

Home Search Collections Journals About Contact us My IOPscience

Invariant density for a class of initial distributions under quadratic mapping

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1985 J. Phys. A: Math. Gen. 18 L1021

(http://iopscience.iop.org/0305-4470/18/16/005)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 117.211.83.202

The article was downloaded on 14/11/2011 at 07:08

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Invariant density for a class of initial distributions under quadratic mapping

V M Nandakumaran

Department of Physics, University of Cochin, Cochin 682022, Kerala, India

Received 5 August 1985

Abstract. For the discrete-time quadratic map $x_{t+1} = 4x_t(1-x_t)$ the evolution equation for a class of non-uniform initial densities is obtained. It is shown that in the $t \to \infty$ limit all of them approach the invariant density for the map.

Recently Falk (1984) has studied the evolution of a uniform probability density distribution towards an invariant density for a discrete-time quadratic map. He considered an initial density r_0 which is uniform over the interval (0, 1) and showed that under the quadratic map

$$x_{t+1} = 4x_t(1 - x_t) \tag{1}$$

 r_0 approaches the invariant density

$$r(x) = 1/\pi [x(1-x)]^{1/2}$$
 (2)

(Ulam and von Neumann 1947) associated with the map. That is

$$\lim_{t\to\infty}r_t(x)=r(x).$$

In this letter we show that for the above quadratic map there exists a class of initial non-uniform densities all converging towards the invariant density (2) in the limit $t \to \infty$.

We consider a non-uniform initial density of the form

$$r_0(x) = (1/\beta(n+1, n+1))x^n(1-x)^n, \qquad 0 < x < 1$$
(3)

where

$$\beta(n+1, n+1) = \int_0^1 x^n (1-x)^n dx$$
 (4)

is the β function.

Equation (1) can be considered as defining a transformation between two random variables x_t and x_{t+1} . One can then study, using standard methods (Papoulis 1965), how the probability distribution changes under the transformation. It can easily be shown that $r_t(x)$, the distribution at time t satisfies an evolution equation of the form

$$r_{t+1}(x) = \left[1/4(1-x)^{1/2}\right](r_t(r_+) + r_t(r_-)) \tag{5}$$

where

$$r_{\pm} = \frac{1}{2} [1 \cdot (1 - x)^{1/2}]. \tag{6}$$

0305-4470/85/161021+03\$02.25 © 1985 The Institute of Physics

From (5) we can obtain the following set of equations:

$$r_1(x) = \frac{x^n}{(1-x)^{1/2} 2^{2n+1} \beta(n+1, n+1)}$$
 (7)

$$r_2(x) = \frac{1}{[x(1-x)]^{1/2} 2^{2n+2} \beta(n+1, n+1)} [(r_+(x))^{n+1/2} + (r_-(x))^{n+1/2}]$$
(8)

$$r_{3}(x) = \frac{1}{[x(1-x)]^{1/2} 2^{2n+3} \beta(n+1, n+1)} [(r_{+}r_{+}(x))^{n+1/2} + (r_{+}r_{-}(x))^{n+1/2} + (r_{-}r_{+}(x))^{n+1/2} + (r_{-}r_{+}(x))^{n+1/2}].$$

$$(9)$$

For general t,

$$r_t(x) = \frac{1}{[x(1-x)]^{1/2} 2^{2n+t} \beta(n+1, n+1)} \sum_{s_1, s_2, s_3 = \pm} (r_{s_1} r_{s_2} ... r_{s_t}(x))^{n+1/2}$$
 (10)

where

$$r_s(x) = \frac{1}{2} [1 + s(1 - x)^{1/2}] \tag{11}$$

with $s = \pm 1$.

Setting $x = \sin^2 \theta$ in (10) one obtains

$$(r_{s_1}r_{s_2}\dots r_{s_r}(\sin^2\theta))^{n+1/2} = (\sin\Phi)^{2n+1}$$
(12)

where

$$\Phi = \frac{\theta}{2^{t-1}} + \sum_{i=1}^{t-1} \frac{1}{2} (1+s_i) \frac{\pi}{2^j}.$$
 (13)

Now

$$(\sin \Phi)^{2n+1} = \frac{(-1)^n}{2^{2n}} \sum_{k=0}^n (-1)^k \binom{2n+1}{k} \sin(2n-2k+1)\Phi$$
 (14)

(Gradshteyn and Ryzhik 1965). Using (14) in (10) we obtain the evolution equation for $r_t(x)$

$$r_{t}(x) = \frac{(-1)^{n}}{[x(1-x)]^{1/2}\beta(n+1, n+1)2^{4n+1}} \sum_{k=0}^{n} \left\{ (-1)^{k} {2n+1 \choose k} \prod_{j=1}^{t-1} \cos \frac{(2n-2k+1)\pi}{2^{j+1}} \right. \\ \left. \times \sin \left[\frac{(2n-2k+1)\theta}{2^{t-1}} + \frac{(2n-2k+1)\pi}{2} \left(1 - \frac{1}{2^{t-1}} \right) \right] \right\}.$$
 (15)

Now we can consider the limit of $r_t(x)$ as $t \to \infty$

$$\lim_{t \to \infty} r_t(x) = \frac{1}{\pi [x(1-x)]^{1/2} 2^{4n}} \left[\frac{(-1)^n}{\beta (n+1, n+1)} \sum_{k=0}^n (-1)^k {2n+1 \choose k} \frac{1}{(2n-2k+1)} \right]. \tag{16}$$

In obtaining (16) we have used the relation

$$\prod_{j=1}^{\infty} \cos\left(\frac{x}{2^{j}}\right) = \frac{\sin x}{x}, \qquad -\infty < x < \infty.$$
 (17)

From (16) the result of Falk can be recovered by setting n = 0. When n = 1, the term

within the large square brackets becomes 24 so that

$$\lim_{t\to\infty} r_t(x) = 1/\pi [x(1-x)]^{1/2}.$$

The special case for n = 1 has been previously considered by the author (1985). When n = 2, 3, 4... the term in the large square brackets becomes $2^8, 2^{12}, 2^{16}...$ respectively. For general n it becomes 2^{4n} . Therefore for all integer values of n

$$\lim_{t\to\infty} r_t(x) = \frac{1}{\pi [x(1-x)]^{1/2}}.$$

In summary, we have shown that for the quadratic map (1) there is a class of initial distributions all evolving towards the same invariant density. This invariant density represents an 'equilibrium state' which all other 'states' of the form (3) approach asymptotically.

References

Falk H 1984 Phys. Lett. 105A 101

Gradshteyn I S and Ryzhik I M 1965 Tables of Integrals, Series and Products (New York: Academic) Nandakumaran V M 1985 Phys. Lett. A submitted for publication

Papoulis A 1965 Probability, random variables and stochastic processes (New York: McGraw-Hill)

Ulam S M and von Neumann J 1947 Bull. Am. Math. Soc. 53 1120