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Chapter 1 

Introduction 

1.1 Topological fluid mechanics 

Hermann Helmholtz's 1858 paper on vortex motion made it possible to apply topolog­

ical ideas to fluid mechanics [30]. Lord Kelvin was so impressed by Helmholtz's laws 

that he believed in the eternal existence of vortex atoms as fundamental constituents 

of nature. In this theory atoms are thought to be tiny vortex filaments in the fluid 

ether. The different chemical compounds are given birth by topological combinations 

of linked and knotted vortices [38]. In fact, this use of topological ideas in physics and 

fluid mechanics in particular dates back to the very origin of topology as an indepen­

dent science in the days of Carl Gauss [27], Johan Benedict Listing [51] et.al. But this 

topological approach was pushed to the back by later developments using differential 

and integral calculus. Recent years have witnessed a revived interest in the topological 

studies of fluid flows [15,62,63, 72, 73]. This has resulted in the birth of a new branch 

of research - 'Topological Fluid Mechanics'. According to Moffatt [601: 'Topological, 

rather than analytical, techniques and language provide the natural frame work for 

many aspects of fluid mechanical research that are now attracting intensive study'. 

It was Maxwell, more than any other, who truly saw the physical implications of 

topology. The whole preface of his treatise on electricity and magnetism is permeated 

1 



CHAPTER 1. INTRODUCTION 2 

by topological ideas [56]. While Kelvin's dream of explaining atoms as knotted vortex 

rings in a fluid ether never came to fruition, his work was seminal in the development 

of topological approach to fluid flow analysis. Other works followed soon. The work 

of J.J. Thomson on vortex links [78] and studies of fluid flows in multiply connected 

regions (see [48]) are notable works. Leon Lichtenstein dedicated two of the eleven 

chapters in his book on hydrodynamics to topological ideas [50]. But difficulty of an 

immediate application and testing of these ideas limited for many years the use of these 

concepts. In recent years the application of modern results from topology and knot 

theory and greater access to direct numerical simulation of fluid flows have led to new 

developments in the qualitative study of fluid mechanics. 

In simple terms Helmholtz's laws of vortex motion says that in an ideal fluid flow 

vortex structures live for ever. It is well known that Kelvin's circulation theorem, 

Helmholtz's vorticity theorems and Euler's equation of motion are equivalent. But 

Kelvin's theorem is an integral theorem and requires the knowledge of detailed evolution 

of material surfaces in the fluid. The vorticity equation, though deals directly with the 

vector character of vorticity, is more a description of how vorticity change than a 

usual constraint on that change. Conservation of potential vorticity due to Ertel [19] 

provides the way of translating the informations in the Kelvin's circulation theorem 

into invariants of a local kinematic quantity. It can be seen that invariance of potential 

vorticity is associated with the invariance of the scalar field quantity, the entropy, that 

is conserved along fluid particles. Since potential vorticity itself is such a conserved 

quantity we can generate an infinite number of invariants using it again and again. This 

property is associated with the integrability of Euler's equation, though not all these 

invariants are of physical significance. Thus the theorems of Helmholtz, Kelvin and 

Ertel give rise to three types of invariants. Other invariants also have been identified 

in hydrodynamics and magnetohydrodynamics. 

Invariants play a crucial role in physical systems and contain essential features of 
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their motion. The knowledge of invariants often leads to an elegant, qualitative picture 

of the behavior of the system and to a simplification of the search for exact solutions. 

In fluid mechanics the fundamental assumption is that the fluid is a continuum. In 

mathematical language this says that, at least locally, the fluid looks like usual two 

or three dimensional space. A fluid particle is identified with a mathematical point in 

the two or three dimensional space. We see that the theories and technologies based 

on continuum models have been widely successful. The basic model of fluid mechanics 

is the set consisting of the fluid body and the various additional structures that allow 

one to discuss such properties as continuity, volume, velocity and deformation. The 

flow itself is a transformation of the fluid body to itself and a basic object of study is 

the transport of structures under the flow. 

The complete evolution of the fluid is described by a family of maps, <Pt, parametrised 

by time t. The particle at position X at time t = 0 is at the position <Pt{X) after time 

t. If we fix X and vary t, the positions <Pt{X) sweep out the trajectory or path of the 

particle. The family of fluid maps <Pt is best described as simple map 

<p: D x R --t D, 

with <p(X, t) = <Pt(X), where D is the domain of the fluid. Given a fluid motion <Pt, 

its velocity field u at the point X at a time t is the instantaneous velocity of the fluid 

particle that occupies that point at that time. The velocity field u is given by 

o<p 
u (<Pt (X), t) = Ft (X, t) 

Given a velocity field u its fluid motion <Pt is obtained by solving the above differential 

equation. 

The more deeply one penetrates the general character of fluid motions, the more 

apparent it becomes that the dynamical properties of fluids in the main are but names, 
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interpretations, and methods of measuring purely kinematical quantities, and that in 

general the flow of fluid, whether perfect or viscous may be defined by purely kine­

matical conditions. It is no accident that the greatest contributions to practical fluid 

dynamics were preceded by kinematical analysis which in themselves belong to pure 

mathematics rather than to mechanics or physics. 

Topological fluid mechanics has a wide range of applications. Topological factors 

control the behavior of magnetized turbulent plasmas through constraints on the mag­

netic field and through the topology of the mechanical and magentic boundaries. 

Fluid mechanics provides a very natural setting for the consideration of knotted or 

linked structures. In an ideal barotropic fluid flow under conservative body forces the 

vortex lines are frozen in fluid. This has the important consequence that any kind of 

linkage and knottedness of vortex lines are conserved. The measure of net linkage and 

knottedness of the field inside a Lagrangian surface S on which n· w = 0 is the helicity 

H = Iv u . wdV, where V is the volume bounded by S. 

For a simple interpretation of helicity, we may assume that the vorticity vanishes 

everywhere except in two linked vortex filaments of vanishingly small cross sections 

and with circulation Kl and K2 respectively. Then it can be easily shown that 

where N is the Gauss linking number of the axes of the tubes, provided each vortex tube 

is unknotted and the vorticity field has no internal twist within each tube [57, 58, 74]. 

The sign is positive or negative according as the orientation of the linkage is right 

handed or left handed. In ideal magnetohydrodynamic flow, the magnetic helicity is 

defined similarly by H M = Iv A . BdV, where A is the magnetic potential and V is 

the volume bounded by a closed surface S. 

Suppose P and Q are two vector fields where P 

satisfying the conditions 

\7 x M, and Q \7 x N, 
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: = V x (u x P) and ~~ = V x (u x Q) 

Then there is a generalisation of helicity to such fields [59]. Let S be a closed material 

surface with unit normal n, on which n· Q = O. Then it can be shown that H pQ = 

Iv M . QdV is an invariant of fluid motion. When P = Q = w we get the helicity 

invariant and when P = Q = B we get the magnetic helicity invariant. When P = w 

and Q = B, we get the so called cross helicity found by Woltjer [83]. 

A detailed discussion on the invariance and topological interpretation of helicity 

and its significance in the dynamo theory of celestial magnetic fields and in turbulent 

flows with and without magnetic fields can be found in [58, 61] . Amold has found 

that helicity integrals can be described mathematically in terms of topological objects 

such as Hopf invariant and the Gauss linkage integral [7]. 

The study of helicity is important in the context of turbulence. Here helicity as 

an inviscid invariant implies some degree of constraint on the energy cascade process. 

The magnetic helicity gives a lower bound for magnetic energy through the inequality 

[61] 

where qo is a constant depending on the geometry and size of the fluid flow. Even 

though global magnetic helicity is vanishing, the magnetic energy is still bounded away 

from zero as shown by Freedman [25] as long as the topology of the field is nontrivial. 

Such is a situation when the linkage of magnetic filaments are in the form of Borromean 

rings topology. 

The helicity is quadratic in the magnetic fluxes and hence describes a second order 

linking. The subtle intertwining of the Borromean rings may be described by a third 

order linking integral as shown in [11, 12] . An extension to the nth order linking integral 

is also possible. The discussions on higher order linking integral are simplified by the 

use of differential forms and Massey product [20, 21, 46, 52, 53]. Gunnar Homing and 
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Christoph Mayer [33] have obtained a more general third order topological invariant 

for magnetic fields using Chern-Simons three-form. 

The topology of vortex lines is important in attempts to understand j describe and 

control flows in various applications. Changes in this topology may affect mixing in 

flows and may be significant for the dynamics of turbulence. Under reconnection of 

vortex rings helicity changes. Topological changes occur when dissipative effects be­

come predominant. The changes occur through the formation and disappearance of 

reconnections in the fluid pattern. Reconnections take place when the vector field lines 

cross each other. One of the simplest and most fundamental experiments on vortex 

reconnection is the interaction of two colliding circular vortex rings [23 j 67 j 75, 68]. In 

the case of magnetic reconnection, the simple situation of two dimensional stationary 

reconnection was considered in the first models by Sweet [77] and Parker [69]. The an­

alytical and numerical aspects of vortex reconnection and magnetic reconnection have 

initiated a rich branch of research [13, 14, 32, 35, 34, 41, 71]. Helicity and topologi­

cal estimates together with detailed knowledge of reconnections, can prove to be very 

useful for the characterization and classification of the fundamental fluid flows. 

A detailed discussion on circulation preserving motion and convection and diffusion 

of vorticity can be seen in the classic work by Truesdell [79]. In that work he showed 

that a flow of fluid of uniform density and viscosity, subjected to conservative body 

forces is circulation preserving if and only if it admits a flexion potential, where the 

curl of vorticity field is called flexion field. The important Couette and Poiseulle flows 

are included in such flows. 

There exist many other vector fields which are frozen-in fields in ideal flows. The 

general problem is that it is required to find conditions under which a given dynamical 

system admits a direction field frozen in the phase flow. By rectification theorem for 

trajectories, a whole family of frozen direction fields always exist locally [44]. The 

existence of nontrivial frozen-in direction fields defined in the whole phase space of a 
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viscous fluid is closely related to the well known problem of small denominators and it 

is presented in [44]. 

Many important achievements in the field of hydrodynamics are based on profound 

mathematical theories rather than on experiments. The existence problems for the 

smooth solutions of hydrodynamic equations of a three dimensional fluid and a rigorous 

mathematical theory for explaining the phenomenon of turbulence are still challenging 

problems open for mathematicians. 

Arnold [3, 4, 5] has used variational principle to study the stability of stationary 

flows of an ideal incompressible fluid. He has shown that it is possible to construct 

variational principles for stationary flows using special combination of two integrals of 

motion, namely, integral of energy conservation and integral of vorticity conservation. 

There is a group theoretic approach to hydrodynamics considering it to be the 

differential geometry of infinite dimensional group of diffeomorphisms that preserves 

the volume element of the domain of a fluid flow [6,9, 8]. The principle of least action 

implies that the motion of a fluid is described by the geodesics on the group in the 

right invariant Riemannian metric given by the kinetic energy. The equation of an 

inviscid incompressible fluid are Hamiltonian ones on the orbits of the group of volume 

preserving diffeomorphisms. Khesin and Chekanov [39] have discussed the invariants 

of the Euler equation for ideal barotropic fluid in an arbitrary dimensional manifold 

M. They have shown that the Euler's equation in an m-dimensional manifold has an 

infinite series of integrals if m is even, called the generalised enstrophies and at least 

one integral if m is odd, called generalised helicity. 

1.2 Use of space-time manifold 

Kiehn [42] suggested that the quantization of flux, charge and angular momentum can 

be interpreted as a set of independent natural concepts which physically exhibit cer­

tain topological properties of the fields on a space- time manifold. The topology of 
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fields built on a four dimensional space-time manifold was studied by him in terms 

of a set of fundamental differential forms. He stated that physical theories of matter 

can be put into correspondence with various gauge theories relating or defining the 

one, two and three-dimensional periods (integrals on closed manifolds) supported by 

space time. Processes without dissipation leave the topological periods invariant. He 

has also suggested two distinct methods for extracting topological information from 

a hydrodynamic flow, first by utilising Cartan's calculus based on a one form of ac­

tion and second method considers the null sets of the six invariant scalar functions 

associated with the Jacobian of the unit speed tangent vector field [43]. Gumral [29] 

considered three-dimensional unsteady flow of fluids in the Lagrangian description as 

an autonomous dynamical system in four dimensions. He also constructed a scheme of 

generating symmetries and invariants. Fluid motions in a four dimensional space-time 

manifold rather than in three-dimensional space were also discussed by Kuvshinov and 

Schep [47] and Peradzynski [70] using differential forms. 

Topological evolutions of magnetic or vortex flux tubes in the limit of small diffu­

sivity within a time such that the helicity is conserved can be formalised as a bordism, 

which is an orient able surface without self intersections in four-dimensional space-time 

manifold bounded by the set of flux tubes initially and at any subsequent time [2]. The 

births and deaths of flux tubes correspond to the maxima and minima of the bordism 

and the reconnections are the saddle points of the bordism. In the trivial case of a one 

circular flux tube at rest, the bordism is a surface of the cylinder with axis directed 

along the time axis. 

The concept of conservation laws plays a key role in the analysis of basic properties 

of the solutions of systems of differential equations. The general principle relating 

symmetry groups and conservation laws was established by Noether [65]. Drobot and 

Rybarski [18] have formulated a variational principle for barotropic flows by introducing 

hydromechanical variations of the fields in a four dimensional Euclidean space and 
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made use of Noether's theorem to obtain conservation laws. Based on this Mathew 

and Vedan [54, 55] have developed the variational principle for non barotropic flows. 

The advantage of their method is that it avoids such conditions like Lin's constraints 

and provides systematic approach using Lie group theory leading to conservation laws. 

1.3 Calculus of Differential forms 

The theory of differential forms and its applications to mathematical physics can be 

found in many books (Eg:[l, 6, 22, 24, 66, 76, 82]). In this section we will review 

the materials needed for a mathematical description of invariants associated with a 

flow. Geometry is one of the most important branches of mathematics which is having 

direct application to many dynamical system. We can distinguish three branches of 

geometry, namely, Riemannian geometry, affine geometry and differential geometry. 

Riemannian geometry deals with spaces that are charecterised by some metric tensor 

gik' Affine geometry deals with spaces where a rule for parallel transport of vectors 

is given. This rule is conventionally introduced through the connection coeffients r}k' 

which are the Christoffel symbols. Any metric gik determines uniquely a symmetric 

(r}k = r~j) connection. This means that Riemannian geometry is a particular case 

of affine geometry. Differential geometry incorporates both Riemannian and affine 

geometries. It considers the general case of spaces that have no additional structures, 

called manifolds. 

A set of points M is said to be an n-dimensional manifold if each point of M has 

an open neighborhood which has a continuous one-one map onto an open set in jRn. In 

simple words a manifold is a set that locally has a topology of n-dimensional Euclidean 

space jRn. More rigorous definition of smooth manifolds can be found in the references 

given above. In our discussion a manifold means a smooth manifold. 

The tangent space to a manifold M at x E M, written as T MIx. is the real vector 

space consisting of all tangent vectors to M at x. If (Xl, ...• xn) is a local coordinate 
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system for the manifold, then the n vectors a~l"" 'a~n are defined to form a basis 

of this n-dimensional vector space. A vector field v on M assigns a tangent vector 

vlx E T Mix to each point x E M, with vlx varying smoothly from point to point. In 

local coordinates (Xl, . .. ,xn ), a vector field has the form 

where each 1Ji(x) is a smooth function of x and {/r;i = a~i' 

Exterior forms 

An exterior form w of degree k is a function of k vectors in lRn which is k-linear and 

antisymmetric. That is 

satisfies 

where 

" ~ f 0 if the permutation i", .. ,i. is even; , 

\1 if the permutation i l , ... ,ik is odd. 

a, bE IR and e~, e7, e2"" ,ek E JRn, The set of all exterior k-forms in JRn form a real 

vector space if we introduce operations of addition and multiplication by scalars as 

follows: 
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(aw)(el,e2"" ,ek)=aw(el,e2"" ,ek), 

Exterior multiplication 

The exterior multiplication of an arbitrary exterior k-form wk on ~n by an arbitrary 

exterior l-form w1 on ~n is defined to be an exterior (k + i)-form whose value on the 

k + l vectors 

is equal to 

where i l < ... < ik and jl < 

numbers (1,2, ... ,k + l) and 

< jl; (i l ,'" ,ik, 11 ... jz) is a permutation of the 

if the permutation is even; 

if the permutation is odd. 

