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Chapter 1 

 

 

Introduction              

 

 

 

 

 

This chapter gives a brief introduction to the topic of research work 

undertaken. The importance of signal processing in this digital era and some 

important DSP algorithms are first presented. This is followed by a brief introduction 

to one of the modern non-stationary DSP tools, viz. Time-Frequency methods 

(henceforth shortened as TFM). Trade-off required in Fourier techniques for 

achievable time and frequency resolutions is explained using Uncertainty Principle. 

Need for TFMs for processing non-stationary signals is then brought out and some of 

the important TFMs which have been explored in the present dissertation are then 

described. Next, some of the conventional active and passive sonar processing 

techniques are introduced.  What TFMs can offer extra in sonar signal processing is 

then explained briefly, which is the motivation for the research work carried out by 

me. Four TFMs have been exploited for achieving five important sonar functions. The 

reason for selecting a particular TFM for a specific sonar function is also explained.  

Finally, a brief layout of the thesis is given. 

 

 

 



                             
Chapter 1 

 

2 

1.1 Introduction 

Over the past several decades, the field of Digital Signal Processing has been 

significantly contributing to the different areas of human endeavors in one way or the other. 

While conventional signal processing by and large expects stationary behavior of the signal 

during the window of observation, it is worthwhile to note that, most of the man-made and 

natural signals are non-stationary in nature and hence time-frequency methods are more 

suitable than conventional Fourier based signal processing techniques.  

The significance of time-frequency analysis was recognized as early as the end of 

World war II and for a long time, they received attention mainly in academia, possibly due to 

the large computational requirements of the techniques. Except in speech processing, TFMs 

were not widely used. Now, with the tremendous computing powers available, more and more 

TFM applications are reported.  

Many natural and man-made signals have spectral characteristics which vary with 

time. When we hear someone singing and remark that they are reaching for the higher notes, 

that is a time-frequency description, because we are saying that the frequency is increasing 

with time. The method of musical notation is a time-frequency representation since it says 

what frequency should be played as a function of time. Undoubtedly, the most remarkable 

application of TFMs so far has been the understanding of the spectral content of speech and 

this has greatly benefited various applications like speech recognition, synthesis, compression 

and so on. In fact, speech was the impetus for the development of the first TFM, the Short-

Time Fourier transform. The chirp signal is another signal whose non-stationarity could not 

be conceptualized using the realistic application of Fourier principles. Chirps occur in nature 

in such places as the echolocation systems of bats, minke whale and bottleneck dolphin 

whistles. In areas like biomedical signal processing and seismic surveillance, there is a 

problem detecting the presence of non-stationary signals called random transients in the 

background of stationary signals. Detection and classification of these transients also do not 

have standard solutions, largely due to the broad band nature and the relatively short duration 

of the transient signals. During the analysis of machinery noise, transient signals occur very 

often. A transient of a certain frequency range and wave shape may indicate a particular 

degradation, signaling an impending failure in the machinery, So, an early detection can 
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prevent machinery damages. Biomedical equipments for health diagnosis also use transient 

analysis extensively. If the transient signal is known, either with spectral characterization or 

with a parameterized model, the problem of detection would be straight forward. However, in 

most cases, these information are not available. The interest here is to develop an approach 

useful for various types of transients, regardless of their frequency content, duration or time of 

arrival. 

Sonar signal processing comprises of  a large number of signal processing algorithms, 

implemented for achieving the various sonar functions like target detection, localization and 

classification. Current implementations are largely based on conventional Fourier transform 

based techniques which have many limitations in addressing the problems of sonar signal 

processing in totality. The advent of TFMs has stirred up new excitements in sonar 

processing. The present dissertation narrates the results of applying four different TFMs in 

improving the performance of five sonar functions and the results of the simulations carried 

out in this exercise appears to be very promising. 

1.2 Digital Signal Processing  

Signal processing is a technique that we can use to gather data from the real world 

and make sense of it. Our brain works as a kind of signal processor. Our sensors collect 

external stimuli and send the information to our brain, where it is interpreted and used to 

trigger an appropriate response. For some time, engineers have adapted this idea to develop 

electronic systems able to extract and process real world signals and turn them into useful 

data. Most of the signals encountered in the field of science and engineering are functions of a 

continuous variable such as time or space. Until World War II, analog methods played a 

dominant role in signal processing. The development of the theory of sampled data systems 

began in 1940’s, which lead to the development of digital signal processing. Eventually, due 

to the advances in integrated technology, achievements in software engineering and improved 

algorithms in numerical analysis, the field of DSP experienced rapid expansion. There are 

several advantages in going for the digital processing of analog signals. These include 

consistency, accuracy, flexibility, predictability and realization of new algorithms. The 
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emergence of dedicated DSP technology brought processors that were better optimized for 

signal processing calculations when compared with standard microprocessors.  

A real world signal is a continuously varying analog signal and this is converted into 

digital signal by A/D converters, as required by the DSP processors. The continuous analog 

signal is sampled at Nyquist rate to avoid aliasing. After this, various DSP algorithms are 

used as required by the application system. Digital filters are used to achieve the desired 

frequency and phase responses. There are two basic types of digital filters, the finite impulse 

response (FIR) and infinite impulse response (IIR) filters. In simple terms, they work as 

networks of single sample delays and MAC operations. Adaptive filtering allows filter co-

ordinates to be updated while the system is operational. Correlation techniques are used to 

match two or more signals for detection and delay measurement between them. Algorithms 

for interpolation and decimation are also widely used.  Conventional signal processing 

methods derive strength from Fourier techniques named after Jean Baptiste Joseph Fourier 

(1768-1830). It transforms the signal in the time or spatial domain to the frequency domain, in 

which many characteristics of the signal are revealed. The advent of the Fourier transform 

algorithm (FFT), has boosted the proliferation of Fourier techniques, by virtue of its speed of 

implementation[145]. 

1.3 Time-Frequency Methods 

A signal can be represented as a function of time, which shows how the signal 

magnitude changes over time. Time representation is the most natural description of a signal 

since almost all physical signals are obtained by receivers recording variations with time. 

Fourier Transform is also a very powerful way to describe a signal because the concept of 

frequency is seen in many domains like physics, astronomy, economics etc where periodic 

events occur. Fourier transform of a signal x(t) is defined as 

dtetxfX
tfj 2

)()(






  

Underlying a great deal of traditional signal processing theory is the notion of a 

sinusoidal wave. With the advent of modern computing and FFT, the use and interest in 

frequency domain signal processing has increased dramatically. Although the Fourier 
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transform yields perfect reconstruction of a broad class of signals, it does not necessarily 

provide a meaningful interpretation in some situations, as explained below. 

 First, when Fourier transform is used, a trade-off between the time and frequency 

resolutions has to be made. This problem is clearly explained by the Uncertainty principle. 

The Uncertainty principle was discovered by Heisenberg in the field of quantum mechanics. 

He realized that genuine, intrinsic uncertainties cropped up in the simultaneous measurement 

of position and linear momentum of a moving particle and also in the simultaneous 

measurement of time and energy. In quantum mechanics, one indeed deals with uncertainty 

because quantum mechanics is inherently a probability theory: the position and momentum of 

particles are probabilistically described, and hence, the widths of the distributions are indeed a 

measure of the uncertainty of localizing a particle in space and/or momentum[144].  

The Uncertainty principle is a fundamental result in signal analysis also. In signal 

analysis, it is often called a duration-bandwidth theorem, which is perhaps more appropriate 

and descriptive of signals. The statement and proof of the standard Uncertainty principle is 

quite clear, although there are many variations with different definitions of duration and 

bandwidth. However one defines duration and bandwidth, they are all a measure of the width 

of a function. The basic result is the same, namely that, for Fourier transform pairs, their 

widths are constrained, and cannot be made arbitrarily narrow. The most common definition 

of widths, both in the quantum and signal analysis, is the standard deviation. For a signal s(t), 

with a Fourier transform S(ω), with duration σt and bandwidth σω , the standard uncertainty 

principle states that the time bandwidth product is bounded from below  ie.  σt σω   ½. The 

equality hold only for Gaussian signals. The principle arises because s(t) and S(ω) are not 

arbitrary functions but are a Fourier transform pair, which is the fundamental step in the 

derivation of the Uncertainty principle. What this results means is that a signal cannot be both 

narrowband and short duration, since the variances of Fourier transform pairs cannot both be 

made arbitrarily small. So, both time and frequency width cannot be made arbitrarily small 

simultaneously. 

Second situation where Fourier transform fails is when the signal lack global 

stationarity. Presently, researchers are becoming aware of this inherent limitation of 

frequency-domain methods, based on Fourier techniques. Spectrum tells us what frequencies 
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are contained in the signal as well as their amplitudes and phases, but does not tell us which 

times these frequencies occur or the signal’s frequency progression with time. It is well 

known that the Fourier transform projects the signal on infinite sinusoids, which are totally 

delocalized in time.  On the other hand, much of the recent focus of signal processing is on 

TFMs, which allow us to observe how a spectral estimate evolves over time. The fundamental 

idea of TFMs is to understand and describe situations, where the frequency content of a signal 

is changing with time. 

Instantaneous Frequency (IF) and Group delay (GD)[15] have been in existence, for 

the time localization of the spectrum.  While the notion of IF implicitly assumes that at each 

time instant, there exists only a single frequency component, GD assumes that a given 

frequency exists only at a single instant. This assumption is true only for mono-component 

signals like CW, LFM or waveforms without noise. But for multi-component signals like the 

speech, bat signals and noisy signals added to mono component signals, these assumptions do 

not hold good and so IF and GD become less effective, as representations. Naturally one is led 

to the conclusion that mono-dimensional solutions are therefore insufficient, and one has to 

look for bi-dimensional functions of time and frequency. TFMs precisely qualify on this 

account, for analyzing non stationary signals.  

TFMs are used to analyze a signal in time and frequency domains simultaneously. A 

straight forward extension of the conventional Fourier transform, called STFT attempts to 

bring out the evolutionary nature of the signals, both in time and frequency. Other than STFT, 

TFMs have been largely limited to academic research because of the complexity of the 

algorithms and the limitations in computing power. TFMs are mainly of two categories:  

(i) Linear TFMs such as STFT, WT, FrFT   

(ii) Quadratic TFMs, also called Energy Distributions such as WVD, Cohen class. 

In contrast with the Linear TFMs, which decompose the signal on elementary 

components, the purpose of the Quadratic TFMs is to deal out the energy of the signal over 

the two variables viz.  time and frequency. Among the Quadratic TFMs, WVD is the simplest 

and the most powerful, in representation and characterization.   
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1.4 Overview of some TFMs 

Short-Time Fourier transform (STFT) is known to be the first TFM that was applied 

in practical systems like speech processing systems, order tracking, ISAR imaging, to name a 

few applications. Even though STFT is not explored for sonar applications in this thesis work, 

it is very much part of the evolution of TFMs. Hence a brief explanation of STFT is given 

first, followed by an overview of some of the well known TFMs, which have been explored in 

the present dissertation namely Fractional Fourier transform, Wavelet transform, Wigner Ville 

Distribution and Ambiguity function.  

1.4.1 Short-Time Fourier Transform (STFT) 

Fourier analysis becomes inadequate when the signal contains non-stationarity or 

transitory characteristics like transients, trends etc. In an effort to correct this, Dennis 

Gabor[24] adapted the Fourier transform to analyze small sections of the signal at a time. In 

order to introduce time-dependency in the Fourier transform, a simple and intuitive solution 

consists in pre-windowing the signal to be analyzed x(t) around a particular time t, calculating 

its Fourier transform, and doing that for each time instant t. The resulting transform called the 

Short-Time Fourier transform, is therefore defined as  

duetuhuxftSTFT
fuj 2*

)()(),(






  ………………………………… …(1.1) 

Here h(t) is a short time analysis window, localized around t=0 and f=0. Because 

multiplication by the relatively short window h
*
(u-t) effectively suppresses the signal outside 

a neighborhood around the analysis time point u=t, the STFT is a local spectrum of the signal 

x(t). This relation expresses that the total signal can be decomposed as a weighted sum of 

elementary waveforms ht,f(u)=h(u-t)e
jπfu

 . These waveforms are obtained from the window 

h(t) by a translation in time and a translation in frequency(modulation). The corresponding 

group of translation in both time and frequency is called Weyl-Heisenberg group. 

While the STFT’s compromise between time and frequency information can be 

useful, the drawback is that once a particular size is chosen for the time window, it remains 

the same for all frequencies. The time resolution of the STFT is proportional to the effective 

duration of the analysis window h(t). Similarly, the frequency resolution of the STFT is 
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proportional to the effective bandwidth of the analysis window h(t). Consequently, for the 

STFT, we have a trade-off between the time and frequency resolutions. On one hand, a good 

time resolution requires a short window h(t). On the other hand, a good frequency resolution 

requires a narrow-band filter ie. a long window h(t). This is the major drawback of STFT.  

1.4.2 Fractional Fourier Transform (FrFT)  

Namias introduced Fractional Fourier Transform[75] in the field of quantum 

mechanics for solving some classes of differential equations efficiently. Later, Ozaktas et 

al[76] came up with the discrete implementation of FrFT. Since then, a number of 

applications of FrFT have been developed, mostly in the field of optics. However, it remains 

relatively unknown in acoustics. 

Little need to be said of the importance and ubiquity of the ordinary Fourier transform 

in many diverse areas of science and engineering.  As a generalization of the ordinary Fourier 

transform, the FrFT is only richer in theory and more flexible in applications, but not more 

costly in applications.  Therefore, the transform is likely to have something to offer in every 

area in which Fourier transforms and related concepts are used. The FrFT is basically a time-

frequency distribution. It provides us with an additional degree of freedom (order of the 

transform α), which in most cases results in significant gains over the classical Fourier 

transform. With the development of FrFT and related concepts, we see that the ordinary 

frequency domain is merely a special case of a continuum of fractional Fourier domains. 

Every property and application of the ordinary Fourier transform becomes a special case of 

the FrFT.  So in every area in which Fourier transforms and frequency domain concepts are 

used, there exists the potential for improvement by using the FrFT. 

FrFT computation can be interpreted as a sequence of steps. The equation consists  of 

four parts – a multiplication by a chirp in one domain followed by a Fourier transform, then 

multiplication by a chirp  in the transform domain and finally a complex scaling. Chirps 

therefore form the basis functions in this transform. So, FrFT is most likely to improve the 

solutions to problems where chirps signals are involved. Chirp signals are not compact in time 

or frequency domain. They appear as inclined lines in the T-F plane and there exists an order 

for which such a signal is compact. The relationship between the optimum transform order α 

in the FrFT definition and chirp rate a in the chirp equation is well defined[87,88]. This 
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relation is used to calculate the optimal order for a sampled linear chirp signal with known 

chirp rate a. Conversely, it can be used to estimate chirp rate, given the optimum FrFT order. 

Another advantage is that FrFT can be implemented with the same computational 

complexity as FFT. Ozaktas et al[76,77] have come up with a discrete implementation of 

Fractional Fourier Transform. Like Cooley-Tukey’s FFT, this efficient algorithm computes 

FrFT in O(NlogN) time which is about the same time as the ordinary FFT. Hence, in 

applications where FrFT replaces ordinary Fourier transform for performance improvement, 

no additional implementation cost will occur. 

1.4.3 Wavelet Transform (WT) 

Continuous Wavelet Transform is a transform by which signals can be modeled as a 

linear combination of translations and dilations of a simple oscillatory function of finite 

duration called a mother wavelet ψ(t). It provides very good spectral resolution at low 

frequencies at the expense of temporal resolution and very good temporal resolution at high 

frequencies at the expense of spectral resolution. This distinct feature of the Wavelet 

Transform makes it suitable for analyzing non-stationary acoustic signals. Wavelet transforms 

have been widely applied to the problem of transient detection and processing, primarily 

because the transform basis functions provide good time localization and it involves the 

tracking of local transform maxima across analysis scales. To overcome the problems of 

redundancy and computational load, Mallat’s filter bank implementation called Discrete 

Wavelet transform is now widely used. According to multi scale filtering structure, Wave 

packet transform can divide the entire time-frequency plane into subtle tilings, while the 

classical WT can only find its finer analysis for lower-band only. Hence Discrete Wave 

packet transform is more competent to handle wide-band and high-frequency narrow band 

signals like transients. As a tool to process data from multiple channels, even this transform is 

computationally intensive. However, Wim Sweldon’s Lifting based implementation is a 

practical solution for the fast implementation of Wavelet and Wavepacket transforms. 

1.4.4 Wigner Ville Distribution (WVD)  

The Wigner distribution was originally developed in the area of quantum mechanics, 

back in 1932 and was introduced by French scientist, Ville 15 years later. It is now commonly 
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known in the Signal processing community as Wigner Ville Distribution.  Among the TFMs, 

the WVD  is the most efficient representation, in giving the best resolution in both  time and 

frequency and is independent of any analysis width. However with multi component signals, 

WVD exhibits cross terms because of the product terms in its definition, which clutters the 

distribution, thus making it difficult to interpret. Though many techniques have been 

proposed to reduce these cross terms, they increase the computational complexity of the 

WVD algorithms.  The Pseudo-WVD and Cohen’s class of distributions can remove cross-

terms to a large extend, but the time and frequency resolutions are at premium. If the problem 

of cross-terms can be overcome, WVD is a very promising TFM. 

1.4.5 Ambiguity Function (AF) 

Ambiguity function is a bilinear time-frequency technique, having relevance in 

applications wherever matched filtering is used, like radars and sonars. In active sonars, 

ambiguity function has two roles. The first one is in the evaluation of active sonar waveforms. 

The ambiguity function of a waveform is the squared magnitude of the uncertainty function. It 

can be viewed as the total (normalized) response of a square-law detector to the correlated 

output. The intersection of the detector threshold plane with the ambiguity function surface 

gives the ambiguity contour within which a target cannot be located unambiguously. A 2D 

plot of the plot of the ambiguity contour τ versus δ is called the ambiguity diagram.  This 

diagram indicates, for a given waveform, the accuracy with which range and velocity can be 

measured. The resolutions obtainable with a given waveform are defined as the height and 

width of its ambiguity diagram, measured at zero range and zero velocity. Second application 

of AF is in the matched filtering based detection processing of active sonars. The optimum 

detector for a known signal in the back drop of white Gaussian noise is the correlation 

receiver, also called matched filtering. So, in active target detection, the target range and 

radial velocity can be obtained by passing the received signal through an array of matched 

filters where each filter in the array is matched to a different target velocity. Methods for fast 

and exact computation of ambiguity function are very relevant in sonars. 
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1.5 Sonar Signal Processing 

It is only during the last twenty to twenty-five years that the modern high-speed 

digital electronics has started making an impact in the sonar manufacturing industry. The 

result has been a steady transition from analog to digital processing and from separately 

implemented subsystems to a more integrated computer-controlled surveillance system.  

Apart from the basic detection, a variety of additional features like reverberation resilience, 

Doppler independence in detection and tracking and classifications also are also finding a 

place in the standard sonar designs.  All these additional features derive the benefits of the 

recent developments in Signal processing.  Classification of sonar echoes, detection of chirp 

signals in active and intercept sonar and detection of transient signals in passive sonar can 

make use of time-frequency methods, in giving a creditable improvement in the sonar 

performance. Needless to say, the cross-fertilization of ideas from digital signal processing 

applications in radar, speech, communications and seismology has enriched the sonar 

processing techniques, in many ways.  Some of the important sonar functions are as follows – 

Detection, Localization, Classification, Tracking, Parameter estimation, Communications and 

Countermeasures. These applications require a good deal more than simple borrowing of 

techniques from other disciplines, due to the unwieldiness of the undersea propagation 

medium.  

Beam forming is the generic name of DOA estimation in all multi-sensor sonars, 

under which both time and frequency domain techniques are used. The major sonar 

processing algorithms for detection, localization, classification, tracking and parameter 

estimation follow beam forming. Passive sonar mainly requires detectors for broadband noise, 

narrowband noise and transients. Spectral processing techniques are widely used for the first 

two requirements, to bring out the broadband and narrowband tonal frequencies, shaft and 

blade frequencies generated by the amplitude modulated propeller noise. Transient detection 

in current sonars is achieved using Energy detector and its variants. But they are not the ideal 

tools for non-stationary signal processing. In active sonars, FFT based matched filtering is the 

optimum detector for range-velocity processing in reverberation and noise-limited 

environments. Improvement in the performance of these detectors means more target range.   
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1.6 Objective - Time-Frequency Methods for Sonar Applications 

Practical applications like radar, sonar, and communications, and natural situations 

like biology and seismology, necessitate the detection of signals in the presence of noise. The 

natural choice is the Neyman-Pearson detector, which is well known to be optimal, when 

statistics of both signal and noise are available. However, the knowledge of the statistics is 

seldom readily available in practice. The problems become more complicated, when the 

signals used are broad band, as in the case of chirps or transients. Traditional sonar signal 

processing techniques based on FFT algorithms, which largely rely on   the stationarity of the 

signals, thus become insufficient. Hence the need to explore other approaches likes TFMs. 

Signals with identical or similar spectra may have very different time-frequency transform 

outputs, and thus will be easily distinguishable in the transformed domain.     

With the availability of excellent processing support nowadays, many applications of 

TFMs have been reported in the fields of speech processing, image processing and biomedical 

applications, but very few in sonar signal processing.  The present dissertation is the outcome 

of my efforts to fill this lacuna, by exploring the unfathomed potential of TFMs in sonar 

applications. During the pursuit of this thesis work, it was motivating to note that  

There is no one “best Time-Frequency Method” for all applications,  

but, there is one best Time-Frequency Method for each application. 

That particular Time-Frequency method has to be tuned and adapted in many ways in 

order to develop an algorithm, which can deliver improved performance for the respective 

application. This thesis work has explored the following four Time-Frequency Methods. 

1.   Wavelet Transform(WT)                                     3. Wigner Ville Distribution(WVD) 

2.   Fractional Fourier Transform(FrFT)                    4. Ambiguity Function(AF) 

These TFMs have been applied in realizing the following five major sonar functions:   

1. Target Detection in Active Sonar using Fractional Fourier Transform 

2. Parameter Estimation in Intercept Sonar using Fractional Fourier Transform 

3. Transient Detection in Passive Sonar using Wavelet Transform 

4. Active Sonar Echo Characterization using Wigner Ville Distribution 

5. Generation of Wide Band Ambiguity Functions  using  Fourier Mellin Transform 
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The reason for selecting a particular TFM for a specific sonar function is now 

explained. FrFT is the TFM selected for implementing two sonar functions namely chirp 

parameter estimation in intercept sonar and target detection in active sonar. Chirps are signals 

which exhibit a change in instantaneous frequency with time (either linear or non-linear) and 

are of particular interest in sonars. In active sonars, chirps are transmitted, among other 

waveforms. In intercept sonar, parameter estimation is required mainly for chirps received 

from other emitters. The motivation for selecting FrFT for these two applications is its ability 

to process chirp signals better than the conventional Fourier Transform. Simulation results of 

the developed techniques are indicating very promising results.  

Wavelet transform is a good choice for the problem of transient detection and 

processing in passive sonars, primarily because of its energy preserving properties and its 

ability to provide good localization in time and frequency. The challenge here is to develop a 

method applicable to different types of transients with unknown waveforms and arrival times. 

To that end, Discrete Wavepacket transform is more competent than Wavelet transform to 

handle wide-band and high-frequency narrow band signals like transients. A lifting based 

Wave-packet based algorithm, developed in this thesis is found to be faster and ideal for 

transient detection in passive sonars. 

 Active sonar echo characterisation and target classification are two areas where few 

developments are reported. This application requires a TFM that can give excellent frequency 

and time resolution. Among all time-frequency representations, WVD is the best in that 

respect, but for the cross term problem. One aim of this thesis work has been to develop an 

analysis technique using WVD which guarantees good resolution and does not suffer the 

disturbances of cross-terms. Consequently, one is able to represent chirp signals with an 

excellent resolution in the time frequency map. WVD in combination with a denoising tool is 

therefore ideal for echo characterization of chirps and CW pulses in active sonars. Denoising 

techniques using wavelets are available in literature[56,57]. However, from the simulation 

results on FrFT in chapters 5 and 6, the excellent denoising capabilities of FrFT are 

demonstrated. Added to that, FrFT is ideal for chirp analysis. Active echoes being chirps 

mostly, FrFT is the better of the two as a denoising tool. So a WVD-FrFT combination 
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algorithm has given excellent results in the different simulations done for echo 

characterization. 

As a waveform evaluation tool and core operator in matched filtering, the importance 

of Ambiguity function is not small. A practical implementation of this time-frequency method 

is therefore very essential in the sonar processing algorithm tool set. Two definitions of 

ambiguity function are available in literature. The definition simplified by narrow band 

assumptions is widely used by active sonar designers. The exact definition called Wide band 

Ambiguity function is computationally difficult to implement and is therefore not used in 

real-time systems. In this thesis, a fast implementation of WB AF has been developed. For 

this purpose, a scale invariant transform called Mellin transform has been chosen. With the 

availability of the fast Fourier Mellin transform[131], comparison of the ambiguity functions 

of some typical waveforms and the matched filtering performance using the two definitions 

have been done with some noteworthy results. 

The outcome of the thesis is the demonstration of the commendable improvement in 

the performance of the sonar functions, by using TFMs.  Chapters to follow bring out the 

underlying theory of each of the TFMs attempted, a perspective of current sonar techniques, 

the results of the simulation done and the improvement in the performance of the five sonar 

functions using TFMs. To this end, the thesis is laid out in chapters as explained below: 

1.7 Layout of the Thesis 

Chapter 2 presents the literature review done for this research work. Here, an account 

of the work that has been carried out in the field of TFMs and their applications are presented. 

The present work is focusing on applications of TFMs in sonar signal processing. Hence an 

elaborate account of the applications of TFMs in related areas like speech processing, radar, 

image processing, communication, geographical explorations etc have been incorporated in 

this review chapter. 

Chapter 3 gives a perspective into the field of sonars. A large number of signal 

processing algorithms are used for implementing sonar functions such Detection, 

Localisation, Classification, Tracking, Parameter estimation, Communications and 

Countermeasures. From among these, current implementation methods of three of the these 
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sonar functions  namely target detection in active sonar, transient detection and analysis in 

passive sonar and parameter estimation in intercept sonar are explained in detail in this 

chapter. The new methods developed in this thesis work are compared with these current 

implementations for their performance evaluations. 

         In Chapter 4, the basic theory of the time-frequency methods explored in this 

research work is given. TFMs considered are Wavelet Transform, Wigner Ville Distribution, 

Fractional Fourier Transform and Ambiguity function. Under Wavelet transform, the 

continuous and discrete Wavelet transforms, their properties and implementation aspects are 

detailed. Basic principles of Lifting scheme are also explained. Next, an overview of FrFT is 

given, under which the definition and properties of FrFT and calculation of optimum 

transform order are given. The basic theory and properties of WVD, cross-terms and its 

variant Pseudo-WVD are then given.  Ambiguity function is a TFM which has relevance only 

in systems where matched filtering is applied, like sonars and radars. So, detailed explanation 

of active sonar detection theory and evaluation of active waveforms is given next. The theory 

of Mellin transform, used for the fast implementation of Ambiguity function is also given in 

this chapter. This chapter serves as a background for the work presented in chapters 5 to 9. 

       In Chapter 5, a novel method of applying Fractional Fourier Transform   to active 

sonar processing for improved matched filter based detection performance is described with 

simulation results. ROC curves and performance comparison of the new algorithm with 

conventional technique are given.  Important results and conclusions drawn thereof in using 

FrFT in active sonar are given at the end of the chapter. 

 Chapter 6 demonstrates  the potential of Fractional Fourier transform for the 

detection and estimation of chirp parameters in intercept sonar. The chirp parameters are 

calculated from the two primary estimates, namely optimum order and FrFT peak position. 

The developed estimation technique is discussed in detail, with all the challenges and tunings 

done for the development of this algorithm for intercept application. As a performance 

evaluation measure, the FrFT detector is compared with conventional FFT and Energy 

detectors, in the presence of white Gaussian noise as well as 1/f noise. The ROC curves and 

the SNR improvements are also generated. The chapter is concluded with the important 

results and observations regarding the implementation of this novel estimation procedure. 
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In Chapter 7,   a fast method for analyzing underwater transients buried in noise is 

developed. The challenge here is to develop a method applicable to different types of 

transients with unknown waveforms and arrival times. The time-frequency method adopted 

here for transient analysis is a variant of Wavelet transform namely Wavepacket transform. 

