STUDIES ON SOME METAL COMPLEXES OF DITHIO LIGANDS

Thesis submitted to The Cochin University of Science and Technology in partial fulfilment of the requirements for the Degree of **DOCTOR OF PHILOSOPHY** in the Faculty of Science

By

E. J. MATHEW

DEPARTMENT OF APPLIED CHEMISTRY COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY KOCHI - 682 022

NOVEMBER 1990

DEDICATED

TO MY

BELOVED FATFER

DECLARATION

Certified that the work presented in this thesis is based on the original work done by me under the guidance of Dr. K. K. Mohammed Yusuff, Reader, Department of Applied Chemistry, Cochin University of Science and Technology, and has not been included in any other thesis submitted previously for the award of any degree.

11attena E. J. Mathew

Cochin 682022 November 28, 1990

CERTIFICATE

This is to certify that the thesis bound herewith is an authentic record of research work carried out by the author under my supervision in partial fulfilment of the requirements for the degree of Doctor of Philosophy of Cochin University of Science and Technology, and further that no part thereof has been presented before for any other degree.

- Fattil

Dr. K. K. MOHAMMED YUSUFF (Supervising Teacher)

Cochin 682022 November 28, 1990

ACKNOWLEDGEMENT

I would like to record my deep sense of gratitude to Dr K. K. Mohammed Yusuff, Reader, Department of applied Chemistry, Cochin University of Science and Technology, who by his inspiring guidance has made my sojourn in chemistry a successful event. I express sincere thanks to Dr. K. L. Sebastian, Professor and Head, Department of Applied Chemistry for his keen interest in this work and for his valuable suggestions and encouragement. The help extended by Prof. Paul A. Vatakencherry, former head of the Department of Applied Chemistry is gratefully acknowledged.

I remember with gratitude Dr. Joseph Maroor, Principal, S. B. College, Prof.K. J. George, Head, Department of Chemistry, S.B. College and my colleagues in the department for their constant encouragement and co-operation rendered to me during my research programme.

I am thankful to the teachers the non-teaching staff and the research scholars of the Department of Applied Chemistry, Cochin University of Science and Technology for all the invaluable help given to me during my work. I sincerly appreciate all the assistance given to me by Mr A. R. Karthikeyan , Mr.C. Krishnakumar and Miss R. Sreekala during the course of my work. The financial assistance received from the UGC, as JRF, is gratefully acknowledged. I thank RSIC. IIT, Madras for providing necessary spectral data.

I always remember the love and support showered upon me by my beloved wife Marykutty and the other members of my family.

E. J. Mathew

PREFACE

The thesis deals with our studies on the synthesis and of some metal complexes of dithio elucidation of structure the dithiocarbamates, xanthates and ligands, such as 2-aminocyclopent-1-ene-1-dithiocarboxylate and its N-alkyl derivatives.

The thesis is divided into eight chapters. The Chapter I is a general discussion on the metal complexes of 1,1-dithio chelate complexes, that are relevant to the study and the scope of the present investigation. The experimental techniques, reagents, procedural details, instrumental methods etc. employed for the synthesis and characterisation of the complexes are described in Chapter II.

2-Aminocyclopent-1-ene-1-dithiocarboxylate (ACDA) is an interesting ligand, because of its potential dual capability of bonding between the metal and the ligand. Since the earlier reports on the complexes of ACDA contain contradictory ideas on the nature of its bonding, it was thought worthwhile to undertake a detailed and systematic study of these type of complexes. As the ACDA complexes have very low solubilities in solvents like chloroform, we have used the isopropyl derivative of ACDA as the The increased solubility of these complexes has made ligand. it possible to investigate their NMR and solution electronic spectra. The complexes of this ligand have not yet been reported in the literature, and the studies on these complexes are described in Chapter III.

We have synthesised some new mixed ligand complexes of dithiocarbamates by reacting $bis(dithiocarbamato)-\mu-dichloro$ dicopper complexes (obtained by the reaction of mixed benzoic dithiocarbamic anhydride and copper(II) chloride) with ACDA or its N-alkyl derivatives. The isolation and characterisation of these complexes are reported in Chapter IV.

Interactions of metal halides with the mixed anhydrides formed from benzoylchloride and xanthates have also been Novel complexes of the type, investigated. [Cu₂(RXant)Cl] (R=i-Bu, i-Pr, n-Bu or n-Pr)) have been isolated from the reaction of copper(II) chloride and the mixed anhydride, and these reactions appear to be like the clock reactions reported in the literature. The synthesis and structural elucidation of these complexes are presented in Chapter V.

Chapters VI, VII and VIII deal with the characterisation of the complexes of the type $[Hg(R_2dtc)X]$ (X=Cl, Br or I), $[Cu_3(R_2dtc)_6][Cu_2Br_6]$ and $[Cu(R_2dtc)Cl_2]$ ($R_2=Me_2$, Et₂, Pip, Morph or Pyrr) respectively, synthesised by simple and novel routes, different from those reported earlier. The work described in this thesis has been published/ is under publication as indicated below:

- "Reaction of mixed benzoic-dithiocarbamic anhydrides with mercury(II) halides", K. K. M. Yusuff and E. J. Mathew, Synth. React. Inorg. Met. -org. Chem., 19(1), 15-22 (1989).
- "Reaction of mixed benzoic-carbonodithioic anhydrides with copper(II) chloride", E. J. Mathew and K. K. M. Yusuff, Abstracts, Paper No: 57, 77th Indian Science Congress, Cochin, 1990.
- "Reactions of mixed benzoic-dithiocarbamic anhydrides with copper(II) bromide" (Communicated).
- 4. "Synthesis of new mixed ligand complexes of copper(II) dithiocarbamates" (Communicated).
- 5. "2-Isopropylaminocyclopent-1-ene-1-dithiocarboxylato complexes of chromium(III), manganese(III), iron(III), cobalt(III), nickel(II) and copper(I)" (Communicated).

ABBREVIATIONS

Å	Angstrom
ВМ	Bohr Magneton
IR	Infrared
NMR	Nuclear magnetic resonance
ESR	Electron spin resonance
x	Magnetic susceptibility
£	Molar extinction coefficient
ν	Stretching
δ	Deformation
ρ	Wagging
S	Symmetric
as	Asymmetric
en	Ethylenediamine
Phen	1,10-phenanthroline
Ру	Pyridine
bipy	Bipyridine
су	Cyclohexyl
Pip	Piperidine
Morph	Morpholine
Pyrr	Pyrrolidine
R ₂ dtc	Dialkyl and diaryl dithiocarbamate anion
Pipdte	Piperidine N-carbodithioate anion
Morphdtc	Morpholine-N-carbodithioate anion

Pyrrdtc	Pyrrolidine-N-carbodithioate anion
R ₄ tds	Tetraalkyl thiuram disulphide
RXant	Alkylxanthate anion
Me	Methyl
Et	Ethyl
i-Pr	Isopropyl
i-Bu	Isobutyl
n-Pr	n-Propyl
n-Bu	n-Butyl
sec-Bu	sec-Butyl
ACDA	2-Aminocyclopent-1-ene-1-dithio- carboxylate anion
i-Pracda	2-N-isopropylaminocyclopent-1-ene- 1~dithiocarboxylate anion
n-BuACDA	2-N-isobutylaminocyclopent-1-ene+ 1-dithiocarboxylate anion
DMF	Dimethylformamide
DMSO	Dimethylsulphoxide
salen	Bis-(salicylaldehyde)ethylenediimine
THF	Tetrahydrofuran
MNT	Maleonitriledithiolate
Ср	Cyclopentadienyl anion

CONTENTS

HAPTER		PAGE No.
I	INTRODUCTION AND SCOPE OF THE PRESENT INVESTIGATION	
	1.1. 1,1-Dithioligands	2
	1.2. Dithiocarbamato complexes	5
	1.3. O-Alkylcarbonodithioate (Xanthate)	
	complexes of metals	26
	1.4. Metal complexes of ACDA	33
	1.5. Scope of the present investigation	37
II	EXPERIMENTAL TECHNIQUES	
	2.1. Reagents	40
	2.2. Elemental analysis	44
	2.3. Physical measurements	46
111	2-ISOPROPYLAMINOCYCLOPENT-1-ENE-1-DITHIO-	
	CARBOXYLATO COMPLEXES OF CHROMIUM(III),	
	MANGANESE(III), IRON(III), COBALT(III),	
	NICKEL(II) AND COPPER(I)	
	3.1. Introduction	4 8
	3.2. Experimental	49
	3.3. Results and discussion	50
	3.3.1. Electrical conductance	51
	3.3.2. Magnetic measurements	51
	3.3.3. Electronic spectra	55
	3.3.4. Infrared spectra	60
	3.3.5. ¹ H NMR spectra	64

NEW	MIXED	LIGAND	COMPLEXES	OF	COPPER(II)
DIT	HOCAR	BAMATES			

4.1.	Introduction	67
4.2.	Experimental	67
4.3.	Results and discussion	69
4.3.1.	Conductance measurements	69
4.3.2.	Magnetic measurements	71
4.3.3.	Electronic spectra	71
4.3.4.	Infrared spectra	71
4.3.5.	EPR spectra	78

REACTION OF MIXED BENZOIC-XANTHIC ANHYDRIDES WITH COPPER(II) CHLORIDE

5.1.	Introduction	79
5.2.	Experimental	79
5.3.	Results and discussion	80
5.3.1.	Electronic spectra	83
5.3.2.	Infrared spectra	83

VI

V

IV

REACTION OF MIXED BENZOIC-DITHIO-CARBAMIC ANHYDRIDES WITH MERCURY(II) HALIDES

6.1.	Introduction	88
6.2.	Experimental	88
6.3.	Results and discussion	89
6.3.1.	Electronic spectra	90
6.3.2.	Infrared spectra	90

VII	REACTIONS OF MIXED BENZOIC-DITHIO-
	CARBAMIC ANHYDRIDES WITH COPPER(II)
	BROMIDE

7.1.	Introduction	96
7.2.	Experimental	9 6
7.3.	Results and discussion	97
7.3.1.	Electrical conductance	9 9
7.3.2.	Magnetic measurements	99
7.3.3.	Electronic spectra	101
7.3.4.	Infrared spectra	103

VIII REACTION OF THIONYL CHLORIDE WITH BIS(DITHIOCARBAMATO)COPPER(II) COMPLEXES

8.1.	Introduction	108
8.2.	Experimental	108
8.3.	Results and discussion	109
8.3.1.	Magnetic measurements	110
8.3.2.	Electronic spectra	110
8.3.3.	Infrared spectra	113

SUMMARY	118

REFERENCES	122

Chapter - 1

CHAPTER-1

INTRODUCTION AND SCOPE OF THE PRESENT INVESTIGATION.

There has been a prodigious upsurge of knowledge in the chemistry of transition metal sulfur complexes. This is amply reflected in the increased documentation on novel complex syntheses, on the formation of interesting organometallic molecules, and in the field of bio-inorganic chemistry.

A major class of sulfur containing ligands is obtained by the general reaction of carbon disulfide with various nucleophiles. The 1,1-dithioacids are obtained by the addition of uninegative nucleophiles to carbon disulfide under a variety of experimental conditions. They are used as pharmaceutical and analytical accelerators^{1,2}. agents, fungicides and rubber vulcanisation Stabilisation of transition metals in high oxidation states, extensive electron transfer series and such other structural, magnetic and spectroscopic properties have served to make 1,1-dithio complexes, especially the dithiocarbamates, the focus of attention among sulphur donor ligand complexes.

11 1,1-Dithio ligands

Dithio acids and dithiols are formed by reaction of carbon disulfide with various nucleophiles (z^{-} or $z^{2^{-}}$), as follows.

(where I and II are the deprotonated forms of the dithio acid and dithiol respectively)

A wide variety of ligands is thus available by merely varying the nucleophile.

111 Dithiocarbamates

When carbon disulfide reacts with either aliphatic or aromatic, primary or secondary amines, dithiocarbamate salts are formed^{3,4} according to the scheme:

$$2R_2NH + CS_2 \rightarrow [R_2NH_2]^+ [R_2NCSS]^-$$

By using an alkali metal hydroxide *in situ* as a proton acceptor, the alkali metal dithiocarbamte salts, having various degrees of hydration may be obtained⁵.

$$R_2 NH + CS_2 + MOH \longrightarrow R_2 NCSS M^+ + H_2 O$$

The dithiocarbamates derived from primary amines are unstable and in the presence of bases, are converted into the isothiocyanates⁶. Although the disubstituted dithiocarbamates are more stable, they tend to decompose under acidic conditions⁷.

112. O-Alkylcarbonodithioates (Xanthates)

O-Alkylcarbonodithioates are formed by nucleophilic addition of an alkoxide ion to carbon disulfide.

$$M^+RO^-+CS_2^- \rightarrow RO-C - M^+$$
 (M^+ = an alkali metal ion)

Acidification of the alkali metal salts produces the unstable carbonodithioic acids(Xanthic acids)⁸.

113. Alkyltrithiocarbonates (thioxanthates)

The alkali metal salts of the thioxanthates are formed by a method analogous to that used for the xanthates. Alkali metal mercaptides react with carbon disulfide to form thioxanthate salts⁹.

$$M^+RS^- + CS_2^- M^+$$

Air oxidises these salts to disulfides¹⁰, and unstable thioxanthic acids are formed upon acidification.

11.4. Dithiocarboxylic acid

The reaction of CS_2 with a Grignard reagent gives dithiocarboxylic acid¹¹.

$$R \xrightarrow{MgX} + CS_2 \xrightarrow{R} R \xrightarrow{R} C \xrightarrow{S} MgX \xrightarrow{H_3O} R \xrightarrow{H_3$$

The dithiocarboxylic acids are relatively unstable, possess unpleasant odours, and tend to be oxidised to disulfides. An interesting dithioic acid, 2-aminocyclopent-1-ene-1dithiocarboxylic acid (HACDA), is formed by the reaction of cyclopentanone with carbon disulfide and ammonia followed by acidification¹².

It is also possible to prepare 2-alkylaminocyclopent-1-ene-1-dithiocarboxylic acid by reacting HACDA with the corresponding alkyl amine¹³.

Dithiocarbimate, 1,1-ethenedithiolate, trithiocarbonate dithiophosphonate, dithiophosphate, dithioarsinate, dithioarsenate are some of the other 1,1-dithio ligands.

Metal complexes of 1,1-dithio ligands.

Our present study is on the synthesis and characterisation of some metal complexes of dithiocarbamates, xanthates, and 2-aminocyclopent-1-ene-1-dithiocarboxylate (ACDA) and its N-alkyl derivatives.

12. Dithiocarbamato complexes

Dithiocarbamates are strong complexing agents and give rise to a large number of interesting complexes with metal ions. The fascinating chemistry of such complexes has been repeatedly reviewed by several workers. The analytical aspects of dithiocarbamate chemistry have been reviewed Glew by and Schwaab,¹⁴ Ul'ko¹⁵ and Hulanicki¹⁶, and their structural aspects have been reviewed by Eisenberg¹⁷. The reviews by Coucouvanis¹⁸, and Burns et al.¹⁹ cover the major facets of dithiocarbamato metal complexes and related systems and are particularly invaluable. Important and useful reviews such as: Dithiocarbamates of Transition Group Elements in Unusual Oxidation States by Willemse et al.²⁰, Reactions of Complexes of Dithiocarbamate and Related Ligands by Steggerda et al.²¹ and Electrochemistry and Redox Behaviour of Transition Metal Dithiocarbamates by Bond and Martin²²merit special mention.

12.1 Simple dithiocarbamate complexes

A. Syntheses

Dithiocarbamato metal complexes are usually prepared by the reaction of sodium dithiocarbamates with metal halides in aqueous media. Copper(II) dithiocarbamate complexes are reported to have been prepared by the oxidation of metal with tetraalkyl thiuram disulfides in chloroform or benzene²³. Further, treatment of metal oxide with the sodium salts of the dithiocarbamate also results in dithiocarbamato complexes. Copper(II) dithiocarbamates are obtained by treating Cu(I) oxide with the sodium salts of the ligands in an inert atmosphere²⁴. Inert atmosphere is required in the synthesis of Mn(II), Co(II) and Fe(II) dithiocarbamate complexes also, as these complexes are easily oxidised to the coresponding metal(III) complexes in the presence of air²⁵. However, in these cases, pure M(III) complexes can be prepared by passing air through an aqueous solution containing the sodium dithiocarbamate and metal(II) salts.

Dithiocarbamato complexes of titanium cannot be prepared by the reactions of dithiocarbamate salts with simple titanium salts. coworkers²⁶⁻²⁸ and synthesised Bradley а series of tetrakis(dithiocarbamates) of Ti(IV), Zr(IV) and Hf(IV) by an insertion reaction of CS₂ with metal amine, $M(NR_2)_A$, complexes. The CS₂ insertion reaction has also been used to prepare morpholine-4-carbonodithioate complexes of the first row transition metal ions²⁹.

Metal dithiocarbamates are generally water insoluble. But they are soluble in non-polar solvents like benzene, chloroform and nitrobenzene. The complexes are stable in dry conditions; however, the easily oxidisable complexes like Mn(II), Co(II) and Fe(II) dithiocarbamates are stable only under inert atmospheres.

B. Physico-chemical studies

1. Infrared spectra

The interpretation of the infrared spectra of dithiocarbamate complexes of transition metals has aroused considerable interest. There are three relevant regions in the spectra of dithiocarbamate complexes. They are the 1450-1550 cm⁻¹, the 950-1050 cm⁻¹ and the 350-400 cm⁻¹ regions.

The 1450-1550 cm⁻¹ region is associated primarily with the "thioureide" band. The presence of an absorption band around 1500 cm^{-1} is accepted as arising from a polar structure such as shown that below:

The increasing electron donating character in alkyl group would stabilize this structure and increase the ν (C-N). The thioureide band for the dimethyl derivative is always observed to occur at a higher frequency than in the diethyl derivative³⁰. Some workers

have assigned the higher value of ν C-N to the greater inductive effect of the methyl groups. However, bonding arguments solely based on the inductive effects are not rigorous. The higher value of ν (C-N) for the methyl derivative could be due to electron release through hyperconjugation. It was also suggested that kinematic effects³¹ due to increasing mass of the alkyl group may also be responsible for the change in ν (C-N).

Normal coordinate analysis of $[Cr(R_2dtc)_3]$ complexes have been carried out by Brown *et al.*³¹, who observed that the ν (C-N) frequency decreased with increase in the mass of the alkyl groups. The masses of the alkyl substituents also were found to affect the mixing of asymmetric N-alkyl and the symmetric C-S modes.

The region 950-1050 cm^{-1} is associated with the C-S stretching frequency, and according to Ugo and Bonati³² the presence of only one band in this region indicates completely symmetrical bidentate bonding of the ligand. Two bands in this region, arising from the uncomplexed (C=S) and the complexed (C-S) groups, indicate monodentate bonding . The Ugo-Bonati criterion has been verified by other workers 33-35. Brinkhoff and Grotens 35have made a detailed compilation of the absorptions in the 900-1050 $\rm cm^{-1}$ region for a number of complexes with both symmetrically bound bidentate R₂(dtc) ligands and complexes with monodentate $R_2(dtc)$ ligands ³⁴. The studies conclusively show that while two bands are observed in that region for the $M(R_2 dtc)_n$ complexes with symmetrically bound bidentate R_2 dtc ligands, three bands are observed for complexes with asymmetrically bound monodentate ligands. It appears that the splitting of the ν (C-S) vibration would occur also with unsymmetrical bidentate bonding. It is suggested³¹ that monodentate bonding should be assumed only if the splitting exceeds 20 cm⁻¹.

The third important region is around 350-400 cm⁻¹, where the ν (M-S) should occur. In far infrared spectra of N,N-dialkyldithiocarbamate complexes, a strong band is always observed in the region $345-410 \text{ cm}^{-1}$ which is absent in the free ligand and so this was assigned to ν (M-S). Similar assignments were made for $[Co(Me_2dtc)_3]^{36}$ and $[Fe(Et_2dtc)_3]^{36}$. These assignments are supported by normal coordinate analyses which predicted ν (Pt-S) at 378 cm⁻¹ for Pt(H₂dtc)₂³⁷ and a ν (Ni-S) at 410 cm⁻¹ for Ni(Me₂dtc)₂³⁸.

2. Electronic spectra

Shankaranarayana and Patel³⁹ discussed the spectra of dithiocarbamates. They observed three types of bands in these compounds which they assigned to $n \rightarrow \pi^*$, $\pi \rightarrow \pi^*$, and $n \rightarrow \sigma^*$ transitions. The first of these transitions undergoes a hypsochromic shift with increasing solvent polarity, while the other two shift to lower energies as the polarity of the solvent increases. Although these assignments are similar to those done by Janssen⁴⁰, some uncertainity exists as to the nature of the

n---> σ^* band which, according to Janssen could be due to another π ---> π^* transition.

Although the electronic spectra of dithiocomplexes have been studied by several investigators 1,41-44, uncertainities exist in the interpretation of these spectra. The uncertainity is mainly due to the *n*-bonding effect associated with the dithiocarbamate and other dithio ligands. An additional cause of difficulty in assigning the spectra are the low energy-high intensity charge transfer absorptions which often mask the weaker absorptions due to d-d transitions. Jorgensen⁴⁵ in his study of the electronic spectra of dithio complexes, used the parameter Δ , expressing the difference between σ and π antibonding effects, certain square-planar low spin d^8 complexes, to determine the relative position of the ligands in the spectrochemical series. Jorgensen⁴⁶ also determined the spectrochemical position of the dithio ligands in the octahedral complexes as: Br < Cl < Dtp < $F < dtc < EtXant < H_2O < R_2S < NH_3 < SO_3^{2-} < NO_2^{-} < CN^{-}$.

In addition to the d-d and intraligand absorptions, the spectra of the dithio complexes often contain intense absorptions which are not found in the spectra of the free ligands. Such absorptions have been assigned to charge transfer transitions. Jorgensen⁴⁵ assigned these bands to a L->M transition, while Gray and coworkers⁴⁷ assigned similar bands in dithiocarbamate complexes to a M->L charge transfer.

3. Magnetic measurements

The titanium dithiocarbamates are reported to be diamagnetic and are the complexes of Ti(IV), Vanadyl and Cr(III) dithiocarbamate complexes exhibit μ_{eff} , values of 1.7 to 1.8 BM and 3.8 to 3.9 BM respectively. Mn(III) dithiocarbamates, without any exceptions, exhibit the spin only value of 4.9 BM expected for four unpaired electrons.

Cambi and coworkers⁴⁸⁻⁵¹ prepared a large number of Fe(III) dithiocarbamate complexes and studied their magnetic properties. The unusual variation of these properties as a function of temperature, as well as a function of the substituents on the nitrogen, was attributed to an equilibrium between high and low spin magnetic states. In 1963, Brown⁵² reinvestigated magnetic susceptibility of these complexes and confirmed the findings of Cambi *et al.* Furthermore, he studied the equilibrium between the ${}^{2}T_{2}$ and ${}^{6}A_{1}$ states and attempted to correlate the infrared and UV-visible spectra of these compounds with their magnetic properties. Martin and coworkers⁵³⁻⁵⁴ have also studied this system in detail. Martin and White⁵⁵ have compiled an extensive review on spin cross-over systems.