Every partition of the above k + l vectors into two sets of vectors, one containing k 

vectors and the other containing l vectors, gives one term in the above some. The 

operation of exterior multiplication has the following properties: 

1. wk I\wl = (_1)klw1I\wk (skew-commutative), 

2. (aw~ + bw~) 1\ w1 = aw~ 1\ w1 + bw~ 1\ wl (distributive) and 

3. (wk 1\ wl ) 1\ wm = wk 1\ (w l 1\ wm ) (associative). 
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For example, let WI and W2 be two exterior one forms (that is k = 1 = 1). Then the 

above definition of exterior multiplication gives the exterior two form Wl 1\ W2 whose 

value on any pair of vectors el and e2 in }Rn is given by 

From this it is clear that the exterior square of an exterior one form is zero. In general 

wk 1\ wk = 0 if k is an odd integer. 

Differential forms 

Let M be a smooth manifold. Then a differential k-form wl x at a point x of the 

manifold M is an exterior k-form on the tangent space T Mx to M at x, that is, a 

k-linear skew-symmetric function of k vectors el, e2,' .. ,ek tangent to M at x. 

A smooth differential k-form won M (or k-form for short) is a collection of smoothly 

varying k-linear skew-symmetric maps wl x , for each x E M. Here we require that for 

all smooth vector fields VI, •.. ,Vk on M 

is a smooth real valued function of x. In particular, a O-form is just a smooth real 

valued function on M. It can be shown that the set of all k-forms forms an infinite­

dimensional vector space, if k does not exceed the dimension of M. Also the set of 

k-forms has a natural structure as a module over the ring of infinitely differentiable 

real functions on M. 

The space of all one forms at a point x E M is called the cotangent space T* Mix, 

which is the space of linear functionals on T Mix. If (Xl, ... ,xn) is a local coordinate 

system for M, then T Mix has a basis {8~1"" , 8~n }. Then the cotangent space has 
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the dual basis denoted traditionally by {dXl, ... ,dxn}. Note that 

. ( 8) {I; 
dx

l 

8x j = 
0; 

if i = j 

if i '# j. 

So anyone form w has a local coordinate expression 

where each ai(x) is a smooth function. It can be shown that in local coordinates any 

differential k-form at a point x of the manifold M is spanned by 

where I ranges over all strictly increasing multi-indices 1 ::; i 1 < ... < ik ::; n. So the 

space of all differential k-forms at a point x has dimension (~). In particular when 

k > n, the space of all differential k-forms at x is a null space. 

Any smooth differential k-form on M has the local coordinate expression 

where for each strictly increasing multi-indices I, the coefficient a] is a smooth real 

valued function. In particular, every differential k-form on the space :!Rn with a given 

coordinate system (xl, ... ,xn) can be written uniquely as above. 

For a differential k-form w, its domain is the set of all vectors in TMlx (that is, the 

domain is the product space T Mix x ... x T Mix) of n copies of T Mix). The restriction 

of w to a subspace V of T Mix is the same k-form w whose domain is now restricted to 
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vectors in V. We denote it by wlv: 

where all of el" .. ,ek are in V. If the dimension of V is less than k, then wlv is 

necessarily zero. It is to be noted that a differential k-form w is said to be annulled 

by a vector subspace if its restriction to it vanishes. A k-form is said to be annulled 

by a submanifold N of a manifold M when the tangent vectors of N annuls w (that is 

restriction of w to N vanishes). 

Exterior derivative 

The exterior derivative or differential of a k-form 

on the space lRn is the (k + I)-form 

dw = L daI /\ dx
I = L ~~~d:d /\ dx

I 

I IJ 

This exterior derivative has the following properties: 

1. d(aw + a'w') = adw + a'dw', where a, a' E lR (Linearity), 

2. d(wk /\ w1) = dwk /\ w1 + (-l)kw k /\ dw1, where wk is a k-from and w1 is an l-form 

(Anti-derivation) and 

3. d(dw) = 0 (Closure). 

For example if n = 3, then the differential of a one form in ]R3 is 

d (Adx + Bdy + Cdz) = (Cy - Bz)dy /\ dz + (Az - cx)dz /\ dx + (Ex - Ay)dx /\ dy 



CHAPTER 1. INTRODUCTION 15 

which can be identified as taking curl of the vector field A = (A, B, C) in JR3. Similarly 

differential of a two form can be identified with the divergence of the corresponding 

vector field. So the concept of exterior derivative generalizes the classical curl and 

divergence operators. 

Interior product 

If w is a differential k-form and v is a smooth vector field, then we can define a (k -1)-

form, ivw, called the interior product of v with w as 

for every set of vector fields VI,'" ,Vk-I' Interior product is bilinear in both its 

arguments. For basis elements the interior product is given by 

Interior product has the following properties: 

If 0: and {3 are any two differential forms and v and ware any two vector fields, 

then 

2. i/vO: = jivO:, where j is a scalar function, 
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Comparison between vector fields and differential forms in R3 

Let n = dx /\ dy /\ dz be the elementary volume form in the three dimensional Euclidean 

space ffi.3. For anyone form in lR3 there exist an associated vector field in IR3 such 

that the coefficient functions of the form and vector field are the same. So There 

is a one-one correspondence between one forms and vector fields in the Euclidean 

space 1R3. In a general Riemannian manifold such a one-one correspondence is trough 

the corresponding metric tensor gij' Also there is one-one correspondence between 

differential two forms and vector fields in ffi.3 through the relation w2 = iwO, where w2 

is a two form and w is the associated vector field. A zero form is a function on ]R3. 

Let a 1 and /31 are two one forms with associated vector fields A and B respectively 

and ,2 is a two form with associated vector field C. Then we can make the following 

symbolic identifications 

a 1 
/\ /31 ~ A x B 

iBa1 ~B·A 

df ~ Vf 

d,2 ~ V.C 

a 1 /\,2 ~ A. C 

i B ,2 ~ -B x C 

da 1 ~ V x A 

iBiAO ~ A x B 

1.4 Invariance of geometrical objects 

In this section we will briefly discuss how to find out the invariants associated with 

vector fields and differential forms using Lie derivative. 

Lie derivative 

Consider a vector field v on a manifold M. We are often interested in how certain 

geometrical objects on M, such as functions, other vector fields and differential forms 

vary under the flow induced by v. The Lie derivative of such an object gives its 
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infinitesimal change when advected by the flow. The vanishing of the Lie derivative 

with respect to a flow field of a geometrical object associated with a physical quantity 

represents the conservation of that physical quantity. The properties of Lie derivative 

and the operations of differential geometry lead to general rules for the construction of 

invariant fields. 

By definition, the Lie derivative of a scalar function with respect to a vector field v 

is the directional derivative df(v). The Lie derivative of a vector field w with respect 

to the vector field v is given by [76] 

Lvw = [v,w] 

where [ , ] is the Lie bracket of the vector fields. On a coordinate basis the above Lie 

derivative becomes 

where the summation convention is assumed and 

IOn 0 d /"1 0 n a 
v = T/ ox l + ... + T/ axn an w =." axl + ... + ( Oxn 

. If Lvw = 0, then we say that the field lines of the vector field w is invariantly 

transported with the flow field v, that is, the field lines of ware preserved by the flow. 

The Lie derivative of a differential form w with respect to a vector field v is given 

by the Cartan's formula 

If Lvw = 0, then the differential form w is said to be invariantly transported under the 

flow field v. 

Following are the properties of Lie derivative: 

Let et and j3 are any two differential forms and v and ware any two vector fields, 
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then 

5. LfvO: = f Lva + df 1\ iva, where f is a scalar function, 

7. ivdf = Lvf and 

8. Lv(a 1\ /3) = (Lva) 1\ /3 + a 1\ Lv/3 

Frobenius theorem 

Frobenius theorem gives the necessary and sufficient condition under which collections 

of vector fields or one forms determine families of submanifolds, also called hypersur­

faces. In terms of vector fields the Frobenius theorem states that, the integral curves of 

r vector fields VI, ... , V r form a family of hypersurfaces if and only if their Lie brackets 

in pairs are linear combinations of these T vector fields, 

In terms of one forms Frobenius theorem states that, there exist a family of (n -

T )-dimensional hypersurfaces whose tangent vectors annihilate each of the T forms 

Wl, ... ,Wr if and only if dwi 1\ Wl 1\ ... 1\ Wr = 0 for all i. Such a family of hypersurfaces 

is also called the family of integral surfaces for the r one forms Wl, ... ,Wr . 

Let W be a one form in ]R3 and A be the associated vector field. According to 

Frobenius theorem w 1\ dw = 0 if and only if there is a family of integral surfaces for 
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the one form w. In terms of the associated vector field A this is restated as: There is 

a family of orthogonal surfaces for the vector field A if and only if A . V x A = o. 

Integral invariants 

Consider a flow of a continuous media with a flow field v. We can construct integral 

invariants by integrating k-forms over orientable k-dimensional surfaces. Let C be a 

k-dimensional surface moving with velocity v, that is a k-dimensional comoving surface 

or simply a k-surface. The time derivative of the integral of a k-form W over a k-surface 

C is equal to [1, 24] 

So it follows that fc W is an invariant if Lyw = O. Hence every invariant k-form 

generates an integral invariant. In non-autonomous case (time dependent case) we 

have the following equivalent formulation: 

The time derivative of the integral of a k-form W over a k-surface C is equal to 

d r raw 
dt } c W = } c Ft + Lyw 

So it follows that fc W is an invariant if 

aW at +Lyw = O. 

Invariance condition in ]R.3 

The invariance condition using Lie derivative for different kinds of forms and vector 

fields in JR3 under the flow field u and there corresponding expression in vector notation 

are given below. 
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1. Consider the zero form I, which is a scalar function in IR3. Then 

Bd + Lul = 0 {:} Bd + (u· \1)1 = 0 

2. Consider the one form w1 = A1dx1 + A 2dx2 + A3dx3 

Then 

where H = (HI, H2 , H3). 

4. Consider the three form w3 = gdx1dx2dx3. Then 

where [ ,lis the Lie bracket of vector fields. 

20 

(1.1 ) 

(1.4) 
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1.5 Summary of the thesis 

Fluid flow occurs in three dimensional space. The topology of field lines of a flow are 

related to the differential geometry of the three dimensional space. Using the concepts 

of differential forms, it has been shown that there exist four kinds of invariants associ­

ated with such a flow. But it is found useful to consider a four dimensional manifold 

in the analysis of fluid flows. Chapter 2 deals with the use of a four dimensional space­

time manifold E4 for obtaining vorticity invariants of hydrodynamic flows. A criterion 

using Lie derivative is applied to obtain the invariants. 

The analogy between vorticity equation of a barotropic flow and the induction 

equation of a magnetohydrodynamics is well known. Vortex lines have properties 

similar to magnetic lines of force. Thus topological considerations apply to barotropic 

flows as well as magnetohydrodynamic flows. Though this has been mentioned in many 

magnetohydrodynamic studies, particular attention has not been given to it. There are 

vector fields other than vorticity and magnetic field which are frozen-in fields in ideal 

fluid flows. In chapter 3 we generalise the vorticity invariants to the case of any general 

divergence-free frozen-in vector field. Here we define a closed differential two form and 

its potential one form. Using this a three form and a four form are defined and the 

associated invariants are discussed. The use of a four dimensional manifold instead of 

three dimensional Euclidean space give rise to an additional invariant associated with 

four forms. This also is discussed in this chapter. 

In chapter 4 we classify the possible invariants in a continuous media which gen­

eralises the concept of invariants in a dissipationless continuous media. We consider 

a p-form w associated with a physical quantity which evolves under a flow field u. 

If the Lie derivative of w with respect to u vanishes, then for all comoving surfaces 

GP the integral, fcp w, will be a constant. But in all cases the Lie derivative need 

not be vanishing. Even then we can find some p-dimensional comoving surfaces GP 

over which fcp w is a constant of motion. Such invariant surfaces can be used for the 
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qualitative study of the flow of a continuous media in the absence of invariants of all 

p-dirnensional comoving surfaces. In this chapter we investigate the sufficient condi­

tions for the existence of such invariant surfaces. Some illustrative examples are also 

given for hydrodynamic and magnetohydrodynamic flows. 

In chapter 5 we conclude the thesis with a general discussion of the results obtained. 



Chapter 2 

Vorticity Related Invariants in 

Hydrodynamics 

2 .1 Introduction 

A vector field u on a manifold assigns a tangent vector at each point on it. A good 

physical example of a vector field is the velocity field of a steady fluid flow in some 

open subset M c ]R3. At each point of M the vector field u is the velocity of fluid 

particle passing through that point. 

The maximal integral curve of u passing through a point x E M is called the flow 

generated by u. Thus a vector field defines a flow on M. We are often interested in 

how certain geometric objects on M such as functions, differential forms and other 

vector fields vary under the flow induced by u. The Lie derivative of the object with 

respect to u gives the infinitesimal change resulted by the flow. 

This geometrical interpretation of Lie derivative has been used by Tur and Yanovsky 

[80J to study the invariants in dissipationless hydrodynamic media. The Lie derivative 

with respect to the velocity vector u corresponds to the convective derivative of objects. 

°Some of the results in this chapter has appeared in our paper entitled 'Vorticty invariants in 
hydrodynamics' Zeitschrijt fur Angewandte Mathematik und Physik (ZAMP), Volume 55 (2), 2004 

23 
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Thus the object is an invariant of the flow if this derivative is compensated by the local 

derivative. This leads to the invariance criterion of an object <I> : at<l> + Lu<l> = 0, where 

Lu<l> denotes the Lie derivative of <I> with respect to u. 

Fluid flow occurs in three dimensional space. The above considerations lead to 

the investigation of how the fluid flow is related to the geometry of three dimensional 

space. This is the problem investigated by Thr and Yanovsky using differential forms. 

Corresponding to the four kinds of forms in a three dimensional manifold they have 

obtained four types of invariants. 

Drobot and Rybarski [18J, Mathew and Vedan [54, 55] and Geetha, Thomas Joseph 

and Vedan [28J have used a four dimensional space-time manifold to study inviscid 

flows. A four vector P represents a flow in this manifold. In this case the above invari­

ance condition becomes vanishing of the Lie derivative with respect to this flow vector 

P. We are using this invariance condition to obtain the vorticity related invariants in 

hydrodynamics. We consider a four dimensional Euclidean space E4 and a four vector 

field P. 

2.2 Invariants in inviscid flows 

As mentioned in the introductory chapter, we can find numerous examples for different 

types of invariants in ideal fluid flows. It has been shown that in hydrodynamics 

there exists only four types of invariants which are associated with the four types of 

differential forms that exist in ]R3 [80]. These can be classified as follows. 

1. Lagrangian invariants: These are scalar functions ! satisfying the differential 

equation 

at! + (u . \1)! = 0 (2.1) 

A well known example for such an invariant is the Ertel invariant (w . \1 S) / p, 

where Sand p are the entropy density and the density of the fluid respectively 
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and w is the vorticity field. 

2. Surface invariants: Surface invariants are those vector fields which are satisfying 

the equation 

OtS + (u . V)S + (8 . V)u + S x V x u = 0 (2.2) 

3. Frozen in invariants: Frozen in invariants are those vector fields Q which satisfy 

the equation 

OtQ + (u . V)Q - (Q . V)u + (V . u)Q = 0 (2.3) 

Such fields are clearly flux conserving fields. 

4. Density invariants: A scalar function </> is said to be a density invariant in a fluid 

flow if it satisfies the equation 

Ot</>+ (u· V)</> + (V· u)</> = 0 (2.4) 

Euler's equation of motion 

Consider the case of barotropic inviscid fluid flow. The Euler's equation of motion 

under conservative body force is 

(2.5) 

Here w is the vorticity. 1/J is defined as follows. Let cp be the potential of the body 

forces and VW = V Pip, where P is the pressure and p is the density of the fluid. 

Then 'ljJ = cp - W. Taking lE = (OtU + ~VU2), the above equation can be written as 

lE+w x u = V1/J. (2.6) 

This can be compared with the Ohm's law in plasma flows for which the right hand 
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side is a gradient(Here we introduced this notation deliberately for its use in coming 

sections). 