As for the implementation, instead of the conventional filter bank implementation scheme, a 

less computationally intensive method, namely lifting is adopted here. Simulation results of 

filter bank as well as lifting scheme for simulated transients as well as recorded biological 

transients are given. The ROC curves for comparing the performance of the proposed method 

with the conventional Page test are also presented. The chapter is concluded by highlighting 

the results and discussing the important findings of the new implementation. 

In Chapter 8, the potential of Wigner Ville Distribution for echo characterization in 

active sonars is demonstrated. A novel technique combining WVD with FrFT has been 

developed to overcome the problem of cross-terms in WVD, thereby representing the active 

echoes with excellent clarity in the time-frequency map. The denoising capability of FrFT and 

the new implementation scheme combining these two time-frequency methods is 

demonstrated with simulation results on single and multiple chirps embedded in noise. The 

approach is applied on non-linear chirps as well.  The ROC curves are also generated. 

Performance comparison with Pseudo-WVD is also presented.  

Chapter 9 describes another TFM that has been explored namely, Ambiguity 

function. In this chapter, Wide-Band Ambiguity function has been studied for sonar 

applications and implemented using the fast Fourier Mellin transform algorithm. Matched 

filtering using this implementation is then compared with the conventional scheme based on 

narrow-band assumption. Next, the ambiguity functions of some typical waveforms are 

generated using the two definitions. Simulation results highlighting the advantageous of the 

new method are presented. 

Chapter 10 is the concluding chapter, wherein the observations and inferences 

brought out in the previous chapters are summarized. The suggestions for further work in 

some areas of sonar signal processing are also given. 

********************* 
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The field of time-frequency methods is changing very rapidly with the 

introduction of many new ideas for a wide range of applications such as speech, 

biomedical, communication etc.  Like all fields and particularly emerging ones, it has 

a plethora of different motivations. Many applications are reported in the field of 

radar also, but very few in under water applications. In this chapter, first, some 

important references for sonar signal processing are presented. These references 

describe the important processing techniques employed in current sonars. The rest of 

the  chapter gives a detailed account of the previous work done in five types of time-

frequency methods, namely Short Time Fourier Transform, Wavelet Transform, 

Wigner Ville Distribution, Fractional Fourier Transform and Ambiguity Function. 

For each of these methods, references for their basic theory are first given, followed 

by applications in allied areas like speech, communication, radar etc. A few 

references for applications of these TFMs in sonars are also given. In the last section, 

references for Mellin transform and its application are given. 
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2.1 Sonar Signal Processing 

DSP has revolutionized sonar processing in many ways. It is only during the last 

twenty to twenty-five years that the impact of modern high-speed digital electronics has been 

felt in the military sonar manufacturing industry. The result has been a steady transition from 

analog processing to digital processing and from separately implemented subsystems to a 

more integrated computer-controlled combat system. Sonar signal processing has been 

heavily influenced by the commercial availability of powerful processors and algorithmic 

developments. Cross-fertilization of ideas from DSP applications in radar, speech, 

communications, seismology and other related fields have greatly benefited sonar processing 

techniques. These applications require a good deal more than simple borrowing of techniques 

from other disciplines, due to the unwieldiness of the undersea propagation medium.  

References by Knight et al[1], Urick[2] and Winder[3] describe “mainstream” sonar 

digital signal processing functions along with associated implementation considerations. 

These, along with additional references by Neilson[4], Burdic[5], Waite[6], Baggeroer[7] and 

Leon Camp[8] form a good basis to understand sonar digital signal processing. Radar related 

references by Simon Kingsley[9], Benjamin[10] and Levanon[11] have analogous 

applications to sonar processing. The matched filtering technique is described in detail by 

Glisson et al in their 1969 papers[12,13]. All these references talk about the important sonar 

functions such as Detection, Localization, Classification, Tracking, Parameter estimation, 

Communications and Countermeasures. Present day sonar systems are extensively based on 

the methods given in these references. The performances of the new methods developed in 

this thesis work are compared with some of these conventional methods. 

2.2 Time Frequency Representations 

The topic of time-frequency methods is one of the modern DSP tools for non-stationary 

signal processing. Like all fields and particularly emerging ones, it has a plethora of different 

motivations. Many applications are reported in the fields of speech and image processing, 

communications, radar etc. These applications are enumerated in the following pages. 

The references by Shie Qian and Dapang Chen[14] and Leon Cohen[15] form a good 

basis to understand joint time-frequency and space-spatial frequency distributions. The 
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Uncertainty principle is explained by Cohen in his paper[144]. Following sections contain 

reference for five time-frequency methods, namely Short Time Fourier Transform, Wavelet 

Transform, Wigner Ville Distribution, Fractional Fourier Transform and Ambiguity Function. 

STFT is very much part of the evolution of TFMs. So, even though STFT has not been 

explored for sonar applications in this dissertation, its references are also included here.  

2.2.1 Short-Time Fourier Transform (STFT) and Gabor Transform 

Frequency analysis of the instantaneous rms values of periodic components of 

rotating machine vibrations as a function of rotational speed is usually referred to as order 

tracking. The component under test is either run up in speed or coasted down, the latter often 

for electrical equipment that cannot be run at continuously increasing or decreasing rpm. 

Order tracking is an important tool in development and diagnostics of many components such 

as gear boxes, reciprocating engines, exhaust systems, electrical generators and paper mill 

rollers. Automotive and machinery reliability engineers rely heavily on order analysis for 

examining rotating machinery. The methods traditionally used were FFT based methods and 

Vold-Kalman technology. Dennis Gabor developed the technique for STFT, in which he 

adapted the Fourier transform to analyze only a small section of the signal at a time by 

windowing[24].Compared to these existing order analysis methods, TFMs like STFT and 

Gabor transform are found to be more intuitive and powerful, especially when time-varying 

harmonic analysis is required[16,17].  

Speech coders and automatic speech recognition systems are designed to act on clean 

speech signals. Therefore, corrupted speech signals must be enhanced before their processing. 

Time-frequency methods like Gabor transform show superior speech enhancement 

performance over traditional speech enhancement method such as spectral subtraction[18]. 

STFT is used in speech processing to estimate signal parameters, such as group delay 

of a transmission channel, speech formant frequencies, excitation time, vocal tract group 

delay and channel group delay[19]. Owen’s and Murphy’s paper describes a method of using 

STFT with a family of windows for speech processing[20]. The shift-invariance and rotation-

invariance properties of STFT are studied in Arikan’s paper[21]. Sean et al have explained the 

time-corrected instantaneous spectrogram and its applications in their paper[22]. In radar 

signal processing, high resolution and high velocity are conflicting requirements and signals 
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must be carefully designed according to the particular needs. Many different methods for 

signal analysis are clearly desirable in order to understand the properties of the signals and 

build appropriate receivers. It is found that Gaussian signals enable to improve range 

resolution at the expense of the velocity resolution or vice versa[25]. STFT can give better 

performance in ISAR imaging also[26]. 

2.2.2 Wavelet Transform (WT) 

Basic theory of Wavelet Tranforms is given in the references 27,28,29,30 and 31. The 

following references bring out the potential of using Wavelet transforms for transient 

detection. Athina[32] has proposed a new scheme for detecting transient signal of unknown 

waveform and arrival time, using Discrete Wavelet Transform, where the presence of a 

transient is indicated by a peak. By choosing the dilation and translation parameters 

appropriately, we can control the sharpness of this peak. Studies of Mordechai et al[33] have 

shown that when prior information regarding the relative bandwidth and time-bandwidth 

product of the signal to be detected is incorporated into the problem, Wavelet Transform 

outperforms other methods. Zhen and Peter[34] have done a comparative study of different 

methods to evaluate their performances in the detection of unknown transients in white 

Gaussian noise. 

TFMs have found application for signal denoising, where the aim is to estimate 

unknown signals embedded in Gaussian noise. Papers by Donoho and Johnstone explain 

signal denoising using Wavelet transform[56,35]. They have formalized the Wavelet 

coefficient thresholding for removal of additive Gaussian noise from deterministic signals. 

The discrimination between noise and signal is achieved by choosing an orthogonal basis 

which efficiently approximates the signal with few non-zero coefficients. A given Wavelet 

function may not necessarily be best adapted to an underlying signal of an observed random 

process. Furthermore, the reconstruction performance is dependent upon the noise realization. 

This indicates that a universal Wavelet basis is practically beyond reach, and that further 

optimization is required. Then, it is necessary to adaptively select an appropriate best basis for 

denoising.  A Das et al have designed 2-band optimal Wavelets for denoising[36]. Weiss and 

Dixon[57] presents a multi-resolution approach for denoising underwater acoustic signals. 

Stephen et al[47] have presented the theory of improved transient detection using Wavepacket 
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transform. Philippe et al[48] have tried to combine two powerful techniques WT and Higher 

order statistics for detection of transients. The use of both these techniques makes detection 

possible in low SNR conditions. Next, Christoph et al have used DFT and time-invariant 

Wavepacket transform for the classification of transients[49]. Chen Xi et al[50] have 

proposed a Doppler ultrasound analysis method based on Wavepacket transform for embolic 

detection. 

The Wavelet transform has proved to be a useful tool in oceanography and 

meteorology. This is demonstrated by Meyers et al[37] in examining the dispersion of Yanai 

waves. The transform modulus clearly reveals the propagation of the different wavelengths 

across the basin. The narrowing of the range of wavelengths in the western region observed 

supports the hypothesis that the narrow range of frequencies observed in the western 

equatorial ocean is a consequence of Yanai wave dispersion. These results could not be 

obtained using standard Fourier techniques. Wave elevation is an essential parameter in ocean 

wave mechanics, naval architecture and ocean engineering. The conventional practice is to 

measure wave height using wave gauges. However, a wave gauge can only give time histories 

of wave profiles at one location. To measure wave height at many points, we need to employ 

many wave gauges. These wave gauges themselves disturb the field. Instead, Lee and Kwon 

[38]talks of a new technique for measuring wave profiles by Wavelet transform using 

Mexican hat Wavelet which is proving to be a promising technique for detecting 2-D profiles 

of waves. The Wavelet transform was applied to the video images of the waves. This 

technique has the potential to provide low cost, high resolution field measurements of wave 

profiles in the laboratory. One great advantage is that the measuring process does not disturb 

the wave field at all. Christopher and Compo[39] describes how Wavelet analysis is also 

being used for numerous studies in geophysics like tropical convection, El-nino Southern 

oscillation, atmospheric cold fronts, dispersion of ocean waves, wave growth and breaking, 

and coherent structures in turbulent flows. It has become a common tool for analyzing 

localized variations of power within a time series. By decomposing a time-series into time-

frequency space, one is able to determine both the dominant modes of variability and how 

these modes vary in time. 
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Wavelet analysis is also used in image compression, where better energy compaction,  

multi-resolution analysis and many other features make it superior to the existing DCT 

systems like JPEG. The new JPEG2000 compression standard uses the Wavelet transform and 

achieves higher compression rates with less perceptible artifacts and other advanced features. 

In image compression applications, the conventional DCT-based techniques have been 

superceded by Wavelet and Wavepacket transform based techniques due to advantages like 

computational complexity, performance etc[40,41,42,42,44,45,46]. 

Cancellation of harmonics interferences in circuits uses notch filters or ANC 

techniques. But Lijun Xu[51] have shown that Wavepacket decomposition can be used for the 

same purpose with some added advantages like zero signal distortion etc. For image 

compression applications, Thomas et al[52] have shown that the conventional DCT-based 

techniques have been superceded by Wavelet and Wavepacket transform based techniques 

due to advantages like computational complexity, performance etc. It is perhaps reasonable to 

claim that the modern era of spectral estimation began with the 1958 book by Blackman and 

Tukey[53], where they give details of estimating the spectral density function by different 

methods. Remarkably, these estimators are infact Wavelet-based estimators, using the Haar 

Wavelet filter. By applying DWT and Wavepacket techniques, better spectrum estimators can 

be arrived at. Practical signal compression schemes for image and video coding standards 

have been using signal-independent approximations like FT and DCT. But Wavelets and 

Wavepacket transforms are now proving to give better results[54].  Sungwook et al[55] have 

proposed a speech enhancement method based on spectral entropy using adapted Wavepacket 

transform.  

Dragana[58] describes an underwater detection method using Wavelets with adaptive 

window-length. Zhang et al[59] have succeeded in extracting the main components in 

helicopter noise using Wavelet analysis. Prior to transient analysis, the transient has to be 

detected. The onset time and duration of the transient event is estimated by a less complex 

algorithm. Page Test(or Cusum Test) proposed by Douglas.A.Abraham[60] is a well 

established procedure for transient detection. Page Test is a parametric signal test for 

detecting change in probability distribution of a random process with minimum number of 
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samples of the random process. In order to make this test distribution independent and thus 

more robust, nonparametric version of Page Test is better[61].  

Chunhua et al[62] have developed improved schemes for target detection is sonars 

using preprocessing by sub-band adaptive filtering using WT, followed by higher order 

correlation techniques in post-processing. Vignaud’s paper[63] on a Wavelet transform based 

Relax algorithm is found to be promising in automatic target recognition in radars. A novel 

approach to complex target recognition using Wavelet decomposition of the radar cross 

section is introduced by Delise et al. The recognition levels achieved by this method are much 

better than with conventional methods[64]. The design of the Wavelet transform based 

frequency classifier by Francisco et al[65] relies on properties of the Wavelet transform, 

namely the capability of nearly describing a band pass transient signal by a small set of 

Wavelet decomposition scales, giving rise to a computationally efficient classification 

scheme. Ground-penetrating radars are being increasingly used for near-surface studies. 

Currently for noise suppression, τ-p transform is being used. But DWT based methods in 

Luigia’s paper are found to give better results[66]. Comparison of Fourier and Wavelet 

expansions in Passive Acoustic Thermal Tomography by Bograchev[67] shows that the 

Wavelet scheme is more compact. This compactness reduces the number of unknowns in the 

inverse problem and increases the accuracy of the reconstruction. 

Target extraction and estimation are long-standing problems in radar and sonar signal 

processing. A signal dependent transform is needed to concentrically represent signal 

components, while the projection of clutter or noise on the transform space is dispersed. Shi 

Zhuo et al[68] have developed a method using Wavepacket transform to meet this demand. 

Andre et al[69] have used Wavepacket transform for multipath channel identification problem 

with very promising results. Wong et al[70] have proposed the use of Wavepacket 

decomposition in a radar multi-sensor tracking system, in order to reduce data rate and 

thereby the communication cost.  

The paper by Ingrid Daubechies and Wim Sweldon[71] is a tutorial on lifting scheme. 

They have shown that DWT can be decomposed into a finite sequence of simple filtering 

steps called lifting steps. This decomposition asymptotically reduces the computational 
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complexity of the transform. Compact hardware architectures for implementing lifting-based 

DWT are proposed by these papers[72,73,74]. 

2.2.3 Fractional Fourier Transform (FrFT) 

Namias introduced Fractional Fourier Transform in the field of quantum mechanics 

for solving some classes of differential equations efficiently[75]. Since then, a number of 

applications of Fractional Fourier Transform have been developed, mostly in the field of 

optics. The motivation behind the proposed method is the ability of FrFT to process chirp 

signals better than the conventional Fourier Transform. FrFT is basically a time-frequency 

distribution, a parameterized transform with parametern , related to the chirp rate. It 

provides us with an additional degree of freedom (order of the transform), which in most 

cases results in significant gains over the classical Fourier transform. It is well known that    

in sonar systems, chirp processing can be applied in a number of areas. Some FrFT 

applications are reported in radars. However, it remains relatively unknown in acoustics. 

Given below are some applications in different areas, including radars. 

Ozaktas et al[76,77] have come up with a discrete implementation of Fractional 

Fourier Transform. Like Cooley-Tukey’s FFT, this efficient algorithm computes FrFT in 

O(NlogN) time which is about the same time as the ordinary FFT. Hence, in applications 

where FrFT replaces ordinary Fourier transform for performance improvement, no additional 

implemention cost will occur. A satisfactory definition of the discrete FrFT that is fully 

consistent with the continuous transform is given by Cagatay et al[78]. This definition has the 

same relation with the DFT as the continuous FrFT has with the ordinary continuous Fourier 

Transform. 

Luis Almeida[79] has interpreted FrFT as a rotation in the time-frequency plane. This 

paper describes its relationship with other TFMs such as WVD, AF, STFT and spectrogram, 

which support’s the FrFT’s interpretation as a rotational operator. Filtering in fractional 

Fourier domains may enable significant reduction of MSE compared to ordinary Fourier 

domain filtering. This reduction comes at essentially no additional computational cost because 

of the availability of the efficient algorithm for computing FrFT developed by Ozaktas et 

al[80]. New beam forming techniques are essential to increase the spectral efficiency of 

wireless communication systems. FrFT based beam forming is better than conventional 
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methods, especially in moving and accelerated source problem, in performance as well as 

computational complexity[81,82]. 

Ran Tao et al[83] have explored the properties and applications of periodic non-

uniformly sampled signals in FrFT domain. Their results can be used to estimate the chirp 

rate and the sampling offsets. Jozef et al[84] have developed an original method for 

constructing the TFM from the squared magnitudes of their FrFT outputs, using alpha-norm 

minimization by Renyi entropy maximization. 

In radar target identification problems, the target is assumed to have rigid body 

motion. But in real-world situations, a target may have rotating part beside the main body, 

like a helicopter with a rotor or a ship with scanning radar. Then, it is difficult to extract 

motion information(Doppler) using conventional techniques. Another scenario is 

maneuvering targets, such as aircrafts and missiles, where the Doppler frequencies are time-

varying. TFMs like adaptive Chirplet representation have shown potential in these two radar 

applications. References 85 and 86 address the problem of feature extraction from inverse 

SAR data collected from targets with rotational parts using Chirplet transforms.  

Chris Capus[87,88] et al have proposed the short-time implementation of FrFT. STFT 

variants of FrFT can be implemented in two ways, depending on how the optimum alpha is 

chosen. The optimum alpha can be selected for the whole data block, or one for each 

processing block length. These implementations show improvements in time-frequency 

resolutions with bat signals, linear and non-linear chirps. Individual chirps in a mixture of 

chirps can be extracted using FrFT by a filtering and reconstruction technique. Both linear as 

well as non-linear chirps can be extracted by this method. 

Hong-Bo Sun et al[89] have employed FrFT in radar signal processing. FrFT is 

applied in airborne SAR for detection of slow moving ground targets. For airborne SAR, the 

echo from a ground moving target can be regarded approximately as a chirp signal and FrFT 

is a way to concentrate the energy of a chirp signal. Unlike WVD, FrFT is a linear operator 

and do not suffer from cross terms. Moreover, to solve the problem whereby weak targets are 

shadowed by the side lobes of strong ones, a new filtering technique called clean is used, 

thereby detecting strong and weak moving targets iteratively. 
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In complex undersea environments, where a multitude of simultaneous sonar 

transmissions may exist, it is desirable to identify a received sonar echo based on its point of 

origin, platform and mission. This capability can help distinguish friendly sonar sources from 

counter fraudulent transmissions intended to confuse or mislead. The solution done for this 

problem is to secure embedding of a robust digital watermark in sonar transmissions. The 

ideal framework for embedding information is the time-frequency transform. Bijan Mobasseri 

et al[90] have shown the watermark can be recovered from a single ping. Moreover, the 

watermark survives various channel impairments including noise, seabed clutter and 

multipath. The same concept can be used for covert undersea communications using 

biologically occurring signals as cover. 

The time delay estimation (TDE) between the reference signal and its delayed version 

is an important problem in many areas such as radar, sonar, geophysics, biomedicine and 

ultrasonic imaging. The conventional method of TDE uses the cross-correlation between the 

reference and the delayed signal, and estimates the time delay by finding the extremum of this 

cross-correlation. Various other estimators are also proposed in the literature. However, these 

estimators suffer from severe degradation in performance at low SNRs. These estimators also 

need some kind of interpolation to obtain sub sample resolution of the time estimate. By using 

FrFT, an additional degree of freedom is added and it can be exploited to obtain multiple 

estimates of the time delay, each corresponding to the different angle of the FrFT. The 

multiple estimates can be averaged to obtain more robust estimates or the estimate 

corresponding to least error can be chosen if optimum alpha is known a priori[91].   

2.2.4 Wigner Ville Distribution (WVD) 

Among all the TFMs, the Wigner Ville Distribution, is the most efficient 

representation, in giving the best resolution in both time and frequency and is independent of 

any analysis width. However, it has a unique drawback. With multi component signals, WVD 

exhibits cross terms because of the product terms in its definition, which clutters the 

distribution, thus making it difficult to interpret. Given below are some references for cross-

term removal and applications of WVD. 

Ljubisa proposes PWVD for cross term reduction[92]. Pan et al[93] have proposed a 

signal classification method based on WVD in combination with cross-correlation technique 
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for the time-frequency representation of vibration signature. This technique is found to be 

better than the traditional SID technique. 

Analytic signal based spectral estimators present no phase dependence for mono-

components, but contrary to previous claims, they are not phase invariant for multi-

component signals, and perform worse than their real signal counterparts in high noise. Edgar 

and Richard proposes an analysis of Wigner-Ville spectra of continuous and discrete signals 

with time-limited windows demonstrating a better frequency concentration and less phase 

dependence than real and analytic signal Fourier Spectra. The WVD presents accurate 

frequency estimates for multi-component stationary signals, where cross term interference is 

attenuated by smoothing the WVD in time (SWVD). It also has an excellent performance in 

the presence of noise, making it a good alternative to classical spectral estimation approaches. 

Furthermore, it is especially appropriate for the case of non-stationary multi-component 

signals due to the good WVD temporal resolution, thus representing a superior spectral 

estimation technique suitable for the analysis of a variety of physical processes[94]. Wolfgang 

and Flandrin[95] propose pseudo-WVD for spectral analysis. In general, the corruptive noise 

is assumed to be additive and Gaussian and is addressed in many works. However, in some 

situations, the Gaussian assumption of the noise is not valid and therefore alternative analysis 

techniques are needed. This paper talks of a novel technique to analyze a sinusoid 

contaminated by additive noise having unknown heavy-tailed distribution. Examples of heavy 

tailed distributions include Laplace, Cauchy and alpha-stable distributions with alpha less 

than 2. Conventional Spectrogram method suffers from the low resolution in the time-

frequency domain, while the basic WVD suffers from the presence of artifacts for non-linear 

FM signals and cross terms for multi component signals. But, the robust polynomial WVD (r-

PWVD) outperforms the other two methods in terms of artifact suppression and time-

frequency resolution for this class of signals[96,97]. 

Daniela[98] introduces the Wigner Distribution Function (WDF) and its most 

important properties as a mathematical tool in several areas of signal processing that include 

signal retrieval, image recognition, characterization of signals and optical systems, and 

coupling coefficient estimation in phase space. The mathematical formalism can be applied to 

spatial, temporal or spatio-temporal phase spaces, to coherent, partially coherent or digital 
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signals, offering a unified view for the analysis of field propagation through various optical 

systems. The WDF is thus a universal tool. Andrew et al[99] have proposed different 

implementation methods for generating analytic signals from real signals. 

Time-frequency signal analysis methods, including the WVD and spectrogram for 

time-varying spectral measurement, the cross-WVD for time-varying coherence 

characteristization, and complex demodulation and instantaneous frequency for time-

dependent frequency analysis, have been applied to the neuro-physiological signal analysis, 

including the EEG, the evoked potential, and the blood flow signals. Traditionally, these 

signals were either interpreted by physicians who were experienced in the observations of 

many types of Waveforms, or by classical spectral analysis approaches based on the 

stationary or piecewise stationary techniques. These techniques frequently fail to characterize 

these Waveforms since the assumption of stationarity was invalid, resulting in unreliable 

results. However, the time-frequency analysis methods do not assume stationarity and the 

results are consistent with physician’s interpretation. Thus, a bridge has been constructed 

between modern signal processing techniques and problems in neurosciences. Researchers 

from both the medical and engineering fields are making joint efforts to solve these problems 

(100-chapter 23). 

Marriage of the ambiguity function and Fourier transform is the foundation of the 

field of time-frequency representations. Wigner Distributions have shown their effectiveness 

in classification problems in sonar and radar. Resonant features in echoes scattered from 

targets insonified or illuminated with short pulses are revealed well by WVD. Its effectiveness 

in ground-penetrating radar to identify buried land mines is shown by Guillermo et al[101]. 

It is very well known in the signal processing community that the inherent bi-linear 

characteristics of the Wigner Distribution introduce cross terms. But a modified technique 

called XCDWR overcomes this problem and performs as good as a matched filter based 

detector. WD can be decomposed into terms that contribute to the auto-WD and terms that 

affect cross-WD, via Gabor transform. By deleting the terms that affect cross terms, we get 

CWDR, which is entirely free of cross-terms. If Gaussian window is chosen, the CDWR is 

free of negative components also. This technique proposed by Kadambe et al[102], when 

applied in sonar detection application showed reduced reverberation effects, which is very 



 
                                                                                                         Literature Review 

 

 

29 

 

much a problem in active sonar operation. The methods also reduced the dimensionality of 

the problem. 

Stochastic modeling methods like AR and ARMA have earlier been applied for 

classification in radars. However, they suffer from inaccuracies such as showing inexact 

spectral widths, which is a prime factor to distinguish weather returns from birds, non 

adaptability to time-varying clutter spectra etc, despite being prominent in resolving spectral 

peaks. Krishnakumar et al[103] says that WVD can be used as an better alternative for the 

classification of radar returns, especially from the view point of spectral widths, though faced 

with the problem of cross-spectral components. 

Signal detection techniques based on WVD and XWVD are shown to provide high 

resolution in the time-frequency plane. The steps involved are computation of AF, WVD, 

XWVD and finally 2D correlation[104]. A Gabor time-frequency basis element is used to 

construct a data-adaptive weighting window to suppress cross term artifacts in the complex 

AF domain. A double Fourier transform of the weighted complex AF will then yield a filtered 

WVD function without cross terms. This technique proposed by Lawrence Marple[105] can 

be applied in radars and sonars. Zhang et al[106] have proposed a novel high-resolution TFM   

for source detection and classification in OTH Radar systems. For target identification and 

classification in sonars, high range and bearing resolutions are required. However, a 

conventional beam former using Fourier transform is inadequate for this purpose because it is 

not sensitive enough for discriminating small objects on the sea bottom. Imail et al[107] have 

applied WVD for the above application and achieved higher resolution. 

A classic problem in sonar and radar is the detection and localization in time of 

narrow-band deterministic transient signals of unknown Waveform and short duration that are 

embedded in a noisy background comprised of quasi harmonic and random components. The 

transients are typically of low energy buried in additive noise comprised of relatively higher 

energy narrow-band and broadband components. Detection needs to be achieved without a 

precise knowledge of the transient Waveform or frequency.  Conventional methods like 

STFT, Gabor transform etc have various shortcomings. These shortcomings can be overcome 

by using Wigner distribution, a joint time-frequency signal representation that is capable of 

providing concentrated estimates of non-stationary signals. Since the transient signals of 
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interest are localized in time and frequency, it is natural to consider it for this application. 

Further, this method can be used to estimate the envelope of the transient waveform, which in 

turn can be used in the classification of the transient[108] 

2.2.5 Ambiguity Function (AF) 

The classical definition of narrowband ambiguity function is given by 

Woodward[109], way back in1964. Theory of matched Filtering, ambiguity function, AF of 

different types of waveforms, their velocity tolerances etc are dealt with in these classical 

papers of active sonar[references 110 to 121] 

Joao et al[122] have introduced a new definition of AF, which is much broader, 

capable of handling the various radar/sonar problems. Rathan et al[123] defines a combined 

NB and WB AF for signal parameter estimation in active sonars. Saini et al[124] discuss the 

AF analysis signals of a DTV-T and the use of this signal for radar applications. Zhen-

biao[125] has studied the wideband ambiguity function of FM signals for radar and sonar 

systems. Jourdain et al[126] discusses the feasibility of using large bandwidth-duration BPSK 

signals for target delay and Doppler measurements in sonar/radar. Ning Ma et al[127] in their 

paper propose two novel methods for DOA estimation of broadband chirp signals via the 

ambiguity function.   

