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Chapter 1

I1iTP~£>_nm ‘I-‘I Q11

The objective of this thesis is to study the
time dependent behaviour of some complex queueing and

inventory models. It contains a detailed analysis of
the basic stochastic processes underlying these models.
In the theory of queues, snslysis of time dependent
hehariour is an area.very little developed compared to
steady state theory. Tine dependence seems certainly
worth studying from an application point of vies, but
unfortunately, the analytic difficulties are consider­
able. Glosod form solutions are complicated even for
such niinplo models as n/n/1. Outside 14/>1/1, time
dependent solutions have been found only in special
cases and involve most often double transforms which

provide very little insight into the behaviour of the
queueing systems themselves. In inventory theory also

thereigsjnot much results available giving the time
dependent solution of the system size probabilities.
Our emphasis is on explicit results free from all types
of transforms and the method used may be of special

interest to a wide variety of problems having regenerstive
structure.
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In this thesis we consider different queueing
models with Poisson arrivals, general service, with and
without vacations to the server and derive transient solu­
tions for all the models. Also we study Ome (s,S) inve::­
tory systems under the assumptions of random lead times,

random quantity replenished, bulk demands and vacations
to the server. In the following chapters we analyse each
of these models. Each chapter contains a self introduct­
ion and some important reference. In that sense, each
chapter is self contained. In this chapter we give a
brief general introduction to the subject and some. related
topics.

1.1 qmmne canon:

the question may arise whether after about 80 years
of’ research in queueing theory, it is still possible to
make a substantial contribution to the theory and to com
up with sane new results. To account for our positive
answer to this question,  to place the present work in
its proper context, we first give a short historical survey
of the origin and development of queueing theory and
subsequently discuss the current state of affairs.

Historically, Johannsen's " Uaiting times and
Number of Calls" (an article published in 1907 and



reprinted in Post Office Electrical Engineers Journal,
London, October 1910) seems to be the first paper in the
'­

subject. But the method used in this paper is not mathe­
matically exact and therefore, from the point of view of
exact treatment, the paper that has historic importance
is A010 Erlang's ' The theory of'Probabilitiee and Tele~
phone OonIereations'3 published in 1909. In this paper,
he lays the foundation for the place of Poisson (and hence
exponential) distribution in congestion theory. His papers
written in the next 20 years contain some of the most
importantlooncepts and teéhniques. That include the notion
of statistical equilibrium, the method of writing down

“of ltatc equations (later called Chapman-Kolmogoroy
hing delay prohability and the phase method of
Iilsflg. \

Until 1940, the majority of the contribution to
qpeueing theory was made by people active in the field of
telephone traffic problems. After the Second World War,
the field of operations research rapidly developed and
queueing applications were also found in production plann­
ingy inventory control and maintenance problems. In this
period, much theoretically oriented research on queueing
problems were done.



In the fifties and sixties, the theory reached
a very high mathematical level (see Cohen (1969) and
Takacs (1962)). Advanced mathematical techniques like
transform methods, Weiner Hopi decomposition and function

theoretic tools were developed and refined. This research
resulted in a number of elegant mathematical solutions.

In particular, noting the inadequacy of the equili­
brium theory in many queue situations, Pollaczek in 1934
began investigations of the behaviour of the system during
a finite interval. Since »then he has done considerable

work in the analytical behavioural study of queueing systems.
Ihe trend towards the analytical study of the basic stoch­
astic processes of the system has continued, and queueing
theory has proved to be a fertile field tor researchers
who wanted to do fundamental research on stochastic proces­

ses involving mathematical nodels.

The processes involved are not simple and for the
time dependent analysis, more sophisticated mathematical
procedures are necessary. For instance, for the queue with
Poisson arrivals and exponential service tines, under sta­
tistical equilibrium, the balance of state equations are
simple and the limiting distribution of the queue size is
obtained by recursive arguments and induction. But for the
time dependent solution, the use of transforms is necessary.



The time dependent solution was first given by Bailey
(l954b) and Ledermann and Renter (1954). While Bailey

used the method of generating functions for the differ­
ential equations, Ledermann and Renter used spectral
theory fer their aoluticn.

To analyse the cafie cf MZG/l qpeues, Kenéall (L955)
nae used the methed sf iégaaaration paints fine ts Ffiifie Ehe
method.of suyp;euentary variables investigated by C0x{1§§5)
I85 already used in L.Ea s tneeis in 1942. It is
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oztenuively discueseé in the beak ey Gnefiesza a:£.Es?al€§Hs
(1968) .

The study of bulk queuee is consiéered t0 he eri»
glngted with the pioneering work of Bailey (1954-a) . In a.

IQ; up study of bulk queues may be and to have begun with
.Irl¢ngfa investigation of K/Bk/1; for its solution ccntains
implicitly the aoluticn of the moiel Eh/H/l. Bailey stuiied
the stationary behavicur cf server queue h&Ying
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simple Poieson input, intermittently E?&il&fil6 server azé
service in batches of fixed mgximnm size. The results sf
this study are given in terms of §reb;bility.g%nerating
functions, the evaluation cf which requires determining
the zeroes cf a pclynanial. This study wee fiellewefi by a
series of papers involving the treatment of queueing prccesses
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with group arrivals or batch service. Gave: (1% seems is
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be the first to take up specifically queues involving
group arrivals. For more details on bulk queues, one
may refer to Medhi (1954). For a detailed treatment of
queueing systems and for further references, one can
refer any one of the Btsnfiard books on tie subject lire,
Ssaty (1961), Qakacs - Cohen (1969), Prshhu
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of “see. Es has stufiiefi the transient rehaviour of

E/Gfl end Bk/G/1 models. also the influence of his study
of virtual waiting time process has been tremendous in
the development of queueing theory. For more details,
one may refer to Takaos (1962).
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Queueing systems -r the service process is
subject to interruptions resulting from unsoheéuled break»
éowns of servers, scheduled off perioés, srrivsl of customers
with pro-emptive or non-pre emptive priorities or the server
working on primary and secondary customers arise naturally.
The impact of these service interruptions on the performance

of a queueing system will depend on the specific interaction
between the interruption process and the service process.



Queueing models with interruptions and their
connection to priority models were first studied by White
and Christie (1958), who considered the case with exponen­
tial service, on-time and of!-time distributions. Their
results were extended by Gaver (1962), Keilson (1962),
Ari-Itzhak and Iaor (1962) and Thiruvengadam (1963) to

models with general service time and off-time distribut­
ions but exponential on-tines. When the on periods are

not exponential: the problem became very difficult and
one such model is studied by Federgruen and Green (1986).

A detailed analysis of single server queueing system.with
server failure is given in Gnedenko and Kovalenko (1968).

Another variation of the interruption model is the
vacation model. In this the queueing system incurs a start­
up delay whenever an idle period ends or'the server takes
vacation periods. The vacation model includes server work­
ing on primary and secondary customers also. Analysis of
queueing systems with vacations to the server is motivated
by the study of cyclic queues and Miller (1964) was the first
to study such a system. Miller analysed a system in which
the server goes for a vacation (a ‘rest period‘) of random
length whenever it becomes idle. He also considered a
system in which the server behaves normally but the first
custoer arriving to an empty system has a special service
time. rhese types of systems and similar ones were also



examined by Welsch (1954). Avi--Itzhak, Maxwell we.

Miller (1965), Cooper (1970), Fakes (1975). Lemoine (l9?§),
Levy and Yechieli (l§?5), Eeym " Van der Dupe
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the system is empty. Vaxiatione of vacation models ere
available with single and multiple vacations and exhauetive
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non-exhaustive service disciplines.

when the system becomes empty, server starts e
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vocation and server keeps on taking vacations until,
on return from a vacation, at least one custoeer is pree-i..
This is Called a multiple vacation system. The server taking
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exactly one vaca at the end of each busy period, is
called e single vacation system. We say that a vacation
model his the property of exhaustive service in case eezh
time the server becomes available, he works in a continuous
manner until the system.beoomes empty. Systems with e
vacation period beginning after every service completion,
(or after an; vacation period if the queue is empty) is



known as the single service discipline. There is another
non-exhaustive service discipline which is a generalize­
tion of both exhaustive and single service disciplines
known as the Bernoulli schedule discipline defined as
follows. After each service completion, the server takes
a vacation with probability p and starts a new service
with probability l-p. If the system is empty, after a
service completion or vacation completion, server always
takes a'vecation and after any vacatien if ' customers
are present erver resumes service.

Vacation systems with exhaustive service disci1-1ne

are analysed by several authors. See for example, Levy
and Yechiali (1975), Heyman (1977), Oourtois (1980),

Shantilmmar (1980), Scholl and Kleinrock (1983), Lee (1984),
Fuhrmann (1984), Doshi (1985). Servi (19868), Levy and
Kléinrock (1986) and Keilson and Servi (l986b). Systems- - 4
without exhaustive service discipline are considered by
Ali and Heuts (1984), Heuts and Rsmslhoto (1984). Fuhrmann

and Cooper (1985), Keilson end Servi (1986 b,c) and Servi
(1986 a). The case of Bernoulli schedule discipline is
introduced by Keilson and Servi (l986a) and further studied
by Servi (l986b).

The main results in the vacation systems is the
delay analysis by decomposition. Ehe ‘stochastic decomposi­
tion property' of H/G/1 queueing-system with vacation says



that the (stationary) number of customers present in the­
eystem at a random poirt in time is distributed as the
sum of two independent random variables. One is the
(stationary) number of customerfl present in the corres­
pending standard H/G/l queue (i.e. without vanation) at
a random point in time and the other is the number of
arrivals in the forward recurrence time of vacation period.
For mere details on queueing systems with vacations one
may refer to Deehi (1986).

$
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All t1* abate medele aseures the existence of
.

stationary dietrieuiien and studied eere aepeete of the
queue leagih are waiting time distribution. some aspects
of the enenic behaviour of M/G/l queues with vacations
is studied by Keilson and Servi (19860). The time depen ­
dent solution for a iinite capacity E/G/l queueing eystem
with vacations to the server is given by Jacob and

Kriehnamecrthy (l98?). Qhey have introduced a new methed
namely the cenrelution product of matrices, wheee elements
are the transition probability density functions, to arrive
at the solution. Using renewal theoretic arguments, they
have given explicit expressions for the time dependent

1"-'

systen size probabilities at ariitrary epochs and also the
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probabili distribution of the tfrtual waiting time in the
queue at time t. Eire dependent solution for a.finite. -,3, b .capacity H/e ' /l queueing system with vacations to the



server is given by Jacob and Madhusoodanan (1988), using

the theory of regenerative processes. In this thesis we
extend these results to a number of variations of the
M/G/l queue.
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' THEORY

By inventory, we man the measured amount of some

41*.‘
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items which varies in quenti over time in response to e
'denari* ilceess, which operates to diminish the stock,
are e ’;iplenishment' process, which operates to increase
it. Usually the demand is not subject to control, but the
timing ere megitude of the lenishment can be regulated.

3

The real need for analysis of an inventory system
was first recognized in industries that had a combination
of production scheduling problems and inventory problems.
were is, situations where items were produced in lots and
then stored at a factory warehouse. The earliest derivation
of whet is often callefi the " simple lot size formula" was
obte.ir;ec‘. by Ford Harris in The same formula have been

}...|
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developed, independently by many researchers since then.
It is often referred to as " Wilson's formula" , since it
was derived by R.H.Wilson as an integral part of an in­
ventory control scheme.



During World War II, a useful stochastic model
was developed as the Christmas tree model. Shortly
thereafter, a stochastic version of the simple lot size
model was developed by Uhitin, whose book published in

1953 was the first book in English which dealt in any

detail with stochastic inventory models. The paper by
the economists, Arrow, Harris and Marschak (1951) was

one of the first to provide a rigorous mathematical
analysis of a simple type of inventory model. It was
followed by the often quoted and rather abstract papers
by the mathematicians Dvoretzky, Kiefer and Yolfowitz
(1952, 1953). Since then a number of papers by mathe­
maticians have appeared.

A valuable review of the problems in probability
theory of storage systems is given by Gani (1957). A
systematic account of probabilistic treatment in the study
of inventory systenm using renewal theoretic arguments is
given by Arrow, Karlin and Scarf (1958). Hadley and
Whitin (1965) deals with the application of mathematical
models to practical situatims. The cost analysis of
different inventory systems is given by Haddor (1966).
Tijms (1972) gives a detailed analysis of inventory systems
under (s,S) policy. A practical treatment of the (s,S)
inventory systems can be found in the recent books by
Silver and Peterson (1985) and Tijms (1986).



Gaver (1959) analyses the case of an (e,S)
inventory system with compound Poisson deman and random

lead times. Some aspects of (s,S) inventory system with
arbitrary interarrival time of demands and random lead
times is discussed by Finch (1961). Veinott (1966) gives
a detailed review of the status of mathematical inventory
theory upto 1965. Gross and Harris (1971) and Gross,
Harris and Lechner (1971) deal with one for one ordering
inventory policies with state dependent lead tines.
Sivazlian (1974) conidere an (s,S) inventory system with
arbitrary interarrival time of demands and zero lead time
and Srinivasan (1979) extended these results to allow the

lead time to follow arbitrary distribution. The case of
an (s,S) inventory system with bulk demands and constant
lead time is analysed by Sehin (1979). Also Sabin (1983)
discussed the problem of an (,8) inventory systan with
compound renewal demand and random lead tines and he

obtained the binomial moments of the inventory deficit.

A continuous review (s,S) inventory system in
random environment is analysed by Feldman (1978).