All the Ni(II) dithiocarbamates are diamagnetic due to their square planar geometries. The magnetic susceptibilities of the $Cu(R_2dtc)_2$ are indicative of the presence of one unpaired electron.

4. ESR studies

A number of ESR studies on transition metal dithiocarbamato complexes has been reported 18,56-64. Most of the ESR studies are centered on the copper(II) complexes, as they exhibit relatively uncomplicated magnetic properties and are ideal for theoretical calculations. ESR parameters for the $[Cu(R_2dtc)_2]$ complexes in frozen solutions or in host lattices of $[Ni(R_2dtc)_2]$ or $[Zn(R_2dtc)_2]$ have been obtained for various guest/host ratios 65,66. The parameters have been used together with the electronic spectral data for the calculation of M.O. coefficients. Such parameters have been obtained for the $[Ag(R_2dtc)_2]$ and $[Au(R_2dtc)_2]$ complexes. The studies show that, in general, covalency in the M-S bonds increases strongly on going from copper to silver to gold and that the metal 3d character of the MO of the unpaired electron decreases from 50% in $[Cu(Et_2dtc)_2]$ to 26% in $[Ag(Et_2dtc)_2]$ and 15% in the homologous Au(II) complex. The bonding parameters have also been calculated for the complex, bis(pyrrole-N-carbodithioato)copper(II), and these values indicate strong covalency in the in-plane σ bonding and moderate covalency in the in plane and out-of-plane π bonding⁵⁸. The moderate out-of-plane π bonding is intriguing in view of the fact that the extent of ligand conjugation appears minimal for this ligand when compared to other dithiocarbamate ligands.

5. Crystal structure studies

The crystal structure of $[Ti(Et_2dtc)_4]$ has been determined⁶⁹. Two independent molecules exist in the asymmetric unit and both contain an eight coordinate Ti(IV) ion and the chelating $Et_2 dtc$ ligands. The coordination geometry of the TiS_8 core in both the molecules is very close to dodecahedral.

Deviation from octahedral symmetry in [Mn(Et₂dtc)₃] was confirmed by X-ray structural study which showed that the [MnS₆] chromophore exhibited an appreciable distortion from D_3 point symmetry, which was attributed to the large Jahn Teller distortion expected for high spin d^4 complexes⁷⁰. An interesting crystallographic study of the [Fe(Et₂dtc)₃] complex at two different temperatures, 297 and 79° K has been reported⁷¹. The contraction of the FeS₆ core of the isomer in the low spin state at 79⁰K ($\mu_{eff.}$ =2.2 BM) has been demonstrated. The hypothesis of Ewald⁷²et al. that the S₂C=N resonance form is more important in the low spin complexes is marginally supported: In the high temperature-"high-spin" structure, the C-N is 1.337(6)Å and the C-S is 1.708(4)Å; while that in the low temperature-"low spin" structure, the corresponding distances are 1.323(4)and 1.721(2)Å . Further, it has also been reported that in the case of Fe(III) dithiocarbamates that μ_{eff} , values are found to increase with increase of Fe-S distance^{72,73}.

The crystal structure study of $[Cu(Me_2dtc)_2]$ revealed that the complex possesses a centre of symmetry, with the copper atom octahedrally coordinated to six sulphur atoms. The studies also revealed that the two Cu-S bonds are longer than the other four $^{74-76}$.

6. Electrochemical studies and redox behaviour

Electrochemical studies of dithiocarbamates at mercury electrodes have been conducted. 77-80 Generally redox behaviour associated with a ligand is very much dependent on the nature of the electrode, the solvent and the experimental conditions used. During such studies, the mercury complexes form at the mercury electrode, which suggests that oxidation of the electrode occurs in preference to oxidation of the dithiocarbamate ligand. A comprehensive study of the electrochemistry of the first row transition metal dithiocarbamates in non-aqueous media⁸¹ has shown that reversible redox processes are common and that the measured potentials are dependent on both the metal and the alkyl groups in dithiocarbamate complexes. Many workers have since confirmed that ferric dithiocarbamates are readily oxidised and reduced by electrochemical methods in a range of solvents⁸². Mn(III) dithiocarbamates undergo a relatively facile oxidation in acetone with half-wave potentials in the range +0.25 to +0.53V vs. Ag/AgCl (0.1M LiCl in acetone) reference electrode⁸³. The reduction of $Mn(R_{2}dtc)_{3}$ at a platinum electrode in acetone or dichloromethane is a facile, one electron process occuring at $E_{1/2}$ values in the range +0.06 to -0.23V vs. Ag/AgCl. The electrochemical behaviour of nickel dithiocarbamates has also been studied.

The electrochemical studies reported point to the following clear observations $^{84-88}$.

1. Electrochemical data for dithiocarbamate complexes are consistent with the concept of strong σ -donor properties dominant over weak π -back donation thereby producing complexes that are relatively easy to oxidise and conversely hard to reduce.

2. Low oxidation state complexes are reactive species and are therefore not readily isolable as stable solids.

3. Electrochemical measurements have established that the oxidation and reduction potentials for dithiocarbamates of Cr(III), Mn(III), Fe(III) and Co(III) display an almost identical dependence upon the R_1 and R_2 substituents. The redox potentials of the complexes are dominated by electron density at the metal centre rather than by differences in electronic configuration of the metal ion.

122 Mixed Ligand dithiocarbamate complexes

Only few investigations have been reported on mixed ligand complexes involving dithiocarbamates⁸⁹⁻⁹⁶. Masakazu Kita *et al.* have prepared mixed dimethyldithiocarbamato Co(III) complexes ethylenediamine (en), of the containing type $[Co(Me_{2}dtc)_{x}(en)_{2-x}]^{(3-x)+}$ (x=1,2), by oxidizing an aqueous solution containing Co(II) ions and en with tetramethyl thiuram disulphide⁹². By similar oxidation reactions mixed ligand Co(III) complexes containing dithiocarbamate and phosphine ligands have also been prepared 93.

 π -Acceptor ligands are well known for their ability to stabilize low oxidation states. Addition of π -acceptor ligands such as bipyridine to electrochemically reduced solutions of $M(R_2 dtc)_n$ complexes leads to the isolation of stable mixed dithiocarbamato complexes 97-104. Tsipis et al. have synthesised mixed ligand complexes of Fe(III) dithiocarbamates by reacting stoichiometric amounts of the appropriate chloro complex, [Fe(R₂dtc)₂Cl], and a salt of R₂dtc in chloroform-acetone or chloroform-alcohol solutions¹⁰⁵. However, this work seems to be in contradiction with the studies reported by Pignolet et al.¹⁰⁶ and Kostanski and Magas¹⁰⁷. Pignolet *et al.* has reported on proton NMR studies which indicated that, the ligand exchange (or metathesis) in the reaction:

$$Fe(R_2dtc)_3 + Fe(R_2'dtc)_3 \longrightarrow Fe(R_2dtc)_2(R_2'dtc) + Fe(R_2dtc)(R_2'dtc)_2$$

(where R₂dtc and R₂'dtc are two different dithiocarbamate ions)

was slower than the intramolecular isomerization. The mixed complexes formed reach equilibrium within а few minutes. Kostanski and Magas have studied the exchange reaction between [Fe(Et₂dtc)₂] and radioactive NaEt_odtc in dioxan and dimethylformamide and they found that the reaction rate was too fast to be measured at 20° C using radio tracer techniques. These two studies indicate that tris(dithiocarbamato)iron(III) complexes are relatively labile. Therefore the mixed ligand complexes reported by Tsipis *et al.* might well be only a mixture of complexes. This work was repeated by Duffy^{108} , who found that the mixed ligand complexes reported by Tsips *et al.* were mixtures of varying quantities of all possible metathetical products. The results of his study also indicate that the presence of a halide ion is not necessary for ligand exchange to take place.

Synthetic procedures of some mixed ligand dithiocarbamate complexes are indicated in the Table 1.1.

TABLE 1.1 Some mixed ligand complexes of dithiocarbamates

Complexes	Synthesised by the reaction of	Ref
1. [Ti(R ₂ dtc) ₃ X] (R=Me, i-Pr or i-Bu; X=Cl or Br)	TiX_4 with NaR_2 dtc in CH_2Cl_2	109,110
2. $Cr(R_1R_2dtc)_2(R_1R_2dtc0)$ $(R_1=R_2=Me \text{ or } Et)$	NaR_1R_2dtc with $K_2Cr_2O_7$	111
3. [Fe(R ₂ dtc) ₂ X] (R=Me or Et)	Benzene solution of [Fe(R ₂ dtc) ₃] with HX	112
<pre>4. [Fe(R₂dtc)₂X] (X=Cl or Br; R=Me or Et;R=Pip, Morph or</pre>	FeCl ₃ or FeBr ₃ with benzoic-dithiocarba-	113
ryrr)	acetone	

	Synthesised by	
Complexes	the reaction of	Ref.
5. [Fe(Et ₂ dtc) ₂ Cl]	[Fe(Et ₂ dtc) ₃] with CHCl ₃	114
	or C ₆ H ₅ Cl in the	
	presence of UV lhght	
6. [Fe(R ₂ dtc) ₂ NO]	NaR ₂ dtc with	115,116
(R=Me or Et)	$\text{FeSO}_4.7\text{H}_2\text{O}$ and NO^+	
	in an inert atmosphere	
7. [Fe(Salen)(R ₁ R ₂ dtc)]	FeCl ₃ with Salen	117,118
(R ₁ =R ₂ =Et,n-Bu, Pyrr or Pip)	anion and dithio-	
	carbamate ligands	
8. [Fe(R ₁ R ₂ dtc)(TFD)]	$[Fe(R_2dtc)_2]$ and TFD	119
$(R_1=R_2=Me \text{ or Et}; R_1=Me, R_2=Bz;)$	in THF solution	
R_1R_2 =Pyrr.; R_1 =Me, R_2 =Ph;		
R ₁ R ₂ =Pip)		
9. $[Fe(R_1R_2dtc)(MNT)]$	$[Fe(R_1R_2dtc)_2]$ and MNT	120
$(R_1 = R_2 = Et; R_1 = Me, R_2 = Ph)$	in THF and subsequent	
	oxidation by Cu(II)	

Complexes	Synthesised by the reaction of	Ref.
10.(n-Bu ₄ N)Ni(MNT)(n-Bu ₂ dtc)	(n-Bu ₄ N) ₂ Ni(MNT) ₂ with [Ni(n-Bu ₂ dtc) ₂] in boiling acetonitrile	121
<pre>11.[CuCl(R₂dtc)L] and [CuCl(R'dtc)L] (L=Py or Pic, R=Me or Et, R₂=Pip)</pre>	[Cu(R ₂ dtc)Cl] ₂ with pyridines or picolines (Pic)	122
12.[Cu(R ₂ dtc)X] (X=C1, Br or NO ₃)	CuX ₂ with solutions of [Cu(R ₂ dtc) ₂]	123
13.[Cu(Et ₂ dtc)Cl] ₂	CuCl ₂ .2H ₂ O and [Cu(Et ₂ dtc) ₂] in a benzene-ethanol (3:1 mixture)	124
14.[Cu(Et ₂ dtc)Cl] ₂	Cu(II) chloride with benzoic-dithiocarbamic anhydrides in acetone	125

123 Dithiocarbamato complexes in unusual higher oxidation states A. Syntheses.

Higher oxidation state complexes²⁰ are generally 1:1 electrolytes and contain the cation, $[M(R_{2}dtc)_{n}]^{+}$ (n=3 when M=Mn(IV), Fe(IV), Co(IV) or Ni(IV) and n=2 when M=Cu(III)); and they can be isolated only when the anion is large. However, some copper(III) complexes are found to be non-electrolytes and have the general formula, $[Cu(R_2dtc)X_2]$, where X=Cl or Br. The complexes are generally prepared by the oxidation of metal dithiocarbamates. A number of such complexes have been synthesised. Synthetic procedures of some of the complexes are indicated in the Table. 1.2

Table 1.2. Some dithiocarbamato metal complexes in higheroxidation states

Complexes	Synthesised by the reaction of	Ref.
1. [Mn(Et ₂ dtc) ₃]BF ₄	Mn(Et ₂ dtc) ₃] with BF ₃	126
2. [Fe(R ₂ dtc) ₃]BF ₄	$[Fe(R_2dtc)_3]$ with BF ₃	127
3. [Fe(Pyrrdtc) ₃]ClO ₄	$[Fe(R_2dtc)_3] with \\ Fe(Clo_4)_3 = 6H_2O$	128
4. [Fe(Et ₂ dtc) ₃]PF ₆	Fe(Et ₂ dtc) ₃ with an acidic solution of KIPF	127 6 []]

Complexes	Synthesised by the reaction of	Ref.
5. [Fe(R_1R_2 dtc) ₂ (MNT)] (R_1 =Et or Ph; R_2 =Et or Me) X=CN or CF ₃)	[Fe(R ₁ R ₂ dtc) ₂]with the Na ₂ MNT followed by successive oxidation with copper(II)	129
6. [Co(Et ₂ dtc) ₃]BF ₄	[Co(Et ₂ dtc) ₃] with BF ₃	130,131
7. [Ni(Bu ₂ dtc) ₃]Br	[Ni(Bu ₂ dtc) ₂] with Br ₂	132,133
8. $[Cu(R_2dtc)_2]^{+}X$ (X = I_3, [FeCl_4] or $[Clo_4]$)	$\begin{bmatrix} Cu(R_2 dtc)_2 \end{bmatrix}$ with I_2 , FeCl ₃ or Fe(ClO ₄) ₃ .6H ₂ C	13 4,12 6
9. [Cu(Bu ₂ dtc)X ₂] (X=Cl or Br)	[Cu(Bu ₂ dtc) ₂] with Cl ₂ or Br ₂	132,135
10.[$Cu_3(Bu_2dtc)$](MBr ₃) ₂] (M=Zn,Cd or Hg)	[Cu(n-Bu ₂ dtc) ₂] with MBr and Br ₂ in stoichio- metric amounts	2 136,140
B. Physico-chemical studies

1. Infrared spectra

Infrared spectra of the higher oxidation state complexes are almost similar to those of the simple dithiocarbamate complexes; however, substantial shift to higher frequencies is observed for the bands due to ν (C-N) and ν (M-S). The C-N and M-S stretching frequencies of some of these complexes are given in the Table. 1.3

Table 1.5. The C-N and Cu-5 scretching frequencies of some cop	able 1.3.	rabie	1.3. The	C-N and	Cu-S	stretching	Irequencies	OI	some	copp
--	-----------	-------	----------	---------	------	------------	-------------	----	------	------

Complex	ν(C-N)	ν (Cu-S	5)	Ref.
[Cu(Bu ₂ dtc) ₂]	1500		352		1
[Cu(Bu ₂ dtc)Cl ₂]		1585		404	132
[Cu(Bu ₂ dtc)Br ₂]		1580		396	135
$[Cu_3(Bu_2dtc)_6][CdBr_3)_2]$	1511	1548	360	397	136
$[Cu_3(Bu_2dtc)_6]$ [HgBr ₃) ₂]	1510	1549	360	397	136
$[Cu_3(Bu_2dtc)_6[ZnBr_3)_2]$	1512	1548	362	398	136

dithiocarbamate complexes in cm⁻¹

It is interesting to note that two C-N and two Cu-S stretching frequencies are observed¹³⁶ for the complex $[Cu_3(Bu_2dtc)_6][Cd_2Br_6]$ and the appearance of these bands are

correlated with the presence of copper atoms in different oxidation states, +2 and +3. The increase in ν C-N of the higher oxidation state complex with respect to the simple dithiocarbamato complexes is due to an additional π electron flow from the nitrogen atom to the sulphur atoms caused by the electron withdrawing property of the metal in the higher oxidation state, and the increase in ν M-S has been attributed to the removal of an electron from an antibonding molecular orbital composed mainly of metal and sulphur orbitals²¹. However, such an explanation is plausible only if there is no significant change in the geometry of metal-sulphur core¹³⁷.

2. Electronic spectra

The higher oxidation state dithiocarbamate complexes exhibit high intensity charge transfer bands which usually obscure the d-d Therefore, the information about stereochemistry are bands. rarely available from the electronic spectra. Bowever, the spectra of such complexes resemble those of the corresponding isoelectronic lower oxidation state complexes: Thus the spectra of the Cu(III), Ni(IV), Fe(IV) and Mn(IV) dithiocarbamate complexes are almost similar to those of the Ni(II), Co(III), Mn(III) dithiocarbamate and Cr(III) complexes respectively 126,129,132. It was generally found that the 10 Dq values of the higher oxidation state complexes are greater than those of the corresponding lower oxidation state complexes 133.

3. Magnetic measurements

This is considered as the best and easy technique to know the oxidation state of a metal complex. By means of this techniqe, the oxidation state of the metals in the complexes formed by the oxidation of metal dithiocarbamates was determined. The red $[Cu(Et_2dtc)Cl_2]$ complex obtained by the oxidation of $Cu(Et_2dtc)_2$ with chlorine is found to be diamagnetic¹³² as expected for a square planar d⁸ complex. The complexes obtained by the oxidation of Ni(II) and Mn(III) dithiocarbamate complexes were found to have μ_{eff} values of 0.7 BM¹³⁸ and 3.7 BM¹³⁹ respectively which are in agreement with the higher oxidation state of these metals.

The tris(dithiocarbamato)iron(IV) complexes have magnetic moments of 3.2 - 3.4 BM at room temperature, which is slightly lower than those expected for a spin paired d^4 electron configuration in an octahedral environment¹²⁷. The magnetic behaviour of [Co(cy₂dtc)₃]BF₄ is similar to that of the isoelectronic iron(III) dithiocarbamates and has a magnetic moment of 3.48 BM which is in between the value expected for a high spin and a low spin complex¹³¹.

4. Crystal structure studies

X-ray crystal structure studies have been done for many higher oxidation state complexes. Generally M-S bond is found to be shorter than that found in the normal dithiocarbamate complexes.

For example, Cu(III) complexes show a remarkable shortening of the Cu-S distances with respect to those in Cu($\text{Et}_2 \text{dtc}$)₂. The Cu-S distance in (Cu($\text{Et}_2 \text{dtc}$)₂) is 2.3Å while that in (CuBr₂(Bu₂dtc)) is 2.19Å.

The crystal structure study of an interesting mixed oxidation state complex of copper, $[Cu_3(Bu_2dtc)_6][Cd_2Br_6]$, has been carried out. The evidence for the existance of copper in +2 and +3 oxidation states has been clearly obtained from the X-ray studies. The complex contains $[Cu_3(Bu_2dtc)_6]^{2+}$ cation (Fig.1.1.) and

Fig. 1.1. Schematic structure of the $[Cu_3(n-Bu_2dtc)_6]^{2+}$ trimer.

 $[Cd_2Br_6]^{2-}$ anion. The ion $[Cu_3(Bu_2dtc)_6]^{2+}$ is centrosymmetric containing three $[Cu(Bu_2dtc)_2]$ units. The central $[Cu^{II}(Bu_2dtc)_6]$ is sandwiched between two $[Cu^{III}(Bu_2dtc)_2]$ layers. The Cu(II) unit is planar, centrosymmetric, with Cu-S distances of 2.30Å and 2.35Å. which are not significantly different from those in Cu(Et_2dtc)_2. The centrosymmetric copper atom has, apart from the four Cu-S bonds already mentioned, two longer Cu-S bonds at 2.88Å; thus reaching a pseudo-octahedral coordination, which is not unusual for a d⁹ configuration. The other two equivalent $[Cu(Bu_2dtc)_2]$ units are in slightly deformed planes with much shorter Cu-S distances (2.22Å).

13. O-Alkylcarbonodithioate (Xanthate) complexes of metals.

O-Alkylcarbonodithioates are more usually known as xanthates. The name xanthate is derived from the Greek word "xanthos" (meaning blond), and was coined by Zeiss¹⁴¹ in 1815, because the copper complexes that he isolated had a characteristic yellow colour. Information on the metal complexes of xanthates is available in some of the reviews on 1,1-dithio complexes^{1,18,19}. Like dithiocarbamates, xanthates also form simple type of complexes. However, xanthates are more prone to form polymeric complexes. Polymeric metal xanthates are usually the result of bridging through the bidentate xanthate moiety (ie M-S-C-S-M The tendency for polymerisation is bridge). particularly pronounced in the complexes of zinc, cadmium and mercury 142 . In the case of haloxanthate complexes, the possibility of polymer formation through halogen bridges might be expected¹⁴³.

A. Syntheses

Xanthate complexes are generally prepared by reacting metal salts with potassium alkyl xanthates in aqueous media. However, in the case of the complexes of readily oxidisable metal ions like Co(II), Mn(II) and Fe(II), inert atmosphere conditions are [Mn(EtXant)₂] complexes like required. Anionic and [Fe(EtXant)] are formed, when KEtXant and the metal(II) salts are allowed to react in 1:3 ratio, and they can be precipitated as the $Et_A N^+$ salt. Many mixed ligand complexes of xanthates are also synthesised by reacting the xanthate complexes with ligands such as pyridine, picolines etc. Some of the xanthate complexes of metals synthesised are given in the Table 1.4.

B. Physico-chemical studies

1. Infrared spectra

Infrared spectra of metal xanthates have been studied by several workers. Chat *et al.*^{154,155} suggested that contribution of the resonance form (c) (Fig.1.2) to the total structure in xanthate complexes is only very little. But according to Nakamoto and coworkers¹⁵⁶, the contribution of this form is not so little.

Complexe	8	Synthesised by the reaction of	Ref.
1.[VO(RX (R=Et	ant) ₃] ,i-Pr or i-Bu)	VOSO ₄ with KRXant	146
2. [VO(i (L=Py	-PrXant)L ₂].5H ₂ O or Pip)	[VO(i-PrXant) ₂] with the amines	146
3. [Cr(R (R=Me	Xant) ₃] , Et or L-menthyl)	KRXant with CrCl ₃	147-149
4. [Mn(E	tXant) ₂]	MnCl ₂ with KEtXant in aqueous medium under N ₂ atmosphere	144
5. [Mn(E	tXant)2 ^{bipy]}	Mn(EtXant) ₂ with bipy	144
6. [₽e(R (R=Me	(Xant)(Py) ₂] e or Et)	[Fe(RXant) ₃] with Py	150
7. [Co(I (L=1, 2,2'-)(EtXant) ₂] 10 Phen or bipy)	[M(L)(H ₂ O) ₄] ²⁺ with KEtXant	159

Table	1.4.	Some	metal	complexes	of	xanthates
-------	------	------	-------	-----------	----	-----------

8. [CoL₂(EtXant)₂] [Co(EtXan (L=Py or Pic) or Picol

9. [Ni(EtXant)₂Py₂]

10.[Cu(PPh₃)(EtXant)]

[Co(EtXant)₂] with Py 151 or Picolines (Pic)

[Ni(EtXant)₂] with Py 152

 $(PPh_3)Cu(\mu-S_2CSCH_2SCS_2)Cu(PPh_3)_2$ with CH_2Cl_2 /ethanol 153

Fig. 1.2. Resonance forms of xanthate complexes.

