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a b s t r a c t

The standard models for statistical signal extraction assume that the signal and noise are
generated by linear Gaussian processes. The optimum filter weights for those models are
derived using the method of minimum mean square error. In the present work we study
the properties of signal extraction models under the assumption that signal/noise are
generated by symmetric stable processes. The optimum filter is obtained by the method of
minimum dispersion. The performance of the new filter is compared with their Gaussian
counterparts by simulation.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The statistical signal extraction theory developed by Wiener (1949) and Kolmogorov (1941) assumes that the data are
generated by a stationary stochastic process and that they form a lengthy sequence. The observed data process Yt is often
depicted as a combination of signal Xt and noise Nt as follows:

Yt = Xt + Nt . (1)

The objective here is to use the data on Yt to estimate the unobserved component series Xt and Nt . Most of the theoretical
developments in statistical signal extractions assume that the signal and/or noise follow certain Auto-Regressive Moving
Average (ARMA)modelswithGaussian or other exponential family of distributions asmarginalwith finite second andhigher
order moments. Then the signals are expressed as linear filters of the observations, where the optimum filter weights are
obtained using themethod ofMinimumMean Square Error (MMSE), see Bell andMartin (2004) for details. However, inmany
practical instances such as communication, economics and finance, network traffic, data shows sharp spikes or occasional
bursts of outlying observations and heavy tailed distributions such as symmetric stable can be used to model such series.
Detailed discussion on such distributions and their applications in the cited areas may be found in Alder et al. (1998).
Our objective in this paper is to discuss the properties of the signal extractionmodel specified by (1) when the signal and

noise are assumed to follow stationary ARMA models with symmetric stable marginal distributions. We use the method of
minimum dispersion introduced by Cline and Brockwell (1985) to obtain the optimal filter for the signal since the MMSE
technique cannot be used due to the non-existence of moments of the symmetric stable distribution.
A random variable X is said to have a symmetric stable distribution and we denote it by X ∼ Sα(λ) if its characteristic

function is of the form

ϕx(t) = exp(−λ|t|α),

where, α ∈ (0, 2], measuring the tail thickness, λ > 0 the scale (dispersion) parameter.
We are interested in studying the aspects of signals Xt using ARMA (p, q) model with symmetric stable innovations

introduced by Brockwell and Davis (1991) and is defined by

Xt − φ1Xt−1 − · · · − φpXt−p = et + θ1et−1 + θ2et−1 + · · · + θqet−q, (2)
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where {et}∞t=−∞ is an iid sequence of random variables and the polynomials

φ(B) = 1− φ1B− φ2B2 − · · · − φpBp and θ(B) = 1+ θ1B+ θ2B2 + · · · + θqBq, (3)

satisfy the condition φ(B)θ(B) 6= 0 such that |B| ≤ 1, where B is the shift operator defined as BkXt = Xt−k. The polynomial
φ(B) is the auto-regressive operator and θ(B) is the moving average operator. It follows that (2) has a unique stationary
solution as discussed in Cline and Brockwell (1985), namely

Xt =
∑
j

ψjet−j. (4)

The weights {ψj} are determined by comparing the coefficients of Bj in the power series expansion
∑
j ψjB

j
=

θ(B)
φ(B) , |B| ≤ 1.

If et has finite variance, predictors X̂t are determined by minimizing E(Xt − X̂t)2, the expected squared error. For processes
with infinite variance however, an alternative criterion such as minimum dispersion for selection of the best predictor is
needed, which we discuss in Section 3.
Section 2 introduces the mathematical representation of signal and noise processes. Section 3 includes the minimum

dispersion signal extraction criteria and we discuss how symmetric stable distribution can be embedded into this frame
work. Section 4 derives a finite length filter using the state space form of the model. Section 5 contains some simulation
results.

2. Statistical models for signal extraction

Suppose that an observed stationary linear time series {Yt} can be written using (1) with Xt and Nt following the ARMA
models of the type

φ(B)Xt = θ(B)at ,
φ(B)Nt = θ(B)bt ,

(5)

where φ(B) and θ(B) are the polynomials defined by (3). We assume that {at} and {bt} aremutually independent symmetric
stable noise processes with scale parameters λa and λb respectively. This in turn implies that Xt andNt are independent. Our
objective is to obtain an estimate X̂t of Xt and N̂t of Nt by filtering Yt as

X̂t = W (B)Yt ,
N̂t = (1−W (B))Yt ,

(6)

whereW (B) =
∑
jwjB

j. We summarize the above discussion in the following proposition.

Proposition 2.1. Suppose that an unobserved series {Yt} has the representation: Yt = Xt+Nt . If we estimate Xt by X̂t of the form
(6), the estimation error is given by

ζt = W (B)Xt − (1−W (B))Nt . (7)

The two components of ζt are mutually independent if and only if the components of Yt are mutually independent.