Equation (2.6) leads to the vorticity equation 

8tw + (u· V)w - (w· V)u + (V . u)w = 0. (2.7) 

From this it is clear that the evolution of the vorticity field is flux conserving. This 

gives the well known result, which is known form the dates of Helmholtz, that in the 

case of a barotropic inviscid fluid flow with conservative body forces the vorticity field 

lines are frozen in the fluid. 

Integral conservation 

For a barotropic inviscid flow we have the equation of motion (2.6). Now for any closed 

surface S on which w . dS = 0, we have 

[ lE· wdV = is 'lj;w· dS = 0, (2.8) 

where V is the volume bounded by the closed surface S. So, lE: . w is an invariant of 

the flow inside this closed surface. Let us assume that the vorticity field is zero except 

inside a closed vortex tube bounding a volume V. Then the above integral is vanishing 

throughout the flow. This invariant is much similar to the invariant E· B in the ideal 

magnetohydrodynamic (MHD) flows. But, in general w . dS need not be vanishing on 

all surfaces. In such cases, let I = Iv lE: • w. 

Then 

dI d 1 d 1 - = - lE: . wdV = - 'lj;w . dS 
dt dt v dt s 

= is'lj; (8tw + V x (w x u) 1 . dS + is ~~ w . dS 

(2.9) 
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Thus for any volume V, I is an invariant (or equivalently, IE· w is an integral invariant) 

for an inviscid barotropic flow if d'ljJ / dt = 0 ( or w . dS = 0 on S ). 

As an example we can consider an isentropic flow for which dP/dt = 0, where P is 

the pressure (here the equation of motion becomes lE + w x u = \7 P). In this case it is 

clear from the above discussions that lE . w is an integral invariant for any volume V. 

Let us consider a viscous barotropic flow with the equation of motion 

IE + w x u = \7'ljJ - v\7 x w. (2.10) 

Now, for a viscous flow inside a closed surface S enclosing a volume V we can assume 

that u = 0 on the boundary so that w . dS = 0 on the boundary, assuming that the 

kinematic viscosity is small [57]. Then 

r IE. wdV = -v r w· \7 x wdV (since w . dS = 0 on the boundary) Jv Jv 
1dh 

(2.11) 

2 dt 

where h = Iv u . wdV is the total helicity. 

For a non-barotropic inviscid flow, for any volume bounded by a closed surface over 

which w . dS = 0, the volume Integral Iv p(lE . w) vanishes, since 

lE + w x u = \7: :::::} i p(lE· w) = i w . \7 P = is Pw· dS = O. (2.12) 

2.3 Invariance of geometrical objects in E4 

The geometrical objects we consider here are those associated with the differential 

forms and vector fields. An object is invariantly transported or Lie transported by a 

vector field P if its Lie derivative with respect to P is zero. In E4 there exists five 

kinds of differential forms wn for n = 0,1,2,3 and 4. We will discuss the invariance 
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criterion for each of these forms and also for vector fields. Since we are familiar with 

vector field notations in three dimensional space, we will represent differential forms 

in vector notations also. The flow field defined by the four vector field P will be taken 

to be P = (Po, p), where Po is the coefficient of P corresponding to the time coordinate 

and p, which is a vector in ~3, corresponds to space coordinates. 

Invariance of differential forms 

In this section we will give the invariant condition for differential forms wn for n = 

0,1,2,3 and 4 under the flow generated by the four vector field P in E4. 

Zero forms 

Consider a zero form, i.e., a function 1 in E4. This is an invariant if it satisfies L'J'1 = 0, 

which in vector notation takes the form 

Pood + (p . \7)1 = 0, (2.13) 

where \7 is the gradient operator with respect to spatial coordinates. Clearly this is 

the definition of a Lagrangian invariant. An example for such an invariant is the Ertel 

invariant given by (w . \7 S) I p, where Sand p are the entropy density and the density 

of the fluid respectively and w is the vorticity. 

One forms 

Usually a one form is given by 

and can be represented in vector notation as A = (Aa, A), where A = (Ai, A2 , A3), the 

coefficients corresponding to spatial coordinate differentials, and Aa corresponding to 
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time differential. The one form is invariant if L'Yv.;l = O. In vector notation this gives 

two simultaneous equations 

(2.14a) 

and 

po8tA + (p. \7)A + (A· \7)p + A x \7 x p + Ao\7po = o. (2.14b) 

Two forms 

Consider a two form 

We will denote this two form in vector notation as (P, Q), where P = (PI, P2, P3 ) and 

Q = (QI, Q2, Q3) . Then Dyi.;} = 0 is equivalent to the equations 

8t (poP) + (p. \7)P + (p. \7)p + P x (\7 x p) + Q x 8t p = 0 (2.15a) 

and 

Po8tQ + (\7 . Q)p + \7 x (Q x p) + \7po x p = O. (2.15b) 

Three form 

Generally a three form in E4 is of the form 
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In vector notation it is (R, Ro), where R = (RI, R2 , R3). Then £.y0.i = 0 can be 

identified with the equations 

Ot(PoR) + (p. \7)R + R(\7 . p) - (R· \7)p + Rootp = 0 (2.16a) 

and 

POOtRO + \7 . (Hop) + R· \7po = O. (2.16b) 

Four forms 

Any four form in E4 is given by w4 = Tdxo 1\ dx 1 1\ dx2 1\ dx3 • Then L'}'W4 = 0 gives 

the equation 

(2.17) 

Invariance of vector fields 

Suppose J = (Jo, J) = Jooxo + JIOxl + J20x2 + J30x3 be any general vector field defined 

in E4. Then L'J'J = rp, J], where [ ,lis the commutator of the vector fields. Thus the 

invariant transport of J is given by 

POatJo + (p . \7)Jo - (J . \7)po - Joatpo = 0 (2.18a) 

and 

POOtJ + (p . \7)J - (J . \7)p - Jootp = O. (2.18b) 

Now we discuss some useful relations between different kinds of forms and vector fields 

1. If wn = dwn-l, then L'J'wn- 1 = 0 :::::} £.:pWn = 0, where wn is an n form and wn- 1 

is an (n - 1) form. 

2. If wn and wm are Lie transported, then wn+m = wn 1\ wm is also Lie transported. 
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3. Consider a Lie transported three form (R, Ra). Now define a vector field J = 

(Jo, J) = (-Raj p, Rj p). Then from (2.16) and (2.18) it follows that J is an 

invariant vector field. 

4. We have the identity LyLz - LzLy = L[y,z], where Y and Z are any two vector 

fields. Now suppose that J is an invariant vector field, then if wn is also an 

invariant n-form, then L'J'LJwn - LJL']>Wn = L['J',J]wn. This implies that LJwn is 

an invariant n-form. Let Lj = L J 0 L J 0 ... 0 L J (up to m-terms). Then, if wn 

and J are invariant, Ljwn is also an invariant n-form for any m = 1,2,3", .. 

5. We know that Lyiz - izLy = i[y,ZI' Now suppose that J is an invariant vector 

field, then L'J'iJ - iJL'J' = i['J',JI' Hence iJwn is an invariant n-form if wn is an 

invariant form. In particular i']>Wn is an invariant for any invariant n-form wn . 

From this result also it is true that LJwn is an invariant for invariant J and wn , 

Thus from known invariants we can construct many invariants, each of which belongs 

to the class of invariant differential forms and vector fields. Also, for any n, the Lie 

transport of wn implies the integral conservation 

r wn = const. 
Jcn 

where en is any comoving n dimensional surface. 

Remark 1. Even though we have defined above the Lie derivative with respect to a 

general vector field in E 4
, we are interested only in the case where the four dimensional 

flow field is p = (1, u) = dX/dt, where X = (xO, Xl, x2, x3), xo = t and u is the velocity 

field of fluid motion in IR3. 
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2.4 Vorticity two form in E4 

Let us define a one form w l as 

(2.19) 

We denote it as a four vector A - (Ao, A). Here A = u, the velocity vector and 

Ao = _~U2. 

Taking the exterior derivative of w1 we will get a two form 

where (w}, W2, W3) = w is the usual vorticity vector and (1E1' 1E2' IE3 ) = IE with IE = 

8t u - \7 Ao. It is convenient to represent w2 as (lE, w), in vector form. Also we have 

\7 X IE = 8tw and \7 . w = O. By our definition of IE, lE + w X U = \7~ can be identified 

as the Euler's equation of motion for an inviscid barotropic flow under conservative 

body forces. 

In tensor notation w2 is ~ Ct(3dxCt 1\ dx!3, where 

(2.21) 

We call the tensor ~ Ct(3 the vorticity field tensor in E4. Clearly it is askew-symmetric 

tensor of rank two. This corresponds to the electromagnetic field tensor in magneto-

hydrodynamics. The corresponding matrix representation for vorticity field tensor is 
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given by 

0 IEI IE2 IE3 

~Q!3 = 
-IEI 0 W3 -W2 

-IE2 -W3 0 WI 

- IE3 W2 -WI 0 

In what follows we will consider only the differential form representation w2 of J='et!3' 

Using the above definition of vorticity two form we will investigate the invariants of 

hydrodynamic flows in E4. 

2.5 Invariant transport of vorticity related fields 

In this section we discuss the invariant transport of vorticity related fields which are 

obtained from vorticity two form. 

Invariance of vorticity 

We are looking for a condition for the invariance of vorticity two form w2 in E4 under 

a flow induced by the four vector field p = (1, u). This is given by the vanishing of the 

Lie derivative of w2 with respect to p, i.e., L pw2 = O. This is equivalent to the vector 

equations 

at (IE + w X p) + \7 (lE . p) = o} 
\7 x (lE + w X p) = 0 

Here we have used the relation \7 X lE = atw. 
We have, 

L 2 . d 2 d' 2 pW = tp W + tpW. 

(2.22) 

(2.23) 

Now, w2 is a closed two form so that ipdw2 = O. Thus Lpw2 = 0 if and only if dipw2 = O. 
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This implies that ipw2 = d</> for some rp. Again, in vector notation this is equivalent to 

at</> + (u . V)</> = o} 
lE+wxu=V</> 

(2.24) 

The second of equations. (2.24) is similar to the Euler's equation of motion in barotropic 

flows and the first one determines the evolution of the potential </>. Taking the curl 

of the second equation we get the vorticity equation which is the condition for the 

invariance of vorticity in IR3. 

We have 

Lpw2 = 0 ~ 1 w2 
= const. 

C2 

~ 1 w· da + { lE· dao = const. 
C2 JC 2 

Here da and dao are surface elements with the convention that 

da = (dx2 1\ dx3
, dx3 1\ dx1, dx11\ dx2

) and dao = dxo 1\ (dXl, dx2
, dx3

) = dxo 1\ dl, and 

the integration is over a two dimensional surface C2
. 

If the surface under consideration is space like (i.e., t = constant), then we have 

J w' da = const. 

On the other hand if we start with a plane spanned by a vortex line and the time 

axis, the first term vanishes so that 

J lE· dao = const. ~ J lE· dldxo 
= const. 

Conservation of lE as a one form in IR3 

Suppose the fluid flow is irrotational. Then clearly lE = V</> for some </> and vorticity 

two form becomes (lE, w) = (v</>, 0). Now from (2.24) the conservation of vorticity two 
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form implies 

Taking the gradient of first equation will lead to 

atlE + (u· \7)lE + (lE· \7)u = o} 
lE=\74J 

But in ]R3 any field 8 satisfying the equation 

at8 + (u· \7)8 + (8· \7)u + 8 X (\7 X u) = 0 

(2.25) 

is called an invariant one form or S -invariant [80]. Now from (2.25) it follows that 

lE satisfies an equation of this form. i.e., the field lE is an invariant one form, which 

implies 

J lE . dl = const. 

The invariance of lE is not restricted to the case of irrotational flows only. For example 

consider the case of a Beltrami flow. Then also from (2.24) we have lE = \7</> and (2.25) 

takes the form 

atlE + (u· \7)IE + (lE· \7)u + lE X (\7 X u) = o} 
lE=\74J 

In this case also lE is an invariant one from in ]R3. 

Invariant transport of one form 

We have for any n-form wn, dLpwn = Lpdwn . Thus if the one form wl = Aodxo + A 1 dx1 + 

A2dx2 + A3dx3 is invariantly transported ( or Lie transported, i.e., Lie derivative of w l 
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with respect to the vector field p is zero), then w 2 = dw 1 is also Lie transported. The 

converse is not true always. We will find the condition for the converse to be true. 

Now, Lpw1 = ° implies 

Then 

OtAO + (u· \7)Ao + U· OtU = o} 
OtU + (u· \7)u + (u· \7)u + u X (\7 X u) = 0 

L 1 'd 1 d' 1 pW = zp w + zpw 

, 2 d' 1 = zpW + zpw 

(2.26) 

Therefore, for Lpw1 = 0, we should have dipw 1 = -d</>, i.e., ipw l = -</> + c, where c 

is a constant. When p = (1, u) this becomes Ao + u2 = -</> + c, 

Hence, Lpw2 = ° implies Lpw1 = 0 only if ipw2 = dAo. 

But Lpw1 = 0 implies 

1 Wl = const. 
Cl 

r AodxO + 1 A· dl = const. 
iCl Cl 

Now, if the curve Cl is a space curve then this becomes 

l A. dl = const. 
Cl 

Le., rjJ = Ao + c. 
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Lie transport of helicity three form 

We have discussed in the previous sections invariant transport of the one form w 1 and 

the vorticity two form w2 in E4. Now we consider the three form w3 = w1 /\ w2 in E4. 

In vector notation this can be written as 

( Ho, H) = (A . w, Aow + lE X A) 
(2.27) 

= (u . w, Aow + lE X u). 

We see that the component corresponding to dx 1 
/\ dx2 /\ dx3 is the usual helicity 

in JR3. We call w3 as the four-helicity corresponding to the vorticity two form w2 • 

Now Lpw3 = 0 is equivalent to 

8t Ho + \7. (Hou) = o} 
8t H - \7 X (u X H) + (\7 . H)u + Ho8tu = 0 

Also Lpw3 = 0 implies 

r w3 = const. JC3 

r HodV + { H· No = const., JC3 JC3 

(2.28) 

(2.29) 

where dV = dx 1 /\ dx2 /\ dx3 is the three dimensional space volume element and eN 0 = 

dxo /\ (dx 2 
/\ dx3 + dx3 /\ dx 1 + dx 1 /\ dx 2 ) = dxo /\ da. If C 3 is independent of time 

coordinates, i.e., C 3 is a space volume, then (2.29) becomes the usual conservation of 

helicity density Ho = U· w. 

i.e., r U· wdV = const. JC3 

Now suppose the helicity density Ho = U· W = 0 for a given flow. Then from (2.28) 
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and (2.29) we get the invariance condition for the vector H = Aow + lE X U as 

1 H· dadxo = const. 
C3 

Also in this case (2.28) becomes the single equation 

8t H - \7 X (u X H) + (\7 . H)u = 0 (2.30) 

This is the condition for the invariance of a two form in JR3. Thus if we take H as a 

two form, 

in JR3, then (2.30) implies that H is Lie transported in JR3. Then, following Thr and 

Yanovsky [80], we see that J = Hip is a frozen-in field. Also using the definition of H 

as given in (2.27) 

u· H = AoHo Ho = U· HIAo 

i.e., U· HI Ao is the usual helicity three form in JR3. 

Now, if w1 and w2 are Lie transported forms then their wedge product w3 is also 

Lie transported, for, 

= o. 

Thus if w2 is Lie transported, then for flows for which ipw2 = dAo the four helicity is 

also Lie transported. 



CHAPTER 2. VORTICITY RELATED INVARIANTS IN HYDRODYNAMICS 39 

Transport of IE . w 

Let us consider the four form 

The invariance condition of this form, Lpw4 = 0, implies 

r w4 = const. lC4 

Also, Lpw4 = 0 is equivalent to the vector equation 

(2.31 ) 

This can be considered as the conservation equation for lE . w in IR3. Hence by 

considering a three dimensional space volume C 3 we have 

fIE. wdx1 /\ dx2 /\ dx3 = const. 
lea 

Thus, by considering the invariance of the four form we obtain an invariant quantity 

lE· w. 

i.e., when w2 is Lie transported, w4 is also Lie transported. In fact from (2.22) we 

can deduce (2.31). But the converse is not true always, i.e., w4 can be Lie transported 

without w2 being Lie transported. 
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In the case of an inviscid incompressible isentropic flow the governing equations are 

[10] 

and 

dP 
- = at P + (u . \l)P = 0 
dt 

where P is the pressure. These two equations can be written as 

and 

JE:+w x u = \l'IjJ, 

where 'IjJ = -P and JE: = atu + \l(~u2). Thus, comparing these equations with (2.24) 

it is clear that the vorticity two form is Lie transported and hence JE: . w is also Lie 

transported. 