The contribution of the resonance form (c) for bidentate complexes is determined by two factors¹⁵⁷: 1) the electron releasing tendency of the alkyl group 2) the electron withdrawing tendency The O-R group, unlike the -NR, group, is weakly electron of M. releasing, and therefore in the xanthate complexes, the contribution of the resonance form (c) is determined by the extent to which M-S σ bonds are effective in drawing off electrons from the sulphur atoms and promoting a drift of electrons from oxygen to sulphur. Factor 2 is often much less effective, hence the relative contribution of the resonance form (c) is considerably less than that of dithiocarbamate complexes. This is further evidenced by the ability of nickel(II) xanthates to form adducts with Lewis bases. This is due to the fact that sulphur atoms of the resonance form (a) and (b) are not completely able to donate electrons into a nonbonding molecular orbital containing the 4Pz function of the metal, and as a result, this molecular orbital is available for interaction with bases. This tendency of the complexes to form base adducts decreases as the contribution of the resonance form (c) increases¹.

Several attempts¹⁵⁸ have been made to assign C-O group frequencies in xanthate compounds, but the situation is complicated by the lack of agreement concerning C=S vibrational assignments; for which frequency ranging from 850-1550 cm⁻¹ have been reported. Entirely different conclusions concerning the C=S and C-O group frequencies have appeared in the literature. For example, Little et al.¹⁵⁹ assigned the bands in the region 1020-1070 cm⁻¹ to ν (C=S) and the band around 1200 cm⁻¹ to C-O stretching frequency; whereas Sankaranarayana and Patel³⁹ have assigned the bands in the region 1200-1260 cm⁻¹ and 1010-1037cm⁻¹, to ν C-S and ν C-O respectively. Assignments of such group frequencies with any degree of exactness would be somewhat futile, since the C=S and C-O motions are highly coupled and sensitive to environment changes. Thus the normal C-O vibrational frequencies can be expected anywhere between 1000 cm^{-1} and 1250 cm^{-1} .

An intense band in the range 1250-1325 cm⁻¹ in the spectra of some transition metal complexes of EtXant and MeXant has been assigned to a C-O stretching vibration. The position of this C-O band increases in the order: Cr(III) < Co(III) < Ni(II) < Pd(II) < Pt(II). The band near 1115 cm⁻¹ is assigned to the second C-O stretching in these complexes¹⁵⁷.

2. Electronic spectra

Electronic spectra of xanthate complexes have been studied by a number of investigators¹. Because of the low energy-high intensity charge transfer absorptions, weaker absorptions due to d-d transitions are often masked¹.

Nature of the spectra of the xanthate complexes is almost like that of the dithiocarbamate complexes in non-coordinating solvents. For example $[Ni(EtXant)_2]$ and $[Ni(Et_2dtc)_2]$ have bands almost at the same position in chloroform⁴². However, the spectra are different in coordinating solvents like DMSO, DMF, Py etc. This is because of the strong interactions of the nickel xanthate complexes with the Lewis bases¹⁶⁰.

A general discussion of axial interactions in nickel(II) dithiochelate complexes has been given by Coucovanis and Fackler¹⁶⁰. In general the nickel dithio complexes vary substantially in their ability to interact with Lewis bases. This capacity seems to be closely related to the electronic properties of the ligands as a whole rather than to the donor atoms alone. Thus xanthate, dithiophosphate and dithiophosphinate complexes interact strongly with bases. The nickel(II) dithiocarbamates exhibit intermediate behaviour that appears to vary depending on the nature of the substituent R groups in NR_1R_2 . Ability of the dithio complexes of nickel(II) to form adducts with bases increases in the order: xanthates ~ dithiophosphinates dithiophosphates > dithiocarbonates > dithiolenes¹⁶¹.

3. Magnetic measurements

Magnetic moments have been reported for a number of xanthate complexes¹⁴⁴. The copper complexes are diamagnetic, and are in the +1 oxidation state. The Ni(II) complexes also are diamagnetic and hence square planar structures have been assigned for these complexes. However, the adducts formed by the Ni(II) complexes with bases like pyridine are found to be $paramagnetic^{145}$, and this has been attributed to the change in stereochemistry from square planar to octahedral structure. The magnetic behaviour of the tris(xanthate) complexes of Fe(III) are different from the Fe(III) dithiocarbamates. The iron(III) xanthate complexes are of low spin type¹⁶² and exhibit a magnetic moment value around 2.7 BM. magnetic values However, the moment indicate that a spin-equilibrium exists with the majority of the molecules in the low spin state¹⁶³.

4. Crystal structure studies

The structure of a few metal xanthate complexes have been analyzed by single crystal X-ray diffraction techniques 18,19.

The crystal structure study of the $[Cr(EtXant)_3]^{164}$ reveals that the metal is in a distorted octahedral environment provided by the six sulphur atoms of the bidentate ligands. The rather short S₂C-O bond of 1.297Å is thought to be an indication of considerable double-bond character of this bond. The contribution

of the resonance form (c) to the structure of the ligand is considered to be ~ 30% concomitant with this short bond is the unusually long bond between the oxygen atom and the first carbon atom of the ethyl group (1.471Å) The lengthening of the $O-C_2H_5$ bond, is also found in the structure of the $[Cd(EtXant)_2-Phen]^{165}$ and $[Fe(EtXant)_3]^{166,167}$ complexes.

14. Metal complexes of ACDA

In the past 15-20 years, a number of metal complexes of chelating species containing sulphur and nitrogen donor atoms have been reported. Stimulus for this work has been due to diverging reasons: The ligand systems having soft sulphur and hard nitrogen atoms are chemically very versatile. With transition metal ions, they form a wide variety of compounds that display interesting properties and structures. In some of the complexes, both nitrogen and sulphur atoms are involved in the bond formation to the metal; while in some others, metal ions display preferance for bond formation either with nitrogen or with sulphur.

An ineresting ligand belonging to this group is the deprotonated form of 2-aminocyclopent-1-ene-1-dithiocarboxylic acid (ACDA). The metal complexes of this ligand have been studied by several workers with a view to elucidate the bondig sites of this ligand. A series of complexes of the type $M(ACDA)_2$ (where M=Ni(II), Co(II), Pt(II), Zn(II) or Cd(II)) were synthesised and studied by Pattnaik and Sen¹⁶⁸. They have reported that bonding to

these metal ions occur through amino nitrogen and deprotonated thiol sulphur. Nag and Joardar have also studied Ni(II), Pd(II) and Pt(II) chelates of $ACDA^{169}$. In the case of these complexes also bonding was reported to occur through amino nitrogen and one of the sulphur atoms of ACDA. They could also get the evidence for the formation of the Ni(II) complex with pyridine.

Thomas and Poveda¹⁷⁰ have also investigated ACDA complexes with divalent Co, Ni, Cu, Zn, and Cd, ions, and according to them the bonding is exclusively through the sulphur atoms. Studies by Choi and Wasson also reveal that nitrogen atom of the ligand is not involved in the bonding to the metal¹⁷¹.

A. Syntheses

The metal complexes are synthesised by reacting ethanolic solution of HACDA with metal salts. The complexes are also prepared by reacting an aqueous solution of the ammonium salt of ACDA with metal salts. The complexes obtained from these two procedures showed difference in colour in the case of Ni(II), Pd(II) and Pt(II) complexes and this was attributed to geometrical isomerism¹⁶⁹. Synthesis of a few more metal complexes of ACDA and its derivatives have been reported in the literature¹⁷⁰⁻¹⁷⁶.

B. Physico-chemical studies

1 Infrared data

Three or more bands in the 3400-3000 cm⁻¹ region were observed for the ACDA complexes. The ammonium salt shows bands at

3390, 3260, and 3080 cm⁻¹. The band at 3080 cm⁻¹ has been attributed to the NH_4^+ ion. The bands at 3390 and 3260 cm⁻¹ have been assigned to asymmetric and symmetric NH_2 stretching frequencies. Shifts of these bands to lower frequencies were generally observed upon coordination. In the absence of other data this was taken to indicate NH_2 coordination. However, the electronic effects can profoundly influence N-H stretching frequencies and conjugation of the amino group with the cyclopentene ring could lead to a similar result¹⁷¹ (Fig.1.3). If

Fig. 1.3. Delocalization scheme for ACDA.

coordination results in an increase in the C-N π -bond order and a concomitant decrease in the pi-electron density on the nitrogen atom, the shift of the N-H stretching frequencies to lower wave numbers is expected. Mason¹⁷⁷ has demonstrated that there is a correlation between ν (NH) and π -electron densities calculated using Huckel Molecular Orbital (HMO) theory, ν (NH) decreases with decreasing π -electron density.

Tentative assignments for the infrared spectra of ACDA complexes have been discussed by Pattnaik and Sen. The bands which appear in the region $300-400 \text{ cm}^{-1}$ on complexation has been attributed to metal-sulfur stretching frequencies.

2. Electronic spectra

NH₄⁺ ACDA contains two chromophore systems:

$$-c = c$$

and exhibit two distinct absorption bands with very high intensity, one at 25570 cm^{-1} which has been assigned to the $n \rightarrow \pi^*$ band of the thiocarbonyl group and another at 32700 cm⁻¹ has been attributed to the conjugation effect of the chromophores. Almost similar absorption spectra are exhibited by the complexes of d^{10} metal ions¹⁷¹. The electronic spectra of [VO(ACDA)₂], [Cu(ACDA)₂], and [Ni(ACDA)₂] in DMSO and solid state are virtually the same indicating that structural change does not occur in DMSO solution. The electronic spectrum of the planar [Ni(ACDA)2] complex also is unaffected by changes in solvent coordinating power. The spectrum of $[Ni(ACDA)_2]$ is very similar to previously reported spectra of the nickel(II) dithiocarboxylates¹⁷⁸; whereas the electronic spectrum of [Cu(ACDA)₂] closely resembles those copper(II) dithiocarbamates for and copper(II) reported cyclopentadienedithiocarboxylate. The spectrum is interpretable in terms of a planar D_{zh} CuS₄ chromophore¹⁷¹.

15. Scope of the present investigation

The metal complexes of dithiochelates, especially dithiocarbamates, have a wide range of applications: Their analytical and pharmacological properties, fungicidal activity as well as their ability to function as accelerators in rubber vulcanisation processes have made them a very important class of inorganic compounds. A deeper insight into the basic chemistry of the metal-dithio complexes is indispensable for a proper understanding of the processes involved. It was therefore considered worthwhile to synthesise some new metal complexes of dithio ligands and study their physicochemical properties.

The work presented in this thesis is mainly concerned with isolated the metal complexes from the interactions of benzoic-dithiocarbamic anhydrides with metal halides. In an investigation¹²⁵, bis(dithiocarbamato)-µ-dichlorodiearlier copper(II) complexes were synthesised by the reaction of mixed benzoic-dithiocarbamic anhydrides with copper(II) chloride. It was felt that these type of complexes could serve as the starting material for the synthesis of new and novel mixed ligand complexes of dithiocarbamates. The ligand selected for interaction was It is an interesting ligand having dual possibility of ACDA. bonding between the metal atom and the ligand. Although the complexes of ACDA have been reported earlier, the contradictory reports¹⁶⁸⁻¹⁷¹ on the nature of bonding in these complexes

warranted a further investigation on these complexes and hence a study on these type of complexes was undertaken. As the solubilities of the ACDA complexes in common organic solvents are very low, we have used the N-isopropyl derivative of this ligand. The complexes of this derivative of ACDA have not been investigated earlier. The observed higher solubilities of these complexes as compared to that of ACDA complexes have enabled us to study the solution electronic spectra and also the NMR spectra of the complexes (These studies are described in Chapter III and the studies on the mixed ligand complexes are described in Chapter IV).

Another interesting reaction that has been probed into is that between mixed benzoic-xanthic anhydrides and the copper(II) chloride. The complexes isolated from these reactions are of the type [Cu₂(RXant)Cl]. (Studies on these complexes are presented in Chapter V). Besides we have explored the interactions of mixed benzoic-dithiocarbamic anhydrides with HgX_2 and have isolated the complexes of the type [$Hg(R_2dtc)X$]. Analytical and spectral studies, in these cases, revealed that the structure of these complexes are similar to that of the complex reported by Chie Chung¹⁷⁹, which was obtained by reacting thiuram disulphides with HgI_2 (These studies are described in Chapter VI).

Yet another interesting aspect of our investigations has been the interaction of mixed benzoic-dithiocarbamic anhydrides with

CuBr₂ in different solvents. Reaction with acetone gave complexes with no definite stoichiometry. However, we have isolated interesting complexes of the type [Cu₃(R₂dtc)₆][Cu₂Br₆] from the reactions in diethyl ether. Our studies revealed that they have complex, [Cu₃(Bu₂dtc)₆][Cd₂Br₆], structures similar to the which was prepared by Golding et al.¹²⁶ by the reaction of $CdBr_2$ and Br₂ with [Cu(Bu₂dtc)₂] (These studies are presented in Chapter VII). Further we have also probed the interactions of $Cu(R_2dtc)_2$ with $SOCl_2$ in benzene, with a view to synthesising the thionyl chloride adducts; but this resulted in the formation of copper(III) dithiocarbamate complexes (This work is presented in Chapter VIII).

ŧ.

Chapter - 2

•

CHAPTER II

EXPERIMENTAL TECHNIQUES

Details about the general reagents used, the procedures adopted for the preparation of the ligands and various physico-chemical techniques employed in the elucidation of structure of the complexes are given in this chapter . Procedural details regarding the synthesis of the metal complexes are given in the appropriate chapters.

2.1. Reagents

The following metal salts were used:

 $CrCl_3.6H_2O (BDH,AR); MnCl_2.4H_2O (E.Merck,AR); FeCl_3 (Merck, GR); \\ CoCl_2.6H_2O (E.Merck, GR); NiCl_2.6H_2O (BDH,GR); CuCl_2.2H_2O \\ (BDH,GR); CuBr_2 (Aldrich, 99% pure); HgCl_2 (E.Merck, GR); HgBr_2 \\ (Aldrich, 98% pure) and HgI_2 (E.Merck, GR).$

Dimethylamine (40% aqueous solution), diethylamine, piperidine, pyrrolidine, morpholine, carbon disulphide, cyclopentanone, isopropanol, isobutanol, n-propanol, n-butanol, sodium hydroxide, potassium hydroxide, 25% ammonia solution , thionyl chloride, benzoylchloride and other reagents used for the present work are commercially available (BDH or E.Merck) chemicals of 99% purity. The solvents employed are either of 99% purity or purified by known laboratory procedures before use 180 .

Preparation of starting materials for the synthesis of complexes. 2-Aminocyclopent-1-ene-1-dithiocarboxylic acid (HACDA)

The reagent was prepared following a modified procedure¹³ of Takeshima et al.¹². Cyclopentanone (22.2ml,0.25 mole) and 25% aqueous ammonia (100ml) were taken in a stoppered conical flask. The flask was cooled to $\sim 0^{\circ}$ C by keeping it in a bath containing a freezing mixture of ice and salt. Carbon disulphide (15ml, 0.25 mole) was then added slowly with constant stirring to this cooled solution. The flask was shaken in an automatic shaker for eight hours, while keeping the same in the freezing bath. Ammmonium salt of HACDA was separated as a yellow solid, which was filtered and washed with diethylether. The ammonium salt is not stable at room temperature; it losses ammonia on standing. The acid form is more stable than its ammonium salt, and was prepared by dissolving the crude product in water and slowly neutralising with 2N acetic acid under ice-cooling. The yellow crystals separated were collected, washed with water and dried over anhydrous calcium chloride.

Alkyl derivatives of HACDA

Alkyl derivatives of HACDA were prepared by the transamination reaction¹³ of HACDA. HACDA (7.9 g) and alkylamine, (9ml of i-PrNH₂ or 10ml of n-BuNH₂) were dissolved in methanol

(100 ml). This solution was refluxed for one hour. After cooling the solution to room temperature, water (200 ml) was added, and the solution was filtered to remove any solid impurities. To this filtrate, 2N acetic acid was added till the yellow product was separated. The crude product was then recrystallised from acetone.

Sodium dithiocarbamate

dimethyl dithiocarbamate Sodium salts of (Me₂dtc), diethyldithiocarbamate, (Et_odtc), morpholine-N-carbodithioate, piperidine-N-carbodithioate (Morphdtc), (Pipdtc) and pyrrolidine-N-carbodithioate (Pyrrdtc) were prepared by the general procedure⁵ given below:

A 500ml three-necked flask was equipped with a separating funnel, electric stirrer and an air condenser. An aqueous solution of sodium hydroxide (20g, 0.5mole) and 0.5mole of the amine were taken in the flask. This was cooled in a freezing mixture of ice and salt. Carbon disulphide (31 ml, 0.5mole) was added dropwise from the separating funnel and the mixture was stirred for about two hours. The solid that separated out was washed several times with petroleum ether and recrystallised from water.

Potassium carbonodithioates (xanthates)

Potassium salts of isobutylxanthate (i-Buxant), isopropylxanthate (i-PrXant), n-butylxanthate (n-BuXant) and n-propylxanthate (n-PrXant) were prepared by the general procedure¹⁸¹ given below:

Potassium hydroxide pellets (11.2g, 0.2 mole) was mixed with an excess of the appropriate alcohol, R-OH (-0.6mole) (R=i-Bu, i-Pr, n-Bu or n-pr). The reaction mixture was refluxed for three hours in a 500ml round bottomed flask. The potassium alkoxide solution was transferred into a 500ml beaker and cooled by placing in a freezing mixture of ice and salt. Carbon disulphide (12ml, 0.2mole) was added drop by drop with stirring till the precipitation was complete. The precipitated potassium xanthate was filtered and washed with diethylether.

Mixed benzoic-dithiocarbamic anhydrides

These compounds have the general formula $Y-C(S)-S-COC_6H_5$ (where $Y=Me_2N-$, Et_2N- , C_4H_8N- , $C_5H_{10}N-$, OC_4H_8N-), were prepared by adopting the procedures of the earlier workers.^{182,183} Details about the preparation are given below:

Benzoylchloride(11.6 g, 0.1 mole) was added to ice cooled aqueous solution containing 0.1mole of the appropriate sodium dithiocarbamate. An yellow oily layer was formed immediately. On vigorous shaking for a few minutes, yellow crystals of mixed benzoic-dithiocarbamic anhydride separated out. The crude product was washed a few times with distilled water and finally with methanol. It was further purified by crystallisation from a mixture of n-hexane and diethylether. These mixed anhydrides decompose on keeping to the corresponding amides with the loss of carbon disulphide. Further these decompositions are reported to be enhanced by light.¹⁸² Therefore, the anhydrides were prepared afresh everytime for subsequent synthetic work.

Mixed benzoic-xanthic anhydrides

The mixed benzoic-xanthic anhydrides having the general formulae R-O-C(S)-S-COC₆H₅; were prepared by the procedure reported in the literature¹⁸⁴: Potassium alkylxanthate (0.1 mole) was dissolved in water and crushed ice was added. To this was added benzoylchloride (11.6ml, 0.1mole) drop by drop with vigorous The benzoylated product was extracted into the shaking. diethylether medium and dried using anhydrous sodium sulphate. The ether solution was filtered and the anhydride was separated as a yellow liquid by the evaporation of ether in vacuum.

2.2. Elemental analysis

Estimation of metal ions

In all the cases, the organic part of the complexes were completely eliminated before estimation of metals. A uniform procedure (except for the mecury complexes) was adopted for this purpose. A known weight of the complex (0.1-0.5mg) was treated with concentrated nitric acid (25ml) and bromine in carbon tetrachloride (20ml). This mixture was kept for more than

three hours. It was then evaporated to dryness on a water bath and converted to its sulphate by fuming with few drops of sulphuric acid two or three times. The resulting metal sulphate was dissolved in water, and this solution was used for the analysis of metal.

Metal analyses were carried out using standard procedures¹⁸⁵. Chromium in the solution was estimated using standard ferrous ion using solution, after oxidising to dichromate potassium persulphate and a little silver nitrate (catalyst). Manganese and nickel were estimated by EDTA method using Eriochrome Black T as indicator. A back titration procedure was adopted for the estimation of nickel. Iodometric method was employed for the estimation of copper in the complex.

Gravimetric procedures were adopted for the estimation of iron and nickel. Iron in the complex was estimated by precipitating the metal with ammonia solution and igniting the resulting hydroxide to the ferric oxide. Cobalt was estimated by precipitating it as $[Co(Py)_2(SCN)_2]$ using ammonium thiocyanate and pyridine.

Halogen content was determined by peroxide fusion of the sample, followed by volumetric estimation using Volhard's method. The percentage of nitrogen present in the ligand and also in the complexes was determined by Kjeldahl's method. For sulphur estimation, the complexes were fused with Na_2CO_3 and Na_2O_2 and the

resulting sulphate was determined gravimetrically as barium sulphate.

2.3. Physical measurements

Conductivity measurements

The molar conductance of the complexes in nitrobenzene was determined at $28\pm2^{\circ}$ C using a ELICO PR 9500 conductance bridge with a dip type cell and a platinum electrode. The concentration of the solutions used were about 10^{-3} M.

Magnetic susceptibility measurements

The measurements were carried out using solid samples at room temperature, $28\pm2^{\circ}$ C, on a Gouy type balance. The Gouy tube was standardised using Hg[Co(SCN)₄], as recommended by Figgis and Nyholm ¹⁸⁶. The effective magnetic moment, was calculated using the equation,

$$\mu_{eff.} = 2.84 (\chi_{M}^{corr} \cdot T)^{1/2} BM$$

where $X_{M}^{\text{corr.}}$ is the molar magnetic susceptibility corrected for diamagnetism of other atoms in the complex using Pascals constants¹⁸⁷ and T is the temperature (in ^oK).

EPR spectral measurements

The EPR spectra of a few complexes in chloroform were obtained at room temperature using Varian E-112 X/Q band EPR

spectrometer . Samples are taken in capillary tubes for the measurements. Spectra were calibrated using diphenylpicrylhydrazyl (DPPH) as a field marker.

Electronic spectral measurements

Electronic spectra were recorded in solutions (in the cases of soluble complexes) or in the solid state by a mull technique following a procedure recommended by Venanzi et al.¹⁸⁸ Mull spectra were recorded as follows. Samples were prepared in nujol and smeared over Whatman filter paper No.1. **Reference** filter paper was prepared by smearing a drop of nujol. The two filter paper bits were placed in the two windows of the spectrometer and the spectra were scanned in the desired region. Solution spectra were recorded using matched one cm quartz cells. The spectra were recorded on a Hitachi U-3410 spectrophotometer (r on a Shimadzu UV-160A spectrophotometer.

Infrared spectral measurements.

Infrared and far infrared spectra of the complexes were recorded on Perkin Elmer 983 recording spectrometer. The spectra were recorded in the infrared region with the samples distributed in potassium bromide matrix and in the far infrared region with the samples smeared on polyethylene films.

Proton NMR spectral measurements

The proton nuclear magnetic resonance spectra of complexes, which have got sufficient solubility in chloroform, were taken in $CDCl_3$ using Hitachi R-600 FT NMR spectrophotometer. Tetramethylsilane (TMS) was employed as an internal reference.

