z 82D is an interior point of D if A(z)1C:.D 2(ll)

.I§‘..€2.f'-:~?.c _I?-L1,)

It can be seen that the minimum number of interior

points will be one and the domain will contain nine points.
For eg. the domain having 2 as an interior point will be

W) Ll 4?}



|\) |‘\)

Definitign_gQg)

ifill points z 5: D which are not interior points
of D are called boundary points of D. 2(l2)

The set of all interior points of D is called its
interior region and denoted by Int(D). 2(l3)

Boungary of a dqnain

Let D be a discrete domain. Boundary of D is
defined as B(D) = D u Int(D). 2(l4)

‘In general the boundary of a domain is the union of

discrete curves B B B.,....where each Bi containslg 2,6000’
only boundary points. Discrete curves comprising only

1"‘

boundary points are called boundary curves.

Figures 2 and 3 illustrate the above notations.

suppose that zl,Lj 5 r{. Iwo tetrads a(zl) and
S(z2) are contiguous if S(zl) f} S(z2) is non empty. 2(l5)

Note_g(Q)

It follows that if S(zl) and S(z2) are contiguous
then 22 8 A(zl) where $(z) is given by 2(3).

Note 2(3)

If 3(2) is a tetrad then the "otal number of totrads
contiguous to 5(2) is e.



5 4 3 2 19’ X K #5;-_-—---X

D

Z Z Z Z Z
6’ 7 X 20 X 19 X 18

28 221 222 4217X. X X 4(
Z9 210 223 Z16’ x a;Z Z Z

k 11 X 24. >F 15
Z12 X213 $214

‘ax

Figure 2

D ={Zl,Z2,Z3,oooZ24}

Int(D) .—_~ {zl9, z2O, Z21, Z22, 2:23, Z24}

B(D) ={zl,z2,z3,z4,z5,z6,z7..H218}



YA 24
23:’ V22 21
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Z Z Z Z
5 A 4 X 11 j<1o

Z5 Z7 28 29it X X '
Z12 Zgz _, uf21 1%; fzo

#219 YZ23 xfza ‘r227224 V?25 F26

Figure 3

D =.-.{zl,z2,z3,...z28}
Bl =<Zl%,z2,z3,z4,....zlO>

B2 =_-<1zl2,zl3,zl4,zl5,.H.219).

B3 =<z2O,z2l,z22,z23,....z27>

3(1)) .—_ Bl UB2U B3

Int(D) .-.-. _{zl1, Z28}



Definition 2 3)

"union is connected if tne intersection of D

Denote S(zi) = Si

A connected domain D is a Collection of tetrads

Sl,S2,....Si,Si¢l,....SA1 such that Si and S. are. , J
contiguous and S is not necessarily equal to Sn.1

If 51 = Sn then the domain is said to be closed.
By suitable arrangement one can be made contiguous to another.

Result 2(l)

Let D1 and D9 be two connected domains. Then the

1 and D0 is none
empty.

Definition 2(g)

Let D be a connected domain. D is said to be singly
connected if D is bounded by only one closed boundary curve.

1For eg. H is a singly connected domain. It is
bounded by only one closed limiting boundary curve

lim t .m 0
m,ny__;:m\_} (4 ><O,q yo)

Note_gLfi)

Union of two singly connected domains whose inter­

section is nonmempty need not be singly connected (See Fig.4).



Nflé

26Z Z Z Z Z Z
)q....:)..)(--..._?_._.;.(_...  ...x...1§ ._ .__ _. “X-  .- -. . .._

D1 D2
Z4 Z9 Jffiap; Z14 % 215 232

:< T—-——— x-— - —   --xI

.3. on

>J<-—~><—-~—x-'-'---ye-v-----.x......_._­

;Z ZX 5 8 X}
IZ. 2 .. Z 2 ,, Z

>':__gJv_7__x .9___X“1a___ __;< 1: 30

:22 :21 220 Z34 X233 229
L223 224 225 226 227 Z28_._.x...._..._x...-.. ._X.... ._ ..-._ 5L} ,.._x_ _,.--... .. i... .,K s :%K

Figure 4

D1 = {zl,,z2,o....zlOf

D2 ‘ ‘{Z1l’Zl2’Z13’Zl’ZlO’Zl4’zl5’Z16’Zl7’z18’Zl9’

Z7*Z6'Z2o'Z21"°'Z3{}

Dl,D2 are singly connected domains and D1 (1 D2
is nc';1c:empty., But DlU D2 is not singly connected.



Definition 2 5)

A connected domain D is said to be doubly connected
if D is bounded by two closed boundary curves. For example,

the domain enclosed between the closed curves B1 and B9 where

3 a s 2
2: <()""93")9(qX9‘If)9"°'(Ci X!Y)9(C{UX7qy)9(qOX9q Y)?0 r 7 ' < 5 5

..«.(q°X,q°y),(q x,q°y),(q°X.q v),...(x.q°y)91
<x,q5y),<><,q y>,.o..(><,y>> am

2 4 2 ' C V 3 4
B2 = <<q3x,q y),(q x.q y),<q3x,q’y>,<q’x,q yx(q5x,q y).

4— 4 ° 4 ? _3 3 V2(qrxsq y)9(qQX$q Y)9(qJx9q Y)9(q X99 Y)>

is doubly connected.

_Definition 2&6)

A connected domain is said to be multiply connected
if it is bounded by two or more closed boundary curves.

For illustration of the above notations see
/figures 5, 0 and 7.

Let f 2 D~~9 ¢. Then f is called a discrete

function. The operators Sr and G” are defined as follows;

Qvf (Z) .. _1:..(,._?-.) :.’.f (.£1...>.‘.2..‘4L} 2 (15 )(iwdix

I ._ §£L§);f£C§$L) 1Gv‘(Z) “ (1mq)iv 2(‘7)
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Y $1 Z3 Z2 Z19% .
Z Z ' Z Z ‘ Z6 5 4 I 9 18as >< Jf 1 1

1

1*”? 222 221 220 217 Z15%* %fi ak %h z 2 2 z 28 23 24 1 25 26 15v- . i:
129 :10 “Z11 A212 1213 ‘Z14

1:1
Figure 5

D = {%l,z2,z3,....z26}_
Basic tetrads contiguous to S(zl) in D are
S(z2), S(zl8) and S(zl9)
D is a connected domain and it is singly connected.



B1x+eae—¢< ;<=< x x #x

B
2

x x x r~«ex—-~—x ----- x xr « 1
D

%<x x x h x xJ 1 .xx x ;.... «x~—-—-—-.< x x

Ly x x x x x E:<x x x x x xxx x x i x x _J‘“£}* T/x
Figure 6

D is a connected domain bounded by two closed

boundary curves B1 and B2 and so D is a doubly
connected domain.

29



.4: B1
1

D

'*'" B2 <1 “*7
iB3

..-_. .. -..<.-_.l "“""""-"1
i!41 €_., I rC ~ >){

Figure 7

D is a multiply connected domain.Bl,B2,B3,B4
are the four closed boundaries bounding D.
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If ®Yf(z) 2 8yf(z), then f is said to be qmanalytic
at 2 and the common operator is denoted by S. 2(l8)

Me define the operators OZ and 8: as follows:4.

8Zf(z) = é-[8Xf(z) + 8Yf(z)] 2(19)

8Ef(z) = g.[exf(z) ..SVf(z)] 2(2o)

Linearity of the above operations follows from the
definitions.

Also simple calculation yields the following
properties.

@?f(z) = e§f'E3. 2(21)
e§f(z) = 8zf(z) 2(22)

The discrete function f is qmanalytic on 2 if and

only if 8Ef(z) = O and in that case SZf(z) = 8 f(z) 2(23)

Let 1‘, g 2 D——>5Z, so, 82-[f(z_)g(z)]

{GXE-f(z)g(z)}  e3,[~r<z)g(z)3} by 2<2o>

_ {E.f,(.§.2,g.(.;.€...,.T:f.(.Ci.?”:LX,2.g.£5i3i.21.)]l-q)x

.f.£,z..)_l<.2.£.z.) t;-f (,.>$,,.9'.Yl2.s¥_£_><_,,9zs{.)— [ 5 . Jlmq iy U



= §éf(z) [@X9(z) ~ 9yG(Z)]
(_._

1

+ g(qx,y) 6Xf(z) ws(x,qy) 8Yf(z)%

= f(z)[9gg(z)] + *3[ X Y
Using a similar argument,

8E[f(z) g(z)] is also = [8§f(z)] g(z)

+--%[f(qx.v) ®X9(z) —f(x,qy) 8yg(z)]

and

9Z[f(z)g(z)] = [8zf(z)]g(z) + %-[f(qx,V) @Xg(z)

+ f(x,qy) @yg(z)]

or = [9Z9(2)]f(z) +~'%[9(qx,y) ®Xf(z)

+ g(x,qy) 8Yf(z)]

Now if both f and g are qmanalytic in D, then

%[f(qx,V) ~f(X.qY)] 9 9(2)8w[f(z)g(z)] =
Z

or %[g(qx,y) »g(x,qv)] 8 f(z)

9(qx,Y) 9 f(2) ~g(X,qv) 8 f(z)]
2(24)

2(25)

2(26)

2(27)

2(28)
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It follows that the product fg is qmanalytic in D if

f(qx9y) = f(x,qv)

OI‘

g(qx,v) = g(X,qv)

Also,

@z[f(z)g(z)] = [@f(z)]g(z) + g—[f(qX»Y)

+ f(x,qv)] 99(2) 2(3O)
or = [8g(z)]f(z) +-r%[9(qx,v)

+ g(x.qY)] 8f(z) 2(3l)

If f is qmperiodic in X and y, then

8Z[f(z)g(z)] = f(z) 8g(z) and if o is quperiodic in x and y,J

then 8Z[f(z) g(z)] = g(z) 9f{z). 2(32)
f"
4 ° .H.'O;.-Ld..?...?—",. ...'§.Xl?.§,._ .d,i.3.9.£I“?.t.¢. ,if.U.U.9,fi.?.i.Ql3_5.

Let D be a discrete domain and f:D -} ¢.
Suppose that z’ = (x',y’) g D and If(z) mf(z')! § kc“ where
o = (qml-l) max(|x‘],ly'[) for every 2 e N(z’), p and k are
real constants O < p.g 1, then we say that the function f is
Holdermtype discrete at 2‘. Since we are considering the
first quadrant, here 0 can be taken to be equal to
(q”l—l) max(x,y).



(.0 J2:

If the above inequality holds for all Z s .D such
that N(z)(:: D then we say that f is Holder type discrete
in D. The class of such'func;ions on D will be denoted
'lDY CH (:3), 2(o3)

From the definition it follows that if D is a
bounded domain and f e T}I(D) then f is bounded in D. 2(34)

Now, let f, g g E1(D) where D is a bounded domain.

If f, g are Holderutype discrete at z‘ 2 (x',y?) 8 D,
then by definition

|f(z) ~f(z‘)i g G‘ anok l

[g(z) «g(z*)| g K205 for every 2 5 N(z')

ya
!_Iwhere kl, k2, a, H are constants, O < a 3 l, O < t 3 l,

6 = (q”l~l) max(x',y’).

Also |f(z)g(z) —f(z*)g(z‘)§ = If(z)[g(z) ~g(z')]

+ g(z’)[f(z) »f{z')]|£ if(z)i |g(z) we(z')t

+ jg(z*)| [f(z) mf(z’)]§ clkloa + c2k2oP

since by 2(34>, If! 3 C29 lglts cl



L k*o when 0 K 3 and a|g 9

Therefore it follows that if f and g are Holderw
type discrete at 2' then the product fg is also a Holder“
type discrete function at 2'. 2(35)
Bmmfleifil)- . . .., . ]_{X + ivy is Holeerutype in H .

3. Generating vector space

Consider a discrete domain D and suppose

gl, g2 E fH(D) such that Im(g1 g2) > 0 throughout. Then

l"""lthe row vector g = gl g2] is called a generating vector

and the set of all generating vectors {g} is the generating
space over D denoted by G(D).

It follows that the components of a generating vector

cannot be equal for in that case-Im(§E gl) will be equal to
zero. Also [gl ~gl] will not form a generating vector and
neither of the components of a generating vector can be zero.

2(36)



to O\

Suppose that f : [fl fOJ' whore fl and f04.... 4.
are real valued functions in D. The set of all such column
vectors will be denoted by F(D).

be a oonerating vector and w be any complex.'JLet (Q

valued function defined on D. Then we can show that for any
w a unique element f e F(D) can be found such that
w(z) = (gvf)(z) H gl(z)fl(z) + g2(z)f2(z) for all z in D.

Let w = u + iv, g = [91 g2] where
lo — c + i 2 — C + i'2Jl " J1 gls 99 — J0 92..... Lu

. l . Q l . C
: fl(gl + lgl) + f2(g2 + lgg)

Equating real and imaginary parts we have,

1
9 3 91 fl + 92 f2

2 C ¢ 2V = gl ll . g2 f2

~ 1 1“ 2 ‘“ " n
41 92 ; fl? ’9. J
’ 2 2% l L
;L91 92$ f2! 3.” J



37. 1 r 1 1 1 1
ie., fl = wEi::waeI-gm Lggu ~ g2vJ 2(37)

91 E" g2gi ‘ J. A rfn = eeae-.m+»“.- 4 J 4(3’)4 1 e 1 2 L glu Clv] Q. g n J .1 2 2 1

But gig; « g%g§> 0 since g 8 G(D). Thus theCu‘

result follows.

The theory of discrete pseudoanalytic functions is
based on assigning the part played by l and i to two arbitrary

functions gl(z) and g2(z). We can say that

.{w(z) !z E 5} = G.F(u} where the (.) means the multiplim
cation of a row and a column vector. Thus G.F(D) forms a
vector space over 3.

4.  13.s,o,u,<:19.s%3.n.a.l.xtie. -.f.u.n.c  8

Let D be a discrete domain. Suppose that

g = [91 gg] is a generating vector belonging to G(D) and
w 8 G.F(D), we define the operators

g8Xw(z) = (g. 9Xf)(z) 2(39)
QGyw(z) : (g. ®Yf)(z) 2(40)

where 8v and BY are given by 2(l6) and 2(l7) respectively.
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From the definition it is clear the operators are
linear.

Let D be a discrete domain and suppose that w is
a complex valued function defined over D, then w is called
discrete g pseudoanalytic of the first kind at z 3 :3 if

m; g EhY(D) and O®Xw(z) = G@Yw(z). 2(4l)J .1

If this relation holds for all z E D such that
T(z)(:fD then w is called discrete gmpseudoanalytic of thefirst kind in D. 2(42)

If C@Vw = geyw, the common derivative is denoted' /\

by Oew and is called the discrete g-derivative of w. 2(43)J

The class of all discrete gupseudoanalytic functions

of the first kind in D is denoted by lPj(g). Then lPD(g)
forms a vector space over 3. 2(44)

For, suppose w E lPD(g), then there exists f in
aF(D) such that w : (g.f). -ke a s R. Then aw = a(g.f) =

(g.c-:f)€ lPD(g’).

O:-.I .I I?..~°.>.€?.U.d,9.§‘.1'1_a.l,Y;§..i,9___,f}1.QC.'i3§:,Q.“_.$. 0    .!<.i.n,d.

Suppose that w : (g.f), f 5 F(D), g s G(D).

If w 8 lPD(g), then we cell h = fl + if2 discrete
gupseudoanalytic of the second kind in D. The class of all



discrete LO=mpseudoanalytic functions of the second kind in D

be eenoted by qPh(g). 2(45)£.4.J

2(1) Each component 9], g9 of the generating vector
[gl g2] is itself an element of lPD(g)o

2(2) New writing 01 2 ;.el,
2 [-1- O.-lg? O

g2 2 c.e2 where.1

el 2 = [O l]' it follows that
@gl(z) : 8g2{z) = O; In this sense both the9 _ 9

components gl, g2 can be tieated as gmpssudo~
constants.