2.2.6 Fourier Mellin Transform (FMT) 

A combined Fourier Mellin transform yields a representation of a signal that is 

independent of delay and scale change ie. invariant in translation and scale. Given below are 

some references for applications of FMT in allied areas as well as radars. FMT yields a signal 

representation that is independent of delay and scale change. Hence it is a useful tool in 

speech analysis where delay and scale differences degrade the performance of correlation 

operations or other similar measures. Hence, it will lead to a signal representation that is 

unaffected by scale changes and time shifts. FMT can therefore be used for detection of LPM 

signals. Such signals are used by echolocation bats and cetaceans[128]. Most of the machine 

speech analysis and processing is done on warped spectral representation. Douglas Nelson 

talks of an efficient method for computing warped representation. When Mellin-Wavelet 

transform is used, the linear convolution of a warped Wavelet basis element and a log-warped 



 
                                                                                                         Literature Review 

 

 

31 

 

speech signal produces an un-warped Wavelet like signal[129]. Gabriel and Cohen[130] have 

investigated how the concept of scale transform can be extended for multi-dimensional 

signals, and in particular images. Scale transform can be applied in image analysis and 

denoising. The scaling operators permit the analysis of the local frequency contents of an 

image at different resolutions. 

Scaling of signals is not possible by standard means. Ovarlez et al[131] have 

developed an efficient algorithm using FMT. The algorithm involves only FFT routines. This 

implementation allows considering the time-frequency representations as practical tools for 

the study of broadband signals. Cohen[132] has come up with a proper representation of the 

scale transform. The basic properties of scale are given and it is treated as a physical variable 

for obtaining a framework for joint representations. Jurgen et al[133] have proposed a 

correlation method for scale and translation invariance in pattern recognition. Their method 

overcomes the problems of sampling and border effects. Russel and Duck[134] have studied 

the relation between the spatiotemporal characteristics of basilar membrane vibration and 

single fiber response. Eberhard et al[135] have reconsidered the temporal effects in masking 

experiments. Their studies suggest that the cause for temporal effects leading to the critical 

band can be attributed to spectral effects. Pickles and Comis[136] have brought out the 

relation between auditory nerve fiber bandwidths and critical bandwidths in cat. Hari et 

al[137] have introduced the notion of scale periodic function. Their studies showed that scale 

limited signals can be exactly reconstructed from exponentially spaced samples. An LTI 

system can be warped by processing its input signals with a unitary warping transform. John 

and Sommen[138] have developed an efficient implementation of this warping transform.  

This warping is based on a non-uniform sampling theorem. 

The usual time-frequency representations corresponding to the group of time-

frequency translations are shown to give rise to localization anomalies. Instead, Bertrand and 

Bertrand have used the affine group as the basic group and the affine covariant joint 

distributions are considered and it gives rise to time localized signal. This technique can be 

applied to radar applications[139]. Philip et al[140] have developed a modified Mellin 

transform for digital implementation and applied to range radar profiles of naval vessels. 

Their modified DMT algorithm overcomes some of the problems in FMT. 
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McCue[141] have done a detailed study of audio pulse compression in bats and 

humans. Altes [142,143]has derived a sonar system for generalized target description and 

found out its similarities to animal echolocation systems. Also, he has examined the pulse 

compression phenomena in terms of nonlinear phase function in the frequency domain.  

********************** 
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  Sonar signal processing comprises of  a large number of signal processing 

algorithms for implementing sonar functions such Detection, Localization, 

Classification, Tracking, Parameter estimation, Communications and 

Countermeasures. Current implementations of these functions are based on Fourier 

based  techniques extensively using FFT.  With whatever limitations known till date 

on these Fourier based techniques, sonar designers have gone ahead trying to yield 

the best performance of sonar systems.  Therefore a brief introduction about sonar 

systems along with the  current implementation methods would be in order, primarily 

to set of  the discussions, though the  aim of this thesis is to demonstrate the  

improvements obtained by   using time-frequency methods, vis-à-vis the existing 

techniques.  Three important sonar functions namely target detection in active sonar, 

transient detection and analysis in passive sonar and parameter estimation in 

intercept sonar are discussed. The new methods developed in this thesis work are 

compared with these current implementations for their performance evaluations. The 

specific reason for choosing a particular time-frequency method for implementing 

each sonar function is also explained in this chapter. 

 

. 
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3.1 Sonar Signal Processing and its demand 

                          “If you cause your ship to stop and,  

Place the head of  a long tube in water,  

And place the outer extremity to your ear, 

You will hear ships at a great distance from you.” 

This is how Leonardo Da Vinci announced the basic principles of a sonar system in 

1490. The word "sonar" is an abbreviation for "SOund, NAvigation and Ranging." It was 

developed as a means of tracking enemy submarines during World War II.  The Sonar 

consists of a transmitter, transducer, receiver and display. To repeat a well quoted text book 

material explaining the operating principle of sonar, an electrical impulse from a transmitter is 

converted into a sound wave by the transducer and sent into the water. When the resultant 

wave strikes an object, it rebounds. This echo strikes the transducer, which converts it back 

into an electric signal, which is amplified by the receiver and presented for aural or visual 

assimilation. Since the speed of sound in water is constant in standard water columns of 

operation(approximately 1500 meters per second),  the time lapse between the transmitted 

signal and the received echo can be measured and the distance to the object determined. This 

process repeats itself many times per second. 

It is only during the last twenty to twenty-five years that the impact of modern high-

speed digital electronics has been felt in the military sonar manufacturing industry. The result 

has been a steady transition from analog processing to digital processing and from separately 

implemented subsystems to a more integrated computer-controlled combat system. Sonar 

digital signal processing has been heavily influenced by the commercial availability of 

powerful processors and algorithmic developments. Cross-fertilization of ideas from digital 

signal processing applications in radar, speech, communications, seismology and other related 

fields have greatly  benefited sonar processing techniques. These applications require a good 

deal more than simple adaptation of techniques from other disciplines, due to the 

unwieldiness of the undersea propagation. 

 There are basically two types of sonar, active and passive, classified according to 

whether a signal is transmitted or not, in order to detect an object.  In active sonar, a 

transmitter emits sound signals, which is reflected by the contacts or targets.  The received 



   
                                                                                               Sonar  Signal Processing 

 

 

35 

 

echo is processed to detect the contact.  On the other hand, passive sonar does not transmit 

any signal.  It detects the contact, by simply listening to the sound radiated by underwater 

objects, like submarines, surface ships and torpedoes. The procedure followed by the active 

sonar(which involves a two-way transmission) is termed echo-ranging and can be very 

sophisticated,  when the direction, range, speed and contact type are also computed, with 

directional  multiple sources and multiple receivers. Passive sonar also finds out the direction 

of arrival by detecting the directed radiated sound from a contact, against the backdrop of 

isotropic ambient noise, but does not compute the range directly. The passive sonar has the 

advantage(compared with active sonar) that the sonar set does not betray its presence or 

position, since no sound is emitted by the detector. The detection problem is more complex, 

since  the target noises are scattered and  often follows multiple paths to reach the receiver.  A 

basic sonar system model is shown in fig.3.1 

 

Fig.3.1 - A basic sonar system model [3] 

In the simplest active sonar system, a transmitter produces an acoustic pulse of short 

duration of the order of a few milliseconds. This pulse is transmitted through transducer array 

into the water medium, where the resulting acoustic wave propagates out at the speed of 

sound. A target in the path of this wave will reflect a small portion of the energy back towards 

the same or another receiving array. The received waveform is a shifted and scaled version of 

the transmitted waveform, plus random noise. Since acoustic waves travel at a known speed, 
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the elapsed time between the transmitted pulse and the received echo is a direct measure of 

the distance of the target being detected. So given a known transmitted waveform, the best 

way to determine where the echo occurs in the received signal is correlation or matched 

filtering. 

DSP has revolutionized sonar mainly in three areas: pulse generation, pulse 

compression, phased array processing and filtering of detected signals. First, DSP enables the 

rapid selection and generation of different pulse shapes and lengths. This allows the pulse to 

be optimized for a particular detection problem.  Second, DSP can compress the pulse after it 

is received, providing better range resolution.  Third, DSP can filter the received signal in 

space and time, to decrease the noise. In one view, sonar is simpler than radar because of the 

lower frequencies involved. In another view, sonar is more difficult than radar because the 

environment is less uniform and stable.  Also, the sonar systems usually employ large number 

of sensor elements, configured as phased arrays for transmission and reception, rather than 

just a single channel. By properly controlling and mixing the signals by a process called beam 

forming, the sonar system achieve high processing gain (i.e improvement of SNR) and can 

steer the emitted pulse to a desired direction, thus getting directional reception. Thus by beam 

forming, one can estimate the bearing of the target. 

In active sonar, besides the loss in signal strength due to propagation through the 

medium, the reflection loss at the target, and additive noise at the receiver, a major limiting 

factor is reverberation. Reverberation results from reflections of the transmitted signal from 

scatterers- the sea surface, the sea bottom, biologics and inhomogeneities within the ocean 

volume. The optimum detector for a known signal in the back drop of white Gaussian noise is 

the correlation receiver, also called matched filtering. But, in a reverberation limited 

environment, the use of matched filtering is not optimum. However, it is common practice to 

still employ a matched filter since the power spectral density of the reverberation is unknown 

and live with the degradation in detection performance.. One cannot reduce this degradation 

by increasing the transmitted signal energy, since then the reverberation power also increases. 

FM signals(also called chirp signals) are found to give better performance than CW pulses in 

reverberation limited conditions. For sonar, the Doppler effect is a considerably larger 

fraction of the signal frequency than for radar, due to the higher possible ratio of target speed 
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to sound velocity. Moreover, the sound speed is a time-varying function of depth and range, 

geographic location and season of the year.   

As in radar, standard methods exist for determining approximate estimates of sonar 

system performance. These sonar equations, as described in Urick[2], are the basis for the 

preliminary performance assessments. In their simplest form, the sonar equations can be 

written as 

  SL-2TL+TS-NL+DI=DT (Active Sonar) 

  SL-TL-NL+DI=DT(Passive Sonar) 

 where 

SL Source level dB  ref.   1 Pa at 1m 

 NL Noise level  

 DI Receiving directivity index 

 DT Detection threshold 

 TL Transmission loss 

 TS Target Strength 

 

Sonar signal processing comprises of a large number of signal processing algorithms 

for implementing sonar functions such detection, localization, classification, tracking, 

parameter estimation, communications and counter measures. To do these functions, the 

major processing algorithms required are listed below. 

 DOA/Beam forming( time domain, frequency domain, adaptive)  

 Filtering and Smoothing 

 Matched Filtering for Detection in Active Sonar 

 Tracking in Active and Passive Sonars 

 Spectral Analysis(Lofar,Narrowband and Demon processing) in Passive Sonars 

 Transient Detection in Passive Sonars 

 Parameter Estimation in Intercept Sonars 

 Noise Normalization  

 Neural network techniques for Pattern matching and Classification 

 Echo Characterization for Target Classification 

The current implementation methods of three of the important sonar functions namely 

target detection in active sonar, transient detection and analysis in passive sonar and 
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parameter estimation in intercept sonar are explained in the following sections. The new 

methods developed in this thesis work are compared with these current implementations for 

their performance evaluations. 

3.2 Target Detection in Active Sonar  

Active sonar involves the transmission of an acoustic signal which, when reflected 

from a target, provides the sonar receiver with a basis for detection and estimation of its range 

and radial velocity. Estimates of the space-time coordinates of a target are obtained by 

observing the effect of that target on the parameters of a transmitted signal namely delay and 

doppler. The relation between the transmitted signal, echo, range and radial velocity are 

derived as follows 

x(t) –  transmitted signal 

y(t) –  received signal 

R0  -   initial range 

R    –  range at time t 

v     –  radial velocity 

c    -   sound speed in water 

R   = R0 + vt 

y(t)= s(t - 2R/c)  [signal attenuation not considered] 

     =s[t-2(R0 + vt)]/c = s[(1-2v/c)t-2R0 /c] 

    = s[(1-δ )t- τ]……………………………………………………………….(3.1) 

 where 

δ =2v/c   -  time scaling or Doppler parameter 

τ=2R0 /c  - delay  parameter 

Therefore, the estimates of range and velocity can be obtained as a linear function of 

delay and Doppler (δ and τ) measurements. In modern sonars, δ and τ measurements are made 

by cross correlating overlapping segments of the incoming signal with a set of stored 

references. Each of the references is a replica of the transmitted signal that has been 

artificially time compressed. Enough of these references are employed to cover a range of 

expected target velocities. When detection is achieved, the elapsed time since transmission 
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provides the delay estimate. The Doppler parameter of the reference which results in 

maximum correlation is taken as the Doppler estimate. The optimum detector for a known 

signal in the back drop of white Gaussian noise is the correlation receiver, also called matched 

filtering. The range and radial velocity can be obtained by passing the received signal through 

an array of matched filters where each filter in the array is matched to a different target 

velocity. A sufficient number of filters are employed to span the range of   probable target 

velocities. The output of each filter is then passed through a simple threshold detector. The 

output of the threshold detector peaks with a delay, which provides the range estimates. The 

estimated velocity is inferred from  the filter of best match(fig.3.2). 

 

Fig 3.2 - Matched Filtering 

3.2.1 Replica Correlation Using FFT 

The digital equivalent of matched filter operation is known as Replica Correlation 

(RC), and is accomplished by cross correlating overlapping segments of the received signal 

with each of several time-compressed replicas of the transmitted pulse. The stored copy of 

transmitted waveform is called as replica and hence the name replica correlation. The 

correlation points thus computed, correspond to the aforementioned matched-filter outputs, 

and are applied to threshold detectors. The required computation to implement the matched 

filter by direct time domain correlation becomes large for wide bandwidth signals. Glisson et 

al [12, 13] have arrived at a fast FFT based implementation for the correlator receiver, using 

the narrowband assumption in ambiguity function, as explained in the next section. 
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3.2.2 Narrow-Band Assumption 

The normalized matched filter response is given as 

dttsts
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By direct application of Parseval’s theorem, Eqn.(3.2) can be written as  
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Where S(f) is the Fourier transform of s(t). The time compression factor δ is 2v/c, where v is 

the radial target velocity and c is the sound velocity in water(3000knots). For realistic sonar 

problems, maximum target velocities are on the order of 30 knots. Therefore     02.0 . 

Thus, from the usual time series expansion of (1- δ)
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Equation 3.3 can be written as 
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Now, suppose s(t)  is a narrow-band signal with F0 & B as the centre frequency and 

bandwidth respectively. For such a signal, δf can be assumed to be constant for all values of f 

and  
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Employing Parseval’s theorem again, equation 3.5 can be written as  
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Equations 3.5 and 3.6 define the narrow-band uncertainty function. It is apparent that 

the right side of Eqn.(3.6) is nothing more than the Fourier transform of the product of the 

signal s(t) with s(t+τ). This observation leads to the heterodyne correlator[12] depicted in 

fig.3.3. In digital systems, the heterodyne correlator can be implemented using FFT and is 

therefore faster and more flexible than the time-domain implementation of matched filtering. 

 



   
                                                                                               Sonar  Signal Processing 

 

 

41 

 

 

 

 

 

 

Fig.3.3 - Replica Correlation with FFT 

For PCW signals, time compression and frequency translation are equivalent. Thus 

the references used in the replica correlation are frequency-translated versions of the 

transmitted sinusoidal pulse, and replica correlation becomes a spectrum analyzer. The FFT 

can thus be used to great advantage in the replica correlation algorithm. As for LFM pulse, it 

can be shown that the narrow-band approximation may be used if the target velocity v, pulse 

duration T and frequency sweep B satisfy the relation 
TB

v
2610

[12]. For wide-band LFM 

signals, the correlation has to be repeated for the different replicas. 

3.2.3 Target Doppler Computation 

 From the above implementation itself, target Doppler can be computed as follows. 

After the transmission, the echo from a target will mark in the active sonar display. In the 

subsequent ping, beam formed data around the marked regions alone is  extracted.  Doppler 

computation is then done on this block of extracted data. When the target is stationary, the 

peak amplitude value of the FFT output will be at bin zero. But when the target is moving, the 

bin number will shift proportional to the target velocity. The bin number can therefore be used 

to estimate the target Doppler. The relation between frequency shift and target Doppler is 

given as 

∆f = 2v* F0/c, ……………………………………………………………..….(3.7) 

where 

v – Target velocity  

c - Sound velocity in water 

F0 – Transmitted Centre Frequency 
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3.2.4 Best TFM for Target Detection in Active Sonar 

The signals most commonly transmitted in active sonars are continuous wave (CW), 

frequency modulation (FM, also called chirp signals) and pseudo-random noise (PRN). 

Among these waveforms, many active sonar systems transmit chirp signals for better 

detection in the presence of reverberation. The different type of chirp signals used are linear 

frequency modulation (LFM, also called linear chirps), hyperbolic frequency modulation 

(HFM, also called non-linear chirps), and stepped frequency modulation (SFM). Chirp signals 

are not compact in time or frequency domain. So what this sonar function requires is a 

transform optimized for chirp signals.  

FrFT is a transform with chirps as its basis functions. FrFT computation consists of 

four basic steps – a multiplication by a chirp in one domain followed by a Fourier transform, 

then multiplication by a chirp in the transform domain and finally a complex scaling. So, 

FrFT is most likely to improve the solutions to problems where chirps  signals are involved. 

For every chirp signal, there exists an order for which it is compact. For this optimum order, 

FrFT processing will definitely show an improvement over FFT. 

3.3 Transient Detection and Analysis in Passive Sonar  

Detection and analysis of transients is now gaining significance in the context of 

underwater acoustical signals. Quieting techniques used in the newest classes of submarines 

of the world’s navies have greatly reduced the narrowband acoustic tonal frequencies of 

rotating machinery that have been the primary source of acoustic energy for detection and 

classification by passive sonar. With the ships and submarines becoming silent day by day, it 

is difficult to detect them based on narrow-band machinery noise only. However, there are 

still exploitable acoustic signatures in the form of short duration acoustic events, called 

transients that can be used to detect and to classify underwater acoustic signatures. The 

transient signals are emitted by naval targets during torpedo launch, during sudden course 

changes etc and these transients have comparatively higher power. Also abrupt machinery 

failure or enemy scanning signals can also be considered as rarely occurring transient 

waveforms embedded in noise. Auto alert system for such rare events demands high 
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probability of detection, under the constraint of low false alarm rate. Transient analysis 

acquires significance in these contexts. 

Underwater transients can be divided into two main categories: those of biological 

origin and those of non-biological origin. The biological transients are further divided into 

two classes, namely snapping shrimp and clicks, emitted by shrimps, whales and dolphins. 

The non-biological transients are those emitted from submarines and ships. Typically, 

underwater transients have duration of 200-600 ms. 

          Traditional analysis techniques are not ideally suitable for transient analysis, as they 

make the assumption that the signals are stationary or are infinite in extend. But transients are 

non-stationary in nature and corrupted with noise. The information in non- stationary signals 

is thus lost in the Fourier Transform. The two extremities in transient signal detection are  

1) Absolutely nothing about the signal is known. 2) Everything about the signal is known. 

             The simplest solution to the problem of transient detection is Energy Detection, 

which corresponds to the first case above. This essentially amount to comparing the measured 

energy in various segments to a threshold and accordingly makes a decision regarding the 

presence or absence of a transient signal. The energy can be measured in the time domain as 

well as in the frequency domain, both supplying different information about the signal. The 

time domain approach gives the time of occurrence of signal while the frequency domain 

approach gives the frequency content of the signal . 

                When one knows all about the transient signal, the Matched filter is the most sought 

out option. The only parameter not known is the time of arrival. Thus the procedure for 

detection amounts to correlating the incoming signal with the available waveform and 

declaring that a signal is present at the point of maximum correlation or when the correlation 

is above a particular threshold. 

          For any detector performance, the matched filter detector gives the theoretical upper 

bound and Energy detector gives the lower bound. But with real data, matched filter 

performance suffers from mismatch between the replica and the received signal modified by 

propagation phenomena. In a practical situation, the two cases discussed above generally do 

not occur. The wave-shape is not entirely known while some parameters or at least their 

ranges are known. Hence it is not possible to have a matched filter but also, one need not use 
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merely the energy detector. The first step is transient detection and in many sonar systems, the 

Page test, a variant of energy is commonly used for this function [60]. This algorithm detects 

the transient and also estimates the transient duration. Once detection is reported, the next step 

is transient analysis for which Fourier techniques are resorted to, in order to get the frequency 

information about the transient. 

3.3.1 Transient Detection using Page test 

 Since transient signal parameters are unknown, the detector employed is energy 

detector which is the optimum detector for detection of unknown pulsed signal in Gaussian 

noise. The  detection consists of the following two steps. 

1. Preprocessor      2. Nonparametric Page Test 

3.3.1.1 Preprocessor 

 Energy detector demands integrating the instantaneous energy of the transient signal 

for a short duration. Here the assumption is made that the transient signal is of the order of 

milliseconds and an exponential averager with a time constant Tc of that order is used for 

energy estimation. Since the transient signal is embedded in background noise, the detection 

has to be made in comparison with the background noise energy. The background noise 

energy is estimated by integrating the transient signal with an exponential averager with a 

long time constant Tn of the order of seconds. The Preprocessor subtracts the background 

noise estimate Yn’ from the signal energy estimate Yn. The Preprocessor also scales the 

background noise estimate by a factor k. The parameter k determines the false alarm rate of 

the detector and requires fine tuning in the field. If the input signal is {x(n)}, preprocessing  is 

done as follows. 

     r(n) = x
2
(n).............................................................................................(3.8) 

     y(n) = *r(n) + (1- )*y(n-1).................................................................(3.9) 

Compute y(n) simultaneously with two different time constants; 1 with low time 

constant(Tc) for estimating transient signal and 2  with higher time constant(Tn) for 

estimating background noise . This way, the transient signal, background noise and enhanced 

signal are estimated for every sample.  
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Transient signal is estimated as  yt(n) = 1*r(n) + (1- 1)*yt(n-1)………..(3.10) 

Background noise is estimated as  yb(n) = 2*r(n) + (1- 2)*yb(n-1)….…(3.11) 

             Enhanced signal Y (n) = yt(n) – yb(n)…………………………………....(3.12) 

 Scaled background noise Y
’
(n) =  k * yb(n)………………………………(3.13) 

3.3.1.2 Nonparametric Page Test (NPT) 

Page Test is a parametric signal test for detecting changes in probability distribution 

of a random process with minimum number of samples of the random process. In order to 

make this test distribution independent and thus more robust, nonparametric version of Page 

Test is used [61]. Inputs to the NPT are pre-processed time series outputs Yn and Yn’. NPT 

detects change in mean (independent of distribution of Yn and Yn’) of the above two time 

series. This consists of a sign detector (unit step function) whose output is 1 if Yn > Yn’ 

followed by a cumulative sum (CUSUM) Wn, detection statistics of Page Test. Wn measures 

the number of successive samples for which condition Yn > Yn’ is valid. There is a bias 

parameter b in the CUSUM statistic which is intended to bring down Wn, to 0 when the 

transient signal introduced shift in mean of Yn disappears.  Wn has to be compared with a 

threshold equal to the number of samples in half the pulse width (Tc*fs/2) where fs is the 

sampling frequency.  The test statistic Wn is defined as 

  ))(,0max( 1 bxgWW nnn
………………………………………(3.14)   

             where xn - n
th

 data sample 

g(xn)  = UnitStep(Y(n) – Y’(n))    

means   

            if (Y(n) – Y’(n)) > 0,  g(xn) = 1 else g(xn) = 0. 

            where 

            Y(n) = yt(n)-yb(n) 

            Y’(n) = k * yb(n). 

b - false alarm inhibiting bias 

Wn is initialized to 0.   
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 threshold = Tc*fs/2 

Wn  >  threshold declares a detection. 

3.3.2 Best TFM for Transient Detection in Passive Sonar 

The challenge in this sonar function is to develop a method applicable to different types 

of transients with unknown waveforms and arrival times. The transient waveform may not fit 

into any definite type like sinusoid or chirp. Instead, it can be a damped sinusoid or chirp of 

unknown bandwidth and duration. So, Fourier techniques, FrFT etc may not give any 

additional advantage. The broadband nature and relatively short duration of transient signals 

demand a transform with flexible time and frequency resolutions like Wavelet transform. 

According to multi-scale filtering structure, Wavepacket transform can divide all the time-

frequency plane into subtle tilings, while the classical WT can only find its finer analysis for 

lower-band only. Hence Discrete Wave packet transform will be more competent to handle 

wide-band and high-frequency narrow band signals like transients. 

3.4 Parameter Estimation in Intercept Sonar  

 The intercept sonar system is a surveillance system, looking for active transmission 

from other sonars including Torpedoes, covering a frequency range of 1-100 kHz. It is mainly 

a passive sonar which provides an early warning to the sonar operator. It listens to the remote 

target transmissions of other active sonars and cautions the operator about a possible threat. 

Intercept sonar is generally capable of detecting targets at about 150Km range and it provides  

information about the following target parameters viz., Frequency of transmission, Pulse 

Repetition Time(PRT), Pulse Width, SNR of the received signal, and Bearing of transmission. 

The front-end processor receives the acoustic signals from different arrays, which after beam 

forming is subjected to the parameter estimation procedure. Two methods are generally 

adopted in current intercept sonars for parameter estimation – STFT & Page test. These two 

methods are explained below. 

3.4.1 Parameter Estimation using STFT 

Many intercept sonar systems use STFT for both pulse detection as well as analysis. 

For this, STFT is computed on cascading blocks of incoming data for very short durations of 

the order of 5 or 10 milliseconds. Prominent frequencies in the Fourier transform is used to 
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estimate waveform type, bandwidth and pulse width using pulse reconstruction techniques. 

Even though, STFT method can handle negative SNRs, it has many short comings. First, the 

dependency on window size affects the frequency resolution achieved. Since the pulse width 

of the received chirp pulse is unknown, one cannot select the optimum window function of 

STFT. Estimation of the FM waveform by cascading frequencies in sequential data blocks is 

cumbersome and less accurate. 

3.4.2 Parameter Estimation using Page Test             

Some systems use Page test for intercept pulse detection and estimate the start and 

end time of the pulse. However, for pulse analysis, some other technique has to be resorted to. 

Also, Page test does not perform well with low SNR signals. The basic theory of Page test has 

already been presented in Sec.3.3.1 

3.4.3 Best TFM for Parameter Estimation in Intercept Sonar 

The function of intercept sonar is to process the active transmissions from other 

emitters and extracts the pulse parameters like duration, bandwidth, start frequency and PRT. 

From these inputs, we can classify the emitters as friend or foe. Also, based on our 

knowledge, we can identify the emitter’s identity also. These transmissions can be chirps, 

among other types of waveforms. So, as in the active sonar detection function, FrFT is the 

ideal TFM for intercept application. However, the parameter estimation technique will be 

more complex. For one thing, unlike in active sonar, the chirp information is not known a 

priori. The problem of chirp detection and parameter estimation is compounded, when there 

are multiple emitters. Multiple chirps may be present, that too embedded in noise with the 

chirps overlapping in frequency, time or both. The novel method developed in this thesis 

addresses all these problems. 

3.5 Echo Characterization in Active Sonar  

Passive classification for extracting the frequencies of machinery, shafts etc is a proven 

technology. But active sonar echo characterisation and target classification are two areas 

where few developments are reported. But, these are two functions navies all over the world 

are looking for in the new generation sonars. In active sonars, a signal transmitted from a ship 

is reflected from the target ship. The received signal called the echo is modified in its features 
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like duration, bandwidth, envelope shape etc. Characterising the echo will help in classifying 

the target ship and understanding the medium also. Depending on the different types of 

targets (ships/submarines etc) and different aspects of the same target (aft/port/starboard), the 

echoes will be different. Extraction of these differences can be then used for target 

classification. The first step in target classification however is echo characterisation. A new 

technique has been developed in this thesis work for echo characterisation. 

3.5.1 Best TFM for Echo Characterization in Active Sonar 

Echo characterization needs a time-frequency method with good time and frequency 

resolutions. Among all the TFMs, the Wigner Ville Distribution is the one that meets this 

requirement. However, it has a unique drawback. With multi component signals, WVD 

exhibits cross-terms because of the product terms in its definition, which clutters the 

distribution. The challenge here is to develop a technique which guarantees good resolution 

and does not suffer the disturbances of cross-terms. In other words, preserve the resolutions 

possible with WVD and remove cross-terms by a suitable denoising technique. A novel 

WVD-FrFT combination algorithm has been developed in this dissertation with very 

promising results. 