Chapter - 3

CHAPTER III

2-ISOPROPYLAMINOCYCLOPENT-1-ENE-1-DITHIOCARBOXYLATO COMPLEXES OF CHROMIUM(III), MANGANESE(III), IRON(III), COBALT(III), NICKEL(II) AND COPPER(I)

3.1. INTRODUCTION

The sulphur-nitrogen containing ligands are biochemically important¹⁸⁹. Metal complexes of sulphur containing amino acids are considered as models of metal sulphur proteins. The sulphur nitrogen chelating ligand, 2-aminocyclopent-1-ene-1-dithiocarboxylic acid shows a marked antifungal action against various fungi¹⁹⁰⁻¹⁹². This type of ligands finds use in analytical chemistry as gravimetric reagents and cation exchangers.

The sites of 2-aminocyclopent-1-ene-1-dithiobonding carboxylate (ACDA) ligand are the nitrogen atom of the amino group and the sulphur atoms of the dithio group. Therefore, one can expect N,S coordination or S,S coordination in these complexes. Pattnaik and Sen¹⁶⁸, and Nag and Joardar¹⁶⁹ claim that ACDA makes use of both sulphur and nitrogen donor centres for bonding to the metal. However, Thomas and Poveda¹⁷⁰, and Choi and Wasson¹⁷¹ are of the opinion that only sulphur atoms are involved in the bonding. The difference of opinion among the earlier workers has prompted us to undertake a detailed study of these type of complexes . Due to the limited solubilities of ACDA complexes in common organic solvents, their ¹H NMR spectra and electronic

in solution could not be studied properly. spectra The solubility is expected to be increased by using N-alkyl substituted derivatives of ACDA as the ligand, which can be prepared by transamination reaction of ACDA¹³. It was therefore worthwhile to synthesise considered and study some 3d-transition metal complexes of 2-isopropylaminocyclopent-1-ene-1-dithiocarboxylate (i-PrACDA) ligand. We have synthesised the chromium(III), manganese(III), cobalt(III), iron(III), nickel(II) and copper(I) complexes of i-PrACDA. The complexes of this ligand have not been reported earlier. In this chapter, the synthesis, spectral and magnetic behaviour of these complexes are described.

3.2 EXPERIMENTAL

Materials:

Details about the reagents used and the synthesis of i-PrACDA are given in Chapter II.

Synthesis:

The complexes of chromium, manganese, iron and cobalt were prepared by the general method given below:

A solution of the metal chloride (0.01 mole - 2.66g of $CrCl_3.6H_2O$, 1.98g of $MnCl_2.4H_2O$, 1.62g FeCl_3 or 2.4g of $CoCl_2.6H_2O$) was prepared in methanol (100 ml). To this, i-PrACDA (6g, 0.03mole) dissolved in methanol (150 ml) was added. The mixture was refluxed on a water bath for one hour. It was then cooled to room temperature. The complex formed was filtered, washed with methanol and ether and dried over anhydrous calcium chloride. Yield: 60-70% The complexes of nickel and copper were prepared in the same way using 0.01 mole of the metal chloride (2.4g of NiCl₂.6H₂O or 1.7g of CuCl₂.2H₂O) and 0.02 moles of i-PrACDA.

Characterisation

Details about the characterisation techniques are given in Chapter II.

3.3 RESULTS AND DISCUSSION

The formation of the present complexes take place only on refluxing the solution containing i-PrACDA and the metal salt. Tn the case of dithiocarbamate complexes, complex formation takes place immediately on mixing the aqueous solution of sodium dithiocarbamate ligand with metal salt solution. This often results in the the formation of a mixture of complexes in +2 and +3 oxidation states in the case of easily oxidisable transition metal ions like cobalt(II) and manganese(II) ions. Therefore, in these cases pure metal(II) complexes can be prepared only by conducting the reaction in an inert atmosphere. For preparing the pure metal(III) complexes, a stream of air has to be passed through the reaction medium. However, for i-PrACDA, Mn(III) and Co(III) complexes were obtained even without passing air through the system. This might be due to the following facts:

i) The complexation takes place only under refluxing conditions.ii) Under such conditions the interaction with oxygen in the air is possible.

Results of elemental analyses are given in Table 3.1. The analytical data show that empirical formulae agree with $[M(i-PrACDA)_3]$ for the chromium, manganèse, iron and cobalt complexes, $[Ni(i-PrACDA)_2]$ for the nickel complex and [Cu(i-PrACDA)] for the copper complex.

The complexes are soluble in non-polar solvents like chloroform, benzene, nitrobenzene etc. and are much more soluble than the correspoding complexes formed by the ACDA ligand. However the [Cu(i-PrACDA)] does not have sufficient solubility to record ¹H NMR spectrum. The low solubility indicates a polymeric nature for this complex. It was also found that these complexes are quite stable and can be kept for a longer period without decomposition.

3.3.1 Electrical Conductance

The conductance data of the complexes are presented in Table 3.2. It may be seen from the table that all the complexes are non-electrolytes in nitrobenzene.

3.3.2 Magnetic measurements

The magnetic moment values of the complexes at room temperature are also given in Table 3.2.

The magnetic properties of the octahedral chromium(III) complexes are generally uncomplicated. All such complexes must

Table 3.1 Analytical data of the i-PrACDA complexes

Complex	N(%) Found (Calc.)	M(%) Found (Calc.)	S(%) Found
	((d10+)		(caic.)
[Cr(i-PrACDA) ₃]	6.40	8.03	29.65
[C ₂₇ H ₄₂ CrN ₃ S ₆]	(6.50)	(8.04)	(29.73)
[Mn(i-PrACDA) ₃]	6.43	8.39	29.50
^{[C} 27 ^H 42 ^{MnN} 3 ^S 6 []]	(6.47)	(8.45)	(29.60)
[Fe(i-PrACDA)3]	6.42	8.48	29.52
^{[C} 27 ^H 42 ^{FeN} 3 ^S 6 []]	(6.46)	(8.58)	(29.56)
[Co(i-PrACDA)3]	6.44	8.97	29.35
^{[C} 27 ^H 42 ^{CoN} 3 ^S 6 []]	(6.43)	(9.01)	(29.42)
[Ni(i-PrACDA) ₂]	6.14	12.82	28.12
[C ₁₈ H ₂₈ Ni N ₂ S ₄]	(6.15)	(12.89)	(28.16)
[Cu(i-PrACDA)]	5.33	24.25	24.43
[C9H14CuNS2]	(5.35)	24.27)	(24.49)

Table.3.2 Molar conductance and magnetic moment values of the i-PrACDA complexes

Complex	Molar conductance in nitrobenzene [*] ohm ⁻¹ cm ² mole ⁻¹	^µ eff. in BM at 28 <u>+</u> 2 ⁰ C
[Cr(i-PrACDA)3]	2.4	3.9
[Mn(i-PrACDA) ₃]	1.0	5.0
[Fe(i-PrACDA) ₃]	2.1	5.1
[Co(i-PrACDA) ₃]	1.5	Diamagnetic
[Ni(i-PrACDA) ₂]	2.8	59
[Cu(i-PrACDA)]	1.6	m

* Concentration = 10^{-3} mole lit⁻¹.

have three unpaired electrons irrespective of the strength of ligand field. In the absence of any orbital contribution, the magnetic moment value should be very close to the spin-only value of 3.87 BM^{187} . The [Cr(i-PrACDA)₃] complex exhibits magnetic moment value of 3.9 BM which suggests an octahedral structure for the complex.

Nearly all manganese(III) complexes are octahedral and high-spin with magnetic moment values close to the spin-only value of 4.9 BM (expected for 4 unpaired electrons) 187 . The present complex of manganese exhibits a μ_{eff} , value of 5.0 BM which the complex octahedral high-spin suggests that is an manganese(III) complex.

For the high spin iron(III) complexes, the magnetic moment values are always very close to the spin only value of 5.9 BM. The low spin complexes with $t_{2g}^{5}e_{g}^{0}$ configuration usually have considerable orbital contributions to their magnetic moments at room temperature and have μ_{eff} , values of ~ 2.3 BM. The i-PrACDA complex of iron(III) exhibits a magnetic moment of 5.1 BM. This value is in between the magnetic moment valu expected for a high-spin and a low-spin iron(III) complex, and might be due to spin cross over phenomenon. This phenomenon is known to occur ín the case of dithiocarbamato iron(III) complexes. Cobalt(III), nickel(II) and copper(I) complexes were found to be diamagnetic. The diamagnetic nature of the Co(III) complex indicates that the complex is a low-spin octahedral complex, while that of the Ni(II) complex reveals that the complex has a square planar structure. The magnetic behaviour of the copper complex is in agreement with the +1 oxidation state of the metal.

3.3.3 Electronic spectra

The electronic spectra of the complexes were recorded in chloroform solution. The electronic spectral bands along with their probable assignments are given in Table 3.3.

[Cr(i-PrACDA)₂]

With hardly any exceptions, the chromium(III) complexes are hexacoordinate and have either octahedral or distorted octahedral structures. Three spin allowed transitions: ${}^{4}\lambda_{2g} \longrightarrow {}^{4}T_{2g}(F)$, ${}^{4}\lambda_{2g} \longrightarrow {}^{4}T_{1g}(F)$, and ${}^{4}\lambda_{2g} \longrightarrow {}^{4}T_{1g}(P)$ are expected for these complexes. In [Cr(i-PrACDA)_3], the band due to ${}^{4}\lambda_{2g} \longrightarrow {}^{4}T_{1g}(P)$ was not observed; probably, this might have been masked by the high intense charge transfer bands and the band at 22500cm⁻¹ can be assigned to ${}^{4}\lambda_{2g} \longrightarrow {}^{4}T_{2g}(F)$ transitions. The shoulder band at 25600cm⁻¹ might be due to the ${}^{4}\lambda_{2g} \longrightarrow {}^{4}T_{1g}(F)$ transition¹⁹³.

[Mn(i-PrACDA)₃]

Only one spin allowed absorption band $({}^{5}E_{g} \longrightarrow {}^{5}T_{2g})$ is expected for octahedral manganese(III) complexes. These complexes generally give rise to fairly intense crystal field bands, which probably results from combination of factors, namely a fairly covalent metal-ligand bond, low symmetry components to the ligand field and fairly low lying charge transfer bands. In the $Mn(i-PrACDA)_{3}$ complex three d-d bands are observed. This clearly

Fig. 3.1. Electronic spectra of $[Cr(i-PrACDA)_3]$ in chloroform.

Fig. 3.2 .Electronic spectra of [Mn(i-PrACDA)] in chloroform.

Fig. 3.3 Electronic spectra of $[Fe(i-PrACDA)_3]$ in chloroform.

Fig. 3.4 Electronic spectra of $[Co(i-PrACDA)_3]$ in chloroform.

Pig. 3.5 Electronic spectra of $[Ni(i-PrACDA)_2]$ in chloroform.

Fig. 3.6 Electronic spectra of Ni(i-PrACDA) in pyridine.

Fig. 3.7 Electronic spectra of $[Ni(i-PrACDA)_2]$ in DMSO.

Fig. 3.8 Electronic spectra of $\overline{[Cu(i-PrACDA)]}$ in chloroform.

Table	3.3.	Electronic	spectral	data	of	the	i-Pracda	complexes	in	CHC13
-------	------	------------	----------	------	----	-----	----------	-----------	----	-------

Complex	Absorption maxima (cm ⁻¹)	log £	Tentative assignments
[Cr(i-PrACDA) ₃]	42700	3.15	Intraligand transition
	38900	3.50	Charge transfer transition
	33900	3.42	n
	25600 (sh)	3.71	$^{4}A_{2g} \longrightarrow ^{4}T_{1g}(F)$ transition
	22500	4.12	$^{4}A_{2g} \rightarrow ^{4}T_{2g}(F)$ transition
[Mn(i-PrACDA)3]	42700	3.40	Intraligand transition
	35200	3.51	Charge transfer transition
	32900	3.56	
	25800 (sh)	3.98	${}^{5}B_{1} \longrightarrow {}^{5}A_{2}$ transition
	24000	4.16	${}^{5}B_{1} \longrightarrow {}^{5}B_{2}$ transition
	22400 (sh)	4.07	${}^{5}B_{1} \longrightarrow {}^{5}B_{2}$ transition
[Fe(i-PrACDA)3]	40000	3.44	Intraligand transition
	31200	3.32	Charge transfer transition
	27200	3.31	π

contd...

Complex	Absorption maxima (cm ⁻¹)	log £	Tentative assignments
[Co(i-PrACDA)]	42500	3.23	Intraligand transition
3	32500	2.77	Charge transfer transition
	25200	3.21	
	21400	3.13	$^{1}A_{1a} \longrightarrow ^{1}T_{2a}$ transition
	15600 (sh)	2.81	$1g \qquad 2g$ $1_{A_{1g}} \rightarrow 1_{T_{1g}}$ transition
[Ni(i-PrACDA)2]	-42900	3.70	Intraligand transition
-	35000	3.96	Charge transfer transition
	26400	4.52	-
	18400	4.26	$A_{1g} \rightarrow B_{1g} \text{ transition}$
[Cu(i-PrACDA)]	42900	3.37	Intra ligand transition
	39800	3.52	Charge transfer transition
	22800	3.61	

suggests that Jahn-Teller distortions occur in this complex. The present complex might be considered to have a symmetry C_2 .

The band observed at 24000cm⁻¹ in the present complex may be assigned to the ${}^{5}B_{1} \longrightarrow {}^{5}B_{2}$ transitions. The highest energy transition ${}^{5}B_{1} \longrightarrow {}^{5}A_{1}$ seems to have masked by the charge transfer bands, and the other transitions, ${}^{5}B_{1} \longrightarrow {}^{5}B_{2}$ and ${}^{5}B_{1} \longrightarrow {}^{5}A_{2}$ appear as shoulder bands at 22400 and 25800 cm⁻¹ respectively¹⁹⁴.

[Fe(i-PrACDA)₃]

The ground state term is the orbital singlet ${}^{6}S$ in high spin complexes. It cannot be split by crystal field of any symmetry. The absence of any other spin sextet terms requires that all transitions in high spin d^{5} complexes are spin forbidden as well as Laporte forbidden; thus they will generally be very weak. Further because of the greater oxidising power of iron(III), ligand to metal charge transfer bands often obscure the very low intensity bands¹⁹⁵. No d-d transitions are observed in the complex. Such transitions are rarely observed in 6-coordinate FeS₆ species, since the strong Fe-S charge transfer absorption will obscure such weak bands.

[Co(i-PrACDA)]

The low-spin octahedral ground term is ${}^{1}A_{1g}$ and there are two relatively low lying spin allowed transitions to ${}^{1}T_{1g}$ and ${}^{1}T_{2g}$. The bands observed in the spectra of $[Co(i-PrACDA)_{3}]$ at 15600 cm⁻¹ and 21500 cm⁻¹ can be assigned to ${}^{1}A_{1g} \longrightarrow {}^{1}T_{1g}$ and ${}^{1}A_{1g} \longrightarrow {}^{1}T_{2g}$ transitions respectively. The band at 25600 cm⁻¹ can be assigned to the charge transfer band and that at 41600 cm^{-1} can be assigned to intraligand transitions¹⁹⁶.

[Ni(i-PrACDA)₂]

Nickel(II) ion is prone to form 4-coordinate diamagnetic square planar complexes, especially with stronger ligand fields. Such complexes typically have a single band in the region 15000- 25000 cm^{-1} . A second, more intense band may be seen near 23000- 30000 cm^{-1} which is often charge transfer in origin. Only one d-d band was noticed. The band at ~ 18400 cm⁻¹ can be assigned to the transition ${}^{1}A_{1g} \longrightarrow {}^{1}B_{1g}$. The band at 26400cm⁻¹ and 35000cm⁻¹ can be attributed to charge transfer bands and the band at 42900cm⁻¹ is due to the intraligand transitions¹⁹⁷.

The spectra of the nickel(II) complex have also been recorded in other solvents like DMSO and pyridine (vide Fig. 3.5-3.7). Nature of the spectra indicates some interaction of the nickel(II) complexes with pyridine. Such interactions are seen in xanthate and dithiobenzoate complexes.

[Cu(i-PrACDA)]

The complex does not exhibit any d-d bands as expected for Cu(I) complexes. The charge transfer band observed at 22800 cm⁻¹ suggests that this complex has some similarity with the dithiocarbamate complexes. A similar band at 22900 cm⁻¹ is observed in the spectra of $[Cu(Et_2dtc)_2]$ which is the basis of a well known method for the spectrophotometric determination of copper with Na⁺Et₂dtc¹⁹⁸.

It is ineteresting to note that i-PrACDA appears to have parallel reactivity to that of the xanthates and dithiobenzoates. The similarity is seen in the following aspects:

1. The i-PrACDA acts as a reducing agent towards Cu(II) ions

2. Its Mn(II) and Co(II) complexes are not stable and gets easily oxidised to M(III) complexes in presence of air.

3. The Ni(II) complex of i-PrACDA strongly interacts with the Lewis bases like pyridine. However, its ability to form adducts seems to be in between that of the xanthates and dithiocarbamates.

3.3.4 Infrared spectra

The infrared spectral data of the ligand and the complexes are given in the Table.3.4. The assignments of the bands have been done based on those carried out by earlier workers¹⁶⁸⁻¹⁷⁶ for the ACDA complexes.

The IR spectrum of the free ligand exhibits a broad band at 2490 cm⁻¹ which can be assigned to ν S-H. This band disappears in the infrared spectra of the complexes, indicating that the deprotonation of the thiol group has taken place and the bonding has occured through the sulphur atom.

The ν N-H is found in the spectrum of the free ligand at 3080 cm⁻¹. The lower value for ν N-H is due to the strong intramolecular hydrogen bonding. In the spectra of the complexes, ν N-H is seen at a higher frequency (~3210 cm⁻¹). The increase in ν N-H can be attributed to the breaking of the hydrogen bonding on complexation of the ligand through the sulphur atoms. The ν N-H

60

I	11	III	IV	v	VI	VII	Tentative assignments
3080w	3210m	3210m	3210m	3210m	3210m	3210m	νN-H
2990s	2980m	2980m	2980m	2980m	2980m	2990m	νC-Η
2920s	-	-	-	-	-	-	
2490s	-	-	-	-	-	-	νS-H
1575s	1570s	1560s	1570s	1560s	1570s	15558	SCNH
1 4 70s	1480s	1 4 80s	1480 s	1 4 80s	1480s	1 4 80s	νC=C+δCH ₂
1370m	1390s	1390s	1375s	1380s	1390s	1380s	
1330s	1325s	1330s	1325s	1325s	· 1330s	1330s	vC-N+vC-S
1265m	1270m	1270m	1280m	1265m	1270m	1270m	νC-S+νC-N
1155в	1160m	1160m	1170m	1160m	1155m	1155m	
1115w	1110w	1115w	1120w	1110w	1130w	1130w	◆ 011
1060w	1065w	1065w	1070w	1060w	1060w	1060w	^{рсн} 2
1020w	1010m	1010m	1005m	1010m	1010m	1010m	
950m	950m	950m	960m	940m	960m	950m	ν_{as} CSS
905m	900m	900m	910m	910m	920m	910m	
870m	865m	685m	870m	860m	870m	865m	
7 65s	800s	810s	805m	820s	810s	820s	νC-S
-	670s	665s	670s	665s	670s	670s	

Table. 3.4 Infrared spectral data of i-PrACDA and its complexes

s = strong; m = medium; w = weak; vw = very weak

I=i-PrACDA; II=[Cr(i-PrACDA)₃]; III=[Mn(i-PrACDA)₃]; IV=[Fe(i-PrACDA)₃];

V={Co(i-PrACDA)₃}; VI=[Ni(i-PrACDA)₂}; VI=[Cu(i-PrACDA)].

Contd....

I	II	III	IV	v	VI	VII	Tentative assignments
515vw	52 4 s	519s	510s	580s	584m	592s	
-	430w	411w	436m	4 80m	527m	531s	
-	390w	391w	392m	390m	384m	442w	
410m	362в	369s	-	380s	380s	413w	
355sh	350s	347s	348s	350s	349m	369s	νM-S
325m	321w	321w	322w	320w	319w	319w	
-	296m	308w	290w	290w	293w	305w	
•	270m	266w	270w	270w	268w	268w	
-	240m	237m	234w	-	237m	241w	

s = strong; m = medium; w = weak; vw = very weak

I=i-PrACDA; II=[Cr(i-PrACDA)₃]; III=[Mn(i-PrACDA)₃]; IV=[Fe(i-PrACDA)₃];

V=[Co(i-PrACDA)₃]; VI=[Ni(i-PrACDA)₂]; VI=[Cu(i-PrACDA)].

modes should have shifted in the reverse order, if the coordination of the ligand had occured through the amino nitrogen. This fact is reflected in the δ CNH values: The δ CNH in the spectrum of the free ligand appears around 1575 cm⁻¹ and this value decreases to 1560 cm⁻¹ in the spectra of the complexes. The higher value of δ CNH in the free ligand is due to the hydrogen bonding. The decrease in δ CNH in the complexes is due to the disappearance of hydrogen bonding¹⁵⁶. Similar observations have been made for many ammine complexes.

There is a strong band at 766 cm^{-1} in the spectrum of the free ligand which is seen to be shifted to $\sim 805 \text{ cm}^{-1}$ in the case of the complexes¹⁵⁷. This band can be assigned to ν C-S and the increase in C-S stretching frequency on complexation might be again due to the breaking of the hydrogen bond. Further, the cm⁻¹ appearance of a single band in the region 700-850 in the present complexes indicates that both the sulphur atoms are taking part in the bonding. Thus inferences obtained from the infrared spectra are clearly in favour of S-S bonding.

Further evidence for M-S bonding is obtained from the far infrared spectra of the complexes. A strong band is seen in the region 300-400 cm⁻¹ which can be attributed to ν M-S^{1.56}. In the case of the Mn(III) complex two strong bands due to ν Mn-S are seen, one at 369 and 347 cm⁻¹ which might have resulted from the Jahn-Teller distortions. More information about the bonding sites may be obtained from the EPR spectra of the complexes. If the bonding takes place through the nitrogen atom, hyperfine splittings due to nitrogen would have observed in the spectra. As the present copper complex is diamagnetic and all the other complexes are EPR silent at room temperature, the information about this aspect was not obtained. However, we could record the EPR spectra of a few mixed ligand complexes of ACDA or its N-alkyl derivatives. The spectra did not show any hyperfine splittings due to the nitrogen atom (*vide* discussions in Chapter IV). Further, conclusive evidences for the non-involvement of the nitrogen atom was obtained from the ¹H NMR spectra of the complexes.

3.3.5 ¹H NMR spectra

The H NMR spectra of the metal complexes of ACDA have not been studied in CDCl_3 due to their limited solubilities in this solvent. All the reported NMR studies of ACDA complexes have been carried out in a coordinating solvent¹⁷¹, DMSO-d₆. The higher solubilities of i-PrACDA complexes in chloroform have enabled us to record their spectra in CDCl_3 . The ¹H NMR spectrum of the copper complex could not be taken due to the lack of proper solubility. The ¹H NMR data of the complexes are given in Table 3.5.

The CH_2 protons at the C_3 and C_5 positions experience more shielding than the protons at the C_4 position, and have almost the same chemical shifts.