2.6 Discussion 

In this chapter we have discussed the topological invariants associated with the vorticity 

field. We see that the Euler's equation of motion for inviscid barotropic flows can be 

compared to the ideal form of Ohm's law. We have also discussed about the integral 

conservation of JE: . w . An isentropic flow gives a good example in which this quantity 

is an integral invariant. 

The geometry of three dimensional space has been used by Tur and Yanovsky to 

study the invariants in hydrodynamics. There are differential forms of order 0, 1,2 and 

3 defined on a three dimensional manifold. An equation involving Lie derivative of 

these forms is taken as the condition for invariants of differential forms. This condition 

for the invariance has been used in [31] to make it covariant in discussing the invariants 
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of magnetohydrodynamic flows. The covariant form is the Lie derivative in Minkowski 

space applied to different objects transported by a four velocity. 

It has been shown by Mathew and Vedan that a four dimensional Euclidean space 

representing the space-time continuum can be used in the study of hydrodynamics. 

This points to the use of a four dimensional manifold and associated differential forms 

instead of the three dimensional manifold used by Thr and Yanovsky. There are dif-

ferential forms of order four also associated with this manifold. This concept is used 

to obtain additional invariants of hydrodynamics. 

We start with a one form; its exterior derivative is a closed two form. The invariance 

condition for this two form leads to the invariance of vorticity field. Our choice of 

Ao and A in the one form leads to the vorticity field tensor corresponding to the 

electromagnetic field tensor. Further, comparing the equation 

du 1 2 
P dt = p( at U + "2 \7 u - u X w) 

with the equation of motion of a particle in an electromagnetic field, lE = at U + ~ \7u2 

corresponds to the electric field intensity [49]. The vorticity field tensor g:a!3 is similar 

to the electromagnetic field tensor. This again confirms the strong analogy between 

vorticity field and magnetic field in ideal flows. The hydrodynamics equations are non-

relativistic and Galilean invariant. Thus we use only four-dimensional Euclidean space 

instead of the Minkowski space used by Hornig. 

In irrotational or Beltrami flows lE is invariant as a I-form in JR3. This corresponds to 

the S-invariants defined by Tur and Yanovsky. Similarly, when helicity is zero, we get a 

Lie transported two form H in IR3. Associated with the four form we obtain an invariant 

quantity lE· w. This invariant is similar to the invariant E· B in magnetohydrodynamic 

flows. Also we have shown that in the case of an incompressible isentropic flow the 

vorticity two form is Lie transported in E4. 



Chapter 3 

Topological invariants in 

hydrodynamics 

3.1 Introduction 

The analogy between vorticity equation of a barotropic flow and the induction equation 

of a magnetohydrodynamic flow is well known [58]. Vortex lines have properties similar 

to magnetic lines of force. Thus topological considerations apply to barotropic flows as 

well as to magnetohydrodynamic flows. Though this has been mentioned in almost all 

magnetohydrodynamic studies (e.g. [58, 17]), particular attention has not been given 

to it. In this case it is to be noted that there exists a significant difference between 

magnetic induction equation and vorticity equation. Vorticity equation is only a par­

ticular case of the induction equation, where vorticity is related to the fluid velocity. 

Thus, corresponding to the results for induction equation we can get results for vortic­

ity also, but there may have results for vorticity that do not have counterparts in the 

case of magnetic fields [58]. Considering this analogy we can say that the geometrical 

properties of both flows share same properties, but dynamical properties may differ. 

Another difference is in the comparative significance of dissipations of magnetic field 

and vorticity field in non-ideal cases[17]. 

42 
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As mentioned in the introduction, the study of fluid flows in ]R3 can be carried out 

by considering a four dimensional Euclidean space-time manifold E4. In the previous 

chapter we have considered the vorticity related invariants using such a manifold. In 

this chapter we continue our study obtaining topological invariants of hydrodynamic 

flows by generalising the concept of vorticity related invariants to any general frozen-in 

vector field. 

In the next section we consider some invariants associated with vector fields. The 

geometry of invariant vector fields in lR? is discussed in the third section. Then we 

define a closed differential two form and its potential one form corresponding to a 

solenoidal vector field which is having an invariance nature. The invariance conditions 

for different kinds of forms, which are obtained from the closed two form, are given in 

the subsequent sections. After that some examples are discussed. 

3.2 Invariants associated with vector fields 

We will discuss in this section conservation of vector field lines and flux conservation 

of arbitrary vector fields. We give a generalisation of steady Euler flows which admits 

a family of integral surfaces. An identity involving two frozen-in vector fields is also 

given. 

Topology conservation of vector fields 

A necessary and sufficient condition that the flux of an arbitrary vector field Q through 

an arbitrary material surface is constant as the motion proceeds is (see [79, 64] ) 

Ot Q + (w . \7)Q - (Q . \7) w + Q(\7 . w) = 0, (3.1) 

and a necessary and sufficient condition for the vector tubes of Q to be material tubes 
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is 

Q x [8tQ + (w· \7)Q - (Q . \7)w] = O. (3.2) 

In equations (3.1) and (3.2) w is the generating vector field. The subscript means 

partial derivative with respect to time. Thus if any vector field Q satisfies equation 

(3.1), we say that flux of the field Q is conserved. From (3.1) and (3.2) it is clear that 

if a field is flux conserving, then its vector tubes are material tubes. 

The evolution of a smooth vector field Q conserves the topology if a generating 

vector field wand a scalar function A exist so that 

OtQ + (w· \7)Q - (Q . \7)w = AQ. (3.3) 

Topological conservation according to this definition requires the preservation of null 

points of the field and also the orientation of field lines, but (3.2) need not preserve 

such properties [36]. 

In the case of magnetohydrodynamic flows ideal form of Ohm's law 

E+uxB=O (3.4) 

leads to the induction equation 

OtB + (u· \7)B - (B . \7)u + (\7 . u)B = O. (3.5) 

Here E is the electric field, B the magnetic field and u is the flow velocity. This is an 

equation of the form (3.3), where w is replaced by u and A = -\7·u. Hence it is clear 

that the evolution of magnetic field in ideal magnetohydrodynamic flows conserves the 

flux across any material surface. 

The more general form of Ohm's law that satisfies the topology conservation ac-
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cording to (3.3) is given by 

E+u x B = C, (3.6) 

with 

v x C = JLB = -(,X + Vu) . B. 

Here we restrict our field B to be divergence free [36], so that V· ('x + V.u)B = o. 

Also there are many other vector fields in ideal fluid flows which satisfy the flux 

conserving equation (3.1), as noted in [80]. We will discuss some of them in coming 

sections. 

We have already discussed the conservation of vorticity in the case of inviscid 

barotropic flows, which satisfies the equation (2.3) 

OtW + (u. V)w - (w· V)u + (V· u)w = 0 (3.7) 

Taking cross product of equation (3.7) with u gives the equation 

Ot(W x u) + (u . V)(w x u) + (w x u) . Vu + (w x u) x (V x u) + w x OtU = 0, (3.8) 

using the identity 

(A x B) . VC = B x (A· V)C - A x (B· V)C - (A x B) x V x C + (V. C)(A x B). 

From equations (2.2) and (3.8) it follows that w x u is a surface invariant if and only 

if W x OtU = O. Here instead of vorticity field if we have any other frozen in field, such 

as magnetic field B in MHD, this result is true. So, in an inviscid flow if the time 

derivative of velocity field is parallel to the vorticity field (or to any other frozen in 

field Q), then the field u x W (or U x Q) is a surface invariant. 

Now, if we start with a surface invariant S, then we can show that S.u is a La­

grangian invariant if and only if S· OtU = 0, by taking the dot product of equation(2.2) 
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with u and using the identity 

A· (B· V)C = B[(A . V)C + A x V xC]. 

Similarly it can be shown that, in the case of an invariant density 4;, 4;u is a flux 

conserving filed if and only if the flow is steady. 

Integral Surfaces 

Consider an incompressible flow. Suppose Q be an invariant vector field satisfying the 

equation 

OtQ + (u· V)Q - (Q . V)u = 0 (3.9) 

Then Q x u is a surface invariant if and only if Q x OtU = 0 (from (3.8), replacing w 

by Q). Now the vector P = Q x u(1= 0) is both perpendicular to Q and u. 

Now suppose at some instant, say at t = 0, we have P.V x P = 0 which is the 

Frobenius integrability condition. Then from the invariance of P it can be shown 

that P . V x P = 0 for all time. Hence there exist a family of integral surfaces for 

the field P at any time. The vectors Q and u are on this surface and if they are 

linearly independent, i.e., Q x u 1= 0, then these vectors generates the surface. But, a 

family of integral surface for the vectors Q and u exist if and only if the Lie bracket 

[Q, u] = \7 x (Q x u) is a linear combination of Q and u. That is 

V x P = [Q, u} = aQ + ;3u (3.10) 

Even though P . V x P _ 0, the integral surface at different times may be distinct. 

But the invariance of P implies the invariance of the integral surfaces also, as the 

surface orthogonal to P is frozen([80]) into the medium. 

Here the family of integral surfaces S on which the velocity vector always lies moves 
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invariantly with the flow. Let us take the invariant vector field Q as the vorticity vector 

w. Then from the above discussion we can conclude the following: In an unsteady 

inviscid barotropic flow if the partial derivative of velocity field with respect to time is 

parallel to the vorticity field and there exist a family of integral surfaces for u and w 

initially, then this family of integral surfaces will remain spanned by the field lines of u 

and w. It is known that ([9]) in a steady Euler flow u x w = '\7h, the vector lines of u 

and ware lying on the integral surfaces h =const. Thus our result can be considered 

as a generalisation of steady Euler flows which admits a family of integral surfaces. 

An identity involving two frozen-in vector fields 

Consider an incompressible fluid flow. Let P and Q be two divergence free flux con­

serving vector fields in ]R3 satisfying the equations 

GtP + (u . '\7)P - (P . '\7)u = 0 (3.11a) 

and 

GtQ + (u· '\7)Q - (Q . '\7)u = 0 (3.11b) 

where '\7. P = '\7. Q = '\7. u = O. Now from the above equations it follows that P and 

Q are also frozen-in vector fields. Hence their cross product S = P x Q corresponds 

to an invariant one form in ]R3 [80]. Thus '\7 x S corresponds to an invariant t.wo form, 

which means that '\7 x S satisfies the equation 

Ot('\7 x S) + (u· '\7)('\7 x S) - (('\7 x S) . '\7)u = O. (3.12) 

This equation gives 

GtS + ('\7 x S) x u = '\74>, (3.13) 
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for some scalar function </>, which is the equation governing the evolution of the vector 

field S. Now, taking cross product of (3.11a) with Q and (3.11b) with P and adding 

we get 

Ot(P x Q)+P x (u· \7)Q+Q x (p·\7)u-P x (Q. \7)u- Q x (u. \7)P = O. (3.14) 

Using the identity (A. \7)(B x C) = B x (A· \7)C - C x (A. \7)B, this becomes 

Ot(P x Q) + [\7 x (P x Q)] x u+ (u· \7)(P x Q) + (p. \7)(Q x u) + (Q. \7)(u x P) = 0; 

i.e., OtS+(\7xS) xu+(u·\7)(PxQ)+(p.\7)(Qxu)+(Q·\7)(uxP) = O. (3.15) 

Thus S satisfies both the equations (3.13) and (3.15). Then it follows that 

(u· \7)(P x Q) + P . \7(Q x u) + (Q . \7)(u x P) = \7( (3.16) 

for some scalar function (. 

Suppose S = P x Q #- 0, then P and Q are linearly independent. Assume that 

S· \7 x S _ 0, which means that the helicity density of S is identically zero for the flow. 

i.e., (P x Q) . rp, Q] - 0, where [ , ] is the commutator of P and Q. It follows that 

rp, Q] is a linear combination of P and Q. Two linearly independent vector fields P 

and Q will generate a family of integral surfaces if and only if the commutator product 

lP, Q] is a linear combination of P and Q [64]. Thus it follows that in such cases P 

and Q are having a family of integral surfaces, which is orthogonal to P x Q and on 

which \7 x (P x Q) = rp, Q]lies. On such a surface 

const. = is \7 x (P x Q) . dS = is [P, Q] . dS = 0 

Let a, {3 and I be three Lagrangian invariants in an inviscid incompressible fluid 
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flow. Then it follows that \7 ex and \7 {3 are surface invariants [80] and hence A = 

\7 0: X \7 {3 is a divergence-free frozen-in vector field. Since vorticity field is also a 

frozen-in field, it follows that A x w satisfies the identity (3.16). 

3.3 Geometry of flux conserving fields 

Consider the vector equation 

OtQ + (u· \7)Q - (Q. \7)u + (\7 . u)Q = 0 (3.17) 

where u is the fluid velocity and Q is any vector field. Any vector field Q satisfying 

this equation conserves the flux across any material surface. For an inviscid fluid there 

exist a number of vector fields satisfying this condition. As said earlier, most familiar 

examples are that of vorticity vector wand magnetic field B in the case of ideal flows. 

Let S be the entropy density of a compressible adiabatic flow, which is a Lagrangian 

invariant. Then A = Sw is also a flux conserving field. Also it may be noted that here 

\7. A = \7S· w, which is generally non zero and \7S· w/p is the Ertel invariant. A 

vector field which satisfies (3.17) can be identified as an invariant two form in three 

dimensional Euclidean space ]R3, as described by Tur and Yanovsky [80]. If our field 

Q is a solenoidal field then (3.17) can be written as 

OtQ + \7 x (Q x u) = 0. (3.18) 

Now we recall the following result due to Appel [79]: 'Given any family of lines 

furnished with continuously turning tangents, which in a given flow u are material lines, 

there exists a continuously differentiable solenoidal vector field K satisfying (3.17) and 

whose vector lines coincide with the given material lines. Since K is solenoidal there 

exist a continuously differentiable vector field w such that K = \7 x w. Also the 
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circulation of w about any material curve is constant and the vector lines of K are 

material lines' . 

Now, any smooth vector field Q which satisfies the equation 

OtQ + (u . \7)Q - (Q . \7)u = >.Q (3.19) 

where>. is any scalar field, is said to have field lines which are material lines [79]. Any 

smooth vector field Q which satisfies equation (3.17), or more generally equation (3.19), 

is having material field lines with continuously turning tangents. So by the Appel's 

result, there exists a continuously differentiable vector field K having field lines as that 

of Q, satisfying the condition (3.17), and K = \7 x W, where w is also a continuously 

differentiable vector field. We call K an associated solenoidal vector field of Q (if Q 

itself is solenoidal, then K = Q). In particular if the field Q is a frozen-in field (i.e., 

taking>. = 0 in (3.19)), then also there exists a flux conserving solenoidal vector field 

K satisfying (3.17) and having the field lines as that of given field. 

In the above discussion, since the field lines of a given vector field Q and its as­

sociated solenoidal vector field K are the same, there exists a scalar field f such that 

K = fQ. The non vanishing of divergence of Q implies that the net flux across a 

closed surface is nonzero and thus there is a source of Q in that domain. This does not 

affect the geometry of the field lines, as pointed out by Kida and Takaoka [41] in the 

discussion of helicity invariants. Thus to study the geometric properties of the above 

discussed invariant vector fields, or more generally to study the geometric properties 

of vector fields whose vector lines are material lines, we can restrict ourselves to the 

associated solenoidal vector field. 

Now, if we consider any invariant vector field Q (which need not be solenoidal), 

satisfying (3.17), then by Appel's result we can find a solenoidal vector field K, satis­

fying (3.17), which is again an invariant vector field. Thus now onwards we consider 
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only solenoidal vector fields Q = 'V x w satisfying the equation (3.18). That is 

'V x [at w + (Q x u) 1 = 0 (3.20) 

which implies 

(3.21) 

for some scalar functions 4> and 'Ij;. 