2(3) If wl and W9 5: lPD(g), then W3(z) = alwl(z) +¢_-—­

aqw (z) where a], a? are real constants also belong( I— .-L.
to lPD(g) and g@3(z) = al[g8wl(z)] + a2[gSw2(z)}

I _?3.£.£)
A complex valued function w will be discrete

gwpseudoanalytic of the first kind in a discrete domain D

if and only if an f EZ F(D) is found such that Sgf is
orthogonal to g throughout D.

"C373I3



ie,

19,

io,

ie,

By 2(4l),

g®Xw(z) = g@yw(z)

(g.®Vf)(z) = (g.GVf)(z) by 2(39) and

-:[g.(eX—ey)f3(z) = 0

(g.SEf)(z) = o by 2(2o)

Sif is orthogonal to G.J

(b) §g£££g$gngx

Suoooso that w = o.f fl f 5 F D) o. 1 J . 9 J
(Sgf) is orthogonal to g, them

ie,

ie,

leg

(9~9§f)(Z) = O

g[g.(ex~ey)f](z) = 0

(g.@X’f ==C_}.9yf)(Z) -'33 O

<g.eXf)(z> = (g.eyf>(z>

By 2(4l) W E lPD(g).

Thus the theorem is proved.

Q(40)

E

40

2(46)

G(D) and
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If further w g lPD(g) then g@w(z) = (g.®Zf)(2)
2(47)

1It may be noteo that the gmderivative of an element
0*‘ C-3 -oes o a  I: e O]. C;  "*.—, . T  3 e“L lPD(J) d o n t l! ys 3 1 av LO lrU(g) do cv L gT \- -3- -P '\ I { l J .- 4-4  ‘1‘ ) ' ,­could oe an element or lkotg ) where 9 is also a. . v i a , _ , ,generating vector. we call g( ), a successor of 9 and 9, u,. ]_ , . , . . . .predecessor or g( ). This proolem is discussed in a later
chapter.

A discrete function w(z) is said to be qwperiodic
in X and y if W satisfy the relation

w(x,y) = w(qx,y) = w(x,qy).

Such a function is

w(z) = u(X)u(iy)

where p is Pincherle's qmperiodic function defined by

e lwz ml
“W5 (l~q”X)m (l~q “x )w" l

H ( X ) -._._— X "  .,_-...-._.. ....._..=__.... ..._,....  .. ....,..  _.,...(SeQ  ch :_;“_“_]_ Q [ ]_  )
(J--=<1'°><)m (l--q3“"Ux“l) CO

We denote the set of all such functions by1;q(x,y)



£113.)
g®w(z) 5? 0 if and only if w(z) = (g.f)(z) where

f is qmperiodic in X and V.

,3; .5 .

(a) §.9;¢,s2.8;s$.i;ia/,

Suppose that H = g.f, g 8 G(D), f E: P(D) 13 an
element of lPD(g).

Then by 2(46) and 2(47),

and

(g.85f)(z) : g8w(z)

so that

[§-(@§f)](Z) = 0

ie., (§.8Z?)(z) 2 O by 2(2;)

ie., (§.®7f)(z) = 0 since f is real valueda

Thus we have the relations

I!gl(z)8Zfl(z) + g2(z)8Zf2(z) gOw(z) and

H9:1-5)8Zfl(z) -=- g2(z)6>Zf2(z)
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Solving and we get

gqiz)c®w(z)
82 f l ( Z ) : ..—...——_-..=-..m.L....=..- ..‘.’T......... .....2.....,_  _. ......._.,..._,.. _.- .._.._.....—.-.-.....

91(2) dé(Z) ‘ 91(2) 92(3)
i\3

I"-\
C) 4/

and

—§l(Z)O®w(z)
/' 3.":'i-75'-'-Ll--I1-‘L..11T='1'-.HCr1ti"$-'¥JJX&j.'j§{'- Xl":1"£. -TI--'-Z'd.II J

91(2) 92(2) M 91(2) 92(2)
9zf2(z)

Now if gSw(z) = 0, then by 2(48) and 2(49), we have

SZfl(z) = O : Szf2(z)

ie., (ex + 8y)fl(z) = o
and

(@X + 6y)f2(z) 2 O by 2(l9).

1"” 1”’ " 1° 1“’*  xii.  £1.53).#:i;.¢.*‘.:f§:1
i Q . ’ =-'=..4-=-¢-—%- C.-fir:-0-—---I-c-uaa:-.u‘_-=r-3.---rs .- ‘(l~q)x (lwq)iY
and

f2(z) » f2(qx,V) f2(z) wf?(x,qv) O;-uHmr-.fl“w“L_fiwh.*u 4..,fiHm,,_““.;“uw..$4 :(lmq)x (1=q)iY

;f~(z) »f1(qx,Y5 fl(z) ~fl(x,qy)’]
i  O ’ ...=.—..—..r_..r-.. .—...-_=...—....~,..,..u.. .... .. ..-.._-..._—.-1 +. i ,_.,i  .....—,.-._........_—.._..= ..-- ...- ,,  - --.- --...;..__..--  = OL (luq)x (lmq)iy



and

lf2(z) mf2(qx;yH ' r _ f2(z) mf2(x,qy) W
I I

1 - -.1-.-.-an: t ;.u .-.3. .-1 -- .- '1' l . r 2 3' -' '=*&-.-r-..«.I"-a .'4--"J- I'.' .--t ' A  -‘.I .-.a=- 1----0.-vi]  ._.. K )IL (l+q)x j I (l~q)iy JJ"""'|

But fl
real and imaginary parts to zexo, we have

’‘'‘fl(qX9y) ‘:3 O

fl(z) —fl(x,qv) = O

f2(z) ~f2(qx.v) = O

and
f2(z) ~f2(x,qy) = o

iG., fl and f2 are qwperiodic both in X and y.

(b) §R§££2£E£Sl

suppose that w = (g.f), g s G(D), f 5 F(D)

is an element of lPD(g) and f is qwperiodic in x and y,
then by 2(47), we have,

IIg©w(z) (g.®Zf)(z)

H [g. %(eXf + ayf)](z) by 2(19)

P= 0 since 1 is quperiodic in x and y.
Thus ihe theorem is proved.

and fa are real valued. Therefore, equating



._<ct?..<.,J.1:.s9..l.l.e£;/.._??—..£._l.L.).

Solutions of the equation U®w(z) : Q are called
gmpseudo constants. As a consequence of the above theorem

it follows that a gnpseudo constant can be represented by
g.f where f is qwperiodic both in x and y.

Now consider w 8 G.F(D) an element of lPQ(9)°

Take w = g.f, g E: G(D), f 5 5(0)

PThen W = §.f since I is reel valued.

From the above relations we obtain

‘.13’
/’\

N
\_/

II u(z) w(z) + v(z) fi(z)

9 (2) ~i 0 (2)u(z) = .“Mli4mJ%ll“ll1,LL¢n,,l_m- 2(5Q)
91(2) 92(2) ~gl(2) 92(2)

V ( Z ) ___. . .__,....._._.....,....,_.‘21._.=.._ ..-,......=..._..   ..._, 2 ( 51 )

gl(Z) 92(2) " 9'l(.Z) g2(Z)

The correspondence between w(z) and h(z) is
onewto=one. We denote it as

p w(z) = h(z) 2(52)
C-"ta w(2) 2(53):7

/"‘\
N

xx
H



It follows that

pg(awl + Swg) 2 a(p wl) + 9(pgW2) 2(54)IQ

where a, 5 8 8.

also we can see that

pg(O) = 09 pg(gl) = l, 9 (9?) = i 2(55)(Q

Suopose that D is a bounded domain.1

o w(z) = h{z) = u(z) w(z) + v(z) w (2)We have 10

Therefore,
-IIhI-I-~I-.:­

§ogw(z)fg iu(z)Iiw(z): + [v(z)|iw(z)}

p w(z) I ,ie., =-9--=--~= 3 |u(z)} + Iv(z)|w(z) |

g k, since gl, g2 €j{(D)o
k depending only on g1 and g20

Eémfiefis

2(4) Suppose that g e G(D). If h(z) = I.f(z) is
discrete gupseudo analytic of the second kind

in domain D then Ggf is orthogonal to g.

2(5) Every element of xq(X§Qis discrete gmpseudoanalytic
of the second kind.

We can see that these results are analogous to
those of Bers [1].



Note 2(6)

If we take I = [1 i] then it is defined in any
domain DC:,H and is a generating vector in D. we obtain
the following theorem:

If w = i.f is an element of lPD(I) then w‘is
qnanalytic in D and conversely if w is qmanalytic in D, it

is an element of lPD(I).

.E.1.;9.9.£

Suppose w = I.f, is an element of lPU(I) thenI.

by 2(39)

,1. __ 3 -'.‘ ..I@Xw(z) _ I.LXi(4)

®Xw(z)ll

Similarly by 2(40)

llI6Yw(z) 8yw(z)

But 8Xw(z) III I8yw(z) since w £:lPD(I)

Therefore we get,

GXV-J(z) = SH:-..!(z)
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Then by 2(l8) w is q analytic in D.

Conversely suppose that w is qmanalytic in D.
Then

®Xw(z) = 9Xfl(z) + i 8Xf2(z)

= I.SXf(z)

and

GYw(z) = ®Yfl(z) + i @Yf2(z)

= I.@Yf(z)

Therefore I.8Xf(z) = I.GYf(z) by 2(l8)

ie., we lPD(I) by 2(4l)
which proves the theorem.

Theo em 2L§)

Let g be a generating vector in D. Suppose
w 2 g.f (f is not quperiodic in x and y} is an element of

lPD(g). Then f and fa are the real and imaginary parts of/.l
a qmanalytic function in D, if and only if g2(z) = i g1(z).

Proof

Suppose w = g.f 5 lPD(o), f is not quperiodic
in x and y. Then by 2(46)

(9.8§f)(z) = O
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ie., gl(z)GEfl(z) + g2(z) SEf2(z) = O

, 92(2) A 1
1e., gl(z)[@Efl(z) +-mwuwm e§I2(Z)J : 0

91(2)

But glfi O since Im(§E g2) > O

Therefore

91(2)_ 92(3)le.,  2 ml:J1

Adding i[eEf0(z)] to both sides we obtain

1 92(2),
8;[fl(z) + if0(Z)} : [®Ef?(Z)J[i ~=w~~~JH A y gl(Z)

Suppose that fl and fa are the real and imaginary
parts of a qaanalytic function in D9 then by 2(23)

GE[fl(z) + i f2(z)] : O in D

Therefore,
9 (2)

Q : gmf (Z) [i H.Q%w,M]2 2 0 (Z).‘ J l_ 9 (2) _ie., 0 = 1 w-w~»=-since fa is non quperiodic in x and y91(2) '
ie., g2(z) = i gl(z).



Suppose that g2(z) 2 i gl(z) and w e lPD(g).

Then,

(9~9§f)(Z) = 0

ie., gl(z)@Efl(z) + i gl(z) G~f9(z) : 0

ie., gl(z)®§[fl(z) + i f2(z)] = 0

ie., 8E[fl(z) + i f2(z)] = 0 since gl ¢ 0

ie., fl + i f2 is qmanalytic in D by 2(23).

Thus the theorem is proved.

Let g = [gl igl] be a generating vector in D.
Suppose that w e lPD(g), then the discrete g—derivative of

w is again an element of lPE(g), where E =.{z E DIT(z)C:.§}o

Proofinfirm

Suppose that w e lPD(g).

g8w(z) = (g.GXf)(z)

II (g.Gyf)(z) by 2(39), 2(4o) and 2(43).
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N ow ,

ll(9.@§9Xf)(z) 9l(Z)[9g9Xfl(Z)] + i gl(z)[8§8Xf2(z)]

gl(z)®E[GXfl(z) + 1 8xf2(z)]_

By theorem 2(3) fl and f2 are the real and imaginary
parts of a qmanalytic function in D. Now as shown by
Harman [1] the derivative of a qwanalytic function in D is

also qwanalytic in E where E =‘{z g DIT(z)C::£fl} Therem
fore by 2(23) right hand side is equal to zero in E.

Therefore 8§(8Xf) is orthogonal to g in E. Hence by

theorem 2(1) g8w(z)g;lPD(g).

Theorem 2(g)
I‘

If«{wn(z)f is a pointwise convergent sequence of
discrete gupseudoanalytic functions of the first kind in D
with limit w then,

1) w is discrete gmpseudoanalytic of the firstkind in D and 2(5s)
2) ii: W gGn(z) = gew(z) 2(57)
EESQE

1) Suppose that.{wn(z2} is pointwise convergent to n?
we have to show that w*elPD(g).



Now,

w(z)

[9(Z)-GE

Therefore

2. lim
nAw~CC

H

= lim

lim
new

n—9w°

< 2 > 1

(§»fn)(z)

= (9. lim fn)(Z)
n ...)c-3

by theorem _

8w(z)
n

f(z)]

H

H oe'-2‘-"[liI'fl

g(z). lim

n__>m 131(2)]

Gwf (Z)n_§w z n

if?” [g(Z)-@§fn(Z)]

by theorem 2(1) as

g.fns:lPD(g)°

lim [g(z).G_f_(z)] by 2(4l) and 2(43)n__9m X H

g(z).lim
n-9%

f (2) ~ fn(qx,y)
g ( z ) . lira [.-=.n.==u.(._]:.::.C.I.j.}_{.,....._E....n—§w
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( ) [ llm fn(Z) lim fn(qX’Y):: g Z ° co _*.£.=‘ ‘I. oon—a (lmq)X n~> F1 <.5><

= (g.Gxf)(z) by 2(l6)

2 08w(z) by 2(4l) and 2(43)J

Thus the theorem is proved.

5- .E.r.9,§i.%Lc_t._1zv.i,t,:1,_.f.q.n C ‘t.i.9.nswet‘. .'I.-.-_ u_#‘—l

Suppose that C £ 0 is a nonreal consfiant and

xv e lPD(g) then c w 3 lPD(cg). 2(58)
.E.£9..<2.1f.

Suppose that w is an element of lPD(g)

w = g.f, g 5 G(D), fe: F(D)

Then cg E G(D) since lm(c‘gl cg?) > O
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Now,

Cg9Xw(z) = (cg.®Xf)(z)

= c(g.GXf)(z) = c[g@Xw(z)]

and

Cg@Yw(z) = (cg.Gyf)(z)

= c(9-@yf)(z) = c[gGyW(z)]

Therefore

CgGXw(z) = Cg9yw(z) since w 3 lPD(G)

Therefore by 2(4l) cwe;lPD(cg)

Ineorem 2L6)

Let D be a bounded domain and w, an element of

lPD(g). If p # O is a Holdermtype discrete function in D,
then pw 5 lPD(pg). 2(59)
Proof

Suppose that w 5 lPD(g)

Since p, gl, g2g;3§(D) and D is bounded, pgl,

992 eIH(D) bY 2(35)., ___. .2 —. . ,.
A180 Im(p gl pgg) = Im(lp| glg2) > 0 since g 8 6(0).



0'1 {jl

Therefore pg is a generating vector

PW = Pg-f

Péovg,

pg6xw(z) = (pg.8Xf)(z)

= p(z)(g-@,f)(z)

= p(Z)[g8XW(Z)] by 2(39)

and = ..fpg9yw(z) (pg 8y )(z)

= p(z)(9-@Yf)(z)

= p(Z)[g9yW(Z)] by 2(4O)

Therefore

pg8Xw(z) = pgOyw(z) since by 2(4l),

g8Xw(z) = gGyw(z)

Therefore

INV 6 lPD(pg)

Hence the theorem is proved.