64

		Chemical	shift (8)	t (δ) values in ppm						
Complex	СН3	СН	св ₂		NB	SB				
			°4	с ₃ £с ₅						
i-Pracda	1.35d	3.75h	1.85p	2.85t	12.4s,br	4.8 s				
[Cr(i-PrACDA)3]	1.30br	3.70br	1.85br	2.25br	8.80s,br	-				
[Mn(i-PrACDA) ₃]	1.35v.br	3.60br	1.90br	2.60br	8.50s,br	-				
[Fe(i-PrACDA) ₃]	1.30v-br	3.70br	1.85br	2.70br	8.50s,br	~				
[Co(i-PrACDA)3]	1.30d.br	3.70br	1.85br	2.70br	8.80br	-				
[Ni(i-PrACDA)2]	1.30d.br	3.75br	1.95br	2.75t,br	8.80s,v.br	-				

Table 3.5 ¹H NMR data for i-PrACDA and its complexes in $CDCl_3$ (vide Fig.3.12)

d-doublet, h-heptet, p-pentet, s-singlet, br-broad, v.br-very broad

Fig 3-J2 i-PrACDA

The signal of the -SH proton appears at δ 4.8 ppm in the spectrum of the ligand. This signal is absent in the spectra of the complexes indicating the removal of the -SH proton and formation of M-S bond.

Another major change observed on complexation is that the -NH proton signal which appears as a broad singlet at δ 12.4 ppm for the ligand is shifted to δ 8.6ppm in the spectra of the complexes. This large upfield shift has been attributed to the coordination of the nitrogen to the metal ion by some workers in the case of the ACDA complexes. This cannot be right and this fact would become more clear, if we consider the signals due to the CH proton of the isopropyl group. If the N atom had been involved in the bonding, then considerable shift might have occured for this proton also. But the signals due to the CH proton appear in the spectra of both the ligand and the complexes almost at the same position. Therefore the observed NH proton shift in the case of the complexes is not due to the involvement of the nitrogen atom in the bonding, but due to the breaking of the intramolecular hydrogen bonding between the NH proton and sulphur atom of the dithiocarboxylic acid group of the free ligand.

Thus spectroscopic (IR, electronic and ${}^{1}\mathrm{H}$ NMR) evidences are in favour of the bidentate bonding of the dithio group to the metal.

Chapter - 4

CHAPTER IV

NEW MIXED LIGAND COMPLEXES OF COPPER(II) DITHIOCARBAMATES

4.1 INTRODUCTION

Mixed ligand complexes of dithiocarbamates are of particular interest because of the following reasons: (i) their structural and electronic properties are possibly distinct from those of the simple dithiocarbamate complexes, (ii) they are regarded as models for metalloenzyme-substrate complexes.

Solid mixed ligand complexes of copper(II) dithiocarbamates have been synthesised by reacting the bis(dithiocarbamato)- μ dichloro-dicopper(II) complexes with pyridine or picolines¹²². The synthesis of these complexes have prompted us to use these chlorine bridged complexes as the starting material for the We have isolated synthesis of some new mixed ligand complexes. some interesting mixed ligand complexes by reacting this chloro complexes with 2-aminocyclopent-1-ene-1-dithiocarboxylic acid (ACDA) or its N-alkyl derivatives. The syntheses and structure elucidation of such complexes are described in this chapter.

4.2 EXPERIMENTAL

Materials

Details about the reagents and preparation of dithiocarbamates, ACDA and its alkyl derivatives are given in Chapter II.

Synthesis:

Bis(dithiocarbamato)- μ -dichloro-dicopper(II) complexes

All the complexes were prepared by the general method given below: $CuCl_2 \cdot 2H_2O$ (1.7g, 0.01mole) and the appropriate, freshly recrystallised benzoic-dithiocarbamic anhydride (0.02mole), both dissolved in minimum quantity of acetone, were slowly mixed. The chloro complexes separated out as a black crystalline powder. The smell of benzoylchloride was noted during the preparation. The complex was filtered, washed with diethylether and dried in vacuum over P_2O_5 .

Synthesis of the mixed ligand complexes

[Cu(Me₂dtc)(ACDA)]

ACDA (1.58g, 0.01mole) was dissolved in methanol (100ml). То this yellow coloured solution, the black complex, [Cu(Me₂dtc)Cl]₂ (2.19g, 0.005mole), was added and thoroughly mixed. The complex dissolved and the colour of the solution immediately changed to red. The solution was then filtered to remove any solid particles, and the filtrate was refluxed on a water bath for one The red coloured product separated out from the solution hour. was filtered, washed with methanol, acetone and ether and dried over anhydrous calcium chloride.

[Cu(Pipdtc)(n-BuACDA)] and [Cu(Pipdtc)(i-PrACDA)]

These complexes were obtained in the same way as [Cu(Me₂dtc)(ACDA)] using [Cu(Pipdtc)Cl]₂ (2.64g, 0.005mole) and n-BuACDA (2.15g, 0.01mole) or i-PrACDA (2.0g, 0.01mole).

68

[Cu(Morphdtc)(i-PrACDA)] and [Cu(Morphdtc)(n-BuACDA)]

These complexes were also made in the same way as [Cu(Me₂dtc)(ACDA)] using [Cu(Morphdtc)Cl]₂ (2.60g, 0.005mole) and i-PrACDA (2.0g, 0.01mole) or n-BuACDA (2.15g, 0.01mole).

Characterisation

Details about the characterisation techniques are given in Chapter II.

4.3 RESULTS AND DISCUSSION

Analytical data of the complexes are given in Table 4.1. The data show that the complexes have the empirical formula $[Cu(R_2dtc)L]$ (where $R_2=Me_2$, Pip or Morph: L=ACDA, i-PrACDA or n-BuACDA). Even when the $[Cu(R_2dtc)Cll_2$ and L were mixed in different ratios (1:2.2, 1:2.5, 1:3 etc), the complexes with the same composition, $[Cu(R_2dtc)L]$, were obtained. This suggests that the present complexes are pure mixed ligand complexes and not a mixture of complexes.

All the complexes are red in colour. They are stable and can be kept for a longer period without decomposition. The complexes are only slightly soluble in chloroform, and hence good ¹H NMR spectra could not be recorded in these cases.

4.3.1 Conductance measurements

The molar conductances of the complexes are given in Table 4.2. The values suggest that the complexes are non-electrolytes in nitrobenzene.

Complex	N(%) Found (Calc.)	Cu(%) Found (Calc.)	S(%) Found (Calc.)
[Cu(Me ₂ dtc)(ACDA)]	8.18	18.52	37.40
$[C_9H_{14}CuN_2S_4]$	(8.19)	(18.58)	(37.50)
[Cu(Pipdtc)(n-BuACDA)]	6.35	14.48	29.2 5
[C ₁₆ H ₂₆ CuN ₂ S ₄]	(6.41)	(14.54)	(29.33)
[Cu(Morphdtc)(n-BuACDA)]	6.28	14.41	29.18
$[C_{15}H_{24}CuN_{2}OS_{4}]$	(6.38)	(14.47)	(29.20)
[Cu(Morphdtc)(i-PrACDA)]	6.56	14.93	30.18
[C ₁₄ H ₂₂ CuN ₂ OS ₄]	(6.61)	(14.98)	(30.24)
[Cu(Pipdtc)(i-PrACDA)]	6.59	15.02	30.32
[C ₁₅ H ₁₄ CuNS ₄]	(6.64)	(15.05)	(30.38)

Table.4.1 Analytical data of the mixed ligand complexes of Cu(II)

4.3.2 Magnetic measurements

The magnetic behaviour of the complexes has been studied and $\mu_{eff.}$ values are tabulated in Table 4.2. All the complexes exhibit a $\mu_{eff.}$ value of 1.9 BM at $28\pm2^{\circ}$ C. The magnetic data clearly establish +2 oxidation state for copper in these complexes. The data indicate absence of any metal-metal interactions and also excludes the possibility of these complexes to have a tetrahedral structure¹⁸⁷. (The $\mu_{eff.}$ values for tetrahedral copper(II) complexes would be around 2.2 BM)

4.3.3 Electronic spectra

The electronic spectral bands and their assignments are tabulated in Table 4.3. The electronic spectra of the present mixed ligand complexes do not differ much from that of simple copper(II) dithiocarbamate complexes. On this basis, a structure similar to that of the copper(II) dithiocarbamate may be assigned to the present complexes¹⁹⁴.

4.3.4 Infrared spectra

The infrared spectral data of the complexes are tabulated in Table 4.4. The tentative assignments given in the table are based on published work on ACDA and dithiocarbamates.

The spectra of the complexes exhibit bands due to both the constituent ligands. In the spectra of $[Cu(Me_2dtc)(ACDA)]$, all the bands due to Me₂dtc and ACDA are observed: The ν N-H and δ NH₂

Table 4.2 Molar conductance and magnetic data of the mixed ligand complexes of Cu(II)

Complex	Molar conductance in nitrobenzene* ohm ⁻¹ cm ² mole ⁻¹	^µ eff, in BM at 28 <u>+</u> 2 ⁰ C
[Cu(Me ₂ dtc)(ACDA)]	1.8	1.9
[Cu(Pipdtc)(n-BuACDA)]	1.1	1.8
[Cu(Morphdtc)(n-BuACDA)]	1.7	1.9
[Cu(Morphdtc)(i-PrACDA)]	0.8	1.9
[Cu(Pipdtc)(i-PrACDA)]	0.9	1.9

* Concentration = 10^{-3} mole lit⁻¹.

Fig. 4.1 Electronic spectra of [Cu(i-PrACDA)(Pipdtc)].

Complex	Absorption	log £	Tentative
	maximum, cm ⁻¹		assignments
	41800	4.90	Intraligand transition
	39000	4.78	
[Cu(Me_dtc)(ACDA)]	36500	5.34	•
2	34600	5.15	-
	22250	5.10	Charge transfer transition
	41700	4.85	Intraligand transition
	39000 sh	4.72	•
(Cu(Pipdtc)(n-BuACDA))	36400	5.28	•
	34500 sh	5.10	*
	22100	4.94	Charge transfer transition
	41600	4.83	Intraligand transition
	38900 sh	4.76	*
[Cu(Morphdtc)(n-BuACDA)	36450	5.34	*
	34500 sh	5.20	*
	22200	5.10	Charge transfer transition
	41600	4.80	Intraligand transition
	39000 sh	4.74	**
[Cu(Morphdtc)(i-PrACDA)	36400	5.30	
	34500 sh	5.20	
	22200	4.89	Charge transfer transition
	41600	4.83	Intraligand transition
	39000 sh	4.76	
[Cu(Pipdtc)(i-PrACDA)]	36400	5.29	**
	34500 sh	5.17	
	22200	5.08	Charge transfer transition

Table 4.3 Electronic spectral data of mixed ligand complexes of Cu(II).

I	II	III	IV	V	Tentative assignments
3360m					
	3180w	3180w	3180w	3180w	^ν N-н
3120vw	3120w	3120w	3100w	2960w	^ν С-н
2960w	2920w	2920m	2960m	2920m	
2840w	2840m	2840m	2840w	2840w	
2320w	2300w	2300v	2300w	2300w	
1620s	1570vs	1565vs	1570vs	1570vs	δN−H
1505s	14958	14758	1475s	1 4 95s	ະ ເ
1 4 50s	1 44 0s	1440m	1440m	1465s	
1380s	1385m	1390m	1385s	1380s	^δ CH ₂ ^{+ ν} c=c
1320m	1340m	1340m	13258	1325s	^ν c- Ν ^{+ ν} c -s
1290m	1280m	1285m	1290m	1290m	
1280m	1250m	1260s	1265s	1265s	$v_{C-S} + v_{C-N}$
		·····		<u> </u>	

Table.	4.4 In	frared	spectral	data	of	the mix	ed	ligand	complexes
	of	Cu(II))						

vs = very strong; s = strong; m = medium w = weak I = [Cu(Me₂dtc)(ACDA); II = [Cu(Pipdtc)(n-BuACDA); III = [Cu(Morphdtc)(n-BuACDA); IV = [Cu(Morphdtc)(i-PrACDA) V = [Cu(Pipdtc)(i-PrACDA)

74

Contd.

1	11	111	IV	v	Tentative assignments
12 4 0m	1230s	1225s	1225ຮ	1230s	
1155m	1155m	1155m	1155m	1155m	
1120m	1130w	1105s	1105s	1105m	
1030w	1055w	1055w	1060m	1060w	Р _{С-Н}
1020w	1015w	1020s	1020s	1020w	
955m	990m	945w	940w	940m	v C-S
920m	970w	905s	905s	9058	
880w	900m	870w	870w	865w	
805s	780m	780m	790m	790m	^ν c-s
665w	690m	690m	690m	690m	
540m	510m	5 40 s	540s	520в	
340s	345s	335s	340vs	350s	^ν M -S
270m	270m	290m	285m	260m	
vs = very	strong; s	= strong;	m = mediu	m w = weak	
I = [Cu(Me	e ₂ dtc)(ACD)	A)];		II = [Cu(Pipdt	.c) (n-BuACDA)];
III = [Cu	(Morphdtc)	(n-BuACDA)]	;	IV = [Cu(Morph	dtc)(i-PrACDA
V = [Cu(P	ipdtc)(i-P	racda)]			

of the ACDA appear at 3360 cm⁻¹ and 1620 cm⁻¹ respectively. The ν N-H band and δ CNH bands appear around 3180 cm⁻¹ and 1570 cm⁻¹ respectively for the complexes with i-PrACDA and n-BuACDA. The ν N-H bands appear at lower frequencies in the case of the free ACDA ligands. The shift to higher frequencies can only be attibuted to the breaking of the intramolecular hydrogen bonding and not due to the involvement of the nitrogen atom in the bonding (*vide* discussions in Chapter III).

The ν C-N of the dithiocarbamate ligand is seen around 1500 cm^{-1} in the spectra of all the present complexes. Further bands due to ν C-S of both type of ligands are also observed in the spectra of all the complexes. The number of bands observed in these regions have been used to distinguish between the bidentate and monodentate bonding¹. In the case of the present complexes more than two bands are seen in both the ν C-S region of the dithiocarbamate ligand (950-1050 cm^{-1}) and the ν C-S region of the ACDA ligand (750-850 cm^{-1}). However this fact cannot be used for excluding the bidentate bonding of the ligands, as bands due to both the ligands may appear in the same region.

In the far IR region of the spectra, there is a strong band around 350 cm⁻¹ which can be attributed to ν M-S. It was not possible to identify from the spectra, ν Cu-S band due to the dithiocarbamate and ν Cu-S due to the ACDA ligands; probably they might appear in the same region.

Table 4.5ESR data for the mixed ligand complexes of Cu(II)in chloroform

Complex	go	A (in Gauss)
[Cu(Me ₂ dtc)(ACDA)]	2.041	74
[Cu(Pipdtc) (n-BuACDA)]	2.042	80
[Cu(Pipdtc)(i-PrACDA)]	2.040	80
[Cu(Morphdtc)(n-BuACDA)]	2.039	76
[Cu(Morphdte)(i-PrACDA)]	2.043	76

4.3.5 ESR spectra

The ESR spectra of the complexes in chloroform solution were recorded. The g_0 and A_0 values of the complexes have been calculated and are given in Table 4.5

The ESR spectra of the complexes (vide Fig. 4.2) exhibit equidistant signals which are due to the coupling of the spin of the unpaired electron with nuclear spins of the copper atoms. The high field line is so narrow in the 'spectra that the hyperfine splitting due to 65 Cu becomes visible. No nitrogen hyperfine splitting was observed in the spectra, which indicates that the N-atom of the ACDA ligands is not involved in bonding. The g_o and A_o values of the present complexes are very similar to those reported for $[Cu(R_2dtc)_2]$. It may be noted here that the ESR parameters of $[Cu(ACDA)_2]$ and $[Cu(Et_2dtc)_2]$ have almost same values¹⁷¹.

The g_0 value for CuN_4 chromophore have values in the range 2.09-2.108, while that for CuN_2S_2 and CuS_4 chromophores are in the range 2.042-2.06 and 2.042-2.045 respectively¹⁸⁷. The present complexes have almost the same g_0 values (2.04) as that for CuS_4 core. Further A_0 values (~ 80 G) are also in favour of a CuS_4 core for these complexes: A_0 values for CuS_4 , CuS_2N_2 and CuN_4 are in the range 75-82, 90-95, 84-102 G respectively. Thus the ESR spectra give strong support for bidentate bonding of both ACDA and dithiocarbamate ligands through sulphur atoms resulting in a CuS_4 chromophore.

Chapter - 5

CHAPTER V

REACTION OF MIXED BENZOIC-XANTHIC ANHYDRIDES WITH COPPER(II) CHLORIDE

5.1 INTRODUCTION

The reactions of benzoic-dithiocarbamic anhydrides with iron(III) halides, copper(II) chloride and mercury(II) halides have yielded interesting halogenodithiocarbamato complexes^{113,125,199}. In this chapter, we are reporting the results of our studies on the interaction of benzoic-xanthic anhydrides with copper(II) chloride. Eventhough the reactions were tried with other metallic halides, it was only with copper(II) chloride we were able to isolate halogen containing (carbonodithioate) complexes with xanthate a definite stoichiometry. These type of copper(II) complexes containing xanthate and chlorine have not yet been reported in the literature.

5.2 EXPERIMENTAL

Materials:

Details about the reagents used and synthesis of mixed benzoic-xanthic anhydrides are given in Chapter II. Synthesis:

All the complexes, were prepared by the same general method given below : $CuCl_2.2H_2O$ (1.7g, 0.01 mole) dissolved in minimum quantity of acetone and the freshly prepared benzoic-xanthic anhydride (slightly greater than 0.015 mole) dissolved in diethyl

ether were mixed. This resulted in a bright green solution. After a certain period of time (approximately 45 minutes), the solution became dark brown and an orange red complex separated out. The complex was filtered off immediately, washed several times with dry diethylether and rapidly dried in vacuum over P_2O_5 . Characterisation

Details about the characterisation tachniques are given in Chapter II.

5.3 RESULTS AND DISCUSSION

The reaction between copper(II) chloride and benzoic-xanthic anhydride is very interesting and is almost like the clock 199a reactions reported in the literature The outstanding feature • of clock reactions is the sudden appearance of a product some time after the initial mixing of reagents. In the present cases, the bright green solution formed after the mixing of the anhydride and cupric chloride becomes dark brown on keeping for a definite period of time (this happens around 45 minutes) with subsequent separation of an orange red compound. If the product is not separated immediately from the reaction medium, it will be contaminated with yellow copper(I) xanthates. In the case of benzoic-ethylxanthic anhydrides its methy] or derivative, separation of a compound takes place only after 14 hours and hence isolation of the complexes without contamination is difficult.

In a few instances, instead of a green solution, a yellow solution was formed and the compounds were not separated even
after keeping the solution for a longer period. The condition for the formation of the green solution seems to depend upon the concentration of the reactants. During the course of the reaction, slow separation of benzoyl chloride, as indicated by its characteristic smell, was also noticed. Similar observations were made during the reaction of benzoic-dithiocarbamic anhydrides with copper(II), iron(III) and mercury(II) chlorides^{113, 125, 199}.

The analytical data (Table 5.1) for carbon, hydrogen, sulphur chlorine, and copper for these complexes establishes the empirical formula to be $[Cu_2(RXant)Cl]$ (R= isobutyl, sec-butyl, n-butyl, or isopropyl). The complexes on keeping slowly changes into a black solid. The infrared spectra of the decomposition product showed the absence of the xanthate ligands, and by elemental analysis it was found to have an approximate composition of cupric sulphide.

All the chloro xanthato complexes of copper were found to be insoluble in almost all the solvents like chloroform, ethyl alcohol nitrobenzene, and acetone. Furthermore, the complexes are diamagnetic in nature which suggest a +1 oxidation state for copper atoms in these complexes. Thus, during the formation of the complexes, copper is reduced from the +2 to the +1 oxidation state. Such type of reductions also take place during the reaction of alkali metal carbonodithioates with $salts^{200}$. copper(II) Another product, dialkyl ester of thioperoxydicarbonic acid (dixanthogen) is also formed during the

Table 5.1 Analytical data of the chloroxanthate complexes of Cu(I)

Complex	Sulphur(%) Found (Calcd.)	Copper(%) Found (Calcd.)	Chlorine(%) Found (Calcd.)
[Cu ₂ (i-BuXant)Cl]	20.55	40.45	11.20
$[C_6H_9C1Cu_2OS_2]$	(20.56)	(40.76)	(11.36)
[Cu ₂ i-PrXant)Cl]	21.40	42.60	11.70
[C4H7ClCu20S2]	(21.53)	(42.68)	(11.90)
[Cu ₂ n-BuXant)Cl]	20.50	40.36	11.25
$[c_5H_9c]cu_2os_2]$	(20.56)	(40.76)	(11.36)
[Cu ₂ sec-BuXant)Cl]	20.52	40.58	11.32
$[c_5\bar{H}_9c]cu_2os_2]$	(20.56)	(40.76)	(11.36)

reaction 200,201. Based on these informations, we suggest the following reaction scheme for the formation of the present chloro carbonodithioato complexes of copper(I):

$$2CuCl_{2} + 3R-O-C-S-C-C_{6}H_{5} \longrightarrow$$

$$SO_{2}(R-O-CSS)Cl + R-O-C-S-S-C-O-R + 3C_{6}H_{5}COCl$$

$$SSS_{2}(R-O-CSS)Cl + R-O-C-S-S-C-O-R + 3C_{6}H_{5}COCl$$

5.3.1 Electronic spectra

The solid state electronic spectra (Table 5.2) of the complexes only show one band in the visible region, which is around 22900 cm⁻¹. This high intensity band may be due to the charge transfer transition.

5.3.2 Infrared spectra

The infrared frequencies of the complexes are presented in the Table 5.3. The assignments given in the table are based on 149 the spectral studies of xanthates by Watt and McCornick. The ν C-O and ν C-S bands are guite sensitive to the environment, both with regards to the absorption frequency and intensity; hence assignments of these bands are often difficult. The shifts and splittings of the C-O band are observed in the spectra of many xanthate complexes, which suggest that the contribution of the resonance form (I)

. **(I)**

Complex	Absorption maximum	Assignments.
	cm ⁻¹	
[Cu ₂ (i-BuXant)C	1] 49100	Intraligand transition.
L	44600	
	40400	
	34700	77
	22900	Charge transfer transition.
[Cu ₂ (sec-BuXant)C1] 49000	Intraligand transition.
2	44500	
	40300	
	34800	
	22000	Charge transfer transition.
[Cu ₂ (i-PrXant)C	1] 49000	Intraligand transition.
2	44600	
	40200	•
	34700	
	22700	Charge transfer transition.
[Cu ₂ (n-BuXant)C	1) 49000	Intraligand transition.
يك م	44500	*
	40200	90
	34600	
	22800	Charge transfer transition.

