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Chapter 1 

Preliminaries 

 

1.1  Introduction 

 In today's technological world, the consumers are more sensitive to the 

quality and performance of the products and hence the manufacturers have to 

make sure that their products meet the expected quality. Due to the increasing 

complexity of modern day equipments and general awareness about quality and 

especially safety issues, the assessment of system performance has a significant 

role in improving the quality of products.  There are a number of measures that 

indicate the performance of a system. For non-repairable systems, reliability is an 

important performance measure.  

 Reliability is defined to be the probability that a unit or system can 

perform its intended function adequately over a specified period of time under 

stated operating conditions. In mathematical terms, the reliability of a component 

or a system at time‘t’ is defined as 

( ) ( )R t P T t= > , 

where T is the life length of the component. If ( )F t  is the cumulative distribution 

function of the failure time and ( )f t  is the corresponding probability density 

function, then the reliability function is given by, 

( ) 1 ( ) ( )
t

R t F t f u du
∞

= − = ∫ . 

Reliability is an accepted measure of system performance if we consider non-

repairable systems. However, if a system or its components are repairable, 

reliability is proved to be an incomplete measure of system performance because 

it does not consider the system maintenance. Maintainability is a measure that 

considers the maintenance of systems.  
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 Maintainability is defined as the probability that a failed system can be 

made operable in a specified interval of downtime. The downtime consists of the 

time it takes to discover that a failure exists, identify the problem, acquire the 

appropriate tools and parts, and perform the necessary maintenance actions. 

Therefore, downtime is a function of the failure detection time, repair time, 

administrative time, and the logistics time connected with the repair cycle. 

Mathematically, the maintainability function of a system is given by, 

( ) [ ]H t P tτ= ≤ , 

where ‘τ ’ is the total downtime. The maintainability function describes 

probabilistically how long a system remains in a failed state. 

 From the definitions of reliability and maintainability, it is clear that, 

reliability considers only the failure behaviours of the system and maintainability 

considers only the effects of maintenance actions. With increasing complexity and 

the resulting high operational and maintenance costs, greater emphasis has been 

placed on reducing system maintenance while improving reliability. So a measure 

that considers both the failure behaviours and the effects of maintenance actions is 

more appropriate for measuring the performance of a repairable system. In this 

regard, availability, which is a combined measure of reliability and 

maintainability, has received wide acceptance as a measure of performance of 

maintained systems. 

 Availability is defined as the probability that a system or component is 

performing its required function at a given point in time or over a stated period of 

time when operated and maintained in a prescribed manner (Ebeling, 1997). It is 

to be noted that the gain of a productive system is directly proportional to its 

availability. As a measure of performance criterion, the study of availability 

measures has a significant role in improving the effectiveness of repairable 

systems. The objective of this thesis is basically to discuss the statistical inference 

for various measures of system availability. 
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1.2  Repairable Systems 

 A system by definition can be said to be a collection of two or more 

components that have been assembled to perform one or more intended functions 

(Ascher and Feingold, 1984). It is obvious that with the passage of time, most of 

these systems may fail in the course of duty and will therefore need to be repaired 

to restore them to their intended functions.  

 A repairable system, as the name implies, is a system which can be 

restored to operating condition in the event of a failure by some maintenance 

action other than replacement of the entire system. The restoration can be done by 

any action including changing of parts, changes to adjustable settings, swapping 

of components etc. For example, a laptop computer not connected to an electrical 

power supply may fail to start if the battery is dead. In this case, replacing the 

battery with a new one may solve the problem.  A television set is another 

example of a repairable system which upon failure may be restored to satisfactory 

condition by simply replacing either the failed resistor or transistor if that is the 

cause, or by adjusting the sweep or synchronization settings. Common examples 

of repairable systems include automobiles, computers, aircrafts, industrial 

machineries etc. 

 On the contrary, non-repairable systems are those that are discarded and 

replaced by new ones when they fail to perform the intended function. For 

example, a missile is a non-repairable system when it is launched. Other examples 

of non-repairable systems include electric bulbs, batteries, transistors etc. 

However, in the real world, it is obvious that most of the industrial machineries 

and consumer products are designed to be repaired rather than replaced upon 

failures. Therefore, the study on various techniques for analysing repairable 

systems has received a significant place in the current literature. 
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1.3 Maintenance and Renewal Theory 

 For repairable systems, maintenance plays a vital role in the performance 

of a system. Maintenance is defined as all actions which have an objective to 

retain an item in, or restore it to, a state in which it can perform the required 

function. The actions include the combination of all technical and corresponding 

administrative, managerial and supervision actions (Murthy et.al., 2008). 

Maintenance can significantly affect the quality of products after they have been 

produced. Maintenance actions performed on a repairable system can be 

categorized in two ways. It may be a corrective (unscheduled) maintenance or 

preventive (scheduled) maintenance.   

 Corrective maintenance actions are unscheduled actions intended to restore 

a system from a failed state into an operating state. The actions involve repair or 

replacement of all failed parts and components necessary for successful operation 

of the system. Since a component’s lifetime is not known a priori, corrective 

maintenance is performed at unpredictable intervals. Its main objective is to 

restore the system to a satisfactory operating condition within the shortest possible 

time.  

 Preventive maintenance actions are scheduled actions carried out to 

improve equipment life and avoid any unplanned maintenance activity. It includes 

lubrication, testing, cleaning, adjusting, and minor component replacement to 

extend the life of equipment and facilities. Preventive maintenance is used to 

avoid costly effects of equipment breakdowns. The primary objective of 

preventive maintenance is to prevent the failure of equipment before it actually 

occurs. Improved system reliability, decreased cost of replacement and decreased 

system downtime are the benefits of preventive maintenance.  

 The study of repairable components and systems strongly depend on the 

model of repair or renewal involved in the maintenance process. For a repairable 
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system, the life cycle can be described by a sequence of up and down states. 

Initially the system operates until the first failure occurs and then it is repaired and 

restored to its original operating state. It will fail again after some random time of 

operation, get repaired again, and this process of failure and repair will repeat. 

Now the sequences of failure and repair times can be considered as a sequence of 

independent and non-negative random variables constituting a renewal process. 

Each time a unit fails and is restored to operating condition, a renewal is said to 

have occurred. This type of renewal process is known as an alternating renewal 

process because the state of the component alternates between an operating state 

and a repair state. One of the main assumptions in renewal theory is that the failed 

components are replaced with new ones or repaired so they are ‘as good as new’. 

1.4 Measures of System Availability 

 The definition of availability is somewhat flexible and there are various 

types of availability measures defined in the literature. A good survey and a 

systematic classification of availability measures are given in Lie et.al. (1977). 

Availability measures are classified by either the time interval of interest or the 

mechanisms for the system downtime. Based on the time interval, availability is 

classified into four categories: i) instantaneous or point availability, ii) limiting or 

steady state availability, iii) average availability, and iv) limiting average 

availability. If the mechanism for the system downtime is the primary concern, the 

availability definition is classified into three categories: i) inherent availability, ii) 

achieved availability, and iii) operational availability. 

Consider a repairable system which can be in one of two states namely, 

‘up’ and ‘down’. By ‘up’ we mean that the system is still functioning and by 

‘down’ we mean that the system is not functioning; in the latter case it is being 

repaired.  
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If we define, 

 
1     if the system is functioning at time 

( )
0 otherwise                                    

t
tξ


= 


, (1.1) 

then ( )tξ represents the status of a repairable system at time ‘t’. 

 The availability measures that depend on the time interval are primarily 

based on the above binary function ( )tξ  and some of the important measures are: 

i) The instantaneous or point availability, ( )A t , is defined as the probability that 

the  system is operational at any time, ‘t’ and is given by: 

( ) [ ( ) 1]A t P tξ= = . 

This is very similar to the reliability function, in that it gives a probability that a 

system will function at the given time, t. Unlike reliability, the instantaneous 

availability measure incorporates maintainability information. For systems which 

are required to perform a function at any random time, the point availability may 

be the most satisfactory measure. 

ii) The limiting or steady state availability, A, is the limit of the instantaneous 

availability function as time approaches infinity and is given by, 

lim ( )
t

A A t
→∞

= . 

This quantity is the probability that the system will be available after it has been 

run for a long time, and is a satisfactory measure for systems which are to be 

operated continuously. 

iii) The average availability, ( )avgA t , is the expected proportion of time in a 

specified interval (0, ]t  that the system is available for use. It represents the mean 

value of the instantaneous availability function over the period (0, ]t  and is 

expressed as: 

 
1

( ) ( )
t

avg

o

A t A u du
t

= ∫ . (1.2) 
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iv) The limiting average availability, avgA , is the average availability when 

t → ∞ and is given by: 

lim ( )avg avg
t

A A t
→∞

= . 

When it exists, limiting average availability is almost always equivalent to 

limiting availability. 

 There are different forms of the steady state availability depending on the 

definitions of uptime and downtime. Some of the important availability measures 

based on the mechanisms for the system downtime are: 

a) Inherent availability: Inherent availability is defined as the probability that a 

system, when used under stated conditions, without considering any scheduling or 

preventive actions, in an ideal support environment, will operate satisfactorily at 

any point in time as required. It excludes ready preventive-maintenance 

downtime, logistic time, and administrative downtime and is expressed as: 

i

MTBF
A

MTBF MTTR
=

+
, 

where MTBF is the mean time between failure and MTTR is the mean time to 

repair. 

b) Achieved availability: Achieved availability is very similar to inherent 

availability with the exception that preventive maintenance downtimes are also 

included. Specifically, it is the steady state availability when considering 

corrective and preventive downtime of the system. It excludes logistic time and 

administrative downtime and it can be expressed as:  

a

MTBM
A

MTBM M
=

+
, 

where MTBM is the mean time between maintenance operations and M  is the 

mean maintenance time resulting from both corrective and preventive 

maintenance actions. 
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c) Operational availability: It is the probability that a system, when used under 

stated conditions in an actual operational environment, will operate satisfactorily 

when called upon. It includes logistic time and administrative downtime and is 

expressed as: 

O

MTBM
A

MTBF MDT
=

+
, 

where MDT is the mean maintenance downtime. 

 Emphasis in this thesis is centered on the availability measures based on 

the time interval of interest. 

1.5 Inference on Availability Measures 

 Availability is a common metric to define guarantees among the vendor 

and the customer. Bergmann (1985) pointed out that during recent years buyers 

have realized the importance of good availability performance and they force the 

vendors to guarantee the availability performance.  To be ‘sure’ that the 

guarantees are fulfilled, statistical techniques for estimating the availability 

measures have to be derived. One of the objectives of this thesis is to derive some 

estimators for measuring the availability characteristics and to study their 

statistical properties. 

 The properties of the availability measures are usually studied using the 

successive failure and repair times of the system. Consider a repairable system 

which is at any time either in operation or under repair after failure. Suppose that 

the system starts to operate at time t = 0. Let { }nX  and { }nY denote the sequences 

of failure and repair times, respectively. The first operating time and repair time, 

1X  and 1Y , constitute the first cycle of the system. This behaviour is shown 

graphically in Figure 1.1. 
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Figure 1.1 Notional System Behaviour 

 Assume that { }nX  and { }nY  are independent sequences of independent 

and identically distributed (i.i.d.) non-negative random variables with common 

distribution functions (.)XF  and (.)YF  respectively. Then the sequences of failure 

and repair times constitute an alternating renewal process. Let ( )M t  be the 

renewal function associated with the sequence{ }nZ , where n n nZ X Y= +  is the 

length of the nth cycle.  

Now, the expression for the point availability ( )A t  can be written as 

( ) ( ) * ( )X XA t F t F M t= + , 

where (.) 1 (.)X XF F= −  is the survival function of the failure time.  

 Assume that (.)XF  and (.)YF  have positive mean Xµ  and Yµ . Then using 

the theory of alternating renewal process, the expression for the limiting 

availability is given by (cf. Barlow and Proschan, 1975), 

lim ( ) ( )X X Y
t

A A t µ µ µ
→∞

= = + . 

 The estimation of these availability measures has been discussed 

extensively in the literature by several authors. The nonparametric point and 

interval estimation of the point availability has been discussed by Baxter and Li 

(1994) and Li (1999) in the case of complete and censored observations 

respectively. Ouhbi and Limnios (2003) constructed a nonparametric confidence 

interval for the point availability as a special case of Semi-Markov process. Since 
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it is difficult to obtain closed form expressions for the point availability, except for 

few simple cases, in the literature more attention is being paid to the estimation of 

the limiting availability; see, for example, Mi (1995), Baxter and Li (1996), and 

Abraham and Balakrishna (2000). Parametric methods sometimes are not 

adequate for the analysis of repairable systems if the underlying distributional 

assumptions are not valid. So the inference procedures based on non-parametric 

methods are commonly used for the estimation of the availability measures due to 

their applicability and simplicity. 

1.6 Censored Data 

 A unique feature of reliability data, especially failure time data, is that 

some of the data may be censored. Censored data arise when a component’s life 

length is known to occur only in a certain period of time. In other words, a 

censored observation contains only partial information about the random variable 

of interest. In reliability context, the following types of censored data are of 

particular interest. 

Right Censoring 

 In both reliability and survival studies, right censoring is the most common 

form of censoring with lifetime data. In right censoring only lower bounds on 

lifetime are available for some individuals. Right censoring arises in certain 

situations because some individuals are still surviving at the time that the study is 

terminated. Type I and Type II censoring schemes are two different forms of right 

censoring. 

Type I Censoring 

 Censoring that occurs as a function of time is called Type I censoring. 

Type I censoring occurs if an experiment is started at a given time for a set of 

subjects or items, and the experiment is stopped at a predetermined time. For 
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example, in Type I censoring, we put n items on test and terminate the experiment 

at a pre-assigned time 0t . In this case, the data consists of the life times of items 

that failed before the time 0t , say, (1) (2) ( ), ,..., mx x x , assuming that m items failed 

before 0t , and the fact that ( )n m−  items have survived beyond 0t . Here 0t , the 

time of termination, is fixed, while m, the number of items that failed before 0t , is 

a random variable. 

Type II Censoring 

 Type II censoring occurs when an experiment is continued until a 

predetermined number of subjects under study have failed. For example, in Type 

II censoring, we put n items on test and terminate the experiment when a pre-

assigned number of items, say, r have failed. In this case the data consist of the 

life times of the r items that failed, (1) (2) ( ), ,..., rx x x  and the fact that ( )n r−  items 

have survived beyond ( )rx . Here r, the number of items that failed, is fixed, while 

( )rx , the time at which the experiment is terminated, is a random variable. 

Random Censoring  

A very simple random censoring process that is often realistic is the one in 

which each individual is assumed to have a lifetime T  and a censoring timeC , 

where T  and C  are independent, continuous random variables. Suppose n 

individuals are participated in a study. For each subject in the study, one observes 

the minimum of the survival time iT  and the censoring time iC  and knows 

whether one has observed the survival time iT  or the censoring time iC . Then, the 

observed variable will be ( ),i iY δ , where ( )min ,i i iY T C=  and ( )i i iI T Cδ = ≤ . 

Thus, the data on  n  individuals consist of the pairs ( ),i iY δ , 1,2,...,i n= . This 

censoring mechanism is known as right random censorship. 
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1.7 Some Useful Definitions and Results 

 In this section we quote some useful definitions and results which are 

frequently used in our discussion.  

Definition 1.1 (Brownian Motion) 

 A standard Brownian motion or Wiener process { }( ) :W W t t U= ∈ , such 

that ( , )U ≡ −∞ ∞  or [0, )∞ , is a stochastic process satisfying: 

(i) (0) 0W = , and [ ( )] 0E W t =  for any t; 

(ii) W has independent increments, therefore, ( ) ( )W t W u−  is independent of  

( )W u  for any 0 u t≤ ≤ . 

(iii) ( )W t  has variance t; and  

(iv) W is a Gaussian process with continuous sample paths. 

Lemma 1.1  

  Let ( )h x be a real measurable function and W be a standard Brownian 

motion process. Then 
0

( ) ( )
t

h x dW x∫  follows a normal distribution with mean 0 and 

variance 2 ( )h tσ , where 2 2

0

( ) [ ( )]
t

h t h x dxσ = ∫ . 

Proof.  See Shorack and Wellner (1986, pp. 91). 

Definition 1.2 (Brownian Bridge) 

 A standard Brownian bridge, { }0 ( ) : [0,1]W t t S∈ ≡ , is a stochastic process 

distributed as conditioned standard Brownian motion conditioned upon (1) 0W = . 

That is, a standard Brownian bridge is a Gaussian stochastic process such that    

   (i) 0[ ( )] 0E W t = ,  for all [0,1]t ∈  and  

  (ii) 0 0[ ( ) ( )] min( , )E W t W s t s ts= − ,  for all , [0,1]t s ∈ . 
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Lemma 1.2  

Suppose that the function :[0,1]h R→ is square integrable. Then 
1

0

0

( ) ( )h x dW x∫  

follows a normal distribution with mean 0 and variance 2
hσ ,  where 

 

21 1
2 2

0 0

[ ( )] ( )h h x dx h x dxσ
 

= −  
 

∫ ∫ . 

Proof.  See Shorack and Wellner (1986, pp. 92-94). 

Lemma 1.3  

 Let { ( )}nf t be a sequence of finite, nondecreasing functions on [0,  ]a  and 

let ( )f t  be a continuous, finite function on [0,  ]a  such that ( )nf t  converges 

uniformly to ( )f t  as n → ∞ . Further, let :[0, ] , 1, 2,3,...ng a R n→ = be a 

sequence of functions which converges uniformly to :[0, ]g a R→  as n → ∞ . Then 

0 0

( ) ( ) ( ) ( )
x x

n ng t df t g t df t→∫ ∫  uniformly in [0, ]x a∈  as n → ∞ , where all 

integrals are to be interpreted as Lebesgue integrals. 

Proof.  See Baxter and Li (1994). 

Lemma 1.4  

 Suppose that 1 2( , ,..., )n n n nkZ Z Z Z=  is asymptotically 1( , ),N n− ∑µµµµ  with ∑  

a covariance matrix. Let 1 2( ),  ( , ,..., )kg z z z=z z  be a real-valued function having 

a nonzero differential at = µµµµz . Put 

1
j

k

g
T

z
= ×

 ∂
 =
∂ 
 µµµµz

. Then,  

 ( ) ( )( ) ( ) , 'L
nn g Z g N T T− → ∑0µµµµ ,  

where L→  denotes convergence in distribution. 

Proof. See Serfling (1981, pp.122). 
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Lemma 1.5 (Slutsky’s Theorem) 

 If { }nX , { }nY  and { }nZ  are three sequences of random variables with 

L
nX X→ , p

nY a→  and p
nZ b→ , where ,a b  are finite constants, then 

 L
n n nX Y Z aX b+ → + , 

where L→  and p→ denote the convergence in distribution and probability 

respectively. 

Proof.  See Chow and Teicher, (1978, pp. 249). 

Definition 1.3 (m-Dependent Random Variables) 

 A sequence { }nX  of random variables is said to be m-dependent if 

( )1 2, ,..., kX X X  and ( )1, ,...n k n kX X+ + +  are independent for any k  whenever 

.n m>  

Lemma 1.6 (Central Limit Theorem for m-Dependent Sequence)  

 Let { }nX  be a stationary m-dependent sequence with ( ) 0nE X =  and 

( )2
nE X < ∞ . Then 

 ( )20,L
nnX N σ→  as n → ∞ , 

where ( ) ( )2 2
0 0

1

2 j
j

E X E X Xσ
∞

=

= + ∑ .  

Proof. See Ibragimov and Linnik (1971, pp. 370). 

Definition 1.4 (Strong Mixing Sequences)  

 A sequence { }nX  of random variables is said to be strongly mixing if 

{ }1( ) Sup ( ) ( ) ( ) : ( ) and ( ) 0k
k hh P A B P A P B A X B Xα ∞

+= ∩ − ∈ ℑ ∈ ℑ → , as h → ∞  

where ( )1 ( ) ;  1k
iX X i kσℑ = ≤ ≤  and ( )( ) ;  k h iX X i k hσ∞

+ℑ = ≥ + . 
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Lemma 1.7 (Central Limit Theorem for Strong Mixing Sequence)  

 Let { }nX  be a stationary strong mixing sequence with mixing coefficient 

( )hα , and let ( ) 0nE X =  and 
2

nE X
δ+

< ∞  for some 0δ > . If  

/(2 )

1

( )
h

hδ δα
∞

+

=

< ∞∑ , then as n → ∞ , 

 ( )20,L
nnX N σ→ , 

where ( ) ( )2 2
0 0

1

2 j
j

E X E X Xσ
∞

=

= + ∑ . 

Proof. See Ibragimov and Linnik (1971, pp. 346). 

Definition 1.5 (Uniformly Continuous in Probability) 

 A sequence { }nY  of random variables is said to be uniformly continuous in 

probability (u.c.i.p) if for every 0ε >  there is a 0δ >  for which 

{ }
0

n k n
k n

P Max Y Y
δ

ε ε+
≤ ≤

− ≥ <  for all 1.n ≥  

Lemma 1.8 (Anscombe’s Theorem)  

 If { }nY  are uniformly continuous in probability and , 0at a >  be an integer 

valued random variable for which /at a  converges to a finite positive constant c  

in probability and [ ]aN ac= , where [ ]x  denotes the greatest integer part of x . 

Then, 0
a at NY Y− →  in probability as a → ∞ . If in addition nY  converges in 

distribution to a random variable Y , then 
at

Y Y→  as a → ∞ . 

Proof. See Woodroofe (1982, pp.11). 
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1.8 Summary of the Thesis 

The discussions in previous sections reveal that there has been much 

research on the estimation of the point availability and limiting availability. 

However, the estimation of the availability measures like average availability is 

not discussed much in the literature. Also there are several occasions, where the 

existing estimation procedures for system availability are inadequate when the 

successive observations on the failure and repair times are dependent. Motivated 

by this, we propose estimators for the availability measures and establish their 

statistical properties, which are completely distribution free for the analysis of 

repairable systems.  

 The thesis is organized into seven chapters, of which the first one is an 

introductory chapter, where we discuss the basic concepts, relevance and scope of 

the study along with a review of literature.  

 Average availability is a valuable measure of performance of a repairable 

system as it captures availability behavior over a finite period of time. However, 

the estimation of this quantity is not yet discussed in the literature. Motivated by 

this, in Chapter 2 we consider the nonparametric estimation of the average 

availability of a system over the interval [0,  ]t . The nonparametric estimation of 

the average availability under three different sampling schemes is discussed in this 

Chapter. First, we consider the estimation in the case of complete observations, in 

which the sample consists of the failure and repair times of ‘n’ complete cycles of 

system operation. Next, we discuss the estimation when the observations on the 

failure and repair time are subject to right censorship. Finally, we study the 

estimation when the process is observed continuously over a fixed period [0, ]T , 

in which the number of failures and number of repairs completed before the time 

‘T’ are random variables. In each case, the asymptotic properties of the estimators 

are studied and they are shown to be consistent and asymptotically normal. A 
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simulation study is also conducted in order to assess the performance of the 

proposed estimators in each case. The simulation study shows that the proposed 

estimators perform well even for reasonable sample sizes. 

 In the context of repairable system, another important measure of 

performance of a system is the interval reliability. The interval reliability, ( , )R x t , 

is defined as the probability that at a specified time ‘t’, the system is operating and 

will continue to operate for an interval of duration ‘x’. In the literature we have 

not come across any work on the estimation of the interval reliability. So in 

Chapter 3, we discuss the nonparametric estimation of the interval reliability when 

(i) the data are complete, (ii) the data are subject to right censorship, and (iii) the 

process is observed up to a specified time ‘T’. In each case the proposed 

estimators of the interval reliability are proved to be consistent and asymptotically 

normal. A simulation study is carried out to assess the performance of the 

estimators and the proposed method is also applied for analysing a real life data. 

 As time ‘t’ progresses, the interval reliability, ( , )R x t , converges to a 

positive quantity called the limiting interval reliability. If we want to know the 

extent to which the system will survive an interval of duration after it has been run 

for a long time, the limiting interval reliability is a useful measure. In Chapter 4, 

we consider the nonparametric estimation of the limiting interval reliability when 

the failure times and repair times form a sequence of i.i.d. bivariate random 

variables.  Asymptotic properties of the estimators under the three sampling 

schemes are studied and a simulation study is carried out to assess the 

performance of the estimators. A testing of hypothesis procedure for the limiting 

interval reliability is also discussed in this Chapter. 

One of the major limitations of the existing approaches in the study of 

system availability is the assumption of independence among successive 

sequences of failure and repair times. When the system is operating in a random 
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environment it is natural to observe some dependence among the successive 

sequence of failure and repair times. Several non-Gaussian time series models 

such as first order random coefficient autoregressive models are discussed in the 

literature for modeling life time data; see for example Lawrance and Lewis 

(1977), Gaver and Lewis (1980), and Sim (1992). Inspired by this, the availability 

behavior of some stationary dependent sequences is discussed in Chapter 5. We 

derive the expression for the point availability when the successive sequences of 

failure and repair times are generated by stationary dependent sequences. The 

availability behavior of repairable systems when the failure and repair times are 

generated by first order Exponential Moving Average (EMA1) process and first 

order Exponential Autoregressive (EAR(1)) process are also discussed in this 

Chapter. 

In the case of repairable systems, estimation of the availability measures is 

not discussed much when the successive failure and repair times are generated by 

some stationary dependent sequences except those considered by Abraham and 

Balakrishna (2000). Motivated by this, the nonparametric estimation of the 

limiting interval reliability for stationary strong mixing sequences is discussed in 

Chapter 6. The proposed estimators of the limiting interval reliability are proved 

to be consistent and asymptotically normal when (i) the data are complete, (ii) the 

data are subject to right censorship and (iii) the process is observed over a fixed 

period. A simulation study is reported to assess the performance of the estimators 

and it shows that the assumption of independence among successive sequences of 

failure and repair times underestimates the variance of the estimators significantly 

if the true process is stationary dependent. Also we extend the estimation results to 

the case of a coherent system of ‘k’ independent functioning components in order 

to consider complex systems. 

Finally in Chapter 7, we discuss the sequential interval estimation of the 

limiting interval reliability when the failure and repair times of a system form a 
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stationary strong mixing bivariate sequence of random vectors. It is shown that the 

confidence interval is asymptotically consistent and the proposed stopping rule is 

asymptotically efficient as the width of the interval approaches zero. The general 

theory is applied to a stationary first order bivariate exponential autoregressive 

(BEAR(1)) sequence and the resulting stopping rule is compared with the stopping 

rule under the i.i.d. set-up. It is observed that when the true model is BEAR(1), the 

assumption of an i.i.d. sequence underestimates the sample size and leads to poor 

coverage probability. A simulation study also confirmed the same result. Finally, 

certain open problems and plan for future study are presented. 

 



__________________________________________________________________ 
The results in this chapter are published in the journal Communication in Statistics- 

Theory and Methods (See Balakrishna and Mathew, 2009). 

Chapter 2 

 

Nonparametric Estimation of the Average 

Availability 

 

2.1 Introduction 

The average availability of a repairable system is defined as the expected 

proportion of time that the system is operating in the interval [0,  ]t . It represents 

the mean value of the point availability function over the interval [0,  ]t  and hence 

it captures the availability behavior of a system over a finite period of time. So, in 

the context of repairable systems, average availability is a valuable measure of 

system performance. Even though, there are several works available on the 

estimation of the point and limiting availability, the estimation of the average 

availability is not yet discussed in the literature. Motivated by this, in the present 

chapter, we discuss the nonparametric estimation of the average availability. 

Consider a one-unit repairable system which is at any time either in 

operation or under repair after failure. Suppose that the system starts to operate at 

time t = 0. Let { }nX  and { }nY  be two independent sequences of independent and 

identically distributed (i.i.d.) non-negative random variables representing the 

failure and repair times of the system with common distribution functions (.)XF  

and (.)YF  respectively. Assume that (.)XF  and (.)YF  have positive means Xµ  and 

Yµ  and finite variances 2
Xσ  and 2

Yσ  respectively. Define n n nZ X Y= + , for 

1,2,...n = . Let (.)ZF  be the distribution function of the sequence { }nZ  having 

mean Z X Yµ µ µ= + .  
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Let
1

n

n i
i

S Z
=

=∑ and define ( ) { : }nN t Sup n S t= ≤ . Then ( )N t  counts the 

number of cycles completed in the interval [0,  ]t  and ( ) [ ( )]M t E N t=  is the 

renewal function associated with the sequence { }nZ . 

From the definition of the average availability (cf. Equation 1.2), it follows 

that ( )avgA t  is not a probability, but represents the expected proportion of 

“uptime” over the interval [0,  ]t  of system operation.  

At any time ‘t’, we have ( ) ( ) 1N t N tS t S +≤ <  and hence ( ) ( ( ) 1)Z ZM t t M tµ ≤ < + µ . 

Assuming that the system is operating at time t = 0, ( )tα , the average up time in 

the interval [0,  ]t  can be written as  

 
( )       if   ( ) ( )         

( )
( ( ) 1)   if   ( ) ( ( ) 1)

Y Z Z X

X Z X Z

t M t M t t M t
t

M t M t t M t

− µ µ ≤ < µ + µ
α = 

+ µ µ + µ ≤ < + µ
.    

If we define the indicator function, ( ) { ( ) }Z Xt I M t tλ µ µ= + ≤ , we can write 

  ( ) ( ){( ( ) 1) } (1 ( )){ ( ) }X Yt t M t t t M tα = λ + µ + − λ − µ .    

Now the average availability can be expressed as: 

 
1

( ) [ ( ){( ( ) 1) } (1 ( )){ ( ) }].avg X YA t t M t t t M t
t

= λ + µ + − λ − µ  (2.1)  

Thus the average availability can be written in terms of the renewal function ( )M t  

and the mean failure and repair times, Xµ  and Yµ .  

 If the system is under repair at time t = 0, then the expression for average 

up time takes the form: 

*( ) ( ){ ( ( ) 1) } {1 ( )} ( )Y Xt t t M t t M tα = η − + µ + − η µ , 

where ( ) { ( ) }Z Yt I M t tη µ µ= + ≤  and hence the expression for the average 

availability will be 

* 1
( ) [ ( ){ ( ( ) 1) } {1 ( )} ( ) ]avg Y XA t t t M t t M t

t
= η − + µ + − η µ .    
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As t → ∞ , the estimators of ( )avgA t  and * ( )avgA t  have similar asymptotic 

properties and their proofs are almost identical. Hence in this chapter, we present 

the asymptotic properties of the estimators of ( )avgA t  defined by (2.1).  

 The nonparametric estimation of the average availability under three 

different sampling schemes is discussed in this Chapter. In Section 2.2, we discuss 

the nonparametric estimation of ( )avgA t  based on complete observations. Section 

2.3 discusses the estimation in the case of censored observations and in Section 

2.4, we consider the estimation based on continuous observation over a fixed 

period.  Some numerical illustrations are presented in Section 2.5. An application 

of the proposed method is illustrated using a compressor failure data in Section 

2.6. Finally, Section 2.7 summarizes major conclusions of the study.   

2.2 Estimation in the case of Complete Observations 

 Suppose that observations on the failure and repair times of ‘n’ complete 

cycles of system operation, 1 1 2 2( , ), ( , ),..., ( , )n nX Y X Y X Y  are available.  

Let ˆ ( )XF t  and ˆ ( )YF t  denote the empirical distribution function of the random 

variables X and Y respectively. By definition, 

1

1ˆ ( ) { }
n

X i
i

F t I X t
n =

= ≤∑  and 
1

1ˆ ( ) { }
n

Y i
i

F t I Y t
n =

= ≤∑ .  

Then a natural nonparametric estimators of Xµ  and Yµ  are given by 

           
0

ˆˆ ( )X XxdF x Xµ
∞

= =∫  and 
0

ˆˆ ( )Y YxdF x Yµ
∞

= =∫  respectively. 

By definition, the renewal function associated with the sequence{ }nZ  is given by, 

 ( )

1

( ) ( )k
Z

k

M t F t
∞

=

=∑ ,  

with ( ) ( ) [ ]k
Z kF t P S t= ≤  is the k-fold convolution of ( )ZF t  and ( ) ( )Z X YF t F F t= ∗ , 

where ‘∗ ’ denotes the convolution operator. 
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 Nonparametric estimation of the renewal function has been discussed by 

many authors; see, for example, Frees (1986), Grubel and Pitts (1993), Harel et al. 

(1995). For fixed t, Baxter and Li (1994) proposed a method for constructing 

nonparametric confidence intervals for the renewal function which is easier to 

compute than that of Frees (1986).  

Thus, an estimator for ( )M t  is given by,  

 ( )

1

ˆ ˆ( ) ( )k
n Z

k

M t F t
∞

=

=∑ , (2.2) 

where ˆ ˆ ˆ( ) ( )Z X YF t F F t= ∗ .     