Theoggm ZLZ)

Let g be a generating vector in a discrete

domain D and w be an element of 1PD(g). Then w satisfies
the relation

.f
®§w(z) = %1ifl(qX,v)@Xgl(z) »fl(x9qV)9Vgl(z)]

+ [f2(qX,v)8Xg2(z) ~f2(X,qy)8yg2(z)i}

and the gmderivative satisfies the relation

@§[geW(Z)] = %{[eY~sl<qx,y>eXgl(z) -=»ey»rl<><,qy)e.,gl<z)J

+ [eYf2(qX9Y)eXg2(Z) '="eyf2(X2qY)eyg2(Z)

.B£92£

Suppose that w is an element of lPD(g). Then
by 2(46)

gl(z)8Efl(z) + g2(z)®Ef2(z) 2 O 2(60)

Now,

9§w(z) = 8; [gl(z)fl(z) + 92(2) f2(z)]

[@§fl(z)]gl(z) + [@§f2(z)]g2(z)ll

+*%[fl(qx,v)9Xgl(z) —fl(x.qy)8ygl(z)

+ f2(qx,v)@Xg2(z) ~ f2(x,qY)0yg2(z)] by 2(24).



57

= 0 + %[fl(qX,V)9Xgl(z) ”fl(X,qY)®Ygl(z)

+ f2(qX:Y)@Xg2(z) ~f2(x,qy)GYg2(z)] 2(51)
by 2(60)

By 2(47) we have

g®w(z) = gl(z)8zfl(2) + g2(z)8zf2(z)

NOW9

9; [g@w(z)] ®§[gl(z)0Zfl(z) + g2(z)eZf2(z)]

= [932 fl(z)Jgl(z) + [932 f2(z)]g2(z)

+ ‘%[®zfl(qx,v)8Xgl(z) =0Zfl(x,qy)9Ygl(z)

+ 9Zf2(qX:Y)@X92(Z) ~GZf2(x,qy)9yg2(z)]

by 2(24).

= 0Z[gl(z)G§fl(z) + g2(z)®Ef2(z)]

~ %[®gfl(qx9v)©xgl(z) —eEfl(x,qy)@ygl(z)

+ ®Ef2(Qx,y)GXg2(z) —8Ef2(x,qy)@yg2(z)]+
¢ 8Zf2(qx,y)8Xg2(z) ~®Zf2(x,qy)8yg2(z)]

by 2(26)°
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='%[@yfl(qX9Y)eXgl(3) “eYfl(X9q7)eygl(Z)

+ eyf2(qX9Y)eXg2(Z) ”eyf2(XyqY)eyg2(Z)] 2(62)

by 2(4o), 2(19) and 2(2o).

Hence the theorem followso

;LQeorem QL§)

Suppose that g is a generating vector in a discrete
domain D, and w is an element of G.F(D).

If 9§W = '%[fl(qX»Y)@Xgl(z) ~fl(x,qy)8Ygl(z)

+ f2(qX2Y)eXg2(Z) “f2(X9qY)eYg2(Z)]

then w is an element of lPD(g)4

.E.£s.>.9;f.

Suppose that

9;w(z) =-%[fl(qX,Y)8Xgl(z) ~fl(x,qY)@ygl(2)

+ f2(qx9Y)eXg2(Z) “f2(X:qY)syg2(Z)] 2(63)



Now,

@Ew(z)
II+
ll [9§fl(Z)]9l(Z) + [9§f2(Z)J92(Z)

+ '%[fl(qX:Y)9X9l(Z) ~fl(X.qv)®Vgl(z)

+ f2(qx.V)®Xg2(z) ~f2(X.qy)9yg2(z)] 2(64)

by 2(25).

Equating 2(63) and 2(64) we obtain

[9§fl(Z)]9l(Z) + [@§f2(Z)]g2(Z) = 0

Therefore by Theorem 2(1), w 5 lPD(g).

6. Ell;gr;c gystem

Suppose that w = g.f is an element of lPD(g) and
h = I.f is an element of ?PD(g)°

Then,

@§w(z) If 9§(9of)(Z)

= 9§[gl(z)fl(z) + g2(z)f2(z)]
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F

+-%{[@xgl(z)Jfl(qx,Y) ~[®y9l(z)]fl(x,qY)

I

+ [eXg2(Z)]f2(qX:Y) ”[eYg2(Z)]f2(X9qY)?

by 2(24)o

= (go9;f)(z) +*%[©Xg(z).f(qX»V)

— ®yg(z).f(x,qy)]

= -%[®Xg(z).f(qX,y) »©yg(z).f(x,qy)]

since by theorem 2(1) g.8 f = O.E

Now, take

92(2)~~:~= = a(z) + i§(z),
191(2)

a, B are real valued. Since Im(§i g2) > 0 it follows that
a > 0. As I.f e 2PD(g), f satisfies the relation

(g.G§f)(z) = O by remark 2(4)o

ie., gl(z)8Efl(z) + g2(z)8§f2(z) = O

_ g2(z
1e., 8Efi1(z) + =

gl(z)
8Ef2(z) = O as gl # O



ie.. ®Efl(z) + [ia(z) ~§(z)]®Ef2(z) = 0

ie., [@Xfl(z) ~@yfl(z)j + [ia(z) m§(z)] ®Xf2(z) a®Yf2(z)]

Equating real and imaginary parts to zero
we have,

8Xfl(z) mia(z)Gyf2(z) m§(z)GXf2(z) = O

and

i8yfl(z) + a(z)®Xf2(z) ~§(z)i8yf2(z) 2 0

ie., eXfl(z) = §(z)®xf2(z) + ia(z)6Vf2(z) 2(65)

and

i®yfl(z) = ua(z)@Xf2(z) + iB(z)8yf2(z) 2(oo)

Therefore we see that the real and imaginary
parts of h(z) satisfy the equations 2(65) and 2(66) which
are analogous to a particular type of Beltrami’s equations,

u = Bvx + yvy

mu = my” + pvy (Vekua) [l}



to y

and

Now,

Taking the qmderivatives of 2(65) with respect
and 2{66) with respeci to X we have

®Y[8Xfl(z)] = 8y[§(z)@Xf2(z) + ia(z)@Yf (z)] 2(67)

eX[iGyfl(z)] = 6X[~a(z)®Xf2(z) + i5(z)®Yf2(z)] 2(68)

" ” ' t(Z) “tL%X2Y)Q :__ .. ..-..._ .. _ _SYL Xt(Z)J @y[ (lflq X J

H

®x[r(z)S(z)] = [®Xr(z)]S(z) + r(qx,V)8XS(z)

f: “ ‘X 7- 1 ) “ 9 )
[ .:c..£.~7;)(.l:%>_§§(L.4.v.)_3 E, L.L=..,(,?§.__,§LY,Z.:,,_.’C. as 3L

]1._l _l=q x J (T3373?

1

~?:-;§#- [t(z) ~t(qx,v) =t(X,qy) + t(qx,qv)]wq lxy

J. m 1 ~ t c,’ a ' J .

9x[ t£Z%l::§§§qX) ]

8X[8Yt(z)] 2(69)
We can also easily show that

2(70)



63

or = r(z)®XS(z) + s(qx,y) GXr(z) 2(7l)
and

9y[r(z)S(z)] = [9yr(2)]S(z) + r(X,qv) [®yS(z)] 2(72)

or = r(z)®yS(z) + S(x,qy)8yr(z) 2(73)
where r and S are any two discrete functions.

Using the gymbols eX(eX) = GXX,

6X(Gy) = 8 , 8 (8 ) : O €é®Y)= 8XY Y X 'Yx’ YY
and the relations 2(7l) and 2(73) we have

®XYfl(z) = B(z)@Xyf2(z) + ®Xf2(x.qY)8yB(2)

+ a(z)i®YVf2(z) + i®yf2(x,qy)Sya(z) 2(74)

and

i@Xyf (z) = ma(z)8XXf2(z) m®Xf2(qx,y)GXa(z)

+ ififlz)®XYf2(z) + i8yf2(qx,y)8Xfi(z) 2(75)

Multiplying 2(75) by i and adding to 2(74) we have

0 : =ia(z)SXXf2(z) + ia(z)8yyf2(z) mi@Xa(z)8Xf2(qx,y)

+ ®yB(z)6Xf2(x,qy) ~9XB(Z)9yf2(qXsY)

+ i8Va(z)Gyf2(x,qy)
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ie., 0 = ®xXf2(z) + (1) @Yyf2(z) + [a(z)6Xf2gqx,y)

+ b(z)@Xf2(x,qy}] + [c(z)6Yf2(qx,y)

+ d(z)8 f2(X9qY)J9 2(76)
where

a(z) 1
mi "*3N: ‘4

C ( Z ) ::
and

d(z) = *= , a > O b assumotion._ 1
The above equation 2(76) forms a discrete analogue

of the classical elliptic partial differential equation of
the second order:

uxx + uyy + A(z)uX + B(z)uY + C(z)u = 0

Similarly we can show that f also satisfies al
system of the form 2(76) with different coefficients.
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jheorem QLQ)

Suppose that h is a discrete function in D such

that its real and imaginary parts fl and f2 satisfy the
system:

8Xfl(z) = fi(z)@Xf2(z) + ia(Z)8yf2(Z) 2{77)

iGyfl(z) = ~a(z)SXf2(z) + i§(z)®yf2(z) 2(78)

a > O, a, 3 are real,a+ifi e I1i(Q), then there exists a
generating vector g = [l i(g+iB)] such that h E: 2PD(g).

.E£22£

SupP©se that f and f2 satisfy the relations 2(77)1

and 2(78). imultiplying 2(78) by i and adding to 2(77) we
have

I!2®§[fl(z)] 9Vf2(z)[B(z) ~i@(z)}

+ eYf2<z>[ia(z> »s(z)]

H (ex mey>f?<z>[s(z> ~ia(z)]

= 2@§f2(Z)[§(z) ~ia(Z)J

ie., 8Efl(z) + [ig(z) w$(z)]@Ef2(z} : O
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ie., 8Efl(z) + i[a(z) + iB(z)]8Efq(z) = 0

Take g = [1 id m 5]

Im(ia m 5) 2 a > 0

Therefore g forms a generating vectors

By remark 2(5) h 5 2PD(e)..1

Thus the theorem is proved.



CHAPTER 3

INTEGRAL REPRESENTATION OF DISCRETE PSEUDOANALYTIC FUNCTIONS

In this chapter integral representation of discrete
pseudoanalytic functions is discussed. Apart from the discrete
integral introduced by Harman [1] we need conjugate of the

discrete integral, pg and gnintegrals. In sections l, 2 and 3
we will introduce the above integrals and study their proper»
ties. Integrals are used in showing that gmintegral of a

discrete function is an element of lPD(g) and pgwintegral
of a discrete function is an element of 2PD(g).

1- Com’ use t.<?.,..0f th e di_.s,s£.9.:*;.9.

Let zj = (xj,yj) be any point in a discrete domain D.
Suppose that zj+l 5 iN(zj). 3(1)

Let f be a complex valued function defined over D
a ' =< 9009 v - cocoa " . -‘ - I‘no c 21,22, zl, zl+l, 7n) be any discrete curve in D.
Harman [1] defined discrete integral over c by

2C: 2;} j+lo f(t)d(q;t) = :::... S f(t)d(q;t) 3(2)C jzl Z3
67



”(z «z%)f(z.) ifJ Jj+l

zj+l : (qxj,yj) orwhere (xj,qyj)Zj+l } A’ .5  :  (Zj+l ‘”Zj)I\Zj_}_l) lfz;j ‘H1
Zj+l = (Q Xjsyj) or

.31, 3(3)(xjscl
He has shown that this discrete integral has properties
analogous to those of Riemann intogral.

The conjugate of the discrete integral from
2. to z of f will be3 3 j+l P

(zj+l »zj)f(zj) if

2. , Zj+l Z (qxjsyj) or (xjiqyj)
J-Pl

5 f(~t>a<q;t>  J <23.“ mZj)f(Zj.+l) ifzj ml
31(xjeq VJ) 3(4)Ikrud v« g;l Zj+l5r<t>d<c;;t> = c; S f<t>a.<q;t> 3(5)c j=l zj

Z

Suppose_that U(z) = E; f{t)d(q;t) 3(6)
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and
2U(z) : E) f(t)d(q;t) 3(7)
a

where a is a fixed point in D, then
2 (CiX9)')
<1; f("t)d(q;'t) =~  ‘f(t)dCC1;t)5 3

eXU(z) .___ i.i...=_..-..,_-.;.,..=.,....i...i,_.._,.,.,...__,_i._,,,. ,,,,=__4._ ,__ 133’ 3&0)
(l-c1)><

(qxsy)

»:<t)c:<q;-t) » S f<t)a<q,t>
ZcJ(flN

Z

§«.=<t>a<c;;t> —­
: '9: --‘t’.-.1-.-.-rn-..-.-5 : -. -v . .5 -.--_n=_v="_4¢ _’ ._gg_-;gr~-nan---1. —

(lr—~q)x

u¢-on-uni‘ 'Otw~—n—n-——

®XU(z) = f(z), @yU(z) = ~fTE3

By similar argument we can show thafi G U(z) : f(z),

by 2(l6), 2(l7), 3(3) and 3(4).
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Therefore by 2(l9) and 2(20) U and U satisfy the
following relations:

1) ®ZU(z) = f(z) 3(8)
2) 8EU(z) = 0 3(9)
3) ezUTE) = o 3(lO)
4) e§U?E) = EYE) 3(ll)

2. §g§crete pg=integrq£

Suppose that g = [gl g9] is a generating vector
in D and c 2 <zl,z2,...zn> a discrete curve in D. Suppose
w is a complex valued function defined on D. The discrete

pg—integral of w from 21 to zn along c is defined byzn Zn
pg ( E3 W(t)d§(q;t)) .= 2Rl( E3 3%i:J:£:ld(q;t))1 21 r(t)

Zn "71 M...2j_ R]_( S  )Z1 r(t)
3(l2)

where r(t) : gl(t) g2(t) — gl(t) g2(t) 3(l3)
Z n

auui Q; f(t)d(q;t) is given by 3(2).
21
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Pr 043.91‘ ti.:’—:s 01?. the o2g:i.cr;'§.9;1.te2-.;.

The following elementary properties follow for

the pomintegral.

1)   -3-" <Zl,Z2,oooZm>   -: <Z1_fl,zI_n.1.__l,o0oZl,1>

Let g be an element of 6(0)be two discrete curves in D.

Then,and w be a complex valued function defined on D.

( S xt~tx(t)c.g,(q;t)) + pg(g w(t)dg(q;t))
°1

Pg

=pg( S xv(t)dg(q;t)) 3(14)

2) Suppose that c = <zl,z2,...zi,zi+l,....zn> be a
discrete curve in D, then

and

0 ( E; w(t)dg(q;t)) = wpg(E3 ‘w(t)dg(q;t))- 3(l5)‘Q ” c
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3) If a is a scalar constant then,

pg( 3 C-3 w(t)dg{q';t)):.— on pg(S w(t)dg(q;t)) 3(16)c c
4) If wl and w2 are two discrete functions then,

pg(S [wl(t) +~»v2(t)]dg(<:;~:)) = pg(Swl(t)dg(q;t))C C
-I- pg( 8 w2(t)dg(q;‘t)_)* 3(l7)

C

3- D_i.s;:.;r.~';:9s.;._9.i-.in t e.9.::..:1..;.l‘.\Zfi5'-KT ll

Let D be a discrete domain and c 2 <zl,zq,...zn>L

be a discrete curve in D.

Then the discrete gmintegral over c is defined byZ ZI} 1'1*t1~"= '1'; _v o­
ZSI w< )Cg(q,L) gl<zn>m }g ( 3 «<t>ag<q,t>)21

Z
0

+ g2(zn)_T.m pg.{ 3 w(t)dg(q;t)_)
Z l
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=2gzRl(S -—c1q;t( ) 2“ g2<t>w<«:) ( Hl n L
21 3-‘(1-7)

1‘ 9 (t)w(t)
m2g2(zn)Rl.( ES —#£»=~:«~« d(q;t)) 3(l8)Zl r(-L)

Zn

where r(t) is given by 3(l3) and E3 f(t)d(q;t) is
Z1-4

given by 3(2). These pg and gmintegrals are analogous to
the integrals introduced by Bers [l].