Richards (1979) analyses an (s,S) inventory systm with
compound Poisson demand. klgorithms for a continuous
review (s,S) inventory system in which the demand is
according to a versatile Harkovian point process is given



by Ramaawami (1981). An inventory system with two

ordering levels and random lead times is analysed by
Thangaraj and Ramanarayanan (1985). Approximation for

the single-product production-izventory problem with
compound Poisson demand and two possible producfiion

rates {hare fihe product is continuously adéed to invenx»
cry is given by he Kok, Tijms and Van der Duyn Schouteniléé~ - '
Using Markov decision drift prose Hordijk and'Van éer
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Duyn Schouten (1986) examines tho optimality of (s,S} polio
in 3 continuous review in¢entc:$ moéel with constant leafi
time when the demani procass ia a sugerposizion of a
compound Poisson procoss and a csniinucus determiniatio
process.

in important Variation of the inventory problem
is the perishable commodity inventcry system. For details
of the work in this area, one 21:3’ reefer to the exce3.J-ez~.t
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survey given by Fahmiafi (i Tia continuous revisw
perishable inventory system can he iéentified with ­

F
2.1)

ing systems with impatient customers as vieweé ky Kaspi
and Perry (1983, 1984).

In the case of random lsai times, the concept of
vaoations to the server during; 6&1: period is introduced

*3
$3,:

in inventory systems by Daniel -> R&E&B&I&Y&B&B (198? a,b}



UBha,.Ramanarayanan and Jacob (1987) analyses the case of

finite backlog of demands and vacations to the server.
Several other models with vacations to the server, bulk
demanfis, varying ordering levels etc.
Jacob
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For a square matrix A(x) of order m, let A*°(x) be the
identity matrix of order ll and for n >1, let A*n(x) be
the n-fold convolution of L(x) with itself.

1.4 REEE\\’£.I1 THEORY

Renewal processes are the simplest regenerative
stochastic processes. To éefine a.renesal process, let

iifii, n=l,2, ... } be a sequence of'ncn-negative independent
ve1'isb1es. Asstme that Pr {xn=o}< 1, and that the
rzrcfzflcom Yeti ables are identgceslly distzributeei with d.is‘:::*i—

bution function F(.). Since Zfi is nonmnsgstive, it
follows that E in exists.

s.:~1d_ let Fn( x) 1-= Pr {SE5 x} be the distribution function
-PO

co uno

Since 11's are i.i.d., En(x) = F*E{x).

Define the random variable

N(t) = Sup .(n.ISn $'$}

The process {H(‘t), 1;.>,0} is called s. renewal process.



If for some n, Sn = t, then the nth renewal is said to
occur at t; Sn gives the time of the nth renewal and is
called the nth renewal epoch. The random variable H(t)
gives the number of renewals in the interval (o,t].

The function H(t) = B[N(t)] is called the renewal
function of the process with distribution function F. It
is easy to see that

N(t) a n <=> snst
IO

Thus the distribution of E(t) is given by

Pr {um .-.= 11} .= r*”(»¢) - 1-“~"n*l(t)

and the expected number of renewals is given by

11(1) = 2% F"”(t)n= l

Its derivative

@141-\;) O0 canm(t) -= —d{- == z 1' (t)n= 1

is the renewal density function, assuming the density
function f(t) exists. To better understand the meaning
of m(t), let us consider the increment of H(t).



amt) -= n(t+5t) - nu)

=  [ F*"(t+<sz) -. 1-*’-"-(Q1
1";-== 1

CD

= ‘§" 21- {1=<sn-.;t<-51;]1 ~R:

On the other hand, we have for 6t -—> 6,
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and uD(t) = Sup{n]Sn$1:}

The stochastic press-as [§D(+;), we} is callezi 8;
Delayed or Modified renewal process.

Here we have‘ , .-1
2%: {h:3{t) .-.-. B} = c-arm 1(-1;) .. 6;;-* gt)
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The modified renewal density function is given ty

n>3(iz) = FI;(t)

ca .§}1.== E3. 5*? at)
n== G

under ‘the aériitironal asswzmptions that we
giz} = G'(z) and f(z) = F'(x} exists.

How, consider a a’c0cLa.s'!:ic ‘process  ,"‘c- EH3} 1-."_I.'t;h

s*;a.te space {O,l,2, ... I , having the~ prc-}":e;:"i'-;; 'Lfl".-.:-,5;
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exist time points at which the process (probabilistically)
restarts itself. That is, suppose that with probability

one, there exists a time Tl, such that the continuation
of the process beyond Tl is a probabilistic replica of the
whole process starting at 0. Note that this property implies

the existence of further times T2, T3, ..., having the same
property as Tl. Such a stochastic process is known as a
regenerative process.

From the above, it follows that {Tl,T2, ...} forms
a renewal process; and we‘shall say that a cycle is completed
every time a renewal occurs. It is easy to see that a
renewal process is regenerative, and Tl represents the time
of the first renewal.

For details on renewal theory, one may refer to
Cox (1962), Feller (1985), Ross (1970) er Cinlar (1975).

1.5. SUHEARY OF THE WORK INCLUDED IN THE THESIS

In this thesis we study the time dependent behaviour
of some complex queueing and inventory models. In our analysis,
renewal theory plays an important role. In each model, identi­
fying the regeneration points and using matrix convolutions,
we obtain the required transition probability density functions



The thesis is divided into seven chapters.
In the second chapter, we consider a finite capacity
general bulk service queueing system. The arrival of
customers is according to a homogeneous Poisson process
and the service times are generally distributed independ­
ent random variables whose distribution depends on the
size of the batch being served. Customers are served
in batches according to the general bulk service rule
(See Heuts (1967)). Using renewal theoretic arguments
re derive the probability density function of the busy
period and the time dependent system size probabilities
at arbitrary time points. Also we derive the probability
distribution of the virtual waiting time in the queue at
any time t.

The next chapter is devoted to the study of an
infinite capacity MI/G/1 queueing system with vacations
to the server. The arrival of customers is according to
a copound Poisson process and service is done one by one
with service time following a general distribution. Under
exhaustive service discipline, server takes vacations
for a random period having a general distribution. The
server.keeps on taking vacations until on return from.a
vacation, at least one customer is present. Here also we
derive the probability density function of the busy period,
time dependent system size probabilities at arbitrary epochs



and the probability distribution for the virtual waiting
time in the queue, using renewal theoretic arguments.

A finite caPacity M/Ga’b/l queueing system with
vacations to the server is analysed in chapter four. The
general bulk service rule is modified to allow the arriving
customers to enter for service, if the maximum service

capacity is not attained, without altering the service time.
Even if service of a batch is in progress with less than
'b' customers, all the arrivals may not be interested to
join for partial service. so we assume that an arriving
customer enter for partial service with probability p and
wait for full service with probability l-p, till the service
capacity is attained. Server goes for vacation whenever he
finds less than 'a' customers in the system and this is a
multiple vacation. The vacation periods are independent
and identically distributed random variables following a
general distribution. Ueing'the theory of regenerative
processes, explicit expressions for the busy period, the
time dependent system size probabilities and the probability
distribution of the virtual'Waiting tim are derived.

In chapter five, we consider-a finite capacity
M/GB/l vacation system with Bernoulli schedules. The
arrival of customers is according to a homogeneous Poisson
process and the service is in batches of maximum capacity B.



The service times are generally distributed random
variables which depend upon the size of the batch being
served. The Bernoulli vacation model is defined as
follows. After each service completion the server
starts a new service, if a customer is present, with
probability p and takes a vacation with probability l-p.
If the system is empty after a service completion or a
vacation completion, the server always takes a Vacation.
The decision about taking s. vacation after each service
completion or vacation completion are independent. If
the server finds at least one customer upon return from
a vacatio, he starts service of the batch. Also the
'vacations are independent and identically distributed
random variables following a general distribution. Here
also we derive explicit expressions for the probability
density function of a busy period, time dependent system
size probabilities and the probability distribution of
the virtual waiting time in the queue, using the theory
of regenerative pro ces ses.

In the next two chapters, we analyse some contin­
uous review (s,S) inventory systems with random lead times
Chapter six is devoted to the study of a single item (s,S)
inventory system in which the quantity replenished is
random. The demand is for one unit at a time and the
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interarrival time of demands and lead times are independent

sequences of independent and identically distributed random
variables following general distributions. Whenever the
inventory level drops to s, an order is placed for S-s units.
However, the quantity replenished is a random variable that
can assume values s+l, ..., S-s. Explicit expressions for
the probability mass function of the stock level at arbitrary
epochs are derived, using renewal theoretic arguments. An
expression for the total cost over a period of time of length
t is obtained. Then we consider the special case- of zero
lead time and derive the time dependent as well as the station­
ary distribution of the inventory level. Using this, the
associated optimization problem i discussed in detail. Finally,
some numerical examples are given.

In the last chapter, we consider an (s,S) inventory
system with random lead times depending on the size of the

order. The time between successive demands ani quantities
demanded at these points are independent sequences of independent
and identically distributed random variables following general
distributions. Whenever tls inventory level falls to or below s,

an order is placed to fill the inventory. The lead times are
also independent raniom variables following general distri­
butions. Whenever the inventory becomes dry, the server goes



for a vacation for a random length of time which follows
a general distribution. Using the theory of regenerative
process, we derive explieit expressions for the inventory
level probabilities at arbitrary epochs.



Chapter 21»      _

F3
rs
oi

i~—'

L0

or
ei
on
_e
P13

FI_

2.1. Issac

Li:C
ci
1-3
P-4
O
E

Qhe study of bulk queues is considered to be
originated with the pioneering work of Bailey {l§54a).
He studied the stationery behaviour of a single server
queue with Poisson input, intermittently available
server and service in batches of fixed maximum size.

This motivated several authors to study queueing systems
with group arrivals or batch service. A queueing system
with general bulk service rule was first considered by
Eeuts (1967). He considerei s queueing system with
Poisson input, general sefvioe time and service in batches
of minimum size a and maximum size b.

In the literature of queueing theory, very little
work has been done in the case of transient solution of

non-Poisson queues. Recently, Jacob and Krishnamoorthy(l987)
considered this problem and have given explicit expressions
for the time dependent system size probabilities of an M/G/l
queueing systenlwith vacations to the server. They have
also computed the distribution of virtual waiting time in
the queue at arbitrary time points.

Results given in this chapter find place in a paper
accepted for publication in ‘Naval Research.L0gistics'.
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In this chapter, we give the time dependent
system size probabilities for the finite capacity H/Ga’b/1
queueing system. at arbitrary epochs using:renewal theore­

tic arguments. In section 2.2, we give the description
of the model. The basic results regarding the transition
probability density functions and the renewal function are
given in Section 2.5. Here, we also derive the probability
density function of an idle period and busy period. In
section 2.4, we derive explicit expressions for the system
size probabilities at arbitrary'epochs. In the last section,
we give the Probability distribution of the virtual waiting
time in the queue at any time point t.

2.2 DESCRIPTION OF THE MODEL

The arrival of customers into the system in accord­
ing to a.hom0geneous Poisson process with rate p. ihe
successive service tines are independentzrandcn variables,
following general distributions, depending on the size of

the batch being served. Let G1(.) denote the distribution
function of the service time when 1 is the batch size, which

has a density function gi(.). There is only one server and
the service is in batches according to the general bulk
service rule. That is, a minimum of 'a' customers are need­
ed to start a service and a maximum of 'b' customers can be
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served at a time, where 'a' and 'b' are positive integers.
We also assume that the queueing system has a waiting room
of finite capacity 'b', so that the service starts with
all the customers waiting for service at that tine.

Let us assume that there are r(ar_-rsb) customers
present in the waiting room at time zero, when the process
starts. All the r customers enter for service at time zero
itself. At the time of completion of service of these r units,
if the number of customers in the waitingiroom is.less than a,
the server has to wait until there are a customers, where­
upon all a enter for service. If there are a or more in
the waiting room, on completion of a service, all the custom­
ers present are taken for service. The process continues in

this fashion. Also we asspme that, all the arrivals that
takes place when the waiting room is full are lost. It is
very easy to see that the time points at which the server
starts service after an idle period will be renewal points.

2.5. BASIC RESULTS

For j = 0,1, ..., b-1, let pJ(x) denote the probability
that there are exactly j arrivals during the interval (o,x]
and let pb(X) denote the pr0bability"that there are at least
b arrivals in the interval (o,x].
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Then for J = 0,l,..., b-l, we have

p (X) = 2-fE_a;l.}L¥J hisJ J!and (2.1)
P-b(1) = jabs

Me

0
‘F

1....‘ pq

"F?
.1:

NOW, we are in a position to find out the probability
density function of an idle period, conditional on the
system size at the service completion point. This is
the time interval for (a-i) arrivals, if there are i units
present in the system at time zero. This is given by the
sum of (a-i) independent and identically distributed exponen­
tial variates and its distribution is Erlang of order (ari)
with density function given by

a-i xa-1-l __
Ba_i(x) = PI_(i) e “X for 1 = o,1,...,a»1 (2.2)ac:

where I‘ is the gamma function.

For asi-sb, osj sh, let fiJ(x)dx be the probability that
starting at time zero, the service of a batch of size i
units is over in the interval (x,x+dx) and there are j
accepted arrivals during the interval (o,x].
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Then,

:fij(x) = gi(x) 113(1)‘ (2.3)
Now, for i = a, a+l, ..., b

= (fia(x)! fi(a+l)(x)9°°°9fib(x))

is a row vector of order (b-a+l).

Also we define two matrices F and G as follows.r-- '17
\ faa(x) ... fab(x)

F‘(X) = i E Q
;H fba( x) . . . fbb( x)J

InF-— I
fa-o(X) O ¢ fa(a_1)(X)

GU‘) = I 5 f
fb0( x) . . . fb( a_l)( x)-1

Here, F‘ is a square matrix of order (b-a+l) and G1 is 9.
matrix of order (b-a+l) x a.

oo

Then, (_§i# Z IF’ m)(x) will be a row vector of order (b-a+l)I1= O
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00

and (gin Z1 F ‘ma G )(x) will be e row vector ofn= o

order a.