If we take lE = atw + 'V <jJ, then this equation becomes 

lE + Q x u = 'V'Ij;. (3.22) 

This is the equation governing the invariant evolution of the field Q under the flow 

generated by u. Thus for the invariant transport of Q, 'V x (lE + Q x u) = O. But in 

a general flow the equation governing the evolution of Q (or w = curl-1(Q)) may not 

always satisfy (3.18) (or (3.22)); instead the equation may be of the form 

'V x (lE + Q x u) = D (3.23) 

for some vector field D. This term may arise from the physical nature of the flow (for 

example from the non conservative body forces, dissipative forces etc.). If D happens 

to be zero, the condition for the invariance of Q is obtained. Now if we uncurl this 

equation, we get the general equation governing the evolution of the field Q (or the 

field w) as 

IE+Qxu=F (3.24) 

where F = curl-1 (D), or equivalently 

atW+ 'V 4> + (\7 x w) x u = F. (3.25) 
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In the next section we shall discuss the geometric properties of such solenoidal 

vector fields using the language of differential forms. 

3.4 Closed two forms and related invariants in E4 

We wish to study the local invariants of differential forms and associated geometrical 

objects in the four dimensional space-time manifold E4. Our starting point is an 

invariant vector field Q in IR3 satisfying an equation of the form (3.22). 

Let us define a one form w1 in E4 as 

(3.26) 

which is represented conveniently as (cp,w). Here r.p = -cjJ and w = (Wl,W2,W3) are 

supposed to satisfy (3.25). Now taking the exterior derivative of w l we get a closed 

two form w2
, 

where (lE, Q) = (8tw - '\lcp, V x w). We have '\l x lE = 8tQ and V . Q = 0, which 

is the exact consequences of closedness of the two form w2
. In tensor notation w2 is 

'Ja{3dxa A dx/3, where 'Ja /3 = 8xCtw{3 - 8x{3wa is a skew symmetric tensor of rank two 

(here 0:,/3 = 0, 1,2,3 and Wo = cjJ). 

Using this definition of two form w2 we will investigate the invariants in hydrody­

namic flows. 



CHAPTER 3. TOPOLOGICAL INVARIANTS IN HYDRODYNAMICS 53 

Invariant transport of two form 

The invariance condition for the two form in E4 is Lpw2 = 0, where p = (1, u). The 

equivalent expression for this equation in vector notation is 

at (lE + Q x u) + \7 (lE . u) = 0 (3.28a) 

and 

\7 x (lE + Q x u) = O. (3.28b) 

But as w2 is a closed two form and Lpw2 = dipw2 + i pdJ..v 2
, we have i pw2 = d'IjJ for the 

invariance of w2• This is equivalent to 

(3.29a) 

and 

IE+Qxu=\7'IjJ. (3.29b) 

From (3.29a) it is clear that 'IjJ is a Lie transported zero form. Equation (3.29b) is the 

equation governing the invariant evolution of the field Q under the flow u (also see 

(3.22)). We can consider (3.29) as the set of equations which governs the invariant 

transport of w2 in E4 , under the flow generated by (1, u). Taking gradient of (3.29a) 

and using (3.29b) we obtain (3.28a) and taking curl of (3.29b) gives (3.28b). The study 

of invariance of the two form w2 in E4 also includes the notion of invariance of lE and 

Q simultaneously. 

Now L pw2 = 0 

=} 1 w2 
= const. 

C2 
{:::> 1 Q. da - r lE· dldt = const., 

C2 JC2 
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over any comoving two dimensional surface C 2 in E4. If the surface under consideration 

is space like then we have J Q . da = const. On the other hand if we start with a plane 

spanned by a Q line and the time axis, the first term vanishes so that J lE· dldt = const. 

Conservation of lE as a one form in ]R3 

In a flow, it may happen that the vector field w is a potential field. Then Q = \7 x w = 0 

and lE = \71/J and (3.29) becomes 

atIE + (u . \7)IE + (lE· 'V)u + lE x (\7 x u) = 0 (3.30a) 

and 

lE = \71/J. (3.30b) 

So it follows that lE satisfies an equation of the form (2.2). That is the field lE can be 

considered as an invariant one form 

in ]R3. Thus (3.30) implies 

J lE· dl = const., 

Here note that the fluid flow need not be irrotational, in contrast to the corresponding 

result in the case of vorticity two form. 

It may also happen that w x Q == 0 without being Q = O. Then also from (3.29b) 

it follows that lE satisfies an equation of the form (2.2). So here also wi is an invariant 

form. 



CHAPTER 3. TOPOLOGICAL INVARIANTS IN HYDRODYNAMICS 55 

Invariance of w1 

Now we consider the one form wl = <pdxo + w1dx l + W2dx2 + W3dx3. Here, since 

w2 = dw1
, Lie transport of w 1 implies that of w2

. Now Lpw 1 = 0 implies 

Gt<P + (u . \7)<p + W . GtU = 0 (3.31a) 

and 

GtW+ (u· \7)w+ (w· \7)u+w x (\7 x u) = O. (3.31b) 

In terms of integrals this means 

1 Wl = const. {:} 1 W· dl + r <pdt = const. 
Cl Cl lCI 

If the curve Cl is a space curve, then this becomes fCl W . dl = const. 

Since dw1 = w2
, if w2 is an integral invariant then w 1 is said to be relative integral 

invariant. Now the question is that when does the invariance of w2 imply the invariance 

of w1? 

We have Lpw2 = 0 => i pw2 = d1jJ for some scalar function 1jJ. This implies Lpw1 = 

dX, for some scalar function X = 1jJ + ipw 1
• Thus for the Lie transport of w1 we should 

have 

(3.32) 

where c is some arbitrary constant. But for arbitrary choices of 'IjJ this is not satisfied. 

Thus generally it is not always possible to find a Lie transported one form corresponding 

to a Lie transported two form (see section 3.6). 

But in our actual situation, if we are giving more importance to the two form than 

the one form w 1 in such a way that the transformation w 1 --+ w 1 + d-y does not affect 

the physical model in a significant way, then it may be possible to make a choice of the 

scalar function, so that the condition 1jJ = c - ip(w1 + d,) is satisfied for an arbitrary 
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W. Such a transformation is considered as a gauge transformation. Also in some cases 

it may be possible to choose r.p (= -</» satisfying (3.25) as an arbitrary scalar function 

as we wish (in all cases this is not possible, which is discussed in section 3.6). In 

such cases a choice of r.p as r.p = 'ljJ + u . w - c is possible so that w1 is an invariant 

one form. Thus in such cases the Lie transport of w2 implies the Lie transport of the 

corresponding one form. 

Invariance of three form in E4 

Using the one form w1 and the two form w2 defined earlier we can define a three form 

w3 = w 1 
/\ w2

• If both w 1 and w2 are Lie transported then w3 is also Lie transported. 

Thus if w2 is given to be Lie transported, then in some special cases where the invariance 

of w2 implies the invariance of the corresponding one form, w3 is also Lie transported. 

Here w3 can be represented in vector notation as :J-( = (H, HQ), where HQ = W • Q 

(which corresponds to the coefficient of spacial volume element) and H = r.pQ + lE x W 

(corresponding to remaining terms). The component HQ corresponding to dx 1 /\ dx2 /\ 

dx3 is the helicity density of the vector field w in ]R3. Hence:J-( can be considered to 

be the generalized helici ty densi ty in E4. 

Now Lpw3 = 0 is equivalent to the vector equations 

(3.33a) 

and 

(3.33b) 

Equation (3.33b) gives the conservation law for the helicity density W· Q in ]R3. 

The Lie transport of three form w3 gives the integral invariant 

r w3 = const. 
JC3 
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where C 3 is any three dimensional volume. If the volume C3 is a space volume, then 

this means that 

i3 HQdv = const.:::::} J w· Q = const. 

where dv = dx 1 1\ dx2 1\ dx3. From the definition of H, the helicity density can be 

represented in terms of H as HQ = W· H/tp. 

Now if HQ is identically zero for a certain flow then the invariance of w3 gives 

8t H + \7 x (H x u) + (\7. H)u = O. 

But this is the condition for the invariance of a two form in ]R3. Thus if we take H as 

a two form HI dx2 1\ dx3 + H2dx3 1\ dx 1 + H3dx1 1\ dx2 in ]R3, the above equation implies 

the invariance of H as a two form in JR3. Then it follows that Hip is a frozen in field. 

Invariant transport of four form 

Now from the two form w2 we can define a four form w4 = w2 1\ w2
• That is 

If w2 is an invariant two form, then w4 is clearly invariant but not conversely. Lpw4 = 0 

is equivalent to 

8t (IE· Q) + \7 . (lE· Qu) = o. (3.34) 

This is the equation of continuity for the scalar field lE . Q in E4. This same equation 

can be identified to be the continuity equation for the three form lE . Qdx1 1\ dx2 1\ dx3 

in ]R3. The invariant transport of w4 gives the the integral invariant 

r w4 = const. 
JC4 
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Since lE· Q satisfies (3.34), it is also clear that 

J lE· Q = const. 

over any three dimensional space volume. 

So far we have discussed the local invariance of differential forms in E4 associated 

with a vector field Q in IR3 and its vector potential w. One of the most important 

example is that of vorticity two form, which we have discussed in detail in the previous 

chapter. Now we will see some other important examples which illustrate the concepts 

discussed in previous sections. 

3.5 Examples 

Magnetohydrodynamics 

In a magnetohydrodynamic flow the induction equation is given by 

(3.35) 

which corresponds to (3.23). This equation is obtained by taking the curl of Ohm's 

law 

E + u x B = T]J (3.36) 

where B is the magnetic field, J is the electric current density, E is the electric field and 

7] is the magnetic diffusivity of the fluid. (Note that we have written (3.24) in analogy 

with the Ohm's law. Also note that according to our definition of lE, the electric field 

E and lE are having opposite sign). In the case of ideal Ohm's law or in the slightly 

non-ideal case E + u x B = V'Ij;, the induction equation is given by 

8tB + V x (B x u) = 0 
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which conserves the magnetic flux across any material surface. Now in terms of vector 

potential A of B we can write the Ohm's law as 

8t A - Vcp + [(V x A) x u] = F 

where F = T}V x (V x A) = T}J. 

Then we can define a one form, the electromagnetic potential, as 

(3.37) 

which gives on exterior differentiation the electromagnetic two form 

Here we are free to choose the potential w1 (A = (<p, A)) up to a gauge transformation 

w1 
--t w1 + d" since the physical quantities we are interested in are the magnetic 

field and electric field and not their potential A, which is not a measurable quantity. 

Thus the guage transformation does not affect the physical model. Hence in this case 

if Lpw2 = 0, then we can choose a gauge potential satisfying some initial conditions 

so that the one form w1 is also Lie transported [31]. In magnetohydrodynamic case 

(3.29b) corresponds to the Ohm's law which may be slightly non-ideal, but conserves 

magnetic flux. 

Since the Lie transport of w2 implies that of w 1 with a suitable gauge, it also implies 

the Lie transport of generalized helicity three form w3 = w 1 1\ w2. This also includes 

the conservation of magnetic helicity Ho = A . B. Corresponding to the four form we 

obtain the classical invariant of electromagnetic field E . B. Even though our approach 

is non-relativistic this can be easily extended to the case of relativistic MHD as well 

[31]. 
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N on-barotropic flows 

Here we will discuss the invariance of the generalised vorticity in a non-barotropic 

perfect fluid flow [37]. For a non-barotropic perfect fluid flow, there comes into picture 

a function>. of entropy and temperature satisfying d>./ dt = O. Assuming the existence 

of such a function>. = >'(8, T) we introduce a function 1 such that dI = Td>' + V dP. 

This amounts to replacing the state variable entropy 8 in terms of >. and T assuming 

that 

where T the absolute temperature, V the specific volume and P the pressure. We are 

also having the following thermodynamic relation to describe the non-barotropic flow 

\7 P / p = \71 - T\7 >., where>. = >'(8, T) with d>./ dt = O. Also we have the relation 

The conservation of momentum now takes the form 

Du ill + \7(1 + 6) - T\7 >. = 0 (3.39) 

where u is the velocity field and 8 is the potential of conservative body forces. Let 1] be 

the thermasy, which is the time integral of temperature defined by d1]/dt = T, 1] = 0 

at t = O. We can now define a barotropic flow as the one in which \71] x \7>. = O. 

Now it can be shown that [37} for a non-barotropic flow Q = w - \71] x \7 A satisfies 

the equation 

dQ 
- = (Q . \7)u - Q(\7 . u) 
dt 

(3.40) 

Here we take w = (u - 1]\7>.). Then from (3.40) we obtain the equation governing 
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the motion of the field w as 

(3.41) 

for some scalar function </Y and 'l/J. That is 

lE + (Q x u) = '\7'l/J 

where lE = Ot(u - T/V')..) + V'</Y. Now, from (3.39), after some known substitutions and 

rearrangements of the terms, we get 

From (3.41) and (3.42) we see that </Y = 'l/J + ~U2 + I + 6 + T/OtA. As for the general 

case here we can define one form, two form, three form and four form in E4. Also the 

invariance of each forms can be obtained. 

Two fluid model 

Consider a two fluid model for the macroscopic dynamics of plasm as. The generating 

equations are [80, 84] 

e 1 
OtV + (v. '\7)v = --(E + v x B) - -'\7 Pe 

m mn 
(3.43a) 

and 

(3.43b) 
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where v and u are electron and ion velocities respectively. These equations can be 

written again as 

e 1 2 e e 
at(v - -A) + \7(-v - -(p) + (\7 x v - -B) x v = \7'l/Je 

m 2 m m 
(3.44a) 

and 

(3.44b) 

where electric field E = atA - \71>, 'l/Je = Pe/mn, 'l/Ji = ~/Mn and n = const. Now, 

taking the curl of these equations, we obtain the conservation of 

e e 
Qe = (\7 x v - -B) = \7 x We, where We = V --A 

m m 

and 

Here we can define one forms corresponding to each of these equations as w~ 

(_~V2 + !<p, v - ~A) and w} = (_~U2 - ~<P, u + :1A). From the gauge invariance 

of electromagnetic field it is possible to obtain the gauge invariance of the above one 

forms. Thus, in the case of two fluid plasmas the Lie transport of two forms implies the 

Lie transport of one forms in suitable guages. Thus the invariance of two forms leads to 

the invariance of one forms, three forms and four forms. Here the spatial components 

of four helicity density is (v - ~A) . (\7 x v - ~B) for electron velocity and similarly 

for ion velocity. The invariant associated with the four form is given by lEe . Qe, for 

electron velocity, where lEe = at(v - ~A) + \7(~V2 - ~1» and similarly for ion velocity. 
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An example using Lagrangian invariants 

So far we have considered the examples involving solenoidal vector fields only. Now 

we will construct an example of an invariant vector field which is not solenoidal and 

will find out its associated invariant solenoidal vector field. For this) consider three 

Lagrangian invariants qy, 'l/J and X, where X =F 0 in IRa. Then V'<jY and 'l/JV'qy are invariant 

one forms in JR3. Also the vector field Q = Vx x ('l/JV'qy) is an invariant two form. That 

is, it satisfies (3.17). 

Now V' . Q = V''l/J. (V'X x V'cp) =F 0 in general. Put C = Q/'l/J, then V' . C = 0 and 

C also satisfies (3.17) and hence (3.18) 

Here, C is a solenoidal vector field having field lines as that of Q. Thus correspond­

ing to an invariant vector field Q, which is not solenoidal, we are able to obtain an 

invariant solenoidal vector field C = Q/1/J. Uncurling the equation satisfied by C we 

obtain the evolution equation for the vector potential w = xV' qy as 

8tw + V'( + [(V' x w) x u] = V'T!. 

As for the general case here we can define one form, two form, three form and four form 

in E4 corresponding to the field C. Also the invariance of each forms can be obtained. 

Polarization 

Again, in the case of MHD, we may introduce a dimensionless quantity called the 

polarization P which is defined by [16, 81] 

where J is the current density. Then the equation of motion for the barotropic inviscid 

flows becomes 

OtQ + V' x (Q x u) = 0 
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where Q = V' x (u + (B x P)/ p). Here also we can define different forms as in the case 

of hydrodynamics. 

3.6 Comparison between hydrodynamics and MHD 

In IR3 the equation satisfied by vorticity and induction equation satisfied by magnetic 

field are having the same form [59, 58, 17]. We have defined a vorticity two form for a 

hydrodynamic flow, given by (2.20). This is a closed two form and corresponding one 

form is given by (2.19). Also we have 

dw 2 = 0 ::::} V' x lE = OtW and V'. w = o. 