_P_.r Q9 or ti 0 8 0 Lgth <>.,.;1.-:,i,n .9 etgl.191; :3 -- '

l) If a is a scalar constant then,
S c€W(t)dg(q;t) = as S w(’c)dg(q;t) 3(l9)0 c

2) If wl and w2 are two complex valued functions
defined on D, thenC I ‘ .1 I —

‘CD [Wl(t) +w2(t)]dg(c:;t) = S wl(c)og(c1;t)
O

+§ w2(~t)c1gtq;t) 3(2o)



3) If c = <zl,z2,....zq> is a discrete curve in D
then,

3 v.»<t)dg<q;4;> yé  S ‘~"v'(t)C1C._(Ci;t) am)c cml
But if c is closed ie., Zn = 21 then the equalityholds. 3(22)

4) Let cl = <zl,z2,....zm> and C2 = <zm,zm+l,...zn>
be two discrete curves in D then,

S w('t)dg(c1;t) + Q w(t)dg(ci;t) a-4 Q w(t)dg(q;t)\.. ‘V-I‘

where cl+c2 = <zl,z2,....,zm,zm+l,....zn>g 3(23)

Iheorem 3L1)

Suppose that g is a generating vector in a discrete­

bounded domain D. Let c = <zl,z2,....zn> be a discrete curve
in D. If w is a discrete function in D then,-Zn Zn

S w(t>ag<q;t) g_:< 5 wt)! |a<q;t>1 3<24)Z I Zl l



V]zj+l»zj]f(zj);

1 if zj+l = (qxj,yj) orwherezj+l k (xjyqyj)
53 f(t)ld(q;t)l = ‘T Izji =Zjlf(zj+l)2. “l3 if zj+l = (C; Xj,yJ.) or

=1
(xjsq Yj) 3(23)

kc

1< is a constant depending only on gl,g2.

Proof

fin ; Zn WES ( t 3_ Q“ " w r“ g2(t)W(#2-. -~
I Zl w( )dg(q,t) g— 2 §gl(in)Rl( g?’ r(f) d(q,tl)

-g2(zn)Rl ( ES “*“i;(gy- d(q;t) )|

where r(t) is given by 3(l3)

g ‘<'+:)w<—::> I

d ( q ; t  {_g2 gl(zn)Rl {
}._5q(_n SN

2 _____J (t)W(t)
+2 g2(Zn)Hl  g C1 rft) " d(q3J5)\)

.31



Z. D' (t)A~»(-t)
= 2 iFgl(zn)! §Rl  3 E-J~2'r*(=:1::'j=-==d(C{;t)); J

» ; i 2“ gl<e»:>xv<—c>
2 }g2<zn); ‘MS e-i=5-e(=t.3~——d<«+:;t>)1 % 21

By 2(34) g1 and go are bounded in D. Therefore, we can find

kl,k2 such that |gll<kl and |g2|<k2.

Therefore the right hand side

nal Zj+l
_ _ T?‘ 92(£)W(t)

< Qkl Hl( v:f’....- S "=*~=*='-J'j:(-E-)=°=‘“' d C{,'t )'21 .J 23
nal H

( C:% j+l+ 21:2 R]. 2:... S'21 .I J Z3
1 T1-=='..'_ Zj+l

r*"-W .  VJ ( -‘C_.  [ S F3.-2, e W.- kl e_- Z3 3? t) d e,t)J=l

tew t+1 < > < >
+  g2  d(q§t)] "T
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z, ,; n-=l 3*}-.1. _
3 _,__. 9 g <::>w<+.>

+ 142 I ,._g__h [ \__ —~ }~(-;j~=-«=- c. (Ht)3 j=1

Zj+l ______,_____ \

Q gl('t)W(t/ ‘ t)_1+ \ -=~n- ; ~ 0 q J2., FTT ' ,J

nml _
»:-- J“ <3 (t)w(t)

_S_2k l C~ “"’=""""'j",:""'(‘ft'_:‘)""“" ‘ C1 C1, T.)

321 zj

nml. Z. _"""""”J” g (t)w(t)+'2k EE: ES “$** M d(q;t)2 riti3:1 l ‘J ;
But as shown by Harman [1]

S f(t)d(q;t)l _g, S !f(t)| id(q;t)i 3(26)C c
Therefore the right hand sioe

zn—l j+l
S_2ICl (4 Z. ='=-:3-=(-=,L_-[*7 !\u('t)‘ |c!,(q,t)[. 3 ‘J=l

n~=l Zj+1 ( .)v~;~-~ gl t h .
+21<2  S “*§'('sg7 lW('c)l Id(q;t)l



g2(t) glen
BUT. by 3(l3) and ?.(34),  and
and so we can find k3,k4 > 0 such that

g2(t) gl(t)= w < k and mr- ~ < k_ET¥3“¢ 3 _r(€T 4
Therefore the right hand side

nml Zj+1
2I<l1<3  S Ive»<t>iia<q;t>I

3:1 zj

nal Zj+l
+ 2k2k4 git E3 |w(t)]§d(q;t)|. zaJ=l *

Z
1'1

=2klk3 S I~.~ct>iIc:<q;~t>i
Z1

Zn

+ 2k2k4 S3 lw(t){Id(q;t)i
21

zn .
=-K S lW(t)Hd(q;t)i

21

where K depends only on gl, go.

are bounded in D

78



79

.§..l£._L%._¥.Y,,_l.3 L .1)

Suppose that Max |w(t)[ = M and if the curvetel)
nml

length i:g|zj+l mzjl = b, then, I E; w(t)dg0q;t)|§ Kmb3:1

where K is a constant depending only on gl, g2. 3(27)

.?£9.9.1f.

IS w(t)dg,(q;'t)| §.I< S iw(t)ii'd(c1;t)I by 3(24)C C
n—l Zj+l

= K 5: S lW('t)||d(c:';t)|
_]——l Zj

nal

g_1<  |z. H z.|I‘~:1j:l. 3+1 J

ie., fl/\ Kmb, K is a constant depending only on gl, g2.

Qemark 3(l)

The pgmintegral also satisfies a similar theorem
and corollary and the proof is similar.

Let us consider discrete functions involving a
parameter.
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Let S be a given set of complex numbers and D,
a discrete domain, such that w (zga) is a discrete function
for each a 8 S and z 8 13.

If lim w(z;a) 2 h(z), then the limit will be
CC -7“ C-5 0
(‘:58

termed ‘uniform’ if, given &t > 0 there exists a 0 > O
I

such that if Ia ago} < 6 then }w(z;a) mh(z)| <65 for all
z e D, where G is dependent of 2.

Let g = [gl g2] be a generating vector in D, and
w an element of G.F(D). Then the following theorems are true.

ll1_é2.9.;.9.Ii.3_£.%>

Suppose that lim w(z;a) = h(z) is uniform for
a~9aoas 8

Ii2 5: D, then lim  w(t;ca)dg(q;t) Sno:>d0(q;t> 3<2a>a—%aO C c J
as S

where g is a generating vector and w is an element of
GoF(D)o

Proof

Since the limit is uniform, givenfi > 0 there exists

a o > 0 such that if {a waol < a then. €i H
]w(z;a) «h(z)| < Eg for all z 5 U.
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By corollary to theorem 3(1) we have

l §[W(t;c:) ==h('t)‘]dg(<‘-i;"C)l  9‘f{75"‘* =63

Therefore we have

lim S[w(t;c;)--h(t)]d (c;';t) =-. o
CCC'‘'’?5 CC 0

C-1 5 5

ll 5 h(t)dg(q;‘t)] -—- 0ie., lim [ E;w(t;a)dO(q;t) =c J c
('.‘(.“3C£OOié S by 3(Z.?.O)

W‘

ie., lim 8 w(t;c.-:)d (qgt) 2 Dh(t)dg(q;t)a~eaO c 5 c
a£:S

Hence the theorem follows.

Extension of the above theorem is

Theorem 3L3)

r"'° . .. . '1 ' - ..,.\-,.-'-° - ..._ .'suppose that g = [gl g2; is a generating vector,
/1 8«A hr(z) be a series of discrete functions hr 6 G.F(D)

0
I5
H I!

converging uniformly for all points of a discrete curve c,
-—Ithen the series may be gmintegrated term “y term along cC

(uniformity is required only when c contains an infinite
number of points. when c is finite, pointwise convergence
is only needed).
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w(z;n) = §{ hr(z)
r=O

Uniform convergence of the series is equivalent toIthe uniform limit of the sequence gw(z;n)i-.
E

Therefore

lim w(z;n) = _L, nr(z)I‘1--90° 33:0

By theorem 3(2) we have
nO0 f"" r~*-*

( “I” h (z)d (q°z) = lim :3 21. h (z)d (q°z)E {:4 r g 3 1'1-90° C I‘:=O 3: g 9
SE20

5

= 1°  Sg ~: » 3 29Rig“ rzo C nr(z)cg(q,Z) ( )

which proves the theorem.

Theorem 31%)

Suppose that g is a generating vector in a singly
connected discrete domain B. Let w be a complex valued

function defined.on D. Now suppose that c = <a:zl,z2,.°czn= 2),
a fixed, is a discrete curve in D and

: W(t)dg(q;t)9
9’ tnj“; N
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then pl(z) is an element of lPD(g) and C®pl(z)J = W(Z)¢
Proofi‘“** z

Suppose that pl(Z) 2 E5 w(t)dg(q;t)

S <t>w<t>
= 2gl(z)Rl (_ C; 2I ‘”“fi;T{f““ d(q;t) )

3

( (3 §;T¥)w(t)
"292(z)Rl\  "*"'”“r“('t”')‘“ d(q?°°) WY 3(l8)

where r(t) is given by 3(l3)

= 9l(z)fl(z) + g2(2)f2(z)

where Z
( C; g2(t)W(t)

fl (Z) = 2R1 ‘   C1 (C1 3 ii) )

Z

~ <5"?‘c")w(m':) ,~ ’(7E)»,»1(t)
_ E5 ._§ET?Y_fl d(q;t) + ._, Eg?T¥{__ d(q;t)

a 3
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and -~

2

r“ éE"%"("‘€)w( t)

(;£,),,..=..«- d (C: 3 13) +   d ( O1 3 L ) :1

Now,

—Ir--‘:9:

g (z)w(z)
= + -“mm ‘- by 3(9) and 3(ll) .3(30)r(::)

and

§;TE?w(z) 3 F
®Zfl(z) = ~~=~3_:—(;=;-=- + 0 W 3(6) and 3(1o) 3(31)

Similarly we can show that
=-9 (z)W7)9242(2) = -~1-«~m~ 3432)r(z)

and """("“‘> )-=-g Z W(Z9zf2(z) = --l- — 3(33)r(z)



But fl and f? are real valued and so f 2

element of F(D).
How we have,

I!9(z).®§f(z) gl(z)®Efl(z) + 92(z)9§f2(z)

g2(Z)gl(Z)‘;:'"(-:5-3.-.-; as .-.1.-to um.-;_-Cara

E77)
gl(Z)g2(Z‘)-:53)-—- c..QI-::I_;a-—- T-‘-—'D—_.L—-‘I-'-"—'ln“ .- ,3.._.

EC?)

by 3(3Q) and 3(32)

[fl f2]' is an

Therefore by theorem 2(1) pl(z) is an element of lPD(g).
Also,

gepl(z) = g(z).®Zf(z)

= gl(z)8Zfl(z) + g2(z)8Zf2(z)

91(2) QETE5 w(z) —g2(z) éiY§3 w(z)
"* -5./Sf ."=-3.‘-.3-'n.g_.-.a.a== -3/. .-.I="1-"-:ra"' A--:91 -4.-Q;—-G '.-=-.-3 . .-I--rn -.-.-5

r(z)
by 3(3l) and 3(33)

'5 e/‘.'—?-‘ "C .'. $3-'-Cf 1&3.“ i'—'- 'Q.—' —"-'—.cj..’—.

= w(z)

Hence the theorem is proved.

3(34)
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Theorem 3L5)

Suppose that g is a generating vector in a singly
connected discrete domain D. Let w be a complex valued

function defined on D and c : <a:zl,z2,z3,....zn=z>, a fixed,
a discrete curve in D.

2

If p2(Z) = pg( E} w(t)dm(q;t)) then p2(Z) is an element
a

of 2PD(g).

Proof
Z

Suppose that p2(Z) -_- pg( S w(t)dg(q;t)}
a

Z < ) < >W g2 t w t
= 2R1( S  d(q3‘5))

a

Z ""”” >9 (t)w(t
u2iRl(   C1(CI;JC) )

E1

= fl(z) + i f?(z)

where z
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and Z §;TE7W(t)
f ( ) __ 2R1  S ""“" 51 (CI 3 J5)2 Z —- =-- . .1. "L.

8

N 03"..’ 9

9 (Z)-9§f(Z) ii 9l(2)®§fl(z) + g2(Z)@§f2(z)

II o by 3(3o) and 3(32)

Therefore by remark 2(4) (fl + i f2)(z) is an element of

2PD(g). ie., p2(z) is an element of 2PD(g).

.I.I_£..0.r, .§.£ZL. .§.Ls3.>

Let D be a singly connected discrete domain and g,
a generating vector in D. Suppose thatz z
Ul(z) : S; w(t)dg(q;t) and U2(z) =, E; w(t)dg(q;t)31 a2
where w is a complex valued function defined on D and al,a2
are fixed points in D. Then Ul(z) = UQ(z) + k(z) where
k(z) = (g.f)(z), f is a discrete function qmperiodic both
in x and y. In other words k(z) is a gmpseudoconstant.
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Let k(z) _ U2(z) =Ul(z)

CD W‘ N H
g@U2(z} » @Ul(z)9

w(z) ~w(z) by 3(34)H

Hence @k(z) = O.9

By theorem 2(2) k(z) 2 (g.f)(z) where f is a
discrete function qmperiodic both in x and y. ie., k(z) is
a gwpseudoconstant.

These theorems can be extended to a discrete

multiply connected domain also.

In Classical analysis Bers [1] has proved the
following theorems:

1) If w is pseudoanalytic of the first kind in a
singly connected domain D then,

é Wd(FyG)(z) = 0

where W is the (F,G) derivative of w, c is a closed curve in D.
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2) If H is a continuous function defined in a singly
connected domain D, and if

Wd . Z = Onf 1  ) ,c

c is a closed curve in D, then there exists an (F,G) pseudo»
analytic function w(z) in D such that

fiJ(Z) ::
Bers [1] has also obtained a generalisation of

Cauchy's integral formula for pseudoanalytic functions.

In the limiting case as q-;>l, the pg and
gmintegrals in the discrete system tends to the Bers?
integrals.



CHAPTER 4

SOLUTIONS OF A SYSTEM OF PARTIAL q=DIFFERENCE EQUATIONS

MODULOwg.AND AN ANALOGUE OF BELTRAMI'S SYSTEM

In l96l, Abdi [BE solved partial qmdifference
equations of n variables under appropriate boundary conditions
using qwLaplaee transforms. Thereafter nobody worked in
this field. Earlier Jackson [3] in l9lO defined qmintegration
as the inverse of the qwdifference operation given by the
operator:

9»? ‘X’ =
In this chapter we make use of Jackson's integral

to find the solutions of the system_of partial qmdifference
equations moduloug and an analogue of a Beltrami's system.
Some examples are considered.

l. Egrfiial qedifferegee equations mgglgggI

Suppose that g is a generating vector in a discrete

domain. By 2(4l) w 5 G.F(D) is an element of ]PD(g) if

I!gSxw(z) eyw(z) 4(1)9

where

Hg8Xw(z) (g.8Xf)(z) 4(Q)
9O
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ano

g@yw(z) : (g.@yf)(z) 4(3)
and

g6Xw(z) = g8yw(z) = g@w(z) 4(4)
Let g be a generating vector in D. Suppose that

w 5 G.F(D), t 5 lPD{g(l)) where g(l) is a successor of g.
We define a system of partial qmdiffersnce equations
moduloug by

(C.@Xf)(z) : t(z) 4(5)
(g.Syf)(z) 2 t(z) 4(6)

From 4(5) and 4(6) it follows that

(g.@Xf)(z) = (s.6yf)(z) = t(z) 4(7)

Suppose that there exists a discrete function
w 5 G.F(D) satisfying the above system then by 2(4l) w is
an element of P C and t is the Cuderivative of w.l D 3 J

u=-1--_--1 .-.=w==u.-..=n:.—n. .. . :q.:.- :.-;.—- .-. .-~.- .-us!--3;-..-gm-.9 _=n . . . . ; ....-.__

I.D.£:Q.1I.,€iITl_,£t£.3;.)