In both these cases, the vector ii is convoluted with the
column vectors of the matrices

°° m °° +nZ [F and ( Z, F r G ) respectively.n== o n= o
For n = a, a+l, ...,b, letn °° »nMi(x) = (n-a+l)th coordinate of (gin ZIP )(x) (2.4)Il= O

and  11:0,]-Q O09’ 8." 1’

x) = (n+l)th coordinates of (_g_€_'1xn%°,oF' marfi )(x) (2.5)

Now we can find out the probability density function of
e. busy period. For i=r,e. and n = 0,1, ..., a-1, let
Z2 be the length of a busy period beginning with i units
and ending with n units left. Let us denote the probability

density function of Z2 by F2( .) . Then for i=r,a and
n = 0,1, ..., a-1,

F§(z) = K2(x) + fin(x) (2.6)
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The renewal points of the process are those time points
at which the service starts after an idle period. Let
Z be the time between two such consecutive renewal points.
Then the probability density function of Z is given by

t a-l n
k(t) = O; ngo Fa(u) Ea_n(t-u)du (2.7)

Let X be the length of the initial busy cycle (i.e., the
sum of the initial busy period and idle period). _Then the
probability density function of X is given by

t ael
nu) = of ngo F2(u) Ea__q(t--u)du (2.8)

Then the renewal density function of the delayed renewal
process is given by

00M(u) = Z1 (h*k"n)(u) (2.9)
D.-"= Q

It should be noted that the probability density function
of an idle period, conditional on the initial state of the
system, is given by equation (2.2) and the probability
density function of a busy period, conditional on the
final state of the system, is given by equation (2.6).
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How, the state space of the process is given by

S = {(1,1) I agiab, 0*.-J1’-b}U {(o,j)Io.sj$a-1}

When asi sb, o sj ab, (i,j) represents the state that
a. batch of size i units is being served and there are j
units in the waiting room. For j = O,l,...,a-l, (0,1)
denote the state that there are j units in the waiting
room and the server is idle.

2.4. TRANSIENT PROBABILITIES OF THE SYSTEM BIZR

Let Pij(t) be the probability that the system is
in the state (1,3) at time t. Then by considering all
mutually exclusive and exhaustive cases, we can write the
following relations. By our assumption, the first busy
period is started with the service of r units.

For j = 0,1, .. ., a-l, we have

’¢ JP t == . t- d°J( ) of E0 F'i.(11) uJ_i( 11) u

t t j F1
+ 0] M(u) J 15° a(v-u) p.J_i(t-v)dv du (2.10)



j = 0,1, 004, b’
P.t)r3( = [1-Gr<¢)] pj(t)

t
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+0] Mii u) [1-Gr( 1:-u) ]pj(1;-11)d\1

i
+‘[ Min

o

~51
4

For j = 0,1, ..., b, we have

Paj(#>

...u)[l-Gr('!3-v)]p.j(t-v}d*: du (2.11

t
= of m§(u) [1-Ga('|:-u)] |.\(‘b-11)dI1_ ii

t
+ I M( u) [1-_-Ga( 1;-u)] |1j(“;--=.1)d!.1O ,
+ FM(u) ;cH:('-I-u) [1-Ga(t-v)]pj(t-v)c'iv du0 u

{2.12)

For i = a+l, a+2, ..., r—l, r+l,...,b and J = O,l,...,b,
we have

P..(t)
t

13 = or M§_;(u) [1-G(t-11)]pj(13-1.1}d111
.0

+/t M(u) FMi(v-u)[1-G (‘b-v)]1.1 (t--v)dv du (2.13)O U. i J
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2.5. VIRTUAL WAITING TIME IN THE Queue

The virtual waiting time in the queue at time t
is defined as the waiting time of a unit in the q_ueue iif
it were to arrive at time t (see Takacs (1962) for details).

Let Wt be the virtual waiting time in the queue at time t.
The probability distribution of Wt is computed here,
conditional on the state of the system at time t. This
is sufficient because, we have already computed the system
size probabilities and hence this will give us the explicit
expressions for the virtual waiting time at time t. It

2+
LT
(D

should be noted that even if the waiting room is full,
virtual customer can join the queue and enter for the next
service along with the waiting customers.

He consider the fbllowing cases segerately.

The state is (i,j) at time t, a.5i eh, z3.'~léj.£.L')
so that the server is working.

Then
t

Pr {wt $1} - of M';(u) Gi(t+x-u)du

Jfit

t t
+ I M( u) I (v-u) Gi( t+x-V) dv du0 u

(2.14



Case §ii): The state is (i,j) at time 1:, asi sh,

Then t b
Pr {Wt 5 1:} = of Mi_( u) Gi(t+x-u) k=8,i:,j_l pk(t+x-u) du

t t 1
-I-I M(u) I Ma(v-u) Gi(t+x--V)0 u

b
1 Z pk(’0+x-v)dv du (2. 15)k=a-J-l

Case (;L1;): The state is (o,j) at time t, osj sa-1,

Then

so that the server is idle.

b

Pr {\it$X}= L231 pk(x) (2.16)_a_ _



Chapter 3

£5-N M/GL1 QLJEUE YITH,_GR°UP ARRIVALS AND

I49 ATIQNS 19 THE 53R‘TEB

3.1. INTRODUCTION

Several authors have analysed the case of M/G/1
queueing system with bulk arrivals. Gaver (1959) seems
to be the first to take up queues with bulk arrivals.
In a Way, the study of bulk queues may be said to have

begun with Erlang's investigation of the model M/Bk/1;
for its solution contains implicitly the solution of the
model Mk/M/1, a Poisson queue where arrivals are in groups

of size k. Gaver considers the case of a queueing system
with compound Poisson input and general service time and

finds transform of the steady state queue length distribup
tion. Bhat (l968) analyses this system in detail in his
monograph. Chaudhry (1979) discusses limiting queue size
distribution at three different epochs; random epoch,
epoch just before an arrival and epoch just after a
departure, using supplementary variable technique.

In all the queueing models referred to above, an
idle server remains alert awaiting a new arrival and will
commence service immediately upon the customer's arrival.

37
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The effect of vacation periods in queueing models is
studied by several authors. Scholl and Kleinrock(l983)
analyses an M/G/l queueing system with vacations to the
server. Assuming steady state exists, Fuhrmann and
Cooper (1985) shows that for a class of M/G/l queueing
system with generalized vacations to the server, the
‘decomposition property‘ holds. An M/G/l model in which
the server is required to search for customers is analysed
by Neuts and Ramalhoto (1984). Keilson and Servi (l986b)

analyses the case of blocking probability for M/G/l vacation
system with occupancy level dependent schedules. For more
details on queueing systems with vacations to the server,
one may refer to Doshi (1986).

All the above mentioned articles analyse the case
of steady state distribution. Jacob and Krishnamoorthy(l987)
using renewal theoretic arguments gives transient solution
for a finite capacity M/G/1 queueing system with vacations
to the server. Time dependent solution for a finite
capacity M/Ga’b/1 queueing system with vacations to the
server is given by Jacob and Madhusoodanan (1988). In
this chapter, we extend these results to an infinite
capacity M/G/l queueing system with grmup arrivals and
vacations to the server.
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Here we consider a. service facility with only

one server. Customers arrive in groups of size {Gn}

Pr {Gn =1}; == pj, J-= 1,2, ... (3.1)

These group arrivals occur according to a Poisson process
with parameter p. Service is one by one and the service
times are independent and identically distributed random
variables with distribution function G(.) having density
function g(.). Whenever the system becomes empty, server
goes for vacation for a random length of time. Vacation
periods are independent and identically distributed random
variables with distribution function H(.) having density
function h(.).

Let us suppose that, at time zero the system starts
with 'a' (> 0) units in the waiting room. The server takes
all the 'a' units to the service station and serves them one
by one. When all the 'a' units are served, server goes back
to the waiting room. If there is at least one unit waiting,
server takes all of them to the service station and starts
service. If there is nobody waiting for service, server
goes for vacation for a random duration. On completion of
this vacation, if there is at least one unit present in the
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system server starts serving them. On the otherhand,
if there is no unit in the waiting room, the server
extends his vacation for one more period having the same
probability distribution. This process is continued until
there is at least one unit in the system waiting for
service. According to the terminology of Doshi (1986),
this vacation is known as multiple vacation. Since the
server serves the customers in a continuous manner until

all the customers are exhausted, the service discipline
is exhaustive. Thus we have an MI/G/l multiple vacation
system with exhaustive service discipline.

3-2. BASIC RESULTS

Let A(t) denote the number oi’ arrivals during (o,t].

°° 1Let tp(z) = Z pi z with o<q>'(1) < (DII. 1

and pJ(k)= the coefficient of zj in [q>(z)]k

This says that pj(k) is the k-fold convolution of {pi}
with itself

and pj(°) = 0 f0rJ>O
= 1 forj-=0
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j = 0,1,2] O00

vj(t) = Pr {A(.’fl) = J}

= 5; ~'“"<.»:’~>‘ pm <3.»k=o 3' J
For i = 1,2, ..., j = 0,1,2, ..., we define the transition
probability density functions as follows. Let rij(x)dr be
the probability that starting at time zero, the service of
i units is over in the interval (x,x+dx) and there are j
arrivals during the interval (o,x].

So we getf . ‘Z  . .iJ(x) g (I) pJ(x) (3 3)
Let us define an infinite vector

gin) .-= (fi1(x),fi2(x), ...)1’or 1- 1,2,
and 1(1) = (r <1) r <1) >"-0 l0 ’ 20 ’ ‘°°

where T denotes transpose.
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Now we can define a matrix F‘ given by

+ rum 112(1)
F(x)“ ' f22(x) £22(x) ...

1 .

O. O. I‘.ll’ -I
%

F01‘ i = 1:2» ---, (Ii* Z I-"m)(x) will be a row vectorn: o

of infinite order, where the vector ii 18 6011701111766 with
oo

the columns of the matrix Z, Fm. Now for i,n === l,2,...,
n== 0let

oo

Ml‘(x) =.- nth coordinate of the vector(_1§iwr Z, IF *n)(x) (3.4)n= 0

Also let,

00

Kim = (,§i~ §;rP*”~;°> (1) (5.5)I1= O

Now we can find out the probability distribution of a busy

period. Let Fi(x) denote the probability density function
of a busy period initiated by i customers.

Then for i = 1,2, ..., we have

Fi(x) = 1310(1) + Ki(x) (3.6)
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For j = 1,2, ..., let bj(x)dx be the probability that
after a busy period, server goestfor vacation at time
zero and after one or more vacations, the next busy
period starts in the interval (x,x+dx) when there are
J units present in the system.

Then for J = 1,2, ...,

I Q
bj(x) == of >2. h"'(11) no(11) h(1-11) uj(I-u)du (3-7)ll= O

The renewal points of the process are those time points
at which the server goes for vacation after a busy period.
Let Z be the time between two such renewal points. Then
the probability density function of Z is given by

t ook(t) ..-= j Z, b.(u) F.(t-u)du (3.8)O j== 1 J J

Then the renewal density function of the delayed renewal
process is given by

00M(11) =- Z (F;-k‘”)(u) (3.9)n= o

In the next section, we derive explicit expressions for the
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time dependent system size probabilities at arbitrary
epochs.

3-3. SYSTEM SIZE PROBABILITIES

Let Pi(t) denote the probability that at time t,
there are i customers in the system including the one being
served. Considering all the mutually exclusive and
exhaustive cases, we have the following equations.

t t aa
Po(t) = _[ M(u)‘{ Z: h*m(v-u)[1-H(t-v)]p°(t—v)dv du (3.10)0 u m= 0

For i = 1,2, .-., a, we have

P 0:) - Q [e*“'“'<t> - @*‘-*'~"*1<'=>1 (+=>1 " j=l pi“j
t i-l k .

+ 0; £1 M:(u) j2l[e*“"1(t-u)-<;*“'3*1(t-u)1

I pi_j(t-u)du

1’ °° k 1 »1;-3 *1;-3+1
+ of ]€iI'Ia( 11) jEl[G (t-u)—G (t-11)]

I p1_j(t-u)du
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” -j uk-j+l1; 1; 1 1 k *k+ f M(u) ; 5; b (v-u) Z [G (t-v)-G (t--v)]0 u 1 3 lk: k .=
x pi_j(t-v)dv du‘b 1; i .

+ O! mu) I £9: bkh-u) jzl[e*""1<t-v>-e*“'°*1<t-v>1uk=i

x p.i_j ( t-v) dv du

+ I M( 11) f Z1 b (v-u) f Z M (w-V)Q 11 Ya: 1 Y V Y

‘I;

+ [ M(u) [ E bY(v-u)[O U. Y=l V

13 1;
) I+[M(uO 11

k==l

k xk-j nk- j +1x Z‘, [G (t-w)-G (1:-w)]|.L (t-w)dw dv du;;=1 1'3

I

t 00

L4.

I-'‘W18
O

FM8

x £1 [G k'j(t-w)-G k-j+l(t-W)]|,1 .(t-w)dw dv u

P-"

M$(w-v)

1-3

h*“‘( v-u) p.°(V-11) [1-H( t-v)]

pi(t-v)dv du (3 ll)



For i == a+l, a+2, ...., we have

Pm) = jg [G*‘“'j(t) - e*a"'j*l(1=)] v1__-;(1=)15 '-l k .
+ O; E: m“<u> 21[@“"j<t-u>-e*“'“*1<*-=-u>1kzl a j='­

+

We

1; t 1-1 1; *k__j A *k_j+l %
+ of M( u) J kgl bk( v-u) j§1l[ G (t--v) - G (t-v)]

12 13
+ f M(u)O I1

I-'­

I
pi_J(‘l7—1J.)d\1i . .

m‘j< u) zlt @*‘"““ < t-u) -@*“"*l( t-11)]J8

I
pi_J (1:-u) du

x p,i_J(t-V)dV du

We

I

x

I-"

b (V--11)  [Gikk-J(t-v)-G*k-j+l( t-v)k 3.21 @
pi_j(t—v)dV du
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cl’

I-4'

I-'

t t oo - k+ I M(u) I Z b (v-11) I Z1 M (W-V)0 u y= l Y V kzl. Yk . .
x Z [G*k_J(t-w)-G*k-J+l(t-w)]|.1i J(t-w)dw dv duJ=1 Q

t t oo t co k+ f M(u) I Z. b (v-11) f Z M (w-v)O "ll Y2: 1 Y V kZ= 1 Yi . .
x ‘Z [G*k-'](17-U)-G*k-']+1(‘\2-W)]pi_j(1i—W)dW dv du

u.
l-'

+ ftM(u) ft h*m(v-u)p,o('v--11)[1-H(t-V)]|.1i(t--v)dY duO ‘U.