3.6 Conclusion 

In this chapter, a brief introduction about sonar systems is given along with the 

current implementation methods of three important sonar functions namely target detection in 

active sonar, transient detection and analysis in passive sonar and parameter estimation in 

intercept sonar. The objective of this research work has been to improve the performance of 

these sonar functions using time-frequency methods. In the next chapter, the background 

theory of these TFMs has been elaborated. The specific reason for choosing a particular time-

frequency method for a sonar function is also explained in this chapter. This choice depended 

on the demands of the sonar function and its expected input signals. 

********************** 
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Basic Theory of Time-Frequency Methods 

 

 

 

 

 

 The need to analyze a signal in time and frequency domains simultaneously 

was introduced in Chapter 1 and the relevance to sonar system design was brought 

out in Chapter 3. But, other than Short-Time Fourier transform, time-frequency 

methods have been largely limited to academic research because of the complexity of 

the algorithms and the limitations of computing power. Since the aim of the present 

thesis is to come up with improved TFM based techniques for implementing sonar 

functions, a review of the background theory closely related to the research work 

carried out, is elaborated in this chapter. The topics covered include the basics of 

Wavelet Transform, Fractional Fourier Transform, Wigner Ville Distribution and 

Ambiguity Function. Each of these time-frequency methods have certain desirable 

features, which make them ideal for a particular application, in sonar systems. These 

special features are also brought out in this chapter.  Implementation of Ambiguity 

function uses Mellin Transform and so, its basic theory is presented in the last section 

of this chapter. 
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4.1 Wavelet Transform (WT) 

Wavelet Transform is a transform by which signals can be modeled as a linear 

combination of translations and dilations of a simple oscillatory function of finite duration 

called a mother wavelet ψ(t). It provides very good spectral resolution at low frequencies at 

the expense of temporal resolution and very good temporal resolution at high frequencies at 

the expense of spectral resolution. 

4.1.1 Continuous Wavelet Transform (CWT) 

The WT of a signal  represents the signal as a linear combination of scaled and shifted 

versions of the mother wavelet. When the scale and shift parameters are continuous, the 

transform under consideration is called a Continuous Wavelet transform (CWT). Let f(t) be 

any square integrable function. The CWT of f(t) with respect to a wavelet ψ(t) is defined 

as[28,29] 
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4.1.1.1 Salient features  of CWT  

1. CWT maps a 1-D function f(t) to a 2-D time-scale plane 

2. Eqn(4.1) is called the analysis or forward transform 

3. Variables a and b are real and * denotes conjugation 

4. )(
1

)(
0,

a

t

a

t
a

   ie. ψa,0(t)is a time-scaled and amplitude scaled version of ψ(t). So, 

a is called the dilation or scaling parameter 

5. For a fixed value of a, ψa,b(t) is a shift of ψa,0(t) by an amount b along the time axis. So, b 

is called the translation or delay parameter 

6. ψ1,0(t)= ψ (t) 
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7. The term 
a

1
ensures that energy stays same for all values of a and b. 

ie. dttdtt
ba

22

,
)()(  for all values of a and b 

8. If a  > 1,  ψ(t) is stretched. If 0 < a < 1, ψ(t) is contracted. If a is negative, ψ(t)  is time-

reversed as well as stretched or contracted, depending on whether a > 1 or    0 < a <1. 

9. ψ(t) is called the mother wavelet. The set of basis functions ψa,b(t) are generated from the 

mother wavelet by dilation and translation and are called daughter wavelets. 

10. Fourier transform of mother wavelet is ψ(t) ↔ ψ(ω). Fourier transform of daughter 

wavelets are 
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11. (a)Centre of ψ(t) is given as 
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Centre of ψa,b(t)=t0+b 

      (b)Centre of ψ(ω) is given as 
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Centre of ψa,b(ω)=ω0 /a 

      (c)RMS width of ψ(t) is given as 
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RMS width of  ψa,b(t)= )(at = ta .  

     (d)RMS width of ψ(ω) is given as

d

d
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22
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……….(4.7) 

RMS width of ψa,b(ω)= )(a = a/  

12.  Time-bandwidth product is a constant 

ie. .t )(at . )(a =constant 

13. Q-factor =center frequency/3dB bandwidth 

Q-factor of ψ(t)=Q-factor of  ψa,b(t) 

4.1.1.2 Conditions for ψ(t) to be a mother wavelet 

1. )8.4....(................................................................................0)( dtt  

ie. The function integrates to zero. This symbolizes the wavy nature of wavelets 

2. )9.4......(......................................................................)(
2
dtt  

The function is square integrable. This property implies the finite duration of wavelets 

3. )10.4..(........................................0
)(

2

CwhereC
d

 

This condition called the admissibility criterion ensures that inverse CWT exists 

4. The wavelet system must satisfy MRA properties of self similarity at different scales 

4.1.1.3 Disadvantages of CWT 

CWT is very easy to visualize and understand. But it has two major disadvantages.  

 It requires analytically explicit functions to find the inner product.  

 The scaling parameter a and delay parameter b take continuous values resulting in a 

redundant representation on the time-frequency plane 
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Both these disadvantages are overcome by the Discrete Wavelet transform. DWT 

requires no analytic functions and the algorithm involves only filtering and decimation and is 

therefore computationally very efficient. 

4.1.2 Discrete Wavelet Transform using Filter Banks (DWT) 

Wavelet transform can be looked at in a totally different way- as a recursive structure 

of filter banks[28,29]. Developed by Mallat, this algorithm is called Discrete Wavelet 

Transform. DWT is derived from the principles of multi-resolution analysis(MRA), wherein a 

function can be analyzed at different resolutions. This involves approximation of the function 

in a sequence of nested linear vector spaces. Given a function x(t), the decomposition begins 

by mapping the function into a sufficiently high resolution subspace Vj. For this, x(t) is 

sampled for a very large j in order to get scaling coefficient cj+1.Once the scaling function at 

resolution cj+1  are got, then the scaling coefficients cj and wavelet coefficients dj at lower 

resolutions are got by convolving with the scaling and wavelet filters and decimating by 2 as 

defined in Eqns.(4.11) and (4.12). Here, g(n) and h(n) are the wavelet and scaling filters 

respectively. 
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It is found that h(n) has low pass response and g(n) has high pass response. So, they 

can be looked upon as impulse responses of an LTI system, with I/O relationship and the filter 

structure as in fig.4.1. Using filters h(n) and g(n), the signal is split into high and low 

frequency parts. In the next stage, the same splitting is done on the low frequency output. This 

decomposition is continued to the desired resolution. 

 

y1(n)=h(n)*x(n) 

y2(n)=g(n)*x(n) 

Fig.4.1 - DWT- Mallat’s decomposition tree 

 

g(n) 

h(n) 
x(n) 

Low frequency part y1(n) 

High frequency part y2(n) 



                                                                                            
Chapter 4 

 

 

54 

Mallat’s filter bank algorithm, resulting from the above decomposition tree, thus 

involves the computation of approximation coefficients c(k) and detailed coefficients d(k). 

The wavelet and scaling filters satisfy the Quadrature Mirror Filter properties [28,29 ] of 

perfect reconstruction. The coefficients at scale j are convolved with the time reversed filter 

coefficients h(n) and g(n) and then down sampled to get the coefficients at scale (j-1).  Fig.4.2 

shows a two-stage filter bank implementation for Wavelet decomposition. 

 

 

 

 

 

 

 

 

Fig.4.2 - DWT- Two Stage decomposition tree 

4.1.3 Types of Wavelets 

There are various kind of wavelets. Accordingly, one can choose from among smooth 

wavelets, compactly supported wavelets, symmetric and non-symmetric wavelets, orthogonal 

and biorthogonal wavelets etc. Selection of a wavelet is based on properties like smoothness, 

vanishing moments, symmetry, orthogonality and frequency localization. The wavelet that 

has been considered in this study belongs to the group of Daublets. Daublets are orthogonal 

wavelets with compact support. There are quite a large number of wavelets in this group viz. 

db2, db4, db8 etc. The support and the smoothness of these wavelets increase as the wavelet 

order number increases. These wavelets have the highest number of vanishing moments 

among wavelets with similar properties, for a given support. For the transient detection 

application in Chapter 7, db4 has been used in all the simulations. 

   g(n) 2 

   h(n) 2 

   g(n) 2 

   h(n) 2 

cj(n) 

d j-1(n) 

 d  j-2(n) 

c j-1(n)  c  j-2(n) 
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4.1.4 Discrete Wavepacket Transform (DWPT) 

          A Wavelet basis is a member of the large collection of Wavepacket bases. According to 

multi-scale filtering structure, Wavepacket transform can divide the entire time-frequency 

plane into subtle tilings, while the classical WT can only find its finer analysis for lower-band 

only. The Wavepacket method is a generalization of wavelet decomposition that offers a 

richer range of possibilities for signal analysis.  In the wave packet analysis, the details as 

well as the approximations can be split. If n levels of decomposition are done, the transform 

will yield 2
n  

 sub-bands. Fig.4.3 shows the Wavepacket decomposition tree for n=2. 

 

 

 

 

 

 

 

  

 

  Fig.4.3  - Wave Packet decomposition tree          

4.1.5 Fast Wavelet Transform  using Lifting Scheme 

 The DWT is a very computation intensive process. When data from multiple channels 

have to be processed, the hardware requirement can be huge. So a faster implementation 

method is very much desirable. The Lifting based implementation meets this requirement. It 

was developed by Wim Sweldons in 1997 as a method to improve a given WT to obtain some 

specific properties[6]. Later, it was extended to a generic method to create the so called 

second generation wavelets. The theory behind the classical wavelets relies heavily on Fourier 

Transform, while the lifting scheme can be used to introduce wavelets without using the 

concept of Fourier Transform. The main feature of the lifting scheme is that all 

decompositions are derived in the temporal domain. This leads to a more intuitively appealing 

treatment, better suited to those interested in applications. 
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          It is fruitful to view the DWT as prediction-error decomposition. The scaling 

coefficients at a given scale are predictors for the data at the next higher resolution or scale     

(j-1). The wavelet coefficients are simply the “prediction errors” between the scaling 

coefficients and the higher resolution data. This interpretation has led to a new framework for 

the DWT known as the Lifting scheme(LS). 

          Suppose that the low-resolution part of a signal at level j+1 is given, represented by 

sj+1. This set is transformed into two other sets at level j: the low-resolution part sj and the 

high-resolution part dj. This is obtained first by splitting the data set sj+1 into two data subsets. 

Traditionally, this is done by separating sj+1 into the set of even samples and odd samples. 

Such a splitting is sometimes referred to as the lazy wavelet transform. Each group contains 

half as many samples as the original signal.  

Doing just this does not improve the signal representation. The even and odd samples 

are interspersed. If the signal has a local correlation structure, the even and odd subsets will 

be highly correlated. In other words, given one of the two sets, it should be possible to predict 

the other one with reasonable accuracy. The even set is always used to predict the odd one. 

The  two subsets are then recombined in several lifting steps which decorrelate the two 

signals. 

          Lifting steps usually come in pairs of a primal and a dual lifting step. A dual lifting step 

can be seen as a prediction; the data dj are predicted from the data sj. When the signals are 

highly correlated, such a prediction will be very good, and thus we need not keep this 

information in both signals. We need to store only that part of dj that differs from its 

prediction (the prediction error). Thus dj is replaced by dj - P(dj) where P represents the 

prediction operator. This is the real de-correlating step. However, the new representation has 

lost certain basic properties, which one usually wants to keep, like for example, the mean of 

the signal. To restore this property, one needs a primal lifting step, whereby sj is updated with 

data from the new dj. Thus sj is replaced by sj + U(dj) where  U represents the updating 

operator. These steps can be repeated by iteration on sj, creating a multilevel transform or 

multi-resolution decomposition. So, as the lifting stage go from level j+1 to level j, the steps 

are summarized as follows. These three steps form a lifting stage (See fig.4.4). 

1. Splitting (lazy wavelet transform) sj+1 - odd samples   dj  and  even odd samples sj 
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2. Prediction (dual lifting)   dj  dj- P(dj)…………………………….…………(4.13) 

 

3. Update (primal lifting)   sj     sj + U(dj)…………………………………..…(4.14) 

 

The lifting scheme has a number of advantages: 

a) All calculations can be performed in place resulting in memory savings 

b) Computations are reduced since the sub expressions can be reused 

 

 

 

 

 

 

 

 

 

 

Fig.4.4 – Lifting Scheme-Forward Transform 

Iteration of the lifting stage on the output s(n) creates the complete set of DWT 

scaling and wavelet coefficients. By first factoring a classical wavelet filter into lifting steps, 

the computational complexity of the corresponding DWT can be reduced. The lifting steps 

can be easily implemented with ladder type structures, which is different from the direct finite 

impulse response (FIR) implementations of Mallat’s algorithm. Hence, this implementation 

will require lesser hardware resources while achieving higher utilization. 

4.1.6 Desirable Features of Wavelet Transform for Transient  Detection  

The broadband nature and relatively short duration of transient signals demand a 

transform with variable time and frequency resolutions. This is an inherent feature of Wavelet 

transform. According to multi-scale filtering structure, Wavepacket transform can divide all 

the time-frequency plane into subtle tilings, while the classical WT can only find its finer 
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analysis for lower-band only. Hence Discrete Wave packet transform will be more competent 

to handle wide-band and high-frequency narrow band signals like transients. The results of 

applying DWT to the analysis of transients are elaborated in Chapter 7.  

4.2 Fractional Fourier Transform (FrFT) 

 Chirps are signals which exhibit a change in instantaneous frequency with time 

(either linear or non-linear) and are of particular interest in sonar, radars, acoustic 

communications, seismic surveying, ultrasonic applications, etc. The potential of FrFT lies in 

its ability of FrFT to process chirp signals better than the conventional Fourier Transform. 

The transform absorbs the chirp parameters in its kernel by a parameter .  

Namias introduced Fractional Fourier Transform[75] in the field of quantum 

mechanics for solving some classes of differential equations efficiently. Later, Ozaktas et 

al[76] came up with the discrete implementation of FrFT. Since then, a number of 

applications of FrFT have been developed, mostly in the field of optics. However, it remains 

relatively unknown in acoustics. 

 Little need to be said of the importance and ubiquity of the ordinary Fourier transform 

in many diverse areas of science and engineering.  As a generalization of the ordinary Fourier 

transform, the FrFT is only richer in theory and more flexible in applications, but not more 

costly in applications.  Therefore, the transform is likely to have something to offer in every 

area in which Fourier transforms and related concepts are used. The FrFT is basically a time-

frequency distribution. It provides us with an additional degree of freedom(order of the 

transform), which in most cases results in significant gains over the classical Fourier 

transform. With the development of FrFT and related concepts, we see that the ordinary 

frequency domain is merely a special case of a continuum of fractional Fourier domains. So in 

every area in which Fourier transforms and frequency domain concepts are used, there exists 

the potential for improvement by using the FrFT. 

4.2.1 Linear Chirp Signal 

A linear chirp signal, its phase and its instantaneous frequency are given by the 

following equations. Two parameters completely define a chirp namely the  start frequency f0  

and slope a of the chirp. 
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4.2.2 Overview of FrFT  

 FrFT is defined [87,88] with the help of transformation kernel K ,  

where  

 }0.10{ defines the transform order. 

  X  (y)  is the fractional transform of order . 
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 FrFT computation can be interpreted as a sequence of steps viz. a multiplication by a 

chirp in one domain followed by a Fourier transform, then multiplication by a chirp in the 

transform domain and finally a complex scaling. So, chirps form the basis functions of FrFT. 

There are various other definitions of the FrFT.  Of all these, the definition given 

above is particularly desirable because of its many properties and the relation to the classical 

Fourier transform.  It is also interesting to note that this definition of the FrFT reduces to the 

classical FT when the order of the transformation α = 1. The variable x and y emphasize the 

generality of the transform, rather than assuming time and frequency for the domains. For      

α = 1 and -1, the transform corresponds to ordinary forward and inverse Fourier Transforms 

respectively where x and y represent frequency and time respectively. 

sj 
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4.2.3 Transform Optimization  

 The FrFT parameter α is used to tune the transform to provide an optimal response to 

a given linear chirp signal.  When the axis of rotation is matched to the chirp rate of the 

signal, the magnitude response of FrFT reaches its maximum. This procedure is known as 

transform optimization. The corresponding α is called the optimum α. 

  

 

 

 

 

 

 

 

 

 

 

Fig.4.5- Relationship of Chirp rate and FrFT order  

Fig.4.5 shows the time-frequency plot of a chirp. There are two methods to describe 

chirp rate. The first is the quadratic phase parameter a in the algebraic definition of the linear 

chirp given in Eqn.(4.18). It is also given as the optimum α parameter in the FrFT definition 

in Eqn.(4.17). The relationship between the two is given as [87, 88]  
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The true relationship is dependent on the digital sampling scheme used and is given in 

Eqn(4.22) where fs is the sampling frequency and N is the number of samples in the chirp 

signal. This relation is used to calculate the optimal order for a sampled linear chirp signal 

with known chirp rate a.  Conversely, it can be used to estimate chirp rate, given the FrFT 
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order α. The optimum FrFT order cannot be found analytically in general. So, a one-

dimensional search for α is necessary to find the optimum order, with which the chirp focuses 

well. ie. On a given block of data, FrFT is done for different values of α, and we select the 

one that yields the maximum peak value.  We can scan values of  α [-1,1] using a finer 

spacing to get a good estimate. 

4.2.4 Properties of FrFT 

1. Linearity  Fα[c1 f(t)+c2 g(t)]=c1 Fα f(t)+c2 Fα g(t) 

2. Identity   F0[ f(t)]= f(t) 

3. FrFT reduces to Fourier transform when α=1   ie. F1 f(t)]= F(f) 

4. Additivity Fα+β[ f(t)]=Fα[Fβ[f(t)]. Successive application of FrFT is equivalent to a single 

transform whose order is equal to the sum of the individual orders. 

5. Rotation by 2Π- FrFT of order α=4 corresponds to successive application of Fourier 

transform 4 times and therefore acts as identity operator 

6. Inverse FrFT is done by taking α=-1 

7. FrFT is both associative and commutative 

8. Time shift – FrFT of a time shifted signal is a shifted version of FrFT of original signal 

modulated by a chirp function 
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9. Modulation  in time domain results in corresponding modulation with a chirp and shift in 

FrFT  domain 
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10. Time inversion  results in a corresponding inversion of FrFT 

)()()()( yFtxyFtx  

If signal is an even function, its FrFT is also an even function 

)()()()( yFyFtxtx  

If the signal is an odd function, then its FrFT is also odd. 
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)()()()( yFyFtxtx  

11. Scaling of axis – A compression of the time axis usually results in an expansion of the 

fractional axis with varying multiplying factors. Similarly, an expansion of time axis 

results in a compression of fractional axis. 

12. Parseval’s Theorem –The energy preservation property holds good for FrFT just as for 

FFT 

dyyFdttx

22

)()(  

4.2.5 Discrete Implementation of FrFT 

 A number of discrete implementations have been put forward. The most satisfactory 

ones, consistent with the important properties of index additivity, unitarity and reduction to 

DFT for unit order, are those implementations based on the discrete Hermite-Gaussian 

functions. To date, there is no fast algorithm for the exact computation of the discrete FrFT. 

However, a fast O (N log N) algorithm has been proposed, which calculates an approximation 

to the discrete samples of the FrFT with sufficient accuracy for many applications[77]. 

4.2.6 Desirable Features of FrFT   for Active and Intercept Sonar Processing 

Chirps are not compact in the time or frequency domain. But, since chirps form the 

basis functions in FrFT, there exists an order for which it is compact in the FrFT domain. So, 

FrFT will improve solutions to problems where chirps signals are involved. Hence, FrFT is 

the ideal transform for processing chirp signals in active and intercept sonars.  However, the 

algorithms for these two applications will be different. In the case of active sonar, the 

transmitted chirp signal is known a priori, and hence calculation of the optimum transform 

order α is straight forward.  However, in the case of intercept sonar, the received waveform is 

unknown. So, to apply FrFT, a search algorithm has to be implemented to find the optimum 

transform order. For the problem of multiple chirps overlapping in time and frequency, an 

extraction algorithm will be required. All these additional challenges have been addressed 

successfully in the new technique, developed in the present thesis work and are detailed in 

Chapter 6. 
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4.3 Wigner Ville Distribution (WVD) 

WVD belongs to the class of quadratic TFMs, which also called energy distributions. 

In contrast with the linear TFMs which decompose the signal on elementary components, the 

purpose of the energy distributions is to distribute the energy of the signal over the two 

variables, time and frequency. The Wigner distribution was originally developed in the area 

of quantum mechanics, back in 1932 and was introduced by French scientist Ville 15 years 

later. It is now commonly known in the SP community as Wigner Ville Distribution and is 

defined as 

detstsftWVD
fj

s
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)

2
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2
(),( ……………………….…………(4.23) 

This distribution satisfies a large number of desirable mathematical properties, as 

summarized in the next sub-section. In particular, the WVD is always real-valued, it preserves 

time and frequency shifts and satisfies the marginal properties. WVD possesses many useful 

properties and also has better resolution than STFT spectrogram. But it has one major 

drawback, the so called cross-term interference. 

4.3.1 Properties of WVD 

Main aim of any TFM is that it should bring out the signal’s frequency changes over 

time. This is the most difficult part to satisfy. In addition, there are a number of additional 

desirable properties. Given below are the main properties of WVD. 

1. Energy Conservation – Energy of a signal can be deduced from the squared modulus of 

either the signal or its Fourier transform. 
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By integrating the WVD of x(t) all over the time and frequency plain will give the energy 

of x(t). 
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2. Marginal Properties 
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Integration along time axis yields the total power spectrum. This is called the frequency 

marginal condition. Conversely, the integration along the frequency axis gives the 

instantaneous energy of the signal 

3. WVD is real-valued 

),(),(
*

ftWftW
xx

…………………………………………………..………(4.28) 

4.  WVD is time-shift invariant and frequency modulation invariant. 
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5. Dilation covariance – WVD preserves dilations 

),(),(0);()(
k

f
ktWftWkktxkty

xy
………………………(4.30) 

6. Compatibility with filterings – If a signal y(t) is generated by convolving x(t) with filter 

h(t), WVD of y(t) is the time convolution of WVD of  x(t)and WVD of  h(t) 

dsfsWfstWftWdssxsthty
xy

),(),(),()()()( ……(4.31) 

7. Wide-sense support conservation – If a signal has a compact support in time (respectively 

in frequency), then its WVD has the same compact support in time (respectively in 

frequency). 

BfftWBffX

TtftWTttx
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x
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8. Instantaneous Frequency property – IF of a signal can be recovered from the WVD as its 

first order moment in frequency 

9. Group delay property - GD of a signal can be recovered from the WVD as its first order 

moment in time 
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4.3.2 Cross-term Interference 

WVD possesses many useful properties and also has better resolution than STFT 

spectrogram. But one main deficiency of the WVD is the so-called cross-term interference. 

When a signal has more than one component or contains noise, its WVD is not just sum of 

their respective WVDs. In addition, cross-terms also appear. For N individual components, 

the total number of cross-terms is N(N-1)/2. Because the cross-term usually oscillates and its 

magnitude is twice as large as that of auto-terms, it often obscures the useful time-dependent 

spectral patterns. For s(t)=s1(t)+s2(t), the WVD is  

WVDs(t,f) = WVDs1(t,f) + WVDs2(t,f) + 2Re{ WVDs1,s2(t,f)}…………………..(4.34) 

In simple signals with two or three components, we can identify the cross-term 

interferences. But for real life signals containing many components and noise, the pattern of 

cross-terms, which usually overlap with auto-terms, will be more complicated. Consequently, 

the desired spectrum could be deceiving and confusing. It is these undesired terms that 

prevents the application of WVD, even though the WVD possesses many useful properties for 

signal analysis. How to reduce the cross-term interference without destroying the useful 

properties has been a topic of many studies. 

4.3.3 Psuedo WVD (PWVD)  

One method to reduce cross-terms is to apply a low pass filter H(t,f) to the WVD[15] 

as shown in Eqn.(4.35) ie.2D convolution of WVD of the analyzed signal s(t) and 2D filter 

H(t,f). Low pass filter performs a smoothing operation and hence the name smoothed WVD. 

Low pass filtering suppresses cross-terms. But it reduces the resolution. So, a trade-off needs 

to be made between the resolution and the degree of smoothing. 

dydxywxtHyxWVDftPWVD
s

),(),(),( ……………………….(4.35) 

4.3.4 Desirable Features of WVD for Echo Characterization  

Among all the TFMs, the Wigner Ville Distribution, is the most efficient 

representation, in giving the best resolution in both time and frequency and is independent of 

any analysis width. However, it is the least used one, mainly because of the problem of cross-

terms. If the cross-term problem can be rectified by a suitable denoising technique, WVD is 

the ideal time-frequency method for echo characterization in sonars. A new technique 
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combining FrFT and WVD has been developed in this thesis work with very promising 

results. 

4.4 Ambiguity Function 

Ambiguity function is a TFM, having relevance wherever matched filtering is used, 

like radars and sonars. Basically, ambiguity function has two roles. The first one is in the 

evaluation of active sonar waveforms. Second, it is used in the matched filtering based 

detection processing of active sonars. These two functions of ambiguity function are 

explained in the following sections. 

4.4.1 Detection in Active Sonars  

Active sonar involves the transmission of an acoustic signal which, when reflected 

from a target, provides the sonar receiver with a basis for detection and estimation of its range 

and radial velocity. For the sake of continuity, detection in active sonars is repeated in this 

chapter also. The relation between the transmitted signal, echo, range and radial velocity are 

derived as follows [12] 

x(t) –  transmitted signal 

y(t) –  received signal 

R0  -   initial range 

R    – range at time t 

v     –  radial velocity 

R   = R0 + vt 

y(t)= s(t - 2R/c)[without signal attenuation ] 

=s[t-2(R0 + vt)]/c = s[(1-2v/c)t-2R0 /c]   = s[(1-δ )t- τ]……….  ………..(4.36) 

 where    δ =2v/c -time scaling or Doppler parameter         τ=2R0 /c  - delay  parameter 

Therefore, the estimates of range and velocity can be obtained as a linear function of 

delay and Doppler (δ and τ) measurements. In modern sonars, δ and τ measurements are made 

by cross correlating overlapping segments of the incoming signal with a set of stored 

references. Each of the references is a replica of the transmitted signal that has been 

artificially time compressed. Enough of these references are employed to cover a range of 

expected target velocities. When detection is achieved, the elapsed time since transmission 
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provides the delay estimate. The Doppler parameter of the reference which results in 

maximum correlation is taken as the Doppler estimate. The optimum detector for a known 

signal in the back drop of white Gaussian noise is the correlation receiver, also called matched 

filtering. The range and radial velocity can be obtained by passing the received signal through 

an array of matched filters where each filter in the array is matched to a different target 

velocity. A sufficient number of filters are employed to span the range of   probable target 

velocities. The output of each filter is then passed through a simple threshold detector. The 

output of the threshold detector peaks with a delay, which provides the range estimates. The 

estimated velocity is inferred from the filter of best match.  The process is illustrated in 

fig.4.6. 

 

                   

 

                       Fig.4.6 - Matched Filtering 

        In Active Sonar 

         

 

 

 

4.4.2 Evaluation of Active Waveforms 

The ambiguity function   
2

),(  is a 2-D function of correlator output power 

against range  and Doppler frequency shift . Let us consider an illustration of  
2

),(  

versus  and . For a hypothetical signal, the resulting surface may appear as in fig.4.7(a).  

The detection threshold can be visualized as a plane parallel to the  and  axes, the 

presence of a target being indicated if a correlation point exceeds this value (fig.4.7b). The 

intersection of this threshold with 
2

),(  defines a contour within which a target cannot 

be located unambiguously(with a single pulse), since all ,  combinations enclosed by the 

contour give rise to detections. This contour sketched for the hypothetical signal is called the 

ambiguity contour for the waveform s(t). Two-dimensional plot of an ambiguity contour  

versus  is called an ambiguity diagram (fig. 4.7c).  
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                                       (a)                                        ( b) 

 

 

 

 

 

 

 

                                                     ( c ) 

     Fig.4.7 - A Hypothetical Ambiguity Function 

The ambiguity diagram indicates, for a given waveform, the accuracy with which 

range and velocity can be measured. So, the resolution obtainable with a given waveform is 

defined as the height and width of the ambiguity diagram for that waveform, measured at zero 

range and zero velocity [1], as shown in fig. 4.8.  
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Fig. 4.8 - Resolutions from Ambiguity Diagram 

So, performance of any active waveform can be got from its ambiguity function. Lot 

of work is going on in the design of new waveforms, with specific capabilities like 

reverberation resistance and so on. To evaluate them, a correct picture of their ambiguity 

functions need to be generated, which is only possible with the WB AF definition. The 

Ambiguity Functions using the narrow band assumption, though easy to calculate, may not 

give a true picture of the waveform’s capabilities.  This difficulty has been resolved using 

Mellin transform, addressed in the section to follow. A fast implementation of WB AF using 

Mellin transform is elaborated in Chapter 9. 