Any linear combination of two solutions of a system
of partial qudifference equations modulomg is again a solution.
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.E£ss£

Let wl(z) = (g.o)(z) and w2(z) = (g.n)(z)

where o = [G] 69]‘ and n : [nl n2]‘ 5 F(D) be two solutions

Then we have the equations,

g.9xo)(z) = t(z) 4(8)
(9-@y6)(z) = t(z) 4(9)
(9-®Xn)(z) = t(z) 4(lO)

and

(g.eyn)(Z) = uz) 4m)
Multiplying 4(8) and 4(lO) by two arbitrary scalars a and b
respectively and adding, we obtain the equations

(g. (a®Yo + b6vn))(z) = tl{z) 4(l2)

where

tl(z) = (a+b)t(z)

Similarly multiplying 4(9) and 4(ll) by a and b respectively
and adding, we obtain,

(9. (a8YG + b9yn))(z) = tl(z) 4(l3)



4(l2) and 4(l3) can be written as

(g.®Xu)(z) : tl(z) 4(l4)
and

(g.8Yu)(z) : tl(z) %(l5)
where u = a6 + bn E F(D)

which is the same as the system 4(5) and 4(6). This shows

that a wl + b W2 is also a solution of the system 4(5) and
4(6).

Thus the theorem is proved.

It is seen that the solution of a system of partial
qudifference equations modulo g is by no means unique. To make
the solution definite we prescribe, as in the classical case,
certain conditions known as ‘boundary conditions‘.

In l9lO, Jackson [3} defined qwintegration as the
inverse of the qmdifference operation given by the operator:

:3. X ~_fl>_:)9xf(><) 1%-q—§.DX 4(1s)
as follows:

ll

X

e;lf<z> T»l%:—C;,- S f(x)a<c;;x> 4m)
X

[I

O

and he studied the properties of the inverse operation.



If 9XP(x) = f(x) 4(l8)
Then, w

rm r—:—‘<x> = (a 1). *3 q3f<qJo 4m)
j:and m

we) ~I"(x) .2 (=.;«=1)>'<  q‘"3~s(q“3x) 4(:2o)

we can use these properties to find the solutions
of the system 4(5) and 4(6).

From 4(5) and 4(6) it follows that

(9-9Xf)(z) = (9-@yf)(z) = t(z) 4(2l)

If w 5 G.F(D) satisfies 4(2l) then t is the
gmderivative of W.

ie., t(z) = o8w(z) 4(22)
Therefore by 2(48)

§“TE7t(z) ,
9Zfl(z):=.;£l?(;Yu, r(z) given by 3(l3) 4(23)

And by 2(49)
”gl(Z)t<Z)ezf2 (Z) 2‘lr(iT_"‘

But [fl £2]? 5 F(D).

94
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Therefore by 2(l6), 2(l7), 2(l9) and 4(23) we have

e f,(z) = 2Rl[8 f.1“X... Z_L

-—-us——u—---un¢_

_. _g;.,2,f.?Z.;i§i) ., P’;2. (‘%‘)-:'=.u_:%':(-4%‘)r(z) 512)
But r(z) ==ur(z)

Therefore we have the relaiion,

9 (23 t(z) -9 (2) t(z§2 A A2 -­
9 fl ( Z ) : ,_4_.,,._,....,,____, .n_ _. ._.,......._...X r(z)

= 91(2) (say) 4(25)
Similarly we obtain the relation;

“Z9 (23 t(z)
Qxfg ( Z ) 2 R1‘:  ___.m,,_,,..,,..._....._. ]I‘Z

.—.—-a-———.:v­

gl(z) t(z) “9l(z) t(z)'-- chi.-I-t‘--'-O"  fl-"Lt é-‘I.-.. 1 . 1 '-‘I-‘-$:.:‘.Aa1-.'a'L.:$;.‘$='-‘=I

r(z)

= p2(z) (say) 4(26)



Also N. " 299(2) t(z)
w1e,fl(z) = ;mL~e~:»nw~mme»=3 r(z)

92(2) t(z) + 92(2) t(z)
ir(z)

ie., ____m
99(2) t(Z) + 99(2) fi(Z)

9 fl(z) Z .;:-ww_wm,-um,,;,”_w”uflY r(z)
= p3(z) (say) 4(27)

And

P gl<z> ~t<z> + 91(2) t(z)
G‘ I 2 ( Z ) = __ .-_..,.-.-....1...._..—.._..._=.._-.......=....,._...L..,..- ....=.....-....=._..-.._.__...._..--..=.-....../ r(z)

= 94(2) (say) 4(28)
Let D be a rectangular domain. Suppose that (qm+lx,y). + 1 , ‘and (X, qn 1 y) belong to the bounaary of D anu

w 5; G.F(D) is known at these pointsg then f g F(D) is
known at these points. If w(x,y) exists in D then by 4(5),
4(6), 4(l9), 4(25) and 4(26) we obtain,

:_“_‘$g.)

Iw(x.v) = gl(X.y) [(l~q)x E? qJpl(q3x.y) + fl(qm+lx.v)]
' O

111 . '
+ g2<><.y> [<1-=q>x  qJp2<q3x,y> + f2<q”*”><.y>1

jr-:0

L:
H

4(29)
where pl,p2 are given by 4(25), 4(26) respectively.
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Similarly using 4(5), 4(6), .<!.(l9 ), 4.(27) and 4(:2s)
we obtain,

1 :
.;.:<x,y> = gl<x,y>[<1-=q)i»r  q3p3<><,q3«n + fl<x,q“’”v)3

i=0
fl

+ s2(><,V)[(l--—c;)iV  C;3p4(><,c13v)
J-=0

+ fr)(X9qn+ly):i 4(3O)

where p3,p4 are given by 4(27) and 4(28).

This gives a solution of the system 4(5), 4(6).

_lQe9rem 4(2)

Let g be a generating vector in D and g(l) be a
successor of g in D. Let a discrete function t be an

element of lPD(g(l)). If w(X;Y) is represented by 4(29)
or 4(30), then w is an element of lPD(g).

Proof
u=..' at-.'$=€1':m

Suppose that t e lPD(g(l)) and w(x,y) is represented
by 4(29). We can show that ‘W E lPD(9)­



In 4(29) we take
I I12 —~ - +

fl(x,v) = (l~q)x E2: qJpl(q3x,y) + fl(qm lX'V)
3:0

where pl is given by 4(25).

z"'1nC1 7%]' \ " ' " 1 1.
f2(x,V) = (lmq)x %§;, q3pg(qJx,v) + f2(&T+-X:Y)3:0 *

where pg is given by 4(26)

(9-8Xf)(z) ­ gl(x.v)9Xfl(x.v) + g2(x.v)8Xf9(x,y)

Now, In

eXfl<><.y> = [<1—=q)x '2: q3pl<q3x,y) + rl<q‘“+1 XsY)

3:0

In

= (l~q)qx f§: q3pl(q3+lx9v)
3:0

- 9
” fl(qm+ X.Y]T1iq ; by 2(l6)

In

‘L q3pl(q3x,y) ~ 25; q3+lpl(q3+lx,y)j=O j=O
2 J. - I 2 ‘

+'(f%§7§[fl(qm+ x,V) wfl(qm+ X:Y)]
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1‘+1 .+
= pl(x9v) «qm pl(qm Xgy)l r-l 2 ~

+ Tf:3y;[fl(q“* X;Y) ~fl(qm+ x9y)J

m+l
Now substituting for pl(qm+lx,y) by 4(25), t(q x,y)
by 4(5) we get

eXfl(X9y) 3 pl(X9Y) 4(3l)
Similarly.we can show that

9Xf2(x9v) = p2(x,y) 4(32)
Now,

(g.eXf><z> = gl<z>eXfl<z> + g2<z>eXf2<z>

= gl(2)pl(z) + g2(z)p2(z)

92(2) tcz) =e2<z>£TE3
_-_-  Z ..,.e._.....,,,.,_..=...._.._.._.. _._...=..._....=.. 1....--..=-.........e............,..r(z)

el<z>tTE3 egl<z>t<z)
+ g 2 Z -an.-_-.-—.-.—.=.e=.. ...—...=.=...-.......-1......-.=.=_.u.=..r(z)

by 4(25) and 4(26)

= t(Z) by 3(l3)

By the same argument we can Show that (g.8yf)(z) = t(z).
Therefore by 2(41) w s lPQ(9).
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If w is represented by 4(30), then by the same argument we

Can Sh0W that (9-Gxf)(Z) = t(Z):(g.Syf)(z). Therefore
elPD(g). Thus the theorem is proved.. .1 .Now consider H as the domain. Let g be a

1.. , . l m 1generating vector in H . suppose that t 3 H "5> ¢ ano

lPHl(g(l)). The boundary of H1 is the set of
limiting points,
belongs to

mlim (q
InH7“9iLm

x,qny) ie, the curves

(X90): (O9Y)9 (xym) and (m9Y)r

From 4(5). 4(6).4 G9; 4(2o), 4(25), 4(26), 4(27) and 4(2e)
we obtain

00

gl(x»v)[(l«q)x :2: qjpl(qjx.y) + fl(09v)]
i=0

00

IIw(x,y)

+ g2(x,y)[(lmq)x :5: qjp2(qjx,v) + f2(O,y)] 4(33)
j=0

W(XaY) = gl(X9Y)[(l“q)X E51 q”jpl(q”jX9v)J=l
00

+ fl(~»Y)] + g2(X9v) [(l=q)x Eii q"3p2(q"3XsV)J:

+ f2<oo,«.r>1 4<s4>
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GO

w<x.y> -.= gl(x.y)[(l-q)iv E3 q3'p3(x.q5y) + fl(x.0)]
:1-=0

%

+ 92(x.v)[(1—q)iv  qjp4(x.qjv)g + f2(><.0)] 4(35)
j=O

00

w<x.y> 2 gl<x.y>[<1-qniy ‘£1 q"5p3<x,q'"3'y> + fl(x.===»)]
j=l

co

+ g2<x.y)[<1-qm E15 q'3p4(x.q"3y> + r2(x.~)1 ms)
j-..:l

Series 4(33) and 4(35) converges when pl(qjx,y), p2(qjx,y),
p3(x,q3y) and p4(x,q3y) are of order O(R"3) where R > q.
Series 4(34) and 4(36) converges when pl(q"3x,y), p2(q'3x,y),

p3(x,q"jy) and p4(x,q"jy) are of order 0(Rj) where O < R < q.

Theorem 4L§)

Let g be a generating vector in H1 and g(l) be a
<1’).successor of g. Suppose that t is an element of lPHl(g

w is an element of G.F(D), and w is known on the curves
X = O, y = O, X = w, y = m. If w(x,y) exists in H1 and is
represented by 4(33), 4(34), 4(35) or 4(36), then w is an

element of lPHl(g).
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Proof

Suppose t e lPHl(g(l)) and w is represented by 4(33),Take m
fl(XnY) = (l“q)X :5: qjpl(qjx,y) + f1(O,y)

i=0

f2(><.\/) == (l-q)x Z q‘jp2(qjx,y) + f2(O,y)
:i--=0

9xfl(x.v) ={[(l--CUXE qjpl(qjx.Y)] - [(1-q)qx% J.=__O

FEE: qjPl(qj+lX,Y)]}wTf%a7§ by 2(l6)
3"-=0

( since SXfl(O,y) = 0)

. _ .1 ' ' ~*~ ' 1 °19-: -  q‘]Pl(C1J><:Y) - 2?... 613+ pl(q3+lx.y)3:0 5:0
=-’  C1JPl(qj><:V) -  qjpfiqjxav) + q°pl(q°><.v)j=O j=0
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By the same argument it follows that

eXf2<x.y> = p2<x.y>'

Therefore

I1(9~9Xf)(z) gl(z)pl(z) + 92(z)p2(z)

t(z) by 4(25) and 4(26)

Similarly we can show that (g.9yf)(z) = t(z).
ie,w belongs to lPb(g)_ Similar argumeqt.follows for other
equations.

Thus the theorem is proved.

Examgle 4(;)

Take gl = 1, g2 = ix, t = x. Then g = [gl g2]
is a generating vector in H1 and t e: lPHl(g(l))
where g(l) = [mi X]. (In a later chapter we will show

that if g = [gl g2] is a generating vector then
9 9

g(l) = [ T; -$3 ] is a successor of g).
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From 4(33) we obtain,
00

q_, . “. m.XX .
[(l~q)x fi. q3( $3%%fi§%*“)(QJX:Y)

J=0
W(X9Y)

+ fl(O,y)] + O + ix f2(O,y)

= (l~q)x EEZ (qj)qjx + fl(0.y) + ix f2(O,v)
i=0

2

2 (1" 2* + fl(O,y) + ix f2(O,y) 4(37)l*q

(since 2 q23 -  )j=o 1”“
Similarly from 4(34) we obtain,

00. . ‘ u - J
w(x.y) = 0 + fl(x.0) + 1x(l—q)1y :3: q3-~5—5)(X.q Y)421x

3'-—-0

+ ix f2(x,O)

= fl(x,O) + ix(1r=q)iy  (qj)  + ix f2(x,O)
3:0

ll ixy + fl(x,O) + ix f2(x,O) 4(38)
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Thus we obtain

_(.l-.:E1.l?£ + fl(O,y) + ix f2(O,y)
l~q2

w(><9y)

ll ixy + fl(x,O) + ix f2(O,y)

= (h£:1 )x2 + ixy + k (2) + ix k (2)lmqg l 2
1']

2

(T§§) + ixy + kl(z) + ix k2(z)

where kl and k2 are real valued discrete functions quperiodic
both in x and y.

Therefore it follows that

l—q 2 . .W(X Y) = ( —~= )x + 1x + k 2) + 1x k z)9 l_q2 V l( 2(
is an element of lPHl(g) where g = [1 ix]

For we have

,2 _, _r .
e;[(T$5) + kl(Z)J + ix j 9§[v + k2(z)]rX . . . ._—_I .5. u=.:r&=a-as 4+ .=.  :3 ‘J ""G%(l+q) lxezy, since kl and 2 are q pe;1od1c

in x and y.
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.. -1. W25... ._  *~ -2, ,.l3<. \ ,3~ 2 [ex l+q) @Y(l+q)J 2 [eX(/) ey(y)]

by 2(l9)

-1 (_l+Ci.)><  .1 _
-- 3‘ [(«f~1,l)=~~ + (la) (~ 1-)] — 0

3 - .§.<1l.1;t.i.9.n..ett_.<2f..,a,n_,a.e§_l_o,;1u.e.e_o.f, . .a.  ,5..Y.$J":£’3_‘

Beltrami's system of first order partial.differential
equation is of the form

U = evx + yvy 4(39)
~U 2 aVX + BVY 4(40)

where U, V are real valued functions of 2.