We

(3.12)

3.4 VIRTUAL WAITING TIME IN THE QUEUE

The virtual waiting time in the queue at time t is
defined as the waiting time of a customer in the queue if it

were to arrive at time t. Let Wt be the virtual waiting
time at time t. Here we compute the probability distribution

of Wt conditional on the state of the system at time t and
it is enough because the system size probabilities are known.
Here we assume that service is in the order of their arrivals.



We consider the following cases separately.

Case §i): At time t, there are 1, i=l,2, ... units in
the system and the server is working.

Then

t
+Io u

t i-l qa ­
Pr {wt s 1] -= of J50 kid M]: 11) uJ(’¢-u) G*k*3(1:+1-u)du

t oo t 1-1 aa k
= 1 Y v j=o k=1-1*M(u) I Z b(v-u){ Z Z H(w-v)

Y

I pj(t-w) G*k+j(t+x-w)dw dv du (3.13)

Case §ii): At time t, there are i, i=l,2, ..., units in
the system and the server is on vacation.

Then

1:

Pr{Wtsx]== ]M(u)f
O 11

t

We

_ h*m(v-u) p0(v-u)

t+x *11 It h(w-v)G (t+x—w)dw dv du (3.14)
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Qa§erQiii): At time t, the system is empty and the
server is on vacation.

Then t t
Pr {Wt 6. I} == I M( 11) I 2 h*m(V-U.)[H(13+X—V)-H(‘l7-V)]d.V du0 11 ==

B

O

(3.15)

Remark:

The queueing system MK/G/l without vacations to

the server can be obtained as a special case of this model
by taking the vacation period distribution as the distribu­
tion of the idle period. That is, the same exponential
distribution of the interarrival time of customers.



Chapter 4

A ElNlTE 9§PAQITYM£9!1 QUE§EING 3Y3?3M WITE

BULK SEEVIQE AHDYAQA$lQ§$rTQlTH3l$3RVEB

4.1. INTRODUCTION

In this chapter we consider an M/G/l queueing
system with bulk service and server going for vacation
whenever there is less than a prespecified number of
customers in the system. The general bulk service rule
[see Neuts (1967)] is modified to allow the arriving
customers to enter for service without altering the
service time of the batch being served. This type of
procedure is usually adopted in the case of entrance to
cinema hall etc. When at least a prespecified number of
customers are available, show starts and the arriving
custoers are allowed to enter the hall if it is not full
(this number may be found out by considering the cost
associated with one show so that the profit is increased
by the entrance of new arrivals). Arrival of these
customers will not alter the service time. But among the
arriving customers, some may need full service and they
wait until the next show begins. The server is allowed
to take vacations whenever the system size is less than

50
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the minimum number of units needed to start a service.

Motivated by the study of cyclic service queues,
an extensive study has been made on single server queueing
systems with vacations to the server.<3ourtois (1980)

analyses a finite capacity M/G/l queueing system with
delays. Under 81119.18 tive service discipline, Lee (1984)

analyses a finite capacity M/G/l queueing system with
vacations to the server and Scholl and Kleinrock (1983)

analyse an infinite capacity M/G/1 queue with vacations.
The case of non-exhaustive service disciplines are analysed
by Neuts and Ramalhoto (1984) and Fuhrmann and Cooper( 1985).

Keilson and Servi (l986b) obtain the blocking probability
of an M/G/l vacation system with occupancy level dependent
schedules. For a detailed survey on vacation systems,
one may refer to Doshi (1986).

All the papers mentioned above deal with the situa­

tion where steady state exists. In this chapter, we extend
the results of last two chapters to obtain the time dependent
solution for the modified M/Ga'b/1 queueing system with
vacations to the server. The model is described as follows.
Customers arrive to the system according to a homogeneous
Poisson process of rate u. The customers are served in
batches according'to the general bulk service rule.



That is, a minimum of 'a' customers are needed to start
a service and a.maximum of 'b' customers can be served at

a time. Service times are independent and identically
distributed random variables having distribution function
G{.) and density function g(.). The system is having a
waiting room of finite capacity 'b', so that each service
is started with all the units that are waiting for service
at that time.

Whenever the size of the batch being served is
less than 'b', the arriving units are allowed to enter
for service until it reaches the maximum capacity 'b'.
This service rule is known as general bulk service with
accessible batches. Let p be the probability that an
arriving customer enter for partial service and let (1-p)
be the probability that he waits until the next service
begins. Any time immediately after a service, if the
server finds at least 'a' customers waiting, he takes all
of them for service. If he finds less than 'a' customers
in the system, he goes for vacation for a.random length of‘
time having probability distribution function H(.) and
density function h(.). If the server returns from a
vacation to find less than 'a' customers in the waiting
room, he begins another vacation independent of the previous
vacation and having the same probability distribution.
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Now, let us assume that when the service room

is full, all the arriving customers enter the waiting
room. When the waiting room is full all the new arrivals
are lost even if the service room is not full. Also, all
the arrivals that are taking place when the server is
under vacation enter the waiting:room until it is full.
Finally, we assume that the system starts with r(as_r sh)
units waiting in the system.at tim zero.

4.2. BASIC RESULTS

For 3 = 0,1,2, ..., let pJ(I) be the probability
that there are exactly j arrivals during an interval of
length 1.

Then
e'“1(u1)J»j<x> =   (4.1)

For asi ab and 0 sj sb, let fij(x)dx be the probability
that starting with i units at time zero, the service of a
batch is over in the interval (x,x+dx) and there are j
units waiting in the system at this service completion point.
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Then for as1;~b--1 and osj -:~b--1, we have

b-i-l .
1:11-(X) = 8(1) { 15° »J+k<x> (J1?) pk (1-P)J

+ go pb_i+j(x) (Ygfgi) p""*<1-PW] (4.2)

For asisb-1, we have

fib<1> = 8(1) { _ jzmk pin) (‘°*,’f‘1) p“<1-p>‘°

O‘

FMH
O I--'

Ms

U‘

5;-‘Na

+ Z 2 _il1_.](1) F2?) Pb-1 (1-197} (4-3)

-<

O

0.4.

For o gj sb-1, we have

fbj(x) = g(X)
and

00

fbb(x) == g(x) jg pj(x) (4.5)

For a $1 5 b and osj gb, let hij(x)dx be the probability
that starting at time zero, service of a batch is not over



'55

in (o,x], there are 1 units in the service room and j
­

units in the waiting room at time x.

Then for asi sb-1 and 0 sj sh--1, we have

1

hij<x> - [1-e<x>1 fife »j+i_k<x> (1;i;k) p1'k<1-p>’ (4.6)-a

for a/=1 s-b-1, we have

1 <1: _
hib(x) = [1-6(1)] kga j;Zé+i_k uj(1) (b+i_§ 1) Pi k(l—p)

(4.7)

For 0 sj eh-1, we hgve

and

O‘

I‘-'

c.»

“ba‘*) = [l'G“)]{ fig; 55$ “a+b-k“) (Y§3§k) Pb-k

x (1-p)Y + 143(1)} (4.8)

- cn b-1
hbb(1) == [l-9(1)] Z ‘Z ‘L 113(1)he J=--2b-k y=o

(“"""$
O‘

I-'

I (bgfiv) Pb-k (1..p)Y 4. Jfib pJ(I)} (4.9)

b



Now for asisb, let

13(1) ( (_i -= fia 1), ..., fib(x) )

It is a vector of order (b—a+l).

Let IF’ be a. square matrix of

‘I'­

IF‘(X) ==r' I
be faa( x) . . . 253.0(1)?

1-fba(x) ... f (x)‘

order (b-a+l) given by

bb i

and G1 a matrix of order (b-- 1)

6(1) "' E

Then for asisb, (£1
order (b—a+l) and

%
(12 » Z;r"“»6 )(1) will

Q

fao(x) ... fa(a_l)(x)i

1 1'bo( x) ... fb(a_l)(x)

*

“Ms

a+ x a given by

ZY

n)(x) will be 9, vector of

°~==:
$

be a vector of order a.
-1 I1=O
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For asi , nab, let

We
°'~a

M;(x) u (n—a+l)th coordinate of (ii *n)(x) (4.10)

and for asisb and osn ea--1, let

W319
°*e

K2(x) = (n+l)th coordinate of (31 ‘§(;)(x) (4.11)

Thus we obtain the probability density function oi’ a
busy period starting with i units and ending with n
units left, as

Fg(x) = £in(x) + K2(x) for asieb and osnta-l (4.12)

For osi ea-l and a aj e b, let cij(x) dx be the probability
that after a.busy period, the server goes for vacation at
time zero when there are i units waiting and after one or
more vacations, the next busy period starts in the interval
(x,x+dx) with j units in the system.

Then for osi ea—l and a sj eb--1, we have

H

We

W

FM»
O |-"

013(1) = of h*m( 11) U }1k(1.1) 11‘ X-11) p.j_k_i( I-U.) du
(4.13)
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and

93

I-"

I-'

I  * '­
<=ib(x) - of IE0 h m(u) go uk(u) h(1-11)

oo

x ;]=€k-1 pi (bu) du “'14)
Now we look at the time points at which the busy periods
starts and the time between two such consecutive points
is called a busy cycle.

For aé-i,ksb, let dik( x) dz be the probability that a.
busy period is started at time zero with i units in the
system and the next busy period is started in the interval
(x,x+dx) with k units in the system.

Then the probability density function of this busy cycle
is given by

X a-l ,0
dik( x) = of “go Fi(u) cnk(x-u)du (4.15)

Now we define a vector of order (b-a+l) as

_q,<x> = <dm<x>.  d,_.b<x>)
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and a square matrix ID of order (b-a+l) as

G

’<1aa( 1)  aabu)5 tD(X) = 1”  “
A

d.-ba( X) . ¢ O dbb( X) XIL ck

W18
°e

Then (gr n)(x) will be e. vector of order (b-a+l).

For asn sb, let

his
°e

D,n( I) = (T1-a-I-l)th coordinate of (gr _ n)(x)(4.l6)

The state space of the system is given by

s = {(1,3) I 9, sisb, osjéb}U{(o,j) I 0 sj sh}

For asi sb and o sj sb, (i,j) denotes the state that a
batch of i units is being served and there are j units
waiting at that time. For o sj sh, (o,j) denotes the
state that server is under vacation and there are J units
waiting in the system.



4.3. THE SYSTEM SIZE EDBABILITIES

F01‘ 1 = O’ 8., a+l, 0009 b  j = 0'1; 000, by

let Pij(t) be the probability that the state of the
system is (1,3) at time t. Considering all the mutually
exclusive cases, the following relations can be obtaimd.
Note that the first busy period starts with r units.

Then for rsiab and osjsb, we have

Pij(t) = hij(t) + oft ngji M2(u) hiJ.(t-u)du

t 1
+

1; b t 1 k
+ f Z; Dn(u) f Z Mn(v-u)h (t-v)dv du (4 )0

:3

{Zon 8.

I9

=a

Dn( u) hij (t-u) du

u ks-=9. ij

For asier-l and osj sb, we have

17 i n
Pij(t) = of Z Mr(u) h (t-u)du

.2‘!

N

ill

12 1
+ of Ea Dn(u) hiJ(t-u) du

‘B b 17 1 k
+ of TEE Dn( u)u[ LE3 Mn( v-u)h1j(t-v)d.v du (4



For 0 <4 J s a--l, we have

1;

P0305) .-= [ £1 F:(u) p._. k(t-u)du0 k=o 4"
‘b b 13

+ 2 Dn(u) uf

0+
:3

mtfl

For asj $2:-l, we have

1: a.-ln 1:
Poj(t) = 6; 55% Fr(u) J

Efqgk
J

PW’

8

m

M.-zs

|—'

h‘m(v-u) - .­

W

E

1 [1-H(t-v)] p, , _(t-v)dv du

1; b t
J-K~fl

Q3

P-'

.2.

+ I 2: Dstu) I 2: F;<v—u)Or: V] I1 4

O

.13

$19

,_-.2

>4

<___d_

BN8
O

$3

‘.1.

QQD

1 X |

4

h*m{W—v) ‘_. uk(w-v
.t§.=O

x [1~B(z-w)]pj_k_i(t-w)aw dv du (4.20)

uk(v-u

)
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fl rn(v-u) pj_k(t—V)dV du

4.19)
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Finally,

_ t a-1 i t ‘m - ­Pobit) == I 53 lF;(u h (v-u) uk(v-u)0 i=0 * u mm 0 ~

P18

W

FfflH­
O P’

x [l+H(t-v)] gg pj(t-v)dv duj=b-k-1

t b t a—l i t (Ii ‘m
+ 1’ Z D?_(u} f Z, Fn(v-1.1.) I Z h (‘ma-*1)o n=a ' u i=0 v m=o

A

m

FP1H­
0 P’

uk(w—v) [1-H(t-")1

00x E: p.(t-w)dw dv du (4.21)
j=b-K~i 3

4.4 VIRTUAL WAITING-TIME IN THE QUBU3

The virtual waiiing time in tie queue at time t is
defined as the length of time a (virtual) customer arriving
at time t has to wait before starting his service. Let Ni
be the virtual waiting time in the queue at time t. The

probability distribution of Wt is computed here, conditional
on the state of the system at time t. It should be noted
that, we have already computed the system.size probabilities



and hence this will give us the explicit expressions for the
virtual waiting time in the queue at time t. Further, it is
to be noted that even if the waiting room is full, the
virtual customer can join the queue and enter for the next
service along with the waiting;custemers.

We consider the following cases seperetaly.

Case §i}: The state of the system is (i,j) at time t,
asi 4b and a-ls j 4b, so that the server is
working.

Then

z 1 n t+x bPr {Wtex } 3 p + (1-p)[ Z Mr(u) j Z fnk(z--u)dz du0 n=a t kxj '
t i t+x b

+ (1-p) [ Z D_\ (u) j Z fn.,( z-ujdz duQ ‘flag, '1 t  '3'
1: b t 1

+ (1-P) I Z Dn(u)I Z 1*‘i£(v-u)O == 11 ‘(=3

:3

97

13+]: b
x I Z r k(z-v)dz dv du (4.221: k.=j n



_Qs_a_.-38 Li(_1_;)_= The state is Um‘) at time z, a-14151»,

server is war king.