We propose an estimator for the average availability as 

 
ˆ ( )ˆ ( ) n

avg

t
A t

t

α
= , (2.3)   

where ˆ ˆˆ ˆˆ ˆ ˆ( ) ( ){( ( ) 1) } (1 ( )){ ( ) }n n n X n n Yt t M t t t M tα λ µ λ µ= + + − − , 

with ˆ ˆ ˆ ˆ( ) { ( ) }n n Z Xt I M t tλ µ µ= + ≤ and ˆ ˆ ˆ
Z X Yµ µ µ= + .  

 The strong consistency of the proposed estimator is established in the 

following theorem. 

Theorem 2.1 

 As n → ∞ , ˆ ( ) ( )avg avgA t A t→  almost surely (a.s.). 

Proof.  Baxter and Li (1994) studied asymptotic properties of the estimator ˆ ( )nM t  

defined by (2.2) and shown that ˆ ( )nM t ( )M t→  (a.s.) as n → ∞ .  

 By the strong law of large numbers, we have ˆ
X Xµ µ→ , ˆ

Y Yµ µ→  and 

ˆ
Z Zµ µ→  (a.s.) as n → ∞ .  

 Using the fact that ˆ ˆ ˆ( ) ( )n Z X Z XM t M tµ µ µ µ+ → +  (a.s.), we can conclude 

that ˆ ( ) ( )n t tλ λ→  (a.s.) as n → ∞ .  

Thus, ˆ ( ) ( )n t tα α→  (a.s.) and hence ˆ ( )avgA t → ( )avgA t  (a.s.) as n → ∞ . 
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 In order to prove the weak convergence of ˆ ( )avgA t  we use the following 

lemma. 

Lemma 2.1  Let F be a distribution function with (0) 0F = , and let 1 2, ,..., nX X X  

denote a random sample from F. Let Z D∈ be of bounded variation, where D 

denotes the set of right continuous functions with left-hand limits on [0,  1]. Then 

as n → ∞ , the process ˆ{ ( )( )}nZ F F t∗ −  converges weakly to 0{ ( )( )}Z W F t∗ o  

in D, where { }0 ( ),0 1W t t≤ ≤ denote a Brownian bridge and o  denote functional 

composition. 

Proof. See Harel et al. (1995). 

 For establishing the weak convergence of ˆ ( )avgA t , let us define 

ˆ
X X Xµ µ µ∆ = − , ˆ

Y Y Yµ µ µ∆ = − , ˆ
Z Z Zµ µ µ∆ = − , ˆ( ) ( ) ( )nM t M t M t∆ = −  and 

ˆ( ) ( ) ( )nt t tλ λ λ∆ = − .  

Now,  

 ˆ ( ) ( )n t tα α− = ˆ ˆˆ ˆˆ ˆ( )( ( ) 1) (1 ( )){ ( ) }n n X n n Yt M t t t M tλ µ λ µ+ + − −  

     [ ( )( ( ) 1) (1 ( )){ ( ) }]X Yt M t t t M t− λ + µ + − λ − µ  

                    = [ ( ) ( ) ] [ ( ) ] [ ( ) ]X X Yt M t t M tλ µ λ µ µ∆ + ∆ − ∆  

   ( ) [ ( ) ( ) ]Yt t t M tλ λ µ− ∆ + ∆ . 

Letting ˆ ˆ[ ] n nAB A B AB A B A B B A∆ = − = ∆ ∆ + ∆ + ∆ , we can write 

ˆ ( ) ( )n t tα α− = ( )[ ( ) 1] ( )[1 ( )]X Yt M t M t tλ µ λ µ+ ∆ − − ∆  

 1 2[ ( ) (1 ( )) ] ( ) ,X Yt t M t R Rλ µ λ µ+ − − ∆ + +  (2.4) 

where  

1 [( ( ) 1) ( ( ) )] ( )X YR M t t M t tµ µ λ= + − − ∆  and  

2 [ ( ) 1] ( ) ( ) [ ( ) ]X XR M t t M t tµ λ λ µ= + ∆ ∆ + ∆ ∆   

[1 ( )] ( ) ( ) [ ( ) ]Y Yt M t t M tλ µ λ µ− − ∆ ∆ + ∆ ∆ .  
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We have, 

 ˆ( ) ( ) ( )nM t M t M t∆ = −  

  ( )( ) ( )

1

ˆ ( )k k
Z Z

k

F F t
∞

=

= −∑   

  ( )( 1) ( 2) ( 2) ( 1)

1

ˆ ˆ ˆ ˆ( ) ( )k k k k
Z Z Z Z Z Z Z Z

k

F F F F F F F F t
∞

− − − −

=

= − ∗ + ∗ + + ∗ +∑ L  

  ˆ ( )Z nF M M t= ∆ ∗ ∗  

  ( )ˆ ( )Z nF M M M M t= ∆ ∗ + − ∗  

  ( ) ( )Z ZF M M t F M M t= ∆ ∗ ∗ + ∆ ∗∆ ∗  

            ˆ( ) ( ).Z Z Z nF M M t F F M M t= ∆ ∗ ∗ + ∆ ∗ ∆ ∗ ∗  (2.5) 

But, 

  ˆ ˆ( ) ( ) ( )Z X Y X YF t F F t F F t∆ = ∗ − ∗  

  X Y X Y Y XF F F F F F= ∆ ∗ ∆ + ∗ ∆ + ∗ ∆ .  

Thus, 

ˆ( ) [ ] ( ) ( )X Y X Y Y X Z Z nM t F F F F F F M M t F F M M t∆ = ∆ ∗ ∆ + ∗ ∆ + ∗ ∆ ∗ ∗ + ∆ ∗ ∆ ∗ ∗ . 

Substituting for ( )M t∆  in (2.4), we get, 

  ˆ ( ) ( )n t tα α−  = ( )[ ( ) 1] [ ( ) (1 ( )) ] ( )X X Y Y Xt M t t t F M M F tλ µ λ µ λ µ+ ∆ + − − ∗ ∗ ∗ ∆  

           +[ ( ) (1 ( )) ] ( ) ( )[1 ( )]X Y X Y Yt t F M M F t M t tλ µ λ µ λ µ− − ∗ ∗ ∗ ∆ − − ∆  

                        1 2 3R R R+ + + , 

where      

3
ˆ[ ( ) (1 ( )) ][ ( ) ( )]X Y X Y n Z ZR t t M M F F t M M F F tλ µ λ µ= − − ∗ ∗ ∆ ∗ ∆ − ∗ ∗ ∆ ∗ ∆ . 

Introducing the notations, 

1

( )[ ( ) 1]
( )

t M t
K t

t

λ +
= , 2

[ ( ) (1 ( )) ]
( ) X Yt t

K t
t

λ µ λ µ− −
= , 3

( )[1 ( )]
( )

M t t
K t

t

λ−
= , 

( ) ( )X XJ t F M M t= ∗ ∗ , and ( ) ( ),Y YJ t F M M t= ∗ ∗  

we can write 
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   ˆ[ ( )( ) ( )]avg avgn A t t A t− = 1 2[ ( ) ( ) ( )]X Y Xn K t K t J F tµ∆ + ∗ ∆  

                  2 3[ ( ) ( ) ( ) ]X Y Yn K t J F t K t µ+ ∗ ∆ − ∆ 1 2 3( )
n

R R R
t

+ + + . 

       1 2 3( )n I I I= + + , 

where 1 1 2( ) ( ) ( )X Y XI K t K t J F tµ= ∆ + ∗ ∆ , 2 2 3( ) ( ) ( )X Y YI K t J F t K t µ= ∗ ∆ − ∆  and  

 3 1 2 3

1
( )I R R R

t
= + + . (2.6)   

For every 0ε > ,  

 [| ( ) | ] [| ( ) | / ]P n t P t nλ ε λ ε∆ > = ∆ >  

       [| ( ) | 1]P tλ= ∆ = , as | ( ) |tλ∆  can take only values 0 and 1. 

       0→  as n → ∞ , since ˆ ( ) ( )n t tλ λ→  (a.s.) as n → ∞ . 

Thus 1 0nR →  in probability. 

Since 2R  contains only terms of the form A B∆ ∆ , on the similar lines it can be 

shown that 2 0nR →  in probability as n → ∞ . 

 Also every term in 3R  contains a convolution of two differences such 

as A B∆ ∗ ∆ . By writing ˆ
nn A B n A B n A B∆ ∗∆ = ∆ ∗ − ∆ ∗ , it is easy to see that 

the two terms on the right-hand side converge almost surely to the same limit by 

using Lemma 1.3 and hence 3 0nR →  in probability. Thus 3 0nI →  in 

probability as n → ∞ . 

Consider, 

 1 1 2[ ( ) ( ) ( )]X Y XnI n K t K t J F tµ= ∆ + ∗ ∆  

     1 2

0 0

[ ( ) ( ) ( ) ( ) ( )]
t

X Y Xn K t xd F x K t J t x d F x
∞

= ∆ + − ∆∫ ∫  

    1 2

0

[ ( ) ( ) ( )] ( )Y Xn K t x K t J t x d F x
∞

= + − ∆∫  

    0
1 2

0

[ ( ) ( ) ( )] ( )( )L
Y X XK t x K t J t x d W F x

∞

→ + −∫ o , by Lemma 2.1. 
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1

1 1 0
1 2

0

[ ( ) ( ) ( ) ( ( ))] ( )X Y X XK t F y K t J t F y dW y− −= + −∫ , by change of variable.  

As an application of Lemma 1.2, 1nI  follows a normal distribution with mean 0 

and variance 2
1 ( )tσ  as n → ∞ , where 

1
2 1 1 2
1 1 2

0

( ) [ ( ) ( ) ( ) ( ( ))]X Y Xt K t F y K t J t F y d yσ − −= + −∫                     

  

21
1 1

1 2

0

[ ( ) ( ) ( ) ( ( ))]X Y XK t F y K t J t F y d y− −
 

− + − 
 
∫  

    2
1 2

0

[ ( ) ( ) ( )] ( )Y XK t x K t J t x dF x
∞

= + −∫  

2

1 2

0

[ ( ) ( ) ( )] ( )Y XK t x K t J t x dF x
∞ 

− + − 
 
∫  

2

2 2
1

0 0

( ) ( ) ( )X XK t x dF x xdF x
∞ ∞  
 = −  
   
∫ ∫  

 

2

2 2
2

0 0

( ) ( ) ( ) ( ) ( )
t t

Y X Y XK t J t x dF x J t x dF x
  
 + − − − 
   
∫ ∫  

 1 2

0 0 0

2 ( ) ( ) ( ) ( ) ( ) ( ) ( )
t t

Y X X Y XK t K t J t x xdF x xdF x J t x dF x
∞ 

+ − − − 
 
∫ ∫ ∫  

Thus,   

  [ ]
22 2 2 2 2

1 1 2( ) ( ) ( ) ( ) ( )X Y X Y Xt K t K t J F t J F tσ σ  = + ∗ − ∗
 

 

                 [ ]1 22 ( ) ( ) ( ) ( ) ,Y X X Y XK t K t J V t J F tµ+ ∗ − ∗  (2.7) 

where 
0

( ) ( )
t

X XV t xdF x= ∫ . 

Similarly, it can be shown that  

2
2 2(0, ( ))LnI N tσ→  as n → ∞ , 

where  

[ ]
22 2 2 2 2

2 2 3( ) ( ) ( ) ( ) ( )X Y X Y Yt K t J F t J F t K tσ σ = ∗ − ∗ +
 

 

 [ ]2 32 ( ) ( ) ( ) ( ) ,X Y Y X YK t K t J V t J F tµ− ∗ − ∗  (2.8)            
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with 
0

( ) ( )
t

Y YV t xdF x= ∫ . 

 Since XF∆  and YF∆  are independent, 1I  and 2I  are also independent. This 

leads to the following theorem. 

Theorem 2.2   

 For any fixed ‘t’, as n → ∞ , 2ˆ[ ( ) ( )] (0, ( ))L
avg avgn A t A t N tσ− → , where 

L→  denotes convergence in distribution and  

 2 2 2
1 2( ) ( ) ( ),t t tσ σ σ= +  (2.9) 

with 2
1 ( )tσ  and 2

2 ( )tσ  are given by (2.7) and (2.8) respectively. 

 Let 2 2

1

1
( )

1

n

X i
i

S X X
n =

= −
−
∑ and 2 2

1

1
( )

1

n

Y i
i

S Y Y
n =

= −
−
∑  be estimators of 2

Xσ  

and 2
Yσ  respectively. Then an estimator 2ˆ ( )tσ  of 2 ( )tσ  can be obtained on 

replacing 2 2,  ,  ,  ,  (.),  (.)X Y X Y X YF Fµ µ σ σ , and (.)M  by 2 2 ˆ,  ,  ,  ,  (.),X Y XX Y S S F  

ˆ (.)YF , and ˆ (.)nM  respectively in (2.9). Using Lemma 1.3, it can be shown that 

2 2ˆ ( ) ( )t tσ σ→  almost surely as n → ∞ .  

Thus, given a significance level (0,1)α ∈ , an approximate large sample 

100(1 )%α−  confidence interval for ( )avgA t  is 

/ 2 / 2

ˆ ˆ( ) ( )ˆ ˆ( ) ( ) ( )avg avg avg

t t
A t z A t A t z

n n
α α

σ σ
− ≤ ≤ + , 

where / 2zα   denotes the upper / 2α  quantile of the standard normal distribution. 

2.3 Estimation in the case of Censored Observations 

 Suppose that observations on the failure and repair time are subject to right 

censorship. In practice, a censored failure time occurs when the system is removed 

before failure for some preventive maintenance and a censored repair time occurs 

when the repair work is terminated before the repair is completed due to some 
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technical reason; for example, see Baxter and Li (1996) and Li (1999). Let 

1 2 1 2, ,...,  ( , ,..., )n nX X X Y Y Y  denote the failure (repair) times and 

1 2 1 2, ,...,  ( , ,..., )n nC C C D D D  denote the random censoring times associated with 

the failure (repair) times having distribution functions ( )X YF F  and ( )C DG G  

respectively. Suppose that the four random sequences { },  { },  { }i i iX Y C  and { }iD  

are mutually independent and continuous. Under the censoring model, instead of 

observing iX , we observe the pair ( , ),  1,2,...,i iT i nδ = , where min( , )i i iT X C=  

and ( )i i iI X Cδ = ≤ . Let ( ) 1 (1 ( ))(1 ( ))X X CH t F t G t= − − −  be the distribution 

function of iT  and inf{ : ( ) 1}X Xx H xτ = = ≤ ∞  be the least upper bound for the 

support of (.)XH .  

 With right-censored data, the most commonly used nonparametric 

estimator of ( )XF t  is the product limit estimator (PLE) (Kaplan and Meier, 1958) 

( )( )

( )

,
1

ˆ ( ) 1 1
1

iI T t
n

i

X c
i

F t
n i

δ
≤

=

 
= − − 

− + 
∏ for ( )nt T≤ ,  

 = 1  for  ( )nt T> , 

where (1) (2) ( )... nT T T≤ ≤ ≤  are the order statistics of 1 2, ,..., nT T T  and ( )iδ  denotes 

the concomitant associated with ( )iT .  

 Similarly, we can construct the product limit estimator ,
ˆ ( )Y cF t  of ( )YF t . 

Let ( ) 1 (1 ( ))(1 ( ))Y Y DH t F t G t= − − −  and inf{ : ( ) 1}Y Yx H xτ = = . 

Then, a natural nonparametric estimator of ( )X Yµ µ  is  

, ,

0

ˆˆ ( )X c X cF t dtµ
∞

= ∫     , ,

0

ˆˆ ( )Y c Y cF t dtµ
∞ 

= 
 

∫ ,  

where 1X XF F= −  ( 1 )Y YF F= − . 

 Let ,
ˆ ( )c nM t  be an estimator of the renewal function ( )M t  obtained by 

replacing (.)XF  and (.)YF  with ,
ˆ (.)X cF  and ,

ˆ (.)Y cF  respectively.  
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Then, 

 ( )
, ,

1

ˆ ˆ( ) ( ),k
c n Z c

k

M t F t
∞

=

=∑  (2.10) 

where , , ,
ˆ ˆ ˆ( ) ( )Z c X c Y cF t F F t= ∗ .  

In this case a nonparametric estimator of ( )avgA t  is given by 

 ,

,

ˆ ( )ˆ ( ) ,c n

avg c

t
A t

t

α
=  (2.11) 

where , , , , ,
ˆ ˆˆ ˆˆ ˆ ˆ( ) ( ){( ( ) 1) } (1 ( )){ ( ) }c n c c n X c c c n Y ct t M t t t M tα λ µ λ µ= + + − − , 

with , , , ,
ˆ ˆ ˆ ˆ( ) { ( ) }c n c n Z c X ct I M t tλ µ µ= + ≤  and , , ,

ˆ ˆ ˆ
Z c X c Y cµ µ µ= + . 

 Before going to study the asymptotic properties of the estimator ,
ˆ ( )avg cA t , 

we shall define ,

0

( )
X

X c XF t dt
τ

µ = ∫ , ,

0

( )
Y

Y c YF t dt
τ

µ = ∫ ,  , ,( ) { ( ) }c Z c X ct I M t tλ µ µ= + ≤ , 

, , ,Z c X c Y cµ µ µ= +  and  , ,( ) ( ){( ( ) 1) } (1 ( )){ ( ) }c c X c c Y ct t M t t t M tα λ µ λ µ= + + − − . 

Theorem 2.3 

  As n → ∞ , , ,
ˆ ( ) ( )avg c avg cA t A t→  almost surely for t τ< , where 

min( , )X Yτ τ τ=  and , ( ) ( ) /avg c cA t t tα= . 

Proof. Li (1999) discussed the nonparametric estimation of the renewal function 

defined by (2.10) with right censored data and proved that ,
ˆ ( )c nM t ( )M t→  almost 

surely as n → ∞ .   

 Asymptotic properties of the mean survival time for right censored data 

have been discussed by Susarala and Van Ryzin (1980) and Stute and Wang 

(1994). Based on their results it is easy to see that , ,
ˆ

X c X cµ µ→  (a.s.) as n → ∞ , 

where ,X cµ  may not be equal to Xµ  since the data ( , ), 1, 2,...,i iL i nδ =  provide no 

information about (.)XF  beyond Xτ . Similarly , ,
ˆ

Y c Y cµ µ→  (a.s.) as n → ∞ .  
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Then, for t τ< , it can be shown that , , , , ,
ˆ ˆ ˆ( ) ( )c n Z c X c Z c X cM t M tµ µ µ µ+ → +  (a.s.) 

and hence ,
ˆ ( ) ( )c n ct tλ λ→  (a.s.) as n → ∞ .  

Thus, ,
ˆ ( ) ( )c n ct tα α→  (a.s.) leads to the conclusion that , ,

ˆ ( ) ( )avg c avg cA t A t→  

almost surely as n → ∞ . 

Remark: If ,  ,  X Y CF F G  and DG  have unbounded support, then X Yτ τ= = ∞ and 

hence , ( ) ( )avg c avgA t A t= . Also if the least upper bound for the support of XF  and 

YF  are less than or equal to Xτ  and Yτ  respectively, even if they have bounded 

support, , ( ) ( )avg c avgA t A t= , as , , ( )X c X Y c Yµ µ µ µ= = . 

For proving the weak convergence of ,
ˆ ( )avg cA t  we use the following lemma.  

Lemma 2.2 As n → ∞ , { ( ),  }c X Xn F t t τ∆ <  ( ){ ( ),  }c Y Yn F t t τ∆ <  converges 

weakly to { ( )( )( ),  }X X X XF t W U t t τ<o  ( ){ ( )( )( ),  }Y Y Y YF t W U t t τ<o , where 

{ }( ),  0XW t t ≥  and { }( ),  0YW t t ≥  are two independent standard Brownian 

motions and 

0 0

( ) ( )
( )     ( )

( ) ( ) ( ) ( )

t t

X Y
X Y

X X Y Y

dF x dF x
U t U t

F x H x F x H x

 
= = 

 
∫ ∫ . 

Proof. See Fleming and Harrington (1990, pp.235). 

In order to establish the weak convergence of ,
ˆ ( )avg cA t , we introduce the 

notations ,
ˆ( ) ( ) ( )c X X c XF t F t F t∆ = − , ,

ˆ( ) ( ) ( )c Y Y c YF t F t F t∆ = − , , ,
ˆ

c X X c X cµ µ µ∆ = − , 

, ,
ˆ

c Y Y c Y cµ µ µ∆ = − ,  ,
ˆ( ) ( ) ( )c c nM t M t M t∆ = −  and ,

ˆ( ) ( ) ( )c c nt t tλ λ λ∆ = − . 

Let us denote  

1,

( )[ ( ) 1]
( ) c

c

t M t
K t

t

λ +
= , , ,

2,

[ ( ) (1 ( )) ]
( ) c X c c Y c

c

t t
K t

t

λ µ λ µ− −
=  

and 3,

( )[1 ( )]
( ) c

c

M t t
K t

t

λ−
= . 
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By proceeding in the lines of the proof of Theorem 2.2, we can write 

, , 1, 2, 3,
ˆ[ ( ) ( )] ( )avg c avg c c c cn A t A t n I I I− = + + , 

where  

 1, 1, 2,( ) ( ) ( )c c c X c Y c XI K t K t J F tµ= ∆ + ∗ ∆ , 

 2, 2, 3,( ) ( ) ( )c c X c Y c c YI K t J F t K t µ= ∗ ∆ − ∆ ,  

and 3,cI  is obtained by replacing terms in 3I  defined by (2.6) with the 

corresponding terms of the censored versions defined in this section. Following 

the same arguments used in Theorem 2.2, it can be shown that 3, 0cnI → in 

probability as n → ∞ . 

 Since c XF∆  and c YF∆  are independent, 1,cI  and 2,cI  are also independent. 

Hence in order to establish the weak convergence of the estimator, it is sufficient 

to show that 2
1, 1,(0, ( ))L

c cnI N tσ→  and 2
2, 2,(0, ( ))L

c cnI N tσ→ . 

Consider 

  1, 1, 2,[ ( ) ( ) ( )]c c c X c Y c XnI n K t K t J F tµ= ∆ + ∗ ∆  

            1, 2,

0

[ ( ) ( ) ( ) ( )]
X

c c X c Y c Xn K t xd F x K t J F t
τ

= ∆ + ∗ ∆∫  

1, 2,

0

[ ( ) ( ) ( )] ( )
X

c c Y c Xn K t x K t J t x d F x
τ

= + − ∆∫ .    

Using Lemma 1.3 and Lemma 2.2, it follows that, 

1, 1, 2,

0

[ ( ) ( ) ( )] { ( )( )( )}
X

L
c c c Y X X XnI K t x K t J t x d F x W U x

τ

→ + −∫ o  

Consider, 

 1, 2,

0

[ ( ) ( ) ( )] { ( )( )( )}
X

c c Y X X XK t x K t J t x d F x W U x
τ

+ −∫ o  

  1, 2,

0

[ ( ) ( ) ( )] ( ) ( )( )
X

c c Y X X XK t x K t J t x F x d W U x
τ

= + −∫ o  

 1, 2,

0

[ ( ) ( ) ( )]( )( ) ( )
X

c c Y X X XK t x K t J t x W U x dF x
τ

+ + −∫ o . (2.12) 
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But we have, 

 1, 2,

0

[ ( ) ( ) ( )]( )( ) ( )
X

c c Y X X XK t x K t J t x W U x dF x
τ

+ −∫ o  

  = 1, 2,

0 0

[ ( ) ( ) ( )] ( )( ) ( )
X x

c c Y X X XK t x K t J t x d W U y dF x
τ

+ −∫ ∫ o  

  = 1, 2,

0 0

[ ( ) ( ) ( )] ( )( ) ( )
X x

c c Y X X XK t x K t J t x d W U y dF x
τ

+ −∫ ∫ o  

  = 1, 2,

0

[ ( ) ( ) ( )] ( ) ( )( )
X X

c c Y X X X

y

K t x K t J t x dF x d W U y
τ τ

+ −∫ ∫ o ,  

  = 
0

( , ) ( )( )
X

X X XR t y d W U y
τ

∫ o , 

where,  1, 2,( , ) [ ( ) ( ) ( )] ( )
X

X c c Y X

y

R t y K t x K t J t x dF x
τ

= + −∫ . 

Now, (2.12) becomes, 

1, 2,

0

[ ( ) ( ) ( )] { ( )( )( )}
X

c c Y X X XK t x K t J t x d F x W U x
τ

+ −∫ o  

1, 2,

0

[ ( ) ( ) ( )] ( ) ( , ) ( )( )
X

c c Y X X X XK t x K t J t x F x R t x d W U x
τ

 = + − + ∫ o  

( )

1 1 1
1, 2,

0

{ ( ) ( ) ( ) ( ( ))} ( ( ))
X XU

c X c Y X X XK t U y K t J t U y F U y
τ

− − −= + −∫  

  1( , ( )) ( )X X XR t U y dW y− +  . 

As an application of Lemma 1.1, 1,cnI  is asymptotically normally 

distributed with mean 0 and variance 2
1, ( )c tσ , where  

( )

2 1 1 1
1, 1, 2,

0

( ) { ( ) ( ) ( ) ( ( ))} ( ( ))
X XU

c c X c Y X X Xt K t U y K t J t U y F U y
τ

σ − − −= + −∫   

   
21( , ( ))X XR t U y dy− +    

  
2

1, 2,

0

[ ( ) ( ) ( )] ( ) ( , ) ( )
X

c c Y X X XK t x K t J t x F x R t x dU x
τ

 = + − + ∫ . (2.13) 



Nonparametric Estimation of the Average Availability 

 

 
 

34 

Similarly, it can be shown that, 

2
2 2,(0, ( ))L

cnI N tσ→ ,  

where 

22
2, 2, 3,

0

( ) ( ) ( ) ( ) ] ( ) ( , ) ( )
Y

c c X c Y Y Yt K t J t x K t x F x R t x dU x
τ

σ  = − − + ∫ , (2.14) 

with  2, 3,( , ) [ ( ) ( ) ( ) ] ( )
X

Y c X c Y

x

R t x K t J t y K t y dF y
τ

= − −∫ . 

Thus the weak convergence of the estimator is established by the following 

theorem. 

Theorem 2.4 

 For any fixed ‘t’, as n → ∞ , 2
, ,

ˆ[ ( ) ( )] (0, ( ))L
avg c avg c cn A t A t N tσ− → , with  

 2 2 2
1, 2,( ) ( ) ( )c c ct t tσ σ σ= + , (2.15) 

where 2
1, ( )c tσ and 2

2, ( )c tσ are given by (2.13) and (2.14) respectively. 

 In order to construct a consistent estimator of 2 ( )c tσ , we use a consistent 

estimator ˆ ( )XU t of ( )XU t  proposed by Miller (1981) and it is given by, 

( )

( )

:

ˆ ( )
( )( 1)

i

i

X
i T t

U t
n i n i

δ

≤

=
− − +

∑ ,  

where ( )iδ  is the concomitant associated with ( )iT  as defined before. 

 Similarly, an estimator ˆ ( )YU t  of ( )YU t  can be constructed. On replacing 

, ,,  ,  (.),  (.),  (.),  (.)X c Y c X Y X YF F U Uµ µ  and (.)M  by , , ,
ˆˆ ˆ,  ,  (.)X c Y c X cFµ µ ,

ˆ,  (.),Y cF  

ˆ ˆ(.),  (.)X YU U  and ,
ˆ (.)c nM  respectively in (2.15), an estimator 2ˆ ( )c tσ  of  2 ( )c tσ  is 

obtained, which by using Lemma 1.3, can be shown to be strongly consistent as 

n → ∞ . Thus, given a significance level (0,1)α ∈ , an approximate large sample 

100(1 )%α−  confidence interval for , ( )avg cA t  is 

, / 2 , , / 2

ˆ ˆ( ) ( )ˆ ˆ( ) ( ) ( )c c
avg c avg c avg c

t t
A t z A t A t z

n n
α α

σ σ
− ≤ ≤ + . 
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2.4. Estimation in the case of Continuous Observation over a Fixed Period. 

Suppose that the process is observed continuously over a fixed period 

[0, ]T . Now, the number of failures and number of repairs completed before the 

time ‘T’ are random variables. Let ( )XN T  and ( )YN T  denote the number of 

completed failures and repairs up to time T. Then the empirical estimators for the 

distribution functions ( )XF t  and ( )YF t  can be defined as 

( )

,
1

1ˆ ( ) { }
( )

XN T

X T i
iX

F t I X t
N T =

= ≤∑   and  

( )

,
1

1ˆ ( ) { }
( )

YN T

Y T i
iY

F t I Y t
N T =

= ≤∑ .  

In this case, natural nonparametric estimators for Xµ  and Yµ  are given by 

           
( )

, ( )
10

1ˆˆ ( )
( )

X

X

N T

X X T i N T
iX

xdF x X X
N T

µ
∞

=

= = =∑∫   and  

( )

, ( )
10

1ˆˆ ( )
( )

Y

Y

N T

Y Y T i N T
iY

xdF x Y Y
N T

µ
∞

=

= = =∑∫   respectively. 

An estimator of the renewal function ( )M t  in this case is given by, 

( )
,

1

ˆ ˆ( ) ( )k
T Z T

k

M t F t
∞

=

=∑ ,  

where , , ,
ˆ ˆ ˆ( ) ( )Z T X T Y TF t F F t= ∗ .  

As a nonparametric estimator of ( )avgA t  we consider 

 ,

ˆ ( )ˆ ( ) T
avg T

t
A t

t

α
= , (2.16) 

where , ,
ˆ ˆˆ ˆˆ ˆ ˆ( ) ( ){( ( ) 1) } (1 ( )){ ( ) }T T T X T T T Y Tt t M t t t M tα λ µ λ µ= + + − −  

with , ,
ˆ ˆ ˆ ˆ( ) { ( ) }T T Z T X Tt I M t tλ µ µ= + ≤  and , , ,

ˆ ˆ ˆ
Z T X T Y Tµ µ µ= + . 

The strong consistency of the proposed estimator is established in the following 

theorem. 
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Theorem 2.5 

  As T → ∞ , ,
ˆ ( ) ( )avg T avgA t A t→  almost surely. 

Proof. The almost sure convergence of ,
ˆ ( )X TF t  and ,

ˆ ( )Y TF t  follows from the fact 

that both ( )XN T  and ( )YN T  tends to infinity as T → ∞ . Hence it is straight 

forward to verify that ˆ ( )TM t ( )M t→  almost surely as T → ∞ .  

By the strong law of large numbers for random sums, we have, ,
ˆ

X T Xµ µ→ , 

,
ˆ

Y T Yµ µ→  and ,
ˆ

Z T Zµ µ→  (a.s.).  As , ,
ˆ ˆ ˆ( ) ( )T Z T X T Z XM t M tµ µ µ µ+ → +  (a.s.), 

ˆ ( ) ( )T t tλ λ→  (a.s.)  as T → ∞ . 

Thus, ˆ ( ) ( )T t tα α→  (a.s.) and hence ,
ˆ ( )avg TA t → ( )avgA t  almost surely as T → ∞ . 

In order to study the weak convergence of ,
ˆ ( )avg TA t  by introducing the 

notation ˆ
T TA A A∆ = − , proceeding as in Theorem 2.2, we can write, 

,
ˆ[ ( ) ( )]avg T avgT A t A t− = 1, 2, 3,( )T T TT I I I+ + ,  

where  

          1, 1 2( ) ( ) ( )T T X Y T XI K t K t J F tµ= ∆ + ∗∆ , 2, 2 3( ) ( ) ( )T X T Y T YI K t J F t K t µ= ∗∆ − ∆   

and 3,TI  is obtained by replacing ∆  by T∆  in 3I  defined in  (2.6). 

 Following the arguments in Theorem 2.2 and using the results stated in 

Ouhbi and Liminos (2003) it is straight forward to show that 3, 0TT I →  in 

probability as T → ∞ . 

Consider, 

 1 1 2[ ( ) ( ) ( )]T X Y T XT I T K t K t J F tµ= ∆ + ∗ ∆      

  1 2

0

[ ( ) ( ) ( )] ( )Y TT K t x K t J t x d F x
∞

= + − ∆∫  

             1 2

0

( ) [ ( ) ( ) ( )] ( )
( )

X Y T

X

T
N T K t x K t J t x d F x

N T

∞

= + − ∆∫ . 
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  0
1 2

0

[ ( ) ( ) ( )] ( )( )L
X Y X XK t x K t J t x d W F xµ

∞

→ + −∫ o , by Lemma 2.1 

and using the fact that 
( ) 1X

X

N T

T µ
→  as T → ∞ . 

  
1

1 1 0
1 2

0

[ ( ) ( ) ( ) ( ( ))] ( )X X Y X XK t F y K t J t F y dW yµ − −= + −∫ , by change of 

variable.  