Let us consider a system of the form

Gxfl(z) = p(z)8Xf2(z) + i0(z)8yf2(z) 4(4l)

i6yfl(z) = md(Z)@Xf2(Z) + ip(z)8yf2(z) 4(42)

6, p are real, 0 > O, O + ip eCHUJ), 4(43)
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Take v = [l i(o + in)] 4(43)
Im[i(o + ip)] > 0

Therefore V is a generating vector in D. By

theorem 2(7) fl + if2 is an element of 2PD(v) and by remark
2(4), f satisfies the equation

(v.@§f)(z) = 0 where f = [fl f2]

ie., (v.8Xf)(z) = (v.9yf)(z)

Now consider the system

(v.6Xf)(z) = t(z) 4(44)
(v.®Yf)(z) = t(z) 4(45)

where t 2 D-*+> ¢

Let D be a rectangular domain. Suppose that1 \ +1
m+3&YJand (x,qn Y)belong to the boundary of D and fl, f2(q

are known at these points. Then if h(x,y) 2 fl(x,y) + if2(x,y)
exists in D, by 4(l9), 4(25), 4(26), 4(44) and 4(45) we have
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U1

ntxm = [(1-q>x ‘:2 q3sl<q5x,y> + f1<q“"“lxsv>J
i=0

In. _~ ' ‘ , '1 ,
+ 1[(1mq)x 2:‘ qJs2(q3x,y) + :2(qmT x,y)] 4(4o)

3:0

where

51 5 :$lg;:&HJi;:flJ¥i;:;HLLE ] : (g+iH)(%§£) 4(47)-2 id

52 = §§§g3 since gl = 1 and g2 = i(6+ip) 4(48)

Similarly from 4(25), 4(27), 4(28), 4(44) and 4(45) we obtain

I1

h(x,y) = [(l~q)iY ES: qjS3(x.qjy) + fl(x,qn+ly)]
j=0

D

+ i[(l—q)iy E.‘ qjS4(X,qjv) + f2<x.q“*1y>J 4(49)
j=0

where

_ wfictult + £®@flgZ§s3_— [ H216 v 1 4(5o)
and S4 3 :1; t 4(5l)
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Iheoreqflfigg)

Suppose that v : [1 i(G + ip)],
G,p 5 :H(D), U > O,be a generating vector in D and v(l) is

a successor of v in D. Let t be an element of lPQ(v(l)).
If h is represented by 4(46) or 4(49), then h is an element

of 2PD(v).

£299:

In 4(46) take

m

rl(x,y> = (max 2: qJsl<qJ'x,y> + fl<q‘“’*‘1><,y>
3-——~o

m

f2(x.y) = (lwq)x:EE: qjs2(qjX,Y) + f2(qm+lX,Y)
i=0

We can easily show that

8Xfl(X9Y) : 5l(X9y)
and

8Xf2(x,v) = s2(x9y)

Now,

(v.8Xf)(x9y) = 8Xfl(x,y) + i[U(x.v) + iH(XaY)]9Xf2(X:Y)
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ll 5l(X9V) + i[G(X9y) + iW(X9Y)]32(X9Y)

t(x,Y) by 4(47) and 4(48)

ie., (v.@Xf)(z) = t(z)

Similarly In can show that

(v.8yf)(z) = t(z)

Hence the theorem is proved.

Now consider Hl as the domain. If h(x,y) exists
in H1 and h(X9Y) on the limiting boundaries are known, then
we obtain

03

n<x,y> = [<1uq>x gg; q3sl<q3x,y> + fl<o,y>1
j=0

+ i[(l~q)x §£g q3s2(qjx.y) + f2(O9y)] 4(52)J:

or h(x,Y) = [(l—q)x EE: q"jsl(q"jx,v) + fl(w,v)]
J=l

00

+ :[<1mq>x :Ei q“3s2<q"3x,y> + f9(“,Y)] 4(s3>J= "
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3

‘anon-cyan.

or h(X9Y) = [(l~q)iY "“; q353(X,qjV) + f1(X,0)]
j 0
I
ll

00

+ i[(l=q)iy EE: qjs4(X,qjy) + f2(x,O)] 4(54)
j=0

or h(x,v) = [(lwq)iv q“3s3(x.q”3v) + fl(x.w)]

+ i[(l q)iY ES: q”3s4(x.q”3Y) + f2(x,w)] 4(55)
j=l

according to the boundary conditions.

Theorem 4L5)

Let v = [1 i(G+ip)],<3,px eCH(Hl) c > o, be a
(1) be “'5generating vector in H1 and V a successor of v in H1.
1( ))°Let t be an element of lPPl(v If h is represented by

4(52), 4(53), 4(54), 4(55) then h is an element of 2PHl(v).

Proof is exactly similar to the proof of
theorem of 4(4).
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Takin" v = l v = ix t = X we can easil show9 l 9 2 9
2

h(x,y) : -Tf§§7 + iy + k(z)

(where k(z) is an element of nG(X,Y)) is an element of
2PHl(V)9 V 2 [V1 V2}­



CHAPTER 5

PERIODICITY PROBLEM FOR DISCRETE

PSEUDOANALYTIC FUNCTIONS

we discuss concepts like successors and predem
cessors of generating vectors, generating sequences, periodi»
city of the generating sequences. t is shown that if

w 5 lPD(g) is not a gmpseudowconstant then g can be embedded
in a generating sequence of minimal period one if and only if
the first component of the generating vector is equal to the
product of the second component and a function of y alone.
Bars [1] has not discussed the periodicity problem in detail.
But in l95é Protter [1] studied the problem extensively.
He has established sufficient conditions for a generating
pair to be embedded in a generating sequence with prescribed
minimal periods or a nonmperiodic generating sequence. It is
established in the discrete case that any generating vector
can be embedded in a generating sequence of minimal period 2.

This shows that if w is an element of lPD(g) then we can
always find a successor V of generating vector g such that

8w 8 lPD(v) and the discrete vwderivative of g8w is ang

element of lPD(g).

1° .§ES£9§£2¥5 _E?ed§£;55 rs QQqr99n@rat_Qfl39QESfl$S§fikvfhf‘ 0%:-‘:0 ='l—'.=D: .aC.'.—'r-'—'.—

Suppose that w is an element of lPD(g).

Further if the gnderivative is an element of lPD(g(l)) where

ll3
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(l)g is a generating vector in D then g (1) is called a"‘ -I ‘ .-.4 f‘successor or g ane e is called a preeecessor or g .J

A sequence of generating vectors jg(V)J,v = O,:l; 12,...
-.'. / ‘+118 called a generating sequence if g‘V 1) 18 a successor(0)

of g(V). If g :,g, we say that g is embedded in {g(VE}.

Equixalsqt generating xestoas-.-_ \- .- _‘_:'l-_'..—4'- - ‘I

Let g be a generating vector in a discrete
domain D.

Take 0 = [01 e2] 5(1)
where 0102) = algl(z) + a2g2(z) 5(2)

02(2) = blgl(z) + b2g2(z) 5(3)
where a., b., j = 1,2 are real3 J

and al a2 > 0 5(4)
.b1 b2;

.Iheorem Sfil)

Let g be a generating vector in a discrete

domain D and w be an element of lPD(g). Then w is also an
element of lPD(o) where the components of o are given by
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5(2) and 5(3). (we call such generating vectors equivalent
generating vectors).

Proof
I.a€It=:J'=IO-—-'0

Suppose w = g.f 5 133(9). Then by 2(46)

ie., gl(z)®Efl(z) + g2(z) G§f2(z) = 0 5(5)

From 5(2) and 5(3) we obtain

a202(z) —b2cL(%).(z) — -—II

and

92(2) 2 "EH55 ab a *fl#“

Substituting in 5(5) we obtain

~b,G (z) + a 6 (z)
1 2 2__1)eEfl(Z)‘bie2 —b2al

bl:l(e)_ga:o2(§))eEf2(Z)+ ( al 2 2 l I O (fl /\ O\ \...t



ll7

By 5(4) it follows that Im(E1 02) > 0.

Therefore [cl 62] forms a generating vector.

Now,

ol(z)8§f(l)(z) + o2(z)8Ef(2)(z)

aw]-ab?
= 61(2) 82 [“r“f1(Z) + k

a2 ‘31
+ a2<z> SE [Emfl<z) - Emf2(z)]

where k = bla2 ub2al

2 l
——- [®Efl(z)] E 3b 0 (Z: ~+~a2G2(z-11

- >
+ [9§f2(2)][ blglgigk %*32(Z J = o by 5(6)

Hence the theorem is proved.

j[_eorem 5(2)

Let g = [gl g2] be a generating vector in a discrete
domain D. If w is an element of lPD(g), then

9 9
(1) = [-T$ fg ] is a successor of g.
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E.£.2.9.f.

Suppose that w 5 lPD(g). Then by 2(40) and
2(43) we have,

gGw(z) = gl(z)8Yfl(z) + g2(z)Gyf2(z)

= Cg§l’(z)] ieyfl(Z) + [g§l)(z)]ieyf2(z) 5(7)

where g§l) 2 %£, gél) =‘§% .

Im(;EI3 gé})) = Im(E1 g2) > 0

Therefore

9 9
g(l) : f£ 5%] forms a generating vector. 5(8)

Take . . , 1) 1)
f§l) 2 l®Yfl, fél) = 18Yf2, then [f£ fé ]‘e F(D).

Therefore by theorem 2(7) and equation 5(7) we have

8; [g9w(z)] = % [f£l)(qX,v)9xg§l)(z)

—f§l)(x,qv)8Yg£l)(z) + f£l)(qx,v)8Xg§l)(z)

~f§l)<x,qy>eyg§l’<z)J
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10., 8w = g(l)f)l) + g(l)f)l) satisfies an equation of the9 l l 2 2
form 2(6l). Therefore by theorem 2(8) c®w(z) is anJ

element of lPD(g(l)).

Hence the theorem is proved. By theorem 5(l) any
. g(l)generating vector equivalent to is also a successor of g.

2. Pe_rio_d of _a generati_n_gfis_e,Llg_err;g;g

.. "I
A generating sequence Jg(VJ} is said to have‘t’ 1’

g(V+”) is equivalent to g(V)period p > 0 if and is said to
be nonmperiodic if no such p exists. The minimal period
of a generating sequence is the smallest period of a
generating peguence.

Theorem 5(3)

Suppose that D is a discrete domain. Let

g = [gl g2] be a generating vector in D. Let w 2: G.F(D)
be an element of lPD(g)-which is not a gnpseudoconstant.
Then g is its own successor (io., has minimal period one)

if and only if gl(z) : g2(z) p(y) where p is a function
of y alone.
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Suppose that f e F(D), g 5 G(D) and w 5 lPD(g),
where w is not a gmpseudoconstant. Then by 2(39), 2(43) and
2(46) we have,

SW ( z )Ii<g.eXf>(z>

(9-9§f)(Z) = 0

ie., gl(z)@Efl(z) + g2(z)9§f2(z) = o

gl(z
2

)

.ie., g2(z) [--—Ti-)- 82-fl(z) + GE-f2(z)] 2 09

But by 2(36), g2 % 0.

Therefore

91(2) 8 f )E ]_(Z + 9-i-f2(Z) :: 0

Taking q=dcrivative with respect to x we have

9 91(2)
X[ 6-r:(-E->872-fl(_z) + ea-432(2)] = 0



l2l. < J < >
ie., {§X[e§fl<z>3}. §§T§) + [9§fl(qx9v)]8X[~§§(§) J

+ GX[e§f2(z)] = o by 2(l6) 5(9)

Suppose that g is its own successor, then from the
definition of successor it follows that the discrete

gudorivativc gew is an element of lPD(g). Hence by 2(46)

[g.8§(8Xf)}(z) = o

19*? gl(Z)e§ [8Xfl(Z)] + g2(Z)e§ [eXf2(Z)] : 0

:e., gl(z)eX[e§fl(z)J + g2(z)eX[©§f2(z)] = o( ) ‘
ie., g2(z) {*§%é? SX[SEfl(z)] + @X[®Ef2(z)]} = O

M-I

ie., giég) eX[s§fl(z)] + 9X[8Ef2(z)] = 0 5(1o)

(since g2 # 0)

Substituting in 5(9) we have

( )
@§fl(qx,v)®k[ gifé) J = 0
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But it is assumed that w is not a gmpseudoconstant.
Therefore from Theorem 2(2) it follows that f is a.reall
valued discrete function which is not qmperiodic both in
x and y.

Hence

9§fl(qx.v) % 0

Therefore
91(2)

GX[a-E-(*-5)] = O

. 91(2)
10-9'aEf§7 = P(Y)

ie-, 91(2) = 92(z)p(Y) 5(ll)
Conversely suppose that w is a non gmpseudoconstant element

of lPD(g) and gl(z) : g2(z)p(y). Then by 2(46)

(g.8Ef)(z) = 0 where g = [g2p g2]

ie.,  +  = 0
ie-, g2(z)[p(y)9§fl(z) + 8§f2(z)] = 0

ie., p(y)8§fl(z) + 8Ef2(z) = 0 since g2 # O 5(l2)
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We have to Show that g8w ie., (g.@Xf) is an element of

lPD(g).

Now,

[g»®§(eXf)J(z) = g2<z>p<y>e§ekfl<z)

+ g2(z)8E8Xf2(z)

H g2(Z)[P(Y)e§9Xfl(Z) + 9§9Xf2(Z)]

= g2(z)eX[p(y)e§fl(z) + e§f2(z)J

= O by 5(l2).

Therefore by theorem 2(1), g6we:_lQD(g). ie., g is its own
successor. Thus the theorem is proved.

Note Sfli)

Suppose that g is an element of G(D) and w a
gmpseudoconstant. Then g is its own successor (ie., it has
minimal period one). Hence it follows that any generating
vector can be embedded in a generating sequence of minimal
period one.



[heorgg_5§q)

Let g be a generating vector in H1 with
components

where a > O, b > O are elements oPj{(Hl). Suppose that

w is an element of lPH1(g). Then g can be embedded in a
generating sequence of minimal period 2.