Table 5.2 Electronic spectral data of the chloroxanthate complexes of Cu(I)

1	II	111	IV	Tentative assignments
2960 w	2960 m	2980 в	2960 в	ν(CH ₃)
2920 w	2920 w	2920 w	2920 w	ν(CH ₂)
2300 m	2300 m	2300 m	2300 w	
1980 w	1970 w	1970 m	1970 w	
1740 m	1740 m	1740 m	1740 m	
1620 m	1640 w	1630 m	1640 vw	
1450 w	1500 s	1 4 80 s	1450 m	ь(СН ₃)
1370 w	1370 m	1370 m	1370 m	
1210 s	1200 vs	1230 w	1220 m	vC-0
1020 s	1010 vs	1080 vs	1010 vs	р(СН ₃)
960 m	960 vw	960 m	960 vw	
850 w	870 m	870 m	870 m	
810 w	820 vw	820 m	820 vw	рсн ₂
520 s	551 в	515 m	551 s	νC-S
450 w	470 s	4 62 s	518 s	
425 vw	410 s	41 3 m	4 38 s	&(C-0-C)
346 s	340 m	350 w	345 m	νCu−S
306 vw	315 m	315 w	311m	
261 s	270 m	266 m	273s	νCu-Cl
210 w	240 m	235 m	237 m	

Table 5.3 Infrared spectral data of the chloroxanthate complexes of Cu(I)

s =strong; m = medium; w = weak; vw = very weak
I = [Cu₂(i-BuXant)Cl] II = [Cu₂(i-PrXant)Cl]; III = [Cu₂(n-BuXant)Cl] IV = {Cu₂(sec-BuXant)Cl}

is not inconsequential in the xanthate complexes (The contribution of this resonance form is considered as negligible by many workers¹). When contribution of this form is not negligible, two C-O stretching frequencies are observed, one around 1270 cm^{-1} and the other around 1110 cm^{-1} . Relative contribution of this resonance form is determined largely by the electron withdrawing nature of the metal ion. As the copper in the resent complexes is in the +1 oxidation state, the contribution of this form will be very little and in such cases only one broad intense band will be observed at a frequency in between that due to C=O and C-O

The spectra of the present complexes exhibit a strong band around 1230 cm⁻¹, which can be assigned to ν C-O. The medium band formed in the region 500-560 cm⁻¹ can be assigned to C-S stretching frequencies, as these bands very with regard to absorption frequency¹⁵⁶.

However. the far infrared spectra provide valuable information regarding the nature of the chlorine atoms in the complexes. The copper-chlorine stretching frequencies usually occur in the region 360-220 cm⁻¹; these frequencies should be expected to lie near the upper limit for the terminal chlorine, while they should be near the lower limit for the bridged chlorine^{1,156,202}. The intense band observed around 270 cm^{-1} in the present complexes of copper(I) can be attributed to the bridged chlorine atoms. The medium band around 360 cm^{-1} can be assigned to the Cu-S stretching frequencies.

Fig. 5.1 Schematic diagram of the postulated cluster type structure of the chlorocarbonodithioatocopper(J) complex.

The analytical data, the diamagnetic nature and the presence of bridging chlorine may suggest a cluster type structure for these complexes as indicated in Fig. 5.1.

Such instances of copper atoms occupying the four corners of a tetrahedron are known in many cluster type copper(I) $complexes^{1,203}$. However, the structure of the present copper(I) complexes can be confirmed only through X-ray crystal structure studies, which we could not undertake due to the lack of this facility in our institution.

Chapter - 6

CHAPTER VI REACTION OF MIXED BENZOIC-DITHIOCARBAMIC ANHYDRIDES WITH MERCURY(II) HALIDES

6.1 INTRODUCTION

Reactions of mixed benzoic-dithiocarbamic anhydrides with iron(III) halides and copper(II) chloride have given interesting halogenodithiocarbamato complexes. This prompted us to carry out the reactions of these anhydrides with mercury(II) halides. From such reactions, we have isolated halogeno dithiocarbamato complexes of mercury(II), [Hg(R₂dtc)X] (R₂=Et₂ or Pip; X=Cl, Br or I). A brief report of the synthesis of a similar complex with the 1950²⁰⁴. [HgCl(Et₂dtc)] appeared composition in An iododithiocarbamato complex of mercury with a similar empirical formula HgI(Et₂dtc), has been reported¹⁷⁹ in 1977. This complex was obtained by the reaction of HgI2 and Et4tds). Another complex [HgI2(EtAtds) was also formed during the reaction. In this chapter the synthesis and characterisation of these type of complexes are described.

6.2 EXPERIMENTAL

Materials:

Reagents used and the preparation of mixed benzoic-dithiocarbamic anhydrides are described in Chapter II. Synthesis:

All the complexes were prepared by the same general procedure. A solution of mixed benzoic-dithiocarbamic anhydride (slightly greater than 0.01mole) in acetone (50ml) was slowly added to a solution of mercury(II) halide (0.01mole) in acetone (200ml). The solution was stirred well. The complex separated as a white or cream coloured powder was filtered, washed with ether, and dried in a desiccator over anhydrous calcium chloride.

Characterisation

Details about the characterisation techniques are given in Chapter II.

6.3 RESULTS AND DISCUSSION

During the complex formation reaction between mixed benzoic-dithiocarbamic anhydrides and mercury(II) halides the benzoyl part of the mixed benzoic-dithiocarbamic anhydride is removed probably as benzoyl halides. The characteristic smel⁺ of benzoyl chloride was noted in the reaction of the anhydrides with mercury(II) chloride. Similar observations have been made during the reaction of mixed benzoic-dithiocarbamic anhydrides with Cu(II) chloride¹²⁵.

The halogeno dithiocarbamato mercury(II) complexes are white or cream coloured powders, which are moderately soluble in benzene, nitrobenzene, acetone, chloroform and carbon tetrachloride and are insoluble in ether. The complexes were found to be pure by TLC analysis using silica gel-G as the static

89

Hg(%) Found (Calcd.)	Halogen(%) Found (Calcd.)	S(%) Found (Calcd.)
51.60	9.02	16.48
(52.19)	(9.23)	(16.69)
50.20	8.78	15.90
(50.61)	(8.95)	(16.18)
46.40	18.25	14.55
(46.78)	(18.64)	(14.95)
45.35	18.00	14.20
(45.51)	(18.13)	(14.55)
41.88	26.27	13.18
(42.16)	(26.67)	(13.48)
40.75	25.67	12.90
(41.12)	(26.02)	(13.15)
	Hg(%) Found (Calcd.) 51.60 (52.19) 50.20 (50.61) 46.40 (46.78) 45.35 (45.51) 41.88 (42.16) 40.75 (41.12)	Hg(%)Halogen(%) Found (Calcd.)51.60 9.02 (S2.19) (52.19) (9.23) 50.20 8.78 (S0.61) (8.95) 46.40 18.25 (46.78) (18.64) 45.35 18.00 (45.51) 41.88 26.27 (42.16) (26.67) 40.75 25.67 (41.12)

Table 6.1 Analytical data of the Hg(II) complexes

Complex	Absorption_1 maxima.cm	Molec	ular weight
		Found	Calcd. (for a monomer)
[Bg(Et ₂ dtc)Cl]	42900		
-	28800 24200	724	384
[Hg(Et ₂ dtc)Br]	43000		
-	28840 24250	800	428
[Hg(Et ₂ dtc)]]	42900		
-	28900 24300	875	475.5
[Hg(Pipdtc)Cl]	43000		
	29000 24300	740	396
[Hg(Pipdtc)Br]	42900		
	29040 24360	810	440
[Hg(Pipdtc)]]	43000		
	29100 24380	94 0	487

Table 6.2 Molecular weights and electronic spectral data of the Hg(II) complexes

						Tentative
I	II	III	IV	V	VI a	ssignments
-	-	-	3500w	3500w	3500w	
-	-	-	2975 w	29 7 5w	2975w	
2900m	2900m	2900m	2900vw	2900vw	2900w	
-	-	_	2375w	23 7 5w	2375w	
1720m	1720m	1725m	-	-	-	
1520s	1525s	1525s	1525s	1520s	1520s	
1 4 60s	1 4 60s	1465s	1465s	1465s	1460s	νC-N
1375s	1380s	1380s	1380vw	1380vw	1370w	
1270w	1270w	1270w	1260s	1265s	1260vs	
1245w	1245m	1245m	1240s	1240s	1230w	
1140vw	11 4 5vw	1145vw	1120w	1140m	1140vw	
1030w	1025m	1020m	1025vw	1025w	1020w	νC=S (Band III)
980m	985m	985m	975m	975m	980w	νC=S (Band II)
910m	905m	910m	905m	905m	905w	νCSS (Band I)
130w	830w	830w	840vw	840vw	840w	
535w	530m	530m	535s	530s	540w	
)30s	335s	330s	340s	340s	340s	vM−S
165s	210s	~	270s	210s	-	∞M− X

Table 6.3 Infrared frequencies (in cm^{-1}) of Hg(II) complexes

strong; m = medium; w = weak; vw = very weak
[=[Hg(Et₂dtc)Cl]; II=[Hg(Et₂dtc)Br];III=[Hg(Et₂dtc)I]; IV=[Hg(Pipdtc)Cl]; #=[Hg(Pipdtc)Br]; VI=[Hg(Pipdtc)I].

bidentate dithiocarbamate symmetrically bound ligands and complexes with monodentate dithiocarbamate ligands have appeared in the literature 35 , and monodentate bonding is associated with a splitting of greater than 20 cm⁻¹ between bands II and III 205 . For the halogenodithiocarbamate complexes of mercury, this splitting is found to be ~40 cm⁻¹. The complexes exhibit two ν C-N bands: one at 1460 cm⁻¹ and other at ~ 1520 cm^{-1} . Similar observations been made has in the case of tris(diethyldithiocarbamato)nitrosylruthenium(III) for which there is definite proof for the presence of monodentate dithiocarbamate 206 ligand . The absence of band at ~1460 cm⁻¹ has been used to rule out monodentate bonding of the dithiocarbamate ligands in the [MoNO(R₂dtc)₃] complexes. All these facts clearly suggest a monodentate bonding of the dithiocarbamate ligand in these complexes.

All the complexes exhibit a strong band around 340 cm⁻¹ which can be assigned to the Hg-S stretching frequency²⁰², 207. The chlorodithiocarbamato mercury(II) complexes exhibit a strong band around 260 cm⁻¹ which may be due to the terminal Hg-Cl stretching frequency. The stretching frequencies involving bridging chlorine²⁰⁸ should have occured below 200 cm⁻¹. The bromo complexes also exhibit a band around 210 cm⁻¹ which may be due to the terminal Hg-Br vibration. Because of the similarities of the properties of iodo- dithiocarbamato mercury(II) complexes, a terminal iodine

Fig. 6.1 Schematic structure of the [Hg](Et₂dtc)]₂ complex.

atom is presumed to be present in the iododithiocarbamato mercury(II) complexes also. This could not be verified as we were not able to record spectra below 200 cm⁻¹.

The indications of dimers in benzene and the presence of terminal halogen atom and monodentate dithiocarbamate ligand suggest that the complexes might have a structure similar to that of the iododiethyldithiocarbamatomercury(II) complex reported by Chie Chung¹⁷⁹.

Chapter - 7

CHAPTER VII

REACTIONS OF MIXED BENZOIC-DITHIOCARBAMIC ANHYDRIDES WITH COPPER(II) BROMIDE

7.1 INTRODUCTION

bis(dithiocarbamato)-µ-dichlorodicopper(II) Α series of complexes have been prepared by reacting mixed benzoic-dithiocarbamic anhydride with copper(II) chloride in acetone¹²⁵. But when this reaction was carried out with copper(II)bromide, analogous bromo complexes with definite stoichiometry were not obtained. It was thought that the solvent acetone has some destabilizing effect on the bromo complexes formed during the reaction. Therefore, the reaction was carried out in other solvents. While investigating the reaction in diethylether, we were able to isolate an interesting series of complexes in which copper atoms exist in +2 In this chapter the synthesis and +3 oxidation state. and characterisation of these complexes are described.

7.2 EXPERIMENTAL

Materials:

Details about the reagents used and preparation of mixed benzoic-dithiocarbamic anhydrides are given in chapter II. All the other reagents used were of Analar grade purity. Synthesis:

All the complexes were prepared by the same general method given below:

Anhydrous $CuBr_2$ (1.1g, 0.005 mole) and the appropriate freshly recrystallised benzoic dithiocarbamic anhydride (0.006 mole), both dissolved in minimum quantity of diethylether, were mixed with stirring. An immediate complex formation was observed. The black crystalline complex was filtered off and washed with diethylether and dried in vacuum over P_2O_5 .

Characterisation:

Details about the characterisation techniques are given in Chapter II.

7.3 RESULTS AND DISCUSSION

All the complexes are black crystalline solids. They are quite stable in dry atmosphere. They are insoluble in non-polar solvents like chloroform, diethylether and carbon tetrachloride, but moderate solubility in acetone, acetonitrile, have nitrobenzene, DMF and DMSO. Analytical data (vide Table 7.1) for copper, bromine, nitrogen and sulphur established the general empirical formulae of the complexes to be $[Cu_5(R_2dtc)_6Br_6]$ (R₂=Me₂, Et₂, Pip or Morph).

Analytical data, conductance and magnetic measurements and infrared and electronic spectral data furnish enough clues to suggest that the copper atoms in the present complexes are in a mixed oxidation state of +2 and +3, and also that the complexes contain two units of copper(III) dithiocarbamate and one unit of copper(II) dithiocarbamate and $Cu_2Br_6^{2-}$ species. The molecular formulae of the complexes may $\mathbf{b} \mathbf{e}$ shown as $[Cu_3(R_2dte)_6]^{2+}[Cu_2Br_6]^{2-}$. A similar type of complex

TABLE 7.1 Analytical data of the mixed oxidation state complexes of copper

Complex (Empirical formula)	C(%) Found (Calc.)	H(%) Found (Calc.)	N(%) Found (Calc.)	Cu(%) Found (Calc.)	Br(%) Found (Calc.)	S(%) Found (Calc.)
[Cu ₃ (Et ₂ dtc) ₆]Cu ₂ Br ₆	21.26	3.48	4.92	18.70	28.35	22.75
^{[C} 30 ^H 60 ^{Br} 6 ^{Cu} 5 ^N 6 ^S 12 []]	(21.36)	(3.59)	(4.98)	(18.84)	(28.42)	(22.81)
[Cu ₃ (Pipdtc) ₆]Cu ₂ Br ₆	24.48	3.35	4.73	18.00	27.19	21.82
^{[C} 36 ^H 60 ^{Br} 6 ^{Cu} 5 ^N 6 ^S 12 []]	(24.58)	(3.44)	(4.78)	(18.07)	(27.26)	(21.87)
[Cu ₃ (Pyrrdtc) ₆]Cu ₂ Br ₆	21.44	2.77	4.98	18.85	28.58	22.92
^{[C} 30 ^H 48 ^{Br} 6 ^{Cu} 5 ^N 6 ^S 12 []]	(21.52)	(2.89)	(5.02)	(18.97)	(28.63)	(22.97)
[Cu ₃ (Morphdte) ₆]Cu ₂ Br ₆	20.28	2.69	4.68	17.85	27.01	21.68
[C ₂₄ H ₄₈ Br ₆ Cu ₅ N ₆ O ₆ S ₁₂]	(20.35)	(2.73)	(4.75)	(17.94)	(27.08)	(21.73)

 $[Cu_3(Bu_2dtc)_6]^{2+}[Cd_2Br_6]^{2-}$ was synthesised by Cras et al¹⁴⁰. by the reaction of Cu(n-Bu₂dtc)₂ with CdBr₂ and Br₂ in stoichiometric amounts. The X-ray crystal study of the complex has also been reported. This compound contains copper(II) dithiocabamate unit sandwiched between two copper(III) dithiocarbamate units with sulfur bridging between the copper atoms as shown in the Fig. 7.1.

7.3.1 Electrical conductance

The molar conductance values for 10^{-3} M solution of 1:1 electrolyte in nitrobenzene are in the range 25-30 ohm⁻¹ cm² mole⁻¹; while those for 2:1 electrolytes are in the range 50-65 ohm⁻¹ cm² mole⁻¹. All the present complexes show a conductance value around 60 ohm⁻¹ cm² mole⁻¹, which suggests that the complexes acts as 2:1 electrolytes in nitrobenzene. The observed conductance may be due to the dissociation of the complex into two Cu(III) dithiocarbamate ions, one molecule of Cu(II) dithiocarbamate and one [Cu₂Br₆1²⁻ ion, as indicated in the following equation:

 $[Cu_3(R_2dtc)_6]^{2+}[Cu_2Br_6]^{2-}$

 $2[Cu(R_2dtc)_2]^{+} + [Cu(R_2dtc)_2] + [Cu_2Br_6]^{2-}$ Similar type of dissociation has been observed in the case of the complex, $[Cu_3(Bu_2dtc)_6]^{2+}[Cd_2Br_6]^{2-}$.

7.3.2 Magnetic measurements

All the complexes have a $\mu_{\text{eff.}}$ value of about 2.3 BM (Table 7.2). In order to get the contribution due to $\left[\operatorname{Cu}_2\operatorname{Br}_6\right]^{2-}$ unit, we

 $-\chi_{\rm D} \times 10^6$ $\chi_{\rm M}' \times 10^6$ $\mu_{\rm eff.}$ in BM $x_{\rm M} \times 10^6$ Complex (cm³mole⁻¹) $(cm^{3}mole^{-1})$ $(cm^{3}mole^{-1})$ at 28 ± 2° C $[Cu_3(Et_2dtc)_6][Cu_2Br_6]$ 1375 811 2186 2.3 [Cu₃(Pipdtc)₆][Cu₂Br₆] 763 1617 2380 2.4 [Cu₃(Pyrrdtc)₆][Cu₂Br₆] 776 1614 2390 2.4 [Cu₃(Morphdtc)₆][Cu₂Br₆] 1400 780 2180 2.3 $(IPA)_2[Cu_2Br_6]$ 333 327 660 1.3

Table 7.2Magnetic susceptibilities and magnetic moments of themixed oxidation state complexes of copper

$x_{\rm M}$	= Molar	susceptibility	^х м'	=	Corrected	molar	susceptibility

 $\chi_{\rm D}$ = Diamagnetic susceptibility

have synthesised $[(IPA)_2]^{2+}[Cu_2Br_6]^{2-}$ by the reaction of stoichiometric quantities of IPABr with $CuBr_2$ in alcohol (where IPA= isopropyl ammonium cation) and measured its χ_{M} value at room temperature. The χ_{M} value of this compound was found to be 660 cm^3 mole⁻¹. Assuming nonmagnetic interaction between the cationic species, $[Cu_3(R_2dtc)_6]^{2+}$ and its anionic species $[Cu_2Br_6]^{2-}$, the χ_{M} values due to $[Cu_{2}Br_{6}]^{2-}$ species was subtracted from the $\chi_{\mathbf{M}}$ value of the complexes. This gives a magnetic moment of 1.9 BM. which suggests the presence of only one unpaired electron in the cationic species $[Cu_3(dtc)_6]^{2+}$. This further indicates that out of the three copper atoms in the cationic species only one copper atom is in the +2 oxidation state and the other two are in the +3 oxidation state. A close similarity is seen in the magnetic moment value of the $[Cu_3(Bu_2dtc)_6]^{2+}[Cd_2Br_6]^{2-}$ (1.9 BM) and the corrected value for the cationic species of the present complexes suggesting similar structures for the cationic species of both the complexes.

7.3.3 Electronic spectra

The electronic spectral bands (solid state) and their assignments are given in the Table 7.3. As a low energy band is absent in the spectra of the complexes the possibility of tetrahedral structure can be excluded. The complexes show a charge transfer band around 22500 cm⁻¹. This indicates the presence of copper(II) dithiocarbamate unit in the present complexes as this band is observed in all the copper(II) dithiocarbamate complexes. Further, the complexes show a band

Fig. 7.1 Electronic spectra of [Cu₃(Pipdtc)₆][Cu₂Br₆]. (200-500 nm)

Fig. 7.2 Electronic spectra of [Cu₃(Pipdtc)₆][Cu₂Br₆]. (500-1100 nm)

Table 7.3 Molar conductance and electronic spectral data of the complexes

Complex	Molar conductance in nitrobenzene*	Solid state electronic spectra Absorption maxima, cm ⁻¹
[Cu ₃ (Et ₂ dtc) ₆][Cu ₂ Br ₆]	60	13700, 19000, 22700, 36400
[Cu ₃ (Pipdtc) ₆][Cu ₂ Br ₆]	65	13900, 19000, 23000, 36500
[Cu ₃ (Pyrrdtc) ₆][Cu ₂ Br ₆]	62	14700, 19000, 23300, 39000
[Cu ₃ (Morphdtc) ₆][Cu ₂ Br ₆] 60	14300, 19000, 22000, 37000

* Concentration = 10^{-3} mole lit.⁻¹

around 26000 cm⁻¹ and a band around 14000 cm⁻¹ which are exhibited more or less in these positions by $[Ni(R_2dtc)_2]$ and $[Cu(R_2dtc)_2]^+$. As Ni(II) is isoelectronic with Cu(III), these bands might have originated from the copper(III) dithiocarbamate unit. Further Ni(II) dithiocarbamates have square planar structures and hence the same stereochemistry can be assigned for copper(III) dithiocarbamate units. The band around 14000 cm⁻¹ can be assigned to a ${}^{1}A_{1g}$ transition. Furthermore, the complexes also show a shoulder band around 19000 cm⁻¹. This might be due to $[Cu_2Br_6]^{2-}$ species in the complexes as this band is observed almost at the same position in the electronic spectra of the complex, (IPA)₂Cu₂Br₆²⁻.

7.3.4 Infrared spectra

The infrared spectral bands and the assignments of the relevant bands are given in Table 7.4. The most important criterion for a copper dithiocarbamate complex in mixed oxidation is the presence of two C-N and two Cu-S stretching state frequencies in the infrared spectrum of the complexes. In the spectra of the present complexes, two bands due to C-N stretching frequencies are observed, one around 1500 cm^{-1} and the other around 1540 cm⁻¹. This suggests the presence of copper(II) dithiocarbamate and copper(III) dithiocarbamate units in the complexes, as the 1500 cm^{-1} band is observed in the spectra of copper(II) dithiocarbamates and the 1500 cm^{-1} band is observed for the copper(III) dithiocarbamates. It is also observed that the intensity of the band around 1540 $\rm cm^{-1}$ is almost twice that of the

I	II	III	IV	Tentative assignments of the more relevant bands
2960w	2920w	2955w	2960w	· · · · · · · · · · · · · · · · · · ·
2920w	2840w	2920w	2925w	
2300w	2310w	2320w	2300w	
1540s	15458	15 40 8	1540w	νC-N of the Cu(III) unit
1500m	1 4 80s	1470m	1500m	νC-N of the Cu(II) unit
1430m	1 44 0s	1440m	1430m	
1380w	1340m	1380w	1380w	
1350w	1345m	1340w	1355w	
1290m	1290m	1290m	1285m	
1260s	1265m	1270s	1260s	
1240s	1235m	1230s	1250s	
1210w	1200s	1210w	1210w	
1165w	1165w	1170w	1165w	
1100s	1110s	1100s	1110s	
<u> </u>				

Table 7.4 Infrared spectral data of the mixed oxidation state complex of copper (in cm^{-1})

v = strong; m = medium w = weak I = $[Cu_3(Et_2dtc)_6] [Cu_2Br_6]$ II = $[Cu_3(Pyrrdtc)_6] [Cu_2Br_6]$ IV = $[Cu_3(Morphdtc)_6] [Cu_2Br_6]$ Contd..