Then

t b

J

ii

t b
+1 Z‘, D('\1)

o

.13

t b fir t+x b
Pr {Wtsx} = of n‘£_jaIv1r\u) tf kilj fnk(z-u)dz du

-+ I Z: Ikluz j0 t

I1?

t+x1 rt
’Q2.§e_;§_i_f

Then

t i
+{Z.Dn(11)t ,1

O

:5

I9

.F‘.II“1=='

¥{

Server is working

t+x

$9

.3

:__&
—<

f
Yk(

t i nr t+x
Pr {w£=sx'}= of 55% Mr\u) tj fnb(z~u)dz du

t+x
f f (z—u)dz dub

b() Z‘, f (z-u)dz duT11‘

b

Z. My *1-11)

W

z-v)dz -iv du (4 23)

i): The state is (i,b) at time 1:, aéi4‘o.



t b 1; i k
+ of nga Dn(u) J Ea M_q(v-u)

17+:

1 ty fkb(z-v)dz av du (4 24)
§1§se  The state is (i,j) at time 1;, asi<b,

osj sa—2. Server is working.

Then

t 1
Pr {Wt 51:]-.= p+(l—p) of TE M2(u) tf Z, fnk( z--u)dz ut i b

+ (l—p) of Z Dn(11) ti Z fnk(z-11)dz du

.25

t+x b
3, 11213

99

t+x

k=a

t b t 1
+ <1-p) 1 2 I>n(u) r >1 M‘,§(v-u)O = 2

J
W

$3

—<

W

t+xI r
1;

1%

fYk( z-11) dz dv du

n t+x a—l+ (1-P) F 21:1 M1111) I "23 f (v-11)

O

.3

97

t k--1+1 nk
t+x cn a.-k-1I I ‘Z v)
V IIIFO

x H(t+x-w)

h*“*<w- 2 p, (M)

I­
O

WM8
Pi‘

'5

(t+x—w)dw dv du

>­
-<

i_-ii

-<



t+x a-lt i
+ (1-9) of nza 1>n(u) tf Z2 fn (v-11)

t+xI I
V

EH8

x H(t+x~w)

t b t 1
+ <1-p) O; >3 1>n<u> ur 2 Mf,<v-u) tr 2; 1 rrk w-v

.275

ii

97

::.:  k
h~XlI1(

WM8

-<

$9

MW
I-'

W-V) p'1(w"V)

O

p (t+x-w)dw dv du

P?’

»
~<

t+x a-l
r=a k=J+

t+x q> a-k-lI I »m‘Z h (Y-W) I13 u,(1r-v) H(1=+r-:1)= :20W Ill O

I

-<

mpqg
m’

*1;

(t+x-y)dy dw dv du (4 25)

Case §v): The state is (b,j) at time 1:, osjsa-2.

Then

b

Pr{Utsx} = of E‘ M2_(u) f Z, fnk(z-u)dz du
t+x

T|=a t kf-=3
t b

‘+1 E: I)(
Q 'q=9, n ‘I; ks-'-8. n

t+x b
u) [ Z‘, fk(z-u)dz du



i b ‘I; b
+[ Z D(11)f Z, M¥](v-u)O T]=8. n 11 =

-<

E§P“==*

t+xI It

D

fYk(z—v)dz dv du

t b n t+x a-1+ ; --,3 arm); 2'. fk(v-u)O 11:3, ‘t k=j-+-1 n

’c+x 00 a.-k-1
I I Z h*m(w-v) >3 u (w--v)v m= o i=0 i
x H(t+x-w)

-<

W

O

J

“N8

t b t+x a-1
+ f Z Dn(u) tf  fnk(v-u)

PT’

p (t+x-w)dw dv du

!-'~

"K

k=3+l

t+x co 1‘ m a-k-1I I Z h (W-v) Z ui(W—v)v m= 0 i=0
x H(t+x-w)

-<

snb13
Pi"

‘J.

pY(t+x-w)dw dv d‘



68

t+x a-1t b t b I
+ 6‘ €g§.D“(u) J! Zia Mn(v_u)tI k5§;1f1k(w-v)

t+x a) a-k—l= =0I I 21 h*m(y-W) Z. ui(Y-W)w m o i
x H(t+x-y)

-'2

swpqg
P7

‘J.

pY(t+x-y)dy dw dv du (4.26)

C_a,s_e @_rmi)_: The state is (o,j) at time 1:, a.-1 1'-;] eh.
Server is.under Vacation.

Then

P1'{ t a-1 n t 00 *m a—n-1wt“ } = 1 2: F,_.(u>; z; h (v-u) 2 pi(v-11>o n=o u m= 0 i=0

x [H(t+x-v)—H(t~v)]dv du

t b
+- f jjj D (u)

O

:5

3- k--l

sn

J

nkd
W

SMI-'

t
Fk( v-u) f £0 h*m( w-V)— n v ma o

1: 21 p (w-v) [H(t+x—w)-H(t-w)]dw dv du
1:10 1

(4.27)



lC__a,s__e_$vi_5:)_: The state is (0,3) at time t, osj sa—2.
Server is under vacation.

Then

ta.-1“ toom

W

Pr{\'lt£~x}=oj E0 Fr(u)v{ Zoh (v-u)

x [H(t+x»v)-H(t-v)] £5 pylt+x~v)dv du

t b

W

X

l*PL<
O

P‘

p (w-v) [H(t+x-w)-H(t-w1

In:

t a-1

k=a~i—fi

t
+ I z pm; Z 1-*<v-11>; h*”“(w-)O Una n H YZO n V

“ms
O@148

F‘

pi(v'u)

)1

00

x Q uk(t1-x--w)dw dv du (4.28)
k=a-i-Y

Remark

If we take p = 0 in the above analysis, we will
get the usual M/Ga’b/l queueing system with vacations ts the
server. If we take p = l, we will get the case of M/G/l
bulk service system with accessible batches in which all the
arrivals join for service until the capacity is attained.
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5.1. INTRODUCTION

Queueing systems with vacations to the server
hsve been studied by several anthers. Levy and
Yechiali (1975), Courtois (1980), Scholl and Kleinrcck(l983)
Lee (1984), Fuhrmann (1984) and Doshi (1985) analysed the

case of vacation models with exhaustive service, in which
each time the server becomes available, he works in a
continuous manner until the system becomes empty. The

case of vacation queueing models without exhaustive service
have been considered by Neuts and Ramslhoto (l984),Fuhrmann

and Cooper (1985) and Keilson and Servi (l986b). An excell­

ent survey on queueing systems with vacations to the server
has been given by Doshi (1986).

The case of Bernoulli schedules in vacation systems
is first analysed by Keilson and Servi (l986a). Using
oscillating random walk, they have proved that for a GI/G/1
vacation system with Bernoulli schedules, the ‘decomposition
property‘ holds for the ergodic waiting time. Servi(l986b)

70
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analysed the average delay in M/G/l cyclic service queue
with Bernoulli schedules.

In all the queueing models referred to above, the
existence of stationary distribution is assumed. Under
exhaustive service discipline, Jacob and Krishnamoorthy(l987)
gives the transient solution for a finite capacity M/G/l
queueing system with vacations to the server, using renewal
theoretic arguments. The case of a finite capacity
M/Ga’b/1 queueing system with vacations to the server is
analysed by Jacob and Madhusoodanan (1988).

Here we consider a single server queueing model in
which customers arrive at a counter according to a homo­
geneous Poisson process of rate p. They are served in
batches with maximum size B and minimum size 1. Service

times are independent random variables having distribution

function G1(.), if i is the size of the batch being served
and let gi(.) be the corresponding probability density
function. The waiting room is of finite capacity B, so
that each service starts with all the units that are
waiting for service at that time. All the arrivals that
are taking place when the waiting room is full are lost.



Server gO8S for vacation whenever the system

becomes empty and this vacation is called ‘compulsory

P
ct
1)

B
['14

vacation’. when a batch has just been served o"
other customers are present, server goes for vacation
according to Bernoulli Schedufa. That is, the server
accepts the next batch with probability p and ccnmences
a vacation with probability l-p. Hence there are two
types of vacations. One is the vacation started with
probability one when the system is empty, which is
repeated until there is at least one customer present
on return from a vacation (according to the terminology
of Doshi (1986), this is a multiple vacation). The
other is the vacation started with probability 1-p,

Qw

where the system is not ennty and this vacation peri­
-, -- 2- L 1 - - I . .- ' Q ’ - 5 =-' - .  ’  ‘ .'-Q ': ­cinnc. oe ertended for more than one period §i.e., this

'fl 4w~7 '“ +4 X I T c flPW“1n+4n A?la a Si@5¢e V&bfl¢*On;- A En] Case, O4 %J&f@Qu;wn Q;

a vacation, if customers are cresent, service is reeened- Q. ‘L J-Q Ii $1 ~ '-l'­

$5
W

The vacation periods independent and identically
distributed random variables having general distribution
with distribution function H(.) and iensity function h(.)t
Setting peo, we obtain the single service discipline in
which a vacation period begins after every service comple­
tion or after any vacation if the queue is empty. If we
set p=l, we get the exhaustive service discipline. Thus
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the single service discipline and exhaustive service
discipline are special cases of Bernoulli schedule
vacation system.

5.2. BASIC RESULTS

Let us suppose that at time zero, service starts
with 'a' units (l.saAB) in the system.

Now for j = 0,1, ..., B~l, let pj(x) denote the probability
that there are exactly j arrivals during the interval (o,x]

and let pB(x) denote the probability that there are at '
least B arrivals during the interval (o,x].

Then for j = 0,1, ..., B-1, we have

pj(X) = °_p§%B1)jand (5.1)
(X) = 25 °-p§%PX)j“B

:..1.

W

For lei sB and o£-.j 5B, let i’1J(x)dx be the probability
that at time zero, the service of a batch of size i units
is over in the interval (x,x+dx) and there are J accepted
arrivals during the interval (o,x].
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Then =
Now we can define the transition probabilities as follows.

For l:’~.j , k.éB, let hjk(x)dx be the probability that
service of a batch of size j is started at time zero, the
service of the next batch of size k units is started in
the interval (x,x+dx) given that on completion of service
of the first batch, the Waiting room was not empty.

Then for léj SB and l$k4B, we have

x k
hjk(x) = fjk(x)p +O{ _Z fji(U.)(l-p)h(X-11)pk_i(X-L1)d1.1

I-‘

F-'

and for 15;] 2 3, we have

I BX) =  x)p ‘POI
B1 Z uk( X-11) du (5.3)k=B-1

For lsi sB, define a vector of order B given by

_1;1_i(1) = (hil(x), hi2(x), ---. 1113(1) )



and another vecto

wher

Define a square matri

HI

Then

e T denotes transpo

_1:o( X) =  X 9

S8

(1) =
1

for lei 4 B, (gfi
order B.

For H = 1920 *~ 9

20

x #0 of order B gi

"hum  hlB(x)o

. hBl(x) .. 11 mi

U
F1

Z

. B, let

° BB
§

r of order B given by

( ) f (X),---,fB0(XDT,

ven by

i

n)(x) will be a vector of

n( ) (5.4)G) rof (h *'Z1Dfl ) xMn(x) = nth coordinate1 —i n: 0
and

K (1) = (h.»§H*n» 1' )(x)1 -1 n: O -0 (5.5)
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For this queueing system, we define busy period
as the length of time from the instant at which the
server starts service after a compulsory vacation until
the server starts the next compulsory vacation. The
time between the starting points of two consecutive
busy periods is called a busy cycle.

Thus we obtain the probability density function of a
busy period generated by i customers, leis B, as

Fi(x) = fio(x) +Ki(x) (5.6)
Now we look at the time points at which the busy periods
start and obtain the probability density function of the
time between two such consecutive points. That is, the
probability density function of a busy cycle.

For léi, j QB, let dij(x)dx be the probability that a
busy period is started at time zero with i units in the
system and the next busy period is started in the interval
(x,x+dx) with j units in the system.

Then

x x aa *m
dia-(I) = of Fi(X)1{ mgoh (v—11) uo(v-1-1)

x h(x-v) pj(x-v)dv du (5.7)
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Now define a vector of order B given by

_<;a<x> = (dale),  <1aB<x>>

and a square matrix ID of order B glven by

1|

’ all(1) ... alB(x)§
"(‘) “ H 5 a

dBl( x) . . . dBB( x)l

We
°e

Then (gar *n)(x) will be a vector of order B.

For lsn sB, let

@

Dn(x) = mm coordinate of (Q + 2 r[>*n)(x) (5.89' n= 0

Finally, the state space of the system is given by

8- {(1,3) ]o.s1,jeB}

For lsi sB and o sj sB, the state (i,j) denotes
that a batch of 1 units is being served and there are
J units waiting at that time. Also for 0 sj sB, (o,j)
denotes the state that the server is under vacation
and there are J units waiting.



78

5.5. THE SYSTEM SIZE PROBABILITIES

For osi, j.eB, we can define Pij(t) as the
probability that the state of the system is (i,j) at
time t. Note that the first busy period is started
with the service of ‘a’ units. Considering all the
mutually exclusive and exhaustive cases, the following
relations can be cobtained.