Proceeding as in Theorem 2.2, the last integral follows a normal distribution with 

mean 0 and variance 2
1, ( )T tσ , where 

 [ ]
22 2 2 2 2

1, 1 2( ) ( ) ( ) ( ) ( )T X X X Y X Y Xt K t K t J F t J F tσ µ σ µ  = + ∗ − ∗
 

        

 [ ]1 22 ( ) ( ) ( ) ( )X Y X X Y XK t K t J V t J F tµ µ+ ∗ − ∗ . (2.17) 

Similarly, it can be shown that  

2
2,(0, ( ))L

T TT I N tσ→ , 

where  

 [ ]
22 2 2 2 2

2, 2 3( ) ( ) ( ) ( ) ( )T Y X Y X Y Y Yt K t J F t J F t K tσ µ µ σ = ∗ − ∗ +
 

 

 [ ]2 32 ( ) ( ) ( ) ( )Y X Y Y X YK t K t J V t J F tµ µ− ∗ − ∗ . (2.18) 

Thus, we have proved the following theorem. 

Theorem 2.6 

 For any fixed ‘t’, as T → ∞ , 2
,

ˆ[ ( ) ( )] (0, ( ))L
avg T avg TT A t A t N tσ− → , 

where    

 2 2 2
1, 2,( ) ( ) ( )T T Tt t tσ σ σ= + , (2.19) 

with 2
1, ( )T tσ  and 2

2, ( )T tσ  are given in (2.17) and (2.18) respectively. 

Let 
( )

2 2
, ( )

1

1
( )

( )

X

X

N T

X T i N T
iX

S X X
N T =

= −∑  and 
( )

2 2
, ( )

1

1
( )

( )

Y

Y

N T

Y T i N T
iY

S Y Y
N T =

= −∑  

be estimators of 2
Xσ  and 2

Yσ  respectively.  
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On replacing 2 2,  ,  ,  ,  (.),  (.)X Y X Y X YF Fµ µ σ σ  and (.)M  by ( ) ( ),  ,
X YN T N TX Y  2

, ,X TS  

2
, ,Y TS  ,

ˆ (.),X TF  ,
ˆ (.)Y TF  and ˆ (.)TM  respectively in (2.19) we get a consistent 

estimator 2ˆ ( )T tσ  of 2 ( )tσ .  

Thus, given a significance level (0,1)α ∈ , for large ‘T’, an approximate 

100(1 )%α−  confidence interval for ( )avgA t  is 

, / 2 , / 2

ˆ ˆ( ) ( )ˆ ˆ( ) ( ) ( )T T
avg T avg avg T

t t
A t z A t A t z

T T
α α

σ σ
− ≤ ≤ + . 

2.5  Simulation Study 

 In this section we present a simulation study in order to assess the 

performance of the proposed estimator in the case of i) complete observations, ii) 

censored observations and (iii) continuous observation over a fixed period. We 

use the algorithm proposed by Schneider et al. (1990) for computing the renewal 

function. Let 0 10 ... mt t t t= < < < =  be an equally spaced partition of [0,  ]t , where 

the choice of m depends on t and on the data. An algorithm for computing the 

estimates and the confidence interval for ( )avgA t can be summarized as follows. 

1. Compute ˆ ˆ ˆ ˆ,  ,  ,  X Y X YF F µ µ  and the standard deviations ˆ
Xσ  and ˆ .Yσ  

2. Find 1
1

ˆ ˆ ˆ ˆ( ) ( )[ ( ) ( )]
m

Z i X i j Y j Y j
j

F t F t t F t F t −
=

= − −∑  for 1,2,..., .i m=  

3. Evaluate ˆ ( )M t  using the recursive relationship  

1
1

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )[ ( ) ( )]
i

i Z i i j Z j Z j
j

M t F t M t t F t F t −
=

= + − −∑ , for 1,2,..., .i m=  

 and compute ˆ ( )avgA t . 

4. Compute ˆ ˆ ˆ( ),  ( ),  ( )X i Y i X iJ t J t V t and ˆ ( )Y iV t  then 2ˆ ˆ ˆ ˆ( ),  ( ),  X Y i X Y iJ F t J F t∗ ∗       

ˆ ˆ ( ),X Y iJ V t∗ 2ˆ ˆ ˆ ˆ( ),  ( )Y X i Y X iJ F t J F t∗ ∗  and ˆ ˆ ( )Y X iJ V t∗  recursively for 1,2,..., .i m=  

5. Substitute the values obtained in the above steps to evaluate 2ˆ ( ).tσ  



Nonparametric Estimation of the Average Availability 

 

 
 

39 

 The same algorithm can be used to compute the confidence interval 

for , ( )avg cA t  and ,
ˆ ( )avg TA t  defined in (2.11) and (2.16) respectively after 

appropriate modifications. 

 Consider first the case of complete observations. Suppose that the 

distribution XF  of the failure times is gamma with shape parameter 3 and scale 

parameter 2 and the repair times also follow a gamma distribution with shape 

parameter 1 and scale parameter 2. Three time points t = 2.5, t = 5 and t = 7.5 are 

considered for the simulation. The exact values of ( )avgA t  at these points are 

obtained using Mathematica. In Table 2.1, ‘n’ denotes the number of observations 

of operating and repair times, ˆ ( )avgA t denotes the average of ˆ ( )avgA t over 100 

repetitions at ‘t’, ˆ ( )tσ  denotes the sample mean of the estimated standard error of 

the estimate and , ( )avg LA t  and , ( )avg UA t  denote the 95% lower and upper 

confidence limits for ( )avgA t  respectively. The values given in parenthesis 

represent the mean square error of the corresponding estimators. 

 In order to check the performance of the estimator under censoring we 

suppose that XF  is a gamma distribution with shape parameter 3 and scale 

parameter 2, and that YF  is a gamma distribution with shape parameter 2 and scale 

parameter 1. Further assume that censoring distributions are exponential with 

0.05( ) 1 t
CG t e−= −  and 0.1( ) 1 t

DG t e−= − . The results of the simulation study are 

presented in Table 2.2. Here X% and Y% denote the average percentage of 

censoring rate associated with the failure time and the repair time respectively. 

  Table 2.3 presents the result of the simulation study in the case of 

continuous observation over a fixed period [0, T] using the same distributions for 

generating the failure and repair times as in the case of complete observations. 

Here ( )N T denotes the average number of cycles completed up to time ‘T’. 
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 From the Tables 2.1, 2.2 and 2.3, it can be seen that even for moderate 

sample sizes, the standard deviation of the estimate is small and the width of the 

confidence interval is reasonably narrow. 

 

Table 2.1 Simulation results in the case of complete observations 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

t ( )avgA t  n ˆ ( )avgA t  ˆ ( )tσ  , ( )avg LA t  , ( )avg UA t  

  25 0.96171 0.00537 0.95118 0.97223 

   (0.0324) (0.0048)   

  50 0.95916 0.00407 0.95118 0.96714 

   (0.0267) (0.0028)   

2.5 0.95852 75 0.95809 0.00346 0.95131 0.96486 

   (0.0242) (0.0021)   

  100 0.95872 0.00296 0.95292 0.96451 

   (0.0162) (0.0012)   

  150 0.95933 0.00236 0.95470 0.96396 

   (0.0131) (0.0008)   

  25 0.88572 0.01532 0.85570 0.91574 

   (0.0358) (0.0056)   

  50 0.88704 0.01146 0.86459 0.90950 

   (0.0272) (0.0033)   

5 0.88641 75 0.88895 0.00895 0.87141 0.90650 

   (0.0209) (0.0019)   

  100 0.88650 0.00793 0.87095 0.90204 

   (0.0170) (0.0015)   

  150 0.88462 0.00674 0.87141 0.89783 

   (0.0151) (0.0010)   

  25 0.84120 0.02231 0.79746 0.88493 

   (0.0324) (0.0059)   

  50 0.84571 0.01518 0.81595 0.87547 

   (0.0223) (0.0026)   

7.5 0.84232 75 0.84136 0.01297 0.81595 0.86677 

   (0.0199) (0.0021)   

  100 0.84458 0.01085 0.82332 0.86585 

   (0.0178) (0.0016)   

  150 0.84190 0.00913 0.82400 0.85980 

   (0.0138) (0.0010)   
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Table 2.2 Simulation results in the case of censored observations 

t ( )avgA t  n 
,

ˆ ( )avg cA t  ˆ ( )c tσ  X % Y % , ( )avg LA t  , ( )avg UA t  

  25 0.96102 0.00584 25.16 16.28 0.94956 0.97247 

   (0.0233) (0.0044)     

  50 0.96091 0.00425 25.76 16.98 0.95258 0.96924 

   (0.0157) (0.0020)     

2.5 0.95852 75 0.96077 0.00351 24.25 17.57 0.95389 0.96765 

   (0.0136) (0.0014)     

  100 0.96109 0.00284 24.19 17.07 0.95552 0.96666 

   (0.0117) (0.0010)     

  150 0.96090 0.00243 24.57 17.80 0.95613 0.96567 

   (0.0085) (0.0006)     

  25 0.89173 0.01792 25.68 17.88 0.85661 0.92686 

   (0.0338) (0.0189)     

  50 0.88793 0.01196 24.50 17.16 0.86449 0.91136 

   (0.0227) (0.0032)     

5 0.88641 75 0.88795 0.00979 24.35 17.85 0.86877 0.90713 

   (0.0190) (0.0026)     

  100 0.88843 0.00839 24.28 16.88 0.87199 0.90487 

   (0.0160) (0.0017)     

  150 0.88728 0.00709 24.71 17.61 0.87339 0.90117 

   (0.0130) (0.0013)     

  25 0.84946 0.02408 25.28 17.48 0.80227 0.89665 

   (0.0379) (0.0221)     

  50 0.84442 0.01586 25.18 16.72 0.81334 0.87551 

   (0.0242) (0.0034)     

7.5 0.84232 75 0.84543 0.01325 24.88 17.56 0.81946 0.87140 

   (0.0193) (0.0023)     

  100 0.84333 0.01187 25.53 17.16 0.82007 0.86659 

   (0.0157) (0.0018)     

  150 0.84212 0.00982 24.33 17.29 0.82289 0.86136 

   (0.0157) (0.0015)     
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Table 2.3 Simulation results in the case of continuous observation over a fixed period ‘T’ 
 

t ( )avgA t  T 
,

ˆ ( )avg TA t  ˆ ( )T tσ  ( )N T  , ( )avg LA t  , ( )avg UA t  

  250 0.94723 0.00343 31.05 0.94380 0.95066 

   (0.0308) (0.0022)    

2.5 0.95852 500 0.96432 0.00160 61.93 0.96271 0.96592 

   (0.0214) (0.0009)    

  1000 0.95839 0.00133 125.42 0.95707 0.95972 

   (0.0199) (0.0006)    

  250 0.88814 0.00627 31.36 0.88187 0.89440 

   (0.0134) (0.0015)    

5 0.88641 500 0.88191 0.00558 63.61 0.87633 0.88749 

   (0.0111) (0.0007)    

  1000 0.88599 0.00401 126.37 0.88198 0.89000 

   (0.0131) (0.0005)    

  250 0.84661 0.00856 32.32 0.83805 0.85518 

   (0.0393) (0.0019)    

7.5 0.84232 500 0.84413 0.00632 60.43 0.83781 0.85046 

   (0.0217) (0.0011)    

  1000 0.84164 0.00506 127.69 0.83658 0.84670 

   (0.0114) (0.0007)    

 

2.6 Data Analysis 

 We carry out a data analysis to illustrate an application of the proposed 

estimation procedure using compressor failure data given in Table 7.1 and Table 

11.7 of Rausand and Høyland (2004). The data consists of the operating and repair 

times of 90 critical failures of a specific compressor at a Norwegian process plant 

in the time period from 1968 until 1989. In the given data set the failure times are 

measured in days and the repair times are measured in hours. For the meaningful 

computation purpose we convert the failure time data to hours and the data are 

summarized in Table 2.4. The average availability ( )avgA t  is estimated at various 

time points using the given data set. The 95% confidence intervals are also 

computed for the average availability at these time points and are summarized in 

Table 2.5. 
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Table 2.4 Compressor failure data (Rausand and Høyland, 2004) 

Sl. 

No. 

Failure 

Time 

Repair 

Time 
 

Sl. 

No. 

Failure 

Time 

Repair 

Time 
 

Sl. 

No. 

Failure 

Time 

Repair 

Time 

1 24 1.25  31 2160 0.5  61 1104 0.25 

2 72 135  32 2064 18  62 552 2.25 

3 12 0.08  33 3168 2.5  63 1848 13.5 

4 2100 5.33  34 4.8 0.33  64 1584 0.5 

5 3840 154  35 4.8 0.5  65 12 0.25 

6 600 0.5  36 4.8 2  66 60 0.17 

7 12 1.25  37 4.8 0.33  67 1848 1.75 

8 168 2.5  38 52.8 4  68 12 0.5 

9 2148 15  39 168 20  69 132 1 

10 1584 6  40 312 6  70 1680 2 

11 96 4.5  41 768 6.3  71 1008 2 

12 744 32.5  42 1416 15  72 4392 38 

13 1464 9.5  43 4320 23  73 96 0.33 

14 768 0.25  44 24 4  74 12672 2 

15 4224 81  45 228 5  75 2976 40.5 

16 3360 12  46 168 28  76 2376 4.28 

17 480 0.25  47 15132 16  77 96 1.62 

18 2724 1.66  48 504 11.5  78 3312 1.33 

19 6492 5  49 1608 0.42  79 12 3 

20 1176 7  50 5808 38.33  80 6492 5 

21 24 39  51 12 10.5  81 3552 120 

22 312 106  52 60 9.5  82 1008 0.5 

23 1008 6  53 1248 8.5  83 4.8 3 

24 456 5  54 1368 17  84 7.2 3 

25 24 17  55 192 34  85 3012 11.58 

26 24 5  56 24 0.17  86 6432 8.5 

27 3168 2  57 1056 0.83  87 3312 13.5 

28 12 2  58 5892 0.75  88 3096 29.5 

29 684 0.33  59 156 1  89 12 29.5 

30 24 0.17  60 504 0.25  90 2364 112 
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Table 2.5 Average availability computation of compressor failure data 

t  ˆ ( )avgA t  ˆ ( )tσ  , ( )avg LA t  , ( )avg UA t  

7.5 0.92065 0.15394 0.88885 0.95245 

10.0 0.91404 0.16677 0.87958 0.94849 

12.5 0.87392 0.24460 0.82339 0.92446 

15.0 0.85940 0.27276 0.80305 0.91576 

17.5 0.87735 0.23793 0.82819 0.92651 

20.0 0.88976 0.21385 0.84558 0.93394 

25.0 0.88773 0.21772 0.84274 0.93271 

 

2.7 Conclusion 

 We have discussed the nonparametric estimation of the average 

availability when the failure and repair times of a system are mutually 

independent sequences of i.i.d. random variables. The proposed estimators of the 

average availability are proved to be consistent and asymptotically normal when 

(i) the data are complete, (ii) the data are subject to right censorship, and (iii) the 

data are observed over a fixed time period. The simulation study shows that the 

proposed estimators perform well even for reasonable sample sizes. Finally, the 

estimation procedure corresponding to the complete sample is illustrated using a 

real life data. 



__________________________________________________________________ 
Some results of this chapter have been communicated as entitled ‘Nonparametric 

Estimation of the Interval Reliability’ (See Balakrishna and Mathew, 2011a). 

Chapter 3 

 

Nonparametric Estimation of the Interval 

Reliability 

 

3.1 Introduction 

 An important measure of successful performance of a system in the 

context of repairable system is the interval reliability. The interval reliability, 

( , )R x t , of a repairable system is defined as the probability that the system is 

operating at a specified time ‘t’ and will continue to operate for an interval of 

duration ‘x’.  See for example, Barlow and Hunter (1961). If ( )tξ  represents the 

status of the system at time ‘t’ as defined in (1.1), the interval reliability of the 

system is given by, 

 ( , ) [ ( ) 1,  ]R x t P s t s t xξ= = ≤ ≤ + . (3.1) 

From the definition, it is clear that, the interval reliability becomes reliability 

when 0t =  and point availability at time ‘t’ as 0x → . Thus, the interval 

reliability is one of the most important measures of system performance from the 

viewpoint of reliability and availability, and is useful in many practical situations. 

A typical example is the model of a standby generator, in which ‘t’ is the time 

until the electric power stops and ‘x’ is the required time until the electric power 

recovers again. In this case, the interval reliability represents the probability that a 

standby generator will be able to operate during the interruption of the electric 

power (cf., Nakagawa 2005).  

 Let { }nX  and { }nY  be independent sequences of i.i.d. non-negative 

random variables with common distribution functions (.)XF  and (.)YF  
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respectively. Define n n nZ X Y= +  and let (.) (.)Z X YF F F= ∗  be its distribution 

function. Also let 
1

n

n i
i

S Z
=

=∑  and ( )

1

( ) ( )k
Z

k

M t F t
∞

=

=∑  be the renewal function 

associated with the sequence { }nZ , where ( ) ( ) [ ]k
Z kF t P S t= ≤ . 

Now, the interval reliability can be written as: 

 ( )
1

1 0

( , ) ( ) [ ] ( )
t

k
X n n Z

k

R x t F t x P X t x u S u dF u
∞

+
=

= + + > + − =∑∫ . (3.2) 

The first term in the interval reliability function reflects the probability that the 

first period of operation is of length t x+  or greater. The subsequent integral 

expressions reflect the probability that the k th−  failure occurs at time u and the 

following period of operation is of length t x u+ −  or greater. 

Since 1nX +  is independent of nS , (3.2) becomes 

 ( )
1

1 0

( , ) ( ) [ ] ( )
t

k
X n Z

k

R x t F t x P X t x u dF u
∞

+
=

= + + > + −∑∫  

  ( )

1 0

( ) ( ) ( )
t

k
X X Z

k

F t x F t x u dF u
∞

=

= + + + −∑∫  

            
0

( ) ( ) ( )
t

X XF t x F t x u dM u= + + + −∫ . (3.3) 

For example, when 1( ) 1 t
XF t e λ−= −  and 2( ) 1 t

YF t e λ−= − , the interval reliability 

function is given by: 

 1 2 1( )2 1

1 2 1 2

( , ) t xR x t e eλ λ λλ λ

λ λ λ λ
− + − 

= + 
+ + 

 

  = ( ) ( )XA t F x . 

Thus, when the sequences of failure and repair times are generated from two 

independent exponential distributions, the interval reliability function ( , )R x t  is 

the product of the point availability function at time ‘t’, ( )A t  and the reliability 

function at time ‘x’, ( )XF x . 
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 In general, the interval reliability may not be the product of point 

availability function and reliability function.  However, as a combined measure of 

availability and reliability, the interval reliability has a significant role in the study 

of repairable system performance. 

 We consider the nonparametric estimation of the interval reliability in this 

chapter. The organization of this chapter is as follows: Section 3.2 discusses the 

nonparametric estimation of the interval reliability when the data on ‘n’ complete 

cycles of system operation are available. Section 3.3 discusses the estimation 

when the data are subject to right censorship and in Section 3.4, we consider the 

estimation when the process is observed up to a specified time ‘T’. In Section 3.5, 

a simulation study is presented and an application of the proposed method is 

illustrated using a compressor failure data. Finally, Section 3.6 provides brief 

conclusions of the study. 

3.2 Estimation in the case of Complete Observations 

 Suppose that observations on the failure and repair times of ‘n’ complete 

cycles of system operation, 1 1 2 2( , ), ( , ),..., ( , )n nX Y X Y X Y  are available.  In this 

case, a nonparametric estimator of the interval reliability, ( , )R x t , is given by: 

 
0

ˆ ˆˆ ˆ( , ) ( ) ( ) ( )
t

X X nR x t F t x F t x u dM u= + + + −∫ , (3.4) 

where ˆ (.)XF  and ˆ (.)nM  are the nonparametric estimators of (.)XF  and (.)M  

defined as in Section 2.2. 

 Baxter and Li (1994) studied asymptotic properties of the estimator ˆ ( )nM t  

and shown that ˆ ( )nM t ( )M t→  almost surely as n → ∞ . By Gilvenko-Cantelli 

theorem, ˆ ( ) ( )X XF u F u→  uniformly in u as n → ∞  with probability one.  

 Hence, by Lemma 1.3, ˆ( , ) ( , )R x t R x t→  almost surely as n → ∞  for any 

fixed  t and x. 
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     In order to study the weak convergence of ˆ( , )R x t , let us denote 

ˆ( ) ( ) ( ),X X XF t F t F t∆ = −  ˆ( ) ( ) ( )Y Y YF t F t F t∆ = −  and ˆ( ) ( ) ( )nM t M t M t∆ = − .  

We have, 

 ˆ( , ) ( , ) ( , )R x t R x t R x t∆ = −   

 
0 0

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
t t

X X X XF t x F t x F t x u dM u F t x u dM u= + − + + + − − + −∫ ∫

 
0

( ) [ ( ) ( )]
t

X XF t x F t x u dM u= ∆ + + ∆ + −∫  

 
0

( ) [ ( ) ( ) ( ) ( )]
t

X X XF t x F x M t M u dF t x u= ∆ + + ∆ + + −∫ . 

Now using the fact that ˆ ˆ[ ]AB AB AB A B A B B A∆ = − = ∆ ∆ + ∆ + ∆ , we can write 

  
0

( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
t

X X X XR x t F t x M t F x F x M t M u dF t x u∆ = ∆ + + ∆ + ∆ + ∆ + −∫  

 1

0

( ) ( )
t

XM u d F t x u Q+ ∆ + − +∫ , (3.5) 

where 1

0

( ) ( ) ( ) ( )
t

X XQ F x M t M u d F t x u= ∆ ∆ + ∆ ∆ + −∫ . 

Following the equation (2.5) derived in Chapter 2, we can write 

 ˆ( ) ( ) ( ),Z Z ZM t M M F t F F M M t∆ = ∗ ∗∆ + ∆ ∗∆ ∗ ∗  

where ˆ ˆ( ) ( ) ( )Z X Y X YF t F F t F F t∆ = ∗ − ∗  

           X Y X Y Y XF F F F F F= ∆ ∗ ∆ + ∗ ∆ + ∗ ∆ . 

Thus,   

 ( ) ( ) ( ) ( )Y X X YM t M M F F t M M F F t Q t∆ = ∗ ∗ ∗∆ + ∗ ∗ ∗∆ + ∆  

            ( ) ( ) ( )Y X X YJ F t J F t Q t= ∗∆ + ∗∆ + ∆ , 

where ( ) ( )X XJ t M M F t= ∗ ∗ , ( ) ( )Y YJ t M M F t= ∗ ∗  and 

 ˆ( ) ( ) ( )X Y Z ZQ t M M F F t F F M M t∆ = ∗ ∗∆ ∗∆ + ∆ ∗∆ ∗ ∗ . 
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Substituting for ( )M t∆  in (3.5), we get 

 ( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( )X X X Y X X X YR x t F t x M t F x F x J F t F x J F t∆ = ∆ + + ∆ + ∗ ∆ + ∗ ∆  

0 0

( ) ( ) ( ) ( )
t t

Y X X X Y XJ F u dF t x u J F u dF t x u+ ∗ ∆ + − + ∗ ∆ + −∫ ∫  

1 2

0

( ) ( )
t

XM u d F t x u Q Q+ ∆ + − + +∫ , 

where 2

0

( ) ( ) ( ) ( )
t

X XQ F x Q t Q u d F t x u= ∆ ∆ + ∆ ∆ + −∫ . 

Now,  

 1 2 1 2( , ) ( )n R x t nI nI n Q Q∆ = + + + , 

where 1 ( ) ( ) ( ) ( ) ( )X X X Y XI F t x M t F x F x J F t= ∆ + + ∆ + ∗ ∆  

0 0

( ) ( ) ( ) ( )
t t

Y X X XJ F u dF t x u M u d F t x u+ ∗ ∆ + − + ∆ + −∫ ∫  

and 2

0

( ) ( ) ( ) ( )
t

X X Y X Y XI F x J F t J F u dF t x u= ∗ ∆ + + ∗∆ + −∫ . 

Here 1Q  and 2Q  contain terms of the form A B∆ ∆  and 
0

( ) ( )
t

A u d B t x u∆ ∆ + −∫ .  

By writing,  

        
0 0 0

ˆ( ) ( ) ( ) ( ) ( ) ( )
t t t

n A u d B t x u n A u dB t x u n A u dB t x u∆ ∆ + − = ∆ + − − ∆ + −∫ ∫ ∫ , 

it is easy to see that the two terms on the right-hand side converge almost surely to 

the same limit by Lemma 1.3 and hence 1 2( ) 0n Q Q+ →  in probability as 

n → ∞ . 

Define, 1

0

( , ) ( ) ( )
t

Y XV x t J t u dF u x= − +∫ . 

Now, 

 
0 0 0

( ) ( ) ( ) ( ) ( )
t t u

Y X X Y X XJ F u dF t x u J u y d F y dF t x u∗ ∆ + − = − ∆ + −∫ ∫ ∫  
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0

( ) ( ) ( )
t t

Y X X

y

J u y dF t x u d F y= − + − ∆∫ ∫  

 1

0

( , ) ( )
t

XV x t y d F y= − − ∆∫ . 

Thus, 1I  can be written as 

 1

0 0 0

( ) ( ) ( ) ( ) ( ) ( )
t x x t

X X X Y XI d F u M t d F u F x J t u d F u
+

= − ∆ − ∆ + − ∆∫ ∫ ∫  

  1

0

( , ) ( ) ( ) ( )
t t x

X X

x

V x t u d F u M t x u d F u
+

− − ∆ − + − ∆∫ ∫ . 

If we define,  

 1 (0 ) 1 (0 )( , ) [ ( ) ( ) ( , )] [ ( ) 1]u t X Y u xK x u I F x J t u V x t u I M t< < < <= − − − − +   

    ( )[ ( ) 1]x u t xI M t x u< < +− + − + ,  

we can write  

 1 1

0

( , ) ( )XnI n K x u d F u
∞

= ∆∫  

 0
1

0

( , ) ( )( )L
X XK x u d W F u

∞

→ ∫ o , by Helly-Bray Theorem 

   
1

1 0
1

0

( , ( )) ( )X XK x F y dW y−= ∫ , by change of variable.  

As an application of Lemma 1.2, 1nI  follows a normal distribution with mean 0 

and variance 2
1 ( , )x tσ  as n → ∞ , where 

 

21 1
22 1 1

1 1 1

0 0

( , ) ( , ( )) ( , ( ))X Xx t K x F y d y K x F y d yσ − −
 

 = −   
 

∫ ∫         

             [ ]
2

2

1 1

0 0

( , ) ( ) ( , ) ( )X XK x u dF u K x u dF u
∞ ∞ 

= −  
 

∫ ∫ . (3.6) 

If we define, 2

0

( , ) ( ) ( )
t

X YV x t J t u dF u x= − +∫ , we can write 
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 2 2

0

( , ) ( )YnI n K x u d F u
∞

= ∆∫ , 

where 2 (0 ) 2( , ) [ ( ) ( ) ( , )]u t X XK x u I F x J t u V x t u< <= − − − . 

Proceeding similarly as above, it can be shown that as n → ∞ , 

 2
2 2(0, ( , ))LnI N x tσ→ , 

where  

 [ ]
2

22
2 2 2

0 0

( , ) ( , ) ( ) ( , ) ( ) .Y Yx t K x u dF u K x u dF uσ
∞ ∞ 

= −  
 

∫ ∫  (3.7) 

Since XF∆  and YF∆  are independent, 1I  and 2I  are also independent. This leads 

to the following theorem. 

Theorem 3.1 

For any fixed t and x, as n → ∞ ,  

 (i) ˆ( , ) ( , )R x t R x t→  almost surely and  

 (ii) 2ˆ[ ( , ) ( , )] (0, ( , ))Ln R x t R x t N x tσ− → , where 

 2 2 2
1 2( , ) ( , ) ( , ),x t x t x tσ σ σ= +  (3.8) 

with 2
1 ( , )x tσ  and 2

2 ( , )x tσ  are given by (3.6) and (3.7) respectively. 

Remark: If we choose x as 0, then the estimator of the interval reliability, ˆ( , )R x t , 

reduces to the estimator of the point availability, ˆ ˆ( ) (0, )A t R t=  and the asymptotic 

properties of ˆ( )A t  follows immediately from Theorem 3.1 by choosing 0x = . 

 An estimator 2ˆ ( , )x tσ  of 2 ( , )x tσ  can be obtained on replacing 

(.),  (.)X YF F  and (.)M  by ˆ ˆ(.),  (.)X YF F  and ˆ (.)nM  in (3.8) respectively. Using 

Lemma 1.3, it can be shown that 2 2ˆ ( , ) ( , )x t x tσ σ→  almost surely as n → ∞ .  
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Thus, given a significance level (0,1)α ∈ , an approximate large sample 

100(1 )%α−  confidence interval for ( , )R x t  is 

 / 2 / 2

ˆ ˆ( , ) ( , )ˆ ˆ( , ) ( , ) ( , )
x t x t

R x t z R x t R x t z
n n

α α

σ σ
− ≤ ≤ + , 

where / 2zα   denotes the upper / 2α  quantile of the standard normal distribution. 

3.3 Estimation in the case of Censored Observations 

 Suppose that observations on the failure and repair time are subject to right 

censorship. In order to avoid repetition, we follow the same notations defined in 

Section 2.3. 

In this case a nonparametric estimator of ( , )R x t  is given by 

 , , ,

0

ˆ ˆˆ ˆ( , ) ( ) ( ) ( )
t

c X c X c c nR x t F t x F t x u dM u= + + + −∫ , (3.9) 

where ,
ˆ (.)X cF  and ,

ˆ (.)c nM  are the nonparametric estimators of (.)XF  and (.)M  

defined as in Section 2.3. 

     Li (1999) discussed the nonparametric estimation of the renewal function 

with right-censored data and proved that ,
ˆ ( )c nM t ( )M t→  almost surely as 

n → ∞ . Hence, by the uniform convergence of ,
ˆ (.)X cF  and using Lemma 1.3, it is 

easy to show that, for any fixed t x τ+ < , ˆ ( , ) ( , )cR x t R x t→  almost surely as 

n → ∞ . 

     In order to establish the weak convergence of ˆ ( , )cR x t , let us define, 

,
ˆ( ) ( ) ( )c X X c XF t F t F t∆ = − , ,

ˆ( ) ( ) ( )c Y Y c YF t F t F t∆ = −  and ˆ( ) ( ) ( )c cM t M t M t∆ = − . 

By proceeding in the lines of the proof of Theorem 3.1, we can write 

1, 2, 1 2,
ˆ[ ( , ) ( , )] ( )c c c c cn R x t R x t nI nI n Q Q− = + + + , 
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where 1,cI , 2,cI , 1cQ  and 2,cQ  are obtained by replacing ( )XF t∆  and ( )YF t∆  with 

( )c XF t∆  and ( )c YF t∆  respectively in 1I , 2I , 1Q  and 2Q  defined in Section 3.2. 

Following the same arguments used in Theorem 3.1, it can be shown that 

1 2,( ) 0c cn Q Q+ →  in probability as n → ∞ . 

 Since (.)c XF∆  and (.)c YF∆  are independent, 1,cI  and 2,cI  are also 

independent. Hence in order to establish the weak convergence of the estimator, 

ˆ ( , )cR x t , it is sufficient to show that 2
1, 1,(0, ( , ))L

c cnI N x tσ→  and 

2
2, 2,(0, ( , ))L

c cnI N x tσ→ . 

Consider, 

  1, 1

0

( , ) ( )
t x

c c XnI n K x u d F u
+

= ∆∫  

 1

0

( , ) { ( )( )( )}
t x

L
X X XK x u d F u W U u

+

→ ∫ o , by Lemma 2.2. 

 1 1

0 0

( , ) ( ) ( )( ) ( , )( )( ) ( )
t x t w

X X X X X XK x u F u d W U u K x u W U u dF u
+ +

= +∫ ∫o o . 

Now, 

 1 1

0 0 0

( , )( )( ) ( ) ( , ) ( )( ) ( )
t x t x u

X X X X X XK x u W U u dF u K x u d W U z dF u
+ +

=∫ ∫ ∫o o  

1

0

( , ) ( ) ( )( )
t x t x

X X X

z

K x u dF u d W U z
+ +

= ∫ ∫ o  

1

0

( , ) ( )( )
t x

X XP x z d W U z
+

= ∫ o , 

where 1 1( , ) ( , ) ( )
t x

X

z

P x z K x u dF u
+

= ∫ . 

Thus, 

 1, 1 1

0

[ ( , ) ( ) ( , )] ( )( )
t x

L
c X X XnI K x u F u P x u d W U u

+

→ +∫ o  



Nonparametric Estimation of the Interval Reliability 

 

 
 

54 

 
( )

1 1 1
1 1

0

[ ( , ( )) ( ( )) ( , ( ))] ( )
XU t x

X X X X XK x U y F U y P x U y dW y
+

− − −= +∫ . 