Proof

Suppose that w e lPHl(g). Then by 2(39), 2(40),
2(43) and 2(46) we have

(g.®Xf)(z) ll (g.9Yf)(z) = g8w(z) 5(l3)
and

o, f 5 F(Hl) 5(14)(9-e§f)(Z)

ie.,
gl(z)GEfl(z) + g2(z)®Ef2(z) = 0

But gl(z) = S-fig, g2(z) = i §%%§. Therefore we have

g-{-f;§eEfl(z) + 1 -§«§1§§e.Ef2(z) = o
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ie., g-§-§§[eXfl(z) ==-@Yfl(z)] + 1 §§—y5§[eXf2(z) ---Gyf2(z)] = 0

O“ *< (‘O f'\ l\3 O
\.-/

Equating rgal and imaginary parts to zero we have,

) b \)S‘  -mi 3"  H O
and

a a - e P ,) _
b y)1 ©y1l(z) + a X 8Xf2(z) _ O

by.2(l6), 2(l7) and since f f2 are real valued.1’

ie., 3%%gGXfl(z) = i§%%g9Yf2(z)

and

i%~§;8yfl(z) = » §%§gexf2(z)

ie., <a<x>)2eXfl<z> = :(b<y)>2eyf2<z> s<1s>

and

:(a<x>)2eyfl<z> = ~(b<y))2eXf2<z> 5<1s>

‘From 2(43) and 2(47) we have

g®w(z)
I! (9-®Xf)(z)

= gl(z)®Xfl(z) + 92(Z)@xf2(z)
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.§?.,.?£) -  M) .
b%y)®Xfl(z) » 15%§)oXr2(z)l l 1 . ,

Take g§ ) = E §ST§7~, gé ) = 1 a(x) o(y)

Then g(l) = [g£l) g£l)] is a generating vector in H1,(
since Im(g£l) gél)) 2 l > 09

Therefore we can write
a eef < )

g8W(Z) = [<a<x>)2eXfl<z>Jg§l) + L«54%«52Jg§l)
(a(x))

Taking the partial quderivetive of 5(l5) with
respect to X we have

8X[(a(x))2eXfl(z)] If
8X[i(b(v))2eYf2(z)]

ll
i(b(Y))2®X[eYf2(z)]

i(b(y))29y[@Xf2(z)]

(since GXSY = GYGX )

= i(b(y))%I‘ey[I£?:X#f#2:£i;]..!) (am )2
(a(x))‘ J
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8 f ( )
=-' i{@y[“‘x**2"”":2] [a(><)b(y)]2(a(x))

1 9 , . exf2(Z)
er, gm My) eX£ca<x>) ®Xrl(z)] = la(X)b(Y)9YE‘“‘(‘*$‘3fé' Ja x

1 2 . eXf2(Z)
or,.3T§TmET§7 8X[(a(x)) ®Xfl(z)] —1a(x)b(y)Gy[:~?—::é ]a x

—_— 0 5(17)
5(l6) can be written as

3:.E.1..E.E.’ _ §>5.f.2.‘:’2 ‘ "' 2(b(v)) (a(x))

'8 f ( 8 f ( )
ex [ l...JL_l..=.; ._._ “ex [..2S._2.,.:E](b(Y)) (a(x))

ie. , *~**'~*-‘Ll ' i@Y[8Xfl(Z)] -_-_- ..@X[.e..3<......g£.:.:(b(Y)) (a(x))
, 1 . 2 I 9xf2(Z);e., -~- - 18y[(a(x)) 8X;l(z)] = =8X[ 2][am b(y)]2 (am)
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. l . , V 2 '1 , , eXf2(z)
10-» ‘a*(;:)*“}3'G-,‘j' l9‘I,[(d(«~)) @Xfl(Z).r = ~a(>~)o(Y)9X[(a(X))2]

. l . » 2 , exf2(z)
3.0. ,  1@Y[(a(><)) 9Xfl(./_.)] + a(x)b(y)@X[-6-3==(==>{==)-=)-2 .= 0 5(l8)
Multiplying 5(l8) by i and adding to 5(l7) we obtain,

'gf§7Lg(y7 9X[(a(X))29Xfl(Z)] =a(X)b(Y) i9yf“£”““‘

+ i2{9y[ (a ( X) )'28Xfl( Z )

+ ia(x)b(y)9X[E::2i:é](a(x))
= 0

ie., —ET;)w£5~m- 8-,Z[(a(x))28xfl(z)]

+ ia(x)b(y)8E[E§:g£:)]

f2(z)
10-, g(l)(z)®§ [(a(x))2®Xfl(z)] + g(l)(z)®§ [E5-“- = Ol 2 (a(x))2
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\

10., g§l)(z)®§f§l’(z) + q£l)(z)G fél)(7) = O

whe;.

1.. 1 . 2w J.‘ 9 f2
15 ) : (a(x)) Uxil, fél) 2 ~K=-=w

<a<x>)2

(19).Then by theorem 2(1) g6w(z) is an element of lPHl(g

By 2(47) we have,

(l)9[g9W(Z)J = (9(l)—9Xf(l))(Z)

9 = [g§l) g§;)]

But 9l(l)(z) = 3-(~X=)=%-G33 g(2l)(z) = ia(x)b(v),

" ()
f§l)(z) = (a(x))29Xfl(z) and fél)(z) = %§§fi?§2

Therefore the right hand side of the above equation is
equal to

*~«¥m««4 [(a(x>>2e fl<z>1 + ia(x)b(v)@X[:5:3£:)]a(X)b(Y) X X (a(X))



_%lEx‘£(a(x))f"®Xfl(z)£l"} ax)_ 2 a )~ (a(x))

" 2 8 f (2)I . \ _;;2;,, 1+ i(a(A)) 8X[ 9]L. (<'J(X))_ .4‘

eX[(a<x))2eXfl(g)]

(a(x))2
Take ff2)(z)

(a<x>>2ex[w-==eXf2(Z)J
(2)f (2)2 (am)?[I

Then f(2) = [f£2)f£2)]' e F(Hl)

Therefore the right hand side of the above equation is
equal to 2 2

91 £5 ) T 92 fé )

Thus we have to Show that gl f£2)+ g? f§2) is an element

of lPHl(g) where g I I
F"-I LC)

I--'
Q [0 |_

130
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NOW, ( )«i8 8 f 2 ~ ”°@ f (z)"x l l 1 I
@Y[u4,4JL,,E§] :: 9 %eX[u#QL--i::h_<b(v)) (b(y))4

Y exf2(Z)~
~ By: XD~««wm“2s1 (am) J

X! 21 (a(X)) 3

Multiplying both sides by i(b(y))2 we get0 ”. ) F f
i(b(y))‘9Y[~}eXgXfl§Z J = i(b(V))A9X[EiE£-gii)(b(y))“ (a(X))

i(b(y))‘§yeXf2(z)]8 I._-£Ik'1'- :'I=:u.L=&:-.I..Dl:_-0'-- a. .. 91;. E; -Iu.::II'.n=t:'.$l1aX 0
(a(x))

ll

~ . 2 ’
_ J .9.>s£.i5f?, 93.LE.z,i2.£:).1}­

t% (a(X))0 .6 a(x))‘G 3
:=Ex’{ 3JlL-.m_*“%:£@::1 by 5(15)<a<x>>2 5(j_9)
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But the left hand side of 5(19) is equal to

2 f8v[~i9 f (z)]
jflMyn¢31mgmmL$WfleY . <b(y>>9 J

19., ._._ i(b(y))2@y ..¢,e.§~..e-_.E. @X[.b((yl)2eXf._2_.(.:)]'} by 5(l6)e<b<y>)2 <a<x))2

f ( )'5(2O)
<a<x>)2 J

ie., H

:(b<y>)2ey{éX£

Equating 5(l9) and 5(20) we obtain

2 1­
8X {‘extga(x)) eX{;£::} = i(b(y))2ey.{eX[8Xf2(z:]}'(a(x)) J

Multiplying both sides by (a(x))2 we obtainV 2  ()1.
(a(X))2e Eé£€3£*)) 9xf1(Z)iL= i[a(X) b(Y)]2ey%éX[§§:§mi 1%X L (a(x))2 (a(X))2'

e f < > %
= i(b(y))2eY-f(a(X))2 exbsiééiijfl



133F 2 “ r »a 1 e [(a(x)) ex (2)1! - , I 2 9 13(2)
ie_, g(§gQ£fi m£mmfi_wmm-;E£;~uh§$ §%é%) ey&§a(X)) 9X[m§u,.12]%L (a(x))” J (a(X)) g

5(21)
By a similar argument we can show that

!Fe [<a<:<>>2e r (2)1!  2 e f (2).  ' /‘ ....:...—=.~.._ .,,, _,,__.,..,.;...4=..._=..—...;L=.=.=.--_-x_-. :: —  ) -  X 2

2$3)ley_i¥_ ,4. : . % a%%)SX,%ka(x)) 8X[(a(X))2].
5(22)

Multiplying 5(22) by i and adding to 5(2l) we obtain,
1"‘

a x)e [E3§(a€fl32GXfL£i{i} = _ ib( ) 9: ‘¥(a(x))2e [E£:%£:)%,. grkB37) 2 (a(x))2 ___.i 1. X (a(x))2.,
by 2(l8)

19,,  {§x£§:L§>2‘BXf;,(z?j_]rY Z - (am)? ‘J

. f e f (z);L+ épk ) 6? j (a(x))2GXf~£~%m~2J_ = 0~ (a(x)) J

ie., gl(z)GEf£2)(z) + g2(z)®§fé2)(z) : 0

ie., (g.GEf(2))(z) : O9
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Therefore by theorem 2(1) g.f(2) is an element

of lPH1(g). Thus g can be embedded in a generating sequence
of minimal period 2.

Rmgkifl)
From the proof of the above theorem, it is clear

that there may exist successors which are not equivalent to

3i 3%]i i °
iheorem 5(5)

Let g be an element of G(Hl) with components gl, g2
and w an element of lPHl(g) which is not a g—pseudoconstant.

Then g can be embedded in a generating sequence of minimal
period 2. (In other words, a successor V of generating vector g

can be found such that the discrete vuderivative of gsw is an
element of lPHl(g).)

Proof

Suppose that 9 = [91 92] e G(Hl), W e lPH1(g)

which is not a gupseudoconstant. Then by theorem 5(2),
9 9 w

g(l) = [f£ -fgj is a successor of g.



l35

9 g ‘Q '
Now take V = f§£ Tg] ! l O]

' o 211

= [igl igg]

But = l > 0.
Therefore by theorem 5(1), v is a generating vector equivalent

to g(l). Hence g8w e lPH1(v9. ie., V is also a successor of g.

Now by theorem 5(2), [g1 g2] is a successor of v.

Thus it follows that the discrete vuderivative of

gew e lPH1(g). This proves that g can be embedded in a
generating sequence of minimal period 2.

Note 5(2)-_—DOC-Qjjjié

From theorems 5(3) and 5(5) it is clear that if

gl(z) = p(y)_g2(z), then gfiw e lBD(g) and for all other
generating vectors if w is a non g-pseudoconstant element

of lBD(g) then we can always find a successor v of g

such that the discrete v~derivative of gew is an element



CHAPTER 6

SECOND GENERATION OF DISCRETE PSEUDOANALYTIC

FUNCTIONS OF THE FIRST KIND

If w is an element of lPD(g), W2, W3, aw, aw+B etc.
where a, 5 are complex constants do not in general belong to

lPD(g). In this chapter we discuss sufficient conditions for
the above functions to be an element of lPD(g). Denoting
aw+5 by w* and taking the powers (w*)2 and (w*)3 we can find

some sufficient conditions for a quadratic and a cubic poly»

nomial to be an element of lPD(g). We believe that under
th

certain conditions on fl,f2,a,B etc. an n degree polynomial
will become an element of lPD(g).

1» §.:a.%i.2.i_e_n_f.t...e9,n.9i.t.i.o_n s f 01: rib e noivs;4.;.<2.f__a.._<2..i1:.:;.s.1t.s.

HfieudoaaaLxiislignsiiealieleslgissgstslessudo—
aaslxiielaitnltsslaaesngsneaeiinslxggies

Let g be a generating vector in a discrete domain D

and w a nonuzero element of lPD(g). _ I
Let w = glfl + g2f2, [gl g2] 8 G(D), [fl f2] 5 F(D)

By squaring we get,

2 2 2 2 32w = gl fl + g2 i2 + 2gl g2 fl f2

22 2 + glflf2) 6(1)= 91(91 fl + 92 fl f2) + 92(92 f

136
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The expressions glfi + g2flf2 and g2fg + glflf2 are

real when Im(glf§ + g2flf2) = Im(g2f§ + glflf2) = 0

ie., when Im(glfl + g2f2) = 0, since fl, f2 are real.

Take gl = al + ibl, g2 = a2 + ib2, then Im(glfl + g2f2) = 0

when b f + bgfg = O.l l _f —bie., when  =  6(2)2 1
Choose fl, f2 such that they satisfy relation 6(2).

2
91f1 + 92f1f2I!Take o

a f2 + a2f by 6(2)1 1 1f2
Similarly take

2
” 92f2 + 91f1f2

2
a2f2 + a1f1f2 by 6(2)ll

Now, gleio + g28En 2 glG§[fl(alfl + a2f2)]
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2 gl(@Efl)(alfl + a2f2) + g2(SEf2)(alfl + a2f2)

9

+ §$[fl(qx,y)®X(alfl + a2f2) ~fl(x,qy)ey(alfl + a2f2)]g .
+ §g[f2(qx,y)eX(alfl + a2f2) uf2(x,qy)@y(alfl + a2f2)]

by 2(25) 6(3)
f ~ 0But w e lPD(g). Therefore glegfl + g26 2 _E

Thus
0_..:.;. VglGEd + g2G§n _ 2 [fl(qpsY)8X(alfl + a2f2)

— fl(x,qy)Gy(alfl + a2f2)]

92 _
+ §M[f2(qx,y)eX(alfl + a2f2)

u f2(x,qy)8y(alfl + a2f2)]

= ‘%[e (alfl + a2f2)][glfl (qxay)

+ g2f2(qXrV)] " %[eY(alfl + a2f2)J

[9lfl(x.qY) + g2f2(x.qv)] 6(4)
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1, f2 such
that the right hand side of 6(4) vanishes.

§..«:=1.§9_.£.l.J

Suppose 9X(alfl + a2f2)

Then a f + as ' Gm e ' 4° ' X1 l Afg l8 ; psrloelc 1n

ll @Y(alfl + a2f2) = O

and y. ie.,

alfl + a2f2 = p where p is a real element of nq(x,y).

Now, by 6(2) we have

ie., fl Im gl + f2 Im g2 = 0 6(6)
Prom 6(5) and 6(6) we get

(‘R1 gl Rl g2 .fl] Ifipfl6 5 = 6(7)
;*Im gl Im g2‘ Lrzj ."QJ

“M gl R1 9,26“But is nonmsingular as for the generating
glm gl Im g2j

vector g, Im(§1 g2) > O.
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From 6(7) we get

Ffl" "hi gl R1 gif p
H

hf2 Im gl Im g2} fHO

Thus it follows that for an arbitrary generating vector g,

w2 5 lPD(g) if fl, f2 satisfy the above relation.

Case 2)

Suppose fl, f2 are such that

gl(x.v)fl(qx.y) + g2(x,Y)f2(qx;v)

= gl(XaY)fl(X9qY) + g2(XsY)f2(X:qY) = O

Erl   .f2(qX9Yfl w-gl(X2y)“‘{ [-0­ie.  " 1 .:
E-J_(~-xlqy) f2(X!qY_)j .Lg2(X:Y)J: -0.

This is valid for all g if the matrix

FEl(§§:Y) f2(qx,y3W
is singular

Jilcxfqy) f2(X:q¥Zd
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fl(qx.v) f2(qx,V) 2- _n __*,_ _ _w_,#,__ a (say) 6(8)
19" fiTk,qv) “ f2Ck,qv)

a can be a function of X and y. If fl and f2 are related
by the following relation:

f2(x,Y) = a(xv)fl(x,v) 6(9)
then 6(8) is satisfiede

For in that case

f2(qx,v) a(qxv)fl(qx,v)
f2(x.qv) a(qxv)fl(x.qv)

fl(qX9Y)
" fliYF3F)

Thus it follows that if fl and f2 are related by 6(8) andf b 2
mi =-wg then w 5 lPD(g).f2 bl
.Qe§9lL%)

Also

®X(alfl + a2f2) gl(x,v)fl(x,qv) + g2(x,v)f2(X.qY)
' *   L’) “ gl’(>‘E',s7)‘f‘l'G;1'f&7‘“¥"g2(>?SD’f2(q>?,y)

6(lO)
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Suppose that

®X(alfl + a2f2) = gl(x.y)fl(x.qy)

+ g2(X9Y)f2(X:qY) = 0 6(ll)

al(x,v)fl(x,qy) + a2(x,v)f2(x,qv) = 0 6(l3)

and

bl(X:Y)fl(X9qY) + b2(X9Y)f2(X9qV) = 0 6(l4)

“al(X:Y)-~32(XsYy‘ rfl(X9qYy] F0?ieo, 3
bl(x,v)neb2(x.Yl f2(x.qy) hQ_

Now for the generating vector g, Im(§i g2) > 0. So the

—él(X!y) a2(X9Y
cannot be singular.

MPl(X9Y) b2(X9Y)....1:

In that case fl = f2 = 0. Similar result follows for the
case

eY(alfl + a2f2) = glfl(qX9Y) + g2f2(qX2Y) = O
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Thus we see that there exists elements of lPD(g), so that
2

W 5 lPD(g).

2 - §;u.f,f.i,9.i§_n.L9.2.0.dsi;1:.i.o.n§.. f or pew to.J:.>.e, ,.§l.!1,,.E?..3.:.E?..1P.‘€.f1.‘!f:. ,..9.1;1.E.D.L9.l

Letxn E lPD(g) and a be a complex constant.
Take  = glfl + g2f2, C: =-. 0:1 + tioc2, [fl f2]'~e F(D).