For 0.-ejsB, we have

P . t = l-G t . taJ< > [ a< > 1 pJ< >
1;

+ of M:(u) [l-Ga(t-11)] ,.1j(t-u) du

~+ I D ‘Y -H: .-u - du

O
cf

93 "¥
¥-I

\~.-I‘

1"-"1

|,....l

'3
$19

r"“\
i‘

‘\-/
-L...-J

'3
LJ¢

/""\
cri­

$3’\.-/

1;e_1;a JP
+ J’ égi Dn(u)€' Mn(v—u)[l-Ga(~-v)]

x pJ(t-v)dv du (5)9)
POI‘ i '3 1,2’ 00¢, a""'l,  .00, B and  -‘QB, W8

1;

PiJ.(t) = of M;(u) [l—G (t-11)] pJ.(t-u)du1



Also, t B B
P (t) - y 2 rk(u)(1-p)[1-HM:-u)] 1»: u (t-man

x pj(’G—V)dV du (5 10)

t B
+ or TE]. Dn(u) 11

“‘* ¢+

:55»­
/‘K

1;

+ OI Di(u) [1-Gi(t-1.1)] |.1.j('t-11)d1.1

v-u)[l-Gi(t-v)]

OB o 1:.-=1 a ~i=B-ki
1: B n

+ f Z Ma( u)0 n==l
B

x Z, p.i(t-v)dv dui=B-k

c:..\‘+

Fflw
H
SH»

k( v-11) (1-P) [1-H(’¢-v)1

B

x Z’, pi(t-v)dv dui=B-k

1: B t B J t B+ Z11(u)f Z3 M(v—11)I Zf-k(w-v)(l­of r]=ln u ja-:1 n V K113
B

1 [1-I-I(t-w)] 1-E,-kp1(1:-w) dw dv du

t B 1: B
+ I ‘E.Dn(u)I Z‘. fn (v-u)(l-P)[l-H(’¢—v)]o 1,.-=1 uk=l k
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t t oo rm
+1 Fa(u)I Z h (v—u)uO(v-H)0 U. I[l= O

x [1-H(t~v)] pB(t—V)dV du

EL

“‘d­
M8

I3’

t B t
@'f nnm 1 Fn<v- *“<w-vn» (w--V)O 1.1 V

J
I-’

ijZL m= o O
1 [1-H(t-w)]pB(t-w)dw dv du (5.11)

or j = 1,2, ..., B-1, we have

t 3
P03-(*6) = I Z fak(u)(l-P)[1-H(‘¢-u)]uJ_k(’¢-u)d110 k=l

+ art jg lM;‘< 11> I 5;; 1rnk<v-u><1-p>[1-an-v>1

x pj_k(t-v)dv du

+ ft ‘Z1_31Dn(u) Id £1 fnk(V-'1l)(l-P)[1-H(t-V)]O n=l u k=l
1 pj_k(t-V)dV du
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t B t B 1 t J
+<>I TElDn(u)ur 1g1H“(V_u)vf kglfikw-v)(l_p)

x [1-H(t-w)] pj_k(t-w)dw dv du

¢__,_d

We
05'

t
+»_[ Fa(u) *m(v-u)po(v-u)[l-H(t-v)]o

x pj(t-v)dv du

t B t t OD
+ j’ Z Dn(u)f Fn(v-u)f Z h*m(w—V)p.°(w-V)0 n=l u v m= 0

x [1-H(t-w)]pj(t-w)dw dv du (5.12)

Finally,

t t 00
POO(t) = df Fa(u)fi mile h*m(v-u)pO(v-u)

x [1-H(t-v)]po(t—v)dv du

a­

U1

a­

a­

8

f §j_lD_q(u)fi[‘ Fn( v-uo n=

1 [1-H(t-w)]p.o(t-w)dw dv du (5 13)

-=1:

W
OD‘

*m(w-v)p°(w~v)
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5.4 VIRTUAL WAITING TIME IN THE QUEUE

Let wt be the virtual waiting:time in the queue
at time t. The probability distribution of Wt is computed
here, conditional on the state of the system at time t.
It should be noted that we have already computed the system
size probabilities and hence this will give us explicit
expressions for the virtual waiting time. Further, it
is to be noted that even if the waiting room is full,
the virtual customer can join the queue and enter for the
next service along with the waiting customers.

We consider the following cases seperately.

Case §i]?: The state is (i,j) at time t, 0415.13 and
05-j $13, so that the server is working.

Then It I!
Pr {wt 51;} = °{ M‘;(u) [Gi(t+x-u)-Gi(t-u)_}p du

t t+x
+[' M:(u) _f Gi(v-u)(l—p)H(t+x-v)dv duo t
+ J? Di(u) [G-1(t+x-u)-Gi(t-u)]p du0
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t t+x
+1 Di(u) tf Gi(v-u)(l-p) H(t+x—v)dv du0

t B t 1
+f Z D (1.1) I M (V-1.1)[Gi(t+x-v)-G.(t-~>r)]p dv du0 n=l n u n 1

1; B ‘b 1 t+x
+ 1 >: 1>n<u>r M (V-11> 1 eiw-v><1-p)0 u n t

:3

l—'

x H(t+x-w)dw dv du (5.14)

Case §ii): At time t, the state is (o,j), l.2j:aB.
Server is under vacation

Then

t t av ‘m ‘
PI: {Wtéx}-of Fa(u) vf mzoh (V-u)p.0(v-u)

x [H(t+x-v)-H(t-v)]dv du

Ci‘

U5

d‘

<__d_

We
Q

I3’

+0; nE§lDn(u)J Fn(v-u _ *m(w-v)].1o(w-V)

x [H(t+x+w)-H(t-w)]dw dv du
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t J
+ ; 2 fak(u.)(l-p)[H(t+x-u)--H(t--u)]duo k=l

13 B n t j 1
+ of ngl Ma(11)uJ' ;_;‘.lfnk(v—u)( -P)

x [H(t+x-v)-H(t-v)]dv du

t B <> t Jr < ><1 >5; 1: $3 v—u -P
+0r 1q=l nu uf kl nk

x [H(t+x»v)-H(t-v)]dv du

I) v-u w-VtB()tBMi()tjf()+oI11l:lnux{iE=:l '1 vi IE1 ik

x (l—p) [H(t+x—w)-H(t-w)]dw dv du (5.15)

Case_§ii}): At time t, the state is (0,0).
Server is under vacation.

Then

¢‘|"

¢~_‘+

BN8

Pr {wt sx } =- I Fa(u) h*m(v-11)uo(v-11)O = O
x [H(t+x-v)-H(t-v)]dv du

t B t t oo m
+ 1 Z,lDn(u) I Fn(v-u) I Z011 (w—v)u°(w—-v)Q T]: U. V IIl=

1 [H(t+x—w)-H(t-w)]dw dv du (5.16)



Chapter 6

AN (SL5)-INYENT0BIi§¥STEMcWlT§-RANDQMLBEPLENISHMENT

6.1. INTRODUCTION

Inventcry'systems based on (s,S) policy has been
studied quite extensively by several authqrs. A systematic
account of the probabilistic treatment in the study of
inventory systems using renewal theoretic arguments has
been given by Arrow, Karlin and Scarf (1958). A valuable
review of storage systems was given by Gani (1957).
Hadley and Whitin (1963) deals with the applications of
mathematical models to practical situations. Tijms(l972)
gives a detailed analysis of (s,S) inventory systems and
chapter 3 of his monograph deals with the probabilistic
analysis. Sivazlian (1974) considers the case of arbitrary
interarrival time distribution and zero lead time.
Srinivasan (1979) analyses the case of arbitrary inter­
arrival time distribution and random lead time. The
same problem with two ordering levels have been considered

by Thangaraj and Ramanarayanan (1983). Sahin (1979) eonsiders
the case of bulk demands and constant lead times. In all
these cases, the probability mass function of on hand
inventory is derived and the associated optimization
problems discussed.

85



86

In this chapter we consider a continuous review
(s,S) inventory system with time between unit demands and
lead times random variables following general distributions.
In all the cases discussed in the past, whenever the level
drops to s or below, an order is placed for a quantity so
as to fill the inventory, and after a lead time the entire
quantity ordered for is received. But in practice, this
may not be the case. If the items have very high demand
in the market, we may not get the full amount we have
ordered. The item will be replenished according to the
availability with the supplier. So it will be reasonable
to assume that the quantity replenished is random which
lies between a fixed lower level and the quantity ordered.
Here we consider this problem and using renewal theoretic
arguments, we derive the probability mass function for the
stock level at an arbitrary time point t.

In section 6.2 we give the assumptions underlying
the model and the notations used. Basic results regarding
the transition probabilities are given in Section 6.3.
In Section 6.4, we derive expressions for the probability
distribution of the inventory level at arbitrary epochs.
We find the expected value of total inventory carrying cost
and the total expected profit due to sales over a time
interval of length t, in Section 6.5. Section 6.6 deals
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with the case of zero lead time, and there the probability
distribution of the inventory level is derived under such
a condition. The steady state solution is also obtained
in this section. Using this, the associated optimization
problem is discussed in Section(5.7. Finally, we give
some numerical results.

6.2. THE MODEL

Let us consider a warehouse of maximum capacity S
and suppose that initially the warehouse is full. Due to
incoming demands, the stock level goes on decreasing. The
demands are assumed to occur for one unit at a time and the

time interval between consecutive demands form a sequence
of independent and identically distributed random variables.
Whenever the stock level drops to s, the reorder level,
an order is placed for S-s units. We assume that S:>2s
to avoid perpetual shortage. The lead time for materializae
tion of an order is assumed to be arbitrarily distributed
random variable, independent of the stock level and the
time between demands. Further, lead times are assumed to
be independent and identically distributed random variables.
The market considered here is assumed to be competitive

enough to rule out backlogging of demands and the demands

that emanate during the stock out period are deemed to be



lost. Since the market is competitive and there are
sufficient demand for the item, the supplier may not
be ready to supply (or may not be in a position to
supply) the whole amount we have ordered. Thus, even­
though the order is for a fixed quantity S-s, the
replenishment is by a random quantity. The quantity
replenished is assumed to lie between s+l and S-s. The

probability that replenishment is by a quantity i is pi

for s+l 5 i s S-s
S-s

such that Z pi=l. Then the stocki=s+l

level can be described by a discrete-valued stochastic

process { I(t), tZ~0} with 1(0) = S. The epochs
corresponding to the arrival of demands constitute a
renewal process

N0tatiOne

I(t) stock level at arbitrary time t

rt(n,t) Pr {1(1=)=n}1(<>)=s}
F(~), f(-) Cumulative Distribution Function (CDF)

and probability density function (pdf)
of the inter occurrence time of successive
demands.



89

G(.) , g(.) CDF and pdf of lead time

’E"(.), -(§(.) 1-F(.), 1-G(.) respectively

(x)dx probability that due to the first
demand after-order realization, the
inventory level drops to i in the
interval (x,x+dx), given that the
order is placed at time zero when
the level was s. (s <-isS-1).

f .s,i

Sfs(x)dx probability that an order is placed
in the interval (x,x-I-dx), gven that
the previous order is placed at time
zero.

6.3. TRANSITION PROBABILITIES

It is to be noted that the successive time points
at which the inventory level drops to s will form a renewal
process. Since the initial inventory level is S, this will
form a delayed renewal process. We can derive the renewal
density function for this delayed renewal process, by

using the transition probabilities_f8,i.

Considering all the mutually exclusive and exhaustive cases,
we can write expressions for the transition probabilities
as follows.

fs,s_l(I) = 6(1) PS_8f( X) (6-1)



For S-s.~$iéS-2, we h

fs,i(X) = G(x)

I
+-r0 J

For 2s si .-=:~S-9-1, we

fS,i(1) = G(X)

+
"W4

0 J
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ave

pi-s+l f(x)

S-i-l .
;§l r*J<u>[e<x>-e<u>1

X Pi+j-s+l f(X'“)d“ (6'2)
have

Pi-3+1 f(X)

1-.;

CD

0
1,* \ ,,

Z1 if "£112 [G(:i}—~}£*~1}}

X p . 1 ?(A—u)du

x rn
-1-] Z, fo :1 o

For s-+15 5.528-1, we

x
f (X) =1 Z

"'5'4.'_.=_

% *“*s<u>£@<x>-@<u>1pi+lf<x~u>du

(6.3)
have

s—l *3f (u)[G(x)—G(u)]pi . lf(x-u)du

+
0%“
WP1s

r*m""’(u) [e( X)--G(11) ]pi+lf( I-U.)d1.1 (6.4)



Finally,
X

fs s(X) - I f*m+S(*~1) [G(X)—G(1l)]PS+lf(X'~11)d1l’ 0

EH8

(6.5)

Using equations (6.1) - (6.5) W8 can Write

Sf8(x) = df igggl fs,i(u)f {xwu)du+fs,S(x) (6.6)

Hence the renewal density function of the process is given
by

CD

Rm == misc srs*“’(><) (6.1)
and the renewal density function of the delayed renewal
process is given by

1.1

M(u) = 1 r*S'S(v) R(u-v)dv (6.8)O .
6.4 MAIN RESULTS

The principal quantity of interest is the probability
mass function of the inventory level at any arbitrary point t

on the time axis. That is, Pr-{I(t)=n)I(o)=S} for n=O,l,2,..,
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Suppose that we consider the sequence of events
consisting of the times at which the inventory level

reaches s (the reorder level). Let Y1 denote the time
elapsed from origin until the first event occured. Y2 be
the time elapsed between first and second events and so

on. The sequence of random variables {Ykl}, k=l,2, ...
form a delayed renewal process [see Cox (l962)]. In each
of the following expressions, we will make use of the
renewal density M(u) given by (6.8).

Now considering all the mutually exclusive and exhaustive
cases, we will get the following equations for'the inventory
level probabilities.

j t Z
'n;(S,t) = F(t) +[M(u) F(t-u) G(t-u)ps__s du (6.9)

O

For S-s < n < S, we have

n<n.1=> = [F*S"“<1=> - F"S*"*l<+=>1

wt M(u) En [FiFJ(t-u)-F*j+l(t-u)]O J-"=1

x G(t-u) pn+j_s du (6.10)



“(S-s,t) = [F*s(t) - F*S*1(t)1

+ f M-(u) f0 u

1: - . .
+ fM(u) fig? LF*J(t-u)-F*1*1(t-u)]O j=l

x G( t-u) p

1; 17

x LG(t)-G(v)]pS_s F(t-v)dv du (6.11)

For 2s<n<S—s, we have

Z
I]1=O

S-2s+j d“

00
f§lIl+S( V_u)

n(n,t) = [F*S'n(r) - F*S'n*1(t)]

+ F M(u) F(t-u)-G(t-u)pn_S du
O

+fM(
o

+

ci­

c+

(0

H) I Z3U. J=l

I-'

U2

C-1.