3. Minimum dispersion criteria for signal estimation

Signal extraction procedure consists of finding an optimal filter which minimizes the signal extraction error. In finite
variance case optimal filter is the onewhichminimizes theMSEwhere as in symmetric stable process we proposeminimum
dispersion criteria. When ζt has a symmetric stable distribution, the minimization of error dispersion is equivalent to
minimization of the scale parameter of the error distribution (see Brockwell and Davis (1991)). Thus if et ’s are iid symmetric
stable random variables with index α and if

∑
∞

j=−∞ |βj|
α <∞, then Y =

∑
∞

j=−∞ βjej is also symmetric stable with

disp(Y ) =
∞∑

j=−∞

|βj|
α. (8)

Theorem 1.1 by Cline and Brockwell (1985) indicates that the prediction error dispersion is roughly proportional to the
probability of a large prediction error. From (4) and (5) we can write the moving average representation for the signal and
noise respectively as

Xt =
∞∑
j=0

ψ xj at−j, Nt =
∞∑
j=0

ψnj bt−j,

where ψ xj and ψ
n
j are the weights obtained for Xt and Nt respectively.
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Thus by (7), the error process is

ζt =

∞∑
j=0

(
j∑
k=0

wkψ
x
j−k − ψ

x
j

)
at−j +

∞∑
j=0

wkψ
n
j−kbt−j.

Using (8) and the distributional properties of at and bt we can show that the dispersion of the error process is

Disp(ζt) =
∞∑
j=0

∣∣∣∣∣ j∑
k=0

wkψ
x
j−k − ψ

x
j

∣∣∣∣∣
α

λa +

∞∑
j=0

∣∣∣∣∣ j∑
k=0

wkψ
n
j−k

∣∣∣∣∣
α

λb. (9)

Finding optimal filter is equivalent to finding the weightswk inW (B)which minimizes (9). In general the solution does not
have a closed form, but it gives some satisfactory results for some special cases. For this, however, we need the following
Theorem.

Theorem 3.1. For 1 < α ≤ 2, the optimal filter weights, {wj} which minimizes (9), is the solution of the system of equations,

∂Disp(ζt)
∂wk

= 0, k = 0, 1, 2, . . . . (10)

When α ≤ 1, general expressions do not exist.

Proof. The proof follows from Lemma 3.1 of Cline and Brockwell (1985). �

From the above discussion it is clear that, we have to adopt some numerical methods for getting optimum filter weights
and the signal estimate. This filter reduces to Gaussian Filter when α = 2 and the details on the latter may be found in Cline
and Brockwell (1985).
The semi-infinite filter discussed so far in this sectionmaybe generalized to doubly infinite and asymmetric filters studied

in the literature. The former uses future as well as the past of {Yt} for estimating Xt but the latter filter estimates Xt based
on given data Yu up through u = t −m, for finitem. In order to apply this method we can modify our filter as:

W (B) =
∞∑
−m

wjBj.

Similar to (10) the optimum filter minimizes the dispersion of error process,

Disp(ζt) =
∞∑
j=−m

∣∣∣∣∣ j∑
k=−m

wkψ
x
j−k − ψ

x
j

∣∣∣∣∣
α

λa +

∞∑
j=−m

|

j∑
k=−m

wkψ
n
j−k|

αλb. (11)

Doubly infinite filter is a symmetric filter, which can be obtained by lettingm→∞.
When α = 2 the error dispersion in (11) reduces to the mean square error and the optimal filter reduces to the

asymmetric Wiener–Kolmogorov filter (see Bell and Martin (2004)).

4. State space representation and Kalman–Levy filtering

So far we have discussed the infinite length filter, but in practice we have only finite length of observations. In this
section we introduce a finite length filtering algorithm based on state space representation and Kalman–Levy filtering. This
can be considered as an improvement over the stable filter defined in Section 3. The classical approach of Kalman filtering
assumes that the underlyingmodels are linear and the innovations are Gaussian. Kalman–Levy filter is a generalized version
of Kalman filter for heavy tailed processes. In the present section we discuss the finite length signal extraction filter for such
processes with symmetric stable noise. A linear dynamic system of state variable xt can be represented as

xk+1 = Zkxk + ηk, k = 0, 1, . . . , (12)

and the observations yk follow the equation:

yk = Tkxk + εk, (13)

where {Zk} and {Tk} are assumed to be known sequences of real numbers. Further we assume that the dynamic noise
{ηk} and the observational noise {εk} are mutually independent iid symmetric stable sequences with scale factors λη and
λε respectively. For 1 < α ≤ 2, the predictor of the state variable is defined as xk|k−1 = E(xk|yk−1) and the filter
is xk|k = E(xk|yk). The Kalman–Levy filtering algorithm by Sornette and Ide (2001) provides a sequential procedure for
estimating the unobserved state variable xt and the solution is obtained by sequential prediction and filtering as

xk|k−1 = Zk−1xk−1|k−1, (14)
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which determines the forecast of xk from a given initial condition x0|0. The forecast is based on the filtering performed at the
previous step. This forecast is then used to find a new filter xk|k which will be mixed with the observed information yk and
given by

xk|k = xk|k−1 + Kk(yk − Tkxk|k−1), (15)

where Kk is called the Kalman–Levy gain which is obtained by minimizing the scale factor of the filtering error process and
is given by Kk = T−1k /