As an application of Lemma 1.1, 1,cnI  follows a normal distribution with mean 0 

and variance 2
1, ( , )c x tσ , as n → ∞ , where 

 
( )

22 1 1 1
1, 1 1

0

( , ) ( , ( )) ( ( )) ( , ( )) ( )
XU t x

c X X X Xx t K x U y F U y P x U y d yσ
+

− − − = + ∫  

              
2

1 1

0

( , ) ( ) ( , ) ( )
t x

X XK x u F u P x u dU u
+

 = + ∫ , (3.10) 

with 
0

( )
( )

( ) ( )

t

X
X

X X

dF u
U t

F u H u
= ∫ . 

Similarly, it can be shown that  

 2
2, 2,(0, ( , ))L

c cnI N x tσ→ ,  

where  

 
22

2, 2 2

0

( , ) ( , ) ( ) ( , ) ( )
t

c Y Yx t K x u F u P x u dU uσ  = + ∫ , (3.11) 

with 2 2( , ) ( , ) ( )
t

Y

u

P x u K x y dF y= ∫  and 
0

( )
( )

( ) ( )

t

Y
Y

Y Y

dF u
U t

F u H u
= ∫  . 

Thus, we have proved the following theorem. 

Theorem 3.2 

For any fixed t and x, as n → ∞ , 

  (i) ˆ ( , ) ( , )cR x t R x t→  almost surely for t x τ+ < , where min( , )X Yτ τ τ=   

  (ii) 2ˆ[ ( , ) ( , )] (0, ( , ))L
c cn R x t R x t N x tσ− →  with 

 2 2 2
1, 2,( , ) ( , ) ( , )c c cx t x t x tσ σ σ= + , (3.12) 

where  2
1, ( , )c x tσ  and 2

2, ( , )c x tσ are given by (3.10) and (3.11) respectively. 
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 On replacing (.),  (.),  (.),  (.)X Y X YF F U U  by their corresponding consistent 

estimators in (3.12), a consistent estimator 2ˆ ( , )c x tσ  of 2 ( , )c x tσ  is obtained. Thus, 

given a significance level (0,1)α ∈ , an approximate large sample 100(1 )%α−  

confidence interval for ( , )R x t  is 

 / 2 / 2

ˆ ˆ( , ) ( , )ˆ ˆ( , ) ( , ) ( , )c c
c c

x t x t
R x t z R x t R x t z

n n
α α

σ σ
− ≤ ≤ + . 

3.4 Estimation in the case of Continuous Observation over a Fixed Period. 

 Suppose that the process is observed continuously over a fixed period 

[0, ]T . In this case, as a nonparametric estimator of ( , )R x t  we consider 

 , ,

0

ˆ ˆˆ ˆ( , ) ( ) ( ) ( )
t

T X T X T TR x t F t x F t x u dM u= + + + −∫ , (3.13) 

where ,
ˆ (.)X TF  and ˆ (.)TM  are the nonparametric estimators of (.)XF  and (.)M  

defined as in Section 2.4. 

     The almost sure convergence of ,
ˆ ( )X TF t  and ,

ˆ ( )Y TF t  follows from the fact 

that both ( )XN T  and ( )YN T tend to infinity as T → ∞ . Thus it is straightforward 

to verify that ˆ ( )TM t ( )M t→  almost surely and hence ˆ ( , ) ( , )TR x t R x t→  almost 

surely as T → ∞ .  

     Introducing the notation ˆ
T TA A A∆ = −  and proceeding similar to Section 

3.2, we can write, 

 1, 2, 1, 2,
ˆ[ ( , ) ( , )] ( )T T T T TT R x t R x t T I T I T Q Q− = + + + , 

where 1, 2,,  T TI I , 1,TQ and 2,TQ  are obtained by replacing ∆  by T∆  in 1 2,  I I , 1Q and 

2Q  respectively. 

  Following the arguments in Theorem 3.1 and using the results applied in  

Section 2.4, it is straightforward to show that 1, 2,( ) 0T TT Q Q+ →  in probability 

as T → ∞ . 
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Writing 1, 1,( )  
( )

T X T

X

T
T I N T I

N T
=  and using the fact that ( ) 1X XN T T µ→  

as T → ∞ , proceeding in the lines of the proof of Theorem 3.1, we can show that 

2
1, 1(0, ( , ))L

T XT I N x tµ σ→  and 2
2, 2(0, ( , ))L

T YT I N x tµ σ→  as T → ∞ , 

where 2
1 ( , )x tσ  and 2

2 ( , )x tσ  are given in (3.6) and (3.7) respectively. 

This leads to the following theorem. 

Theorem 3.3 

For any fixed t and x, as T → ∞ ,  

 (i) ˆ ( , ) ( , )TR x t R x t→  almost surely and 

 (ii) ( )2ˆ[ ( , ) ( , )] 0, ( , )L
T TT R x t R x t N x tσ− → , where  

 2 2 2
1 2( , ) ( , ) ( , )T X Yx t x t x tσ µ σ µ σ= + . (3.14) 

     On replacing ,  ,  (.),  (.)X Y X YF Fµ µ  and (.)M  by ( ) ( ) ,
ˆ,  , (.),

X YN T N T X TX Y F  

,
ˆ (.)Y TF  and ˆ (.)TM  respectively in (3.14) we get a consistent estimator 2ˆ ( , )T x tσ  of 

2 ( , )x tσ . Thus, given (0,1)α ∈ , for large ‘T’, an approximate 100(1 )%α−  

confidence interval for ( , )R x t  is 

 / 2 / 2

ˆ ˆ( , ) ( , )ˆ ˆ( , ) ( , ) ( , )T T
T T

x t x t
R x t z R x t R x t z

T T
α α

σ σ
− ≤ ≤ + . 

3.5  Numerical Study 

 In this section we carry out a simulation study to assess the finite sample 

performance of the proposed estimators in the case of i) complete observations, ii) 

censored observations and (iii) continuous observation over a fixed period.  

     For the case of complete observations, we assume that the distribution of 

the failure times is gamma with shape parameter 3 and scale parameter 2 and the 

repair times also follow a gamma distribution with shape parameter 1 and scale 
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parameter 2. The time points t = 2.5, 5 and x = 0, 0.25, 0.5 are considered for the 

simulation study. The exact values of ( , )R x t  at these points are obtained using 

Mathematica. The results of the simulation study are summarized in Table 3.1. 

Here ‘n’ denotes the number of completed cycles of the failure and repair times, 

ˆ ( , )R x t  and ˆ ( , )x tσ  denote the average of ˆ ( , )R x t  and ˆ ( , )x tσ  over 100 repetitions, 

and ( , )LR x t  and ( , )UR x t  denote the 95% lower and upper confidence limits for 

( , )R x t  respectively. The values given in parenthesis represent the mean square 

error (MSE) of the corresponding estimators. 

     In order to check the performance of the estimator under censoring scheme 

we use the same distribution for the failure and repair times as in the case of 

complete observations. Further we assume that censoring distributions are 

exponential with cumulative distribution functions 0.05( ) 1 t
CG t e−= −  and 

0.1( ) 1 t
DG t e−= −  respectively. The results of the simulation study are presented in 

Table 3.2. The average percentage of censoring rate associated with the failure 

time and the repair time are denoted by X% and Y% respectively. 

  Table 3.3 summarizes the result of the simulation study in the case of 

continuous observation over a fixed period [0, T] using the same distributions for 

generating the failure and repair times as in the case of complete observations. 

Here ( )N T denotes the average number of cycles completed up to time ‘T’. 

 From the simulation study, we see that even for moderate sample sizes, the 

proposed estimators perform well and the width of the confidence interval is 

reasonably narrow. 

 We also carry out a data analysis to illustrate an application of the 

proposed estimation procedure using compressor failure data given in Table 2.4 of 

Chapter 2. The interval reliability ( , )R x t  is computed with t = 15, 20, 25 and x = 

0, 2.5, 5, 7.5 hours. The 95% confidence intervals are also computed for the 

interval reliability at these time points and are summarized in Table 3.4. 
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Table 3.1 Simulation results in the case of complete observations 

t  x  n  ( , )R x t  ˆ ( , )R x t  ˆ ( , )x tσ  ( , )LR x t  ( , )UR x t  

2.5 0 25 0.84728 0.83935 0.39748 0.68354 0.99516 

    (0.0645) (0.0635)   

  50  0.84549 0.40419 0.73346 0.95753 

    (0.0564) (0.0527)   

  100  0.84908 0.40733 0.76924 0.92891 

    (0.0341) (0.0294)   

 0.25 25 0.81613 0.81467 0.40872 0.65445 0.97489 

    (0.0766) (0.0539)   

  50  0.81078 0.42052 0.69422 0.92734 

    (0.0558) (0.0345)   

  100  0.81683 0.42569 0.73339 0.90026 

    (0.0334) (0.0223)   

 0.5 25 0.78454 0.77501 0.43977 0.60262 0.94739 

    (0.0818) (0.0543)   

  50  0.78299 0.43798 0.66159 0.90440 

    (0.0723) (0.0473)   

  100  0.78022 0.44630 0.69275 0.86770 

    (0.0343) (0.0255)   

5 0 25 0.75778 0.74911 0.51735 0.54631 0.95191 

    (0.0720) (0.0219)   

  50  0.75393 0.52114 0.60948 0.89838 

    (0.0450) (0.0140)   

  100  0.75921 0.52129 0.65704 0.86138 

    (0.0478) (0.0100)   

 0.25 25 0.72567 0.73218 0.51854 0.52891 0.93545 

    (0.0856) (0.0254)   

  50  0.72249 0.52121 0.57802 0.86696 

    (0.0567) (0.0134)   

  100  0.72111 0.52819 0.61759 0.82464 

    (0.0442) (0.0105)   

 0.5 25 0.69385 0.69972 0.52903 0.49234 0.90710 

    (0.0852) (0.0233)   

  50  0.69184 0.52957 0.54505 0.83863 

    (0.0555) (0.0173)   

  100  0.69323 0.53257 0.58885 0.79762 

    (0.0414) (0.0109)   

7.5 0 25 0.74775 0.75098 0.60868 0.51238 0.98958 

    (0.0872) (0.0365)   

  50  0.74835 0.61096 0.57900 0.91770 

    (0.0675) (0.0197)   

  100  0.74861 0.60723 0.62959 0.86763 

    (0.0520) (0.0163)   

 0.25 25 0.71640 0.71810 0.61437 0.47727 0.95893 

    (0.0896) (0.0301)   

  50  0.71631 0.61921 0.54467 0.88795 

    (0.0613) (0.0223)   

  100  0.71551 0.61631 0.59471 0.83631 

    (0.0505) (0.0141)   

 0.5 25 0.68529 0.68428 0.62085 0.44091 0.92765 

    (0.0772) (0.0316)   

  50  0.68724 0.62112 0.51507 0.85941 

    (0.0601) (0.0216)   

  100  0.68606 0.62053 0.56444 0.80768 

    (0.0517) (0.0148)   
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Table 3.2 Simulation results in the case of censored observations 

t  x  n  ( , )R x t  ˆ ( , )cR x t  ˆ ( , )c x tσ  X% Y% ( , )LR x t  ( , )UR x t  

2.5 0 25 0.84728 0.83986 0.39047 22.88 16.16 0.68680 0.99292 

    (0.0765) (0.0587)     

  50  0.85047 0.39299 26.08 17.84 0.74154 0.95940 

    (0.0445) (0.0403)     

  100  0.84564 0.41556 24.72 17.52 0.76419 0.92709 

    (0.0276) (0.0293)     

 0.25 25 0.81613 0.82063 0.39935 25.44 19.04 0.66409 0.97718 

    (0.0877) (0.0781)     

  50  0.81019 0.43771 22.40 17.20 0.68887 0.93152 

    (0.0396) (0.0310)     

  100  0.81966 0.42795 22.84 17.16 0.73578 0.90354 

    (0.0410) (0.0358)     

 0.5 25 0.78454 0.79149 0.42736 23.04 17.44 0.62396 0.95901 

    (0.0631) (0.0561)     

  50  0.77585 0.45014 24.48 18.16 0.65108 0.90063 

    (0.0473) (0.0331)     

  100  0.78033 0.45793 22.52 17.72 0.69058 0.87009 

    (0.0315) (0.0220)     

5 0 25 0.75778 0.74990 0.52929 22.56 19.68 0.54242 0.95738 

    (0.0726) (0.0215)     

  50  0.76730 0.53135 25.36 17.84 0.62002 0.91459 

    (0.0664) (0.0159)     

  100  0.75363 0.54908 23.40 17.60 0.64601 0.86125 

    (0.0410) (0.0119)     

 0.25 25 0.72567 0.73263 0.53007 23.04 17.28 0.52484 0.94042 

    (0.0733) (0.0222)     

  50  0.72778 0.51482 25.28 16.88 0.58508 0.87048 

    (0.0603) (0.0209)     

  100  0.72619 0.55210 25.32 16.96 0.61798 0.83440 

    (0.0367) (0.0137)     

 0.5 25 0.69385 0.69539 0.54801 24.96 16.96 0.48057 0.91021 

    (0.0858) (0.0494)     

  50  0.69273 0.53414 24.72 18.16 0.54468 0.84079 

    (0.0452) (0.0194)     

  100  0.69655 0.55862 25.04 17.40 0.58706 0.80604 

    (0.0379) (0.0160)     

7.5 0 25 0.74775 0.74551 0.61146 24.16 19.18 0.50582 0.98520 

    (0.0702) (0.0275)     

  50  0.74957 0.60993 23.84 16.76 0.58051 0.91863 

    (0.0573) (0.0246)     

  100  0.74879 0.60854 23.50 17.88 0.62952 0.86806 

    (0.0396) (0.0135)     

 0.25 25 0.71640 0.71425 0.61803 25.04 16.48 0.47198 0.95652 

    (0.0637) (0.0286)     

  50  0.71785 0.61995 24.20 17.72 0.54601 0.88969 

    (0.0495) (0.0218)     

  100  0.71549 0.61908 24.00 17.70 0.59415 0.83683 

    (0.0310) (0.0127)     

 0.5 25 0.68529 0.69205 0.62094 25.20 19.04 0.44864 0.93546 

    (0.0786) (0.0261)     

  50  0.68404 0.62017 24.36 17.20 0.51214 0.85594 

    (0.0415) (0.0191)     

  100  0.68591 0.62138 24.50 18.10 0.56412 0.80770 

    (0.0334) (0.0147)     
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Table 3.3 Simulation results in the case of continuous observation over a fixed period ‘T’ 
 

t  x  T  ( , )R x t  ˆ ( , )TR x t  ˆ ( , )T x tσ  ( )N T  ( , )LR x t  ( , )UR x t  

2.5 0 250 0.84728 0.84345 0.95755 31.44 0.72475 0.96215 

    (0.0805) (0.1047)    

  500  0.84780 0.98334 60.72 0.76161 0.93400 

    (0.0562) (0.0983)    

  1000  0.84643 0.98311 125.32 0.78550 0.90737 

    (0.0288) (0.0584)    

 0.25 250 0.81613 0.82279 1.04782 32.16 0.69290 0.95268 

    (0.0612) (0.0974)    

  500  0.81274 1.02838 64.00 0.72260 0.90288 

    (0.0531) (0.0628)    

  1000  0.81556 1.04327 123.72 0.75089 0.88022 

    (0.0212) (0.0387)    

 0.5 250 0.78454 0.78330 1.06905 30.40 0.65078 0.91583 

    (0.0574) (0.0848)    

  500  0.79001 1.08108 62.00 0.69525 0.88477 

    (0.0460) (0.0627)    

  1000  0.78617 1.08486 124.92 0.71893 0.85341 

    (0.0394) (0.0459)    

5 0 250 0.75778 0.76089 1.25714 31.84 0.60505 0.91673 

    (0.0711) (0.0732)    

  500  0.75936 1.25272 63.36 0.64955 0.86916 

    (0.0640) (0.0594)    

  1000  0.75889 1.28293 123.28 0.67937 0.83841 

    (0.0338) (0.0304)    

 0.25 250 0.72567 0.73020 1.28595 30.44 0.57079 0.88961 

    (0.0823) (0.0875)    

  500  0.72102 1.27204 63.52 0.60952 0.83252 

    (0.0557) (0.0645)    

  1000  0.72740 1.29428 123.36 0.64718 0.80762 

    (0.0441) (0.0466)    

 0.5 250 0.69385 0.68660 1.28439 31.56 0.52739 0.84582 

    (0.0865) (0.1125)    

  500  0.70012 1.28668 61.64 0.58734 0.81290 

    (0.0566) (0.0619)    

  1000  0.69146 1.30958 124.00 0.61029 0.77263 

    (0.0336) (0.0294)    

7.5 0 250 0.74775 0.74905 1.47665 30.68 0.56600 0.93210 

    (0.0851) (0.0754)    

  500  0.74889 1.47736 62.32 0.61939 0.87839 

    (0.0545) (0.0483)    

  1000  0.74733 1.48785 123.94 0.65511 0.83955 

    (0.0477) (0.0447)    

 0.25 250 0.71640 0.71815 1.49230 30.26 0.53316 0.90314 

    (0.0812) (0.0831)    

  500  0.71706 1.50387 62.36 0.58524 0.84888 

    (0.0565) (0.0586)    

  1000  0.71655 1.48486 124.72 0.62452 0.80858 

    (0.0432) (0.0364)    

 0.5 250 0.68529 0.68430 1.52581 31.22 0.49516 0.87344 

    (0.0789) (0.0986)    

  500  0.68327 1.54502 62.30 0.54784 0.81870 

    (0.0544) (0.0606)    

  1000  0.68637 1.53015 124.82 0.59153 0.78121 

    (0.0374) (0.0427)    
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Table 3.4 Interval reliability computation of compressor failure data 

t  x  ˆ ( , )R x t  ˆ ( , )x tσ  ( , )LR x t  ( , )UR x t  

15 0 0.97716 0.36676 0.90139 1.00000 

 2.5 0.97138 0.38039 0.89279 1.00000 

 5 0.96710 0.39054 0.88641 1.00000 

 7.5 0.96564 0.39399 0.88424 1.00000 

20 0 0.97330 0.38119 0.89454 1.00000 

 2.5 0.97166 0.38531 0.89206 1.00000 

 5 0.89060 0.44750 0.79814 0.98305 

 7.5 0.88750 0.45354 0.79380 0.98120 

25 0 0.92945 0.43896 0.83876 1.00000 

 2.5 0.92560 0.44657 0.83334 1.00000 

 5 0.92123 0.45485 0.82726 1.00000 

 7.5 0.91884 0.45956 0.82390 1.00000 

 

 In Table 3.4, the upper limit of the confidence interval for the interval 

reliability, ( , )UR x t , is greater than 1 at  several time points  because the estimated 

value of the interval reliability at these time points is near to its maximum value 1.  

So, if ( , )UR x t  is greater than 1, it is replaced by 1 in the Table to make 

meaningful interpretation.   

3.6 Conclusion 

 In this Chapter, we considered the nonparametric estimation of the interval 

reliability when the failure and repair times of a system are mutually independent 

sequences of i.i.d. random variables. The proposed estimators of the interval 

reliability are proved to be consistent and asymptotically normal when (i) the data 

are complete, (ii) the data are subject to right censorship and (iii) the data are 

observed over a fixed period. The simulation study confirmed the performance of 

the proposed estimators for reasonable sample sizes. Finally, the estimation 

procedure corresponding to the complete sample is illustrated using a real life 

data. 



__________________________________________________________________ 
Some results of this chapter have been communicated as entitled ‘Nonparametric 

Estimation of the Interval Reliability’ (See Balakrishna and Mathew, 2011a). 

Chapter 4 

 

Nonparametric Estimation of the Limiting 

Interval Reliability 

 

4.1 Introduction 

In many practical situations, one may be interested in knowing the extent 

to which the system will survive an interval of duration after it has been run for a 

long time. In such situation, the limiting interval reliability may be used as an 

appropriate measure for system effectiveness. Also, since it is difficult to obtain 

closed form expressions for the interval reliability, except for few simple cases, in 

the literature more attention is being paid to its limiting measure. The limiting 

interval reliability is the limiting value of the interval reliability, ( , )R x t , as 

t → ∞ . In this chapter, we consider the nonparametric estimation of the limiting 

interval reliability when the failure and repair times form a bivariate sequence of 

i.i.d. random variables.   

Let { }( , ),  1n nX Y n ≥  be a bivariate sequence of independent and 

identically distributed (i.i.d) non-negative random variables with marginal 

distribution functions (.)XF  and (.)YF  respectively. Assume that (.)XF  and (.)YF  

have positive means Xµ  and Yµ  and finite variances 2
Xσ  and 2

Yσ  respectively. 

Under this set-up it is proved by using the theory of renewal processes that  

( )
( , ) ( )

X Y

x
R x t R x

υ

µ µ
→ =

+
 as t → ∞ , 

where ( )

0

( ) ( ) ( ) ( )X u x X

x

x F u du u x I dF uυ
∞ ∞

>= = −∫ ∫  (See Barlow and Hunter 1961). 
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 If we define (.) (.) /X XFψ µ=  as the density of the asymptotic recurrence 

time of a renewal process governed by the distribution function (.)XF , the 

limiting interval reliability, ( )R x  can be written in the form 

 ( ) [1 ( )]X

X Y

R x x
µ

µ µ
= − Ψ

+
, 

where (.)Ψ is the distribution function with density (.)ψ .  

Thus, the limiting interval reliability, ( )R x  is the product of the limiting 

probability that the system is available at some point and the limiting probability 

that it survives an interval of duration at least ‘x’ (Baxter, 1981). 

 For example, when 1( ) 1 t
XF t e λ−= −  and 2( ) 1 t

YF t e λ−= − , the limiting 

interval reliability function is given by: 

 12

1 2

( ) xR x e λλ

λ λ
−=

+
 

          = ( )XA F x⋅ , 

where 2

1 2

A
λ

λ λ
=

+
 is the limiting availability. 

Thus, when the sequences of failure and repair times are generated from two 

independent exponential distributions, the limiting interval reliability function, 

( )R x , is the product of the limiting availability, A and the reliability function at 

time ‘x’, ( )XF x .   

 The chapter is organized as follows. In Section 4.2, we discuss the 

nonparametric estimation of the limiting interval reliability when the observations 

on failure and repair times of ‘n’ complete cycles are available. Section 4.3 

discusses the estimation in the case of censored observations. In Section 4.4, we 

consider the estimation of ( )R x  when the process is observed up to a specified 

time ‘T’. Some numerical illustrations are presented in Section 4.5 to assess the 

performance of the proposed estimators and finally a conclusion of the study is 

provided in Section 4.6. 
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4.2 Estimation in the case of Complete Observations 

Suppose that observations on the failure and repair times of ‘n’ complete 

cycles 1 1 2 2( , ), ( , ),..., ( , )n nX Y X Y X Y  are available. Let ˆ ( )XF t  and ˆ ( )YF t  denote the 

empirical distribution functions of the random variables X and Y respectively. By 

definition, 

( )
1

1ˆ ( )
i

n

X X t
i

F t I
n

≤
=

= ∑  and ( )
1

1ˆ ( )
i

n

Y Y t
i

F t I
n

≤
=

= ∑ .  

Then, natural nonparametric estimators for Xµ  and Yµ  are given by 

           
0

ˆˆ ( )X XxdF x Xµ
∞

= =∫  and 
0

ˆˆ ( )Y YxdF x Yµ
∞

= =∫  respectively. 

Since ( )

0

( ) ( ) ( ) ( )X u x X

x

x F u du u x I dF uυ
∞ ∞

>= = −∫ ∫ , a natural nonparametric estimator 

of ( )xυ  is  

 ( )

0

ˆˆ( ) ( ) ( )u x Xx u x I dF u Uυ
∞

>= − =∫ ,  

where 
1

1 n

i
i

U U
n =

= ∑  with ( )( )
ii i X xU X x I >= − . 

Thus, a natural nonparametric estimator of ( )R x  is given by, 

 ( )n

U
R x

X Y
=

+
. (4.1) 

 By the strong law of large numbers, we have as n → ∞ , XX µ→ , 

YY µ→  and ( )U xυ→  almost surely and hence we conclude that ( ) ( )nR x R x→  

almost surely as n → ∞ . 

 Since { }( , ),  1n nX Y n ≥  is a bivariate sequence of i.i.d. random variables, 

by central limit theorem we have as n → ∞  

 ( ) 2 2, ( , ),L
X Yn X Y Nµ µ− − → ∑0  
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where 2 2(0, )N ∑  is a 2-variate normal vector with mean (0,0)=0' and dispersion 

matrix 

2

2 2

X XY

XY Y

σ σ

σ σ

 
∑ =  

 
. 

Now, by the Cramer-Wold device (Billingsley, 1968, pp.49) we have as n → ∞  

( ) 3 3, , ( ) ( , ),L
X Yn X Y U x Nµ µ υ− − − → ∑0  

where 3 3(0, )N ∑  is a 3-variate normal vector with mean (0,0,0)=0' and 

dispersion matrix 

 

2

2
3

2

X XY XU

XY Y YU

XU YU U

σ σ σ

σ σ σ

σ σ σ

 
 

∑ =  
 
 

, 

with 2 var( ),U iUσ =   cov( , )XY i iX Yσ = , cov( , )XU i iX Uσ =  and cov( , )YU i iY Uσ = . 

If we define, ( , , ) /( ),f x y z z x y= +  then ( , , ) ( )nf X Y U R x= . 

Now, the partial derivatives of (.)f  are 

 
2

( , , ( ))

( )

( )
X Y x X X

f x

x µ µ υ

υ

µ µ

∂
= −

∂ +
, 

 
2

( , , ( ))

( )

( )
X Y

X Xx

f x

y
µ µ υ

υ

µ µ

∂
= −

∂ +
, and 

 
2

( , , ( ))

1

( )
X Y x X X

f

z µ µ υ µ µ

∂
=

∂ +
. 

Hence by using Lemma 1.4, it can be verified that, 

( ) ( )2( ) ( ) 0, ( )L
nn R x R x N xτ− →  as n → ∞ , 

where  

 
22 2 2

2

4 3 2

2 ( )( )( )( 2 )
( )

( ) ( ) ( )
XU YU UX XY Y

X Y X Y X Y

xx
x

υ σ σ συ σ σ σ
τ

µ µ µ µ µ µ

++ +
= − +

+ + +
. (4.2) 

Thus we have the following theorem. 
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Theorem 4.1 

 For any fixed ‘x’, as n → ∞ ,  

 (i) ( ) ( )nR x R x→  almost surely and  

  (ii) ( ) ( )2( ) ( ) 0, ( ) ,L
nn R x R x N xτ− →   

where 2 ( )xτ  is given in (4.2) . 

 Let 2 2

1

1
( )

1

n

X i
i

s X X
n =

= −
−
∑ , 2 2

1

1
( )

1

n

Y i
i

s Y Y
n =

= −
−
∑ , 2 2

1

1
( )

1

n

U i
i

s U U
n =

= −
−
∑ ,   

1

1
( )( )

1

n

XY i i
i

s X X Y Y
n =

= − −
−
∑ , 

1

1
( )( )

1

n

XU i i
i

s X X U U
n =

= − −
−
∑ , and 

1

1
( )( )

1

n

YU i i
i

s Y Y U U
n =

= − −
−
∑  be estimators of 2 2 2,  ,  ,  ,  X Y U XY XUσ σ σ σ σ  and YUσ  

respectively. Then an estimator ˆ( )xτ  of ( )xτ  can be obtained on replacing 

2 2 2,  ,  ( ),  ,  ,  ,  ,  X Y X Y U XY XUxµ µ υ σ σ σ σ σ  and YZσ  by 2 2 2,  ,  ,  ,  ,  ,X Y U XUX Y U s s s s , 

,XYs  and YUs  respectively. Now it is straightforward to verify that ˆ( ) ( )x xτ τ→  

almost surely as n → ∞ .  

Thus, given a significance level (0,1)α ∈ , an approximate large sample 

100(1 )%α−  confidence interval for ( )R x  is 

/ 2 / 2

ˆ ˆ( ) ( )
( ) ( ) ( )n n

x x
R x z R x R x z

n n
α α

τ τ
− ≤ ≤ + . 

If we define, i i iZ X Y= + , then iZ  represents the length of the i-th cycle of system 

operation and { }iZ  have mean Z X Yµ µ µ= +  and variance 2 2 22Z X XY Yσ σ σ σ= + + . 

 Now, the asymptotic variance of the estimator ( )nR x  given in (4.2) can be 

written as 

 
22

2 2

4 3 2

( ) 2 ( )
( ) U

Z ZU

Z Z Z

x x
x

συ υ
τ σ σ

µ µ µ
= − + . 



Nonparametric Estimation of the Limiting Interval Reliability 

 

 
 

67 

           
22

2 2 2

2 2
( ) 2 ( ) ( )

( ) ( )
ZU UZ

n n n

Z Z

R x R x R x
x x

σ σσ

µ µ υ υ
= − +  

                      2 2 2( ) 2n Z ZU UR x c c c = − +  , (4.3) 

where Z
Z

Z

c
σ

µ
= , and 

( )
U

Uc
x

σ

υ
=  are respectively the coefficients of variation of  Z  

and U , and 
( )

ZU
ZU

Z

c
x

σ

µ υ
= . 

 Thus, the asymptotic variance of ( )nR x  is functionally dependent on ( )R x . 

This aspect pose some difficulty in testing a hypothesis about ( )R x  by using 

( )nR x , the rejection region would thus depends upon ( )R x . However by a 

suitable transformation ( ( ))nh R x , we can achieve the feature that ( ( ))nh R x  is 

asymptotically ( )2( ( )), ( )N h R x xκ , where 2 ( )xκ  does not depend on ( )R x . This 

technique is called a variance stabilizing transformation. In order to obtain 

( ( ))nh R x  is asymptotically ( )2( ( )), ( )N h R x xκ , we choose h to be the solution of 

the differential equation  

( ) ( )

dh c

dR x R x
= , where c is a constant. 

Solving the above equation for h we get  

( ) ( )( ( )) log ( ) log 1/ ( )h R x R x R x= − = , by choosing 1c = − . 

Obviously,  

( ) 2( ( )) ( ( )) (0, ( )),L
nn h R x h R x N xκ− →  as n → ∞ , 

where 2 2 2( ) 2Z ZU Ux c c cκ = − + . 

As a consequence, an approximate large sample 100(1 )%α−  confidence interval 

for ( ( ))h R x  is 

/ 2 / 2

ˆ ˆ( ) ( )
( ( )) ( ( )) ( ( ))n n

x x
h R x z h R x h R x z

n n
α α

κ κ
− ≤ ≤ + , 
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where ˆ( )xκ  is a consistent estimator of ( )xκ  obtained by replacing Zc , Uc  and 

ZUc  by their corresponding consistent estimators.    

Now, by rewriting the confidence interval in a convenient form we get; 

/ 2 / 2

ˆ ˆ( ) ( )
( ) exp ( ) ( ) expn n

x x
R x z R x R x z

n n
α α

κ κ   
− ≤ ≤   
   

.   

 Next, we consider hypothesis testing about the interval reliability for a 

system with distribution-free failure and repair time. 

Suppose we want to test the hypothesis 

0 0: ( )H R x R≤    versus  0: ( )aH R x R> , 

where 0R  is a constant level of interval reliability. 

 Since ( )( ) log ( )h R x R x= −  is a  monotonic decreasing function of ( )R x , 

0( )R x R>  if and only if ( ) ( )0( )h R x h R< .  

Therefore, an equivalent test is 

( ) ( )0 0: ( )H h R x h R≥    versus  ( ) ( )0: ( )aH h R x h R<  

Thus, the decision rule of the test is: 

 Reject 0H  if ( )( )nh R x Cα< , 

where α  is the pre-specified significance level of the test and Cα  is the critical 

value satisfying  

 ( )( )0( ) | ( )nP h R x C R x Rαα = < =  

     = 
( ) ( )0 0( ( )) ( ) ( )

ˆ ˆ( ) ( )
nn h R x h R n C h R

P
x x

α

κ κ

 − −
< 

 
 

. 

Since 
( )0( ( )) ( )

(0,1)
ˆ( )

n Ln h R x h R
N

xκ

−
→ , Cα  can be determined by  

 
( )0( )

ˆ( )

n C h R
z

x
α

ακ

−
= − ,  

where zα−  is the lower α -th quantile of the standard normal distribution. 
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That is, 

 0

ˆ( )
( )

z x
C h R

n
α

α

κ
= − . 

Thus, the decision rule of the test is 

 Reject 0H  if  

 ( ) 0

ˆ( )
( ) ( )n

z x
h R x h R

n
ακ

< −  (4.4) 

   or, 0

ˆ( )
log ( ) logn

z x
R x R

n
ακ

− < − −  

   or,  0

ˆ( )
( ) expn

z x
R x R

n
ακ 

>  
 

. 