Now consider the density four form w4 = pdxo 1\ dx 1 1\ dx2 1\ dx3
• Using this we define 

a three form WJfD = ipw4 = (-pu, p). Then the equation of continuity is given by 

dw3 = o. (This is clearly due to the fact that w4 is Lie transported gives the equation 

of continuity). 

In MHD we are having the closed electromagnetic two form (3.38) and the potential 

one form (3.37). Then dw 2 = 0 gives half of the set of Maxwell's equations. Here also 

we are having a three form WLHD = (-J,p'), where J is the electric current density 

[22}. dwLHD = 0 gives the equation of continuity of charge OtP + V' . J = o. 

Thus in hydrodynamics and MHD we are having similar skew symmetric tensors of 

rank two. Using this two form and its potential one form we can define a three form 

wl l\w2 and a four form d(w l l\w2 ). In IR3 the comparison between hydrodynamics and 

MHD can be seen as 

U ---t A, W ---t B, 9='(= V' x w) ---t J(= V' x B) 

Thus the topological information in both type of flows have some similarities, which is 
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useful for further investigation. 

When we consider the electromagnetic field two form and the corresponding one 

form in the context of magnetohydrodynamics, the electromagnetic field two form 

is independent of gauge transformation. In the case of hydrodynamics the vorticity 

field tensor w2 = dw 1 is also invariant under a gauge transformation. But here the 

components of the one form w1 is directly related to a physical quantity, the velocity 

of fluid flow. Hence a gauge transformation of the one form changes the flow field and 

hence there is a change in the equation of motion also. Thus unlike electromagnetic 

field and its potential, the Lie transport of vorticity field two form does not imply the 

Lie transport of its potential, the one form w1 . Now consider the equation of motion 

given in the form (see second equation of (2.24)) 

IE+wxu='Vej> 

and the Ohm's law corresponding to the invariant transport of electromagnetic field in 

the non relativistic case [31] 

E+uxB='V( 

where E is the electric field, B is the magnetic field and ( is some scalar function. These 

two are the fundamental equations governing the invariant evolution of the vorticity 

field and magnetic field respectively. Taking the curl of these equations we obtain the 

well known vorticity equation and induction equation respectively. Both of these equa­

tions have the same form with the only difference that the first equation is nonlinear 

for the evolution of w as it is the curl of u, but the second one is linear in B. The 

first equation involving u and w is not invariant under a gauge transformation, but the 

second equation is gauge invariant. Therefore, we cannot always find properties of w 

corresponding to the properties of magnetic field B. Hence, even though we can find a 

Lie transported one form of potentials corresponding to a Lie transported electromag-
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netic two form [31], it is not physically possible always to find a Lie transported one 

form of potentials corresponding to a vorticity two form. 

3.7 Discussion 

In this paper we have discussed the invariants of fluid flows using a four dimensional 

space-time continuum E4 and using the language of differential forms. The knowledge 

of invariants provides an effective way for studying the qualitative behavior of the 

system. We have used E4 since it is more convenient and it simplifies the way in 

identifying different kinds of invariants and finding relation between them. From known 

invariants we can derive an infinite number of new invariants using the relationships 

among differential forms and vector fields. 

Even though we have used a space-time manifold E4 we have not assumed any 

specific metric structure defined on it. One can easily extend the discussion in the 

context of MHD to relativistic case also using Lorentz metric. If a metric structure 

is defined, then there is a one to one correspondence between one forms and vector 

fields. In [9], the Lie group formed by the volume preserving diffeomorphisms on a 

domain M has been used to study the geometric properties of the fluid flow in that 

domain. This group can be considered as the infinite dimensional configuration space 

of an incompressible inviscid fluid filling the domain on which the kinetic energy defines 

a Riemannian metric (see [9] and references there in). In contrast to this approach, we 

have considered the four dimensional space-time manifold for obtaining invariants of 

the fluid flow in JR3. 

The induction equation in magnetohydrodynamic flows and vorticity equation for 

incompressible barotropic flows are having the same form. Therefore when we discuss 

the topological properties of magnetic field and vorticity field, the study of topological 

properties of anyone of these fields will give some insight into the topological properties 

of the other field. 
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We have shown that in the case of a frozen in invariant Q) the vector field Q x U is 

a surface invariant if and only if the time derivative of velocity field is parallel to the 

vector field Q. Similar results for other invariants are also given. 

suppose for an ideal incompressible flow w x OtU = 0) then we are obtaining a family 

of integral surfaces on which the vector lines of U and w lie) given that at some instant 

p . V' x P = ° where P = w x u. This result can be considered as a generalisation of 

steady Euler flows) which admits a family of integral surfaces) to the unsteady flows. 

We have also obtained an identity satisfied by the vector field P x Q, where P and 

Q are two divergence free frozen-in vector fields satisfying (3.11) in an incompressible 

ideal flow. 

The condition for constant flux in lR.3 for a vector field Q in a flow with velocity U 

is given by OtW2 + LuW2 = 0, where w 2 = Q1dx2 1\ dx3 + Q2dx3 1\ dx 1 + Q3dx1 1\ dx2 

is the two form associated with the vector field Q. Corresponding to this we find 

another vector field K which is solenoidal and having the same field lines as that of Q. 

Equation (3.22) becomes Ohm's law in the case of MHD (with a change of sign for the 

field lE). In hydrodynamics it is the Euler's equation of motion. 

Using this K and its vector potential we define a closed two form in E4. The 

solenoidal property of the field is necessary for the closedness of two form. For this 

two form in E4 we have obtained an invariant criterion using Lie derivatives. From 

this closed two form we get a potential one form and we discuss its invariance also. 

Using this one form we define a sequence of forms 

Here w4 is the exterior derivative of w3 . We have also discussed the invariance of w 3 

and w4. If the one form is Lie transported) then all other forms derived from this one 

are also Lie transported. 

Now if we are having a given set of invariants we can find a larger collection of 
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invariants by making wedge products, exterior derivatives or any other operations as 

described in section 2.3. Thus if a = (p) Q) and (3 = (Pi, Q') are invariant two forms, 

then w4 = a A (3 = (P . Q' + pI . Q) is an invariant four form. 

If the fluid is incompressible the invariance conditions for a zero form and a four 

form coincide and it is given by the equation 

at! + (u . \7)! = 0 

Hence in this case an invariant zero form can be used to define an invariant four form 

and vice versa. Thus we have the following cycle of invariant forms. 

1 O-forms 1.-07 1 I-forms 1.-0712-forms 1.-0713-forms 1 ~ ! 4-forms 1.-071 O-forms 1 

Suppose we are given four Lagrangian invariants a, (3" and 8. Then a is a zero form, 

da is a Lie transported one form, da A d(3 is a Lie transported two form, da A d(3 A d, 

is a Lie transported three form, da A d(3 A d, A d8 is a Lie transported four form and 

again (1/ p)da A d(3 A d, A d8 is a Lie transported zero form. 

Using an invariant solenoidal vector field, we have defined a closed two form in 

section 3.4. In MHD it is the electromagnetic two form and in hydrodynamics it is the 

vorticity two form. In our definition of invariance, corresponding to zero form and four 

form, we get usual invariants which are related to a zero form and a three form in ]R3. 

Invariance of vector fields in E4 also involves the invariance of the time component 

Jo as a zero form and if Jo is zero then the space component of the vector field is said 

to be frozen-in. Corresponding to an invariant vector field in E4 we obtain an invariant 

three form iJ(pdxO A dXl A dX2 A dX3). 



Chapter 4 

Surface invariants 

4.1 Introduction 

Consider a p-form W associated with a physical quantity which evolves under a flow 

field u. Then 8tw + Luw = 0 means that the surface integral fo W = const., where 

GP is a p-dimensional comoving surface. But in some cases 8tw + Luw need not be 

vanishing. So in this case we cannot say that fo w is conserved for all p-dimensional 

comoving surfaces. Even then there may exist some p-dimensional comoving surfaces 

over which fcp w is a constant of the motion. Such invariant surfaces may be used for 

the qualitative study of the flow of continuous media in the absence of invariance of 

all comoving p-dimensional surfaces. In this chapter we are investigating what are the 

sufficient conditions for the existence of such invariant surfaces in continuous media 

using the language of differential forms and vector fields. Some illustrative examples 

are also given from hydrodynamics and magnetohydrodynamics. 

69 



CHAPTER 4. SURFACE INVARIANTS 70 

4.2 Differential forms, vector fields and their in-

. varIance 

In our classical vector calculus the flux preservation and line preservation are related to 

a vector field in the Euclidean space }R3. But when we use the language of differential 

forms and vector fields, the flux preservation is identified with the integral invariance of 

differential forms and the line preservation is attributed to the vector fields [6, 24, 76]. 

This identification is significant for a general n-dimensional manifold. In introduction 

we have seen that in the usual Euclidean space }R3 there is a one to one correspondence 

between vector fields and differential forms of degreeone. Also a vector field H can 

be identified as a two form w2 by means of the interior product of H with the volume 

form n = dx 1 l\dx2 l\dx3 , i.e., w2 = iHn. Let S be a surface such that H·dS vanishes 

at every point of the surface. Then if we consider the associated two form w2
; this 

means that on the surface S the two form w2 is annihilated or S annuls w2• In the 

Euclidean space ]R3, vector fields and differential forms of degreeone or two may be used 

interchangeably. For a better analysis of topological properties of objects in the three 

dimensional space (or generally in an n-dimensional space) we should use the calculus 

of differential forms and vector fields. In the study of invariants in hydrodynamics this 

distinction gives rise to the classification of invariants as given in previous chapters and 

in [80]. 

We consider a general p-form wP and a flow field l' in an n-dimensional manifold. 

Let C be a p-dimensional surface moving with velocity 1', that is a p-dimensional 

comoving surface or simply a p-surface, then as given in chapter 1 

(4.1) 

So, if OtWP + D:pVJP = 0 then fcwP = const. for any p-surface C. 
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4.3 Sequence of Lie derivatives 

We consider a tensor field T and a vector field :P in an n-dimensional manifold. We 

define a sequence of tensor fields of the same type as that of T recursively as follows: 

T(O) = T, 

T(1) = 8tT(O) + L':pT(O) and 

T(m+l) = 8tT(m) + L':pT(m); for all m ~ 1. 

Here the operator L':p is the Lie derivative with respect to the vector field P. 

Let 'J = {T(O) , T(l») T(2») ... , T(m), ... }) which is called the family of derived fields. The 

tensor field T is said to be invariant under the flow if T(l) = O. The tensor fields which 

we are going to consider include differential forms and vector fields only. 

Let w be a p-form and consider the derived space 

w = {w(O), W(l) , .•. w(m) ... } 

Here if w(l) = 0, then we can say that the p-form w is invariantly transported under the 

flow field:P. In terms of integral it means that the surface integral fe w = const., where 

C is a p-surface in the n-dimensional space. In general W(l) need not be vanishing. In 

some cases it may be of the form W(l) = det where et is a (p - 1)-form. Then from the 

Stoke's theorem it follows that 

!!:.- { w =!!:.- { dw = { 8tdw + L':pdw = ( dw(l) = 0 
dt lae dt le le le 

where C is a (p + 1 )-surface. This means that w is a relative integral invariant. For 

the sequence of the derived space the relation (4.1) becomes 

!!:.- ( w(m) = r w(m+l) 

dt le le (4.2) 

Now for the sequence of derived forms we will prove the following theorem by 
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induction. 

Theorem 1. For a fixed integer l' ~ 1 and for some q ~ 0, if w(q+r) = L:~~6 fiw(q+i) J 

where fo, f1,' .. , fr-1 are scalar functions, then w(m) = L:~~~ 9iW(q+i) ,for all m ~ q+r, 

where 90,91, ... ,9r-1 are also scalar functions. 

Proof: The result is given to be true for m = q + r. So assume it is true for m = k, 

where k ~ q + 1'; i.e., w(k) = L:~~~ hiw(q+i) = how(q) + h1w(q+1) + ... + hr_1w(q+r-1), 

where hi'S are scalar functions. Then 

1'-1 1'-1 

= Ot(L hiw(q+i)) + Lp(L hiw(q+i)), by induction hypothesis 
i=O i=O 

r-1 
= L [Ot(hiw(q+i)) + Lp(hiw(q+i))] , since Lie derivative is linear 

i=O 

r-1 
= L [(Othi + Lphi) W(q+i) + hi (OtW(q+i) + LpW(q+i))] 

i=O 
r-1 

= L [tiW(q+i) + hiw(q+i+l)] , where li = Othi + Lphi 
i=O 

is a scalar function for all i 

1'-1 r-2 

= L liw(q+i) + L hiw(q+i+1) + h
r

_
1
w(q+r) 

i=O i=O 
r-1 1'-2 1'-1 

= L liw(q+i) + L hiw(q+i+1) + hr - 1 L fiw(q+i) , from the basis step 
i=O i=O i=O 
1'-1 1'-2 

= L (li + ti) W(q+i) + L hiw(q+i+l), where ti = hr-tii 
i=O i=O 
1'-1 

= L 9iW(q+i) , where 9a = la + to and 9i = li + ti + h i - 1 

i=O 

for 1::; i ::; T - 1 

So the result is true for m = k + 1 also. Hence by induction it follows that the 

result is true for all m ~ q + T. Here note that if all the ft's are constants, then 9/S 
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are also constant functions. 

For r = 1, this result says that, if W(q+l) = fow(q) for some q then w(m) = fmw(q) , 

for all m ~ q + 1, where fm is a scalar function depending on m. Also assume q = 0, 

then this becomes: if w(1) = aw, then w(m) = amw for all m ~ 1. When r = 2 and 

q = 1, this result is as follows: If W(3) = aw(1) + (3W(2) , then w(m) = amw(l) + (3mw(2) , 

for all m ~ 3. 

In continuous media we may assume that the surface integral le w is an analytic 

function of time, where w is any p-form and C is any p-surface. Let 

T-l 

w(q+r) = L giW(q+i) (4.3) 
i=O 

for a p-form w . Also let over some p-surface C the forms w(q), w(q+1) , ... , W(q+r-l) are 

annihilated initially. Then 4;(t) = lew(q-l) will be a constant of flow. This follows 

from theorem 1, and the equation (4.2), using a Taylor's series expansion of 4;(t). Also 

it follows that few(q) = 0 throughout the flow. In general it follows that few(m) = 0 

throughout the flow for all m ~ q. 

Again, let the condition (4.3) is satisfied for a p-form w with all gi's constant. Also, 

if lew(q+i) (0:::; i :::; r - 1) are vanishing initially for a p-surface C, then few(q-l) will 

be a constant throughout the flow. Here note that the condition W(q+i) (0 :::; i :::; r - 1) 

are annihilated initially need not be satisfied. 

Let a is a (p -1 )-form. Consider the derived fields w(m) of the p-form w = da for all 

m. Then by induction it follows that w(m) = da(m), for all m ~ 1. Then the following 

theorem is obvious: 

Theorem 2. Consider the derived fields of the p-form w = da, where a is a (p -

l)-fiorm. Jf a(q+r) = ",~-l j·a(q+i) then w(q+r) = ",r-l j·W(q+i) provided j. 's are 
J Wt=O t, Wt=O z, t 

constants. 

Let a and {3 are differential forms of degreek and p - k respectively, for some p. 
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Then w = a 1\ {3 is a p-form. Now we have the following theorem for the derived space 

W = {w, W(l), •.. ,w(m) . •• } of w by induction. 

Theorem 3. If w = a 1\ (3, then w(m) = I:~o (::)a(T) 1\ (3(m-r) 

Proof: When m = 1, 

So the result is true when m = 1. Let the result is true for m = k. That is W(k) = 

W(k+l) = Otw(k) + LPL,)k) 

= t. G) {a(') A a'(J<'-') + a,,,,(') A (p-') + 

a(r) 1\ Lp{3(k-T) + Lpa(r) 1\ (3(k-T)} 

= t. G) {a(') A (p-'+l) + <,(,+I) AIl(k-')} 

= t. G)a(') A Il(k-,+I) + ~ (r ~ l)a(') A Il(k-HI) 

= '" A ll(k+1) + t { (~) + C ~ 1) } a(') A ll(k-'+1) + ",(k+1) All 

k (k + 1) = a 1\ (3(k+l) + ~ T aCT) 1\ (3(k+l-r) + aCk+l) 1\ {3 

k+l ( ) = ~ k ~ 1 aCT) 1\ (3(k+l-r) 

So the result is true for m = k + 1 also. Hence the theorem. 