“ f 'j( v-1.1)

:M~

r l
X G( V-u) pn+j+k_s |_F*k(‘b-V)-F k+ (1;-v)]dv du

O.__‘d_
2
5

¢__d_
a

P18
OH:I

m*s(v_u)[e(t)-G(v)1pn‘?(t_v)dv du



1; 17
+{N(u) IO U.

Ema

§m+S ( _V_u)

_ LG(W)-G(V)]Pn+j

<:N““¢r

02
CJ

Mm
I-'

33

X [F*J(t-W)-F*J*1(t_w)]aw dv du (6.12)

For s+l.<-2 n 5 2s, we have

n(n.t> = [F*s'”<t)-F's"“+1(t)1

t r S-l S-n-j ,.+[ M(11) I Z Z, f J(v-u)O ‘L1 j=l k=S-j

k k 1
X G(v-u)pn+j+k_S[F* (t-v)-F} + (1:-v)]dv du

#111-I-S -'

H:

+

0+6’
ll
8

::~.,ds
["18

1; t 17
+]'M(u) ; §§ f*m+s(V—u)f [ ( ­0 u m= 0 v j=l n+

x [F*3(t-w)-F'3*1(t-w)1aw dv du (6 13)

U}

Mm
E3

(v-u)[G(t)-G(v)]pn F(t-v)dv du0

Gw) G{v
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n(s,t) = _F M(u)'§(t-u)'?(t-u)du (6.14)
o

For o<n<s, we have

t as-n »s~n+ln(n,t) = ‘(M(u) G(t-u)[F (t-u)-F ' (t-u)]du
0 ,..

(6.15)

Finally,

t
1c(o,t) = ; M(u) -§(t-u) F*s(t-u)du (6.16)

0

6.5. INVENTORY CARRYING COST AND CUMULATIVE PROFIT

If the cost of carrying is constant and depends
only on the amount of commodity in the inventory, it can
be taken as unity per unit time, without loss of generality.
Then the total inventory carrying cost C(t) during the
interval (o,t), where 0 is our reference point at which the
stock level drops to s, in given by

t
U(t) = f I(u)du

0
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Taking expectations on both sides we get,

S tE [C(t)] .-= Z, n jn(n,u)<1u (6.17)

I3

I--'

O

where n(n,u) is explicitly given by (6.9)-(6.16).

Let a be the profit that is realized in the sale
of each item and we denote by P(t) the cumulative profit
due to sales in the interval (o,t), where o is our refer­
ence point coinciding with an order point. We now
proceed to obtain explicit expression for the expected
value of P(t).

Now we define w(n,t), for sgn -55-1, a8

1V(n,t) = Probability that due t0 a demand in
(t,t+dt), inventory level drops to n
and no ordering takes place in the
interval (o,t_1, given that an order
was placed at time zero.

Considering all the different cases, we obtain the
following equations.

For S--s 5 n s S-l, we have

S_n ri
~u(n,t) = 551 f (t) pn_S+iG(t) (6.18)
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For s+l an s S-s-1, we have

'~4’(n9t) =

\..-\€+

U1

0 4

‘t

+I
0

Also

F51 ktl n+3+ -s

X

I-'

Er1a

F-7

S-n-j _
:3 f*3(u)e(u)p .K £'k(1;-u)<1u

f u) G v-u)pI Ezl n+k
f*k(t-v)dv du (6.l9)

L)-!(S,t) :: SfS(t) (6020)
For Ogn 4s, we have

1»<n.t> = r*B"”<t> t<t> (6.21)

Now we define P(n,t) as the probability that
there occurs a demand during the interval (t,t+dt) by
which the stock level drops to n conditional upon the
stock level has dropped to s in an arbitrarily small
interval preceeding time zero.

Then P(n,t) can be written as

P(n,t) = 1#(n,t) +-_FR(u)1v(n,t-u)du (6.22)
o

where1v(n,t) is given by (6.18)-(6.21) and R(u) is
given by (6.7 ).



Now we can find out the expected value of the

cumulative profit due to sales in the interval (o,t),
with 0 chosen to coincide with an ordering point, as

S-l tE[P(t)] =:1 E: f P(n,u)du (6-23)

$3

O

O

Thus the probability mass function n(n,t) and
the coincidence function P(n,t) enables us to determine
the expected value of the inventory carrying cost and
the cumulative profit due to sales over any period of
time. The cumulative cost of reorders can also be dealt
with directly by evaluating the expected value of the
number of reorders.

6.6 THE MODEL WITH ZERO LEAD TIME

is a particular case, if we assume that the lead

time is zero in the above model, then {I(t), t >0] will
be a discrete valued continuous parameter stochastic
process taking values s+l, ..., S. Here the sequence
of random variables {Yk} , 1; = 1,2,  forms a delayed
renewal process in which the distribution function of

Y1 is given by
Y _

Pr {Ylsy} = of f*S s(u)du
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»— 151x050? ­

and the distribution function of Yk for k.= 2,3, ...,
is given by

Iy S-3 ' r:-- < Q “.'+"\.
Pr  $27 Y =  Z 1 f*l( 11)  "'7 '//»‘;:;A6‘  4"‘o i=s+ ‘ll?

Let its density function be denoted by h(.). The
probability that the kth order, k=l,2, ..., Will be
placed in the interval (t,t+dt) 13

Pr {t <Yl+Y2+ .. . +Yk*_~t+dt}

._ k_= (F3 Sm‘ 1)(t), k=1,2,

Then the renewal density of the delayed renewal process
is given by

M(u) = _F’f*S'S(v) E? h*k_l(u-v)dv (6.24)0 k= 1
Now considering all the different cases, we can get the
probability mass function of the inventory level I(t)
as follows.

1:

1t(S,t) = 'F(t) + y M(u)'1~‘(t-u)pS__s du (6.25)O



For 2s+l<n <8, we have

n(n,1=) = [F*S‘n(*c> - F*s“‘*1(1:)]

t S--I1 {j ‘j

100

+fM(u) Z, p . [F (t-u)-F (t-u)]du

For s < n 2 2s+l, we have

n(n.t) = [F*s"n(t)—F*S'“*1(t)1

t S-n
+0I  U.) j:2‘g:+l-n pn+j_S

(6.26)

x [F*j(1=-u)_F*3 "1(t-11) ]du (6.27)

Now we can find out the stationary distribution of the
inventory level probabilities using Laplace transforms

O0

Let ?=(n,z) = ; e Z“ 1t(n,t)dt
0

£(z) =.- F°e'~"“ f(:)<11;
O



“ Q) -zth.( Z) z I e
O

Then

fi(z) = ?°e'“'° M(t)<1t
O

= 5% [%<z>1S's [1-i1<z>1"1 <6-28>

Then by taking Laplace transforms on both sides of
equations (6.25)-(6.27) we get

&<s,z> = § {[1-§(z)]+ pS_s[1-£12)1£§<z>1S'°[1-£<z>1'1]
1­

For n = 2S+2, ..., S-l, we have

A , s- A _ ­
4i<n,z> = § {£r<z>1s‘n[1-rm] + an p mms 5*“j=o n+j-s A

101

(6.29)

X [1-5(2)] [1-fi(z)]'1} (6.50)
For n = s+l, ..-, 2s+l, we have

€<n,z> = % {[§<z>1S"‘ [1--%<z>1

+ 35? p £%<z>1s‘s*j [1-%<z>1£1-£<z>1'1}j=2s+l-n n+j's
(6-31)
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Bet Pn be the probability that exactly n units, n=s+l,...S
are in the inventory in the steady state.

Then

1.
Pn = Pr {I=n} = tfw n(n,t)

li *
= z_fO z n(n,z)

Thus

_ lim
PS Z->0 [1-M1 +i1::x, pS-8rf<z>f"s1-h(z)

_ lim
_ z_+o ps [£(z)]s—s~;iL2l [Using L'Hospital's ruleI“S h (z)
_ EX_ PS-s EY (6'32)

where X is the random variable denoting interoccurrence
time of successive demands and Y the random variable

denoting time between.successive orders.

For n=2s+2, ..., S— l, we have

_ lim ‘ 3-n “ lim S'n “ S-s+j l-%§z[
Pn _ z_,0[f(z)1 [1-f(Z)1+ z_;o j>5oPn+j_s[f(Z)l l_fi(Z)

?



= Z P '_ AZao J=0 nu S h'(Z) rule]
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S-I1 A S"'S+j Alim [f(z)] 3:l3Q[Using L'Hospital's

S-n:: Z, P .
J30 n+3-s EY

E3
EY

B2

S-s
(6.33)

c_4.

“I4
CD

‘U

-itj­ 3'

For n = s+l, ..., 2s+l, we have

li A S_ A
Pn 2 z-To [f(z)] n [l'f(Z)] + z-+0 jiEg+1_n pn+J-s

S-n

X rim]

lim

l-lt1( z)

_ E2
j3-0

i1

EX
EY

E3
EY

S-s
Z1 P

j=s+l 3

U)

I5

(6.34)
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Thus the steady state probabilities are given as follows.

For n = 2s+2, ..., S, we have

_ EliPn - EY

(.1.

s[4U’

0-1j

(0

P3. (6.35)
and for n = s+l, ...., 2s+l, we have

BX

In this case, if we take pS_s==l and all other pj ‘s
equal to zero, we will get the results of Sivazlian(l97¢).

6.7 AN OPTIMIZATION PROBLEM

Our objective function is the steady state total
expected cost per unit time. We have to choose the
decision variables s and S—s = Q so as to minimize the
objective function.

Let R denote the expected quantity replenished

S—sioeo R = Z n
n=s+l

Also R = %%

pn



Let D denote the expected number of demands per unit
time.

Then
_ _r r  errrrfixnectedr Quantity _rgplseni,shed  someD i i i i  i

Therefore

EY

Therefore the expected number of orders placed per unit
time is

1 _ 2_if? — R (6.57)
Expected inventory level at any instant of time is

E[I

10

z Expected time elapsed between sficcessive orders

_ _B_"BY

= .E_
5

s+Q
E1

n=s+l

Q

s + égi n PS+n

Q Q 1
s-+ E1 11 {Q filpj

$3

I1 Pn

P"

c..|.

ii

$3
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Q Q- 8-l-% Z; ; npj (6-38)

33

P’

L4

I3

The total expected cost per unit time is given by

F(s,Q) = ii-%Y-‘*3 + n E[I]

where K is the fixed order cost, 0 is the variable procure­
ment cost per unit and h is the holding cost per unit per
time.

Using equations (6.37) and (6.38) we get

Q Q
F(S,Q) = Q + CT} + hs -|- 21- Z, in p (6.39)R Rn=l J-an j

where s is a nonnegative integer and Q is a positive
integer. Equation (6.39) gives the objective function.
Since the lead time is zero, it is very easy to see that
the optimum value of s is s'= 0. Then the optimum value
of Q is obtained by minimizing the function

KT)‘ - n Q Q
F(Q) == T + CD + “i ngl  I1 pj (6.40)

over the set of positive integers.
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Since R is a function of Q, the first and last
terms are functions of'Q and we can show that there
exists optimum values of Q that minimizes the cost
function F(Q). We will explain it by considering the

special case that all the pj's are equal. When all the
pj'S are equal and equal to p, we get

P: Q2

Then the expected quantity replenished is given by

Therefore

F(Q) =

2':

3

Q 2_l Qisrl)R .. iEl1..Q Q 2

2KD
Q+l

21:1)

Q+'1

2KD
Q+l

Q+l
2

_ Q Q
+~cD +-gE- IQ $1 n. ;Q n 1 3 n Q+1 = .2

05 + 2h ‘E, n( Q-n4-1)
Qt Q+1) nzl

+ cD + § (Q+2) (6.41)
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It is easy to see that this function is convex and the
optimum value of Q, Q* exists which minimizes (6.41).

Then Q’ is approximately given by the integer nearest to
/6K5T - 1­
That is

q*§ /-£5-gt? - 1 (6.42)
To illustrate this, we give a numerical example, by
assuming different values for h, K and D, in table l.

Instead of considering this, if we are following the
same procedure as that of Sivazlian (1974), we will get

Q*(Q*+l) -2 9%’ e(Q*+1) ( Q*+2) (6.43)

In table 2 we give the numerical values obtained for this
case.

If we take é%2 = 80, then Q* = 8.

If égg = 42, we get Q’ = 5 or 6 and table 1 suggests that
Q‘ could be taken as 5.



Table 1: Optimum values of Q for different values
of h, K and 5

10

Q~I>

"15  999fi;1B“22“9”   ”1i£1*5";9  2 2 K;2O 9 W" :1

1.4

0.2 7 4 2
0.4 10 6 4
0.6 12 7 5
0.8 14 9 6
1.0 16 10 7
1.2 18 11 7

19 12 8
1.6 20 13 9
1.8 22 14 9
2.0 23 14 1O

8

12

15

18

20

22

24

26

27

29

5 3 10 6 47 5 14 9 6
9 6 18 11 7
11 7 21 13 9

23 14
26 16

17

19

20

12 8 10
14 9
15

11

10 28 12
16 11 30

32

34

13

14

14

17

18

1212 21
\



Q’ 0 1
Q'(Q*+l) 0 2

(Q*+1)(Q*+2) 2 6

llO

T able 2

_. . _- _.. _i __.- i  _l% . a __ _ -_ L _

2 3 4 5 6 7 8 9 l0 ...
6 12 20 30 42 56 72 90 110 ...

l2 20 30 42 56 72 90 llO 132 ~~­

Remark:

The model analysed in Section 6.3 can be extended
to allow vacation to the server whenever the system becomes

empty. In that case also, one can write explicit expressions
for the inventory level probabilities at arbitrary epochs,
but the optimization part seems difficult.

in



Chapter 7

AN~L§+§D-INYENTOBI»sYSTEM~yITfi BULK DEM4ED$

A-N13 it VAC ATI 0N_S- -'I'QTI'1E §ER_VER

7.1. INTRODUCTION

In this chapter we consider a continuous review
(s,S) inventory system.with random lead times. We assume
that the time between demand points and quantity demanded

at these points are independent sequences of independent
and identically distributed random variables. The lead
times are generally distributed random variables depending
upon the size of the order. Whenever the inventory becomes
dry, server goes for vacation of random duration having a
general distribution. No backlogging of demands is allowed
and all demands occurring when the server is on vacation
are lost.