4.5 Mellin Transform 

One of the main properties of Fourier transform is that it allows one to compare 

translated functions and to remove the translation factor. That is the case because the energy 

density spectrum, the absolute square of the Fourier transform, is insensitive to translation. 

The importance of this is that if we have two functions at different locations, the energy 

spectrum will tell us the inherent differences between the two, irrespective of the translation 

factor. If the two functions are the same, then absolute square of the two transforms will be 

the same. That is, if we have a function x(t) and a translated version xtr(t)=x(t+t0), then their 

respective Fourier transform X(f) and Xtr(f) are related by 
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Hence 
22

)()( fXfX
tr

 

Now, instead of translating the function, one attempts to magnify it. This requires a 

transform that will remove the magnification factor so that the inherent differences can be 

compared. In other words one must use a transform that is insensitive to scaling or 

magnification – the answer is Mellin transform. A brief mathematical treatment of Mellin 

transform is given here [4,5,6]. Given a function x(t) which is assumed to have energy for       

t > 0, the continuous Mellin transform is given by Eqn.(4.38) 

jpwheretdtttxM
p

X
0)()(

1

0

……..……………………(4.38) 

Converting the variable t into an exponential function e
z
, the above equation is written as  
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 This equation indicates that the Mellin transform is equivalent to the Fourier transform after 

the logarithmic conversion of the time variable t.  

4.6 Conclusion 

In this chapter, the background theory of four TFMs has been elaborated. Certain 

desirable features of these TFMs, which make them ideal for sonar applications, are also 

brought out in this chapter. A perspective of some sonar functions have been given in the 

previous chapter. The objective of this research work has been to improve the performance of 

these sonar functions using the time-frequency methods elaborated in this chapter.  

********************** 



 

Chapter 5 

 

Target Detection in Active Sonar  

                                 using Fractional Fourier Transform 

 

 

 

 

 

 Improving the detection performance in active sonars can result in more 

target detection range. In this chapter, the potential of Fractional Fourier Transform 

(FrFT) in active sonar processing for improved matched filter based detection 

performance is explored. The motivation behind the proposed method is the ability of 

FrFT to process chirp signals better than the conventional Fourier Transform and 

also the preferred choice of chirp signal in active sonars.  The active sonar scenario 

and conventional matched filtering scheme is described at the beginning of the 

chapter.  The new scheme developed in this thesis, using FrFT is then explained, 

followed by illustrative simulation results for different target speeds. In the 

simulations, the detection performances of the new method as well as the 

conventional FFT based matched filtering method are plotted.  The developed  

method also ensures the target speed estimation along with the detection function. 

The estimated targets Dopplers using both the methods are also tabulated.  The ROC 

curves highlighting the SNR improvements with the new method are also generated.  

The chapter is concluded by highlighting the results and discussing the important 

findings of the new implementation. 
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5.1 Active Sonar Scenario 

In the simplest active sonar system, a transmitter produces an acoustic pulse of short 

duration of the order of milliseconds. This pulse is transmitted through transducer array into 

the water medium, where the resulting acoustic wave propagates out at the speed of sound. A 

target in the path of this wave will reflect a portion of the energy back toward the same or 

another receiving array. The DOA algorithms like beam forming will bring out the bearing of 

the target, and also spatially filter the signal.  The waveform of the received signal, obtained 

after spatial filtering, is the shifted and scaled version of the transmitted waveform, added 

with random noise. Since acoustic waves travel at a known speed, the elapsed time between 

the transmitted pulse and the received echo is a direct measure of the distance of the target 

being detected. Fig.5.1 illustrates a typical active sonar scenario. Estimates of the space-time 

coordinates of the target are obtained by observing the effect of that target on the parameters 

of a transmitted signal namely delay and Doppler. In other words, the estimates of range and 

velocity can be obtained as a linear function of delay and Doppler measurements. 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.1 – Active Sonar Scenario 

5.2 Matched Filtering in Active Sonars 

So given a known transmitted waveform, the best way to determine where the echo 

occurs in the received signal is, matched filtering. The optimum detector for a known signal 

in the back drop of white Gaussian noise is the correlation receiver [12,13]. The range and 
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radial velocity can be obtained by passing the received signal through an array of matched 

filters where each filter in the array is matched to a different target velocity.  

The tactical sonar operation is described now. The sonar system has a beam forming 

hardware which does the DOA estimation. Beam former subsystem computes beam outputs 

covering the entire azimuth of 360 degrees. During the active sonar processing, the detection 

algorithm is applied on all the beam outputs. Each of these beam output corresponds to a 

bearing. So the detector outputs are displayed as a 3-D plot of bearing on x-axis, range on y-

axis and amplitude as intensity. The actual process of matched filtering, beam output and the 

3-D plots are given in fig.5.2. A hypothetical target is also marked in the active display. 
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Fig.5.2-(a)Process of Matched filtering, on a given beam  over different time instances.  
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The signals most commonly transmitted in active sonars are continuous wave (CW), 

frequency modulation (FM, also called chirp signals) and pseudo-random noise (PRN). The 

different types of chirp signals used are linear frequency modulation (LFM), hyperbolic 

frequency modulation (HFM), and stepped frequency modulation (SFM). The signal selection 

depends on the particular application and the hardware constraints. Among these waveforms, 

many active sonar systems transmit chirp signals for better detection in the presence of 

reverberation. 

5.2.1 Replica Correlation Using FFT 

 The digital equivalent of matched filter operation is known as Replica Correlation 

(RC), and is accomplished by cross correlating overlapping segments of the received signal 

with each of several time-compressed replicas of the transmitted pulse. The stored copy of 

transmitted waveform is called as replica and hence the name replica correlation. The 

correlation points thus computed correspond to the aforementioned matched-filter outputs, 

and are applied to threshold detectors. The required computation to implement the matched 

filter by direct time domain correlation becomes large for wide bandwidth signals. Glisson et 

al [12] have arrived at a fast FFT based implementation for the correlator receiver, based on 

narrow band assumptions (fig.5.3). The theory behind this scheme is given in Sec. 3.2.2 in 

Chapter 3. 

 

 

 

 

 

 

Fig.5.3 - Replica Correlation with FFT 

5.2.2 Replica Correlation Using  FrFT 

The new method developed in this thesis uses FrFT instead of FFT in the RC 

implementation. This method has great potential as it takes advantage of the knowledge of 

transmitted waveform. For using FrFT in matched filtering, the correlator receiver is done as 

shown is fig.5.4.  FrFT of overlapping input data blocks corresponding to transmission pulse 

width is multiplied with FrFT of the replica signal.  The optimum  used is pre-computed as 
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the transmitted signal parameters are known a priori. The peak of this process is then passed 

through the threshold detector.  

 

 

 

 

 

Fig.5.4- Replica Correlation with FrFT 

 Eqn.(5.3) is used to calculate the optimal  for a sampled linear chirp signal with 

known chirp rate of ‘a’[87,88]  where fs, is the sampling frequency and N is the number of 

samples in the chirp signal.  
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5.2.3 Target Doppler Computation 

In the above two implementations, target Doppler can be computed as follows. When 

the target is stationary, the peak amplitude value of the FFT output will be at bin zero. But 

when the target is moving,  the bin number will shift proportional to the target velocity. The 

bin number shift can therefore be used to estimate the Doppler frequency shift, from which 

the target speed can be calculated. Similar shift in the bin position occurs in the FrFT based 

method also, thereby confirming that the Doppler computation is also equally viable using the 

FrFT based method. The relation between frequency shift and target Doppler is given as 

∆f = 2V* F/C, ………………………………………………………………..(5.1) where 

C -  Sound velocity in water       F - Transmitted Centre Frequency 

V - Target velocity                     ∆f - peak bin number * FFT/FrFT resolution 

5.3  Simulation Results  

 Typical instances, showing the efficacy of detecting chirp signals using FrFT is 

discussed. The simulations have been done with chirps embedded in white Gaussian noise.  
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5.3.1 FrFT of Chirp Signal for Different  values 

The focusing property of FrFT is highlighted in this section. A linear chirp of 200mS 

duration has been simulated with bandwidth of 300 Hz, centered around 1 KHz. The FrFT 

outputs for different   values – 0.1, 0.4, 0.9, and 0.7529 are plotted in fig.5.5. The calculated 

optimum  for this particular chirp is 0.7529 and the maximum peaking occurs with this   

value. For other values of , the peak spreads and the amplitude drops. The further the   

value is from the optimum , the wider is the spreading and lower gets the amplitude. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.5.5 - FrFT Output of a chirp signal for different   values. 
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50 100 150 200 250
-1

0

1

2

3

4

5

6

7

alpha used = 0.40

frft bins 

a
m

p
li
tu

d
e

FrFT of LFM Signal

opt =0.7529 

 =0.9 

50 100 150 200 250
-1

0

1

2

3

4

5

6

7

alpha used = 0.70

frft bins 

a
m

p
li
tu

d
e

FrFT of LFM Signal

50 100 150 200 250
-1

0

1

2

3

4

5

6

7

alpha used = 0.90

frft bins 

a
m

p
li
tu

d
e

FrFT of LFM Signal

 =0.4 

 =0.1 

50 100 150 200 250
-1

0

1

2

3

4

5

6

7

alpha used = 0.10

frft bins 

a
m

p
li
tu

d
e

FrFT of LFM Signal



 
                                                                 Target Detection in Active Sonar using FrFT     

 

77  

 

 
5.3.2 FrFT of a Noisy Chirp Signal 

 The spectrum of a chirp signal will spread whereas its FrFT output for the optimum 

transform order is highly concentrated and appears as an impulse. Fig. 5.6, 5.7 and 5.8 show a 

chirp signal without noise, its Fourier spectrum and the FrFT output respectively. The same 

chirp mixed with additive white Gaussian noise (SNR= -1dB), its Fourier spectrum and the 

FrFT outputs are shown in fig.5.9, 5.10 and 5.11. Again, the Fourier spectrum and the FrFT of 

the same chirp at an even lower SNR of -9dB are shown in fig.5.12a and 5.12b.  It can be seen 

that the energy of the chirp signal is concentrated well in the FrFT domain of optimum order, 

even with noise added. As for the FFT of the chirp signal, the noisy chirp is not clearly 

discernible from the noise spectrum even at SNR of –1dB. And at SNR=-9dB, the chirp 

spectrum is not at all clear. But the chirp peaks are clearly brought out in the FrFT outputs at 

both these SNRs. These figures bring out the chirp detection property of FrFT even in the 

presence of noise, when compared to Fourier transform. 
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Fig.5.6 - Chirp Signal without Noise                   
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Fig.5.7 - FFT of Chirp without noise                    Fig.5.8 -  FrFT of Chirp without Noise   
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  Fig.5.9 -  Noisy Chirp (SNR=-1 dB) 
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Fig.5.10- FFT of Noisy Chirp(SNR=-1 dB)            Fig.5.11 - FrFT of Noisy Chirp(SNR=-1 dB) 
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Fig.5.12a-FFT of Noisy Chirp(SNR=-9 dB)       Fig.5.12b- FrFT of Noisy Chirp(SNR=-9 dB) 
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5.3.3 RC for detecting stationary and moving targets 

In this section, it is demonstrated that the FrFT based correlation scheme can detect 

both stationary and moving targets, with better accuracy and detection performance. For this, 

a typical instance encountered in active sonar systems is discussed. For this simulation, noisy 

data for one PRT of 4 seconds(3 Km) is generated with echo occurring at 1.25 

second(937.5m). A linear chirp signal is transmitted having a bandwidth of 300 Hz, with a 

pulse width of 250ms. Corresponding optimum  is computed using Eqn.(5.3) as 0.9074.   

The additive noise is white Gaussian for all the simulations. Fig. 5.13a  shows the normalized 

chirp signal without noise and fig. 5.13b  shows the chirp with noise added(SNR=3 dB). The 

settings of the four simulations are given in table 5.1 
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                            (a)                                                          (b) 

Fig.5.13- Simulated Echo for one PRT 

(a)Without noise          (b) With noise(SNR=3 dB) 

Table 5.1- Simulation Settings for RC 

Sl. 

No. 

PRT 

 

Target 

Position 

Target 

SNR 

Target 

Speed 

Target 

Movement 

1 4sec 

(3 Km) 

1.25sec 

(937.5m) 

3 dB 0 knots Stationary 

2 4sec 

(3 Km) 

1.25sec 

(937.5m) 

-5 dB 0 knots Stationary 

3 4sec 

(3 Km) 

1.25sec 

(937.5m) 

-5 dB 5 knots Approaching 

4 4sec 

(3 Km) 

1.25sec 

(937.5m) 

-5 dB 5 knots Receding 
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For each data block of N samples, the steps as given in Fig. 5.3 & 5.4 are 

implemented and the threshold detector output is plotted versus time. The RC output using 

both the FFT and FrFT methods are computed. Fig.5.14 and 5.15 show these normalized RC 

outputs for SNRs 3 dB and -5 dB respectively. In these two cases, the target is assumed to be 

stationary and so the echo is simulated as zero Doppler signal. It can be seen that there is an 

improvement of 3B possible in the RC with FrFT processing over RC with FFT. 

In the next step, the echo signal at  SNR= –5 dB  is generated with two different 

Doppler frequencies (target at 5 knots approaching and 5 knots receding). The corresponding 

normalized RC outputs are shown in fig.5.16 and 5.17. It can be seen that the detection does 

not deteriorate when target is moving. These figures also show the 3 dB improvement  

possible with FrFT based matched filtering. The target resolutions are also better for the FrFT 

method.  
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      Fig.5.14 - RC with FFT and FrFT at SNR= 3 dB for zero Doppler 
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  Fig.5.15 - RC with FFT and FrFT at SNR= -5 dB with zero Doppler 
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Fig.5.16 -  RC with FFT and FrFT at SNR= -5dB  with 5 knots target (approaching) 
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   Fig.5.17 - RC with FFT and FrFT at SNR= -5dB with 5 knots target(receding) 

5.3.4 Estimation of Target Doppler 

When the target is stationary, the peak amplitude value of the FFT output will be at 

bin zero. But when the target is moving, the bin number will shift proportional to the target 

velocity. The bin number shift can therefore be used to estimate the Doppler frequency shift, 

from which the target speed can be calculated. Similar shift in the bin position occurs in the 

FrFT based method also. Table 5.2 shows the frequency shifts recorded for various simulated 

target velocities for both the methods. 

Table 5.2-Doppler Computation 

 

Target  

Doppler 

Frequency bin 

shift 

(RC with FFT) 

Frequency bin  

shift 

(RC with FrFT) 

0 0 0 

10 3 3 

20 6 6 

30 9 9 
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5.3.5 ROC  Curves For  Performance  Comparison 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of False Alarm

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

SNR -11.75

BY FFT Method  -.-.-.-.-

BY FrFT Method  ---------

 

Fig.5.18 -  ROC  for SNR=11.75 dB  

The receiver operating characteristic (ROC) based on 1000 simulation runs is plotted 

for both the FFT based and FrFT based matched filter detectors. The additive noise is white 

and Gaussian with zero mean and unity variance. ROC curves of PD versus PFA for        

SNR= 11.75 dB are plotted in fig.5.18 for both the schemes. The performance improvement 

using the new method is clearly evident in the ROC plots.  An alternative method of 

comparison is plotting SNR vs PD for a selected PFA. This plot for a PFA of 0.1 is shown in 

fig.5.19. At 50% PD, RC with FrFT clearly shows a 3 dB improvement over RC with FFT.                                         

5.3.6 Computational Requirements 

Ozaktas et al [76,77] have come up with a discrete implementation of Fractional 

Fourier Transform. Like Cooley-Tukey’s FFT, this efficient algorithm computes FrFT in 

O(NlogN) time which is about the same time as the ordinary FFT. Hence, FrFT can be 

implemented with the same computational complexity as FFT. From, fig. 5.3 and 5.4, it can 

be seen that both the methods require one FFT/FrFT per block of data. The FrFT of the 

replica need to be computed only once and stored. So, if  FrFT replaces FFT in active sonar 

detection function,  no additional implementation cost will occur. 
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Fig.5.19 -  SNR vs PD Plot for PFA = 0.1 

5.4 Conclusion 

    It has been demonstrated that the FrFT has great potential in active sonar processing, 

as it takes advantage of the knowledge of transmitted waveform. In this chapter, the 

performance of matched filtering with FrFT and conventional FFT has been compared. The 

simulation results clearly demonstrate the various advantages of the developed method. 

Around 3 dB improvement has been achieved by this new method, at low SNRs as well as 

with moving targets. Improvement in detection performance in turn means more detection 

range or detection of silent targets. The 3dB improvement achieved here means doubling of 

the detected range. No additional computational load is required since optimum   is known a 

priori and estimation of optimum   need not be done. Estimation of target speeds is also 

achieved at the same accuracy as with the FFT method.  The noteworthy advantages of the 

developed technique are  

 3 dB improvement in detection performance 

 Detection possible at lower SNRs and for moving targets 

 Estimation of target Doppler also possible  

 Hardware requirement same as conventional FFT method 

                                          ************************ 
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Target Parameter Estimation  in Intercept Sonar  

using Fractional Fourier Transform 

 

 

 

 

 In this chapter, the potential of Fractional Fourier transform ( FrFT) for the 

detection and estimation of chirp parameters in intercept sonar is explored.  The 

motivation behind the new method is the fact that many active sonars transmit chirps, 

which need to be  detected as part of early warning and FrFT has the inherent 

capability to process chirp signals better than the conventional Fourier Transform.  

The intercept sonar scenario and conventional techniques are  reviewed first. Next, 

the  novel estimation technique developed in this thesis  is discussed in detail, with all 

the challenges and adaptations of this algorithm for intercept application.  

Application of FrFT  for active sonar function is straight forward, where the 

transmitted signal is known a priori. But in intercept sonar, with no a priori 

information about the received echoes, the application of FrFT involves a judicious 

choice of the optimum transform order. As a performance evaluation measure, the  

FrFT detector is compared with conventional FFT and Energy detectors,  in the 

presence of white Gaussian noise as well as 1/f noise. The ROC curves highlighting 

the SNR improvements are also generated. The chapter is concluded with the 

important results and observations regarding the implementation of this novel 

estimation procedure. 
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6.1  Intercept Sonar Scenario 

In many applications, it is necessary  to detect chirp pulses with varying parameters. 

One example is the intercept sonar, where transmissions from another  platform, can be 

chirps, among other types of waveforms. The  function of intercept sonar is to  process the 

active transmissions from other emitters  and extracts the pulse parameters  like duration, 

bandwidth, start frequency and PRT. From these inputs, the emitters can be classified as 

friend or foe. Also, based on these parameters, the emitter’s identity can also be arrived at. 

These transmissions can be chirps, among other types of waveforms. Fig. 6.1 shows a typical 

underwater scenario. The problem of  chirp detection and parameter estimation is 

compounded, when there are multiple emitters. In the active sonar, a known chirp is  

transmitted and hence optimum α can be calculated apriori, whereas in intercept sonar, the 

received waveform and hence optimum α is unknown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 6.1 - Underwater  Scenario 

The first step in parameter estimation is pulse detection. Next is the analysis stage to 

estimate the pulse parameters. In many  practical systems, the detection is followed separately 

Emitter 1  

 

Emitter 2 

 

Receiver 
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by the parameter estimation. But the algorithm developed here achieves both steps using a 

single transform viz. the FrFT. However, the  minimum  detection level is decided by the 

algorithm used for detection.  

The tactical intercept sonar implementation is described to introduce the context.  

Every sonar has a beam forming function,  which does the DOA estimation. Beam former 

subsystem computes beam outputs covering the entire azimuth of 360 degrees. During the 

intercept pulse detection stage, the  respective algorithm is applied on all the beam outputs. 

Once a detection is reported in any beam, analysis algorithm is applied on the respective data 

block in order to estimate the pulse parameters. 

A number of techniques are being used for chirp detection, some with simple 

implementation(Energy detector) and some more complex(STFT Detector). These methods 

have various shortcomings. A brief  description of these well known methods is given in the 

following paragraphs. 

6.1.1 Parameter Estimation  using STFT 

Many systems use STFT for both pulse detection as well as analysis. For this, STFT 

is computed on cascading blocks of incoming data for very short durations of the order of 5 or 

10 milliseconds. Prominent frequencies in the Fourier transform is then used to estimate 

waveform type,  bandwidth and pulse width using pulse reconstruction techniques. Even 

though, STFT method  can handle lower SNRs, it suffers from  the dependency on window 

function and the consequent  frequency resolution achieved. A longer window function will 

give good frequency resolution, but poor time resolution. The reverse happens with shorter 

window function. However,  the pulse width of the received chirp pulse is unknown. Also, the 

transmissions from different emitters will be having different pulse widths. Since these  

information are not known to the receiver, one cannot select the optimum  window function.  

Another disadvantage is that the estimation of  the FM waveform by cascading  frequencies in 

sequential  data blocks  is cumbersome and less accurate. 

6.1.2 Parameter Estimation using Page Test             

In some systems, Energy detector and its variant Page test[60] are used for pulse 

detection. Page test can estimate the start and end time of the pulse, but cannot extract any 
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frequency information. So, for  pulse analysis to extract the  frequency components, 

parametric methods are extensively used[146,147]. Also, page test does not perform well with 

low SNR signals.  

6.2 FrFT based Parameter Estimation Technique  

A novel scheme for applying Fractional Fourier Transform for chirp parameter 

estimation is developed in this thesis. The interest here is to evaluate in detail  the 

performance of  FrFT for detection and analysis of chirps regardless of duration, frequency 

and bandwidth and compare the results with that of conventional detectors.  The motivation 

behind the developed method is the ability of FrFT to process chirp signals better than the 

conventional Fourier Transform.  

Simulations results presented in Chapter 5 have shown that  FrFT can be used for chirp 

detection. But, in order to apply it for  the intercept application, the algorithm has to be 

adapted suitably.  Listed below are eight  main issues  in the intercept application. Methods to 

overcome each of these issues are described in the following sections. For clarity, 

corresponding simulation results are given in the respective subsections. Following these 

subsections, the overall implementation scheme and the hardware overheads are also 

described.  

1. Echo and processing duration mismatch 

2. Estimation of optimum α 

3. Performance Comparison 

4. Multiple overlapping Chirps 

5. Estimation of chirp duration and start time 

6. Estimation of chirp parameters 

7. Identification of  Chirp type 

8. Selection of processing length 

   The symbols used in this chapter are given below, followed by the time-frequency 

plot of a chirp in fig. 6.2, indicating these symbols. 
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Symbols Used 

T : Processing duration  (known), 

N : Number of samples in T (known) 

fs : sampling rate  (known), N=T*fs 

PW : Received Chirp Pulse Duration=M/fs (unknown) 

M : samples in the  Chirp   (unknown), 

tstart  : start  sample number (unknown) 

tend   : end sample number (unknown) 

fstart  : start frequency of chirp  (unknown) 

fend   : end frequency of chirp  (unknown) 

BW : chirp bandwidth  (unknown) 

α opt  : optimum α  (unknown) 

nmratio=N/M, 

fftres: fft resolution = fs/N, 

 

 

 

 

  

 

 

    

Fig.6.2 – Time-Frequency Plot of Chirp 

6.2.1 Echo  and Processing Duration Mismatch 

 FrFT is computed on cascading blocks of incoming data for a prefixed duration called 

processing duration. Ideally, processing duration should be equal to the chirp pulse duration. 

But, the duration of the received chirp pulse is unknown. Also,  the transmissions from 

different emitters will be having different pulse widths. Since these  information are not 

known to the receiver, there will always be a mismatch between the processing duration and 

time 
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pulse duration. In order to cater for this scenario,  the processing duration may be fixed to a 

particular duration of T milliseconds and the received chirp is assumed to exist for this time 

duration T or for a duration lesser than T.  

 As mentioned in earlier chapters, Eqn.(6.1) is used to calculate the optimal order for a 

linear chirp signal with known chirp rate of ‘a’. The true relationship is dependent on the 

digital sampling scheme used. With sampling frequency fs, the total duration T= fs*N samples 

and it can be written as in Eqn.(6.2). This relation is used to calculate the optimal order for a 

sampled linear chirp signal with known chirp rate a.  Conversely, it can be used to estimate 

chirp rate, given the FrFT order. 
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Eqn.(6.2) assumes that the chirp has  N samples, same as the processing sample 

length M. To cater for this mismatch, it is modified as in Eqn.(6.3). This modified equation is 

used in all the simulations with M less than N.  
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6.2.2 Estimation of Optimum α 

In the case of the active sonar, the transmitted chirp signal is known, and hence 

calculation of the optimum transform order  is direct. However, in applications like intercept 

sonar, the parameters of the received chirp pulses are unknown and so α opt has to be estimated 

by some other means. 

The optimum FrFT order cannot be found analytically in general. So, a one-

dimensional search for α is necessary to find the optimum order, with which the chirp focuses 

well. On a given block of data, FrFT is done  for different values of α[0,1] and the α that 

yields  the  maximum peak value is selected. The binary search implemented here generates 
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the optimum α up to an accuracy of three decimals. For this, the FrFT peaks with α equal to 

0.25 and 0.75 are compared first, from which one is able to infer whether α lies below or 

above 0.5. The  α  yielding the higher peak is taken as the optimum α  in the first step. With 

similar seven such steps, the accurate  value of optimum α is arrived at. If the optimum value 

arrived at is 1, it indicates the echo to be a CW pulse. In such a situation, FFT processing will 

give equal performance and hence can be used in subsequent processing. 

6.2.2.1 Simulations Results-Optimum α Search 

For this simulation, a chirp of 200 milliseconds is generated with a bandwidth of 300 

Hz and a start frequency of 50 Hz. The processed data length N and the chirp samples M are 

kept same. Using Eqn.(6.2), α opt is calculated as 0.81445. The values of α in the search 

algorithm for 12 steps is given in table 6.1. The corresponding FrFT peak values are also 

recorded. It can be seen that at the 8
th
 step, the frft peak value saturates to 12 and 

corresponding α=0.8145 can be taken as α opt.   In subsequent steps, amplitude of FrFT peak 

amplitude remains almost same. This estimated value of α is accurate to 3 decimals. The FrFT 

output of this chirp signal for these  steps are plotted in fig. 6.3.  

Table 6. 1 - Progressive computation of α values in search algorithm(Chirp 1) 

 

 

 

 

 

 

 

 

Step Alpha1 Alpha2 FrFT 

Peak 

Value

opt  

Corresp. To 

FrFT peak 

     1      0.2500     0.7500     3.4919     0.7500 

     2     0.6250     0.8750     3.8117     0.8750 

     3     0.8125     0.9375    12.3852     0.8125 

     4     0.7813     0.8438     5.4717     0.8438 

     5     0.8281     0.8594     7.0447     0.8281 

     6     0.8203     0.8359     9.6503     0.8203 

     7     0.8164     0.8242    11.4072     0.8164 

     8     0.8145     0.8184    12.0394     0.8145 

     9     0.8135     0.8154    12.2525     0.8135 

   10     0.8130     0.8140    12.3294     0.8130 

   11     0.8127     0.8132    12.3600     0.8127 

   12     0.8126     0.8129    12.3733     0.8126 
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Fig.6.3 - FrFT Output for  α values of seven steps of search algorithm 

The search algorithm was done on a second chirp signal. This chirp is of 270 

milliseconds generated with a bandwidth of 150 Hz and a start frequency of 100 Hz. Using 

Eqn.(6.2), α opt is calculated as 0.9361. The values of α in the search algorithm for 12 steps is 

given in table 6.2. In this simulation also, the frft peak value saturates at the 8
th
 step and 

corresponding α=0.9355 can be taken as α opt.   Similar results are obtained with chirps having 

different parameters. 