The following different cases of theorem 3 attract particular attention. 

Case I: Let the derived fields of a and [J satisfy the conditions a(q+T) = I:;':~ fia(q+i) 

and [J{l) = O. then for all m, w(m) = a(rn) 1\ (3 and w(q+r) = I:~-1 fiwCq+i). 

Case 11: Let the form a satisfy the condition aCT) = I:;':~ fiaCi). Then, from theorem 

3, it is clear that the expansion of w(m) (for all m) contains a(i) (0 :::; i :::; r - 1) as 
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a factor of each of the wedge product. So if a(i),s are annihilated initially on any p-

surface, then this p-surface will be an integral invariant surface for wand the integral 

is vanishing over all such surfaces. Here note that {3 can be any (p - k)-form. 

Case Ill: Let a and (3 satisfy the conditions a(1) = fa and (3(1) = g{3. Then w(t) = 

(J + g)a /\ {3 = hw. If the k-form a is vanishing on any p-surface initially or the (p - k)­

form (3 is vanishing on any p-surface initially, then the p-surface will be an integral 

invariant surface for w. Also if w is annihilated on any p-surface initially then such 

surfaces will be invariant surfaces for w. 

For an arbitrary vector field J in an n-dimensional space, consider the derived space 

a = {J(D), J(l) , ... , j(m) , ... }. Then the theorem 1 is true for this family of vector fields 

also, which can be stated as follows: 

Theorem 4. Let J be a vector field in an n-dimensional space. For r ~ 1 and q ~ 0, 

if ]Cq+r) = foJ(q) + it J(q+l) + ... + fr_tl(q+r-l) then for all m ~ q + r, J(m) = goJ(q) + 

glJ(q+l) ... + gr_lJ(q+r-l), where fi's and gi 's are scalar functions. 

Let w be a (p + I)-form. Then consider the p-form a = iJw, where J is a vector 

field. Then as theorem 3 we can prove the following theorem. 

Theorem 5. If a = iJw, where w is a (p + I)-form and J ~s a vector field in an 

n-dimensional space, then a(m) = L~=o (';)iJ(r)w(m-r) 

The following different cases of theorem 5 are interesting: 

Case I: If w(I) = 0, then a(m) = iJ(m)w. Also let J(q+r) = L;==-~ fi]Cq+i). Then we get 

a(q+r) = L;==-~ fia(q+i). 

Case 11: When ]Cl) = ° and w(q+r) = ""r-l j'W(q+i) we get a(m) _ iJw(m) and 
L....z=o 1 , 

a(q+r) = L;==-~ !ia(q+i) 

Case Ill: Here if W(l) = fw and J(l) = gJ, then we have a(l) = ha, where h = f + g. 

We will use the above results in the coming sections to charecterize the different 

types of surface invariants in three dimensional continuous media. We shall discuss 

line preservation and surface preservation of vector fields also. 
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4.4 Surface invariants related to one forms 

Let w be a one form associated with a geometrical object in a three dimensional flow 

with velocity vector u. Consider the derived space of this one form. We will discuss 

the following three cases. 

Case I: Here we consider the case where w(l) = O. Then it follows that the integral 

fe w over any I-surface C( that is, over a comoving curve C) is a constant of the flow. 

Case 11: If well is not vanishing and well = lw, where I is a scalar function, then 

from theorem 1 it follows that w(m) = Imw for all m 2: 1. So if there exists a curve 

over which w is vanishing initially, then fe w = 0 throughout the flow. So these curves 

over which w vanishes initially will constitute the invariant curves of the flow. Also it 

follows that the line integrals fe w(m) are vanishing throughout the flow for all m 2: 1. 

Now consider the case where W(2) = IW(l) for some scalar function I, then any curve 

C over which well vanishes initially will be an integral invariant I-surface for the one 

form w. This line integral of w over C need not be zero. Let S be a 2-dimensional 

surface over which W(l) vanishes initially. Then for any curve C on this surface, fe w 

is a constant. But by Frobenius integrability condition a family of integral surfaces for 

the one form w(l) exists only if w(1) /\ dwell = O. So when this condition is satisfied 

initially, then for all curves C on this family of surfaces fe w is a constant of the 

flow, provided w(2) = Iw(l). Even though the Frobenius integrability condition is not 

satisfied there may exist many curves over which the integral is a constant of the flow. 

For example, let us consider the vector field associated with the one form w(1) in the 

Euclidean space lR,3. Then consider the vector tubes of this field. If this tube has the 

topology of a cylinder initially, then for any curve of intersection of this tube with a 

plane perpendicular to the axis of the tube will be an integral invariant curve for the 

one form w. Let A be the vector field associated with w(l) and B be an arbitrary vector 

field pot collinear with A. Then initially on the vector lines of the vector field A x B, 

w(l) is annihilated. So all these vector lines form a family of invariant I-surface for w. 
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In general, if w(q+1) = fw(q» then the curves C on which w(q} vanishes initially 

constitute the invariant curves for the one form W(q-l). If there exists a family of 

integral surfaces for the one form w(q) initially, then for all curves on this surface 

fe W(q-l} is an invariant. The condition for the existence of such a family of integral 

surface initially is that w(q) Adw(q) vanishes initially. Also note that for all such invariant 

curves C of w(q-l) the line integral fe w(m) is an integral invariant which vanishes, for 

all m ~ q. 

Case Ill: Here we assume that w(1) and W(2) are independent forms, but W(3) = fw(1) + 
gW(2) where f and 9 are scalar functions. Then, if there exists a curve C over which both 

w(1) and W(2) are annihilated, then fe w is a constant of the flow. If W(2) = fw + gw(l), 

then fe w = 0 over the curves C on which wand w(l) are annihilated. In general 

if W(q+2) = fw(q) + gW(q+l), and if there exists a curve on which w(q} and W(q+l) are 

annihilated, then few(q-l) is a constant. Also consider a = w(q) Aw(q+1) which is a two 

form. Then 

(w(q) A W(q+l»)(l) = 8t (w(q) A W(q+l») + Lu(w(q) A W(q+l») 

= W(q+l) A w(q+1) + w(q) A W(q+2) 

= w(q) A W(q+2) 

= w(q) A (jw(q) + gw(q+1») 

= gw(q) A W(q+l) 

So a(l) = ga for the two form a = w(q) A W(q+l) when W(q+2) = fw(q) + gw{q+l). 

Hence if initially w(q) (or W(q+l») is a surface forming one form, i.e., w(q) A dw(q) = 

o ( or w(q+l) A dw(q+1) = 0), then over these family of surfaces the two form a is 

annihilated and hence these surfaces will be invariant surfaces of the two form a. That 

is, for all such 2-surfaces C, fe a is a constant, which is zero. For example when 

q = 0, W(2) = fw + gW(l), then Q = w A w(1) is having such invariant surfaces provided 

w A dw = 0 or well A dw(l) = 0, or both. 
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Now we will discuss the three special cases of theorem 3 as given in section 4.3, 

when 0: and (3 are I-forms. In the first case let 0:(2) = fo:(l) and (3(1) = O. Then 

w(2) = fw(1) , where w = 0: /\ (3. If initially 0:(1) /\ do:(l) = 0, then on the integral surfaces 

of 0:(1), well is annihilated initially as well as 0:(1). So fe w will be a constant of motion 

for any 2-surface C on this family of integral surfaces. 

In the second case, let 0:(1) = f 0: and (3 is any I-form. Then w = 0: /\ (3 is such that 

each term in w(m) contains 0: as a factor in the wedge product. So if there exist integral 

surfaces for 0: initially (that is, 0: /\ do: = 0 initially), then any 2-surface on this family 

of integral surfaces will be an integral invariant surface for w. This is also true when 

a(1) = 0. 

In the last case, let 0: and (3 be I-forms satisfying 0:(1) = fo: and (3(1) = g(3.Then 

well = hw. So if 0: /\ do: = 0 (or, (3/\ d(3 = 0), then any 2-surface lying on the family of 

integral surfaces of o:(or, (3) will be an integral invariant surface for w. 

4.5 Line and surface preservation of vector fields 

Let J be a vector field in the flow of a continuous media. Then consider the sequence 

of derived vector fields of same type. We will distinguish the following different cases: 

Case I: If J(l) = 0, then the J-lines are said to be frozen into the medium. In other 

words, if this condition is satisfied, then the vector lines of J are said to be material 

lines. The vorticity field in the ideal incompressible hydrodynamic flow and magnetic 

field in the ideal incompressible MHD flows are well known examples of frozen in fields. 

Case 11: Let J(l) = AJ for some scalar function A. In this case also the vector lines are 

said to be preserved, that is, the vector lines of J are material lines. Also from theorem 

4 it follows that all the derived vector fields J(m) satisfy the equation J(m) = AmJ. 

That is, the vector lines of each of these derived fields J(rn) coincide with that of J. So 

the vector lines of the derived fields are also material lines. 
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Case Ill: Let 

J(2) = f J + gJ(1) (4.4) 

where f and 9 are some scalar functions. Then for any m 2': 2; J(m) = fmJ + gmJ(I) , 

from theorem 1. Also let there exist a family of integral surface for J and J(l). The 

necessary and sufficient condition for the existence of such a family of integral surfaces 

for these vector fields is that their Lie bracket is a linear combination of themselves 

(Frobenius theorem). That is 

( 4.5) 

where f' and g' are scalar functions. So when equations (4.4) and (4.5) are satisfied 

simultaneously, then on the integral surfaces of J and J(l) lie all J(m), for m 2': o. 

Now we are going to show that if the condition (4.5) is satisfied initially, that is 

there exist a family of integral surfaces for J and J(l) initially, then these surfaces will 

remain as integral surfaces for these vector fields throughout the flow. Consider the 

one form w = i J (l)iJ S1, where S1 = dx 1 1\ dx2 1\ dx3 is the volume element form. Clearly 

the vector field corresponding to this one form is J x J(l). Then the integral surfaces 

of J and J(l), if they exist, annuls the one form wand they are the integral surfaces of 

w also. 

Remar k: Here integral surfaces for w exists if and only if w 1\ dw = O. But w 1\ dw = 

o {:} (JxJ(l»).\7x(JxJ(l») = 0 {:} (JxJ(l»)'{[J,J(1)]-(\7.J)J(l)+(\7.J(l»)J} = 

o {:} [J, J(l)] = f' J + g' J(l). So the integral surfaces for w exist if and only if there exist 

integral surfaces for J and J (1) . 

For the above one form w, 

W(l) = 8tw + Luw 

= 8t (iJ(l)iJ S1) + Lu(iJ(l)iJO) 
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(since OtiX - ixOt = iatx and using properties of Lie derivative) 

So 

w(1) = hw {::} iJ (2)iJ O = lw, for the scalar function I = h - 'V . u 

{::} J (2) - I J (1) = gJ, for some scalar function 9 

(since ixiy,O = 0 {::} X = h'Y for some scalar function h') 

{::} J(2) = I J + gJ(l) where I and 9 are scalar functions .. 

So w(1) = hw {::} J(2) = I J + gJ(1) for some scalar functions h, I and g. Thus if any of 
> • 

these equivalent conditions is satisfied and if initially there exists a family of integral 

surfaces for w, then on this family of integral surfaces, w is annihilated initially. So 

from the previous section it follows that the integration of w over an arbitrary material 

curve on this family of surfaces vanishes initially and hence identically. So this family 

of integral surfaces for w will remain as a family of integral surfaces for w. Then it 
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follows that this family of integral surfaces which is a family of orthogonal surfaces 

for J x J(l) will remain as a family of orthogonal surfaces for J x J(l). Hence the 

vector fields J and J(1) which span this family of material surfaces initially will remain 

spanning this family of material surfaces (also see the above remark). A vector field is 

said to preserve a material surface if initially this material surface is generated by the 

field lines of this vector field and this material surface remains generated by the field 

lines of the same vector field throughout the flow. That is, if the field lines initially 

lie on this comoving surface, then they will remain lying on this surface. Hence if 

there exist an integral surface for J and J(l) initially, then (4.4) is the condition for the 

surface preservation of the vector field J. Here a material line initially which is a J-line 

lying on this invariant surface need not be a J-line as the field evolves. When the field 

J(l) vanishes identically, then as given in case I all the vector lines are material lines. 

Then clearly all the vector surfaces of the vector field J are preserved, that is they are 

material surfaces. If J(2) = 0, then from (4.6) w(1) = (\7 . u)w. Then also the integral 

surfaces of J and J(l) are preserved by the flow, if they exist initially. 

4.6 Invariant surfaces related to two forms 

Let w be a two form associated with a physical quantity in a continuous media. Con­

sider the derived space of two forms as given in section 3. We will consider three cases 

given below. 

Case I: Here we will consider the case where well = 0 for a flow. Then the integral of 

w over any 2-surface will be a constant of motion. In terms of associated vector field 

H it says that fe H . dS is a constant for all 2-surfaces. 

Case 11: In some cases it may happen that w(2) = AW(!) , then for all m 2: 2, w(m) = 

Amw(l) for some scalar functions Am. Then consider a surface over which w(l) vanishes 

initially. Any 2-surface in this surface will be an integral invariant surface for w. That 

is, fe w is a constant. Let H be the associated vector field of the two form W(l). Here 
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initially consider the vector sheets of H. Then clearly w(1) is annihilated on these vec­

tor sheets of H. So all 2-surfaces lying on these vector sheets of H constitute a class 

of surfaces with constant surface integral of the two form w. 

Let W be a two form for which W(2) = jw(1} and J is an invariant vector field (that 

is J(1) = 0). If a = iJw, then a(2} = ha(1} , from case 2 of theorem 5. Let H be 

the associated vector field of W(l}. Then H x J will be the associated vector field of 

the one form a(1} (since, a(l) = iJiHn). Then on the vector lines of Hand J, 0:(1) 

is annihilated and these vector lines are integral invariant families of curves for 0:. If 

the Frobenius integrability condition is satisfied initially for the vector fields Hand J, 

then any curve on these integral surfaces form an integral invariant I-surface for 0:. A 

similar discussion is possible when w(l) = 0 and J(2) = j J(1), using case 1 of theorem 

5. The third case of theorem 5 can also be discussed similarly. 

If W(l) = AW, then the constant flux surfaces will include vector sheets of the field 

K, where W = iKn. Here the value of the constant flux across the surface is zero. Here 

we can also see that the associated vector field K is line preserving. We have 

W(l} = cHiKn) + Lu(iKn) 

= (i&tK + iKot)n + (i[u.KI + iK)Lun , since Otiy - iyot = i&tY 

and Luix - ixLu = i[u,Xl 

= i&tK+[u,Kln + iKLun , since Otn = 0 

= iK(l)n + (\7 . U)iKn 

So W(l) = AW implies that iK(l)+(V'.u)Kn = AiKn = i>'Kn. 

Hence, 

(4.7) 
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where (3 = ). - V' . u. Hence it follows that the field lines of K are preserved. 

Similarly, if w(2) = ).w(1) , then in addition to the flux preservation of the two form 

w over all the 2-surfaces over which w(1) is annihilated, the field lines of the vector field 

H are preserved, where w(l) = iHSl. 

Case Ill: Here we consider the case where 

(4.8) 

for some scalar functions f and g. If there exists a surface C which annihilates both w{l) 

and W(2) initially, then le w is a constant. Let J and K be two vector fields satisfying 

w(l) = i J S1 and W(2) = iKO. If [J, K] is a linear combination of J and K initially, that 

is 

[J, K] = ).J + (3K, (4.9) 

then on the integral surfaces of J and K, w{l) and W(2) are vanishing initially, so that the 

surface integral of w over any of the 2-surface lying on this family of integral surfaces 

are constant of the motion. 

Now we are going to show that the condition (4.8) is equivalent to the condition 

that the vector field J(2) is a linear combination of the vector fields J and J(l). 

Clearly 

K = J(l) + (V' . u)J 

since W(2) = OtW(l) + LuW(l) and proceeding as in (4.7). 

Then 

(4.1O) 

So vector field corresponding to w(3) is f J + gK. But, from the definition of w(3) and 

proceeding as in (4.7), we have 

(3)· n 
W = ZK(1)+(V'.u)K~~' (4.12) 
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So from (4.11) and (4.12) 

K(l) + (\7. u)K = jJ + 9K. 

Hence 

K(l) = jJ + hK 

where h = 9 - \7 . u. 