Using this decision rule, the power function of the test is given by, 

 ( ) ( ) 0

ˆ( )
( ) ( ) ( )n

z x
R P h R x h R R x R

n
ακ

β
 

= < − = 
 

  

  
( ) ( )( ) ( )0

( ) ( ) ( )

ˆ ˆ( ) ( )

nn h R x h R n h R h R
P z

x x
α

κ κ

 − −
 = < −
 
 

 

  
( )0( ) ( )

ˆ( )

n h R h R
z

x
ακ

 −
= Φ − 

 
 

 

  0log( / )

ˆ( )

n R R
z

x
ακ

 
= Φ −  

 
, 

where (.)Φ  is the cumulative standard normal distribution function. 

4.3 Estimation in the case of Censored Observations 

 Suppose that observations on the failure and repair times 

1 1 2 2( , ), ( , ),..., ( , )n nX Y X Y X Y  are subject to right censorship. Let 

1 1 2 2( , ), ( , ),..., ( , )n nC D C D C D  denote the random censoring times associated with 

the failure and repair times having marginal distribution functions (.)CG  and 

(.)DG  respectively. We assume that the sequences{( , )}i iX Y  and {( , )}i iC D  are 
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mutually independent. Under the censoring model, instead of observing iX  and iY , 

we observe the pairs ( , )i iT δ  and ( , )i iV η , 1,2,...,i n= , where min( , )i i iT X C= , 

min( , )i i iV Y D= , ( )i ii X CIδ ≤=  and ( )i ii Y DIη ≤= .  Let ,
ˆ ( )X cF t  and ,

ˆ ( )Y cF t  be the 

product limit estimator of  ( )XF t  and ( )YF t  respectively as defined in Section 2.3. 

 Let (.)XH  and (.)YH  be the distribution function of iT  and iV  

respectively. Also let Xτ  and Yτ  be the least upper bound for the support of 

(.)XH  and (.)YH  respectively.  

     Let (1) (2) ( )... nT T T≤ ≤ ≤  and (1) (2) ( )... mV V V≤ ≤ ≤  be the order statistics of 

1 2, ,..., nT T T  and 1 2, ,..., mV V V  respectively and let ( )iδ  and ( )iη  denote the 

concomitant associated with ( )iT  and ( )iV  respectively. 

 Using the Kaplan-Meier integrals (Stute and Wang, 1994), the 

nonparametric estimators of Xµ , Yµ  and ( )xυ  are given by, 

 , , , ( )
10

ˆˆ ( )
n

X c X c X i i
i

udF u W Tµ
∞

=

= =∑∫ , 

  , , , ( )
10

ˆˆ ( )
n

Y c Y c Y i i
i

udF u W Vµ
∞

=

= =∑∫  and  

 
( )( ) , , ( ) ( )

10

ˆˆ ( ) ( ) ( ) ( )
i

n

c u x X c X i i T x
i

x u x I dF x W T x Iυ
∞

> >
=

= − = −∑∫ , 

where 

 
( )1

( )

,
11 1

ji
i

X i
j

n j
W

n i n j

δ
δ −

=

 −
=  − + − + 

∏  and  

 
( )1

( )

,
11 1

ji
i

Y i
j

n j
W

n i n j

η
η −

=

 −
=  − + − + 

∏ . 

Thus, a nonparametric estimator of ( )R x  is given by 

 
, ,

ˆ ( )ˆ ( )
ˆ ˆ

c
c

X c Y c

x
R x

υ

µ µ
=

+
. (4.5) 
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 In order to study the asymptotic properties of the estimator ˆ ( )cR x  we need 

the following two lemmas due to Stute and Wang (1994) and Stute (1995). 

Before stating the Lemmas, let us define 

 0

1
( )

1 ( )
x

G x
γ =

−
 

1

1
( ) ( ) ( )

1 ( )
x

x t dF t
H x

τ

γ ϕ=
− ∫  

1
2

( )
( ) ( )

1 ( )

x
t

x dG t
G t

γ
γ

−∞

=
−∫  

where ,  ,  F G H and τ  are as defined in this section ignoring the suffices. 

Lemma 4.1 Let ϕ  be any F-integrable function. Assume that F and G are 

continuous. If F̂  is the Kaplan-Meier product limit estimator of F , then 

 
0 0

ˆlim
n

dF dF
τ

ϕ ϕ
∞

→∞
=∫ ∫  with probability 1. 

Proof: See Stute and Wang (1994). 

Lemma 4.2  Assume the conditions 

 (i) 
2

0

( )
( )

( )

x
dF x

G x

τ ϕ
< ∞∫  and 

 (ii) 
0

( ) ( ) ( )x C x dF x
τ

ϕ < ∞∫ , where 
0

( )
( )

( ) ( )

x
dG t

C x
H t G t

= ∫ . 

Then, 1 1/ 2

1

ˆ( ) ( )
n

i P
i

d F F n B o nϕ − −

=

− = +∑∫ , 

where 0 1 2( ) ( ) ( )(1 ) ( )i i i i i i iB T T T Tϕ γ δ γ δ γ= + − −  are independent and identically 

distributed with mean 0 and variance 2
cσ . Also 

2

0 0

ˆ (0, )L
cn dF dF N

τ

ϕ ϕ σ
∞ 

− → 
 
∫ ∫  as n → ∞ . 

Proof: See Stute (1995). 
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Introduce the notations,  

 , ,

0

( )
X

X c X cudF u
τ

µ = ∫ , , ,

0

( )
Y

Y c Y cudF u
τ

µ = ∫ , ,

0

( ) ( ) ( ) ( )
X

c X cx u x I u x dF u
τ

υ = − >∫  

and 
, ,

( )
( ) c

c

X c Y c

x
R x

υ

µ µ
=

+
. 

     Using the strong law of Kaplan-Meier integrals stated in Lemma 4.1, it is 

easy to verify that , ,
ˆ

X c X cµ µ→ , , ,
ˆ

Y c Y cµ µ→ , and ˆ ( ) ( )c cx xυ υ→  almost surely as 

n → ∞  and hence we conclude that ˆ ( ) ( )c cR x R x→  almost surely as n → ∞ . 

By applying the central limit theorem for Kaplan-Meier integrals stated in 

Lemma 4.2 and using the Cramer-Wold device (Billingsley, 1968, pp.49) it can be 

shown that as n → ∞  

( ), , , , 3
ˆˆ ˆ, , ( ) ( ) ( , ),L

X c X c X c X c c c cn x x Nµ µ µ µ υ υ− − − → ∑0  

where 3(0, )cN ∑  is a 3-variate normal vector with mean (0,0,0)=0'  and 

dispersion matrix 

2
, , ,

2
, , ,

2
, , ,

X c XY c XU c

c XY c Y c YU c

XU c YU c U c

σ σ σ

σ σ σ

σ σ σ

 
 

∑ =  
 
 

, 

with 2
, ,var( ),X c X iBσ =  2

, ,var( ),Y c Y iBσ =  2
, ,var( ),U c U iBσ =  , , ,cov( , )XY c X i Y iB Bσ = , 

, , ,cov( , )XU c X i U iB Bσ =  and , , ,cov( , )YU c Y i U iB Bσ = , in which ,X iB , ,Y iB  and ,U iB  are 

as defined in Lemma 4.2 by choosing ( )t tϕ =  for ,X iB  and ,Y iB and 

( )( ) ( ) t xt t x Iϕ >= −  for ,U iB . 

Note that,  

 , ,
ˆˆˆ ˆ( , , ( )) ( )X c Y c c cf x R xµ µ υ = .  

Now, by Lemma 1.4, we can show that 

 ( ) ( )2ˆ ( ) ( ) 0, ( )L
c c cn R x R x N xτ− →  as n → ∞ ,  
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where  

2 2 2 2
, , , , , ,2

4 3 2
, , , , , ,

( )( 2 ) 2 ( )( )
( )

( ) ( ) ( )

c X c XY c Y c c XU c YU c U c

c

X c Y c X c Y c X c Y c

x x
x

υ σ σ σ υ σ σ σ
τ

µ µ µ µ µ µ

+ + +
= − +

+ + +
. (4.6) 

This leads to the following theorem. 

Theorem 4.2 

For fixed ‘x’, as n → ∞ , 

  (i) ˆ ( ) ( )c cR x R x→  almost surely and  

  (ii) ( ) ( )2ˆ ( ) ( ) 0, ( ) ,L
c c cn R x R x N xτ− →   

where 2 ( )c xτ  is given in (4.6). 

     In order to construct a confidence interval for ( )R x , a consistent estimator 

ˆ ( )c xτ  of ( )c xτ  can be obtained by using the Jackknife estimate proposed by Stute 

(1996). The Jackknife estimators of 2
,X cσ  and ,XY cσ  are given by, 

 ( )
2

2 ( )
, , ,

1

ˆ ( 1)
n

k
X c X n X n

k

n S Sσ
=

= − −∑ , 

 ( )( )( ) ( )
, , , , ,

1

( 1)
n

k k
XY c X n X n Y n Y n

k

n S S S Sσ
=

= − − −∑  

where  

 
( )1

( ) ( )( )
,

1 1

1
jik

i ik
X n

i j

T n j
S

n i n j

δ
δ −

= =

 − −
=  − − 
∑ ∏  

   
( ) ( )1 1

( ) ( )

1 1 1

1

1 1

j jk in
i i

i k j j k

T n j n j

n i n j n j

δ δ
δ − −

= + = = +

   − − −
+    − + − − +   
∑ ∏ ∏ , 

 
( )1

( ) ( )( )
,

1 1

1
jik

i ik
X n

i j

V n j
S

n i n j

η
η −

= =

 − −
=  − − 
∑ ∏  

   
( ) ( )1 1

( ) ( )

1 1 1

1

1 1

j jk in
i i

i k j j k

V n j n j

n i n j n j

η η
η − −

= + = = +

   − − −
+    − + − − +   
∑ ∏ ∏ , 
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 ( )
, ,

1

1 n
k

X n X n
k

S S
n =

= ∑  and ( )
, ,

1

1 n
k

Y n Y n
k

S S
n =

= ∑ . 

The Jackknife estimators for 2
,Y cσ , 2

,U cσ , ,XU cσ , and ,YU cσ  may be constructed in a 

similar manner. Using these estimators, it is easier to construct an asymptotic 

confidence interval for the limiting interval reliability. 

4.4 Estimation in the case of Continuous Observation over a Fixed Period 

 Suppose that the process is observed over a fixed period [0, ]T  . Let 

( )N T denote the number of cycles completed in the interval [0,  ]T . Then, 

( ) Sup{ : }nN T n S T= ≤ , where 
1

n

n i
i

S Z
=

=∑  with i i iZ X Y= + . 

Let us assume that, for some 0δ > , ( )2
1E X δ+ < ∞  and ( )2

1E Y δ+ < ∞ . 

Define, 

( )
( )

( ) 1 ( )

( ) ( )
1 1

( ) ( ) 1 ( ) ( )
N T

N T N T

T j j N T T S x
j j

x T U T U T S x Iα λ λ
+

− >
= =

 
= + − + − − 

 
∑ ∑ , 

where 
( ) ( ) 1 ( ) 1( )( )

N T N T N TS X T ST Iλ
+ ++ ≤ <= . 

Then, an estimator of the limiting interval reliability, ( )R x , is given by, 

 
( )

( ) T
T

x
R x

T

α
= . (4.7)  

We can write (4.7) as  

 ( )
( )

( ) 1

( ) ( ) ( ) 1
1

1 1 ( )
( ) ( )

N T

N T

T j N T T S x N T
j

T
R x U T S x I U

T T

λ+

− > +
=

−
= + − − −∑ . (4.8) 

Consider, 

( ) ( )
( )( ) ( ) ( ) 1 ( ) ( ) 1

1 1
( ) ( )

N TN T T S x N T N T N TT S x I U T S U
T T

− > + +− − − ≤ − +   

      ( ) 1

2
0N TZ

T
+≤ →  a.s. as T → ∞ . 
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Clearly as T → ∞ , ( )N T → ∞  almost surely and hence by the strong law of large 

numbers for random sum of i.i.d. random variables, 

 ( ) ( )
( )

N T

X Y Z

S

N T
µ µ µ→ + =  as T → ∞ .  

Now, from the following inequality 

 ( ) ( ) 1

( ) ( ) ( )

N T N TS ST

N T N T N T

+
≤ <  

it follows that, 
( ) 1

Z

N T

T µ
→  almost surely as T → ∞ .  

Therefore, 

( ) 1 ( ) 1

1 1

1 ( ) 1 1

( ) 1

N T N T

j j
j j

N T
U U

T T N T

+ +

= =

+
=

+
∑ ∑   

      
( )

( )
Z

x
R x

υ

µ
→ =  almost surely as T → ∞ . 

Hence ( )TR x  is strongly consistent for ( )R x . 

Define,   

 ( ) ,  1, 2,...j Z j jU x Z jξ µ υ= − =  

Then, jξ ’s are i.i.d. with mean 0 and common variance 

 2 2 2 2 2( ) ( ) 2 ( )Z U Z Z UZx x xγ µ σ υ σ υ µ σ= + − . (4.9) 

Thus, by the Central limit theorem, we have 

( ) ( )2( ) 0, ( )L
Zn U x Z N xµ υ γ− → . 

Now, using the central limit theorem for a random sum of i.i.d. random variables, 

we have 

 
( ) 1 ( ) 1

1 1

1 1
[ ( ) ]

( ) 1 ( ) 1

N T N T

j Z j j
j j

U x Z
N T N T

ξ µ υ
+ +

= =

= −
+ +
∑ ∑  

                                          ( )20, ( )L N xγ→ . (4.10)                                            
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Let us write, 

( ) 1 ( ) 1 ( ) 1

1 1 1

( ) [ ( ) ] ( )
N T N T N T

Z j Z j j j
j j j

U x T U x Z Z T xµ υ µ υ υ
+ + +

= = =

 
− = − + − 

 
∑ ∑ ∑   

    ( )
( ) 1

( ) 1
1

( )
N T

j N T
j

S T xξ υ
+

+
=

= + −∑ . (4.11) 

For 0ε > , consider 

2 2n
n n

Z
P P X n P Y n

n
ε ε ε

     > ≤ > + >      
 

        
( ) ( )2 2

1 1

1 / 2

E X E Y

n

δ δ

δ

+ +

+

+
≤  for some 0,δ >  by Markov inequality. 

As the expectation on the right hand side are finite, it follows that 

1

n

n

Z
P

n
ε

∞

=

 
> < ∞ 

 
∑ 0nZ

n
⇒ →  a.s. as n → ∞ , 

and hence ( ) 0
( )

N TZ

N T
→  a.s. as T → ∞ . 

Thus, 

 ( ) 1 ( ) 10 0
( ) 1 ( ) 1

N T N TS T Z

N T N T

+ +−
≤ ≤ →

+ +
 a.s. as T → ∞ . 

Hence, from (4.10) and (4.11) we get as T → ∞  

 ( )

( ) 1

1 2

( )

0, ( )
( ) 1

N T

Z j
j L

U x T

N x
N T

µ υ

γ

+

=

−

→
+

∑
 (4.12) 

Also, 

( ) ( )
( )( ) ( ) ( ) 1 ( ) ( ) 1

1 1
( ) ( )

( ) 1 ( ) 1N TN T T S x N T N T N TT S x I U T S U
N t N t

− > + +− − − ≤ − +
+ +

 

  ( ) 1

2
0

( ) 1
N TZ

N T
+≤ →

+
 a.s. as T → ∞ . 

Thus, in view of (4.8) we can write, 
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( ) 1

1

1
( )

0
( ) 1

N T

T j
j

R x U
T

N T T

+

=

−

→
+

∑
 almost surely as T → ∞      (4.13) 

Now, 

( ) ( ) ( )

( ) 1 ( ) 1

1 1

1 1 1

1 1
( ) ( )

( ) ( )

( ) 1 ( ) 1 ( ) 1

N T N T

T j j
j jT

Z Z Z

R x U U R x
T TR x R x

N T T N T T N T Tµ µ µ

+ +

= =

− − −

− −
−

= +
+ + +

∑ ∑
. 

By (4.12) and (4.13) we get, 

( )
( )2

1

( ) ( )
0, ( )

( ) 1

LT

Z

R x R x
N x

N T T
γ

µ −

−
→

+
 as T → ∞  

Finally considering 
( ) 1 1

Z

N T

T µ

+
→ , it follows that 

( ) ( )2 3( ) ( ) 0, ( )L
T ZT R x R x N xγ µ− →  as T → ∞ . 

Thus we proved the following theorem. 

Theorem 4.3 

For fixed x , as T → ∞ ,  

   (i) ( ) ( )TR x R x→  almost surely and 

   (ii) ( ) ( )2 3( ) ( ) 0, ( )L
T ZT R x R x N xγ µ− → ,  

where 2 ( )xγ  is given in (4.9). 

Define, 
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1
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( ) 1
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i

S U U Z Z
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−
∑ . 

Then a consistent estimator ˆ( )xγ  of ( )xγ  can be obtained on replacing 

2 2,  ( ),  ,  Z U Zxµ υ σ σ  and UZσ  by 2 2
( ) ( ) , ,,  ,  ,  N T N T U T Z TU Z S S  and ,UZ TS  respectively in 
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(4.9). In this case, for large ‘T’, an approximate 100(1 )%α−  confidence interval 

for ( )R x  is given by 

 / 2 / 23 3

ˆ ˆ( ) ( )
( ) ( ) ( )T T

x x
R x z R x R x z

U T U T
α α

γ γ
− ≤ ≤ + . 

4.5 Numerical Study 

In this section we carry out an extensive simulation study to assess the 

performance of the proposed estimator for the limiting interval reliability when (i) 

data on ‘n’ complete cycles of system operation are available, (ii) data are subject 

to right censorship and (iii) the process is observed up to a specified time ‘T’. 

Consider first the case of complete observations. Suppose that the joint 

distribution of failure and repair times follows a Gumbel’s bivariate exponential 

distribution having bivariate survivor function ( )1 2( , )S x y exp x y xyλ λ λ= − − −  

with 1 1/ 6λ = , 2 1/ 2λ =  and λ = 0.75. The time points x = 0, 0.1, 0.25 and 0.5 are 

considered for the simulation and the corresponding ( )R x  are also calculated. In 

Table 4.1, n denotes the number of observations of failure and repair times, ( )nR x  

and ˆ ( )n xτ  denote the averages of ( )nR x and ˆ( )xτ  over 500 repetitions and ( )LR x  

and ( )UR x  are respectively the 95% lower and upper confidence limits for ( )R x . 

The mean square errors of the estimators are written within the parenthesis. 

 In order to assess the performance of the proposed estimator under 

censoring scheme we use the same Gumbel’s bivariate exponential distribution for 

the failure and repair times as in the case of complete observations. Further we 

assume that censoring distributions are also generated from a bivariate Gumbel’s 

exponential distribution with bivariate survivor function 

( )( , ) 0.05 0.10 0.5S x y exp x y xy= − − − . The results of the simulation study are 

presented in Table 4.2. Here X% and Y% denote the average percentage of 

censoring rate associated with the failure time and the repair time respectively. 
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Table 4.1 Simulation results in the case of complete observations 

x  ( )R x  n  ( )nR x  ( )n xτ  ( )LR x  ( )UR x  

50 0.74794 0.09428 0.72180 0.77407 

 (0.0451) (0.0283)   

100 0.74864 0.09393 0.73023 0.76705 

 (0.0317) (0.0199)   

250 0.74946 0.09481 0.73770 0.76121 

 (0.0195) (0.0125)   

500 0.74986 0.09518 0.74152 0.75821 

0.00 0.75000 

  (0.0141) (0.0094)   

50 0.73546 0.09643 0.70873 0.76218 

 (0.0427) (0.0266)   

100 0.73697 0.09734 0.71790 0.75605 

 (0.0312) (0.0207)   

250 0.73626 0.09809 0.72410 0.74841 

 (0.0192) (0.0129)   

500 0.73801 0.09758 0.72946 0.74657 

0.10 0.73760 

  (0.0142) (0.0093)   

50 0.71711 0.10271 0.68864 0.74558 

 (0.0449) (0.0297)   

100 0.71724 0.10243 0.69716 0.73731 

 (0.0320) (0.0207)   

250 0.71904 0.10219 0.70637 0.73171 

 (0.0201) (0.0130)   

500 0.71877 0.10285 0.70975 0.72778 

0.25 0.71939 

 (0.0144) (0.0097)   

50 0.68754 0.11086 0.65682 0.71827 

 (0.0478) (0.0301)   

100 0.69043 0.10892 0.66908 0.71178 

 (0.0332) (0.0217)   

250 0.68811 0.11037 0.67443 0.70179 

 (0.0216) (0.0141)   

500 0.68906 0.11002 0.67942 0.69871 

0.50 0.69003 

  (0.0147) (0.0097)     
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Table 4.2 Simulation results in the case of censored observations 

x  ( )R x  n  , ( )c nR x  ( )c xτ  %X  %Y  ( )LR x  ( )UR x  

50 0.75239 0.13546 22.60 15.60 0.71484 0.78994 

 (0.0445) (0.0362)     

100 0.74853 0.13752 21.90 17.40 0.72157 0.77548 

 (0.0385) (0.0288)     

250 0.74964 0.13516 23.40 16.66 0.73289 0.76640 

 (0.0199) (0.0197)     

500 0.74692 0.13846 22.74 16.54 0.73478 0.75905 

0.00 0.75000 

  (0.0130) (0.0144)         

50 0.73771 0.14490 22.00 16.60 0.69755 0.77788 

 (0.0397) (0.0376)     

100 0.72195 0.14336 22.30 17.10 0.69385 0.75005 

 (0.0325) (0.0280)     

250 0.73522 0.14461 23.32 16.58 0.71729 0.75314 

 (0.0229) (0.0184)     

500 0.73481 0.14538 23.13 16.82 0.72207 0.74755 

0.10 0.73760 

 (0.0178) (0.0103)     

50 0.71894 0.16271 25.00 16.20 0.67384 0.76404 

 (0.0410) (0.0315)     

100 0.70698 0.16243 23.26 16.44 0.67514 0.73882 

 (0.0399) (0.0217)     

250 0.71677 0.16305 22.74 16.69 0.69656 0.73698 

 (0.0231) (0.0147)     

500 0.72126 0.16254 23.17 16.54 0.70702 0.73551 

0.25 0.71939 

  (0.0196) (0.0099)         

50 0.69822 0.18681 24.20 16.20 0.64644 0.75000 

 (0.0499) (0.0404)     

100 0.67765 0.18520 22.92 17.24 0.64135 0.71395 

 (0.0405) (0.0287)     

250 0.68612 0.18372 23.22 16.58 0.66335 0.70889 

 (0.0244) (0.0160)     

500 0.68902 0.18685 23.42 16.82 0.67264 0.70540 

0.50 0.69003 

  (0.0175) (0.0115)         
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Table 4.3 Simulation results in the case of continuous observation over a fixed period ‘T’ 
 

x  ( )R x  T  ( )TR x  ( )T xγ  ( )N T  ( )LR x  ( )UR x  

200 0.75235 0.82831 23.90 0.63755 0.86714 

 (0.0540) (0.2426)    

500 0.75062 0.83930 45.92 0.67705 0.82418 

 (0.0439) (0.1977)    

750 0.75186 0.85160 74.18 0.69091 0.81281 

 (0.0318) (0.1246)    

1000 0.75134 0.85915 95.88 0.69809 0.80459 

0.00 0.75000 

  (0.0212) (0.0914)       

200 0.73546 0.94643 23.90 0.60429 0.86662 

 (0.0427) (0.2628)    

500 0.73697 0.95355 48.76 0.65339 0.82056 

 (0.0312) (0.1768)    

750 0.73626 0.95917 72.12 0.66761 0.80490 

 (0.0192) (0.1487)    

1000 0.73801 0.96085 96.98 0.67846 0.79757 

0.10 0.73760 

 (0.0142) (0.1040)    

200 0.71711 1.01111 23.90 0.57698 0.85724 

 (0.0449) (0.2895)    

500 0.71724 1.02024 47.20 0.62781 0.80666 

 (0.0320) (0.2037)    

750 0.71904 1.02989 70.08 0.64533 0.79275 

 (0.0201) (0.1739)    

1000 0.71877 1.03154 95.54 0.65483 0.78270 

0.25 0.71939 

  (0.0144) (0.1146)       

200 0.68754 1.10757 24.32 0.53404 0.84104 

 (0.0478) (0.3014)    

500 0.69043 1.10892 47.76 0.59323 0.78763 

 (0.0332) (0.0242)    

750 0.68811 1.10972 72.62 0.60869 0.76753 

 (0.0216) (0.1841)    

1000 0.68906 1.11017 95.86 0.62025 0.75787 

0.50 0.69003 

  (0.0147) (0.1197)       
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 Table 4.3 summarizes the result of the simulation study in the case of 

continuous observation over a fixed period [0, T] using the same Gumbel’s 

bivariate exponential distribution for generating the failure and repair times as in 

the case of complete observations. In Table 4.3, the average number of cycles 

completed up to time ‘T’ is denoted by ( )N T . The results of the simulation study 

confirmed the performance of the proposed estimators for reasonable sample 

sizes. 

 A data analysis is also carried out using the compressor failure data given 

in Table 2.4 to illustrate the application of the proposed estimation procedure in 

the case of complete observation. The limiting interval reliability ( )R x  is 

computed with 0, 2.5, 5, 7.5x =  hours and the corresponding 95% confidence 

intervals are computed and summarized in Table 4.4. 

 

Table 4.4 Limiting interval reliability computation of compressor failure data 

x  ˆ ( )R x  ˆ( )xτ  ( )LR x  ( )UR x  

0 0.99088 0.02216 0.98630 0.99546 

2.5 0.98941 0.02354 0.98454 0.99427 

5 0.98794 0.02503 0.98277 0.99311 

7.5 0.98655 0.02649 0.98108 0.99202 

 

4.6. Conclusion 

 In this chapter, we discussed the nonparametric estimation of the limiting 

interval reliability when the failure and repair times form a sequence of i.i.d. 

bivariate random variables. A testing of hypothesis procedure for the limiting 

interval reliability is also discussed. The performance of the proposed estimators 

is verified using a simulation study.  We illustrated the application of the proposed 

estimation procedure with a real life data set. 

 



__________________________________________________________________ 
Some results of this chapter have been communicated as entitled ‘Availability Behavior of 

some Stationary Dependent Sequences’ (See Balakrishna and Mathew, 2011b). 

Chapter 5 

 

Availability Behavior of Some Stationary 

Dependent Sequences 

 

5.1 Introduction 

One of the major limitations in the study of system performance of 

repairable systems is the assumption of independence among the successive 

sequence of failure and repair times of the system. It is natural to expect some sort 

of dependence among the successive sequence of failure and repair times when 

the system is working in a random environment. So, it is important to consider 

suitable models for repairable systems that can incorporate the dependence 

structure. Motivated by this idea, Kijima and Sumita (1986) discussed the point 

process models for the reliability of repairable systems when the survival times 

are generated by some stationary dependent sequences. Several non-Gaussian time 

series models such as first order random coefficient autoregressive models are 

discussed in the literature for modeling life time data. See for example Lawrance 

and Lewis (1977), Gaver and Lewis (1980), and Sim (1992). However, the 

properties of the availability measures are not discussed much when the 

successive failure and repair times are generated by stationary dependent sequence 

of random variables. Motivated by this, in this chapter, we consider the 

availability behavior of some stationary dependent sequences. 

In Section 5.2, we derive the expression for the point availability when the 

successive sequences of failure and repair times are generated by stationary 

dependent sequence of random variables. Section 5.3 and 5.4 discuss the 

availability behavior of a one-unit system when the sequences of failure and repair 
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times are generated by two independent first order Exponential Moving Average 

(EMA1) processes and two independent first order Exponential Autoregressive 

(EAR(1)) processes respectively. Finally, Section 5.5 summarizes major 

conclusions of the study. 

5.2 Point Availability of Stationary Dependent Sequences 

Let { }nX  and { }nY  be two independent sequences of stationary dependent 

non-negative random variables with distribution functions (.)XF  and (.)YF  

respectively. Suppose nU  denotes the sum of first n operating intervals such that 

1

n

n i
i

U X
=

=∑  and let ( ) (.)n
XF  be the distribution function of nU .  Let 

1

n

n i
i

V Y
=

=∑  be 

the sum of first n  repair intervals and ( ) (.)n
YF  be the distribution function of nV .  

 To capture the behavior of cycles that contain one operation interval and 

one repair interval it is useful to define n n nZ X Y= +  as the length of the n-th such 

cycle. Let nS  be the total elapsed time of the first n cycles such 

that
1

n

n i n n
i

S Z U V
=

= = +∑ , and let ( ) ( ) [ ]n
Z nF t P S t= ≤  be the distribution function of 

nS . Then, ( ) ( ) ( )( ) ( )n n n
Z X YF t F F t= ∗ . 

Now, the point availability of the repairable system is given by, 

( ) [ ( ) 1]A t P tξ= =  

                    ( )
1

1 0

( ) [ ] ( )
t

n
X n n Z

n

F t P X t u S u dF u
∞

+
=

= + > − =∑∫ . (5.1) 

The first term in the point availability function (5.1) reflects the probability that 

the first period of operation is of length t or greater. The subsequent integral 

expressions reflect the probability that the n -th failure occurs at time u  and the 

following period of operation is of length ( )t u− or greater. 



Availability Behavior of Some Stationary Dependent Sequences 

 

 
 

85 

Consider, 

( )
1

0

[ ] ( )
t

n
n n ZP X t u S u dF u+ > − =∫  

( ) ( )
1

0 0

( ) [ ] ( )
t t

n n
Z n n ZdF u P X t u S u dF u+= − ≤ − =∫ ∫  

( )
1( ) [ ]n

Z n nF t P X S t+= − + ≤  

( )
1( ) [ ]n

Z n nF t P U V t+= − + ≤  

( ) ( ) ( 1) ( )( ) ( )n n n n
X Y X YF F t F F t+= ∗ − ∗ . 

Thus, 

 ( ) ( ) ( 1) ( )

1 1

( ) ( ) ( ) ( )
n n

n n n n
X X Y X Y

i i

A t F t F F t F F t+

= =

= + ∗ − ∗∑ ∑  

 ( )( ) ( 1) ( )

1

( ) ( )
n

n n n
X X X Y

i

F t F F F t+

=

= + − ∗∑ .  (5.2) 

If we assume { }nX and { }nY are two independent sequences of i.i.d. non-negative 

random variables then ( 1) ( )( ) ( )n n
X X XF t F F t+ = ∗  and (5.2) reduces to 

( ) ( )

1

( ) ( ) ( )
n

n n
X X X Y

i

A t F t F F F t
=

= + ∗ ∗∑  

        ( ) ( )

1

( ) ( )
n

n n
X X X Y

i

F t F F F t
=

 
= + ∗ ∗ 

 
∑  

        ( ) ( )X XF t F M t= + ∗ ,  

where ( ) ( )

1

( ) ( )
n

n n
X Y

i

M t F F t
=

= ∗∑  is the renewal function associated with the 

sequence{ }nZ . 

Let ( ) ( )n
XF s∗  and ( ) ( )n

YF s∗  denote the Laplace transforms of ( ) ( )n
XF t  and 

( ) ( )n
YF t  respectively.  

Now, from (5.2), the Laplace transform of ( )A t  is given by 

 ( )( ) ( 1) ( )

1

( ) ( ) ( ) ( ) ( )n n n
X X X Y

n

A s F s F s F s F s
∞

∗ ∗ ∗ + ∗ ∗

=

= + −∑ . (5.3) 
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So, if the Laplace transforms ( ) ( )n
XF s∗  and ( ) ( )n

YF s∗  are known, then the point 

availability function can be obtained by inverting the Laplace transform ( )A s∗  

given in (5.3). In the next two Sections, we consider the availability behavior of 

two stationary dependent time series models.  

5.3 Availability Behavior of Exponential Moving-Average Processes 

Assume that the sequences of failure and repair times,{ }nX and { }nY , are 

generated by two independent first-order Exponential Moving Average (EMA1) 

processes (Lawrence and Lewis, 1977) defined as  

1 1

1 1 1

with probability ,

with probability 1- .
n

n

n n

X
β ε β

β ε ε β+


= 

+
  

and 

2 2

2 1 2

with probability ,

with probability 1- .
n

n

n n

Y
β η β

β η η β+


= 

+
, 1 2(0 , 1, 1,2,3,...)nβ β≤ ≤ = , 

where { }nε  and { }nη  are two independent i.i.d. exponential random sequences 

with parameters 1λ  and 2λ  respectively. The simplest aspects of the EMA1 model 

are the exponential marginal distribution of the intervals and the non-markovian 

dependence among the adjacent members of the sequence. 

 In the case of EMA1 process the Laplace transforms of ( ) ( )n
XF t  and 

( ) ( )n
YF t  are given by 

1

( ) 1 1 1 1

1 1 1 1 1

( 2 )
( )

( ){ (1 )

n

n
X

s
F s

s s s

λ λ λ β

λ λ β λ β

−

∗  +
=  

+ + + + 
 and 

1

( ) 2 2 2 2

2 2 2 2 2

( 2 )
( )

( ){ (1 )

n

n
Y

s
F s

s s s

λ λ λ β

λ λ β λ β

−

∗  +
=  

+ + + + 
, 1n ≥ . 