I	II	III	IV	Tentative assignments of the more relevant bands
1050m	1045m	1055m	1045s	
1020s	1010s	1025s	1025s	νCSS
995w	990w	990w	995w	
965w	970w	970w	965w	
875m	880m	880w	880m	
815w	810w	810m	820w	
70 m	675m	700m	710m	
650w	660w	650w	650w	
530s	525s	530s	520s	
440w	450w	430w	440w	
390s	390s	395s	4 00s	νCu-S of the Cu(III) unit
3 4 0s	340s	340s	335s	νCu-S of the Cu(II) unit
305m	310w	305m	310w	
290m	295m	290w	290w	
260w	265m	269w	260w	

v = strong; m = medium w = weak I = $[Cu_3(Et_2dtc)_6] [Cu_2Br_6]$ III = $[Cu_3(Pyrrdtc)_6] [Cu_2Br_6]$

II = $[Cu_3(Pipdtc)_6] [Cu_2Br_6]$ IV = $[Cu_3(Morphdtc)_6] [Cu_2Br_6]$ band at 1500 cm⁻¹, which suggests that there are two copper(III) dithiocarbamate units and one copper(II) dithiocarbamate unit. The complexes exhibit the Cu-S stretching frequency due to the copper(II) dithiocarbamate at 360 cm⁻¹ and that due to copper(III) dithiocarbamate at 360 cm⁻¹. Intensity relationship observed for ν C-N is also seen in the case of ν Cu-S: The intensity of the band at 410 cm⁻¹ is almost twice as that of the band at 360 cm⁻¹. This further confirms the presence of two copper(III) units and one copper(II) unit.

Mechanism of formation of the complexes

Mixed valence complexes are usually found in systems involving free radicals. So in the formation of these complexes, the involvement of free radicals are expected. The mechanism for the formation of the complexes is not very clear. However we suggest the following free radical mechanism:

$$\begin{array}{c} \downarrow C_{u}Br_{2} \rightleftharpoons 2C_{u}Br_{1}^{+} + [\subseteq u_{2}Br_{6}]^{2} \\ C_{6}H_{5}-C-S-C-NR_{2} + Br^{-} \longrightarrow C_{6}H_{5}COBr + R_{2}dtc^{-} \\ O & S \\ CuBr^{+} + 2R_{2}dtc^{-} \longrightarrow C_{6}H_{5}COBr + Br^{-} \\ C_{6}H_{5}COBr \longrightarrow C_{6}H_{5}CO. + Br. \\ Cu(R_{2}dtc)_{2} + Br. \longrightarrow Cu(R_{2}dtc)_{2}^{+} + Br^{-} \\ 2C_{6}H_{5}CO. \longrightarrow (C_{6}H_{5}CO)_{2} \\ 2[Cu(R_{2}dtc)_{2}]^{+} + [Cu(R_{2}dtc)_{2}] + [Cu_{2}Br_{6}]^{2} \longrightarrow [Cu_{3}(R_{2}dtc)_{6}]^{2} [Cu_{2}Br_{6}]^{2} \\ [Cu_{3}(R_{2}dtc)_{6}]^{2} [Cu_{2}Br_{6}]^{2} \end{array}$$

Conclusion

Based on the above discussions a structure similar to the $[Cu_3(Bu_2dtc)_6]^{2+}[Cd_2Br_6]^{2-}$ can be assigned to the present complexes. A schematic diagram of the cationic species of this complex is given in the Fig. 1.2.

Chapter - 8

CHAPTER VIII

REACTION OF THIONYL CHLORIDE WITH BIS(DITHIOCARBAMATO)COPPER(II)

COMPLEXES

8.1 INTRODUCTION

The synthesis and properties of a copper(III) complex, 135 [CuBr₂(Bu₂dtc)], has been reported earlier by Beurskens *et al.* The crystal structure of this complex shows a planar four coordination of the copper atom. Analogous chloro complexes were also reported. These copper(III) dithiocarbamato complexes are prepared by reaction of bromine or chlorine with either copper(II) or copper(I) dithiocarbamates. While investigating the reaction of thionyl chloride with copper(II) dithiocarbamates, we have found a simple and alternative route to the chloro dithiocarbamato complexes of copper(III). In this chapter, our studies on the synthesis and characterisation of these copper(III) complexes are described.

8.2 EXPERIMENTAL

Materials:

Details about the reagents and preparation of sodium dithiocarbamates are given in Chapter II.

Synthesis

All the complexes were prepared by the same general method given below:

Sodium salt of dithiocarbamate (0.02 mole-0.36g of Na⁺Et₂dtc⁻; 0.35g of Na⁺Pipdtc⁻; 0.32g of Na⁺Pydtc⁻ or 0.35g of Morphdtc) was dissolved in 100 ml water. Copper sulphate pentahydrate (0.01 mole; 0.25 g.) was dissolved in 50 ml water and this was added to the ligand solution with constant stirring. The copper(II) dithiocarbamate formed is extracted into the benzene layer by shaking with 50 ml portions of benzene in a separating The extracts were collected and was dried using anhydrous funnel. Thionylchloride in carbon tetrachloride was sodium sulphate. added drop by drop into the benzene solution with vigorous stirring. The dark brown colour of the solution changes gradually into red with immediate separation of a red complex. The complex filtered, washed several times formed was with carbon tetrachloride.

Characterisation

Details about the characterisation techniques are given in Chapter II.

8.3 RESULTS AND DISCUSSION

When thionyl chloride was added to a saturated solution of bis(dithiocarbamato)copper(II) complex in benzene a red complex was immediately precipitated out. The complexes decompose on exposure to moisture. However the compounds when kept in dry condition are very stable. In the presence of polar solvents such as acetone or ethanol, these compounds are readily decomposed to form the corresponding copper(II) dithiocarbamates.

Analytical data for copper, chlorine, nitrogen and sulphur, as summarised in Table 8.1, established the general empirical formulae of the complexes to be $[Cu(R_2dtc)Cl_2]$ (R=Et₂, Pip, Morph or Pyrr). The complexes are insoluble in almost all solvents. Therefore molar conductance values could not be determined.

8.3.1 Magnetic measurements

The molecular formula of the complexes suggest that the complexes are in the +3 oxidation state, and hence are of d^8 ions. The complexes of d⁸ having square planar structure are usually diamagnetic. All the present complexes might have square planar structure, as they are diamagnetic. The small amount of residual paramagnetsm (~ 0.4 BM) could be due to the temperature Such residual paramagnetism independent paramagnetism. is observed in the planar nickel(II) dithiocarbamate square complexes. The complexes, therefore, must be in the +3 oxidation state.

8.3.2 Electronic Spectra

The electronic spectral data of these complexes are given in Table 8.2. The complexes exhibit bands around 14600 cm⁻¹, 27000 cm⁻¹ and 27000 cm⁻¹. Thus the spectra of the present copper(III) complexes almost resemble those of the red coloured square planar Ni(II) complexes like [CuCl₂(Bu₂dtc)], [CuBr₂(Bu₂dtc)₂) etc. The band at 14600 cm⁻¹ may be assigned to ${}^{1}A_{1q} \longrightarrow {}^{1}B_{1q}$ transition.

Table 8.1 Analytical data of the Cu(III) complexes

Complex	N(%) Found (Calc.)	Cu(%) Found (Calc.)	Cl(%) Found (Calc.)	S(%) Found (Calc.)	
[Cu(Et ₂ dtc)Cl ₂]	4.80	22.42	28.15	22.58	
(C5H10C12CuNS2)	(4.95)	(22.48)	(28.27)	(22.68)	
[Cu(Pipdtc)Cl ₂]	4.68	21.50	24.02	21.66	
[C6H10Cl2CuNS2]	(4.75)	(21.56)	(24.06)	(21.76)	
[Cu(Pyrrdtc)Cl ₂]	4.89	22.58	25.18	22.74	
[C5H8C12CuNS2]	(4.99)	(22.64)	(25.26)	(22.84)	
[Cu(Morphdtc)Cl ₂]	4.67	21.36	23.75	21.56	
[C5H8C12CuNOS2]	(4.72)	(21.42)	(23.90)	(21.61)	
Table 8.2 Magnetic and electronic spectral data of the Cu(III) complexes.					
---	---	-------------------------------------	-----	--	--
Complex.	Absorption maximam Assignments cm ⁻¹				
[Cu(Et ₂ dtc)Cl ₂]	43300	Intraligand transition	0.5		
	27200	Charge transfer transition			
	14600	$^{1}A_{1g} \rightarrow ^{1}B_{1g}$			
[Cu(Pipdtc)Cl ₂]	43200	Intraligand transition	0.4		
	27200	Charge transfer transition			
	14600	$^{1}A_{1g} \rightarrow ^{1}B_{1g}$			
[Cu(Morphdtc)Cl ₂]] 43200	Intraligand transition	0.4		
	27200	Charge transfer transition			
	14700	$^{1}A_{1g} \rightarrow ^{1}B_{1g}$			
[Cu(Pyrrdtc)Cl ₂]	43300	Intraligand transition	0.4		
	27200	Charge transfer transition			
	14600	$^{1}A_{1g} \rightarrow ^{1}B_{1g}$			

The band at - 27000 cm⁻¹ is apparently due to charge transfer transitions and the band at - 43200 cm⁻¹ can be attributed to the electronic transitions within the ligand.

8.3.3 Infrared Spectra

Infrared spectral data of the complexes and its tentative assignments of the relevant bands are presented in Table 8.3.

On comparing the spectrum of dichlorocomplexes with its corresponding dithiocarbamate complexes, significant deviations are found in the C-N stretching frequencies. They occur around 1580 cm⁻¹ in the chloro complexes, while they are around 1500 cm⁻¹ in the copper(II) dithiocarbamates. In dithiocarbamato complexes, the presence of C-N stretching frequency around 1500 cm⁻¹ is accepted as arising from a polar structure as given below,

and the contribution of this resonance form will be increased in the complexes with higher C-N stretching frequencies. Thus, the dichloro complexes, which show the C-N stretching frequencies around 1580 cm^{-1} , can be thought to have much higher contribution of this resonance form than that in the copper(II) dithiocarbamates.

The special feature of the dithiocarbamato ligand is an additional π electron flow from the nitrogen atom to the sulphur

Table 8.3 Infrared frequencies of copper(III) dithiocarbamato complexes

[Cu(Et ₂ dtc)Cl ₂]	[Cu(Pipdtc)Cl ₂]	[Cu(Pyrrdtc)Cl ₂]	[Cu(Morphdtc)Cl ₂]	assignments
3220w	3260w	3240w	3580w	
2980w	2940w	2960w	2920w	
1630w	1640w	1640w	1610w	
1585m	1585m	1580m	1580m	νC=N
1 4 60s	-	-	1520m	
1440s	1 4 40vs	1430vs	1435vs	
1380m	-	-	1380vw	
1350w	1350m	1340w	1340w	
1260m	1270w	1255w	1260m	uC-N
1210m	1230w	1235w	1240m	DC-N
1100w	1120vw	1160sh	1160s	
1080w	1080w	1090w	1100m	
1005w	1010w	990w	1020w	
-	960w	970vw	970m	νaC-S
920w	940w	935vw	885w	
	870vw	880vw	875w	
855w	850m	850w	850w	
730vw	710m	705w	720m	
605w	610s	600w	590m	

Contd....

Tentative

1	1	5
---	---	---

[Cu(Et ₂ dtc)Cl ₂]	{Cu(Pipdtc)Cl ₂ }	[Cu(Pyrrdtc)Cl ₂]	[Cu(Morphdtc)Cl ₂]	Tentative assignments
580m	560w	555w	550w	
500m	520m	515vw	520m	
460w	470w	465vw	470vw	
40 0s	405s	400s	410 s	ν Cu-S
310s	305s	310m	305m	vCu-Cl
280w	295w	290w	280w	
260w	255w	250w	265w	
225w	220w	220w	220w	

atoms via a planar delocalised π orbital system. The net effect is a strong electron donation, resulting in a high electron density on the metal. The stability of the complexes is possible because of the high oxidation state of copper and also because of the presence of electron withdrawing chlorine ligands.

The far IR spectra of the complexes have been studied and the spectral data are presented in Table 8.3. The strong band seen around 310 $\rm cm^{-1}$ in the spectra of the present complexes may be due to Cu-Cl stretching vibration. The Cu-S stretching frequencies were observed around 400 cm^{-1} in all the present Cu(III) complexes where as this band is observed around 360 cm^{-1} in copper(II) complexes. This suggests that Cu-S bond has greater strength in the chloro complex. The increase in bond strength can be explained on the basis of M.O.scheme set up from the E.S.R. spectroscopic studies of [Cu(Et₂dtc)]. The studies indicated the unpaired electron to be situated in an antibonding σ orbital, which is mainly composed of the metal and sulphur orbitals. Upon the oxidation of $Cu(R_{2}dtc)_{2}$ to $[Cu(R_{2}dtc)Cl_{2}]$ this electron will be removed causing in an increase in Cu-S bond strength.

In the earlier preparations, chlorine gas was used for the oxidation of $[Cu(dtc)_2]$ to $[Cu(dtc)Cl_2]$. Eventhough thionylchloride is used in the present preparations, it appears that, here also chlorine is acting as the oxidising agent. Chlorine might have formed in the reaction medium by the interaction of thionyl chloride with oxygen of the atmosphere. We propose the following reaction scheme for the formation of the

present copper(III) dithiocarbamato complexes:

$$\begin{array}{rcl} \operatorname{socl}_{2} &+ \ 1/2 & \operatorname{o}_{2} & \longrightarrow & \operatorname{so}_{2} \operatorname{cl}_{2} \\ && \operatorname{so}_{2} \operatorname{cl}_{2} & \longrightarrow & \operatorname{so}_{2} &+ & \operatorname{cl}_{2} \\ \left[\operatorname{Cu}(\operatorname{R}_{2} \operatorname{dtc})_{2} \right] &+ & \operatorname{cl}_{2} & \longrightarrow & \left[\operatorname{Cu}(\operatorname{R}_{2} \operatorname{dtc}) \operatorname{cl}_{2} \right] &+ & \operatorname{R}_{2} \operatorname{dtc} \\ \end{array}$$

Cases of thionylchloride acting as chlorinating agent are already known. The involvement of oxygen in such reactions has 211 been noted by Pillai and Bhatt in the chlorination of quinoxaline systems using thionyl chloride.

In the preparation of $[Cu(dtc)Cl_2]$ using chlorine gas, if correct stoichometry is not maintained, chances of forming other types of complexes like $[CuCl_3(R_2dtc)]$ in which copper has a final oxidation state of IV are also there. Where as the preparation of using thionyl chloride, $[Cu_2(dtc)Cl_2]$ complexes in good purity are obtained, even if the reactants are not added in the correct stoichometric quantities. This might probably due to the slow release of chlorine during the reaction.¹ Thus the present method appears to be a simple and more convenient alternative route to the dithiocarbamato copper (II) complexes.

SUMMARY

The thesis deals with the synthesis and characterization of some metal complexes of 1,1-dithio ligands such as dithiocarbamates, xanthates and 2-aminocyclopent-1-ene-1-dithiocarboxylate(ACDA) and its N-alkyl derivatives.

The thesis is divided in to eight chapters. Chapter I presents a general discussion on the metal complexes of 1,1-dithio chelate ligands. Scope of the present investigation is also described in this chapter. Chapter II gives detailed information concerning the actual experimental work.

Chapter III deals with the synthesis and magnetic and spectral behaviour of the isopropylaminocyclopent-1-eneldithiocarboxylate (i-PrACDA) complexes of Cr(III), Mn(III), Fe(III), Co(III), Ni(II) and Cu(I). The empirical formulae of the complexes agree with [M(i-PrACDA)] for the chromium, manganese, iron and cobalt complexes, [Ni(i-PrACDA)] for the nickel complex and [Cu(i-PrACDA)] for the copper complex. The complexes, except the copper complex, have moderate solubility in nonpolar solvents. The low solubility indicates a polymeric structure for the copper complex. The present complexes are found to be more soluble than the corresponding complexes formed by ACDA. The complexes behave nonelectrolytes in nitrobenzene. Electronic spectra and **as** magnetic behaviour suggest that the complexes of Cr(III), Mn(III), Fe(III), Co(III) are octahedral complexes and that of Ni(II) is Infrared and NMR studies revealed that square planar. the nitrogen atom of i-PrACDA is not involved in bonding The

properties of the present complexes are similar to that of the dithiobenzoates and xanthates.

discussion the Chapter IV is a on synthesis and characterisation of some new mixed ligand complexes containing dithiocarbamate and ACDA ligands . Five complexes have been bis(dithiocarbamato)-µ-dichloro synthesised by reacting dicopper(II) complexes with ACDA and its N-alkyl derivatives. [Cu(Me₂dtc)(ACDA)], They are [Cu(Pipdtc)(n-BuACDA)], [Cu(Pipdtc)(i-PrACDA)], [Cu(Morphdtc)(i-PrACDA)] and [Cu(Morphdtc)(n-BuACDA)]. All the complexes are red in colour. The complexes have μ_{eff} , values around 1.9 BM and behave as non-electrolytes in nitrobenzene. ESR, IR and electronic spectra of the complexes have been studied, and the spectral data suggest that the present mixed ligand complexes have structures similar to that of simple dithiocarbamate complexes.

In Chapter v. details about the isolation and characterisation of some chloroxanthato complexes of copper(I) are described. The complexes were synthesised by reacting mixed benzoic-xanthic anhydride with CuCl₂ in acetone. These reactions appear to behave like the clock reactions. The complexes have the general empirical formula, [Cu₂(RXant)Cl] (R=i-Bu, sec-Bu, n-Bu or The complexes are insoluble in almost all solvents i-Pr). indicating a polymeric structure for these complexes. The complexes are diamagnetic in nature. The far IR spectra indicate that the chlorine in these complexes acts as a bridging ligand. A cluster type structure has been suggested for these complexes.

119

Chapter VI deals with the characterisation of the complexes isolated from the reaction of mixed benzoic-dithiocarbamic anhydrides with mercury(II) halides. The complexes are of the type, [HgX(R₂dtc)] (R₂=Et₂ or Pip, X=Cl, Br or I). The complexes are non-electrolytes in nitrobenzene. They are found to be dimeric in benzene solution. The IR spectra of the complexes indicate monodentate bonding for the dithiocarbamate ligand and absence of halogen bridges. Analytical and spectral studies, in these cases revealed that the structure of these complexes is similar to that of the reported dimeric complex, [HgI(Et₂dtc)]₂: This complex has terminal iodine atoms and two mercury(II) ions bridged by unidentate Et₂dtc ligand, and was obtained by reacting tetraethylthiuram disulphide with HgI2.

Synthesis and characterisation of the complex isolated from the reactions of mixed benzoic-dithiocarbamic anhydrides with copper(II) bromide are presented in Chapter VII. The complexes are insoluble in solvents like chloroform, diethylether and carbon tetrachloride; but, they have moderate solubilities in acetone, methanol and nitrobenzene. The complexes are 2:1 electrolytes in nitrobenzene. The complexes of the are type, $[Cu_3(R_2dtc)_6]^{2+}[Cu_2Br_6]^{2-}$ (R₂=Me₂, Et₂, Pip or Morph). Analytical data, conductance and magnetic measurements and infrared and electronic spectral data furnish enough clues to suggest that the copper atoms in these complexes are in a mixed oxidation state of .+2 and +3 , and also that complexes contain two units of Cu(III) dithiocarbamates and one unit of Cu(II) dithiocarbamate. A similar type of complex $[Cu_3(Bu_2dtc)_6]^{2+}[Cd_2Br_6]^{2-}$ was synthesised by Cras *et al.*¹⁴⁰ by the reaction of $[Cu(n-Bu_2dtc)_2]$ with CdBr₂ and Br₂ in stoichiometric amounts.

Chapter VIII deals with the synthesis and characterisation of complexes formed by the reaction of thionyl chloride with $(Cu(R_2dtc)_2)$ complexes. The complexes are of the type $(Cu(R_2dtc)Cl_2)$ (R=Et₂, Pip, Morph or Pyrr), and are insoluble in almost all solvents. Magnetic and spectral (IR and electronic) behaviour of the complexes suggest that these are copper(III) complexes.

References

REFERENCES

- 1. D. Coucouvanis, in Progress in Inorganic Chemistry, S. J. Lippard, Ed., Interscience, New York, Vol 11, 234, 1970.
- 2. E. E. Reid, Organic Chemistry of Bivalent Sulfur, Chemical Publishing Co., New York, Vol. IV, 1962.
- 3. von Braun, Ber. 35, 817 (1902).
- 4. M. Delepine, Bull. Soc. Chim. Fr., 3, 643 (1908).
- 5. S. Takazi and Y. Tanaka, Yakugaku Zasshi, 69, 298 (1949).
- 6. K. A. Jensen, M. Athoni, B. Kagi, C. Larsen and C. T. Pederson, Acta Chem. Scand., 22, 1 (1968).
- 7. L. E. Lopatecki and I. Newton, Can. J. Bot., 30, 13 (1952).
- 8. E. Biilman and N. V. Due, Bull. Chem. Soc. Fr., 35, 384 (1924).
- 9. A. Hantzsch and H. Bucerius, Ber. 59, 793 (1926).
- 10. D. Twiss, J. Am. Chem. Soc., 49, 491 (1927).
- 11. S. R. Ramdas, P. S. Srinivasan, J. Ramachandran, V. V. S. K. Sastry, Synthesis, 8, 605 (1983).
- T. Takeshima, M. Yokoyama, T. Imamoto, M. Akano, and M. Asaba, J. Org. Chem., 34, 730 (1969).
- 13. B. Bordas, P. Sohar, G. Matolcsy and P. Bachesi, J. Org. Chem., 37, 1727 (1972)
- 14. K. Gleu and R. Schwab, Angew. Chem., 62, 320 (1950).
- 15. A. T. Pilipenko and N. V. Ul'ko, Zhur. Anal. Khim., 10, 299 (1955); Chem. Abstr., 50, 2356f (1956).

- 16. Hulanicki., Talanta, 14, 1371 (1967).
- 17. R. Eisenberg, in Progress in Inorganic Chemistry, S. J. Lippard, Ed., Interscience, New York, Vol. 12, 301 (1970).
- 18..D. Coucouvanis, in Progress in Inorganic Chemistry, S. J. Lippard, Ed., Interscience, New York, Vol 26, 301 (1979)
- 19 .P. P. Burns, F. P. McCullough and C. A. McAuliffer in Advances in Inorganic and Radiochemistry, H. J. Emeleus and A. G. Sharpe, Eds., Academic Press, New York, Vol. 23, (1980).
- 20. J. Willemse and J. A. Cras, J. J. Steggerda, and C. P. Keijzers, Structure and Bonding, Springer-Verlag, New York, Vol. 28, 83 (1976).
- 21. J. J. Steggerda, J. A. Cras and J.Willimse, Recl. Trav. Chim. Pays-Bas, 100, 41 (1981)
- 22. A. M. Bond and R. L. Martin, Coord. Chem. Rev, 54, 23 (1984)
- 23. V.Tamminen and E. Hjelt, Suomen Kemi, 23B, 39 (1950).
- 24. L. Cambi and C. Coriselli, Gazz. Chim Ital., 66, 779 (1936).
- 25. J. P. Fackler, Jr. and D. G. Holah, Inorg. Nucl. Chem. Lett., 2, 251 (1966).
- 26. E. C. Alyea, D. C. Bradley, M. F. Lappert and A. R. Sanyer, Chem. Commun., 1064 (1969).
- 27. D. C. Bradley and M. H. Gitlitz, Chem. Commun., 289 (1965).
- 28. D. C. Bradley and M. H. Gitlitz, J. Chem. Soc., A, 1152 (1969).