The probabilistic analysis of (s,S) inventory
system using renewal theoretic arguments is considered by
several authors. For instance, Arrow, Karlin and Scarf(l958)
and Tijms(l972) contain detailed treatment of these models.
Srinivasan (1979) considers the case of unit demands and
random lead times. The case of bulk demands and constant

lead times is considered by Sahin (1979). Gaver (1959)
analyses the case of compound Poisson demand and random lead

lll



times. Ramanarayanan and Jacob (1987) analyse the case
of general bulk demands and random lead times.

The effect of vacation periods in inventory
theory is first analysed by Daniel and Ramanarayanan(l987
a,b). Usha, Ramanarayanan and Jacob (1987) consider the
case of unit demand, finite backlog of demands, random
lead times and vacations to the server. Here we consider
the case of bulk demands, random lead times and vacations
to the server and derive the time dependent solution of
the inventory level at an arbitrary time point t.

7.2. ASSUMPTIONS OF THE MODEL

l. The maximum.capacity of the inventory is S.

2. An order is placed to fill the inventory
whenever the inventory level falls to or
below s.

3. The inter-occurrence time of demands are
independent and identically distributed
random variables with distribution function
F(.) and density function f(.).

4. The quantity demanded at each demand point
is a random variable which can vary from
l to b where s<:b<:S-2s-l with probability pkb

for demanding k units, such that Z pk=l.k=l

112



5. The lead times are independent random

6. ‘

1:‘

variables depending on the size of the
order If an order 1s placed at level i,
c><ih5s, the lead time has distribution
function Gi( ) and denslty function gi(.).

Whenever the inventory becomes dry, server
goes for a vacation of random duration
haying distribution function H( ) and
density function h( )

7. The inter-occurrence time of demands,
quantities demanded, lead times and vacation
periods are all independent.

8. Arriving demands are lost during the inventory
dry period and the vacation period of the
server.

O’? aiicons

Ems
‘U

Pi‘

N
PT‘

¢( Z)

. . Kpin coefficient of z in [@(z)]n

q<v> 15 r*°< V)n= l

ll
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ni(t) The conditional probability that the
inventory level is i at time t, given
that at time zero the inventory level
was S and the demand process starts.
(1 = 0,1,2, ..., s).

hi’j(x)dx The conditional probability that due to
some demands, inventory level drops to j
in the interval (x,x+dx) given that
inventory level was i at time zero and
there is no replenishment during the
interval (o,x] (i > j >/0) .

Now consider the time points at which the first
demand after each order realization occurs and look at

the inventory level at these points. S is the level
at time zero and if n(s-s-be n 5S-l) is the level after

the first transition, fS,n(x) denotes the probability
density function of the transition time. Similarly
if n is the level at one such time point and Y is the

level at the next such time point, fn Y(x)(S-s-bsn,YsS—l)9

denotes this transition time probability density function.
Transitions can occur with a vacation period or without

a vacation period during lead time. Let lfi,J(x) denote
the transition time probability density function with

a vacation period and let 2fi’j(x) denote the transition
time probability density function without a vacation period.



Let

It is a

ll

X) = (fS’S_S_b( X) 9fs’S_8__b+l( X) 9'°°:fS,S_l( 75))

vector of order b+s.

Now we define a square matrix F of order (b+s) given by

l

r

F'(X)==§
5

7'‘ f

Then (f -r

S-s-b,S-s-b(X) "' fS-s-b,S-l(x). \' \
fS_S,s_S_b(x) ... fS_l’S_l(x)

4L

oo

__s nfi F'm)(x) will be a vector of order b+s.= o

T] =  000 9 S"'l,

Fn(x) = (n-S+s+b+l)th coordinate of
m urn(§S*Z F )(x) (7-_l)I1= O

7.3. TRANSITION TIME PROBABILITIES

First we find out the expressions for hi j's.I



116

For i = s+l, ..., S and j = 1,2, ...,i, we have

co s+b x *n_l n_lh. . , = . — . .
l,J(t) £511 égé+l 4' f (u)P1_k f(x u)pk_J du (7 2)

For i = s+l, ..., S, we have

I40“

cn s+b x n_l _h. (X) = 2 2 ; f* (u) P (X-u) <1u<'r.s)1'0 I1-"-= 1 k-=8-l-l O _ j=£ J

P’ U

P7}-'
Ha

‘U

For i = 1,2, ...,s and j = 1,2, ...,i, we have

b

h. .(x) = E Si [Xf*n_l(u) P§_?; f(x-u)p, , du (7.4)l’J n= l k=s+l 0 “P 5"“
and for 1 = 1,2, ..., s, we haveb b

h no = Q 2 rx f*"'l<u>P”"1 rm-u) 2 p- du (7.5)i'° n= l k= l 0 i'k j=k 3

Now the following relations for transition time probabilities
can be easily obtained.



For S-s-ban $8-l, we have

x s x x
lfs’n(x) = of ii: ohS’i(u)U{ hi,o(v-u)v{ q(w-v)

I [H(I-W)-H(W)] [Gi(x-W)-G3-_(v)]

x f( x--w)pS_i_n dw dv du (7.6)

F011‘ 3-bé T]$S-l, we have

x s x 1
2fS,n(x) -.= of E50 hS,i(u) I 'Z_hi,J.(v-u)Gi(x-v)

F3

e._1.

i—'

x f(x--v) pS_i+j_n dv du (7.7)

Now for n satisfying S-ben -.'=S-l, we have

fS’n( X) = lfS,n(x) + 2fS,n(x) (7.‘8)

and for S-s-bsn £8-b--1, we have

fS,n(X) == lfs,n(X) (7.9)

ll



Now for S-s-b_;_n , Y ='-.8-l, we have

>4

|­
F1m
cs"

>4

N

lfn,Y(x) = of _= On,i(u)u[ hi’0(v-u)v[ q(w­

x [H(x~w)-H(w)] [Gi(x-W)-G1(v)] f(x-w)

x pS_i_Y dw dv du (7.10)
For S-s-bs né B-l and S-bsys S-1 we have

v)

x s x i
2f (X) = I 2 hn  E hi,‘-j(v“u) Gi(x"'v)

r-'

THY O 1:1 ii u J:

x f(x-v) pS_i+j_Y dv du

Now for S—s-bsn 28-l and S-bay 2.5-1, we have

fn,Y(X) = lfn,Y(x) + 2fn,Y(x)

and for S-e-bsn-1-S-1 and S-s-bsy $3-b-l, we

ffi,Y(X) = J-fn:Y( X)

have

ll8

(7.11)

(7.12)

(7.13)



From equations (7.8) and (7.9) we get all the entries

of vector_§S and from equations (7.12) and (7.13), we
get all the entries of the matrix I-" . Now we derive
the expressions for inventory level probabilities using
the above equations.

7.4. INVENTORY LEVEL PROBABILITIES

Considering all the mutually exclusive and
exhaustive cases, we can derive the following expressions
for the inventory level probabilities.

-t ...
1rS( > - Fm + 1% ; hs,i(11) Fm-u) elm-u>du

F-'

O

+

o_\c+
33'

co

d'

C(11) f q( v-u) [H(t-u)-H( v) 1 eo( t-v)-1'5-‘(t-v) dv du’ u
t

+ ft hs o(u) f q(v-u)H(t-v) Go(t-v)dv du0 ’ u

U)

I-"

0)

c+

cf

+ Z Z [F (u) I h i(v-u) Gi(t-v)F(t--v)dv dufi=S—s-b i=1 0 n u n’

U)

F’

c+

c+

c+

+ Z I F (11) I h (v-11) I q(w-v)[H(’¢-V)-H(W)]n=S-s-b o T] u “'0 v

x GO(t-v) 'F('t-w)dw dv du

ll
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l—'

t t t _
_ f F u hmo v-u) fq w-v)H t--W)() (+1'1=Z§-sbo n J ( v (

120

x GO(t-v)dw dv du (7.14)

For lsi as, we have

t
flS_i(t) = 6; hS’S_i(u) ?(c-u)du

‘B ( ) ­
+ °fFS_i u F(t u)du

t (n
* of s,1 u)

X

::._,d
:1

P‘

O

v-u) ft q( w-v) [H( t-v)-H( w)]V .
Gi( t-v) F(t-W) dw dv du

,i( ) fhi’o( v-u)v]tq( w-v)_l-'i(‘l;-w) Gi( t-v)dw dv du

t 1:+fh uos u

U)

$-'

12 17
+ Z: f F (u) I h (v-u)T‘(t-v) dv dun=S—i+l 0 “ u “'S‘i

CD

+

!>-'

.3

<»P1
(D

U‘

O

t t 1: 1:
fFn(11)uI hn,i(v—\1)vf hi,0(w-v)wf q(Y'-W)

X [I-I(t-w)-H(y)] G (1:-w) "Ft t-y)<1y dw dv du1



+

:3

O'J[\/1U)
i—'U)

O‘

O
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13 ‘U "6
[Fn(u) I h (V--u) j 11. (w-V)u vfl,i 190

13

x I q( y-w) Gi(t-w)'FI(t-y)dy dw dv du (7.15)w

For S—s-b sis S-s-l, we have

‘C

ni(1;) = of hS,i(u) E(t-u)du

1;

+f Fi( U.) F(’c-u)du0

S...+ Z
n=i+l 0

"-17, Qro.. s+l $1 5 u"'S-b-1, we have

11; 1:
rn<)F u fh .(v-u) F(t v)dv du (7.16)u ml

t
1ti(t) =..- of hS,i(u) §‘(t-u)du

S.­

fi=i

11;
+Z,fFno

(u

$3‘-‘"<+

$3‘

mi(v-u) 'F(’c-v)dv du. (7.17)



Also
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nS(t) 1- oft hS’s(u) ‘F-‘(t-u) -GS(t-u)du

:5

ihid

U2

CO

O’

s 1 t r _ _
+ Z, f Fn(u) Ih (v-u)F(’c-v)G (1:--v)dv do u T],S S u
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For ls-i ss--1, we have

1; ‘t
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1 ?(r-w) G;(t-w)dw dvchz (7.19)
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H0

1
0-Q­

S.­

I-'

O

s 1: t 1: __
+ Z, f hS,i(u)U{ hi,o(v-u)vj q(w-v)Gi(‘b-w)dw dv
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xrf hp o(W~7) j'q(y-w)Gi(t-y)dy dw dv du (7.20)v *’ w

7.5 CONCLUDING REMARKS

c'l'
£3"
(D
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We have studied in this thesis, "e dependent
behaviour of some queueing models of the M/G/1 type with
bulk arrival, bulk service and vacations to the server.
Also we have studied the transient behaviour of inventory
models with random replenishment, bulk demands and vacat­

ions to the server. The expressions derived are explicit
but complicated ani not easily yielding for practical
purposes.

f.

$1;

ci‘
J‘

The most important problem one ~ .ink of is
to develop an algorithm to solve the given results
numerically. To the application point of view, this is
quite worthwhile work. For developing the algorithm,
possibly one can effectively use some fast transform
techniques (see, Elliott and Rao (1982)), because here
we cannot use the usual procedure of Laplace transforms.



It should be noted that the bulk service queueing
systems we have solved include the so called general case

of Erlang input as special case. The Bk/G/l queueing
system can be identified as an M/Gk/l model as it is done
by Takacs (1961). Similarly, other Erlang input models
with and without vacations to the server can be solved by

imbedding it in some M/G/1 bulk service queue.

In vacation models, one important result is the
stochastic decomposition property of the system size or
waiting time. One can think of extending this to the
transient case. For the decomposition property of the
waiting time, one can use the distribution of the virtual
waiting time, since it can be defined as the unfinished
work (see Kleinrock (l975) ).

One can use our.method of matrix convolutions to

derive the time dependent solution for the GI/M/l models
also. Here the regeneration points will be the arrival
points. Another problem one can think of is the cyclic
service M/G/l queue. Suppose there are n queues attended
by a single server in a cyclic order. For a particular
queue, the time server attending other queues will be
equivalent to a vacation. In this case, the vacations

l2
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need not be identically distributed. Here also one can
derive the time dependent solution by using the method
we have used in this thesis. Variations with gated
service etc. can also be looked into.

Also one can study the case of M/G/00 queueing
system. Suppose in an inventory system with Poissond -- ‘ha -s - L. 0 - 1

1
3

E:
$11

E!

emmd mu "
the level becomes s and full baoklogging
Then the number

O
H,

lead 31588, order is pieced wnenever

F0
O’!

allowed.

outstanding orders it a particular
time will be equivalent to the number of servers busy
in the M/G/03 queueing system. Solving other multi­
server queues will also be an interesting problem.

-'-' . u  - . --5 ? v - J~— s -yo 0‘  _ - .@-I 3‘in in-Jen t-<:,».?:.*; tneozj, , -one can  ~.1..-,<i_-; 1;-nee c,.;,.~>e oz'\ 1 Q
In-A

‘.1

..:
J

--J

. ‘"14-' ,*4-  '- "   ,-  ­multi-item, *ilti~eoaelon proolems, usiné our netsod.
1 _.  _ _ 4.1 .. =~ ,. *- ,_‘ "1 .. ._. _; 'Also one can stud; >38 groblen with psrisnlfiie conaodities.

Inventory system with perishable commodities

‘"1.
(ii

equivalent
to a queueing system with impatient customers (see, Kaspi

and Perry (1983, 1984)). So we can study M/G/1 queues
with impatient customers and use the results in inventory
theory.
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Consider an inventory system having two types

of demands with one having priority over the other.
Before the inventory level attains a certain level,
both types of demands are met. After attaining this
level, the higher priority demands are met and the other
type of demands backlogged. For this model, one can
derive the inventory level probabilities and this can
be extended to the case of more than two types of
demands.

The technique used to derive the time dependent
solution of queueing system may be of special interest
to any stochastic system having regenerazive structure.
For example, reliability theory is one such area, where
we can effectively use this method to derive the time
dependent solution.
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