Inserting ( ) ( )n
XF s∗  and ( ) ( )n

YF s∗  in (5.3) we get  

 1 2 1 1 1 2 2 2 2

1

{ (1 ) }( )( )1
( )

( )

s s s s
A s

s k s

λ λ β β λ β λ β λ

λ
∗ − + + + +

= +
+

, (5.4) 
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where  

( ) 2
1 2 2 2 1 1 1 1 1 1 1 2( ) ( )( ) (1 )( )( ) (1 )k s s s s s s s s sλ λ β β β λ β λ β β λ λ= + + + + + + + + +  

( )2 2
1 1 2 1 2 1 1 2(1 )(1 2 ) (1 2 2 )s sβ β β β β λ λ λ + + + + + + +  . 

 On inverting the Laplace transform (5.4) we get the point availability 

function ( )A t  for the EMA1 process. Obviously, for values of 1 2( , ) (0,0)β β =  or 

(1,1) , ( )A t  becomes the point availability function when the sequences of failure 

and repair times are generated by two independent i.i.d. exponential random 

variables. Figure 5.1 gives the graph of ( )A t  for different values of  1β  and 2β  by 

choosing 1 1λ =  and 2 5λ = . 

 

Figure 5.1 

The availability function for EMA1 process. The function is plotted for values 

1 2( , ) (0,0),(0.5,0),(0,0.5)β β =  and (0.5,0.5)  using 1 1λ =  and 2 5λ = . 
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 From the figure, it can be seen that the point availability function in the 

i.i.d. set up overestimate or underestimate ( )A t  in the presence of dependence 

among successive observations. Also, it is seen that the point availability function 

converge to a common limit, called the limiting availability, as t → ∞  irrespective 

of the values of 1β  and 2β . 

 Because the study of the point availability function ( )A t  is too hard, due to 

the complexity of the exact expression, in the literature more attention is being 

paid to the limiting behavior of ( )A t . The limiting availability, A, can be obtained 

from (5.4) using the fact that  

1
lim ( ) lim ( )
t s

A t sA s∗

→∞ →
= . 

Applying this result we get, 

2 1

1 2 1 2

1/
lim ( )

1/ 1/t
A A t

λ λ

λ λ λ λ→∞
= = =

+ +
, 

which is same as the limiting availability in the i.i.d. exponential case. 

 Even though, the limiting availability remains the same for both set-ups, 

the properties of its estimators may be different in both cases.  In order to study 

the effect of dependence among successive sequences of failure and repair times 

in the estimation of the limiting availability, we consider the asymptotic properties 

of two commonly used estimators for the limiting availability.  

 First, we consider the estimator in the case of complete observations. 

Suppose that observations on the failure times and the repair times of ‘n’ complete 

cycles 1 1 2 2( , ), ( , ),..., ( , )n nX Y X Y X Y  are available. In this case a natural estimator of 

the limiting availability A is 

 ˆ n
n

n n

X
A

X Y
=

+
, (5.5) 

where 
1

1 n

n i
i

X X
n =

= ∑  and 
1

1 n

n i
i

Y Y
n =

= ∑ . 



Availability Behavior of Some Stationary Dependent Sequences 

 

 
 

89 

 As { }nX  and { }nY  are stationary and ergodic, we have 11/nX λ→  and 

21/nY λ→  almost surely as n → ∞  and hence we conclude that ˆ
nA A→  almost 

surely as n → ∞ . 

 Since the EMA1 process is a 1-dependent process, using the central limit 

theorem for m-dependent process (Lemma 1.6) we have as n → ∞ , 

 ( ) 2
11/ ( , )L

n Xn X Nλ σ− → 0  and  

 ( ) 2
21/ ( , )L

n Yn Y Nλ σ− → 0 , 

where 2 2
1 1 1{1 2 (1 )}/Xσ β β λ= + −  and 2 2

2 2 2{1 2 (1 )}/Yσ β β λ= + − . 

 If we define ( , ) /( ),f x y x x y= +  then ˆ( , )n n nf X Y A=  and hence by using 

Lemma 1.4, we can show that 

 ( ) 2ˆ (0, )L
nn A A N τ− → ,  

where 2τ  is given by 

2 2
2 1 2

1 1 2 24
1 1

2
{1 (1 ) (1 )}

( )

λ λ
τ β β β β

λ λ
= + − + −

+
 

     2 2
1 1 2 22 (1 ) {1 (1 ) (1 )}A A β β β β= − + − + −       

                 2 2
1 22 (1 ) (1 )A A ρ ρ= − + + ,      (5.6) 

with 1 1 1 1corr( , ) (1 )i iX Xρ β β+= = −  and  2 1 2 2corr( , ) (1 )i iY Yρ β β+= = −  are the lag 

1 autocorrelations of  { }nX  and { }nY  respectively. 

 Next, we consider the properties of the estimator in the case of continuous 

observations over a fixed period.  Suppose that the process is observed over a 

fixed period [0,  ]T . In this case a natural estimator of the limiting availability is 

given by, 

 
( )

( )
T

A T
T

α
= , (5.7) 

where ( )Tα  is the total operating time in the interval [0, ]T . 
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Let n n nZ X Y= +  and 1 2 ... ,  1, 2...n nS Z Z Z n= + + + = .  

If we define ( ) sup{ : }nN T n S T= ≤ , then ( )N T  counts the number of cycles 

completed in the interval [0, ]T  and hence ( )Tα  can be represented as 

( )
( ) 1 ( )

( )
1 1

( ) ( ) 1 ( )
N T N T

j j N T
j j

T T X T X T Sα λ λ
+

= =

 
= + − + − 

 
∑ ∑ , 

where ( ) ( ) 1 ( ) 1( ) ( )N T N T N TT I S X T Sλ + += + ≤ < . 

Now, we can write (5.7) as 

 
( ){ }

( ) 1

( ) ( ) 1
1

1 ( )1
( )

N T

j N T N T
j

T
A T X T S X

T T

λ+

+
=

−
= + − −∑ . (5.8) 

 For the stationary m-dependent sequence it is proved that (Janson, 1983) 

( ) / 1/ ZN T T µ→  and ( ) ( )N T ZS N T µ→  almost surely as T → ∞ , where Zµ  is 

the mean of the sequence { }nZ .  

Using this result we have, 

  1 2

1 2

( )N T

T

λ λ

λ λ
→

+
. 

and hence  

 
( ) 1 ( ) 1

2

1 1 1 2

1 ( ) 1 1

( ) 1

N T N T

j j
j j

N T
X X A

T T N T

λ

λ λ

+ +

= =

+
= → =

+ +
∑ ∑  

Also, 

( )( ) ( ) 1 ( ) 1 0
N T N T N T

T S X Z

T T

+ +
− −

≤ →  (a.s.) as T → ∞ .  

Applying these results in (5.8), we can show that  

( )A T A→   almost surely as .T → ∞  

If we define, 
2 1

, 1,2,3,...j j

j

X Y
W j

λ λ
= − = , then the sequence { }jW  is also 

stationary and 1-dependent with ( ) 0jE W = .  
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Now, using the central limit theorem for m-dependent sequence (Lemma 1.6) we 

have as n → ∞ , 

( ) 2
2 1 (0, )L

n n nnW n X Y Nλ λ ν= − → , 

where 2
1 1 2 22 2

1 2

2
{1 (1 ) (1 )}ν β β β β

λ λ
= + − + − . 

Using the results of Janson (1983) we have 

 ( )
( ) 1

2
2 1

1

1
(0, )

( ) 1

N T
L

j j
j

X Y N
N T

λ λ ν
+

=

− →
+
∑  as .T → ∞       (5.9) 

   
Let us write 

( ) ( )
( ) 1 ( ) 1

1 2
2 1 ( ) 1 1

1 11 2 1

N T N T

j j j N T
j j

T
X X Y S T

λ λ
λ λ λ

λ λ λ

+ +

+
= =

+
− = − + −∑ ∑ . 

For 0ε > , we have  

 [ ]n
n

Z
P P Z n

n
ε ε

 
> = ≤ 

 
 

         

2
1

2 1 / 2

E Z

n

δ

δ δε

+

+ +

  ≤ ,  for some 0δ > , by Markov Inequality.  

As the expectation on the right hand side is finite, it follows that 

 

2
1

2 1 / 2
1 1

1n

n n

E ZZ
P

nn

δ

δ δ
ε

ε

+∞ ∞

+ +
= =

    > ≤ < ∞ 
 

∑ ∑ , for any 0δ > . 

and consequently 0nZ

n
→  (a.s.) as n → ∞ . 

Since ( )N T → ∞  as T → ∞ , we obtain  

 ( ) 0
( )

N TZ

N T
→  (a.s.) as T → ∞ . 

Thus, we have  

 ( ) 1 ( ) 10 0
( ) 1 ( ) 1

N T N TS T Z

N T N T

+ +−
≤ ≤ →

+ +
 (a.s.) as T → ∞ .     (5.10) 
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Hence from (5.9) and (5.10) we get as T → ∞ , 

( ) 1
21 2

11 2 1

( ) 1 (0, )
N T

L
j

j

T
X N T N

λ λ
ν

λ λ λ

+

=

 +
− + → 

 
∑  

or ( )
( ) 1

21 2

11 2

1
( ) 1 (0, )

N T
L

j
j

X A N T T N
T

λ λ
ν

λ λ

+

=

 
− + → 

+  
∑ .    (5.11) 

In view of (5.8) and (5.10) we can write, 

( )
( ) 1

1

1
( ) ( ) 1 0

N T

j
j

A T X N T T
T

+

=

 
− + → 

 
∑  (a.s.) as T → ∞     (5.12) 

By writing 

 

( ) 1 ( ) 1

1 1

1 1
( )

( )

( ) 1 ( ) 1 ( ) 1

N T N T

j j
j j

A T X X A
T TA T A

N T T N T T N T T

+ +

= =

− −
−

= +
+ + +

∑ ∑
 

and applying the results (5.11) and (5.12) it can be shown that as T → ∞ , 

 21 2

1 2

( )
(0, )

( ) 1

LA T A
N

N T T

λ λ
ν

λ λ

−
→

+ +
. 

Finally considering 1 2

1 2

( ) 1N T

T

λ λ

λ λ

+
→

+
, it follows that 

 ( ) ( )2( ) 0,LT A T A N κ− → , 

where 

3

2 21 2

1 2

λ λ
κ ν

λ λ

 
=  

+ 
 

    1 2
1 1 2 23

1 2

2
{1 (1 ) (1 )}

( )

λ λ
β β β β

λ λ
= + − + −

+
 

               1 2

1 2

2 (1 )
{1 }

( )

A A
ρ ρ

λ λ

−
= + +

+
.  (5.13) 

In order to study the effect of the dependence among successive observations of 

{ }nX  and { }nY  in the asymptotic variance of the estimators suggested for A we 

consider the following ratio  
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asymptotic variance under the EMA1 model

asymptotic variance under i.i.d. set-up
E =  

The asymptotic variance of ˆ
nA  and ( )A T  under the EMA1 model are given in 

(5.6) and (5.13) respectively. Let 2τ∗  and 2κ∗  denote the asymptotic variance of ˆ
nA  

and ( )A T  when { }nX  and { }nY  are i.i.d. exponential sequence of random 

variables. Then we have  

2 2 22 (1 )A Aτ∗ = −  and 2

1 2

2 (1 )

( )

A A
κ

λ λ∗

−
=

+
. 

On substitution we get  

2 2

2 2
E

τ κ

τ κ∗ ∗

= =  

    1 1 2 21 (1 ) (1 )β β β β= + − + − . 

    1 21 ρ ρ= + + . 

The graph of the ratio E for different values of 1β  and 2β  is shown in figure 5.2. 
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Figure 5.2 Graph of the ratio E for various values of 1β  and 2β . 
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 From the above figure, it is clear that the ratio E is always greater than 

unity in the presence of autocorrelation among the successive sequences of failure 

and repair times. For example, when the marginal autocorrelations 1 0.15ρ =  and 

2 0.10ρ = , then the ratio 1.25E = . This indicates that the assumption of 

independence among the successive sequences of failure and repair times 

underestimates the variance of the estimators by 25% if the true process is 

generated by EMA1 model. This may lead to erroneous conclusions in the 

inference procedure for the limiting availability.  

5.4 Availability Behavior of Exponential Autoregressive Processes 

Suppose that the sequences of failure and repair times,{ }nX and { }nY , are 

modeled by two independent first-order Exponential Autoregressive (EAR(1)) 

process (Gaver and Lewis, 1980) defined as  

1 1 1

1 1 1

with probability ,

with probability 1- .
n

n

n n

X
X

X

ρ ρ

ρ ε ρ
−

−


= 

+
 and 

2 1 2

2 1 2

with probability ,

with probability 1- .
n

n

n n

Y
Y

Y

ρ ρ

ρ η ρ
−

−


= 

+
, 1 2(0 , 1, 1,2,3,...)nρ ρ≤ < =  

where { }nε  and { }nη  are two independent sequences of i.i.d. exponential random 

variables with parameters 1λ  and 2λ  respectively. Obviously when 1 2 0ρ ρ= = , 

{ }nX  and { }nY  reduce to the i.i.d. sequences of exponential random variables. 

The exponential marginal distribution of the intervals and the Markovian 

dependence among adjacent members of the sequence are the simplest aspects of 

the EAR(1) model.  

The Laplace transforms of ( ) ( )n
XF t  and ( ) ( )n

YF t  in the EAR(1) model are given by, 

1
1 11

1( ) 1

12 1 1
1 1

1 1

1

1
( )

1 1

1 1

n r

n
n

X n n r
r

s

F s

s s s

ρ
λ ρ

ρλ

ρ ρ
λ λ

ρ ρ

−

−
∗

−
=

  −
+  

−  =
    − −

+ +     − −    

∏   
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and  

2
2 21

2( ) 2

12 2 2
2 2

2 2

1

1
( )

1 1

1 1

n r

n
n

Y n n r
r

s

F s

s s s

ρ
λ ρ

ρλ

ρ ρ
λ λ

ρ ρ

−

−
∗

−
=

  −
+  

−  =
    − −

+ +     − −    

∏ ,  1n ≥ . 

 Substituting ( ) ( )n
XF s∗  and ( ) ( )n

YF s∗  in (5.3) we get ( )A s∗  and the point 

availability function ( )A t  can be found by inverting the Laplace transform ( )A s∗ . 

Due to complex analytical form of ( )A s∗  we omit the expression for ( )A s∗ . 

However, the limiting availability A in this case is obtained as 

 2

1
1 2

lim ( ) lim ( )
t s

A A t sA s
λ

λ λ
∗

→∞ →
= = =

+
. 

Thus, the limiting availability in the EAR(1) model is same as the limiting 

availability in the case of i.i.d. exponential random variables irrespective of the 

values of 1ρ  and 2ρ .   

 In order to compare the asymptotic properties of the estimators of the 

limiting availability in the case of EAR(1) model with the i.i.d. exponential model 

we consider the two estimators discussed in Section 5.3. 

 Based on complete observations on the failure and repair times of ‘n’ 

complete cycles the proposed estimator for A  is  

 ˆ n
n

n n

X
A

X Y
=

+
. 

The consistency of the estimator is obvious as the sequences { }nX  and { }nY  are 

stationary and ergodic. The asymptotic normality of the estimator follows from 

the fact that the EAR(1) process is strong mixing (Chernick, 1977). By the central 

limit theorem for strong mixing sequence (Lemma 1.7) we have as n → ∞ , 

 ( ) 2
11/ ( , )L

n Xn X Nλ σ− → 0  and  

 ( ) 2
21/ ( , )L

n Yn Y Nλ σ− → 0 , 
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where  

2
1 1

2

Var( ) 2 cov( , )X h
h

X X Xσ
∞

=

= + ∑  

      1 1
12 2

21 1 1

11 1
1 2

1
h

h

ρ
ρ

λ λ ρ

∞
−

=

 + 
= + =    −   

∑  

and   

2 2
1 1 2

2 2 2

11
Var( ) 2 cov( , )

1
Y h

h

Y Y Y
ρ

σ
λ ρ

∞

=

 +
= + =  

− 
∑ . 

Now, proceeding as in Section 5.3 it is easy to show that 

( ) 2ˆ (0, )L
nn A A N τ− → ,  

where 2τ  is given by 

 
2 2

2 1 2 1 2
4

1 2 1 2

1 1

( ) 1 1

λ λ ρ ρ
τ

λ λ ρ ρ

 + +
= + 

+ − − 
 

                 2 2 1 2

1 2

1 1
(1 )

1 1
A A

ρ ρ

ρ ρ

 + +
= − + 

− − 
.  (5.14) 

 In the case of continuous observation over a fixed period [0,  ]T  the 

proposed estimator of A is  

 
( )

( )
T

A T
T

α
= . 

The asymptotic properties of the estimator ( )A T  in the EAR(1) process can be 

proved similarly as in the EMA1 model discussed in Section 5.3 by applying the 

central limit theorem for strong mixing sequence (Lemma 1.7). So we omit the 

proof of consistency and asymptotic normality of the estimator.  

As T → ∞  it can be shown that 

( ) ( )2( ) 0,LT A T A N κ− → , 

where 

       2 1 2

1 2 1 2

1 1(1 )

( ) 1 1

A A ρ ρ
κ

λ λ ρ ρ

 + +−
= + 

+ − − 
. (5.15) 
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 In order to see how sensitive the asymptotic variance of the estimators 

given in (5.14) and (5.15) are for different values of the marginal autocorrelations 

of { }nX  and { }nY  we consider the ratio  

 
asymptotic variance under the EAR(1) model

asymptotic variance under i.i.d. set-up
E =  

    1 2

1 2

1 11

2 1 1

ρ ρ

ρ ρ

 + +
= + 

− − 
. 

Figure 5.3 shows the graph of E for different possible values of 1ρ  and 2ρ .  
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Figure 5.3 Graph of the ratio E for various values of 1ρ  and 2ρ . 

 From the figure, it is obvious that the ratio E is always greater than unity in 

the presence of autocorrelation and increases rapidly as 1ρ  and 2ρ  increases. This 

means that the assumption of an i.i.d. sequence underestimates the variance of the 

estimators significantly if the true process is EAR(1). For example, when the 

marginal autocorrelations 1 0.50ρ =  and 2 0.20ρ = , then the ratio 2.25E = . This 
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indicates that the assumption of independence among the successive sequences of 

failure and repair times underestimates the variance of the estimators by 125% if 

the true process is generated by EAR(1) model. 

5.5 Conclusion 

 In this chapter, we discussed the availability behavior of some stationary 

dependent sequence of random variables. The general expression for point 

availability was derived when the failure and repair times are generated by 

stationary dependent sequence of random variables. The availability behavior of 

two time series models, first order Exponential moving average process (EMA1 

model) and first order Exponential autoregressive process (EAR(1) model) were 

studied. The asymptotic properties of the estimators of the limiting availability for 

both time series models were studied and the efficiency of the asymptotic variance 

of the estimators were compared with the corresponding estimators in the i.i.d. 

exponential case. The comparison showed that the ignorance of autocorrelation 

present in the data underestimate the asymptotic variance of the estimators 

significantly.  



__________________________________________________________________ 
The results in this chapter have been communicated as entitled ‘Nonparametric Estimation 

of the Limiting Interval Reliability for Stationary Dependent Sequences’ (See Balakrishna 

and Mathew, 2011c). 

Chapter 6 

 

Estimation of the Limiting Interval Reliability 

for Stationary Dependent Sequences 

 

6.1 Introduction 

In the case of repairable systems, the estimation of the availability 

measures is not discussed much when the successive sequences of failure and 

repair times are generated by some stationary dependent sequences except those 

considered by Abraham and Balakrishna (2000). Motivated by this, in the present 

chapter we consider the nonparametric estimation of the limiting interval 

reliability, when the sequences of failure times { }nX  and repair times { }nY  are 

generated by stationary strong mixing sequences of random variables.  It is 

assumed that { }nX  and { }nY  are two independent stationary strong mixing 

sequences of random variables with mixing coefficients ( )X hα  and ( )Y hα  

respectively (See Definition 1.4). The estimation of the limiting interval reliability 

is studied under the three sampling schemes discussed in previous chapters.  

The chapter is organized as follows. In Section 6.2, we consider the 

nonparametric estimation of the limiting interval reliability in the case of complete 

observations. Section 6.3 discusses the estimation in the case of censored 

observations. In Section 6.4, we consider the estimation of ( )R x  when the process 

is observed up to a specified time ‘T’. An extension of the estimation results to 

complex systems is discussed in Section 6.5 and some numerical illustrations are 

presented in Section 6.6 to assess the performance of the proposed estimators. We 
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conclude the chapter in Section 6.7. 

6.2 Estimation in the case of Complete Observations 

 Suppose that observations on n  failure times 1 2, ,..., nX X X  and m  repair 

times 1 2, ,..., mY Y Y  are recorded for a repairable one-unit system. In practice, 

usually we use equal sample sizes for the failure and repair time observations 

based on the fact that a repair is done for each failure. However, if a failed 

component is replaced by a new component instead of repairing it, then the 

number of failures is greater than the number of repairs. On the other hand, due to 

missing of records or some other reasons, a failure time may not be recorded but 

the corresponding repair time is recorded. In such cases, the number of repair 

times is greater than the number of failure times. 

 Assume that the failure times 1 2, ,..., nX X X  and repair times 1 2, ,..., mY Y Y  

are generated from stationary strong mixing sequences of random variables { }nX  

and { }nY  having continuous cumulative distribution functions (.)XF  and (.)YF  

respectively. If we define ( )( )
ii i X xU X x I >= − , then nonparametric estimators for 

Xµ , Yµ  and ( )xυ  are given by, 

 
1

1
ˆ

n

X i n
i

X X
n

µ
=

= =∑ , 
1

1
ˆ

m

Y i m
i

Y Y
m

µ
=

= =∑  and 
1

1
ˆ( )

n

i n
i

x U U
n

υ
=

= =∑ . 

Thus, a nonparametric estimator of the limiting interval reliability ( )R x  is 

 ˆ ( ) n

n m

U
R x

X Y
=

+
. (6.1) 

 Since { }nX  and { }nY  are strictly stationary, it follows that n XX µ→  and  

( )nU xυ→  almost surely as n → ∞  and  m YY µ→  almost surely as m → ∞ . 

Hence we may conclude that ˆ ( ) ( )R x R x→  almost surely as ,m n → ∞ . 
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 If we define 3
1 2 3

1 2

( , , ) ,
x

f x x x
x x

=
+

 then ˆ( , , ) ( )n m nf X Y U R x=  and 

( , , ( )) ( )X Yf x R xµ µ υ = . 

Employing a Taylor series expansion of f  about the point 1 2 3( , , )a a a  to the first 

order approximation we have, 

 
3

1 2 3 1 2 3
1

( , , ) ( , , ) ( )i i
i i x a

f
f x x x f a a a x a

x= =

∂
≅ + −

∂
∑ , 

where 1 2 3( , , )x x x x=  and 1 2 3( , , )a a a a= . 

 Since 3

2
1 1 2( )

xf

x x x

∂
= −

∂ +
, 3

2
2 1 2( )

xf

x x x

∂
= −

∂ +
 and 

3 1 2

1f

x x x

∂
=

∂ +
, we can 

write, 

 ˆ( ) ( , , )n m nR x f X Y U=  

          
2 2

( ) ( )
( ) ( ) ( )

( ) ( )
n X m Y

X Y X Y

x x
R x X Y

υ υ
µ µ

µ µ µ µ
≅ − − − −

+ +
 

 
1

( ( ))n

X Y

U xυ
µ µ

+ −
+

. (6.2) 

Let 
2 2

( ) ( ) 1
, ,

( ) ( )X Y X Y X Y

x x
B

υ υ

µ µ µ µ µ µ

 − −
=  

+ + + 
 be a row vector and 

( ), , ( ) 'n n X m Y nV n X Y U xµ µ υ= − − − . 

Now, from the asymptotic expansion (6.2) we can write, 

 ( )ˆ ( ) ( ) nn R x R x BV− ≅ . 

Assume that, as n → ∞  and m → ∞ , ( / )n m θ→ , where 0 θ< < ∞ . Now, the 

remainder terms in the Taylor series expansion of ˆ ( )R x  multiplied by n  

converges to zero almost surely as n → ∞ . 

 By the central limit theorem for strong mixing sequence (Lemma 1.7) we 

have as n → ∞ , 
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 ( ) ( )0,D
m Y YYn Y Nµ θσ− →  and 

 ( ) ( )2 2, ( ) 0,D
n X nn X U x Nµ υ− − → ∑ , 

where 2 2(0, )N ∑  is a 2-variate normal vector with mean (0,0) '=0  and dispersion 

matrix 

2

XX XU

XU UU

σ σ

σ σ

 
∑ =  

 
, 

with  

 1 1
2

var( ) 2 cov( , )XX h
h

X X Xσ
∞

=

= + ∑ ,  

 1 1
2

var( ) 2 cov( , )YY h
h

Y Y Yσ
∞

=

= + ∑ ,  

 1 1
2

var( ) 2 cov( , )UU h
h

U U Uσ
∞

=

= + ∑  and  

 1 1 1 1
2 2

cov( , ) cov( , ) cov( , )XU h h
h h

X U X U X Uσ
∞ ∞

= =

= + +∑ ∑ . 

Now, by the Cramer-Wold device (Billingsley, 1968, pp.49), we have as n → ∞ , 

( ) 3 3, , ( ) ( , ),L
n X m Y nn X Y U x Nµ µ υ− − − → ∑0  

where 3 3(0, )N ∑  is a 3-variate normal vector with mean (0,0,0) '=0  and 

dispersion matrix 

3

0

0 0

0

XX XU

YY

XU UU

σ σ

θσ

σ σ

 
 ∑ =  
 
 

. 

Thus,   

 ( )ˆ ( ) ( ) nn R x R x BV− ≅  

   ( )20, ( )D N xτ→ , 

where 

   2
3( ) 'x B Bτ = ∑ . 
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Now, 2 ( )xτ  

 = 
2 2

( ) ( ) 1
, ,

( ) ( )X Y X Y X Y

x xυ υ

µ µ µ µ µ µ

 − −
 

+ + + 

0

0 0

0

XX XU

YY

XU UU

σ σ

θσ

σ σ

 
 
 
 
 

2

2

( )

( )

( )

( )

1

X Y

X Y

X Y

x

x

υ

µ µ

υ

µ µ

µ µ

 −
 

+ 
 −
 

+ 
 
 

+ 

 

            
2

4 3 2

( ) 2 ( ) 1
( )

( ) ( ) ( )
XX YY XU UU

X Y X Y X Y

x xυ υ
σ θσ σ σ

µ µ µ µ µ µ
= + − +

+ + +
. (6.3) 

Thus we have proved the following theorem. 

Theorem 6.1  

 If  { }nX  and { }nY  are two mutually independent strictly stationary and 

strong mixing sequence of non-negative random variables such that for some 

0δ > , 2
1( ) ,E X δ+ < ∞  2

1( )E Y δ+ < ∞ , /(2 )

1

( )X
h

hδ δα
∞

+

=

< ∞∑  and /(2 )

1

( )Y
h

hδ δα
∞

+

=

< ∞∑ , 

then for any fixed ‘x’ as n → ∞ ,  

  (i) ˆ ( ) ( )R x R x→  almost surely and  

  (ii) ( ) ( )2ˆ ( ) ( ) 0, ( ) ,Ln R x R x N xτ− →   

where 2 ( )xτ  is given in (6.3).  

 A consistent estimator 2ˆ ( )xτ  of 2 ( )xτ  can be obtained by replacing 

, , ( )X Y xµ µ υ , ,  ,XX YY UUσ σ σ  and XUσ  with their corresponding consistent 

estimators in (6.3). Obviously ,n mX Y , nU  and ( / )n m  are the consistent 

estimators for ,X Yµ µ , ( )xυ  and θ  respectively. In order to construct consistent 

estimators for ,  ,XX YY UUσ σ σ  and XUσ , we use the moving-block jackknife 

method for variance estimation with dependent data (Kunsch, 1989). The moving-

block jackknife estimators for ,  ,XX YY UUσ σ σ  and XUσ  respectively are 
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1 1

1 1

1

2
1 1

( ) ( )2 11
, 1

1 11

ˆ ( 1)
1

n l n l
l l

XX l i j
i j

l
X n l X

n l
σ

− + − +
−

= =

 
= − + − 

− +  
∑ ∑ , 

 
2 2

2 2

2

2
1 1

( ) ( )2 12
, 2

1 12

ˆ ( 1)
1

m l m l
l l

ZZ l i j
i j

l
Y m l Y

m l
σ

− + − +
−

= =

 
= − + − 

− +  
∑ ∑ , 

 
1 1

1 1

1

2
1 1

( ) ( )2 11
, 1

1 11

ˆ ( 1)
1

n l n l
l l

UU l i j
i j

l
U n l U

n l
σ

− + − +
−

= =

 
= − + − 

− +  
∑ ∑ , and  

1 1 1

1 1 1 1

1

1 1 1
( ) ( ) ( ) ( )1 11

, 1 1
1 1 11

ˆ ( 1) ( 1)
1

n l n l n l
l l l l

XU l i j i j
i j j

l
X n l X U n l U

n l
σ

− + − + − +
− −

= = =

  
= − + − − + −  

− +   
∑ ∑ ∑ , 

where 
1

1

1
( ) 1

1

i l
l

i j
j i

X l X
+ −

−

=

= ∑ , 
2

2

1
( ) 1

2

i l
l

i j
j i

Y l Y
+ −

−

=

= ∑ , 
1

1

1
( ) 1

1

i l
l

i j
j i

U l U
+ −

−

=

= ∑  and 1 ( )l l n=   and 

2 ( )l l m=  are the block sizes. 

If we assume that for some 0δ > , 
6

1 ,E X
δ+  < ∞

 
 

6

1E Y
δ+  < ∞

 
, 

2 /(6 )
1( )k k δ δα + < ∞∑  and 2 /(6 )

2 ( )k k δ δα + < ∞∑ , then the estimators 

1 2 1

2 2 2
, , ,

ˆ ˆ ˆ,  ,XX l YY l UU lσ σ σ  and 
1,

ˆ
XU lσ  converge almost surely to ,  ,XX YY UUσ σ σ  and  XUσ  

respectively if 1 ( )l o n= , 2 ( )l o m=  and 1 2,l l → ∞  (Kunsch, 1989).  

Then, it is easy to see that  

 2 2ˆ ( ) ( )x xτ τ→  almost surely as n → ∞ .      

Thus, given a significance level (0,1)α ∈ , an approximate large sample 

100(1 )%α−  confidence interval for the limiting interval reliability ( )R x  is 

/ 2 / 2

ˆ ˆ( ) ( )ˆ ˆ( ) ( ) ( )
x x

R x z R x R x z
n n

α α

τ τ
− ≤ ≤ + . 

6.3 Estimation in the case of Censored Observations 

 Suppose that observations on the failure times 1 2, ,..., nX X X  and the repair 

times 1 2, ,..., mY Y Y  are subject to right censorship. Let 1 2, ,..., nC C C  and 

1 2, ,..., mD D D  denote the censoring times associated with the failure and repair 
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times respectively. Assume that the censoring times 1 2, ,..., nC C C  and 

1 2, ,..., mD D D  are mutually independent i.i.d. random variables having continuous 

cumulative distribution functions (.)CG  and (.)DG  respectively. Under the 

censoring model, instead of observing iX  and iY , we observe the pairs ( , )i iT δ , 

1, 2,...,i n=  and ( , )i iV η , 1, 2,...,i m= , where min( , )i i iT X C= , min( , )i i iV Y D= , 

( )i ii X CIδ ≤=  and ( )i ii Y DIη ≤= . Let (.)XH  and (.)YH  be the distribution function of 

iT  and iV  respectively. Also let Xτ  and Yτ  be the least upper bound for the 

support of (.)XH  and (.)YH  respectively.  

 Let (1) (2) ( )... nT T T≤ ≤ ≤  and (1) (2) ( )... mV V V≤ ≤ ≤  be the order statistics of 

1 2, ,..., nT T T  and 1 2, ,..., mV V V  respectively and let ( )iδ  and ( )iη  denote the 

concomitant associated with ( )iT  and ( )iV  respectively. Now, the Kaplan-Meier 

estimators of  ( )XF t  and ( )CG t  are given by, 

 
( )

( )

,
ˆ ( ) 1

1

i

i

X c
T t

n i
F t

n i

δ

≤

− 
= −  

− + 
∏  and  

 
( )

( )

1

ˆ ( ) 1
1

i

i

C
T t

n i
G t

n i

δ−

≤

− 
= −  

− + 
∏ . 

Similarly, we can construct the Kaplan-Meier estimators ,
ˆ ( )Y cF t  and ˆ ( )DG t  for 

( )YF t  and ( )DG t . 