α =0.7813 

α =0.8281 

α =08203 α =0.625 

α =0.25 

α =08164 

Opt. α =08145 
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Table 6.2 - Progressive computation of α values in search algorithm(Chirp 2) 

 

 

 

 

 

 

 

6.2.3 Performance Comparison of Detectors 

In this section, the performance of FrFT detector is compared with two of the conventional 

detectors namely energy detector and FFT detector. The implementation block diagram is 

shown in fig. 6.4.  

 

 

 

 

 

 

 

 

 

    Fig.6.4 - Implementation Block Diagram 

6.2.3.1 Energy Detector(ED) 

 In Energy detector, the input signal is squared to get the power. ED  is computed on 

blocks of data, each block of N samples. This energy output is then integrated over a time 

Step Alpha1 Alpha2 FrFT 

Peak 

Value

opt  

Corresp. To 

FrFT peak 

     1     0.2500     0.7500     2.1762     0.7500 

     2     0.6250     0.8750     3.8257     0.8750 

     3     0.8125     0.9375    14.0659     0.9375 

     4     0.9063     0.9688     5.5029     0.9063 

     5     0.8906     0.9219     7.5676     0.9219 

     6     0.9141     0.9297    10.4499     0.9297 

     7     0.9258     0.9336    13.7887     0.9336 

     8     0.9316     0.9355    14.3523     0.9355 

     9     0.9346     0.9365    14.3094     0.9365 

   10     0.9360     0.9370    14.3571     0.9360 

   11     0.9358     0.9363    14.3614     0.9358 

   12     0.9357     0.9359    14.3609     0.9359 

Beamformed 

Signal 

       2  Smoothening 

Filter 

F F T 
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Normaliser 

Background 
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Output 
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Output 
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constant corresponding to the processed duration. Ideally, the time constant should 

correspond to the chirp pulse duration, which unfortunately is not known at the receiver. The 

pulse width integration averages and smoothens the noise in the signal. 

6.2.3.2 FFT  Detector(FFTD) 

 In the FFT detector, Fourier transform of the input signal is computed on blocks of 

data, each block of N samples. This is  followed by background normalization which averages 

and smoothens the noise in the signal. 

6.2.3.3 FrFT Detector(FrFTD) 

FrFT of the input signal is computed for its optimum α on blocks of data of length N, 

followed by background normalization. Background normalization  averages and smoothens 

the noise in the signal. 

6.2.3.4 Simulations Results -  Performance Evaluation of Detectors 

For these simulations, data for two seconds is generated with a chirp of variable 

length, centered around 500
th
 mS. The chirp is linear with bandwidth of 300 Hz. The 

processed data length is 200 mS (N samples) and the chirp pulse width (M samples) is made 

variable, M being less than or equal to N. Fig. 6.5a  shows the chirp without noise and fig. 

6.5b  shows the same chirp with noise added(SNR=5 dB).  

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-3

-2

-1

0

1

2

3

Time in seconds

S
ig

na
l

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-4

-3

-2

-1

0

1

2

3

4

Time in seconds

Si
gn

al

 
                      (a)                                                 (b) 

Fig.6.5 -  (a) Clean Chirp Signal    (b) Noisy Chirp ( SNR= 5dB) 

The performance of the three detectors mentioned above is evaluated in   seven 

simulations S1 to S7 described below. 

1. S1-Detector outputs with chirp in WGN,  SNR= 5 dB, M=N. 

2. S2-Detector outputs with chirp in WGN, SNR= -5 dB,  M=N. 

3. S3-Detector outputs with chirp in WGN, SNR=-20 dB, M=N. 

4. S4-FrFT output for M=N, 0.9N, 0.8N and 0.7N, SNR=-11dB. 
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5. S6-ROC for PFA=.001,  SNR varied from 10 to -40dB for  M=N, 0.7 N and 0.3N. 

6. S5-FFT & FrFT output of Chirp in WGN  and 1/f noise, SNR=-11 dB, M=N 

7. S7- ROC of 2nd  chirp for PFA=.001, SNR  varied from  +10 to –40 dB for  M=N. 

Simulations S1 to S4 show the detector outputs  in the presence of white Gaussian 

noise, while simulation S5 shows the ROC curve for different chirp widths M. Simulation S6 

shows the detector performance with 1/f noise added along with white Gaussian noise. In 

simulation S7, performance comparison is done on another chirp having a pulse width of 500 

mS and bandwidth of 300 Hz and  the ROC curves for the three detectors are generated in a 

similar manner. Results of these seven simulations are now demonstrated one by one. 

S1-Three Detector outputs with chirp in WGN,  SNR= 5 dB, M=N.(Fig. 6.6) 
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Fig.6.6 -  (a) ED output    (b) FFT output    ( c) FrFT output   at  SNR= 5dB  
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Fig. 6.6 shows the outputs of ED, FFT and FrFT detectors at 5dB, implemented as in 

fig. 6.4.  At this SNR, all the three detectors are able to detect the chirp. But, in simulation S2, 

at an SNR of  –5dB,  energy detector fails to detect the chirp, whereas the FFT and FrFT 

detectors are able to detect (fig. 6.7). Again, in simulation S3, at an SNR of –20dB, both ED 

and FFT detectors fail, whereas, the FrFT detector is still able to detect the chirp (fig. 6.8).  

The FrFT detector can detect even   at lower SNRs.  This minimum SNR level is indicated in 

the ROC curve plotted in simulation S5.  

S2 - Detector outputs with chirp in WGN , SNR= -5 dB,  M=N.(Fig. 6.7) 
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  Fig.6.7 -  (a) ED output    (b) FFT output    ( c) FrFT output   at  SNR= -5dB  
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S3-Detector outputs of chirp in WGN M=N, SNR=-20dB(Fig.6.8) 
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           ( c) 

  Fig.6.8 -  (a) ED output    (b) FFT output    ( c) FrFT output   at  SNR= -20dB  

Another performance indicator of any detector is the width of detection peak. In high 

seastate conditions of the ocean, when false alarms are going to be very high, detectors with 

sharp peaks are always preferred. On that score also,  FrFT  shows the narrowest peak of an 

impulse. The peak width is  wider for the FFT detector and much wider for the Energy 

detector. 
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S4 -FrFT output for M=N, 0.9N, 0.8N and 0.7N, SNR=-11dB.(Fig. 6.9) 

Fig. 6. 9  shows  simulation S4 result of the FrFT output for a fixed processing length 

of N samples, with chirp pulse width  M varied. Four chirp widths are simulated- N, 0.9N, 

0.8N and 0.7N. As the outputs show, the FrFT peak decreases as chirp pulse width is reduced 

with respect to processing length, which is an expected result only. As the energy in the 

received echo reduces, the FrFT peak amplitude also decreases. This confirms that the value 

of M is absolutely vital  in the performance of the FrFT detector.  In Sec. 6.2.5 an effective 

method for the estimation  of M from the receive signal is given.  

1400 1600 1800 2000 2200 2400
0

2

4

6

8

10

12

14

16

18

20

FrFT bins

F
rF

T
 O

u
tp

u
t

M = N  

1400 1600 1800 2000 2200 2400
0

2

4

6

8

10

12

14

16

18

20

FrFT bins

F
rF

T
 O

u
tp

u
t

M = 0.9N  

 
             (a)             (b)    

1400 1600 1800 2000 2200 2400
0

2

4

6

8

10

12

14

16

18

20

FrFT bins

F
rF

T
 O

u
tp

u
t

M = 0.8N  

1400 1600 1800 2000 2200 2400
0

2

4

6

8

10

12

14

16

18

20

FrFT bins

F
rF

T
 O

u
tp

u
t

M = 0.7N  

 

   (c)                                    (d) 

 Fig.6.9 -  FrFT Outputs (a)M=N    (b) M=0.9 N    ( c) M=0.8 N     (D)M=0.7 N   at  SNR=-11dB  
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S5-ROC for PFA=.001,  SNR varied from 10 to -40   for  M=N, 0.7 N and 0.3N(Fig. 6.10) 

Fig. 6.10 shows the ROC curves for PFA of 0.001, with chirp pulse width M equal to 

N, 0.7N and 0.3N. In these plots, the probability of detection is plotted against SNR. The 

ROC plots are based on 1000 simulation runs. The   performance of all the detectors 

deteriorate as chirp pulse width decreases. But even then, FrFT detector outperforms the other 

two detectors. For N=M, the MDL achieved by FrFT detector is -27 dB. 
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      Fig.6.10 -  ROC Plots of Chirp 1 at   (a)M=N (b)M=0.7N (c) M=0.3N  
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S6-FFT & FrFT output of Chirp in WGN  and 1/f noise,SNR=-11 dB, M=N(Fig.6.11) 

So far the simulations were carried out with WGN . However the noise present at the 

sonar receiver can be non-Gaussian also. Hence the detection performance with  1/f noise also 

added have been studied in simulation S6. Fig 6.11 shows  FFT and FrFT detector outputs 

with and without 1/f noise at SNR=-11dB. With 1/f noise, FFT detector performance 

deteriorates substantially as shown in fig.6.11(b), whereas FrFT peak conspicuously stands 

out above the noise background, even at this low SNR of -11dB. (fig.6.11(d)). So, for chirps 

embedded in Gaussian as well as non-Gaussian noise, FrFT detector outperforms FFT 

detector.    
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       (a) FFT output without 1/f noise                    (b) FFT output with 1/f noise 
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                 (c) FrFT output without 1/f noise              (d) FrFT output with 1/f noise 

   Fig.6.11 – FFT & FrFT Outputs With and without 1/f noise SNR=-11dB,  M=N 

S7-ROC of 2nd  chirp for PFA=.001, SNR  varied from+10 to –40dB for  M=N (Fig.6.12) 

Fig 6.12 shows the ROC curve for PFA of 0.001 in simulation S7, with a second 

chirp having different parameters. For this simulation, data for two seconds is generated with 

a chirp of variable length, centered around 500
th
 mS. The chirp is linear having a pulse width 

of 500 mS and bandwidth of 300 Hz. The processed data length is 200 mS (N samples). This 

simulation also shows a similar performance  by the three detectors as shown in simulation 

S5. The ROC curves shows the similar behavior as in Fig. 6.10, reconfirming the superiority 

of FrFT for chirp detection. 
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Fig.6.12 - ROC (PD vs SNR) for 2
nd

 chirp 

 The FrFT based detector outperforms the other two detectors in all our simulations, 

especially with low SNR signals.  When chirp pulse width matches with processed data 

length, performance of FrFT detector is almost 11 dB over FFT detector, which is remarkable. 

When the chirp pulse width is reduced, though performance of the  all the  detectors 

deteriorates,  the FrFT  outperforms the other two detectors. Table 6.3 shows the SNR 

improvement of FrFT detector over FFT and Energy detectors for different chirp pulse width 

to processed data length ratios. 

Table 6.3 – FrFT  Detector Performance Comparison 

Ratio of 

chirp pulse 

width to 

processed data 

length 

Average SNR 

improvement 

over FFT 

detector in dB 

Average SNR 

improvement 

over Energy 

detector in dB 

1 11 23 

    0.7 9 22 

    0.3 6 18 
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6.2.4 Multiple Overlapping Chirps 

         Estimating the optimum order  of a single chirp is  straightforward.  But, in real 

situations,  multiple chirps may be present,  that too embedded in noise. This happens when 

transmissions from more than one enemy sonars are reaching the receiver simultaneously. 

The chirps thus received will be varying in duration and bandwidth. Also, these chirps may be 

overlapping in frequency, time or both. Also, the strengths of the different chirps may not be 

equal, depending on the position of these transmitters. In such situations, one has to extract  

the chirps one after the other and estimate its parameters. The problem of weak chirps  

shadowed by  strong ones is a usual occurrence in sonar processing. The efficacy of the 

method developed  in the present dissertation  is demonstrated  below.  

 Chirp extraction and reconstruction of any  one of chirps from a mixture can be achieved 

by performing an equivalent inverse FrFT on the respective spiked components in the 

complex FrFT  output[88,89]. A filtering   process, which can be performed on the FrFT 

output, consists of retaining the minimum number of points either side of the chirp component 

to be extracted and zeroing all values outside this range of the complex FrFT output. An 

inverse FrFT of equivalent order is applied to the resultant and the real part of its output gives 

the reconstructed chirp component in the time domain. While the chirp is being extracted, 

denoising also takes place along with it. Also, this  method is applicable for both linear as 

well as non-linear chirps. FrFT output of perfect linear chirps will produce impulses. This is 

not the case with non-linear chirps. FrFT output of non-linear chirps spread more than linear 

chirps. Hence, the number of points taken on either side of the peak will be more for non-

linear chirps.  

6.2.4.1 Simulations Results I -Multiple Chirp Extraction 

Simulations show how two chirps overlapping in time and frequency  can be 

separated before parameter estimation can be done on each of them. The first chirp has a 

pulse width of 128 millseconds, bandwidth of 200 Hz and start frequency 50 Hz. The second 

chirp has a duration of 85 milliseconds, 500 Hz bandwidth and start frequency of 100 Hz. Fig  

6.13 shows the individual chirps and  the chirp mixture. It can be seen that these two chirp 

frequencies are overlapping in frequency. Also, the two chirps are positioned in the data block 

of 180 millisec(T) in such a way that they overlap in time also.  
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          Fig.6.13 -  (a)Chirp 1   (b) Chirp 2   ( c) Mixture of Chirp 1 and Chirp 2 
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Since the optimum order  uniquely defines a chip,   the  obtained in the search at 

any time will match only one of the chirps. The match is manifested as a unique peak position 

in the FrFT output. After finding the FrFT of the mixed signal for optimum α of first 

chirp(fig. 6.14a), only the peak and nearby six bins of the desired  peak are retained, as shown 

in fig. 6.14b.  On doing an inverse FrFT,  it can be seen that the first chirp is perfectly 

reconstructed. Fig. 6.14c shows the reconstructed chirp overlaid on the original. M and tstart 

of the chirp are also marked in the same figure. This is repeated for the second chirp also. Fig 

6.15 show the corresponding  plots for the second chirp. This simulation demonstrates the 

excellent phase coherence and amplitude approximation possible with FrFT. For clarity, noise 

has not been added in this simulation. Same performance is observed with noisy chirps also. 

            
0 50 100 150 200 250 300

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FrFT   BINS

N
O

R
M

A
L
IZ

E
D

  
 A

M
P

L
IT

U
D

E

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FrFT   BINS

N
O

R
M

A
L
IZ

E
D

  
 A

M
P

L
IT

U
D

E

 
                              (a)            (b)    

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
-1.5

-1

-0.5

0

0.5

1

TIME

NO
RM

AL
IZ

ED
   

AM
PL

IT
UD

E

 

( c) 

         Fig. 6.14 -  (a) FrFT output of Chirp Mixture (with  opt  of  Chirp1)     

(b) FrFT output  (after bin zeroing)   ( c) Reconstructed  Chirp1(overlaid with original) 
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     Fig.6.15 -  (a) FrFT output  of Chirp Mixture(with  opt  of  Chirp2)     

(b) FrFT output(after bin zeroing)   ( c) Reconstructed  Chirp2(overlaid with original) 

6.2.5  Estimation of Chirp Pulse duration and Start time 

Using the chirp extraction procedure described in section 6.2.4, each of the chirps are 

reconstructed. Due to the denoising occurring during the inverse FrFT, the reconstructed  

chirp is clean and hence estimation of pulse duration(M samples) and start sample 

number(tstart) are done by simple threshold crossing criterion.  

6.2.6 Estimation of Chirp Parameters 

The peak position in the FrFT output depends on the chirp start position, bandwidth 

and start frequency. The same chirp will have a different peak in the FrFT output for different 

chirp positions within the data block. Also a chirp with a given bandwidth and temporal 

position, will have different peak positions with different start frequencies. Then again, a 
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chirp with a given start frequency and position will have different peak positions with 

different bandwidths. So, an expressing encompassing all these variables have to be arrived at 

and then proceed in a step by step manner for estimating the unknown parameters. This 

empirical expression which has been developed in this thesis is given in Eqn.(6.4). Using this 

expression, all the chirp parameters are calculated from the two inputs, namely optimum order 

α and peak position in the FrFT. 

)6.6..(................................................................................

)5.6........(......................................................................

)4.6.....(*)cos(
*2

)sin(

Mtstarttend

BWfstartfend

tstart
fftres
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Step 1: For different values of  α[0,1], the FrFT is computed on the   given signal and  the αopt 

corresponding to maximum peak in the FrFT outputs is obtained. N and fs  are chosen by the 

system designer.  

Step 2:Estimate M and tstart as explained in section 6.2.5.  

Step 3: Substituting in Eqn.(6.3), bandwidth BW can be obtained.  

Step 4:The next parameter to be estimated is the chirp start frequency fstart. FrFT peak 

position of a chirp varies for different values of tstart and fstart, even if N,M,fs and BW 

(hence α opt) are not changed.  The relation between peak position and these variables are 

given by empirical formula in Eqn.(6.4). Substituting the known parameters, fstart can be 

obtained.  

Step 5: Then, fend and tend can be calculated using Eqns (6.5) and (6.6). 

6.2.6.1 Simulations Results –Parameter Estimation 

Keeping N, M and fs  fixed,  the FrFT peaks for various combinations of tstart, fstart and 

bandwidth are tabulated . First, keeping fstart and BW constant, tstart is changed and the peak 

positions are recorded (Table 6.4). We can see that the same chirp will have a different peaks 

in the FrFT output for different chirp positions within the data block. Next, keeping 

parameters tstart and BW constant, fstart is varied. So, a chirp with a given bandwidth, will 

have different peak positions with different start frequencies. Next, BW alone is changed, 

keeping the other two parameters constant and FrFT peaks are recorded. The peaks are 
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different in each of these cases.  Using our parameter estimation procedure, the unknown 

parameters  have been estimated correctly for all these chirps with their different 

combinations of tstart, BW and fstart. 

Table 6.4   FrFT Peak Positions for Different Chirps 

f-start and BW constant t-start and BW constant T-start and f-start constant 

t-start Peak 

Position 

f-start Peak 

Position 

Bandwidth Peak 

Position 
1 71 0 47 50 49 

32 59 50 59 100 71 

64 47 100 71 150 87 

96 35 150 82 200 99 

  200 94 250 108 

6.2.7 Identification of  Chirp type 

The received chirp can be a linear or non-linear chirp. Also, it can have an upslope or 

downslope. The conventional methods have no way of extracting these informations. The 

method developed in this thesis is very well capable of finding the linearity and slope of the 

received chirp. From the FrFT peak width, one can differentiate whether the received chirp is 

linear or non-linear. With linear chirps, the peak bin and half power points together have a 

width of less than 3 bins, even at low SNRs, whereas it is more than 3 bins for non-linear 

chirps. For non-linear chirps, depending on the side having more bin amplitudes greater than 

half power points, one can tell whether the chirp is having an up or down slope. From the 

values of start and end frequencies, the slope of the chirp can be inferred. This aspect has 

been confirmed by a large number of observations on simulated data. A typical example is 

given below. 

6.2.7.1 Simulations Results – Identification of  Chirp type 

Two chirps having same start frequency, bandwidth and start positions have been 

simulated. The difference is in only their linearity. The first one is a linear chirp whereas the 

second one is a hyperbolic chirp.  Fig 6.16 shows their FrFT outputs of the linear chirp at       

at an SNR of -11dB and fig. 6.17 shows the FrFT output of the hyperbolic chirp at same SNR. 

The differences in the widths of peaking bins clearly bring out the chirp type. For the linear 
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chirp, the number of bins having amplitude greater than half power amplitude is only 3, 

whereas it is 7 for the hyperbolic chirp. 

 

Fig.6.16 -  FrFT output  with Linear Chirp 

 

Fig.6.16 - FrFT output  with Non-linear Chirp 
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6.2.8  Processing length Selection 

Active sonar transmissions are generally of the order of 1 second. So, FrFT 

processing length of same duration can be used. A situation may arise when the received chirp 

is spread over two processing blocks. In that case, the chirp may be residing in those two 

processing blocks. In such a case, pulse detection and analysis will have to be followed by a 

pulse reconstruction routine over  two processing blocks. The pulse width estimated in the 

two consecutive blocks have to be added to get the actual pulse width of the received echo. 

The start frequency estimated from the first block and the end frequency estimated from the 

second block are used to arrive at the echo bandwidth.  

6.2.9 Implementation  Scheme 

Consolidating the various adaptation  procedures detailed in the previous sub-sections 

to detect and analyse an unknown chirp,  the overall implementation scheme is given in Fig. 

6.18.  During   detection stage, FrFT is computed on cascading blocks of incoming data for 

prefixed processing durations. On each block of input data, eight FrFTs are computed. Peak 

amplitude in each of the FrFT output sequences is extracted. A chirp detection is reported on 

any input data block only if any of these peaks crosses a pre-fixed threshold. In that case, 

analysis is done on that particular data block. The  corresponding  to peak FrFT output is 

then fixed as the optimum . Steps in section 6.2.6 are then followed to arrive at the chirp 

parameters. 

6.2.10 Hardware Overheads 

FrFT can be implemented with the same complexity as conventional Fourier 

Transform. Ozaktas et al[76,77] have come up with a discrete implementation of Fractional 

Fourier Transform. Like Cooley-Tukey’s FFT, this efficient algorithm computes FrFT in 

O(NlogN) time which is about the same time as the ordinary FFT. Hence, in applications 

where FrFT  replaces ordinary Fourier transform for performance improvement, no additional 

implemention cost will occur. 

However, in applications like parameter estimation in intercept sonar, since the 

estimation procedure requires eight FrFTs and one inverse FrFT computations per data block, 

hardware requirements are more compared to Energy and FFT detectors.  But considering the 
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remarkable minimum detection levels achievable with this method and the other advantages  

of the FrFT detector plus the tremendous computational power of current DSP processors, 

this overhead will  not an issue in practical systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6.17 - Implementation Block Diagram 
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6.3  Conclusion 

    Detection of chirp pulses with varying parameters is required in many 

applications like the intercept sonar, where transmissions from other platforms, can be chirps, 

among other types of waveforms.  The application of FrFT for parameter estimation in 

intercept  sonar signal processing has been explored. The chirp parameters to be estimated are 

bandwidth, start frequency, duration and  onset time of echo. A novel parameter estimation 

procedure is developed, by which chirp parameters are calculated from the two primary 

estimates, namely optimum order and FrFT peak position. Also,  performance evaluation of  a 

detector based on FrFT  for detecting chirps has been done. Performance of FrFT   detector is 

compared with conventional FFT and Energy detectors,  in the presence of white Gaussian 

noise as well as 1/f noise. The conventional technique of STFT for parameter estimation in 

intercept sonar is cumbersome and less accurate. The developed  FrFT based estimation 

procedure is straight forward and outperforms the STFT method on many scores.  

Development of this novel algorithm involved a good number of adaptations  and the 

simulation results are very promising. Only overhead is the additional computational load 

required for the ‘optimum α’ search. However, with the high computational power of present 

day processors, this will not be an issue. The developed algorithm is most effective when FM 

signals are involved, either linear or non-linear. CW signals can also be analysed with this 

new method, but  conventional FFT methods can do this equally well.The advantages of the 

developed technique are as follows. 

 Search algorithm estimates optimum α of unknown chirps to 3 digit accuracy 

 Estimation of Chirp parameters  upto –27 dB SNR possible(11dB over FFT method) 

 Estimation of multiple Chirps overlapping in time as well as frequency possible. 

 Performance better than ED and FFT detectors 

 Performs well even when processing length does not match echo length . 

 Compact estimation algorithm. Does not require any reconstruction   algorithm 

 Differentiates Linear and hyperbolic Chirps 

********************* 



 

Chapter 7 

 

Transients Detection and Analysis in Passive Sonar  

using Lifting Based  Wavepacket Transform 

 

 

 

 

In this chapter, a fast method for analyzing underwater transients buried in 

noise is developed. The challenge here is to develop a method applicable to different 

types of transients with unknown waveforms and arrival times. The time-frequency 

method adopted here for transient analysis is Wavepacket transform. Instead of the 

conventional filter bank scheme of implementing Wavelet transform, a less 

computationally intensive method, namely lifting scheme is adopted here. The under 

water scenario and the conventional technique for transient detection are first 

reviewed. Next, the newly developed method in this thesis for transient detection and 

analysis is explained. The evolution of this method is explained with three 

implementation schemes. This is followed with the simulation results of filter bank as 

well as lifting scheme for three types of simulated transients. Simulations with two 

sets of recorded biological transients are also given. The ROC curves, for comparing 

the performance of the developed method with the conventional Page test, are also 

presented. The chapter is concluded by highlighting the results and discussing the 

important findings of the new implementation. 
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7.1 Underwater Scenario 

 A transient signal can be generally defined as a signal whose duration is short 

compared to the observation time. These signals are non-stationary, having a wide variety of 

signal characteristics such as shape, frequency content and duration which are unknown and 

undergoes wide variation from event to event. The detection, analysis and classification of 

such signals is a problem of importance in fields such as underwater acoustics, biomedical 

engineering and industrial applications. A new implementation is presented in this chapter for 

the analysis of multiple transient signals with unknown waveforms and arrival times, 

embedded in noise.  

Underwater transients can be divided into two main categories: those of biological 

origin and those of non-biological origin. The biological transients are further divided into 

two classes, namely snapping shrimp and clicks, emitted by shrimps, whales and dolphins. 

The non-biological transients are those emitted from submarines, ships etc. Typically, 

underwater transients have duration of 200-600 ms. 

Quieting techniques used in the newest classes of submarines of the world’s navies 

have greatly reduced the narrowband acoustic tonal strength of rotating machinery that have 

been the primary source of acoustic energy for detection and classification by passive sonar. 

With the ships and submarines becoming silent day by day, it is difficult to detect them based 

on narrow-band machinery noise only. However, there are still exploitable acoustic signatures 

in the form of short duration acoustic events, called transients that can be used to detect and to 

classify underwater acoustic signatures. The transient signals emitted by naval targets during 

torpedo launch, sudden course changes etc are sure to happen occasionally at least. Such 

transient events have comparatively higher power. Also abrupt machinery failure or adversary 

scanning signals could be considered as rarely occurring transients embedded in noise. 

Detection of underwater acoustic transients, with widely varying characteristics and duration, 

acquires importance in early warning of torpedo launch. Auto alert system for such rare 

events   demands high probability of detection, under the constraint of low false alarm rate. 

Transient detection analysis acquires significance in this context. 

The tactical sonar operation is described now. Transient detection and analysis 

functions as a background operation in a passive sonar. Because the transient comes 
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randomly, the detection is first carried out on preformed beams in all 360 degrees. Once a 

detection is reported in any beam, analysis algorithm is applied on the respective data block in 

order to extract the parameters of the transient received. The onset time and duration of the 

transient event is estimated by Page Test proposed by Douglas. A. Abraham [60] in some 

passive sonar systems.  However, not much work is reported about transient processing in 

sonar systems.   As for transient analysis, STFT methods are commonly used, which are not 

well suited for the analysis of transient signals due to the short duration and the non-stationary 

nature of signals.  On the other hand, the method developed in this thesis addresses both 

issues in one shot. 

7.2  Transient Detection and Analysis using Lifting Based DWPT 

Transient detection using different TFMs have been proposed by many authors, such 

as WVD, Gabor transform and WT[32,33,34]. In this work, emphasis is placed on WT based 

detection scheme. This representation has been chosen mainly because of the energy 

preserving properties of Wavelet transform and its ability to provide good localization in time 

and frequency. Wavelet and Wavepacket transforms are transforms which can give such 

efficient representations. 

Continuous Wavelet transform has two major disadvantages. First, CWT requires 

analytically explicit functions to find the inner product. Its calculation therefore involves a 

heavy computational load. Second, the scaling parameter a and delay parameter b take 

continuous values resulting in a redundant representation on the time-frequency plane. Both 

these disadvantages are overcome by the Discrete Wavelet transform.  

Discrete Wavelet Transform (DWT) requires no analytic functions and the algorithm 

involves only filtering and decimation and is therefore computationally very efficient. 

Developed by Mallat, DWT is derived from the principles of multi resolution analysis 

(MRA), wherein a function can be analyzed at different resolutions. This involves 

approximation of the function in a sequence of nested linear vector spaces. Mallat’s filter 

bank scheme(FBS) involves the computation of approximation coefficients c(k) and detailed 

coefficients d(k) using the scaling and wavelet filters h(n) and g(n)  respectively. These filters 

satisfy the QMF properties of perfect reconstruction.  
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In the Wavelet family itself, the Wavepacket transform is more suitable for transient 

analysis. The problem with DWT is that it can only find its finer analysis for the low-band 

signal whereas, the Discrete Wavepacket Transform (DWPT) can divide all the time-

frequency plane into successive subtle tilings [68.69]. In the Wavepacket analysis, the details 

as well as the approximations can be split. This yields 2
n 

different ways to encode the signal 

in n decompositions. Hence DWPT is more competent to handle wide-band and high frequency 

narrow band signals like transients. 