- 29. G. Aravamudan, D. H. Brown and D. Venkappayya, J. Chem. Soc. A, 2744 (1971).
- 30. F. A. Cotton and J. A. McCleverty, Inorg. Chem., 3, 1398 (1964).
- 31. D. A. Brown, W. K. Glass and M. A. Burke, Spectrochim. Acta, 32A, 137-143 (1976).
- 32. F. Bonati and R. Ugo, J. Organomet. Chem. 10, 257 (1967).
- 33. E. C. Alyea and B. C. Ramaswamy, Inorg. Nucl. Chem. Lett., 6, 441 (1970).
- 34. D. C. Bradley, M. H. Gitlitz, J. Chem. Soc., A, 1152 (1969).
- 35. H. C. Brinkhoff and A. M. Grotens, Recl. Trav. Chim. Pays-Bas, 90, 252 (1971).
- 36. A. H. Ewald, R. L. Martin, I. G. Ross and A. H. White, Proc. Roy. Soc., A, (London), 280, 235 (1964).
- 37. K. Nakamoto, J. Fujita, R. A. Condrate and Y. Morimoto, J. Chem. Phys., 39, 423, (1963).
- 38. G. Durgaprasad, D. N. Sathyanarayana and C. C. Patel, Canad. J. Chem., 47, 631 (1969).
- 39. M. L. Shankaranarayana and C. C. Patel, Acta Chim, Scand., 19, 1113 (1965).
- 40. M. J. Janssen, Rec. Trav. Chim. Pays-Bas, 79, 454, 464 (1960).
- 41. G. St. Nikolov, N. Jordanov, and I. Havezov, J. Inorg. Nucl. Chem., 33, 1059 (1971).
- 42. H. P. Koch, J. Chem. Soc., 401 (1949).

- 43. C. P. Keijzers, H. J. M. DeVries, and A. Van der Avoird, Inorg. Chem., 11, 1338 (1972).
- 44. R. Dingle, Inorg. Chem., 10, 1141 (1971).
- 45. C. K. Jorgensen, J. Inorg. Nucl. Chem., 24, 1571 (1962).
- 46. C. K. Jorgensen, Advances in Chemical Physics, I. Prigogine, Ed., Interscience, New York, Vol. 5, 33, 1963.
- 47. B. G. Werden, E. Billing, and H. B. Gray, *Inorg. Chem.*, 5, 78 (1966).
- 48. L. Cambi and L. Malatesta, Chem. Ber., 69, 2067 (1936).
- 49. L. Cambi, A. Cagnasso, and A.Tanara, Atti. Accad. Lincei, 13, 254 (1931).
- 50. L. Cambi and L. Szego, Chem. Ber., 66, 656 (1933).
- 51. L. Cambi and L. Szego and A. Cagnasso, Atti. Accad. Lincei, 15, 266, 329 (1932).
- 52. D. J. Brown, Ph. D. Thesis, Syracuse Univ., New York, 1963.
- 53. A. H. Ewald, R. R. Martin, I. G. Ross and A. H. White, Proc. Roy. Soc. (London), A, 280, 235 (1964).
- 54. A. H. White, R. Roper, E. Kokot, H. Waterman and R. L. Martin, Aust. J. Chem., 17, 294 (1964).
- 55. R. L. Martin and A. B. White, in Transition Metal Chemistry, R. L. Carline, Ed., Marcel-Decker, New York, Vol. 4, 113, 1968.
- 56. A. D. Toy, S. H. H. Chaston, J. R. Pilbrow, and T. D. Smith, Inorg. Chem., 10, 2219 (1971).

- 57. J. R. Pilbrow, A. D. Toy, and T. D. Smith, J. Chem. Soc.A, 1029 (1969).
- 58. R. D. Bereman and D. Nalewajek, Inorg. Chem., 16, 2687 (1977).
- 59. R. Richards C. E. Johnson, and H. A. O. Hill, J. Chem. Phys., 53, 3118 (1970).
- 60. C. Flick and E. Gelerinter, Chem. Phys. Lett., 23, 422 (1973).
- 61. G. M. Larin, V. V. Zelentsov, Y. V. Rakitin and M. E. Dyatkina, Russ. J. Inorg. Chem., 17, 1110 (1972).
- 62. O. Piovesana and G. Cappuccilli, Inorg. Chem., 11, 1543 (1972).
- 63. S. Lahiry and V. K. Anand, Chem. Commun., 1111 (1971).
- 64. W. J. Newton and B. J. Tabner, J. Chem. Soc. Dalton Trans., 466 (1981)
- 65. R. K. Cowsik, G. Rangarajan and R. Srinivasan, Chem. Phys. Lett., 8, 136 (1970).
- 66. E. R. Menzel and R. Wasson, *J. Magn. Resonance*, 23, 285 (1976).
- 67. J. G. M. Van Rens and E. de Boer, Chem. Phys. Lett., 31, 377 (1975).
- 68. J. G. M. Van Rens, M. P. A. Vigers, and E. de Boer, Chem. Phys. Lett., 28, 104 (1974)
- 69. M. Colapietro, A. Vaciago, D. C. Bradley, M. B. Hursthouse andI. F. Rendall, Chem. Commun., 743 (1970).
- 70. P. C. Healy and A. H. White, *J. Chem. Soc., Dalton Trans.*, 1883 (1972).

- 71. J. G. Leipoldt and P. Coppens Inorg. Chem., 12, 2269 (1973).
- 72. A. H. Ewald, R. L. Martin, E. Sinn and A. H. White. Inorg. Chem., 8, 1837 (1969).
- 73 J. C. Leipoldt, and P. Coppens, Inorg. Chem., 12, 2269 (1973).
- 74. B. H. O'Connor and E. N. Masten, Acta Cryst., 21, 828 (1966).
- 75. A. Vaciago, C. Gramacciolo, and A.Pullia, *Ric.Sci.* Suppl., 30 (12), 2528 (1960).
- 76. F. W. B. Einstein, and J. S. Field, Acta Cryst., B 30 2928 (1974).
- 77. A. M. Bond, J. R. Thackeray and A. T. Casey, Inorg. Chem., 12, 887 (1973).
- 78. W. Stricks and S. K. Chakravarti, Anal. Chem., 34, 508 (1962).
- 79. D. J. Halls. A. Townshend and P. Zuman, Anal. Chim. Acta, 40, 459 (1968).
- 80. T. H. Randle, T. J. Cardwell and R. J. Magee, Aust. J. Chem., 28, 21 (1975).
- 81. R. Chant, A. R. Hendrickson, R. L. Martin and N. M. Rohde, Aust. J. Chem., 26, 2533 (1973).
- 82. G. S. Patterson and R. H. Holm, Inorg. Chem., 11, 2285 (1972).
- 83. R. Chant, A. R. Hendrickson, R. L. Martin and N. M. Rohde, Inorg. Chem., 14, 1894 (1975).
- 84. L. H. Pignolet, G. S. Patterson, J. F. Weiher and R. H. Holm. Inorg. Chem., 13, 1263 (1974).
- 85. G. Cauquis and D. Lachenal, Inorg. Nucl. Chem. Lett., 9, 1095 (1973).

- 86. R. M. Golding, K. Lehtonen and B. J. Ralph, J. Inorg. Nucl. Chem., 36, 2047 (1974).
- 87. R. M. Golding and K. Lehtonen, Aust. J. Chem., 27, 2083 (1974).
- 88. R. M. Golding, L. L. Kok, K. Lehtonen and R. K. Nigam, Aust. J. Chem., 28, 1915 (1975).
- 89. T. Ohishi, K. Kashiwabara and J. Fujita, Bull. Chem. Soc. Jpn., 60, 583 (1987).
- 90. R. G. Bhattacharyya, S. P. Mukhopadhyay and D. C. Bera, Inorg. Nucl. Chem. Lett., 16, 571 (1980).
- 91. R. Mital, N. Jain and T. S. Srivastava, Inorg. Chim. Acta, 166, 135 (1989).
- 92. M. Kita, K. Yamanari and Y. Shimura, Bull. Chem. Soc. Jpn., 62, 23(1989).
- 93. M. Kita, A. Okuyama, K. Kashiwabara and J. Fujita, Bull. Chem. Soc. Jpn., 63, 1994 (1990).
- 94. J. M. Canich and F. A. Cotton, Inorg. Chim. Acta, 159, 163 (1989).
- 95. B. S. Gray, A. L. Singh and R. Duxit, Trans. Met. Chem., 13(5), 35(1988).
- 96. A. A. Gutierrez and R. L. Ballester, J. Chem. Soc., Dalton Trans., 2, 537 (1988).
- 97. V. F. Toropova, G. K. Budnikov and N. A. Ulakhovich, Zh. Obshch. Khim., 45, 380(1975).
- 98. V. F. Toropova .G. K. Budnikov and N. A. Ulakhovich, Talanta, 25, 263 (1978).

- 99. V. F. Toropova, G. K. Budnikov, N. A. Ulakhovich and I. P. Vater, Russ. J. Gen. Chem., 45, 1329 (1975).
- 100. L. F. Serebritskaya and F. M. Tulyupa, Russ. J. Inorg. Chem., 21, 762 (1976).
- 101. G. K. Budnikov, A. V. Il'yasov, V. I. Morozov and N. A. Ulakhovich, Russ. J. Inorg. Chem., 21, 255 (1976).
- 102. G. K. Budnikov, V. F. Toropova and N. A. Ulakhovich, Russ. J. Gen. Chem., 44, 473 (1974).
- 103. G. K. Budnikov and N. A. Ulakhovich, Russ. J. Gen. Chem., 46, 1117 (1976).
- 104. G. K. Budnikov, N. A. Ulakhovach, O.Yu. Kargina and L. G. Fomina, Russ. J. Gen. Chem., 48, 1527 (1978).
- 105. C. A. Tsipis, C. C. Hadjikostas and G. E. Manoussakis, Inorg. Chim. Acta, 23, 163 (1977).
- 106. L. H. Pignolet, J. Am. Chem. Soc., 95, 4537 (1973)
- 107. M. Kostanski and S. Magas, Radiochem. Acta, 27, 27 (1980).
- 108. N. V. Duffy, Inorg. Chim. Acta, 47, 31 (1981).
- 109. R. Chant, A. R. Hendrickson, R. L. Martin and N. M. Rohde, Aust. J. Chem., 26, 2533 (1973).
- 110. A. N. Bhat, R. C. Fay, D. F. Lewis, A. F. Lindmark and S. H. Strauss, Inorg. Chem., 13, 886 (1974).
- 111. J. M. Hope, R. L. Martin, D. Taylor and A. H. White, Chem. Commun., 99 (1977).
- 112. R. L. Martin and A. H. White, Inorg. Chem., 6, 712 (1967).

- 113. C. G. R. Nair and K. K. M. Yusuff, Inorg. Nucl. Chem. Lett., 11, 753 (1975).
- 114. G. L. Miessler, G. Stuk., T. P. Smith, K. W. Given, M. C. Pallazzotto and L. H. Pignolet, Inorg. Chem., 15, 1982 (1976).
- 115. L. Cambi, Z. Anorg. Chem., 20, 247 (1941).
- 116. L. Malatesta, Gazz. Chim. Ital., 70, 541, 729 (1940).
- 117. D. Petridis, A. Simopoulos and A. Kostikas, Phys. Rev. Lett., 27, 1171 (1971).
- 118. A. Simopoulos, D. Petridis, A. kostikas and H. H. Wickman, Chem. Phys., 2, 452 (1973).
- 119. L. H. Pignolet, R. A. Lewis and R. H. Holm, J. Am. Chem. Soc., 93, 360 (1971).
- 120. L. H. Pignolet, R. A. Lewis and R. H. Holm, Inorg. Chem., 11, 99 (1972).
- 121. J. G. M. Van der Linden and H. G. J. Van der Roer, Inorg. Chim. Acta, 5, 254 (1971).
- 122. K. K. M. Yusuff, M. Mohammed Basheer and M. Gopalan, Polyhedron, 2(8), 839 (1983).
- 123. W. J. Newton, B. J. Tabner, J. Chem. Soc. Dalton Trans, 2, 466 (1981).
- 124. A. Hendrickson, R. L. Martin and D. Taylor, Chem. Commun., 843 (1975).
- 125. C. G. R. Nair and K. K. M. Yusuff, J. Inorg. Nucl. Chem., 39, 281 (1977).

- 126. R. M. Golding, C. M. Harris, K. J. Jessop and W. C. Tennant, Aust. J. Chem., 25, 2567 (1972).
- 127. E. A. Pasek and D. K. Straub, Inorg. Chem., 11, 259 (1972).
- 128. R. L. Chant, A. R. Hendrickson, R. L. Martin and N. M. Rohde, Inorg. Chem., 14, 1894 (1975).
- 129. M. Bonamico, G. Dessy, V. Fares and L. Scaramuzza, J.Chem. Soc., Dalton Trans, 1258 (1974).
- 130. L. R. Gahan and M. J. O'Connor, Chem. Commun., 68 (1974).
- 131. R. Y. Saleh and D. K. Straub, Inorg. Chem., 13, 3017 (1974).
- 132. H. C. Brinkhoff, J. A. Cras, J. J. Steggerda and J. Willemse, Recl. Trav. Chim. Paya-Bas, 88, 633 (1969).
- 133. J. P. Fackler, Jr., A. Avdeef and J. G. Fischer, Jr., J. Am. Chem. Soc., 92, 6972 (1970).
- 134. H. C. Brinkhoff, Rec. Trav. Chim., 90, 377 (1970).
- 135. P. T. Beurskens, J. A. Cras and J. J. Steggerda, Inorg. Chem. 7, 810, (1968).
- 136. J. Willemse and J. A. Cras, *Rec. Trav. Chim. Pays-Bas*, 91, 1309 (1972)
- 137. B. K. Bharat and K. B. Pandeya, J. Inorg. Nucl. Chem., 43, 1942 (1981).
- 138. J. P. Fackler, Jr., A. Avdeef and R. G. Fischer. Jr., J. Am. Chem. Soc., 95, 774 (1973).
- 139. K. L. Brown, R. M. Golding, P. C. Healey, K. J. Jessop and W. C. Tennant, Aust. J. Chem., 27, 2075 (1974).

- 140. J. A. Cras, J. Willemse, A. W. Gal and Hummelink-Peters, B.
 G. M. C., Rec. Trav. Chim. Pays-Bas, 92, 641 (1973).
- 141. W. C. Zeise, Acad. R. Sci. Copenhagen, 1, 1 (1815).
- 142. G. Winter, Reviews in Inorganic Chemistry, 2, 253 (1980).
- 143. R W. Gable, B. F. Hoskins, Robyn J.Steen, Edward R.T. Tiekink and George Winter, Inorg. Chim. Acta, 74, 15 (1983).
- 144. D. G. Holah and C. N. Murphy, Can. J. Chem., 49, 2726 (1971).
- 145. D. R. Daktenieks and D. P. Graddon, Aust. J. Chem., 24, 2509 (1971).
- 146. A. Doadrio Villarejo, A. Doadrio, R. Lozano and V. Ragel, An. Quim. Ser. B, 77 (1), 50 (1981).
- 147. F. Galsbol and C. E. Schaffer, Inorg. Synth. 10, 42 (1967).
- 148. S. Merlino and E. Sartori, Acta Cryst. Section B, 28, 972 (1972).
- 149. G. W. Watt and B. J. McCormick, J. Inorg. Nucl. Chem., 27, 898 (1965).
- 150. R. Y. Saleh and D. K. Straub, Inorg. Chem., 13, 1559 (1974).
- 151. B. Das, P. C. Roy, J. Inst. Chem. (India), 58(1), 24 (1986).
- 152. R. L. Carlin and A. E. Siegel, Inorg. Chem., 9, 1587 (1970).
- 153. B. Claudio, C. A. Ghilardi, A. Meli, S. Midollini and A. B. Orlandini, Inorg. Chem., 24(6), 932 (1985).
- 154. J. Chatt, L. A. Duncanson and L. M. Venanzi, Suomen Kemi., B 29, 75 (1956).

- 155. J. Chatt, L. A. Duncanson and L. M. Venanzi, *Nature*, 177, 1042 (1956).
- 156. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination compounds, 4th Ed., Wiley Interscience, New York, 1986.
- 157. G. W. Watt and B. J. McCormick, *Spectrochim. Acta*, 21, 753 (1965).
- 158. C. N. R. Rao and R. Venkataraghavan, Spectrochimica Acta, 18, 541 (1962).
- 159. L. H. Little, G. W. Poling and J. Leja, *Can. J. Chem.*, 39, 745 (1961); 39, 1783 (1961).
- 160. D. Coucouvanis and J. P. Fackler, Jr., *Inorg. Chem.*, 6, 2047 (1967).
- 161. T. N. Lockyer and R. L. Martin, Progress in Inorganic Chemistry, S. J. Lippard, Ed., Interscience, New York, Vol. 27, 1980
- 162. B. F. Hoskins and B. P. Kelly, Chem. Commun., 45, (1970).
- 163. D. Coucouvanis, S. J. Lippard and J. A. Zubieta, *J. Am. Chem. Soc.* 91, 761 (1969).
- 164. S. Merlino and F. Sartori, *Acta Cryst.*, Sect. B, 28, 972 (1972).
- 165. C. L. Raston and A. H. White, Aust. J. Chem., 29, 739 (1976).
- 166. R. R. Eley, R. R. Myers and N. V. Duffy, *Inorg Chem.*, 11, 1129 (1972).
- 167. Y. Watanabe and K. Yamahata, Sci. Pap. Inst. Phys. Chem. Res. (Tokyo), 64, 71 (1975).

- 168. K. C. Pattnaik and D. Sen, J. Indian Chem. Soc., 48 (4), 319 (1971).
- 169. K. Nag and D. S. Joardar, Can. J. Chem., 54, 2827 (1976); Inorg. Chim. Acta, 17, 111 (1976); 14, 133 (1975).
- 170. P. Thomas and A. Povoda, Z. Chim., 11, 153 (1971).
- 171. S. N. Choi and J. R. Wasson. Inorg. Chem., 14 1964 (1975).
- 172. R. D. Bereman and J. R. Dorfman, Polyhedron, 2, 1013 (1983).
- 173. S. K. Singh, Y. P. Singh, A. K. Rai and R. C. Mehrotra, Indian J. Chem., 28 A, 585 (1989)
- 174. S. K. Singh, Y. P. Singh, A. K. Rai and R. C. Mehrotra, Indian J. Chem., 28 A, 771 (1989).
- 175. D. S. Joardar, S. K. Mondal and K. Nag, Bull. Chem. Soc. Jpn., 50, 1489 (1977).
- 176. R. D. Bereman, D. M. Baird and C. Moreland, *Polyhedron*, 2, 59 (1983).
- 177. S. F. Mason, J. Chem. Soc., 3619 (1958).
- 178. C. Furlani, A. Flamini, A. Sgamellotti, C. Bellitto and O. Piovesana, J. Chem. Soc., Dalton Trans., 2404 (1973)
- 179 Chieh Chung, Can. J. Chem., 55, 65, (1977).
- 180. A.Weissberger, P. S.Proskaner, J. A. Riddich and E. E.Troops., Organic Solvents, Interscience, New York, Vol. VII. 1956
- 181. S Ramachandra Rao, Xanthates and Related Compounds, Marcel Dekker, New York, 1971.

- 182. D. S. Tarbell and R. P. F. Sharrer, J. Org. Chem., 27, 1972 (1962).
- 183. P. G. Nair and C. P. Joshua, *Tetrahedron Lett.*, **47**, 4785 (1972).
- 184. L. R. Darji and A. Shah, J. Indian Chem Soc, 59, 657 (1982).
- 185. A. I.Vogel, A Text Book of Quantitative Inorganic Analysis, 3rd edn. Longmans, London, 1964.
- 186. B. N. Figgis and R. S. Nyholm, J.Chem. Soc., 4190 (1958).
- 187. R. S. Drago, Physical Methods in Chemistry, W.B. Saunders Company, London, 1969.
- 188. G. Dyer, J. G. Hartley and L. M. Venanzi, *J. Chem. Soc.*, 1293 (1965).
- 189. G. Motosky, B. Bordas, M.Hamran and M. Tidorez, Acta Phytopathol., 6, 381 (1971).
- 190. B.Singh and B. Gupta, Indian J. Chem., 204, 526 (1981).
- 191. B. Bordas, P. Sohar, G. Matoksy and P. Berencii, *J. Org. Chem.*, 37, 1227 (1972).
- 192. D.S. Joardar, S. K. Mondal and K. Nag, Bull. Chem. Soc., Japan, 50, 1489 (1977).
- 193. P.J. McCarthy and M.T. Vala, Mol. Spect., 25, 17 (1973).
- 194. A.B.P.Lever, Inorganic Electronic Spectroscopy, Elsevier, New York, 1988.
- 195. S.A.Cotton, Coord. Chem. Rev., 8, 184 (1972).
- 196. G.St.Nikolov, Inorg. Chim. Acta, 4, 610 (1970).

- 197. S.I. Shupack, E.Billing, R. J. M. Clark, R. Williams and H.B.Gray, J. Am. Chem. Soc., 86, 4594 (1964).
- 198. R.B.Sandell, Colorimetric Determination of Trace Metals, Interscience, New York, 1950.
- 199. K.K.M. Yusuff and E.J.Mathew, Synth. React. Inorg. Met.-org. Chem., 19, 15 (1989).
- 199a. P. Warneck, J. Chem. Educ., 66, 334 (1989)
- 200. I.N.Plaskin, N.A.Surovaskaya and V.V.Shikova, Zhur. Priklad. kim., 32, 1876 (1959).
- 201. R.W.Gable and G.Winter, Inorg. Nucl. Chem. Letters, 16, 9 (1980).
- 202. D.M.Adams, Metal-ligand and Related Vibrations, Arnold, London, 1967.
- 203. F.H.Jordine, in Advances in Inorganic Chemistry and Radiochemistry, H. J.Emeleus and A. G. Sharp, Eds., Academic Press, New York, Vol. 17, 116, 1975.
- 204. V. Tamminen and E. Hjelt, Suomen Kemi, 23B, 39 (1950).
- 205. D. A. Brown, W. K. Glass and M. A. Burke, Spectrochim. Acta, 32A, 137 (1976).
- 206. A. Domenicans, A. Vaigo, L.Zambonelli, P. L. Zambonelli, P. L. Loarder and L. M. Venanzi, *Chem. Commun.*, 476 (1966).
- 207. L. Sacconi and A. Sabatini, J. Inorg. Nucl. Chem., 25, 1389 (1963).
- 208, G. E. Gates and D. Ridley, J. Chem. Soc., A, 166 (1964).

- 209. W. J. Geary, Coord. Chem. Rev., 7, 81 (1971).
- 210. D. R. Bloomquist and R. D. Willett, J. Am. Chem. Soc., 103, 2615 (1981).
- 211. S. Bhatt, Ph. D. Thesis, Cochin University of Science and Technology.