(
1+ (∆k)α/(α−1)

)
, with modified relative error ratio,∆k = (λεk)

1/α/
[
Tk(λk|k−1)1/α

]
.

From the models (12) and (13) the finite length filter may be defined as

x̂n = w0 +
n∑
j=1

wjYj, (16)

where wj, j = 0, 1, 2, . . . , n are the filter weights whose expressions are to be obtained using Kalman–Levy filter. In this
case the signal extraction problem can be divided into that of prediction and filtering. Under the prediction problem we
estimate the future state of the signal from a given initial value and the observed signal. The Kalman–Levy predictor for the
models (12) and (13) is given by (14) and may be expressed as

xk+1|k =
n∑
j=1

LjKjyj + L0x1|0, (17)

where, Ln = 1, Lj = NnNn−1 . . .Nj+1, with Nj = Zj − KjTj, j = 0, 1, 2, . . . , n− 1.
Comparing (16) and (17) we get,wj = LjKj for j = 1, 2, . . . , n andw0 = L0x1|0.
The filtering problem deals with the estimation of the present state of the signal from a given initial condition and the

observed signal at that time. As before the Kalman–Levy filter for the model (12) and (13) given by (15) may be written as

xk|k =
n∑
j=1

LjKjyj + L0x1|0, (18)

where, Ln = 1, Ln−1 = I − KnTn and Lj = Ln−1Nn−1 . . .Nj+1, j = 0, 1, 2, . . . , n− 2, Nj = Zj − KjTj, then comparing (16) and
(18) we getwj = LjKj for j = 1, 2, . . . , n andw0 = L0x1|0.

Remark. The finite length filter discussed above can be extended to the case of multivariate filter and predictor with
appropriate modifications of Sornette and Ide (2001). State space representation of model (1) can be used to extract the
signal and noise defined in (5) by applying the multivariate filter and predictor.

5. Simulation

Suppose that an observed time series Yt evolves according to Eq. (1) and the unobserved signal Xt , is a moving average
process which can be represented as follows:

Xt = at + θ1at−1 + · · · + θqat−q.

Also assume that at ∼ Sα(λa) andNt ∼ Sα(λe)where λa, λe are respectively the dispersion parameter of at andNt . Ourmain
objective is to extract the signal Xt from the given observed signal Yt . This problem can be solved by applying the methods
discussed in Section 3. We simulate the above model by taking q = 4, and θ1 = 0.7, θ2 = 0.4, θ3 = 0.2, θ4 = 0.1, α = 1.5,
λa = 5, λe = 3. The symmetric stable innovation sequences {at} and {Nt} are generated using the algorithm given by Alder

Fig. 1. Signal extraction.
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Fig. 2. Stable filter.

Fig. 3. Gaussian filter.

Fig. 4. Error plot.

Table 1
Comparison of error sum of squares and the dispersion.

Filter Dispersion Error sum of squares
N = 100

Gaussian 225.3723 282.0869
Stable 218.7023 258.6477

N = 50
Gaussian 116.0728 223.0761
Stable 113.0230 212.4247

et al. (1998). The above computations are compared with the Gaussian Filter in terms of their error sum of squares and
dispersion which are summarized in Table 1 for different sample sizes.
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Fig. 5. Finite length filtering.

Fig. 6. Error plot.

The error sum of squares and the error dispersion of these filters show the improvement of stable filter against Gaussian
filter. Figs. 1–3 give the plots corresponding to the actual signal, observed signal under noisy environment, estimated signal
through stable and Gaussian filters. Fig. 4 shows the plot of signal extraction error under stable filter and Gaussian filter.
Figs. 5 and 6 give the plot for the finite length filtering signals and error plot respectively. Here we assume that the signal Xt
follows an AR (1) model with ρ = 0.7, innovation sequences at ∼ Sα(λa) and noise Nt ∼ Sα(λe).

6. Conclusion

In this work we present a linear filtering method for computing the filter weights assigned to the observation for
estimating unobserved signal under general noisy environment. Herewe consider both the signal and the noise as stationary
processes with infinite variance innovations. Nonlinear filtering such as particle filtering and sequential Bayesian filtering
are some other alternatives to these methods. We will consider these approaches in the forthcoming work.
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