 Implementing DWT and DWPT using FBS is computationally intensive. When data 

from multiple channels have to be processed, the hardware requirement can be huge. In order 

to alleviate this problem, the Lifting scheme has been adopted in this thesis work 

[71,71,73,74]. It was developed by Wim Sweldons in 1997 as a method to improve a given 

WT to obtain some specific properties[6]. In lifting scheme, DWT is viewed as prediction-

error decomposition. The scaling coefficients at given scale are predictors for the data at the 

next higher resolution or scale. The Wavelet coefficients are simply the “prediction errors” 

between the scaling coefficients and the higher resolution data. In this dissertation, transient 

detection and analysis has been achieved using lifting based Discrete Wavepacket transform. 

7.3 Simulation Results 

Most of the literature on WT based transient processing has been done using Daublets, 

particularly with dB4. In this thesis work also, dB4 wavelet has been used in all the 

simulations. Implementations have been applied on three types of simulated transients namely 

impulsive transient, ringing transient and chirp transient. The sequence of the simulations 

done is as follows. 

1. Performance comparison with Page test. 

2. Implementation scheme I – Detection using Page test & Analysis using DWPT 

3. Implementation scheme II – Detection and Analysis using DWPT(using FBS) 

4. Implementation scheme III – Detection and Analysis using DWPT(using LS) 

5. Results with 3 types of Simulated Transients 

6. Speed Comparison of FBS and LS 

7. Simulations with recorded Biological transients 
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7.3.1 Performance Comparison with Page Test 

Performance of any transform or algorithm is evaluated based on the minimum 

detection level achievable with it. Here, the performance of Wavepacket transform is first 

compared with the conventional page test by plotting the SNR vs PD curve. From these 

curves, the MDLs achievable with the two methods have been arrived at. The PD versus SNR 

plot for a PFA of 0.01 is shown in fig.7.1. It can be seen that for a PD of 50%, the MDL 

achievable with Page test is only -6 dB, whereas that with Wavepacket transform is -12 dB. 

This improvement in detection is the basic motivation for exploiting WT for transient analysis 

in sonars. 

 

Fig. 7.1 -  PD vs SNR plot for Page Test and Wavepacket Transform 

7.3.2 Implementation scheme I –  

Detection using Page test & Analysis using DWPT(FBS) 

The new method developed in the present thesis, has been evolved based on the 

detection capabilities of Wavelets transform, resulting in 3 schemes.  Fig. 7.2 below shows 

Scheme I of implementation, where the Page test is used for transient detection and Wave 

packet transform for analysis. In this scheme, Filter bank implementation of Wavepacket 

transform has been carried out  to characterize the transient. Beam former subsystem 
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computes beam outputs covering the entire azimuth of 360 degrees. During the detection 

stage, the  Page test is applied on all the beam outputs. Once a detection is reported in any 

beam, DWPT is applied on the respective data block in order to characterize the transient. The 

hardware requirement therefore basically depends on the detection algorithm used. Page test 

is computationally less intensive. So, when this scheme is used, transient processing can be 

done with the minimal hardware. 

 

 

 

 

Fig. 7.2 – Transient Processing - Implementation Scheme I 

7.3.3 Implementation scheme II-Detection & Analysis using DWPT(FBS) 

The minimum detection level of any sonar function is decided by the algorithm used 

for detection. From the ROC curves in fig 7.1, it can be seen that the MDL possible with Page 

test is only -6 dB. It does not work for lower SNRs.  So, when scheme I is used, only 

transients up to -6dB can be detected. The MDL possible with Wavepacket transform is          

-12 dB, as is evident from the ROC curve in fig 7.1. So, in order to perform transient analysis 

at lower SNRs, implementation scheme II is adopted, where Wavepacket transform is used 

for both detection and analysis (fig 7. 3). In this scheme, Filter bank implementation of 

Wavepacket transform has been carried out  to characterize the transient. 

 

 

 

 

 

 

Fig. 7.3 - Transient Processing - Implementation Scheme II 
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7.3.4 Implementation scheme III – 

 Detection and Analysis using DWPT(using LS) 

Wavelet and Wavepacket transforms implemented using Mallat’s filter bank scheme  is 

computationally very intensive. This will pose a problem when all round detection and 

analysis are both done using Wavepacket transform as in implementation II, especially when 

the sonar has a large number of channels covering the 360 degrees. The Lifting scheme, 

which estimates the wavelet coefficients based on simple predication and update stages, 

suggests itself as the proper choice. Thus, the implementation scheme II modified with Lifting 

scheme is shown in Fig 7.4. By using implementation scheme III,  transient processing can be 

achieved at lower SNRs with much lesser hardware than scheme II. 

 

 

 

 

 

 

Fig. 7.4 - Transient Processing - Implementation Scheme III 

7.3.5 Results with Simulated transients 

          The performance of Wavepacket Transform is evaluated with a variety of simulated 

transients added with noise. There are mainly three types of generic transients namely   

impulsive transient, ringing transient and chirp transient.   

The model used for impulsive transient h(t) of      10 ms duration. 

)2sin()2/2/exp()(
22

fttitth   …………………………………..(7.1) 

where  

α-  Damping factor,    

β- Oscillating frequency , 

f- Center frequency=2400 Hz,  
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 The model used for Ringing transients r(t) of     100 ms duration is 

  )().2/2/(exp)(
22

tstittr   …………………………………………(7.2) 

where 

)6sin(25.)4sin(5.)2sin()( ftftftts    

f- Center frequency=800 Hz,  

 

The model used for the Chirp transients c(t) of   250 ms duration is 

)2/2/exp()(
2

ftttc   …………………………………………………………….(7.3) 

where 

α -  chirp slope 

f  - start frequency=50hz,  

BW- Bandwidth=200 hz, 

 

Fig. 7.5 shows the impulsive transient and its Wavepacket transform. The frequencies 

and the time of occurrences are clearly brought out in the DWPT tiling plots. The 2400 hz in 

the impulsive transient is clearly marked at level 4 in the tiling plots, in the respective 

frequency nodes at the exact time of occurrence. The spectrum of the impulsive transient is 

also plotted alongside the Wavepacket transform plots, in order to highlight the advantage of 

the Wavepacket scheme developed here .  
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Fig. 7.5 - Impulsive Transient (a) Time signal (b) Wavepacket transform (c) Spectrum 
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Fig. 7.6 shows the ringing transient and its Wavepacket transform.  The 800 hz in the 

ringing transient are clearly marked at level 4 in the tiling plots, in the respective frequency 

nodes and time slot. 
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Fig. 7.6   Ringing  Transient  (a) Time signal (b) Wavepacket transform 
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Next, the chirping transient and its Wavepacket transform are shown in fig. 

7.7.  The chirp transient frequency variation is very much evident at level 5 in the 

wavelet plot, in all the frequency nodes for 50 hz to 250 hz. All simulations have 

been done using Matlab. Table 7.1 shows the dB4 filters used in the Filter bank 

implementation for all these three transients.      
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Fig. 7.7 - Chirping Transient  (a) Time signal (b) Wavepacket transform 
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Table 7.1 - dB4 filter Coefficients 

h(n) 
 

.0106 .0329 .0308 -.1870 -.0280     .6309     .7148 

 

.2304 

g(n) 

 

-.2304 .7148 -.6309 -.0280 .1870 .0308 -.0329 

 

-.0106 

 

7.3.6 Lifting Scheme Implementation 

In the lifting scheme, the sequence with DB4 is predicted followed by update, then 

again predicted and updated and finally scaled, using the lifting coefficients. Table 7.2 shows 

the dB coefficients used in the Lifting scheme. Using these five coefficients, the five lifting 

steps are done as follows. The lifting coefficients are different for different wavelets. In all the 

simulations, the results with both Lifting and Filter Bank implementations are identical. The 

difference is only in the implementation time. LS requires 60% less time compared to FBS. 

Step1 – Predict d1[k] = d[k] + Alpha*(s[k]+s[k+1]) …………..(7.4) 

Step2 – Update  s1[k] = s[k] + Beta*(d[k]+d[k-1])…………….(7.5) 

Step3 – Predict d1[k] = d[k] + Gamma*(s[k]+s[k+1])…………...(7.6) 

Step4 – Update  s1[k] = s[k] + Delta*(d[k]+d[k-1])…………....(7.7) 

Step5 – Scale   s1=s*Zeta, d1=d/Zeta…………………………...……(7.8) 

Table 7.2 – Lifting Scheme Coefficients 

Alpha  -1.586134342 

Beta  -0.05298011854 

Gamma   0.8829110762 

Delta   0.4435068522 

Zeta  1.149604398 
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7.3.7 Speed Comparison of Filter Bank and Lifting Scheme 

In this simulation, the speeds of the filter bank and lifting methods are measured on a 

DSP hardware. The DWT implementation using Mallat’s algorithm and Lifting scheme 

algorithms were first simulated using MATLAB for the various types of transients.   

Subsequently, these algorithms were implemented on ADSP-21062 SHARC based hardware, 

in real time. The computing time to perform one level of the transform on 1-D signal is 

recorded for both Filter Bank and Lifting scheme, for different input lengths. The timings are 

recorded in Table 7.3. The results show that that the Lifting scheme is always faster than the 

Filter Bank scheme. The performance comparison   for several filters of practical interest, 

addressing both DWT and IDWT clearly shows that up to 60% reduction in the computing 

times could be achieved by using the Lifting Scheme. So, implementation III will require 

60% less hardware compared to implementation II. This shows the remarkable improvement 

in transient detection and analysis possible with the novel scheme developed in this Chapter. 

                              Table 7.3–Speed Comparison of Filter Bank and Lifting Schemes 

 

 

 

 

 

 

 

 

 

7.3.8 Results with Recorded Biological Transients 

The new algorithm has been tried on two sets of recorded biological transient signals 

also using dB4 wavelets(fig. 7.7 and 7.8). Here also, the multiple transients, their prominent 

frequencies and time of occurrences in the whale noise as well as the chirps in the biological 

noise are clearly brought out in the DWPT tiling plots.  In these two simulations, 

decomposition up to seven levels were done. The levels of decomposition are decided by the 

resolution required by the system.  
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 Fig. 7.8 - Biological Transient (a) Time signal (b) Spectrum  (c) Wavepacket transform 
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Fig. 7.9 - Whale Noise (a) Time signal (b) Spectrum  (c) Wavepacket transform 
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7.4 Conclusions 

Stealth and silencing techniques used in the recent design submarines of the world’s 

navies have greatly reduced the radiated energy from narrowband acoustic tonal of rotating 

machinery, which has been the primary source of acoustic energy for detection and 

classification by passive sonar. However, there are still exploitable acoustic signatures in the 

form of short duration acoustic events, called transients that can be used to detect and to 

classify underwater acoustic signatures. Traditional sonar signal processing techniques based 

on Energy detector (Page test) and Fourier transform will not be the right choice for 

processing many transient signals of concern due to their short duration and their non-

stationary nature. While the Fourier transform cannot extract the time of occurrence of 

different frequencies, the Page test can find the onset and duration of the transient, but not 

frequency information, required for characterization.  In this thesis, a fast method for 

detecting and analyzing underwater transients buried in noise is presented. The challenge here 

has been to develop a method applicable to different types of transients with unknown 

waveforms and arrival times. The TFM adopted here for transient analysis is Wavepacket 

transform, which is a variant of Wavelet transform, which permits, the analysis of the entire 

frequency band. The SNR versus PD curves for comparing the performance of the new 

method with the conventional page test clearly brings out the supremacy of the new method 

presented.  As for the implementation, instead of the conventional filter bank implementation 

scheme, a less computationally intensive method, namely lifting scheme is adopted here for 

the implementation of the Wave packet transform..  The advantages of the new technique 

developed are summarized below:  

 Wavepacket Transform covers the entire band of the transient signal 

 Transient detection is possible at low SNRs of –12dB  (at PD=50% and PFA=0.01)                                                                                     

 Lifting Scheme enables faster implementation ( almost 60% reduction in processing     

time) when compared to Mallat’s filter bank scheme . So DWPT can be used for both 

detection and analysis of transients using less hardware.       

********************* 

 



 

Chapter 8 

 

Echo Characterization in Active Sonar  

using Wigner Ville Distribution 

 

 

 

 

 

  Active sonar echo characterization and classification are two 

new functions added to the repertoire of sonar functions in the recent years. Prior to 

classification, the received echoes have to be analyzed to extract its features.  In this 

chapter,  the potential of Wigner Ville Distribution (WVD) as a base algorithm for 

echo characterization in active sonars is demonstrated. A novel technique combining 

WVD with FrFT has been developed to overcome the problem of cross-terms in WVD, 

thereby representing the active echoes with excellent clarity in the time-frequency 

map. The under water scenario for active target classification is first explained. The 

denoising capability of FrFT with multi-component signals is then highlighted, after 

which, the new implementation scheme combining these two time-frequency methods 

is explained. As a comparison, computations of Pseudo WVD are also demonstrated. 

This is followed with the simulation results with single and multiple chirps embedded 

in noise, along with the results of analyzing  recorded underwater data. The ROC 

curves highlighting the SNR improvements compared to direct WVD implementation 

are also generated. The chapter is concluded by highlighting the results and 

discussing the important findings of the new implementation. 
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8.1 Introduction 

Passive classification techniques for extracting the frequencies of machinery and the 

propeller shafts are widely used in sonars.  But active sonar echo characterisation and target 

classification from the received echoes are two areas where few developments are reported.  

In active sonar, a signal transmitted from a source is reflected from the target ship. The 

received signal called the echo is modified in its features like duration, bandwidth, envelope 

shape etc. Characterising the echo will help in classifying the contact and understanding the 

medium also.  Depending on the different types of targets (surface or submerged) and 

different aspects of the same target (ahead or behind or along side), the echoes will be 

different. The first step in contact classification however is echo characterisation. In this 

chapter, a WVD-based technique for this purpose is discussed and the results are 

demonstrated. This technique can be used as a pre-processing algorithm for echo 

characterisation.  

Among all time-frequency representations, WVD is the best in terms of achievable 

time and frequency resolutions [14,15]. However, it is the least used one, mainly because of 

the problem of cross-terms. Excellent time and frequency resolutions are possible with WVD 

if the signal has only one component, which is not the practical situation. With multi-

component signals and noisy mono-component signals, the WVD representation is distorted 

by cross-terms, thereby affecting the signal analysis required by the different applications. 

Many techniques have been proposed to reduce these cross terms namely Pseudo WVD, 

members of Cohen class etc[14,15]. These techniques have high computational complexity. 

Also, they achieve the cross-term reduction at the cost of time or frequency resolution or both.  

Our aim has been to develop an analysis technique which guarantees good resolution 

and does not suffer the disturbances of cross-terms. Consequently, one is able to represent 

chirp signals with an excellent resolution in the time frequency map. One noticeable 

characteristic of all the cross-term reduction methods mentioned above is that they all modify 

the WVD equation, which means the reduction process occurs along with the WVD 

operation. That accounts for the loss of resolutions.  But, if we can do the denoising prior to 

WVD operation, the loss of resolution can be reduced. This is the principal motivation for 

evolving the WVD-FrFT combo algorithm. Denoising techniques using wavelets are available 
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in literature[56,57]. However, from the simulation results on FrFT in chapters 5 and 6, the 

excellent denoising capabilities of FrFT are demonstrated. Added to that, FrFT is ideal for 

chirp analysis. Active echoes being chirps mostly, FrFT will be better than WT as a denoising 

tool. In the sections to follow, the effective utilization of FrFT to recover the high resolution 

possible in WVD is demonstrated.  

8.2 Echo Characterization Scenario in Sonars 

As shown in fig.8.1, from the subsequent the subsequent pings, the beam formed data 

around the marked regions (in range and bearing, showing detection) are extracted. The new 

technique is then applied on these beam outputs. Generally, in an active sonar, the transmitted 

signal will be FM or CW, though the FM is preferred because of its excellent detection 

capability in reverberation.  The proposed algorithm is most effective when FM signals are 

involved, either linear or non-linear. CW signals can also be analysed with this new method, 

but existing techniques based on STFT offers acceptable results for the CW signals. In the 

active sonar, chirp itself is transmitted, hence optimum  is known a priori to the transmitter. 

 

 

 

 

 

 

 

 

 

 

 

Fig.8.1 Tactical Under water Scenario & hypothetical Active sonar display 

8.3 Denoising using FrFT 

Based on the simulations in Chapter 6,  FrFT is applied as a denoising tool with the aim 

of reducing cross terms occurring in WVD processing. In real situations, multiple chirps may 

- 

• R 

a 

n 

g 

e 

Bearing 



                                                                                          
Chapter 8 

 

132 

be present that too embedded in noise. The signal to be analyzed may contain more than one 

chirp, and these chirps may be overlapping in frequency or time or both. However, each of 

them will peak in the FrFT output for its corresponding optimum  only.   

 Extraction and reconstruction of just one of the chirps from the mixture can be 

achieved by performing an equivalent inverse FrFT on one of the spike components in the 

FrFT output. A filtering   process, which can be performed on the FrFT output, consists of 

retaining the minimum number of points either side of the chirp component to be extracted 

and zeroing all values outside this range of the complex FrFT output. An inverse FrFT of 

equivalent order is applied to the resultant and the real part of its output gives the 

reconstructed chirp component in the time domain. So, while the chirp is being extracted, 

denoising also takes place along with it. Also, this denoising method is applicable for both 

linear as well as non-linear chirps. Simulations to demonstrate this extraction method is given 

in section 6.2.4 of chapter 6. 

8.4 WVD-FrFT Method 

As was mentioned earlier, the cross-terms are generated in WVD when more than one 

chirp is present or when only one chirp is present with additive noise. The filtering procedure 

performed offers two advantages viz.  Multiple chirps can be separated and a noisy chirp can 

be denoised. The inverse FrFT of the denoised  FrFT output, followed by a WVD operation 

results in a denoised chirp signal. Also, when the signal contains multiple chirps, the WVD of 

each of them can be obtained without cross terms. Fig.8.2 shows the implementation block 

diagram for the proposed FrFT-WVD scheme as well as the direct WVD scheme. 

In active sonar, the received signal called the echo is modified in its characteristics like 

duration, bandwidth, envelope shape etc. Depending on the different types of targets (surface 

or submerged) and different aspects of the same target (ahead or behind or along side), the 

echoes will be different. As mentioned earlier, the first step in contact classification is echo 

characterisation. Characterising the echo will help in classifying the contact and 

understanding the medium also. The WVD-FrFT technique developed in this thesis can be 

used as a pre-processing algorithm for echo characterisation. Once the echoes are plotted with 

clarity in the time-frequency map, the differenced in echoes from different targets like echo 
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bandwidth, shape, slope change, start and end frequencies can be extracted as its 

characteristics. These characteristics can be then used for target classification. The feature 

extraction and classification functions have not been attempted in this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8.2 - Implementation Block Diagram 

8.5 Simulation Results 

 The simulations are done on synthetic analytic linear and non-linear chirps, 

overlapping in time and frequency. They illustrate the potential of this approach in practical 

applications. All simulations have been done on Matlab. Hilbert transform has been used 

extensively in the following examples to convert real signals to an analytic form comprising 

of the positive frequency components of the input signals only.  

The developed method is illustrated with three examples. The first simulation is done 

with a single noisy chirp. In the second simulation, two overlapping noisy chirps are 

considered, a linear and a hyperbolic chirp. The last simulation has been done with three 

overlapping chirps. The simulation details are tabulated in table 8.1. Two or more targets 

being present at same ranges may not happen in general. But in these simulations, cases of 

two or more chirps overlapping in time and frequency are considered. Such situations are 

simulated only to demonstrate the efficiency of this new technique, even under such worst 
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case scenarios. The most common situation is the occurrence of one chirp alone, embedded in 

noise. 

Table 8.1 Simulation Settimgs 

Simulation 1 

One Noisy Chirp 

SNR= -3 dB 

Simulation 2 

One Noisy Chirp 

SNR= -11 dB 

Simulation 3 

Two Noisy Chirps 

SNR= -9 dB 

Simulation 4 

Two Noisy Chirps 

SNR= -9 dB 

Linear FM 

BW-300 Hz 

Duration128mSec 

Start freq 100 Hz 

Up slope 
 

 

 

 

Linear FM 

BW-300 Hz 

Duration128mSec 

Start freq 100 Hz 

Up slope 

a) Linear FM 

BW-300 Hz 

Duration128mSec 

Start freq 400 Hz 

Down slope 

 

b)Hyperbolic FM 

BW-300 Hz 

Duration128mSec 

Start freq100 Hz 

Upslope 
 

a)Linear FM 

BW-400 Hz 

Duration128mSec 

Start freq 100 Hz 

Upslope 

 

b)Linear FM 

BW-400 Hz 

Duration128mSec 

Start freq 500 Hz 

Down slope 

           
c)Hyperbolic FM 

BW-300 Hz 

Duration128mSec 

Start freq 100 Hz 

Upslope 

 

8.5.1 Simulations on a  single noisy chirp 

.  For this simulation, a linear chirp of duration 128msec is generated with a sampling 

frequency of 2 KHz. The signal bandwidth is randomly chosen as 300Hz, with a start 

frequency of 100Hz. The additive noise is white Gaussian and the signal SNR is -3 dB.  

Fig.8.3 and 8.4 show the WVD and PWVD of the noisy chirp signal and fig.8.5 shows the 

WVD of signal denoised using FrFT. The WVD of the signal denoised using FrFT does not 

suffer from the problem of cross terms whereas the WVD and PWVD plots of noisy signal are 

totally cluttered with interferences.  Fig.8.6, 8.7 and 8.8 show the same outputs for the signal 

at a lower SNR of -11dB. In this case, the chirp is totally indistinguishable in the WVD and 

PWVD plots, whereas it is perfectly extracted by the new scheme. FrFT based WVD clearly 

outperforms direct WVD and PWVD, especially with low SNR signals. 
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      Fig.8.3 - WVD of Single Chirp(-3dB)           Fig.8.6 - WVD of Single Chirp(-11dB) 
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     Fig.8.4 - PWVD of Single Chirp(-3dB)     Fig.8.7 - PWVD of Single Chirp(-11dB) 
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     Fig.8.5-WVD of FrFT Denoised Chirp            Fig.8.8 - WVD of FrFT Denoised Chirp 

                        (-3dB)                                                                 (-11dB) 
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8.5.2  Simulations on two different noisy chirps 

 For this simulation, two overlapping chirps are generated of duration 128msec with a 

sampling frequency of 2 KHz. First is a linear chirp with down slope, having a start frequency 

of 400 Hz and bandwidth 300 Hz. The second is a non-linear chirp having an upslope, with a 

start frequency of 100 Hz and bandwidth 300 Hz. The additive noise is white Gaussian and 

the signal SNR is -9 dB. Fig.8.9 and 8.10 show the WVD and PWVD of the noisy chirps. 

WVD of FrFT denoised signal is shown in fig.8.13. Fig.8.11 and 8.12 show the WVD plots of 

two individual chirps separately after denoising and filtering using the extraction method 

explained earlier. The separately obtained WVD outputs, after denoising, are summed to get 

the denoised, cross term free plot of fig.8.13. The two chirps were hardly discernible in the 

WVD and PWVD plots. On the other hand, with the new method, two advantages are 

noteworthy  

(i) Cross-terms are cancelled.  

(ii) The time-frequency flow of the two chirps are clearly brought out. 
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Fig.8.9 - WVD of Two Chirps(-9dB)           Fig.8.10-PWVD of Two Chirps(-9dB) 

       Chirp1 : LFM and Chirp2: HFM 
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Fig.8.11 -  WVD of FrFT Denoised Chirp1  Fig.8.12-WVD of FrFT Denoised Chirp2  

   (-9dB)      (-9dB) 
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Fig.8.13-  WVD of Denoised Chirps(-9dB) 

8.5.3  Simulations on Three Different Noisy Chirps 

  In order to demonstrate that the new method developed here works well with any 

number of chirps, three overlapping chirps are generated of duration 128msec with a sampling 

frequency of 2 KHz. First one is a linear chirp with upslope, having a start frequency of 100 

Hz and bandwidth 400 Hz. The second one is a linear chirp having an down slope, with a start 

frequency of 500 Hz and bandwidth 400 Hz. The third one is a non-linear chirp having an 

upslope, with a start frequency of 100 Hz and bandwidth 300 Hz. Fig.8.14 and 8.15 show the 

WVD and PWVD of the noisy chirps. WVD of FrFT denoised signal is shown in fig.8.19. 

Fig.8.16, 8.17 and 8.18 show the WVD plots of three chirps separately after denoising and 

filtering.  

- 
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        Fig.8.14 - WVD of Three Chirps(-9dB)      Fig.8.15 - PWVD of Three Chirps(-9dB) 
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      Fig.8.16 - WVD of FrFT Denoised        Fig.8.17  - WVD of FrFT Denoised  

                        Chirp1 (-9dB)                                    Chirp2 (-9dB) 
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Fig.8.18 -  WVD of FrFT Denoised                   Fig.8.19 - The WVD of Denoised Chirps 

                     Chirp3 (-9dB)      (-9 dB) 
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8.5.4 Performance Evaluation 

 The performance analysis of the new technique is done for different SNRs. Fig. 8.20 

and 8.21 show the PD vs SNR plot for two different probabilities of false alarms, 0.001 and 

0.0001 for a signal with single chirp. Similar curves were obtained for signals with two and 

three chirps. Montecarlo simulations were done to obtain these performance curves. The 

performance is remarkable, especially at low SNR values. At PD of 50%, the proposed   

FrFT-WVD scheme shows an improvement of 5 dB over the conventional WVD scheme. 
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Fig.8.20 - PD vs SNR (PFA=0.0001) 
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 Fig.8.21 -  PD vs SNR (PFA=0.001) 
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8.5.5 Echo Characterization with Recorded Data 

The WVD-FrFT method was applied on real data also with very encouraging results. 

Fig.8.22 shows the WVD of a recorded active echo. The WVD of the denoise echo is shown 

in fig.8.23. The bandwidth, start frequency, end frequency and linearity of the FM signal is 

clearly brought out by the proposed scheme. The new method was applied to recorded 

underwater biological signal, with similar results (fig.8.24 and 8.25). 
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Fig.8.22-WVD of Active Sonar Echo 
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Fig.8.23-WVD of FrFT Denoised Echo 
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Fig.8.24- WVD of Biological Noise 
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  Fig.8.25-WVD of FrFT Denoised Biological noise 
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8.6 Conclusions 

 Not many works are seen on active target classification in sonars. But it is becoming a 

mandatory requirement in the new generation sonars. In this thesis, the potential of WVD for 

echo characterization is explored. Among all time-frequency representations, WVD is the best 

in terms of achievable time and frequency resolutions. However, it is the least used one, 

mainly because of the problem of cross-terms. Excellent time and frequency resolutions are 

possible in WVD if the signal has only one component, which is not the practical situation. 

With multi-component signals and noisy signals, the WVD representation is distorted by 

cross-terms, thereby affecting the signal analysis required by the different applications. Many 

techniques have been developed to reduce these cross terms namely pseudo, smoothed WVD, 

members of Cohen class etc. But, they all have high computational complexity. Also, they all 

achieve the cross-term reduction at the cost of time or frequency resolution or both.  

Our aim has been to develop an analysis technique which guarantees good resolution 

and does not suffer the disturbances of cross-terms. A novel method for echo characterization 

in sonars is developed to identify unknown chirp signals in low signal-to-noise (SNR) 

environment and represent the signals with excellent clarity as a time frequency 

representation. This method is based on FrFT denoising, prior to analyzing mono- or multi 

component chirps using Wigner Ville Distribution.  The method offers excellent rejection 

capability of cross-terms in the WVD and more robustness against additive white Gaussian 

noise with pronounced time-frequency resolution.  The motivation behind the developed 

scheme is the inherent ability of FrFT to process chirp signals. The approach is applied on 

non-linear chirps and CW pulses as well. As a base algorithm for active target classification, 

the developed WVD-FrFT combination has proved to do an excellent job of echo 

characterization. The advantages of the developed technique are as follows 

 WVD alone has very low MDL (of the order of –5 dB). Developed WVD-FrFT 

algorithm has  an MDL of the order of –12B. 