We can show that aw is not in general an element

of lPD(g).

CZW

= “191f1 + “192f2 + i(“291f1 + “292f2)

Take gl = a1 + ibl and g2 = a2 + ib2

Then,

aw = al(al + ibl)fl + al(a2 + ib2)f2

+ i[a2(al + ibl)fl + a2(a2 + ib2)f2]

= ul + ivl
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where

C
}--4

I

vi = al(blfl + b2f2) +a2(alfl + a2f2)

Therefore by 2(37) and 2(38) we can express aw as

91“1 + 92h2

where
lh =:~*nw=ww«~ [b u —a v ] andl alb2 —a2bl 2 l 2 l

lh = ~—~ [—b u + a v ]2 alb2 —a2bl l l l l

But as Im(§1 g2) > O we have alb2 —a2bl > 0

Now substituting for ul and V1 we obtain

... $;Lem__ .
hl * éEb2 —a2b '{b2[“1(a1f1 + °2f2) ““2(b1f1 + b2f2)]

— a2[al(blfl + b2f2) + a2(alfl + a2f2)]}
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—-  1 ¢ ’" a b —a b [°2a1“1f1 + a2b2“1f2 b1b2“2f1 2 2 1 1
2

—b2a2f2 —a2blalf-1 —a2b
2 2

2alf2 —ala2a2f; —a2a2;2]

l
=.- m~-m=.—2l-—=.»- [(a b —a b )0: 5alb2 -a2bl l 2 2 l l l

—(ala2 + blb2)a2fl ~(a§ + bg)a2f2]

2 2a a +b b a + bl 2 1 2 2 2= a f =( g )a f —( *_-~)a f 6(l5)l l alb2 —a2bl 2 1 alb2 —a2bl 2 2

Similarly,
l _h

2 = alb2 —a2bl ~{“b1[“1(a1f1 + 8252) "“2(b1f1 * b2f2)3

+ al[al(blfl + b2f2) + a2(alfl + a2f2)l}

l= fl [—a b a f —b a a falb2 —a2bl l l l l l 2 l
2,

2 +bla2fl

2
+ blb2a2f2 + alblalfl + alb2alf2 + ala2fl

+ ala2a2f2]
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_2 _l » V
élb2 _a2bi.[(alo2 —a2bl)alf2 + (blb2 + ala2)a2f2

2 , ,2 3
+ (al + Ol)d2¢l]

2 2b b + a a a + b_ 1 ggm_;;;; , - 1. “_1__
“ “1f2 + ( lb2 a a2 l)°2‘2 + (alb2 —a7bl)a2*l 6(l6)

Now
a a +b bl 2 l 2

919Eh1 + 92eE“2 ‘ 919E[“1f1 “(a b —a b )“2f1l 2 2 1

a3 + bg
‘ (éiBé —aébl7“2f2]

b b +a a­l 2 l 2
* 929E[“1f2 + (albg »a2bl)a2f2

( a5 + bi ) J+ ;m~ ,f
alb2 —a2bl “2 l

But glegfl + g28Ef2 = 0 since w 5 lPD(g).

Therefore right hand side is equal to1 2 2 L‘
a % em[iKalagdi.olb2) fl —(a2 + b2);2]2 91 z alb2 —a2bl_ 2 2
+ g23.E[(Elb2,,tal:§):2 +é,.(.:,).,l.-:.4.}?_1;..)..f.£]} 6(17)1 2 n 2 l
# O in general.
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- — . 2 . ,
w(x,y) : Cw£«%)x3 + 1x y ls an element or lPD(g)lwq” ~

where g = [l 1x2], D a bounded discrete domain. But

aw (where a = i) is not an element of lPD(g).

“r.=9.9.f;

._ l-=q 3 .2W(XoY)-— Cm‘-)x + 1x'y
luq3

= [1 i><2] [(5323 )x3 Y]'
l~q3

1.» .. . 2
g'_G§\N(X9yg "-'-' 8; [(==-..3.3)X3_| '1' 1X 92-)’lnq

2 . 2
= %[X + lx (-=%L-)]
2': 0

Now . . J_.=.
1w<x,y> = 1[(-33)x3] —x2yl~q

£1 :x2J[«x2y < §§§3>x1'
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8§iw(x,y) = 8§(~x2y) + ix2GE[($:S3)x]9 lmq
£ 0

Therefore

iw j lPD(g).

We can easily show that iw 8 lPD(ig).

Now for the generating vector g, Im(§1 g2) > 0
ie'9 albz fagbl > 0.

We try to determine some sufficient conditions on a, fl, f2
such that the expression 6CF7)vanishes.

Different cases arise

_Q.a.ss__.£l-. >

Suppose that a2 = 0 ie, if a is a real constant
then aw 8 lPD(g) for all w e lPD(g).

2112.12)
Suppose that

alb2 ~a2ble—_Z[

(blb2 + ala2)f2 + (af +bf)fl].__............. _. O= 8z[



2 2
_(blb2 + ala2)fl T(a2 + b2Zfg =

i e . , __r__,_,_,.__,_,,,_ __u_

and 2 2
(b1b2 + a1a2)f2flf (aL;:}iL&:_ =2

a1b2 ‘a2b1

x and y.

Take

Y1 =

Y3 —

Then 6(18)

‘Ylfl

and

Y3f1

a1b2 "éébifl

2 2
(al +bl_)‘___ a'b

and 6(19) can be written as

”Y2f2 = P1

P2

- -M ‘one uoeriodicWhere pl, p2 are real dlscrete functl Q 1
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6(l8)

6(l9)

in

6(20)

6(2l)

6(22)



l5O

ieo 9 ­
Y3 71 £21 LP2_J ~ -­
_ _ _. .rl - ­fl “*1 ‘V2 91ie., : 6(23)f Y Y P eL 2.. L 3 l__j . 2.4

Thus for an arbitrary generating vector g and an arbitrary

complex constant a = al + ia2 if fl and f2 are given by
6(23) then aw g lPD(g).

Case 3)

Suppose that

GE[”Ylfl “Y2f2] = "92
and

9E[Y3f1 + Y1f2] 3 91

5-0-2 '%‘{ex["'Ylf_]_ "’Y2f2] "'ey[""Ylfl "“Y2f2]}

:2 —-(a2 +
and

‘5{Fk[Y3f1 * Y1f2]”9v[Y3f1 + Y1f21} 3 (a1 + ibl)
6(25)

-by 2(20).
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Equating real and imaginary parts we got four relations:

Gxfmylfl —y2f2] = »2a2 6(26)

i8Y[—ylfl —y2f2] 2 ~2b2 e(27)

GX[y3fl + ylf2] = 2al 6(28)

i®Y[y3fl + ylfg] = 2bl 6(29)

Let (qkxO,qmyO) be a point fixed in D and denote

it by (kl,k2). Taking the discrete integral of 6(26) partially
with respect to X and 6(27) partially with respect to y we
obtain

(x.k2)

“Ylfl“Y2f2 = "2 ES ,a2(t.n)d(Q;t) + ql 6(3O)
(kl,k2)

and (kl9Y)
2l"Ylfl-Y2f2 = ~ ~ $3 b2(t,n)d(q;n) + q2 6(3l)

(kl:k2)

where qlis a real discrete function qmpcriodic in x only and
q2 is a real discrete function qmperiodic in y only.



From 6(3o) and 6(3l) we get,

(x,k2)

S a2(t,n)d(q;“c) + ql
(kl,k2)

fiYlfl mY2f2 = #2

(klyy)

2 m E S; b2(t,n)d(q;n) + q2

(kl:Y)

S

(I<l,k2)

= i b2(t.n)d(q;n)

(x.k2)

_ S
(kl,k2)

a2<t,n>a<q;t> + pl

ll tl (say)

where pl is real and qwperiodic in both x and y.

1552

6(32)

By a
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at

lowg vb d(d?“)

, 1

Ingfl 1­” afgu . 5‘ ila; 5 /151m fg+ YlY3’l

)(Kl,kQ

)(%9K2'

P2,) *,oL)d(“’flal(t7
E3 )

+

U<1’K2

6(33)r)to (gay

(X7y)'f “Gt 0efl16”l 8£93315

3V33) VJO h@(3nd2) 3@(3Ffom

,tl,fl

1 * ¢  )/¥2 ‘ /t9/ 6(34
1;, f »Y3 .,’l tiV’ /12* 1

4 ';Yl ‘ tzlfl% % YkjY316‘ fgl /
<9)’PD1

aw gthe”4)o(3pi. 0“, glv336f ' f2If 1
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3- §£££$££§QE~29E§$£19R§;E¥££Hi;LiLJ§L£EL9fi-919E@nt Q:
Jfimq)wm?qa.fi2y;gmm£ag%£mma

Take a = al + ia2, B 2 Bl + iB2,

gl = a1 + ibl, g2 = a2 + ib2

Suppose that W = g.f e:lPD(g).

Now,

aw + 3 = (al + ia2)(glfl + g2f2) + (Bl + iB2)

= (al + ia2)[(al + ibl)fl + (a2 + ib2)f2]

+ (Bl + iB2)

where

u2 = alalfl + ala2f2 —a2blfl ~a2b2f2 + 51

V2 = a2alfl + a2a2f2 + alblfl + alb2f2 + 52
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rsTherefore by 2(37) and 2(38) we can express aw + p by

+ g2s2 where

__ l ' ‘V * ,' ,5
sl : a b _é~B1{b2[clalfl +ala2f2 ~c2blfl a2b2f2 + Bl]

—a2[a2alfl +a2a2f2 +alblfl + alb2f2 + 82%}

On simplification

s1 = alfl myla2fl »y2a2f2 + ml 6(35)
where

yl,y2 are given by 6(20) and 6(2l) respectively

and

m = 51b2 ”a29g
l aib2 —a2bl

By a similar argument

= alf2 + y3a2fl + yla2f2 + m2 6(36)52

where yl,y3 are given by 6(20) and 6(22) respectively

and

m 2 f;P2”b1§1
2 alb2 —aébl
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Now

91@E51 + QQGES2 = g19E[“1f1 ”Y1“2f1 “Y2“2f2 * ml]

+.g28§[alf2 + Y3a2fl + yla2f2 + m2]

= 91sE[“Y1“2f1 “Y2“2f2 + ml]

+ g28§[y3a2fl + Yla2f2 + m2] 6(37)

by 2(46)

# O in general.

We try to determine sufficient conditions on fl,f2,a,B such
that the above expression vanishes.

Suppose that B1 = B2 = a2.

Then the right hand side of 6(37) is equal toqa to 9"[”Y f =7 f -+ 0*--»-~ )J
2-{l Z l l 2 2 alb2 —a2bl

+ g 8» y f + Y f + "~ -—[ ( afbl >1}2 Z 3 l l 2 alb2 -a2bl
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Many cases arise:

1. when a2 = 0, already discussed.

2. ®§[»ylfl »y2f2 + m3] = @E[y3fl + ylfé + m4] = 0

where

m _fimbzT;2%_
3 " al 2 ~a2b

But the expressions inside the brackets are real. Therefore
the only possibility is that

i“Y1f1 "Y2f2 + m3 = P1

Ysfl + Y1f2 + m4 = P2

pl, p2 are real elements of nq(x,y).

Therefore, "Q71 —y2WT &fl7 .pl— m3
_if * m J *Y3 Y1 2. P2“ m4L. .._.L . .... L. .4

‘ "‘ 1. *, ‘__l _ _
10" jfll “Y1 “Y2 P1” m3f " J2i Y3 Y1 P2“ m4.. _ L _ __ ____
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3. 8E[y3fl + ylfg + m4] = gl, 6(38)
and

GE[uylfl —y2f2 + m3] = —g2 o(39)

Then by 2(20); P fl
g{§X[y3rl + ylf2 + m4] «ey[y3fl + ylf2 + m4%}

= al + ibl 6(40)
and

‘J6 [«y f =y f + m ] «S [uy f my f + m 1‘7L x 1 1 2 2 3 y 1 1 2 2 3%: -(82 +
Equating real and imaginary parts we obtain four relations
of the form

9X[y3fl + ylf2 + m4] = 2al 6(42)

iSy[y3fl + ylf2 + m4] = 2bl 6(43)
®X[»ylfl my2f2 + m3] = —2a2 6(44)

i8Y[~ylfl —y2f2 +m3] = ~2b2 6(45)
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Taking the diSCICbC integral of 6(42) partially with respect
Jto x and 6(43) partially with respect to y we get,

(M2)
y3fl + ylf2 + m4 = 2 E3 al(t,n)d(q;t) + q3

(z<l,z<2)

(klvy). 2
73:1 + Ylf2 + m4 = E E5 bl(t;fl)d(q§fi) + q4

<:<l,:<2>

q3, real and qmperiolic in x only, q4, real and q-periodic
in y only.

Therefore we get
(klyy)

Y3fl +  + m4 2 “i S bl(t9n)d(q;T})
(kl9k2)

+ S al(’c.n)d(q;t) + 103
(kl,k2)

2 dl (say) 6(46)
p3, real and belongs to nq(x,y).
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Similarly,
(klsy)

“Ylfl “Y2f2 + m3 = i SS b2(tafi)d(q;fi)
(kl:k2)

(Xyk2)

~ E; a2(t.n)d(q;t) + P4
(klykz)

= d2 (say) 6(47)
where p4, real and belongs to nq(x,y).

Therefore from 6(46) and 6(47) we get

F ' r’ ._''''l __fl Y3 yl.l i dl—m4_

if2. Lfli “Y2_ .d2“m3

4- §ef£leisQiisgnéiiignarfleggaseexuewisipglxegmielitgflee
an eleme t of_. - I1. ii.l.EDl9.>

We have already obtained some sufficient conditions

for aw + B, W2 to be elements of lPD(g). Now denote (aw+§)
by w*. (w*)2 will be a quadratic polynomial of w and the
sufficient conditions can be seen similarly as in the
case of w2.



l6l

Similar arguments can be used to find sufficient
"3O I i ' 3 9

conditions for wo to be an element lPD(g). (w*) will be a
cubic polynomial of w and its sufficient conditions can be

th3 . .found out as for w . Hence we infer that an n degree

polynomial is an element of lPD(g) under certain conditions.

CONCLUDING REMARKS AND SUGGESTIONS FOR FURTHER $TUDY

The theory of pseudoanalytic functions has
applications in potential theory, theory of mechanics of
continua.

Various problems in mechanics of continua lead to
a system of partial differential equations of the form

al(x)Ux = bl(y)Vy

Ha2(x)Uy «b2(y)VX

Where the coefficients are continuous, U = U(x,y), V : V(x,y)
are real valued. Bers and Gelbart [1] have found solutions
of the above system.

A.discrete analogue of the above system is

al(x)8XU = fil(y)iSyV

Ha2(x)i8 UV ~B2(y)eXv
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We take the coefficients to be elements ofCH (D). In the

particular case when al = a2 = 1, pl = 62 2 B > O, the
solutions are the elements of ?PD(g) where g 2 [1 i3].

A basic result in the theory of pseudoanalytic
functions is the similarity principle proved by Bers [3].
Using the similarity principle he has established formal
power series expansion of pseudoanalytic functions. He has
obtained generalisation of Taylors's theorem, Laurent's
theorem etc.

Similar results may be obtained in the discrete
case by defining a suitable continuation operator or by
finding a discrete analogue of similarity principle.

Discrete quasi=conformality of elements of 2PD(g)
can be established by defining concepts of discrete angle
and distance.

A discrete hypernpseudoanalytic theory on the
lines of Withalm [1] can be developed for functions
defined on H.
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INDEX OF SYMBOLS

In the following, a list is given of the symbols
and notations frequently used in the thesis. The page
number refers to the page on which the symbol first appears.

SYMBOL PAGE SYMBOL PAGE
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