Also from equation (4.10) 

84 

( 4.13) 

(4.14) 

K(1) = (at + Lu )[J(1) + (\7 . u)J] = J(2) + (\7 . u)J(1) + kJ, (4.15) 

for some scalar function k. 

Also substituting the value of K from (4.10) in (4.14) we have 

( 4.16) 

where t = j + \7. u. Now from (4.15) and (4.16) we get 

( 4.17) 

for some scalar functions !I and h. Hence J(2) is a linear combination of the vector 

fields J and J(1). 

If initially 

(4.18) 

for some scalar functions 91 and 92, then the integral surfaces for the fields J and J(l) 

exist initially. Then from (4.17) it follows that these integral surfaces of J-lines (and 

J(1Llines) are preserved during the flow as discussed in previous section. Here note that 
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(4.9) and (4.18) are also equivalent (since, [J,K] =.-\J +,6K {::> [J,J(l) + (V· u)J] = 

.-\J +,6K {::> [J, J(l)] + [J, (V . u)J] = .-\J + ,6K {::> [J, J(1)] = N J +,6K {since[J, I'J] = 

(J. VI')J, where I' = V . u and N = .-\ - J . VI'} = 9lJ + 92J(1) where gl = 

N + ,6(V . u) and g2 = ,6, from (4.10)) 

4.7 Some illustrative examples 

In this section we will discuss some examples in the Euclidean space lR.3 which illustrate 

some of the developments given in the previous sections. For convenience differential 

forms are represented in vector notations. 

Example I 

Consider the equation of motion of a homogeneous incompressible fluid in a potential 

field of external forces, taking into account viscous friction in Rayleigh's form [26, 44, 

45]. 

Gtll + (V x u) x u = -V f - ku (4.19) 

where k is the coefficient of viscous friction constant. This equation can be written as 

This equation can be again written as 

(4.21) 

under some gauge transformation w = e + d4J, where the potential 4J is to be so chosen 

that it satisfies u2 - f + d4J/dt + k4J = O. Here the one form w satisfies w(1) = -kw. So 

from section 4.4 , for any comoving curve C for which w vanishes fa w is a constant. 

If w 1\ dw = 0 initially, then there exists a family of integral surfaces for the one form 
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wand all curves on this family of surfaces will be integral invariant curves. Here the 

one form w corresponds to the velocity vector under some gauge potential. Similar 

potentials have been used in [31, 80]. 

Let A be the vector field corresponding to the one form w. and let B be an arbitrary 

vector field not parallel to the field A. Then on the vector lines of the field A x B 

the one form w is annihilated. so these vector lines forms family of integral invariant 

curves for w. 

Let there exist a family of integral surface for the one form w initially. Also let {3 

be a one form associated with some physical quantity. Then, from case 2 of theorem 3, 

the two form w 1\ {3 will have this family of integral surfaces for w as integral invariant 

surfaces. 

Example 2: 

Here we discuss the integral invariant curves of a one form corresponding to the mag-

netic potential of a magnetic field using particle drift velocity. Let a uniform electric 

field E drive a current through an infinitely long straight wire. The magnetic field B 

consists of a uniform external field parallel to the wire, in addition to the field produced 

by the current in the wire [64]. Then the fields out side the wire may be written in 

cartesian coordinates as follows: 

B = (-y x 1) and 
x2 + y2' x2 + y2 ' 

E = (0, 0, 1). 

Then the particle drift velocity is given by 
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Magnetic potential is taken to be 

Let WA be the one form associated with the magnetic potential A. In vector notation 

the first three derived fields of this one form are given below. 

W(l) ~ 1 (y x 1) 
A 1 + x2 + y2 ' -, , 

(2) 2 ( 2 2) 
W A ~ (1 + x 2 + y2)3 -y, x, X + Y and 

(3) 4( -1 + 2X2 + 2y2) ( 
W ~ Y x, x2 + y2) 

A (1 + x2 + y2)5 -, 

Clearly w~) = fw~), where f = 2(-1+2x2+2y2)j(1+x2+y2)2. So for all m;:::: 

3, w~m) = fmw~) for some scalar function fm. If initially w~) and w~) are annihilated 

on some curve C, then fcwA is an invariant. This follows from section 4.4. Clearly 

vector lines of the vector field Al x A2 are such curves, where Al and Az are the 

associated vector fields of the one forms w~) and w~) respectively. Also we may consider 

the two form a = w~) 1\ w~). Then oP) = ga, where 9 is some scalar function. Here 

the one form w~) is a surface forming one form, since w~) 1\ dw~) = O. So initially on 

this family of surfaces a is annihilated. Hence over these 2-surfaces the integrals of a 

are vanishing invariants. 

Also form w~) = fw~), it follows that for all curves C on which w~) is annihilated, 

fe w~) is a constant of motion. Since w~) is a surface forming one form, it is annihilated 

on all curves lying on these surfaces and hence all such curves will be integral invariant 

c f (1) curves 10r Je w A • 
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Example 3: 

Consider the magnetic field 

B = (cos z, sin z, 0) 

produced by the current 
1 

J = - 47l' (cos z, sin z, 0) 

and the electric field 

E = (1, 0, 0). 

Then the particle drift velocity is given by 

v = (0, 0, sin z) 

and the magnetic potential is 

A = (-cos z, - sin z, 0) . 

Let WA be the one form associated to the magnetic potential A. Then the first two 

derived fields of WA are given below: 

W~) ~ (sin2 z, -sin z cos z, 0) and 

W~) ~ (sin z sin 2z, -sin z cos 2z, 0). 

Then w~) = JWA + gw~), where J = -sin2 z and 9 = cos z. So w~m) = JmWA + gmW~), 

for all m ;::: 2. Hence, if WA and w~) are annihilated initially on some curve C, then 

fe WA is a vanishing invariant of the flow. Clearly WA and w~) are annihilated on the 

lines parallel to the z-axis. So they are curves with constant line integral of WA. Here 

note that B is the magnetic field of a circularly polarized electromagnetic wave in free 

space. 
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Example 4: 

Again consider the equation of motion of a fluid in Rayleigh's form given by (4.19). 

Taking the curl of this equation we get the vorticity equation 

at w + \7 x (w x u) = - kw (4.22) 

where w = V' x u is the vorticity. Then consider a two form w defined by w = iw~l 

Then the above equation is equivalent to 

That is 

w(l) = -kw. 

So if w is annihilated on some 2-surface initially, then such 2-surfaces will be integral 

invariant surfaces for w. Clearly such surfaces include vector sheets of w. 

Here the equation 4.22 can also be expressed as 

where l = -k - V' . u. This is equivalent to the equation w(l) = lw. So from case 2 of 

section 4.5 it follows that the vector lines of ware preserved by the flow. 

Example 5: 

Consider the motion of the magnetic lines of force under drift velocity, as given in 

example 2. Let WB is the two form corresponding to this magnetic field 

B= , ,1 . ( 
-y x ) 

x2 + y2 x2 + y2 
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Then the corresponding derived fields of WB are given by 

(1) 2 
wB +------+ ( 2 2)2 (-y, x, -1) and 

1 +x +y 
(2) 4( -1 + 2X2 + 2y2) ( 

wB +------+ (1 + X2 + y2)4 -y, x, -1). 

So w~) = fw~), where f = 2(-1 + 2X2 + 2y2)j(1 + X2 + y2)2. Hence for all m 2: 

2, w~m) = fmw~) So any surface C on which w~) is initially annihilated will be an 

integral invariant 2-surface for the two form WB. Let Bl be the vector field associated 

with the two form w~). Then clearly on the vector sheets of the vector field Bl the 

two form w~) is annihilated initially and hence any 2-surface in this family of vector 

sheets will be integral invariant surfaces for WB. SO these 2-surfaces are constant flux 

surfaces of the associated magnetic field B. 

Example 6: 

Here we will consider a possible incompressible viscous flow under no external body 

forces and with vanishing pressure gradient. An exact solution to the corresponding 

N avier-Stokes equation is given by 

u = (e-(y+at) , -(a + v), b) 

where a and b are constants and v is the coefficient of kinematic viscosity. Then the 

vorticity field w is given by 

w = (0, 0, e-(at+y )) 

Let Ww is the two form associated to this vorticity vector field. Then 

W(1) +------+ (0 0 ve-(at+y)) w , , 
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So we have w~) = vWw and hence w~m) = vmww for all m ~ 1. Hence for all 2-surfaces 

C on which the two form Ww vanishes initially, we have Ie Ww = 0 throughout the flow. 

The family of planes initially parallel to z-axis will constitute such a class of invariant 

surfaces. 

Example 7: 

Here we are giving an example which illustrates the surface preservation of vector 

fields. Consider the fields as given in example 3. Here B is a vector field in the three 

dimensional Euclidean space R3. Then consider the derived fields of the vector field B. 

B(l) = (-sin2 z, cos z sin z, 0) 

B(2) = (-2 cos z sin2 z, cos 2z sin z, 0) 

B(3) = ((-1 + 3 cos 2z) sin2 z, -~(cos z - 3 cos 3 z) sin z, 0) 

Then we have B{2) = fB + gB(I), where f = -sin2 z and 9 = cos z. Here clearly 

[B , B(1)] = 0 and hence there exist a family of integral surfaces, which are planes 

perpendicular to the z-axis. Initially consider such a plane material surface. Then from 

case 3 of section 4.5, it follows that this material surface will remain as the integral 

surface for Band B(I). 

Here the one form w = i B (1)iB O is given by 

W +------t (0, 0, sin z) 

Also w(I) is given by 

W(I)+------t(O, 0, sin2z)) 
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So w(1) = Jw, where J = 2 cos z. Here w 1\ dw = 0 and the integral surfaces of ware 

clearly that of Band B(1), namely planes perpendicular to z-axis. For any curve on 

this family of surfaces, w is a vanishing integral invariant. So this family of surfaces 

annuls w initially and hence identically. 

The material surface which is an integral surface of Band B(l) initially, remain as 

an integral surface of Band B(l). We conclude that the material planes perpendicular 

to the z-axis remains perpendicular to z-axis. Hence the material surface spanned by 

Band B(l) remain spanned by Band B(l). So the surface preservation of B (and B(l)) 

is obtained. Here note that the vector lines of B are not material lines. That is, a 

material line initially parallel to a B-line need not be parallel to the B-line during the 

flow. 

4.8 Discussion 

In this chapter we have obtained some sufficient conditions for the integral invariance 

of one forms and two forms under a flow field in IR3. Also we have obtained some 

sufficient conditions for surface preservation of vector fields. 

We have proved some general results which holds for any n-dimensional manifold. 

we have given sufficient conditions for the invariance of integral of a p-form w over a 

p-surface Cp. We explained these results in the context of three dimensional flows in 

JR3. 

Let w be a one form in the Euclidean space JR3. Also let w(2) = Jw(1). Then it is 

possible to find out some particular curves for which the line integral of w is a constant 

of motion. If A is the associated vector field of w(l) and B is any arbitrary smooth 

vector field not collinear with A, then the vector lines ofAx B will constitute a 

family of curves over which the line integral of w is a constant. Moreover, if Frobenius 

integrability condition is satisfied for W(l), then there exist a family of orthogonal 

surfaces for the vector field A. So any curve on this surfaces will be integral invariant 
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curve. 

We have shown that equation (4.4) is the sufficient condition for the surface preser­

vation of vector fields provided that there exist an integral surfaces for J and J(l). 

Also we have given conditions for the invariance of surface integrals of a two form in 

different cases. 

At the end of the chapter we have given some examples which illustrate the concepts 

developed in the chapter. Now let us consider a particular example of viscous ABC 

flow, which is used in [40, 41J in the study of vortex reconnection. Here the velocity 

field and vorticity field given by 

U = W = (A sin z + C cos y, B sin x + A cos z, C sin y + B cos x), 

where A = Aoe-vt , B = Boe-vt , C = Coe-vt and Ao, Bo, Co are constants, is an 

exact solution of the Navier-stokes equation. Here topology of vortex lines is invariant 

but helicity changes because the magnitude of vorticity changes. Also note that when 

there is a reconnection of vortex lines, then the topology of vortex lines changes. Let 

w be the two form associated with this vorticity field. Then we have w(1) = -vw. So 

w(m) = (_v)mw, for all m ;::: 1. Then from section 4.6 it is clear that the vortex sheets 

of ware integral invariant 2-surfaces for this two form. So a material surface which is 

initially a vortex sheet will remain as a vortex sheet for this flow. 



Chapter 5 

Conclusion 

Fluid mechanics is the source of many of the ideas and concepts that are central to 

modern mathematics. Mathematicians have abstracted and vastly generalised many of 

the fluid mechanical concepts and have a deep and powerful body of knowledge. But 

many of them are unfortunately now unknown to fluid mechanicians, while mathemati­

cians themselves have lost all but a passing knowledge of physical origins of many of 

their basic notions. It will be surprising to a student of classical fluid mechanics to see 

that early mathematicians like C.F Gauss had thought of applying topological ideas in 

electricity and magnetism and had inspired Lord Kelvin to develop a theory of matter 

based on vortex knots and links. The past two decades have witnessed a revival of 

interest in these studies and has resulted in the origin of a new branch of study called 

topological fluid mechanics. The present thesis is the outcome of our investigation of 

some of these topological aspects of hydrodynamics and magnetohydrodynamics. 

In this thesis we are studying possible invariants in hydrodynamics and hydromag­

netics. The concept of flux preservation and line preservation of vector fields, especially 

vorticity vector fields, have been studied from the very beginning of the study of fluid 

mechanics by Helmholtz and others. In ideal magnetohydrodynamic flows the magnetic 

fields satisfy the same conservation laws as that of vorticity field in ideal hydrodynamic 

flows. Apart from these there are many other fields also in ideal hydrodynamic and 
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magnetohydrodynamic flows which preserves flux across a surface or whose vector lines 

are preserved. 

A general study using this analogy had not been made for a long time. Moreover 

there are other physical quantities which are also invariant under the flow, such as 

Ertel invariant. Using the calculus of differential forms Tur and Yanovsky classified 

the possible invariants in hydrodynamics. This mathematical abstraction of physical 

quantities to topological objects is needed for an elegant and complete analysis of 

invariants. 

Many authors used a four dimensional space-time manifold for analysing fluid flows. 

We have also used such a space-time manifold in obtaining invariants in the usual three 

dimensional flows. 

In chapter one we have discussed the invariants related to vorticity field using 

vorticity field two form w2 in E4. Corresponding to the invariance of four form w2 1\ w2 

we have got the invariance of the quantity lE:. w. We have shown that in an isentropic 

flow this quantity is an invariant over an arbitrary volume. 

In chapter three we have extended this method to any divergence-free frozen-in 

field. In a four dimensional space-time manifold we have defined a closed differential 

two form and its potential one from corresponding to such a frozen-in field. Using this 

potential one form w1
, it is possible to define the forms dw1 , w1 1\ dw1 and dw 1 1\ dw 1

. 

Corresponding to the invariance of the four form we have got an additional invariant 

in the usual hydrodynamic flows, which can not be obtained by considering three 

dimensional space. 

In chapter four we have classified the possible integral invariants associated with 

the physical quantities which can be expressed using one form or two form in a three 

dimensional flow. After deriving some general results which hold for an arbitrary di­

mensional manifold we have illustrated them in the context of flows in three dimensional 

Euclidean space JR3. If the Lie derivative of a differential p-form w is not vanishing, 
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then the surface integral of w over all p-surfaces need not be constant of flow. Even 

then there exist some special p-surfaces over which the integral is a constant of motion, 

if the Lie derivative of w satisfies certain conditions. Such surfaces can be utilised 

for investigating the qualitative properties of a flow in the absence of invariance over 

all p-surfaces. We have also discussed the conditions for line preservation and surface 

preservation of vector fields. We see that the surface preservation need not imply the 

line preservation. We have given some examples which illustrate the above results. 

The study given in this thesis is a continuation of that started by Vedan et.el. As 

mentioned earlier, they have used a four dimensional space-time manifold to obtain 

invariants of flow from variational formulation and application of Noether's theorem. 

This was from the point of view of hydrodynamic stability studies using Arnold's 

method. 

The use of a four dimensional manifold has great significance in the study of knots 

and links. In the context of hydrodynamics, helicity is a measure of knottedness of 

vortex lines. We are interested in the use of differential forms in E4 in the study of 

vortex knots and links. The knowledge of surface invariants given in chapter 4 may 

also be utilised for the analysis of vortex and magnetic reconnections. 
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