 Resolution properties of WVD are achieved with just one FrFT computation done for 

denoising. 

 Method applicable to Chirps as well as CW echoes 

********************** 
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Wide Band Ambiguity Function  

using Fourier Mellin Transform for Active Sonars             

 

 

 

 

 

 In this chapter, a fast implementation of Wide-band ambiguity function (WB 

AF) is presented along with two applications in active sonar processing. The WB AF 

is formally defined from the matched filtering point of view in active sonar in detail. 

The simplified equation using narrow-band assumptions and the corresponding 

implementation scheme in conventional active sonar are then explained. Next, the 

need for WB AF in modern sonar and a fast method for implementing it using Fourier 

Mellin transform are introduced. With this practical scheme in hand, the WB AFs of  

some typical waveforms are generated and compared with the ambiguity function 

based on narrow band assumptions.  This is followed by simulations comparing the 

matched filtering performance using these two definitions. The chapter is concluded 

by highlighting the results and discussing the important findings of the new 

implementation. 
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9.1 Ambiguity Function and Matched Filtering 

Ambiguity function is a bilinear time-frequency technique, having relevance in 

applications where matched filtering is used like radar and sonar. In sonars, this TFM has two 

roles. The first one is in the evaluation of active sonar waveforms. Second, it is used in the 

matched filtering based detection processing of active sonars. Due to practical difficulties, 

many active systems are using the simplified implementation of ambiguity function based on 

narrowband assumptions. In this thesis, the objective has been to find a fast implementation 

for WB AF and study the improvements possible by using it in active sonar processing.  

9.1.1  Detection in Active Sonar  

For the sake of continuity in explanation, this section is a repetition of section 3.2. 

Active sonar involves the transmission of an acoustic signal which, when reflected from a 

target, provides the sonar receiver with a basis for detection and estimation of  its range and 

radial velocity. Estimates of the space-time coordinates of a target are obtained by observing 

the effect of that target on the parameters of a transmitted signal. The relation between the 

transmitted signal, echo, range and radial velocity is derived as [12] 

x(t) –  transmitted signal 

y(t) –  received signal 

y(t)=s[(1-δ )t- τ]  ……………………………………………………(9.1) 

 where 

δ =2v/c -time scaling or Doppler parameter 

τ=2R0 /c  - delay  parameter 

Therefore, the estimates of range and velocity can be obtained as a linear function of 

delay and Doppler (δ and τ) measurements. In modern sonars, δ and τ measurements are made 

by cross correlating overlapping segments of the incoming signal with a set of stored 

references. Each of the references is a replica of the transmitted signal that has been 

artificially time compressed. Enough of these references are employed to cover a range of 

expected target velocities. When detection is achieved, the elapsed time since transmission 

provides the delay estimate. The Doppler parameter of the reference which results in 

maximum correlation is taken as the Doppler estimate. The optimum detector for a known 
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signal in the back drop of white Gaussian noise is the correlation receiver, also called matched 

filtering. The range and radial velocity can be obtained by passing the received signal through 

an array of matched filters where each filter in the array is matched to a different target 

velocity. A sufficient number of filters are employed to span the range of   probable target 

velocities. The output of each filter is then passed through a simple threshold detector. The 

output of the threshold detector peaks with a delay, which provides the range estimates. The 

estimated velocity is inferred from the filter of best match. The process is illustrated in fig 9.1. 

                  

 

 

 

 

 

 

 

 

 

Fig.9.1 - Matched Filtering 

9.1.2 Evaluation of Active Waveforms 

The ambiguity function  
2

),(   is a 2-D function of correlator output power 

against range   and Doppler frequency shift  . The ambiguity diagram indicates, for a given 

waveform, the accuracy with which range and velocity can be measured. So, the resolution 

obtainable with a given waveform is defined as the height and width of the ambiguity diagram 

for that waveform, measured at zero range and zero velocity [12]. So, performance of any 

active waveform can be got from its ambiguity function. This has been explained in detail in 

Sec.4.4.2 of Chapter 4. Lot of work is going on in the design of new waveforms, with specific 

capabilities like reverberation resistance and so on. To evaluate them, a correct picture of their 

ambiguity functions need to be generated, which is only possible with the WB AF definition. 

The NB AF may not give a true picture of the waveform’s capabilities.  
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9.1.3 Wide-Band Ambiguity Function 

Consider a waveform returning, after reflection from a “point” target approaching the 

radar at constant velocity, compressed in time by a certain factor. Thus, a sine wave appears 

to be shifted in frequency by an amount proportional to the transmitted frequency. When this 

sine wave (carrier) is modulated, the echo returns with a higher carrier frequency and with a 

slightly compressed modulation. So, the reflected signal has not only a shifted carrier 

frequency, but changed frequency modulation rate as well.  

The Doppler Effect which is an important physical phenomenon characterizes the fact 

that a signal returned by a moving target is dilated (or compressed) and delayed compared to 

the emitted signal. The Wide-band ambiguity function treats Doppler as a time scaling. It may 

be viewed as the complex envelope of the response of either a matched filter receiver to a 

point scatterer as a function of target’s delay and Doppler shift, or a bank of matched filters to 

a point scatterer at one particular delay and Doppler shift and is defined as in Eqn.9.2 
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where scaling factor a=(1-δ). When the radial velocity of a scatterer is v, then the scale factor 

is approximated as (1-2v/c) 

9.1.4 Narrow-Band Assumption 

The reflected echo signal has not only a shifted carrier frequency, but changed 

frequency modulation rate as well. But under certain situations, the effects on the modulation 

are often small and are usually neglected. This is usually referred to as the narrowband 

assumption in active sonar. This concept of ambiguity function was first introduced by 

Woodward in radars[109]. For narrow-band emitted signals and low speed targets (compared 

to the sound speed), the Doppler phenomenon can be approximated by a translation in time 

and frequency, without any modulation change. Narrow band ambiguity function is defined as 
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The derivation of this definition has already been explained in Sec.3.2.2 of Chapter 3. 

This function is a measure of the time-frequency correlation of a signal ie. the degree of 

similarity between x(t) and its translated versions in the time-frequency plane. Unlike the time 

and frequency variable t and f, τ and   are relative coordinates, called delay and Doppler 

respectively. The complex narrow-band ambiguity function uses the frequency shift 

approximation to the Doppler Effect. It is based on the shift theorem for the Fourier transform 

and is defined as in Eqn. 9.2 where s(t) is the complex envelope of the signal.  

9.1.5 Replica Correlation by FFT 

The digital equivalent of this matched filter operation is known as Replica Correlation 

(RC), and is accomplished by cross correlating overlapping segments of the received signal 

with each of several time-compressed replicas of the transmitted pulse. The correlation points 

thus computed correspond to the aforementioned matched-filter outputs, and are applied to 

threshold detectors. The required computation to implement the matched filter by direct time 

domain correlation becomes large for wide bandwidth signals.  Glisson et al [12] have arrived 

at an FFT based implementation for the correlator receiver, using the narrowband definition 

of ambiguity function (fig.9.2). The FFT can thus be used to great advantage as a replica 

correlation algorithm. For LFM pulse, it can be shown that the narrow-band approximation 

may be used if the target velocity V, pulse duration T and frequency sweep W satisfy the 

relation
TW

V
2610

 . For wide-band LFM, the correlation has to be repeated for the different 

replicas. 

 

 

 

 

 

Fig.9.2  - FFT based Replica Correlation 
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9.2 Fast Computation of Wide Band Ambiguity Function 

9.2.1 Need for Wide Band Ambiguity Function 

For broad-band signals, the dilation of the spectrum has to be taken into account. This 

is particularly the case in radar and sonar problems where the time-bandwidth product of the 

emitted signal is important and where the speed of the moving target is not negligible 

compared to the wave speed in the medium. Modern-day sonar signals are usually broad-band 

with respect to carrier frequency and long in duration and so the NB assumption cannot be 

employed. 

When the signal under analysis cannot be considered as narrow band ie. when its 

bandwidth B is not negligible compared to its central frequency F0, the NB AF is no longer 

appropriate. We then have to consider Wide band ambiguity function. Then, the reflected 

signal has not only a shifted carrier frequency, but changed frequency modulation rate as well. 

This creates difficulties in both analytic and computer ambiguity function evaluations. 

Analytic difficulties arise from the inability to solve the appropriate integrals. Computer 

difficulties arise from the long computation time required. So for wide-band signals, the 

carrier-frequency-shift approximation of the Doppler transformation becomes insufficient and 

a more exact model must be used. 

Broad-band functionals such as wide band ambiguity functions mentioned above and 

affine distributions contain stretched forms of signals, which are not easy to compute by 

standard techniques. The Fourier transform is invariant in modulus to translations in 

frequency, but not to dilations. Therefore,  it is no longer the appropriate transform to change 

the representation space of these signals. Hence some new transforms which is invariant in 

modulus to dilations are required to compute wide band ambiguity function.  

9.2.2 Fourier Mellin transform 

One of the main properties of Fourier transform is that it allows one to compare 

translated functions and to remove the translation factor. That is the case because the energy 

density spectrum, the absolute square of the Fourier transform, is insensitive to translation. 

The importance of this is that if we have two functions at different locations, the energy 

spectrum will tell us the inherent differences between the two and irrespective of the 
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translation factor. If the two functions are the same, then absolute square of the two 

transforms will be the same. That is, if we have a function x(t) and a translated version 

xtr(t)=x(t+t0), then their respective Fourier transform X(f) and Xtr(f) are related by 

)()( 02
fXefX

tfj

tr


 ………………………………………………………….(9.4) 

Hence 
22
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  

Hence we can say that the Fourier transform is invariant in modulus to translations in 

frequency, but not to dilations. Now, instead of translating the function, suppose the signal is 

magnified. In that case, what is required is a transform that will remove the magnification 

factor so that we may compare the inherent differences. In other words, a transform that is 

insensitive to scaling or magnification. The answer is Mellin transform. 

9.2.2.1 Mellin Transform of a signal 

A brief mathematical treatment of Mellin transform is given here [132]. Given a 

function x(t) which is assumed to have energy for t>0, the continuous Mellin tranform is 

given by Eqn. 9.5 
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Converting the variable t into an exponential function e
z
, we can rewrite the above equation in 

a more convenient form:  

)6.9.........()]........(
~

[)(
~

)()(

)()()(
1

zxeFTdzeezxdzeeexM

dzeeexM

dzedt

et

zzzjzzjz

X

zjzz

X

z

z







































 

ie. Fourier transform with exponential distortion. This equation indicates that the 

Mellin transform is equivalent to the Fourier transform after the logarithmic conversion of the 
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time variable t. This is the time domain implementation of Mellin transform and is shown in 

fig.9.3 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9.3 - FMT of a signal 

         (Time-domain implementation) 

The time-domain method of generating Mellin transform requires non-uniform 

interpolation of the time signal. To avoid that,  Ovarlez et al have given a frequency domain 

implementation[131] by which Mellin transform of a signal can be generated from its 

spectrum also. The expression is given as Eqn.9.6. The frequency domain implementation of 

Mellin transform are shown in fig.9.4 
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In this approach, the coefficient matrix of FT is generated for the non-uniform 

frequency points and so a warped FT itself is computed. This is easier than exponentially 

sampling of the time-domain signal by interpolation methods. The simulations in this chapter 

have been done using the frequency domain implementation of Mellin transform (fig.9.4). 
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Fig.9.4 -FMT of a signal 

        (Frequency-domain implementation) 

 

9.2.2.2 Mellin Transform of a Scaled signal 

In the sonar scenario, assuming the propagation delay of the returned echo to be 

canceled, the echo e(t)=x(so t), which is a scaled version of the transmitted signal x(t) where s0 

is scaling factor.  The Mellin transform of e(t) can be written as in Eqn.9.7 ,  
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The time dilation due to the motion of the object is thus replaced by a time shift as a 

result of the logarithmic transform, and, consequently, a phase difference results from the 

Fourier transform. If the speed of motion of the object is much slower than the propagation 
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speed of the sound, then we obtain from the equation, ln s0 ~ -2v0 / c, where v0 is the target 

speed. The Mellin transform of the delay-canceled echo therefore 

becomes )()(
/2 0 



X

cvj

E
MeM


 .  

22
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So, the absolute square of the Mellin transform, is insensitive to scale changes. 

Hence, scale changes affect the Mellin transform in the same way that delay affects Fourier 

transform. So a combined Fourier Mellin transform (FMT) yields a representation of a signal 

that is independent of delay and scale change ie. invariant in translation and scale. This is 

called the Fourier Mellin transform. In this algorithm, a logarithmic mapping is first done on 

the input data, followed by a Fourier transform. 

In the discrete case, the Mellin transform can be calculated fast using FFT. This 

algorithm involves only FFT routines and runs very fast. The implementation therefore allows 

us to consider WB AF as practical tool for the study of broad-band signals. Fig 9.5 shows the 

generation of the scaled signal using FMT.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9.5  - Generation of scaled signal 
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9.3 Simulation Results 

9.3.1 Ambiguity Function Generation 

Figures 9.6 to 9.9 show the ambiguity function of two of the common active sonar 

waveforms, LFM and HFM waveforms, computed based on the discussion so far. First 

method computed the AF with narrow-band assumptions and the second one computed the 

accurate wide-band AF using the FMT algorithm. As the figures 9.6 and 9.7 show, the 

ambiguity function of LFM signal computed with narrow band assumptions leads to a wrong 

notion of possible detection for a larger Doppler and Delay shift, whereas the wide-band one, 

taking into account the carrier shift and envelope scaling, is more revealing.  

Next, the ambiguity of HFM waveform has been computed by the above two 

methods(fig. 9.8 and 9.9). HFM waveforms are known to be Doppler tolerant [117]. The AF 

computed with narrow band assumption leads to the wrong notion of the possible detection 

(with hardly any Doppler tolerance), whereas its wide-band ambiguity function reveals the 

possible detection over a larger Doppler shift, expected of HFM. 

                    

 Fig.9.6  Narrow-band AF of LFM 
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Fig.9.7   Wide-band AF of LFM 

                 

Fig.9.8 Narrow-band AF of HFM 
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Fig.9.9  Wide-band AF of HFM 

9.3.2 Matched Filtering Performance 

It is demonstrated that replica correlation using replicas with Mellin scaling improves 

detection performance when compared to that without scaling. For the simulation, a typical 

instance encountered in active sonar systems is discussed. Noisy data for one PRI (4 sec) is 

generated with echo occurring at 750m. The LFM signal transmitted has a bandwidth of 300 

Hz, with a pulse width of 250ms. For each data block, the steps as given in fig.9.1 and 9.2 are 

implemented and the threshold detector output is plotted versus time (or range).  Simulations 

were done for SNRs of -3 dB and -7 dB. In the first case, the target is assumed to be receding 

at 5 knots whereas it is assumed to be approaching at 20 knots in the second case. The 

corresponding replica correlator outputs with and without Mellin scaling are shown in 

Fig.9.10 and 9.11. It can be seen that the detection performance has improved by about 2 dB 

in both simulations. Simulations with zero Doppler targets (fig.9.12) shows almost same 

results with both the methods, since scaling is not required for stationary targets. These 

simulations clearly show the need for using replicas which are scaled in addition to frequency 

shifting in matched filtering. 
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Fig.9.10  RC with and without Mellin scaling (-3dB) with 10knots target (receding) 
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Fig.9.11 RC with and without Mellin scaling  (-7dB) with 20knots target (approaching) 
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Fig.9.12  RC with and without Mellin scaling (-3dB) with stationary target 

 

9.4 Conclusions 

Ambiguity function is a  time-frequency method considered mainly in two areas of 

active sonar processing. First, it is used for evaluating the performance of different types of 

active waveforms. Second, it decides the performance of active sonars using matched 

filtering. Due to implementation problems, the narrow-band ambiguity function is widely 

used in many active sonar systems. Also, for narrow-band signals and low speed targets, 

Doppler can be approximated by a translation in time and frequency. But, when the signal 

under analysis is not narrow band, this particular form of ambiguity function is no longer 

appropriate. New generation sonars use broad-band signals and longer pulses and they need to 

cater for high speed targets. We then have to consider the WB AF. But such broad-band 

functionals cannot be computed by standard techniques. For this, Mellin transform has been 

selected as the solution. The FMT algorithm by Ovarles et al has been adopted for the 

developed implementation. In this thesis, Wide-band Ambiguity function for sonar 

applications has been studied and implemented, using the fast FMT algorithm. Matched 

filtering using this implementation is then compared with the conventional scheme using 

narrow-band assumption. Almost 2 dB improvement has been observed in the simulations of 
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matched filtering. Also, the ambiguity diagrams of typical waveforms like LFM and HFM 

using both the equations have been plotted. Narrow-band ambiguity diagram is found to be 

giving a misleading picture about the performance of these waveforms. A more accurate 

picture of the waveform’s performance is obtained from the WB AF plots. As a waveform 

evaluation tool and core operator in matched filtering, the importance of Ambiguity function 

is not small. Practical difficulties have forced sonar designers to go for approximations and 

assumptions in implementing ambiguity function. The developed scheme enables overcoming 

these practical limitations to arrive at an exact implementation of the ambiguity function and 

hence get better matched filtering performance. The advantages of the developed technique 

are as follows 

 Fast Computation of WB AF using FMT 

 Better evaluation of active waveforms  

 2 dB improvement in Matched Filtering using Wide Band Ambiguity Function. 

********************* 
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A brief summary of the research work conducted and the important 

conclusions thereon are highlighted in this chapter. The scope for further work in this 

field as an extension of the present study has also been discussed. 
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10.1 Summary of the Work and the Important Conclusions 

Sonar signal processing comprises of  a large number of signal processing algorithms 

for implementing functions such as Target Detection, Localisation, Classification, Tracking 

and Parameter estimation. Current implementations of these functions rely on conventional 

techniques largely based on Fourier Techniques, primarily meant for stationary signals. 

Interestingly enough, the signals received by the sonar sensors are often  non-stationary and 

hence processing methods capable  of  handling the non-stationarity will definitely fare better 

than Fourier transform based methods. The present dissertation has addressed this aspect in 

detail. 

Time-frequency methods(TFMs) are known as one of the best  DSP tools for non-

stationary signal processing, with which one can analyze signals in time and frequency 

domains simultaneously.  But, other than STFT, TFMs have been largely limited to academic 

research because of the complexity of the algorithms and the limitations of computing power. 

With the availability of fast processors, many applications of TFMs have been reported in the 

fields of speech and image processing and biomedical applications,  but not many   in sonar 

processing. A structured effort, to fill these lacunae by exploring the potential of TFMs in 

sonar applications, is the net outcome of this thesis. To this end, four TFMs have been 

explored in detail viz. Wavelet Transform, Fractional Fourier Transform, Wigner Ville 

Distribution  and Ambiguity Function and their potential in implementing five major sonar 

functions has been demonstrated with  very promising results.  What has been conclusively   

brought out in this thesis, is that there is no “one best TFM” for all applications, but there is 

“one best TFM” for each application.  Accordingly, the  TFM has to be adapted  and tailored 

in many ways in order to develop specific algorithms for each of the applications. Main 

achievements of the thesis  are as follows: 

10.1.1 Improved target detection in Active Sonar using FrFT 

It is well known that the optimum detector for active sonar detection is matched filtering. 

Direct time-domain implementation of matched filtering is hardware intensive and  so many  

practical systems are realized using  a fast method of implementation called heterodyne 

correlator. This simplification is achieved, by making narrow-band assumptions about the 
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received signal. In the present method, Fractional Fourier Transform(FrFT)  has been applied 

to active sonar processing, as viable alternative to the well known  FFT based approach  and 

an algorithm has been developed to achieve improved matched filter based detection 

performance. The motivation behind this development  is the ability of FrFT to process non-

stationary signals like chirp signals better than the conventional Fourier Transform . FrFT is a 

parameterized transform with parameter , related to the chirp rate. Many active sonar 

systems choose to transmit chirp signals for better detection in the presence of reverberation. 

Accordingly, FrFT if used instead of FFT in the correlation receiver, has great potential by 

utilizing the a priori  knowledge of the optimal  of the  transmitted waveform. This has been 

demonstrated in the simulations in Chapter 5, wherein a 3 dB improvement has been achieved 

in the detection performances at different SNRs and with moving targets. Estimation of target 

speeds is also achieved at the same accuracy as the FFT method. These improvements have 

been obtained with no additional implementation cost. 

10.1.2 Excellent Parameter Estimation in Intercept Sonar using FrFT 

       Detection of chirp pulses with varying parameters is required in many applications like 

the intercept sonar, where transmissions from other platforms, can be chirps, among other 

types of waveforms. The application of FrFT for chirp parameter estimation in intercept  has 

been explored extensively in Chapter 6. The chirp parameters to be estimated are bandwidth, 

start frequency, duration and onset time of echo. A notable outcome of the thesis is a novel 

parameter estimation procedure, by which these chirp parameters are calculated 

systematically from the two primary estimates, namely optimum  and FrFT peak position 

The developed search algorithm can estimate the  optimum  of unknown chirps to an 

accuracy of 3 digits. Estimation of multiple Chirps overlapping in time as well as frequency is 

possible. The method performs  very well, even when processing length does not match with 

the echo length. The algorithm does not require any reconstruction   algorithm as in the 

conventional STFT method. Another advantage is its capability to differentiate linear and 

hyperbolic chirps, while detecting them. Also, from the performance comparison of FrFT   

detector with FFT and Energy detectors, in the presence of white Gaussian noise as well as 1/f 

noise, it is demonstrated that estimation of Chirp parameters  up to –27 dB SNR is possible  
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with the developed method which is 11dB over FFT detector and over 23 dB over Energy 

detector. The developed FrFT based estimation procedure is straight forward and outperforms 

the presently used FFT method on many scores. Only overhead is the additional 

computational load required for the „optimum ‟ search. 

10.1.3 Better and Fast Transient Detection in Passive Sonar  

using Lifting Based Wavepacket Transform  

     Quieting techniques used in the newest classes of submarines of the world‟s navies have 

greatly reduced the narrowband acoustic tonal frequencies of rotating machinery that have 

been the primary source of acoustic energy for detection and classification by passive sonar. 

However, there are still exploitable acoustic signatures in the form of short duration acoustic 

events, called transients, that can be used to detect and to classify underwater acoustic 

signatures. Traditional sonar signal processing techniques based on Page test and FFT are not 

well suited for processing many transient signals of concern due to their short duration and 

their non-stationary nature. In the present thesis, a fast method for analyzing underwater 

transients buried in noise is presented to handle both the problems. The challenge here has 

been  to develop a method applicable to different types of transients with unknown 

waveforms and arrival times. The TFM adopted here for transient analysis is Wave packet 

transform, a variant of Wavelet transform, which has well known time localization 

capabilities. By using Wave packet transform, the entire frequency band  can be analyzed. As 

for the implementation, instead of the conventional Filter bank implementation scheme, a less 

computationally intensive method, namely Lifting scheme is adopted here. Because of this 

fast implementation, almost 60% reduction in processing time has been achieved. So, both 

detection as well as analysis can be done by Wave packet transform without hardware 

complexity. From the ROC curves, comparing  the performance with the conventional Page 

test, the present method combining Wave packet transform and Lifting scheme provides a 6 

dB improvement in detection. Hence this method is ideal for real-time applications  like 

sonar.   
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10.1.4 Accurate Echo Characterization in Active Sonar  

      using Wigner Ville Distribution (WVD) 

Effective classification of contacts in  active sonar is becoming a mandatory 

requirement in the new generation sonars. In this thesis, the potential of WVD for 

characterization echoes, which in turn facilitates classification, has been  explored. Among all 

time-frequency representations, WVD is the best for characterization of signals  in terms of 

achievable time and frequency resolutions. However, it is the is the least used, mainly because 

of the problem of cross-terms. With multi-component signals and noisy signals, the WVD 

representation is heavily  distorted by cross-terms, thereby affecting the signal analysis 

required for echo characterization. Many techniques have been developed to reduce these 

cross terms namely  pseudo WVD and members of Cohen class. They all achieve the cross-

term reduction at the cost of time or frequency resolution or both, and also  have high  

computational complexity. In this thesis, a novel and fast  method for echo characterization in 

sonars is developed to identify unknown chirp signals in low signal-to-noise(SNR) 

environment and represent the signals with excellent  clarity as a  time-frequency 

representation. This method is based on FrFT denoising, prior to analysis using Wigner Ville 

Distribution.  The method offers excellent rejection capability of cross-terms in the WVD  

and more robustness against additive white Gaussian noise,  with pronounced time-frequency 

resolution.  The approach performs equally well with non-linear chirps and CW pulses. As a 

base algorithm for active target classification, the developed WVD-FrFT combination 

algorithm , has been  proved to achieve excellent echo characterization.  

10.1.5 Fast Generation of Wide-band Ambiguity Function and Improved    

                      Matched   Filtering in Active Sonar using Fourier Mellin Transform 

 As a waveform  evaluation tool and core operator in matched filtering in active 

sonars, the importance of Ambiguity function is not small. Due to implementation problems, 

the narrow-band ambiguity function is widely used in many active sonar systems. Also, for 

narrow-band signals and low speed targets, the phenomenon of Doppler can be approximated 

by a translation in time and frequency. But, when the signal under analysis is not narrow 

band, this particular form of ambiguity function is no longer adequate. Thus there is a 
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requirement to consider the WB AF. But such broad-band functionals cannot be computed by 

standard techniques. In this thesis, the Fast Mellin transform algorithm by Ovarlez has been 

adopted for the implementing WB AF. Simulations of Matched filtering using this new 

implementation when compared with the conventional scheme using narrow-band assumption 

clearly demonstrate a 2 dB improvement in matched filtering. Also, the ambiguity diagrams 

of typical waveforms like LFM and HFM using both the equations have been plotted. The 

ambiguity diagrams generated using the WB AF implementation are  giving a more 

convincing and realistic picture, when compared to the Narrow-band ambiguity diagrams.  

Table 10.1 – Summary of Results 

 

10.2 Scope For Further Investigations 

The thesis reports  the results of the research work carried out on the application  of 

time-frequency methods for improving the performance of the sonar systems. But this does 

not foreclose  further work  that can be carried out. The present thesis has picked some of the 

pebbles form the vast shore lines of Signal Processing techniques for improving the sonar 

performance and many more are likely to be present. Some of the possible areas for further 

studies are suggested below. 

FrFT equations for non-linear chirps are not available in literature. So, in the 

simulations of this thesis, the equation for linear chirps has been adopted for non-linear chirps 

as well. However, to cater for the spread of FrFT peaks of non-linear chirps, more bins have 

been retained during the IFrFT operation in the chirp extraction procedure. Chris Capus et 

al[87] recommends subdividing non-linear chirps into sections and then using the equation of 

Sl. 

No. 

Type 

Of 

Sonar 

Function 
Time- 

Frequency 

Method 

Performance 

Improvement 

1 Active Sonar Detection FrFT  3 dB 

2 Intercept Sonar Parameter Estimation FrFT 11 dB 

3 Passive Sonar Transient Detection Wavepacket(lifting  scheme 6 dB 

4 Active Sonar Echo Characterisation WVD and FrFT 7 dB 

5 Active Sonar Fast Computation of   

WB AF 

WB AF(using FMT) 2  dB 



   
                                                                                              Summary & Conclusions 

 

165 

linear chirps. But, a more precise expression for non-linear chirp processing can yield better 

results. This is an open problem which requires further investigation.  

The echo characterization method proposed in the present thesis can be used as the 

base algorithm for further target classification using standard classification algorithms.  The 

active classification is  one area which is very much essential in the new generation sonars, 

where a lot more remains to be done. 

In addition to the TFMs  that have been  have explored,  there are numerous  others that 

have been developed over the last fifty years. Cohen [15] has introduced a general form for 

representing all bilinear TFRs which facilitates us with the design of the desired TFRs. Three 

prominent members of Cohen class are  Choi-William Distribution, Cone-shaped Distribution 

and Signal dependent TFM. The potential of these distributions in sonars is worth exploring. 

Signal waveform design is a very important step in active sonar system design. The 

signal waveform not only decides the signal processing method, but also affects the 

performance of detection, estimation, interference resistance and target tracking. Theoretical 

analysis is therefore the solution. That is, to synthesize the waveform from the ambiguity 

characteristics. These new classes of waveforms can provide superior reverberation 

processing and other desirable properties compared to the conventional CW and FM 

waveforms, thereby enhancing the performance of active sonars in reverberation-limited 

conditions. 

********************** 
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