Now, the nonparametric estimators for Xµ , Yµ  and ( )xυ  are given by, 

 , ,

0

ˆˆ ( )X c X cudF uµ
∞

= ∫ ,  , ,

0

ˆˆ ( )Y c Y cudF uµ
∞

= ∫  and ( ) ,

0

ˆˆ ( ) ( ) ( )c u x X cx u x I dF xυ
∞

>= −∫ . 

Thus, a nonparametric estimator of ( )R x  is given by, 

 
, ,

ˆ ( )ˆ ( )
ˆ ˆ

c
c

X c Y c

x
R x

υ

µ µ
=

+
. (6.4) 
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Let us define, 

 0

1
( )

1 ( )
x

G x
γ =

−
 

1

1
( ) ( ) ( )

1 ( )
x

x t dF t
H x

τ

γ ϕ=
− ∫  

1
2

( )
( ) ( )

1 ( )

x
t

x dG t
G t

γ
γ

−∞

=
−∫ , 

where ϕ  is an F-integrable function and ,  ,  F G H and τ  are as defined in this 

section ignoring their suffices. 

 In order to study the asymptotic properties of the estimator defined in (6.4) 

we use the following Lemma due to Ghouch et.al. (2010). 

Lemma 6.1 Let F̂  be the Kaplan-Meier product limit estimator of the cumulative 

distribution function F corresponding to a stationary strong mixing sequence of 

random variables with mixing coefficient (.)α . If there exist 3v >  such that 

( ) ( )vh O hα −=  and ( ) ( )
v

t dF tϕ < ∞∫  for any F-integrable function ϕ , then 

 
0 0

ˆlim
n

dF dF
τ

ϕ ϕ
∞

→∞
=∫ ∫  with probability 1. 

Also, 1 1/ 2

1

ˆ( ) ( )
n

i P
i

d F F n B o nϕ − −

=

− = +∑∫ , 

where 0 1 2( ) ( ) ( )(1 ) ( )i i i i i i iB T T T Tϕ γ δ γ δ γ= + − −  are strong mixing sequences of 

random variables with mixing coefficient ( )hα  and 

2

0 0

ˆ (0, )L
cn dF dF N

τ

ϕ ϕ σ
∞ 

− → 
 
∫ ∫  as n → ∞ . 

Proof: See Ghouch et.al. (2010). 

Define,  

 , ,

0

( )
X

X c X cudF u
τ

µ = ∫ , , ,

0

( )
Y

Y c Y cudF u
τ

µ = ∫ , ,

0

( ) ( ) ( ) ( )
X

c X cx u x I u x dF u
τ

υ = − >∫ ,  
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and 
, ,

( )
( ) c

c

X c Y c

x
R x

υ

µ µ
=

+
. 

 Now, it can be verified that , ,
ˆ

X c X cµ µ→  and ˆ ( ) ( )c cx xυ υ→  almost surely 

as n → ∞  by choosing ( )u uϕ =  and ( )( ) ( ) u xu u x Iϕ >= −  respectively in Lemma 

6.1. Also, by choosing ( )u uϕ = , , ,
ˆ

Y c Y cµ µ→  almost surely as m → ∞  and hence 

we conclude that ˆ ( ) ( )c cR x R x→  almost surely as ,m n → ∞ . 

Again, by applying Lemma 6.1 and using the Cramer-Wold device 

(Billingsley, 1968, pp.49) it can be shown that as n → ∞ , 

( ), , , , 3
ˆˆ ˆ, , ( ) ( ) ( , ),L

X c X c X c X c c c cn x x Nµ µ µ µ υ υ− − − → ∑0  

where 3(0, )cN ∑  is a 3-variate normal vector with mean (0,0,0)=0  and 

dispersion matrix 

, ,

, ,

, ,

0

0

0

XX c XU c

c XY c YY c

XU c UU c

σ σ

σ θσ

σ σ

 
 

∑ =  
 
 

, 

with  
1 1,

2

var( ) 2 cov( , )
hXX c X X X

h

B B Bσ
∞

=

= + ∑ ,  

 
1 1,

2

var( ) 2 cov( , )
hYY c Y Y Y

h

B B Bσ
∞

=

= + ∑ ,  

 
1 1,

2

var( ) 2 cov( , )
hUU c U U U

h

B B Bσ
∞

=

= + ∑  and  

 
1 1 1 1,

2 2

cov( , ) cov( , ) cov( , )
h hXU c X U X U X U

h h

B B B B B Bσ
∞ ∞

= =

= + +∑ ∑ , 

in which ,X iB , ,Y iB  and ,U iB  are as defined in Lemma 6.1 by choosing ( )u uϕ =  

for ,X iB  and ,Y iB  and ( )( ) ( ) u xu u x Iϕ >= −  for ,U iB . 

 Since , ,
ˆˆˆ ˆ( , , ( )) ( )X c Y c c cf x R xµ µ υ = , proceeding as in Section 6.1, it can be 

shown that, 
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 ( ) ( )2ˆ ( ) ( ) 0, ( )L
c c cn R x R x N xτ− →  as n → ∞ ,  

where  

 
2

, , , ,2

4 3 2
, , , , , ,

( )( ) 2 ( )
( )

( ) ( ) ( )

c XX c YY c c XU c UU c

c

X c Y c X c Y c X c Y c

x x
x

υ σ θσ υ σ σ
τ

µ µ µ µ µ µ

+
= − +

+ + +
. (6.5) 

This leads to the following theorem. 

Theorem 6.2 

  If  { }nX  and { }nY  are two mutually independent strictly stationary and 

strong mixing sequence of non-negative random variables such that for some 

3v >  1( ) ,vE X < ∞  1( )vE Y < ∞ , ( ) ( )v
X h O hα −=  and ( ) ( )v

Y h O hα −= , then for any 

fixed ‘x’, as n → ∞ , 

  (i) ˆ ( ) ( )c cR x R x→  almost surely and  

  (ii) ( ) ( )2ˆ ( ) ( ) 0, ( ) ,L
c c cn R x R x N xτ− →   

where 2 ( )c xτ  is given in (6.5). 

 A consistent estimator 2ˆ ( )c xτ  of 2 ( )xτ  can be obtained by replacing 

, ,, , ( ),X c Y c c xµ µ υ θ , , , ,,  ,XX c YY c UU cσ σ σ  and ,XU cσ  with their corresponding 

consistent estimators in (6.5). The consistent estimators for ,X Yµ µ , ( )xυ  and θ  

are , ,
ˆ ˆ,X c Y cµ µ , ˆ ( )c xυ  and ( / )n m  respectively. In order to construct consistent 

estimators for , , ,,  ,XX c YY c UU cσ σ σ  and ,XU cσ , we apply the moving-block jackknife 

method for variance estimation with dependent data discussed in Section 6.1 to 

the stationary strong mixing sequence of random variables { },
ˆ

X iB , { },
ˆ

Y iB  and 

{ },
ˆ

U iB  obtained by plugging in F̂  and Ĝ  instead of F  and G  in ,X iB , ,Y iB  and 

,U iB .  Now, using  2ˆ ( )c xτ  we can construct an asymptotic confidence interval for 

the limiting interval reliability. 
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6.4 Estimation in the case of Continuous Observation over a Fixed Period 

Suppose that the process is observed over a fixed period [0,  ]T . In this 

section, we assume that a repair is done for each failure. Define n n nZ X Y= +  and 

1 2 ... ,  1, 2...n nS Z Z Z n= + + + = . Let Z X Yµ µ µ= +  and ZZσ  be the mean and 

variance of the sequence{ }nZ . Also let ( ) Sup{ : }nN T n S T= ≤ . 

Define, 

 ( )
( ) 1 ( )

( ) ( )
1 1

( ) ( ) 1 ( ) ( ) ( )
N T N T

T j j N T N T
j j

x T U T U T S x I T S xα λ λ
+

= =

 
= + − + − − − > 

 
∑ ∑  

where ( ) ( ) 1 ( ) 1( ) ( )N T N T N TT I S X T Sλ + += + ≤ <  and ( )( )
jj j X xU X x I >= − . 

Then, a nonparametric estimator of ( )R x  is given by 

 
( )

( ) T
T

x
R x

T

α
= . (6.6) 

 Now, by applying the central limit theorem for strong mixing sequence of 

random variables (Lemma 1.7) to the stationary strong mixing sequence  

( ) ,  1, 2,...j Z j jU x Z jξ µ υ= − =  and proceeding in the similar lines as in Section 

4.4, we can prove the consistency and asymptotic normality of the estimator 

( )TR x  defined in (6.6). In order to avoid repetition we omit the proof and the 

results are stated in the following theorem. 

Theorem 6.3   

         If  { }nX  and { }nY  are two mutually independent strictly stationary and 

strong mixing sequence of non-negative random variables such that for some 

0δ > ,  2
1( ) ,E X δ+ < ∞  2

1( )E Y δ+ < ∞ , /(2 )

1

( )X
h

hδ δα
∞

+

=

< ∞∑  and /(2 )

1

( )Y
h

hδ δα
∞

+

=

< ∞∑ , 

then for any fixed x , as T → ∞ ,  

    (i) ( ) ( )TR x R x→  almost surely and 

  (ii) ( ) ( )2 3( ) ( ) 0, ( )L
T ZT R x R x N xγ µ− → ,  

where  2 2 2( ) ( ) 2 ( )Z UU ZZ Z UZx x xγ µ σ υ σ υ µ σ= + − . 
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 In the next section, we extend the results of the previous sections to a 

coherent system of k independently functioning components.  

6.5 Limiting Interval Reliability of a Coherent System    

 Consider a system consisting of k components. Suppose the state of the 

thi component is denoted by the binary variable ix  given by, 

 
1 if component ' '  is functioning,

0 if component ' '  is failed.
i

i
x

i


= 


,  for 1, 2,...,i k= . 

Now, the state of the system can be described by a binary function 

1 2( , ,..., )kx x xφ φ=  defined by, 

 
1 if the system is functioning,

0 if the system is failed.
φ


= 


. 

We assume that the state of the system is determined completely by the states of 

the components and the function 1 2( , ,..., )kx x xφ φ=  is called the structure function 

of the system.  

 For example, the structure function of a series system of k components can 

be written as 

 1 2 1 2( , ,..., ) ...k kx x x x x xφ = . 

For a parallel system of k components, the structure function will be of the form 

  1 2 1 2( , ,..., ) 1 (1 )(1 )...(1 )k kx x x x x xφ = − − − − . 

The reliability function of the system is defined by 

 1 2 1 2[ ( , ,..., ) 1] [ ( , ,..., )]k kh P x x x E x x xφ φ= = = . 

Under the assumption of independent components we may represent the system 

reliability as a function of component reliabilities: 

 1 2( , ,..., )kh h p p p= , 

where [ 1]i ip P x= =  denotes the reliability of the i-th component.  
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 A system of components is said to be coherent if (a) its structure function 

φ  is increasing and (b) each component is relevant. A detailed discussion of 

coherent systems can be found in Barlow and Proschan (1975). Series structure, 

parallel structure and k-out-of-n structure are all trivial examples of coherent 

systems.  

 Suppose we have a coherent system of k independent components. Let 

( )iR x  denote the limiting interval reliability of the i-th component. Then the 

limiting interval reliability of the system is given by, 

 ( )1 2( ) ( ), ( ),..., ( )S kR x h R x R x R x= , 

where (.)h  is the reliability function of the system. 

 For example, the limiting interval reliability of a series structure of k 

independent components is 

 1 2( ) ( ) ( )... ( )S kR x R x R x R x= . 

Also, in the case of a parallel structure of k independent components the limiting 

interval reliability is given by, 

 ( )( ) ( )1 2( ) 1 1 ( ) 1 ( ) ... 1 ( )S kR x R x R x R x= − − − − . 

Assume that in  failure times 1 2, ,...,
ii i inX X X  and im  repair times 1 2, ,...,

ii i imY Y Y  are 

observed for component ' 'i , 1,2,...,i k= . 

 A nonparametric estimator for the limiting interval reliability of the i-th 

component is given by, 

 ˆ ( ) i

i i

in

i

in im

U
R x

X Y
=

+
 for 1, 2,...,i k= , 

where  

 
1

1 i

i

n

in ij
ji

X X
n =

= ∑ , 
1

1 i

i

m

im ij
ji

Y Y
m =

= ∑  and ( )
1

1
( )

i

i ij

n

in ij X x
ji

U X x I
n

>
=

= −∑ . 
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 If we assume that ( / )i i in m θ→ , where 0 iθ< < ∞ , then under the 

assumptions stated in Theorem 6.1, we can show that as in → ∞ ,  

 ˆ ( ) ( )i iR x R x→  almost surely and 

 ( ) ( )2ˆ ( ) ( ) 0, ( )L
i i i in R x R x N xτ− → , 

where 

 
2

, , , ,2

4 3 2
, , , , , ,

( )( ) 2 ( )
( )

( ) ( ) ( )

i XX i i YY i i XU i UU i

i

X i Y i X i Y i X i Y i

x x
x

υ σ θ σ υ σ σ
τ

µ µ µ µ µ µ

+
= − +

+ + +
. (6.7) 

Now, a nonparametric estimator of the limiting interval reliability of the system is 

given by, 

 ( )1 2
ˆ ˆ ˆ ˆ( ) ( ), ( ),..., ( )S kR x h R x R x R x= . (6.8) 

Since ˆ ( )iR x  is a consistent estimator of ( )iR x  for 1,2,...,i k= , the consistency of 

the estimator ˆ ( )SR x  is obvious. 

 In order to establish the asymptotic normality of the estimator ˆ ( )SR x , 

without loss of generality, assume that 1 2 ... kn n n≤ ≤ ≤  and 1( / )i in n ω→ , where 

0 1iω< ≤  for 1, 2,...,i k= . 

By the delta method (Rao 1973, pp. 388), we have, approximately, 

 ( )
1

ˆ ˆ( ) ( ) ( ) ( )
( )

k

S S i i
i i

h
R x R x R x R x

R x=

∂
− = −

∂
∑ . 

Then, approximately, 

 ( ) ( )1 1
1

ˆ ˆ( ) ( ) ( ) ( )
( )

k

S S i i
i i

h
n R x R x n R x R x

R x=

∂
− = −

∂
∑  

   ( )
1

ˆ ( ) ( )
( )

k

i i i i
i i

h
n R x R x

R x
ω

=

∂
= −

∂
∑  

   
1 ( )

k
L

i i
i i

h
Q

R x
ω

=

∂
→

∂
∑  as 1n → ∞ , 

where iQ ’s are independent normal variates with mean 0 and variance 2 ( )i xτ  

defined by (6.7).  
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Thus, as 1n → ∞ , 

 ( ) ( )2
1

ˆ ( ) ( ) 0, ( )L
S S Sn R x R x N xτ− → , 

where 

2

2 2

1

( ) ( )
( )

k

S i i
i i

h
x x

R x
τ ωτ

=

 ∂
=  

∂ 
∑ .          (6.9) 

 An estimator 2ˆ ( )S xτ  of 2 ( )S xτ  can be obtained by replacing 
( )i

h

R x

∂

∂
, iω  and 

2 ( )i xτ  by 
ˆ( )

i i
i R R

h

R x
=

∂

∂
, 1( / )in n  and 2ˆ ( )i xτ  respectively in (6.9), where 2ˆ ( )i xτ  is 

obtained similarly to Section 6.2.  It is easy to verify that 2 2ˆ ( ) ( )S Sx xτ τ→  almost 

surely as 1n → ∞ . Thus, given a significance level (0,1)α ∈ , an approximate 

large sample 100(1 )%α−  confidence interval for the limiting interval reliability 

( )SR x  is 

/ 2 / 2

1 1

ˆ ˆ( ) ( )ˆ ˆ( ) ( ) ( )S S
S S S

x x
R x z R x R x z

n n
α α

τ τ
− ≤ ≤ + . 

The estimation of the limiting interval reliability ( )SR x  of a coherent system in 

the case of censored observations and continuous observation over a fixed period 

can be carried out in a similar manner. 

 

6.6 Simulation Study 

A simulation study is conducted in this section to assess the performance 

of the proposed estimators and to compare their efficiencies with corresponding 

estimators in the i.i.d. set-up. Here, we assume that the failure and repair times are 

generated from two independent EAR(1) models given by, 

1

1

0.5 with probability 0.5,

0.5 with probability 0.5.
n

n

n n

X
X

X ε
−

−


= 

+
  and 

1

1

0.25 with probability 0.25,

0.25 with probability 0.75.
n

n

n n

Y
Y

Y η
−

−


= 

+
, 1,2,3,...n = , 
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where { }nε  and { }nη  are two independent i.i.d. exponential sequences with 

parameters 1 1/ 6λ =  and 2 1/ 2λ =  respectively. Thus { }nX  and { }nY  have 

exponential marginal distributions with mean failure time 6Xµ =  and mean repair 

time 2Yµ =  respectively.  

 We consider the limiting interval reliability ( )R x  at time points 

0, 0.25, 0.50, 0.75x =  and 1.00 for the simulation study. In order to compare the 

performance of the estimators of ( )R x  in the stationary dependent case (EAR(1) 

model) with that of the i.i.d. exponential case, we compute the empirical coverage 

probabilities in the case of EAR(1) model and the i.i.d exponential model 

respectively.  

 The results of the simulation study in the case of complete observations are 

summarized in Table 6.1. Here n and m denote the number of failure and repair 

time observations respectively. The notations 2ˆ ˆ( ), ( )R x xτ  and CP denote the 

average of the estimated value of ( )R x , its asymptotic variance 2 ( )xτ  and the 

empirical coverage probability of 95% confidence interval for ( )R x  over 750 

repetitions in the stationary dependent case.  The same quantities are also 

computed by assuming the stationary dependent failure and repair times as i.i.d. 

exponential observations ignoring the autocorrelations present in the data.  Let 

2
*̂ ( )xτ  and *CP  denote the average of the asymptotic variance and the empirical 

coverage probabilities in the i.i.d. case. Note that the estimated value of ( )R x  is 

the same for both the stationary dependent and i.i.d. case. The values within the 

parenthesis represent the MSE of the estimators. 

 In the case of censored observations, the censored failure and repair times 

are generated from two independent exponential distribution with cumulative 

distribution functions 0.05( ) 1 t
CG t e−= −  and 0.1( ) 1 t

DG t e−= −  respectively and the 

results are summarized in Table 6.2. Here X% and Y% denote the average 
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percentage of censoring rate associated with the failure and repair times 

respectively. The simulation results in the case of continuous observations are 

given in Table 6.3. 

Table 6.1 Simulation results in the case of complete observations 

EAR(1) Model i.i.d. Case 
x  ( )R x  n  m  ˆ ( )R x  2ˆ ( )xτ  CP  

2
*̂ ( )xτ  *CP  

    25 20 0.75098 0.17619 0.9367 0.08013 0.6179 

       (0.0459) (0.0218)   (0.0283)   

0.00 0.75000 75 70 0.74986 0.16823 0.9392 0.07382 0.6243 

       (0.0361) (0.0156)   (0.0179)   

    150 145 0.75013 0.16672 0.9413 0.07259 0.6338 

        (0.0213) (0.0124)   (0.0131)   

    25 20 0.71816 0.19433 0.9326 0.08512 0.6020 

       (0.0437) (0.0269)   (0.0318)   

0.25 0.71939 75 70 0.72017 0.18996 0.9341 0.07962 0.6215 

       (0.0319) (0.0183)   (0.0243)   

    150 145 0.71998 0.18854 0.9392 0.07946 0.6298 

        (0.0198) (0.0112)   (0.0167)   

    25 20 0.70143 0.22198 0.9284 0.09117 0.5919 

       (0.0447) (0.0328)   (0.0329)   

0.50 0.69003 75 70 0.70019 0.21316 0.9331 0.08494 0.6012 

       (0.0306) (0.0235)   (0.0228)   

    150 145 0.68918 0.21194 0.9403 0.08322 0.6194 

        (0.0184) (0.0192)   (0.0173)   

    25 20 0.65902 0.24129 0.9421 0.09514 0.6226 

       (0.0491) (0.0311)   (0.0287)   

0.75 0.66187 75 70 0.66867 0.23417 0.9439 0.09192 0.6354 

       (0.0384) (0.0204)   (0.0187)   

    150 145 0.66091 0.23273 0.9503 0.09015 0.6546 

        (0.0176) (0.0156)   (0.0133)   

    25 20 0.63918 0.26518 0.9399 0.10398 0.6188 

       (0.0421) (0.0291)   (0.0288)   

1.00 0.63486 75 70 0.63217 0.25631 0.9403 0.09894 0.6202 

       (0.0348) (0.0167)   (0.0183)   

    150 145 0.63772 0.25536 0.9468 0.09711 0.6332 

        (0.0182) (0.0139)   (0.0146)   
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Table 6.2 Simulation results in the case of censored observations 

 

EAR(1) Model i.i.d. Case 
x  ( )R x  n  m  ˆ ( )cR x  %X  %Y  

2ˆ ( )c xτ  CP  
2

*̂ ( )xτ  *CP  

    25 20 0.75165 23.12 15.60 0.18464 0.9248 0.08127 0.6319 

       (0.0534)   (0.0247)   (0.0304)   

0.00 0.75000 75 70 0.75201 22.90 17.40 0.17823 0.9368 0.07613 0.6346 

       (0.0381)   (0.0168)   (0.0213)   

    150 140 0.75128 23.60 16.62 0.17652 0.9448 0.07419 0.6423 

        (0.0287)     (0.0133)   (0.0194)   

    25 20 0.72102 22.96 17.24 0.2143 0.9332 0.08553 0.6290 

       (0.0567)   (0.0298)   (0.0318)   

0.25 0.71939 75 70 0.71878 23.22 17.58 0.20963 0.9429 0.07957 0.6471 

       (0.0341)   (0.0203)   (0.0243)   

    150 140 0.72093 23.44 16.80 0.20449 0.9461 0.07824 0.6568 

        (0.0213)     (0.0167)   (0.0167)   

    25 20 0.70098 23.32 17.10 0.22482 0.9430 0.09051 0.6326 

       (0.0527)   (0.0362)   (0.0366)   

0.50 0.69003 75 70 0.71982 24.24 18.58 0.21541 0.9503 0.08646 0.6389 

       (0.0353)   (0.0246)   (0.0249)   

    150 140 0.69994 23.18 17.82 0.21267 0.9521 0.08538 0.6460 

        (0.0199)     (0.0189)   (0.0146)   

    25 20 0.66302 24.80 17.00 0.24933 0.9324 0.10143 0.6402 

       (0.0514)   (0.0344)   (0.0321)   

0.75 0.66187 75 70 0.67067 23.92 16.94 0.24418 0.9468 0.09642 0.6498 

       (0.0335)   (0.0239)   (0.0198)   

    150 140 0.66932 23.68 17.62 0.24174 0.9512 0.09454 0.6509 

        (0.0188)     (0.0191)   (0.0124)   

    25 20 0.63345 23.98 15.86 0.27216 0.9401 0.10467 0.6357 

       (0.0538)   (0.0371)   (0.0304)   

1.00 0.63486 75 70 0.63418 22.00 16.92 0.26032 0.9453 0.10298 0.6415 

       (0.0417)   (0.0289)   (0.0172)   

    150 140 0.63612 25.08 16.40 0.25998 0.9506 0.10026 0.6469 

        (0.0223)     (0.0175)   (0.0138)   
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Table 6.3 Simulation results in the case of continuous observations 

 

EAR(1) Model i.i.d. Case 
x  ( )R x  T  ˆ ( )TR x  ( )N T  

2ˆ ( )xτ  CP  
2

*̂ ( )xτ  *CP  

    250 0.75124 29.92 1.31087 0.9270 0.55466 0.5876 

      (0.0523)   (0.2316)   (0.0379)   

0.00 0.75000 500 0.75231 45.68 1.32192 0.9432 0.55312 0.5957 

      (0.0409)   (0.1772)   (0.0286)   

    750 0.75093 74.24 1.31246 0.9443 0.56253 0.6012 

      (0.0322)   (0.1298)   (0.0205)   

    250 0.72046 28.80 1.49156 0.9259 0.61457 0.5948 

      (0.0496)   (0.2508)   (0.0396)   

0.25 0.71939 500 0.72133 48.76 1.49351 0.9313 0.6089 0.6023 

      (0.0372)   (0.1878)   (0.0292)   

    750 0.72021 72.84 1.48816 0.9381 0.61107 0.6144 

      (0.0288)   (0.1349)   (0.0213)   

    250 0.68544 29.78 1.6689 0.9292 0.67892 0.5995 

      (0.0517)   (0.2409)   (0.0413)   

0.50 0.69003 500 0.70127 47.58 1.65612 0.9367 0.66785 0.6037 

      (0.0402)   (0.1947)   (0.0329)   

    750 0.68945 71.46 1.68876 0.9498 0.66206 0.6126 

      (0.0325)   (0.1381)   (0.0287)   

    250 0.66978 30.32 1.83566 0.9354 0.72454 0.6123 

      (0.0496)   (0.2603)   (0.0422)   

0.75 0.66187 500 0.66013 47.36 1.84689 0.9476 0.72167 0.6212 

      (0.0363)   (0.1898)   (0.0385)   

    750 0.66276 72.12 1.85063 0.9512 0.71423 0.6345 

      (0.0234)   (0.1434)   (0.0318)   

    250 0.63939 29.40 2.02394 0.9346 0.74678 0.6141 

      (0.0479)   (0.2789)   (0.0427)   

1.00 0.63486 500 0.63443 48.34 2.01652 0.9501 0.75779 0.6177 

      (0.0317)   (0.1992)   (0.0379)   

    750 0.63644 73.66 2.03081 0.9523 0.76651 0.6240 

      (0.0192)   (0.1528)   (0.0322)   
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 From the Tables, we can see that the estimated asymptotic variance of the 

estimators in the stationary dependent case is approximately twice of that in the 

i.i.d. case and hence the confidence interval of the estimators in the i.i.d. case is 

shorter than that in the stationary dependent case. Also, the empirical coverage 

probabilities of the estimators corresponding to 95% confidence interval in the 

i.i.d. set-up is around 0.60 – 0.65 and that in the case of stationary dependent 

model is around 0.90 – 0.95.  This suggests that when the failure and repair times 

are some stationary dependent, the ignorance of autocorrelation present in the data 

will lead to poor coverage probabilities and this may lead to wrong interpretations 

in the inference procedures.  

 Finally, we consider the case of a coherent system of three independent 

components, in which components 2 and 3 are in parallel and component 1 is in 

series with components 2 and 3 as shown in Figure 6.1. Here the system functions 

if and only if component 1 works and at least one of components 2 and 3 works. 

 

 

         Figure 6.1 

 Then, the limiting interval reliability of the system is given by, 

 [ ]1 2 3 2 3( ) ( ) ( ) ( ) ( ) ( )SR x R x R x R x R x R x= + − , 

where ( )iR x  is the limiting interval reliability of the i-th component, 1,2,3.i =  

 To simplify the presentation of the table, we assume that 1 2 3n n n n= = =  

and 1 2 3m m m m= = = . 

 

1 

 
2 

3 
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Now, a nonparametric estimator of ( )SR x  is given by 

 1 2 3 2 3
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )SR x R x R x R x R x R x = + −  , 

where  

 ˆ ( ) in
i

in im

U
R x

X Y
=

+
 for 1,2,3.i =  

The asymptotic variance of the estimator ˆ ( )SR x  in this case is given by, 

 [ ] [ ]2 2 2
2 3 2 3 1 1 3 2( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 ( ) ( )S x R x R x R x R x x R x R x xτ τ τ= + − + −  

    [ ] 2
1 2 3( ) 1 ( ) ( )R x R x xτ+ − . 

 For the simulation, we assume that the failure and repair times of 

component 1 are generated using the same EAR(1) models defined in this Section. 

We further assume that the failure and repair times of component 2 and 3 are 

identically distributed and are generated from two independent EMA1 models 

given by, 

1

0.75 with probability 0.75,

0.75 with probability 0.25.
n

n

n n

X
ε

ε ε +


= 

+
  

and 

1

0.5 with probability 0.50,

0.5 with probability 0.50.
n

n

n n

Y
η

η η +


= 

+
, ( 1, 2,3,...)n = , 

where { }nε  and { }nη  are two independent i.i.d. exponential random sequences 

with parameters 1 0.1λ =  and 2 0.25λ =  respectively. The results of the simulation 

study are shown in Table 6.4. In the Table, LCL and UCL represent the lower and 

upper limits of the 95% confidence interval for ˆ ( )SR x . From the Table, it can be 

seen that the proposed estimator for the interval reliability of the given coherent 

system performs well and shows consistent performance even for small sample 

sizes. 
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Table 6.4  Simulation results in the case of coherent systems 

 

x  ( )SR x  n  m  ˆ ( )SR x  
2ˆ ( )S xτ  LCL  UCL  

    25 20 0.69023 0.22343 0.50494 0.87552 

       (0.0413) (0.0327)   

0.00 0.68878 75 70 0.68996 0.20822 0.58669 0.79323 

       (0.0346) (0.0174)   

    150 145 0.68707 0.20501 0.61461 0.75953 

        (0.0278) (0.0132)     

    25 20 0.65251 0.24231 0.45955 0.84547 

       (0.0428) (0.0346)   

0.25 0.65319 75 70 0.65416 0.22967 0.54570 0.76262 

       (0.0332) (0.0169)   

    150 145 0.65409 0.22613 0.57799 0.73019 

        (0.0241) (0.0127)     

    25 20 0.62172 0.26012 0.42179 0.82165 

       (0.0489) (0.0359)   

0.50 0.61913 75 70 0.61965 0.24791 0.50696 0.73234 

       (0.0366) (0.0234)   

    150 145 0.61788 0.24568 0.53856 0.69720 

        (0.0271) (0.0166)     

    25 20 0.59234 0.28156 0.38434 0.80034 

       (0.0454) (0.0353)   

0.75 0.58656 75 70 0.57839 0.26678 0.46149 0.69529 

       (0.0317) (0.0228)   

    150 145 0.58823 0.26513 0.50583 0.67063 

        (0.0239) (0.0172)     

    25 20 0.56065 0.29987 0.34599 0.77531 

       (0.0411) (0.0332)   

1.00 0.55544 75 70 0.55787 0.28712 0.43660 0.67914 

       (0.0335) (0.0255)   

    150 145 0.55689 0.28564 0.47136 0.64242 

        (0.0197) (0.0187)     
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6.7. Conclusion 

 In this chapter, we discussed the nonparametric estimation of the limiting 

interval reliability when the failure and repair times are generated by two mutually 

independent strictly stationary dependent sequences of random variables. The 

proposed estimators were shown to be consistent and asymptotically normal under 

three different sampling schemes. A simulation study was conducted to assess the 

performance of the estimators in the stationary dependent case to the 

corresponding estimators in the i.i.d. set-up. The simulation study showed that if 

the true process is generated from stationary dependent sequences of random 

variables, the ignorance of autocorrelation among successive observations leads to 

poor coverage probabilities in the estimation procedure. Finally, we extended the 

estimation procedures to a coherent system of k independent components and 

illustrated the computation of confidence interval based on simulated samples.  

 



__________________________________________________________________ 
The results in this chapter have been accepted for publication as entitled ‘Sequential 

Interval Estimation of the Limiting Interval Availability for a Bivariate Stationary 

Dependent Sequence’ in the journal Statistics (See Balakrishna and Mathew, 2010). 

Chapter 7 

 

Sequential Interval Estimation of the Limiting 

Interval Reliability  

 

7.1 Introduction 

 In this chapter, we consider the sequential interval estimation of the 

limiting interval reliability of a repairable system when the sequences of failure 

and repair times are generated by a bivariate stationary dependent sequence.   In 

Section 7.2, we discuss the estimation of the limiting interval reliability ( )R x  for 

a stationary strong mixing bivariate sequence of failure and repair times. Section 

7.3 considers the sequential interval estimation of ( )R x . In section 7.4, we 

consider the sequential interval estimation in the case of a bivariate exponential 

autoregressive (BEAR) model. A numerical study is also performed in Section 7.5 

to assess the performance of the proposed sequential decision rule. Finally, 

Section 7.6 provides brief conclusions of the study. 

7.2 Estimation of the Limiting Interval Reliability 

 Suppose that { }( , ),  1n nX Y n ≥  is strictly stationary and strong mixing in 

the sense that as h → ∞ , 

{ }1( ) Sup ( ) ( ) ( ) : ( , ) and ( , ) 0k
k hh P A B P A P B A X Y B X Yα ∞

+= ∩ − ∈ ℑ ∈ ℑ → , 

where  

 ( )1 ( , ) , ;  1k
i iX Y X Y i kσℑ = ≤ ≤  and ( )( , ) , ;  k h i iX Y X Y i k hσ∞

+ℑ = ≥ + . 
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 When the observations on the failure and repair times of ‘n’ complete 

cycles, 1 1 2 2( , ), ( , ),..., ( , )n nX Y X Y X Y , are available, a natural estimator for the 

limiting interval reliability ( )R x  is  

 ˆ ( ) n
n

n n

U
R x

X Y
=

+
, (7.1) 

where 
1

n

n i
i

X X n
=

=∑ , 
1

n

n i
i

Y Y n
=

=∑  and 
1

n

n i
i

U U n
=

=∑  with ( )( )
ii i X xU X x I >= − . 

 Since { }( , ),  1n nX Y n ≥  is strictly stationary it follows that n XX µ→ , 

n YY µ→  and ( )nU xυ→  almost surely as n → ∞  and hence we conclude that 

ˆ ( ) ( )nR x R x→  almost surely as n → ∞ . 

 In order to establish the asymptotic normality of the estimator ˆ ( )nR x , we 

assume that for some 0δ > , 2
1( ) ,E X δ+ < ∞  2

1( )E Y δ+ < ∞  and /(2 )

1

( )
h

hδ δα
∞

+

=

< ∞∑ . 

Since { }( , ),  1n nX Y n ≥  is strictly stationary and strong mixing with mixing 

coefficient ( )hα , under the above assumptions, by the central limit theorem for 

such sequences (Lemma 1.7) we have as n → ∞ , 

( ) 2 2, ( , ),L
n X n Yn X Y Nµ µ− − → ∑0  

where 2 2(0, )N ∑  is a bivariate normal vector with mean (0,0) '=0 and dispersion 

matrix 

2

XX XY

XY YY

σ σ

σ σ

 
∑ =  

 
, 

with 1 1
2

var( ) 2 cov( , )XX h
h

X X Xσ
∞

=

= + ∑ ,  1 1
2

var( ) 2 cov( , )YY h
h

Y Y Yσ
∞

=

= + ∑    

and 1 1 1 1
2 2

cov( , ) cov( , ) cov( , )XY h h
h h

X Y X Y X Yσ
∞ ∞

= =

= + +∑ ∑ . 
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If we define, 
1

n

n i
i

Z Z n
=

=∑ , with i i iZ X Y= + , then it follows that as n → ∞  

( ) (0, ),L
n Z ZZn Z Nµ σ− →  

where Z X Yµ µ µ= +  and 2ZZ XX XY YYσ σ σ σ= + + . 

It is to be noted that { }( , ),  1n nU Z n ≥ is also strictly stationary and by the Cramer-

Wold device (Billingsley, 1968, pp.49), it may be verified that as n → ∞  

 ( ) *
2 2( ), ( , ),L

n n Zn U x Z Nυ µ− − → ∑0  (7.2) 

where *
2

UU UZ

UZ ZZ

σ σ

σ σ

 
∑ =  

 
,  

with  1 1
2

var( ) 2 cov( , )UU h
h

U U Uσ
∞

=

= + ∑  and 

 1 1 1 1
2 2

cov( , ) cov( , ) cov( , )UZ h h
h h

U Z U Z U Zσ
∞ ∞

= =

= + +∑ ∑ . 

If we define ( , ) / ,g x y x y=  then ( ) ˆ, ( )n n ng U Z R x= . 

Now, the partial derivatives of (.)g  are  

 
( ( ), )

1

Zx Z

g

x υ µ µ

∂
=

∂
, and 

 
2

( ( ), )

( )

Z
Zx

g x

y
υ µ

υ

µ

∂
= −

∂
. 

Hence, by using Lemma 1.4, we can show that as n → ∞ , 

( ) ( )2ˆ ( ) ( ) 0, ( ) ,L
nn R x R x N xτ− →  

where  

 
2

2

2 3 4

( ) ( )
( ) 2UU UZ ZZ

Z Z Z

w w
x

σ µ σ µ σ
τ

µ µ µ
= − + . (7.3) 

Thus, we proved the following theorem. 
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Theorem 7.1   

If  { }( , ),  1n nX Y n ≥  is a strictly stationary and strong mixing sequence of bivariate 

random vectors on { }2 ( , ) : 0 ,0R x y x y+ = ≤ < ∞ ≤ < ∞  such that for some 0δ > , 

2
1( ) ,E X δ+ < ∞  2

1( )E Y δ+ < ∞  and /(2 )

1

( )
h

hδ δα
∞

+

=

< ∞∑ , then ˆ ( )nR x  is a consistent and 

asymptotically normal (CAN) estimator for ( )R x . 

 Thus if 2 ( )xτ  is known, for a given significance level (0,1)α ∈ , a 

100(1 )%α−  confidence interval for ( )R x  is 

/ 2 / 2

( ) ( )ˆ ˆ( ) ( ) ( )n n

x x
R x z R x R x z

n n
α α

τ τ
− ≤ ≤ + . 

Remark 7.1 When 0x = , the estimator ˆ ( )nR x  reduces to ˆˆ (0) n
n n

n n

X
R A

X Y
= =

+
, 

which is a CAN estimator for the limiting availability ( )X X YA µ µ µ= + . Also it is 

straight forward to see that as n → ∞  

( ) ( )2ˆ 0, ,L
nn A A N γ− →  

where 
42 2 2{ 2 } ( )Y XX X YY X Y XY X Yγ µ σ µ σ µ µ σ µ µ= + − + . 

 In the next section, we discuss the sequential confidence interval 

estimation for the limiting interval reliability. 

7.3  Sequential Interval Estimation 

 In sequential Interval estimation our prime objective is to locate an 

interval, say nI , based on the observations, 1 1 2 2( , ), ( , ),..., ( , )n nX Y X Y X Y , such that  

i) [ ( ) ] 1nP R x I α∈ ≥ −  and  

ii) width of 2 ,nI d≤  

where  (0 1)α α< <  and  ( 0)d d > are preassigned numbers.  
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Theorem 7.1 ensures that for large n,  

 / 2
ˆ ( ) ( ) ( ) 1nP n R x R x z xα τ α − ≤ ≥ −

 
, (7.4) 

where / 2zα   denotes the upper / 2α  quantile of the standard normal distribution. 

Define, ˆ ˆ( ) ,  ( )n n nI R x d R x d = − +  .  

 If 2 ( )xτ  is known, we could take { }2 2 2
/ 2min : ( )dn n z x d nα τ −= ≤  as the 

number of observations. Then 
dnI  is the fixed accuracy confidence interval for the 

limiting interval reliability ( )R x  of fixed width 2d  with coverage probability 

ˆ[ ( ) ] ( ) ( )
d dn d n dP R x I P n R x R x d n ∈ = − ≤

 
, which converges to 1 α−  as 

0d →  due to (7.4) and the fact that 
2

2 20
/ 2

lim 1
( )
d

d

d n

z xα τ→
= . 

 However, 2 ( )xτ  is unknown in practice, so we should replace it by a 

consistent estimator. A consistent estimator 2ˆ ( )n xτ  of 2 ( )xτ  can be obtained by 

replacing ( ),  Zxυ µ , ,  UU ZZσ σ  and UZσ  with their corresponding consistent 

estimators in (7.3). Obviously nU  and nZ  are the consistent estimators for ( )xυ  

and Zµ  respectively. In order to construct consistent estimators for ,  UU ZZσ σ  and 

UZσ , we use the moving-block jackknife method for variance estimation with 

dependent data (Kunch, 1989). The moving-block jackknife estimators for 

,  UU ZZσ σ  and UZσ ,  respectively, are 

2
1 1

2 ( ) 1 ( )
,

1 1

ˆ ( 1)
1

n l n l
l l

UU l i j
i j

l
U n l U

n l
σ

− + − +
−

= =

 
= − + − 

− +  
∑ ∑ , 

2
1 1

2 ( ) 1 ( )
,

1 1

ˆ ( 1)
1

n l n l
l l

ZZ l i j
i j

l
Z n l Z

n l
σ

− + − +
−

= =

 
= − + − 

− +  
∑ ∑  and      

1 1 1
( ) 1 ( ) ( ) 1 ( )

,
1 1 1

ˆ ( 1) ( 1)
1

n l n l n l
l l l l

UZ l i j i j
i j j

l
U n l U Z n l Z

n l
σ

− + − + − +
− −

= = =

  
= − + − − + −  

− +   
∑ ∑ ∑ , 
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 where 
1

( ) 1
i l

l
i j

j i

U l U
+ −

−

=

= ∑ , 
1

( ) 1
i l

l
i j

j i

Z l Z
+ −

−

=

= ∑  and ( )l l n=  is the block size. 

 To establish the optimal properties of the sequential procedure we make 

the following assumption: 

1A :  For some 0δ > , 
6

1 ,E X
δ+  < ∞

 
 

6

1E Y
δ+  < ∞

 
 and 2 /(6 )( )k k δ δα + < ∞∑ . 

Under the above assumption the estimators 2 2
, ,

ˆ ˆ,  UU l ZZ lσ σ  and ,
ˆ

UZ lσ  converge almost 

surely to ,  UU ZZσ σ  and UZσ  respectively if ( )l o n=  and l → ∞  (Kunch, 1989).  

Then, it is easy to see that  

 2 2ˆ ( ) ( )n x xτ τ→  almost surely  as n → ∞ . (7.5)              

Now, consider the stopping rule 

 { }2 2 2
/ 2

ˆinf : ( )d nN n m nd z xα τ= ≥ ≥ , (7.6) 

where m  is the initial sample size. 

The bounded length confidence interval is then  

 ˆ ˆ( ) ,  ( )
d d dN N NI R x d R x d = − +  . 

The various steps involved in the construction of sequential confidence interval 

for the limiting interval reliability are summarized below: 

1) Take a preliminary sample of appropriate size m , ( , ),  1, 2,...,i iX Y i m=  

and transform the data into ( , ),  1, 2,...,i iU Z i m= , where 

( )( )
ii i X xU X x I >= −  and i i iZ X Y= + . 

2) Estimate the unknown parameter 2 ( )xτ  by 

2 2 2
, , ,2

2 3 4

ˆ ˆ ˆ
ˆ ( ) 2UU l n UZ l n ZZ l

n

n n n

U U
x

Z Z Z

σ σ σ
τ = − + . 

3) For preassigned , (0 0.5)d d< ≤ , calculate the stopping number dN  

defined by (7.6). 
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4) Take dN m−  additional samples ( , ),  1,  2,...,i i dX Y i m m N= + + . Then with 

the total sample of size dN  construct the confidence interval  

ˆ ˆ( ) ,  ( )
d d dN N NI R x d R x d = − +  . 

The desirable asymptotic properties of the stopping rule defined by (7.6) are given 

in the following theorem. 

Theorem 7.2 

Under the assumption 1A , as 0d → , 

(i) 1d

d

N

n
→  almost surely 

(ii) [ ( ) ] 1
dNP R x I α∈ → −  (asymptotic consistency) 

(iii) 1d

d

N
E

n

 
→ 

 
 (asymptotic efficiency). 

Proof   

In order to prove (i) note that 

( ) ( )2 2 2 2 2 2
/ 2 ( ) / 2 1

ˆ ˆ( ) ( 1) ( ) ( 1) 1
d d d

h h
N d d N m N dd z x N N m I d z x Nα ατ τ− − − −

= −+ ≤ ≤ − + + − +  

             ( )2 2 2
/ 2 1

ˆ ( ) ( 1)
d

h
N dm d z x Nα τ− −

−≤ + + − . 

Hence, 

  
( ) ( )2 2 2 2 2 2

/ 2 / 2 1
ˆ ˆ( ) ( ) ( 1)

d d

h h
N d N dd

d d d d

d z x N d z x NN m

n n n n

α ατ τ− − − −
−+ + −

≤ ≤ + . 

Now using the fact that 
2

2

20
/ 2

lim ( )d

d

d n
x

zα

τ
→

=  and from (7.5) it follows that as 0d → , 

 1d

d

N

n
→  almost surely. (7.7) 

If we define, 

( ) ,  1,2,...j Z j jU x Z jξ µ υ= − = ,  
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then jξ ’s are also strictly stationary and it follows from (7.2) that as n → ∞  

( )2

1

1
0, ( )

n
L

j
j

N x
n

ξ γ
=

→∑ , 

where     

 2 2 2( ) ( ) 2 ( )Z UU ZZ Z UZx x xγ µ σ υ σ υ µ σ= + − . (7.8) 

 To establish the asymptotic consistency property we use Anscombe’s 

theorem (Lemma 1.8), which requires 
1

1 n

j
jn

ξ
=

 
 
 

∑  to be uniformly continuous in 

probability (u.c.i.p). (See Definition 1.5).  

Letting 
1

n

n j
j

Q ξ
=

=∑  and following Woodroofe (1982, pp.11), we can write 

1n k n n
n k n

Q Q Qn
n Q Q

n kn k n n
+

+

 
− ≤ − + − 

++  
   for , 1k n ≥ . 

If , 0ε δ >  and k nδ≥ , then the second term on the right is bounded by 

( ) nC Q nδ , where 1/ 2( ) 1 (1 )C δ δ −= − +  and 

0
1

2 2 ( )
n n

k n

Q Qn
P Max P

n k Cn nδ

ε ε

δ< ≤

    
− > ≤ >    

+     
, 

which tends to zero as 0δ →  uniformly in 1n ≥ , since { }, 1nQ n n ≥  are 

stochastically bounded. 

 Since { }jξ  is a strong mixing sequence of random variables, by the 

maximal inequality for such random variables (Rio, 1995), we have, 

20
1

64

2

n n

n k n j
k n

j n

n
P Max Q Q Var

n

δ

δ

ε
ξ

ε

+

+
< ≤

= +

   
− > ≤   

  
∑  

           2

2

64
( )wδγ

ε
≤ , 

which is independent of 1n ≥  and tends to zero as 0δ → . 
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Thus, 
1

1 n

j
jn

ξ
=

∑ , 1n ≥  is u.c.i.p. 

Now, by Anscombe’s theorem (Lemma 1.8), we have as 0d →   

1 1

1 1
[ ( ) ]

d dN N

j Z j j
j jd d

U x Z
N N

ξ µ υ
= =

= −∑ ∑ ( )20, ( )L N xγ→ . 

Note that  

 ( ) ( )ˆ ( ) ( ) d

d

d

N

d N d

N Z

U x
N R x R x N

Z

υ

µ

 
− = −  

 
 

             
1

1
[ ( ) ]

d

d

N

Z j j
jd

Z N

U x Z
N

Z

µ υ

µ

=

−

=

∑
. 

Since 
d

P
N ZZ µ→  as 0d →  it follows from Slutsky’s theorem (Lemma 1.5) that 

( ) ( )2ˆ ( ) ( ) 0, ( )
d

L
d NN R x R x N xτ− → . 

Now, 

 ˆ[ ( ) ] ( ) ( )
d dN NP R x I P R x R x d ∈ = − ≤

 
 

        
ˆ ( ) ( )

( ) ( )

dd N d d

d

N R x R x d n N
P

x x nτ τ

 −
 = ≤
 
 

, 

which converges to 1 α−  as 0d →  due to (7.7) and the fact that 

2

2 20
/ 2

lim 1
( )
d

d

d n

z xα τ→
= . 

Let 0 1ε< <  be given, and define (1 ) da nε= −  and (1 ) db nε= + . 

Note that, 

 ( ) [ ] [ ]d d d
n m

E N nP N n aP N a
∞

=

= = ≥ ≥∑   

and hence 

(1 ) [ ]d
d

d

N
E P N a

n
ε

 
≥ − ≥ 

 
. 
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Now, using (7.7) 

 
0

liminf (1 )d

d
d

N
E

n
ε

→

 
≥ − 

 
 (7.9) 

Also note that, 

  ( ) [ ]d d
n m

E N nP N n
∞

=

= =∑  

  
1

[ ] [ ]d d
n b

bP N b nP N n
∞

= +

≤ ≤ + =∑  

  ( )b T b= + , 

where ( ) [ ]d
n b

T b P N n
∞

=

= >∑ . 

Now, 

 
( )

(1 )d

d d

N T b
E

n n
ε

 
≤ + + 

 
. (7.10) 

Consider, 

    ( )2ˆ( ) [ ] ( ) h
d n

n b n b

T b P N n P n c x nτ
∞ ∞

−

= =

 = > ≤ < + ∑ ∑ , where 2 2
/ 2c d zα

−=  

2 1ˆ[ ( ) ]h
n

n b

P x c n nτ
∞

− −

=

≤ > −∑  

2 1ˆ[ ( ) ]h
n

n b

P x c b bτ
∞

− −

=

≤ > −∑  

2 2 1ˆ[ ( ) ( ) ( ) ]h
n d

n b

P x x c b n bτ τ
∞

− −

=

≤ − > − −∑  

{ }2 2 2 2 2 2
/ 2

ˆ[ ( ) ( ) ( ) [ (1 ) ( )] ]
h

n
n b

P x x x d z xατ τ ετ ε τ
∞

=

≤ − > − +∑  

If we choose d  small enough so that 

{ }2 2 2 2 2
/ 2

1
( ) [ (1 ) ( )] ( )

2

h

x d z x xαετ ε τ ετ− + > , 

then 

2 2 21
ˆ( ) ( ) ( ) ( )

2
n

n b

T b P x x xτ τ ετ
∞

=

 
≤ − > < ∞  
∑ . 
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It is clear that for sufficiently small d , since ( )T b < ∞ , (7.5) together with (7.10) 

imply that, 

0

limsup (1 )d

d d

N
E

n
ε

→

 
≤ + 

 
. 

Combining this with (7.9) we get (iii). This completes the proof.  

In the next section we discuss the sequential estimation for a specific 

bivariate sequence. 

7.4 Sequential Interval Estimation for a BEAR(1) Process 

 In this section we discuss the application of the results obtained in Section 

7.2 and 7.3 for a BEAR(1) model.  

 Let 1 2( , )N N  be a bivariate geometric random vector with support 

{( , ) : , 1}S i j i j= ≥  defined by Block et. al. (1988) with probability mass function 

( )

( )

1 2 1

2 1 2

1

1 1
01 11 01 11 01 11 1 2

1 1
1 1 2 2 10 11 10 11 10 11 1 2

1
11 00 1 2

( ) 1 ( ) ;    

[ , ] ( ) 1 ( ) ;    

;

n n n

n n n

n

p p p p p p n n

P N n N n p p p p p p n n

p p n n

− − −

− − −

−

 + − + <


= = = + − + >


=

, (7.11) 

where 0 1ijp≤ ≤ , , 0,1i j =  such that 00 10 01 11 1p p p p+ + + = , 01 110 1p p< + <  and 

10 110 1p p< + < .  

 Let 1 2{( ( ), ( ))}I n I n be a sequence i.i.d. bivariate Bernoulli random vectors 

with 1 2[ ( ) , ( ) ] ijP I n i I n j p= = = , , 0,1i j = , where ijp ’s are as in (7.11). 

 Suppose 1 2{( , ), 0, 1, 2,...}n nE E n = ± ±  is a sequence of i.i.d. bivariate 

exponential random vector denoted by 1 2( , , )BVE λ λ ρ  with mean 1 1
1 2( , )λ λ− −  and 

correlation coefficient ρ  such that the sequences 1 2( , )E E , 1 2( , )I I  and 1 2( , )N N  

are mutually independent. 
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Define, 

 1 1 1 1

2 1 2 2

( )
( )

( )
n n n

n n n

X I n X E
X n

Y I n Y E

π

π
−

−

+   
= =   

+   
, 2,3,...n =  (7.12) 

where  

1 2

1 1 1 1, 2 2,
1 1

(1) ( , ) ' ,  
N N

j j
j j

X X Y E Eπ π− −
= =

′ 
= =  

 
∑ ∑ ,  

with 1 01 00p pπ = +  and 2 10 00p pπ = + . 

The sequence { ( ),  1}X n n ≥  defined by (7.12) is referred to as a Bivariate 

exponential autoregressive process of order 1 (BEAR(1)) process. For each 1n ≥ , 

( )X n  has 1 2( , , )BVE λ λ ρ  distribution. It is shown in Abraham and Balakrishna 

(2000) that the BEAR(1) sequence { ( )}X n  is stationary, ergodic and strong 

mixing with mixing parameter 1 1
10 11 01 11( ) ( ) ( )h hh p p p pα − −= + + + , 1, 2,...h = . 

In particular, if 1 2( , )E E  has a Marshall-Olkin bivariate exponential 

distribution with survival function (Marshall and Olkin, 1967) 

[ ]1 2 12( , ) exp max( , ) , , 0F x y b x b y b x y x y= − − − ≥ ,  

where 1 2,b b  and 12b  are non-negative real numbers such that 1 1 12b bλ = + , 

2 2 12b bλ = +  and 12 1 2 12/( )b b b bρ = + +  and if we choose 1
1 20 ( )θ λ λ −< < + , 

1 1π λ θ= ,  2 2π λ θ= , 00 12p bθ= , 01 1p bθ= , 10 2p bθ=  and 11 1 2 121 ( )p b b bθ= − + + , 

then the resulting BEAR(1) sequence{ ( ), 1}X n n ≥  is stationary and strong mixing 

with mixing parameter 1 1
1 2( ) (1 ) (1 )h hhα π π− −= − + −  and each ( )X n  has a 

Marshall-Olkin bivariate exponential distribution for 1n ≥  (See Block et. al., 

1988). 

 If we define ( ) ( ,  ,  )n n nV n X Y U ′= , the autocovariance matrix ( )V kΓ  of 

{ ( )}V n  becomes 

 



Sequential Interval Estimation of the Limiting Interval Reliability  

 

 
 

134

( )( ) ( ), ( )V k Cov V n V n kΓ = +  

1

1

1 1 1 1

2 1 1 2
1 1 2 1 2 1 1 1

1 1 2 1 1
1 1 2 2 2 1 1 2

2 1 1 2
1 1 1 2 1 2 1 1

(1 ) (1 ) (1 ) (1 )

(1 ) (1 ) (1 ) ( )

(1 ) (1 ) (1 ) ( ) (1 ) (2 )

xk k k

xk k k

x x x xk k k

x e

x e

x e x e e e

λ

λ

λ λ λ λ

π λ π ρλ λ π λ λ

π ρλ λ π λ π ρ λ λ

π λ λ π ρ λ λ π λ

−− − − −

−− − − − −

− − − −− − − −

 − − − +
 

= − − − 
 − + − − − 

 

where ( )xρ  is the correlation coefficient between nU  and nY .  

 For the BEAR(1) sequence all the moments of nX  and nY  are finite and 

hence those of nU  and nZ . In this case 11
1( ) xx e λυ λ −−=  and 1 1

1 2 1 2( )Zµ λ λ λ λ− −= + . 

Also, it can be verified that /( 2)

1

( )
h

hδ δα
∞

+

=

< ∞∑ . Thus it follows that  

( ) *
2( ),  (0, )L

n n Zn U w Z Nµ µ− − → ∑ , 

where *
2

UU UZ

UZ ZZ

σ σ

σ σ

 
∑ =  

 
, 

with  1 11
2

1 1

2
(2 )x x

UU e eλ λπ
σ

π λ
− −−

= − , 

1

11 1 2 1 2
12

1 1 1 2 1 2

2 ( )
(1 )

x
x

UU

x e
e x

λ
λπ π π π πρ

σ λ
π λ λ λ π π

−
−  − + −

= + +  
 

 and  

1 1 2 1 2 2
2 2

1 1 1 2 1 2 2 2

2 22
ZZ

π π π π π πρ
σ

π λ λ λ π π π λ

 − + − −
= + + 

 
. 

Hence by applying the results of Theorem 7.1, we get 

 ( ) ( )2ˆ ( ) ( ) 0, ( )L
nn R x R x N xτ− → , (7.13) 

where 
1

1

22 2
2 2 1 2 2 1

2 2
1 2 1 1 2 1 2

2 2 (1 )
( ) 2 1

( ) ( )

x
xe x

x e
λ

λλ π λ λ λ
τ

λ λ π λ λ λ λ

−   − +
= − + −  

+ + +  
 

2
1 1 2 1 2 2 2 1

2
1 2 1 2 1 2 2 1 2

2 ( ) 2
( )

( ) ( )
x

λ π π π π ρλ π λ
ρ

π π λ λ λ λ π λ λ

 + − − 
+ − +  

+ + +   
. 

This in turn implies that, for a BEAR(1) sequence the estimator ˆ ( )nR x  is CAN for 

the limiting interval availability 1

2 1 2( ) ( ).xR x e λλ λ λ−= +  
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    In order to establish the importance of BEAR(1) model compared to the 

i.i.d. 1 2( , , )BVE λ λ ρ  sequence, without loss of generality we consider the case of 

0x = . In this case, ( )R x  reduces to the limiting availability 2 1 2( )A λ λ λ= +  and 

hence (7.13) becomes 

( ) ( )2ˆ (0) 0,L
nn R A N τ− → , 

where  

 
2

2 1 2 1 2 1 2
4

1 2 1 2

2(1 )( ) ( )

( )

ρ λ λ π π π π
τ

π π λ λ

− + −
=

+
. 

Note that the BEAR(1) sequence reduces to the i.i.d. 1 2( , , )BVE λ λ ρ  sequence 

when 1 2 1π π= = . Let 2
*τ  be the asymptotic variance of ˆ (0)nR  in the case of i.i.d. 

1 2( , , )BVE λ λ ρ  case.  

Then,  

2
2 1 2
* 4

1 2

2(1 )( )
.

( )

ρ λ λ
τ

λ λ

−
=

+
 

Let dn  and *
dn  denote the number of observations required to construct sequential 

confidence interval for the limiting availability A, of fixed width 2d and coverage 

probability 1 α−  in the case of BEAR(1) sequence and i.i.d. 1 2( , , )BVE λ λ ρ  

sequence of failure and repair times. Then assuming the asymptotic variance 2τ  

and 2
*τ are known, 

2 2 2
/ 2min{ : }dn n n d zα τ−= ≥  and 

* 2 2 2
/ 2 *min{ : }dn n n d zα τ−= ≥ . 

Consider the ratio, 

2

* 2
*

d

d

n

n

τ

τ
≈ = 1 2 1 2

1 2

π π π π

π π

+ −
     

      
1 2

1 1
1

1 1ρ ρ
= + −

− −
, 
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where 1 11ρ π= −  and 2 21ρ π= −  are the marginal lag 1 autocorrelations of the 

sequences { }nX  and { }nY  respectively. The following table gives the values of the 

ratio *
d dn n  for a few values of 1ρ  and 2ρ .  

   1ρ  0.2 0.5 0.7 0.9 

 2ρ            

0.2  1.50 2.25 3.58 10.25 

0.5  2.25 3.00 4.33 11.00 

0.7  3.58 4.33 5.67 12.33 

0.9   10.25 11.00 12.33 19.00 

 

    Note that the ratio *
d dn n  is always greater than unity and increases as the 

marginal autocorrelations 1ρ  and 2ρ  increase. This indicates that under the 

assumption of independence the sample size is significantly underestimated if the 

true process is BEAR(1). For example, even when the autocorrelation is small 

1 2( 0.2,  0.2)ρ ρ= =  the ratio *
d dn n  is approximately equal to 1.50, indicating 

underestimation of 50%.  Thus, when the successive sequences of failure and 

repair times are dependent, the assumption of independence make erroneous 

conclusions. 

7.5. Numerical Study 

 In order to compare the performance of the sequential decision rule 

defined by (7.6) in the case of bivariate stationary dependent sequence with that of  

i.i.d. sequence, a simulation study is performed in this section. A sequence of 

failure and repair times are generated by a BEAR(1) model having bivariate 

Marshall-Olkin distribution with parameters 1 20.06,  0.36λ λ= =  and 12 0.14λ = . 

So the bivariate random vector has (0.2,0.5,0.25)BVE  distribution with mean 

(5,  2)  and correlation coefficient 0.25ρ = .  Here we assume that 00 0.14p = , 

01 0.06p = , 10 0.36p =  and 11 0.44p =  so that the marginal autocorrelations of the 

failure and repair times are 1 0.8ρ =  and 2 0.5ρ =  respectively. 
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    The 95% sequential confidence interval for ( )R x  for several values of ‘x’ 

and ‘d’ are constructed for the BEAR(1) process. We also construct such 

confidence intervals for ( )R x  by treating the above data are as generated by an 

i.i.d. (0.2,0.5,0.25)BVE  distribution. We repeat this experiment 5000 times and 

then compute the empirical coverage probabilities in both cases. The results of the 

simulation study are summarized in Table 7.1, where dn  represents the actual 

sample size required to construct a sequential confidence interval for ( )R x  of 

width 2d . The notations ˆ,  ( )
dd N

N R x , CP and *

* ˆ,  ( )
d

d N
N R x , CP* denote the 

average sample size required, average value of the estimated ( )R x , empirical 

coverage probability for the sequential confidence interval in the case of BEAR(1) 

process and i.i.d. bivariate exponential model respectively. The initial sample size 

m  is taken as 10 in the simulation study.  

Table 7.1 Simulated coverage probabilities for limiting interval reliability 

BEAR(1) Case Bivariate i.i.d. Case 
x  ( )R x  d  dn  

dN  ˆ ( )
dN

R x  CP  
*
dN  *

ˆ ( )
dN

R x  *CP  

  0.050 576 562.71 0.71333 0.9182 97.87 0.70895 0.6020 

  0.075 256 247.75 0.71241 0.9298 49.79 0.70132 0.6152 

0.0 0.71429 0.100 144 137.92 0.70965 0.9384 30.70 0.68527 0.6274 

  0.125 93 89.44 0.71029 0.9402 20.30 0.68758 0.6706 

  0.150 64 63.59 0.70934 0.9496 15.12 0.67991 0.6827 

  0.050 866 843.05 0.64495 0.9187 139.83 0.63916 0.6118 

  0.075 385 379.28 0.64791 0.9221 61.15 0.63544 0.6191 

0.5 0.64631 0.100 217 212.04 0.64349 0.9274 34.60 0.62721 0.6242 

  0.125 139 126.94 0.63794 0.9343 23.15 0.61183 0.6605 

  0.150 97 89.53 0.63317 0.9424 16.73 0.58345 0.6785 

  0.050 1142 1095.61 0.58212 0.9103 155.08 0.57982 0.6194 

  0.075 508 485.37 0.58964 0.9186 69.81 0.56392 0.6256 

1.0 0.58481 0.100 286 252.81 0.57565 0.9287 40.07 0.55152 0.6350 

  0.125 183 175.25 0.57921 0.9298 25.87 0.53395 0.6455 

  0.150 127 113.85 0.57539 0.9389 18.15 0.52437 0.6625 
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 Table 7.1 reveals that the coverage probabilities of ( )R x  under the 

assumption of i.i.d. model are significantly smaller than those under the BEAR(1) 

case. This also indicates that the ignorance of autocorrelations present in the 

sequence will significantly under estimates the sample size. 

7.6 Conclusion 

 In this chapter we have discussed the sequential confidence interval 

estimation of the limiting interval availability when the failure and repair times of 

a system form a stationary strong mixing sequence of bivariate random vectors. It 

is shown that the confidence interval is asymptotically consistent and the proposed 

stopping rule is asymptotically efficient as the width of the interval approaches 

zero. The general theory is applied to a stationary BEAR(1) sequence and the 

resulting stopping rule is compared with the stopping rule under the i.i.d. set-up. It 

is observed that when the true model is BEAR(1), the assumption of an i.i.d. 

sequence underestimates the sample size and leads to poor coverage probability. A 

simulation study also confirmed the same result. 

7.7 Plan for Future Work 

In Chapter 2 and 3, we consider the nonparametric estimation of the 

average availability and the interval reliability under three different sampling 

schemes. The estimation was carried out by assuming that the sequences of failure 

and repair times are two independent sequences of i.i.d. random variables.  

However, this assumption need not hold good in many situations. The repair times 

may depend on the previous failure time due to the influence of the operating 

environment on the system. When the failure and repair times form a bivariate 

i.i.d. sequence, the estimation of the availability measures; point availability, 

average availability and interval reliability, is an interesting research problem 

which is to be addressed. 

The availability behavior and the estimation of the limiting interval 

reliability when the sequences of failure and repair times are generated by 
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stationary dependent sequences of random variables were discussed in Chapter 5 

and 6. When the system is working in a random environment, it is natural to 

observe dependence among successive sequences of failure times. The inference 

procedures for estimating various quantities in the survival analysis are discussed 

by several authors in this set-up. See, for example, Ying and Wei (1994), Cai and 

Roussas (1998), Cai (2001). However, the estimation of the availability measures; 

point availability, average availability and interval reliability, is not discussed in 

the literature when the sequences of failure and repair times are generated by 

some stationary mixing sequences of dependent random variables, except the case 

of limiting measures.  

Throughout this thesis, we use the empirical distribution function and the 

Kaplan-Meier product limit estimator as a nonparametric estimator of the 

cumulative distribution function in the case of complete and censored 

observations respectively. These estimators can only give a step function as the 

estimates. There are several works available in the literature dealing with the 

estimation of smooth distribution functions using kernel type estimators. See, 

Reiss (1981) and Ghorai and Susarla (1990). The nonparametric estimators of the 

availability measures using smoothly estimated distribution functions may reduce 

the mean square errors of the estimators significantly. This can be considered as a 

future work in this direction. 
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