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Indian seas. The present study reports a brief accountlofense, slowly moving hurricanes cause the largest re-
upper-ocean response and the characteristics of inertsglonse with a rightward bia¥. The system moved with
oscillation associated with the September 1997 cyclonednmoderate speed of ~5.5 m/s when it crossed the buoy
the BoB. 82 nm away from it as a cyclonic storm. It has been noticed

Three-hourly observations of wind, current and sea suhat SST exhibited a slight warming trend before the passage
face temperature (SST) during 15 September to 21 Octolafithe cyclone with significant diurnal oscillation (Figure
1997 from a moored data buoy (DS4) located in the nortB). SST recorded a maximum of 31°G4on 22 September,
ern BoB (190010’N, 88°5934"E) at a depth of 1700 m followed by a drop of more tharf@, attributed to the loca-
are utilized in this study (Figure 1). Wind observationtion of the buoy on the right side of the track along with
made at a height of 3 m above the sea surface are extrap@derate speed of the cyclone. SST had almost regained
lated to 10 m height and wind stress is computed followirthe pre-cyclone condition within a period of two weeks. The
Yelland and Tayld¥. Current observations are made at amplitude of diurnal oscillation in SST was much less af-
depth of 2.5 m below the sea surface. ter the passage of the cyclone.

A depression was formed southeast of Machilipatnam Surface-current observations during the study period
by 00:00 UTC at 159\ and 82.8E on 23 September exhibit intriguing features with clockwise rotation. North-
1997, which intensified into a deep depression by 12 UTirtheastward current with an average speed of 38 cm/s is
and started moving northward. The system attained cyclobserved at the data buoy location before the passage of
nic strength by 24 September and became a severe cydlee cyclone. The speed increased rapidly and reached a
nic storm by 27 September before landfall at Bangladeshaximum value of 148.8 cm/s on 26 September (Figure
coast (Figure 1). The met-ocean data collected from DSJ. There is a time lag between the maximum wind stress
buoy which was located 82 nautical mile (nm) to the righspeed) and maximum current speed observed at the buoy
of the cyclone track, captured the variability induced blpcation. The exact time lag to respond to wind forcing
this system. could not be estimated due to the coarse sampling inter-

Wind observations exhibit gradual reversal in wind diresral of 3 h. Clockwise rotation in current direction with a
tion from southwesterly to northeasterly, characterizingeriodicity of ~36 h was observed during the period from
the transition period. Wind speed before the cyclone ext6 September to 15 October. The rotation which started
bited moderate wind, which reached as high as 20 ngsnultaneously with the arrival of the cyclone and the pe-
(06 UTC on 26 September) with corresponding wind stres®d matching the local inertial period, suggests the pres-
of 0.99 N/nt during the passage of the cyclone and therence of inertial oscillation forced by the cyclone.
after decreased to an average speed of 5 m/s (Figure 2).Progressive vector diagram (PVD) islined to identify

The response of the ocean surface to the passage ofttremean flow and the extent of clockwise rotation in sur-
cyclone is dependent on a number of air—sea parametdege current. PVD indicates mean flow towards the north-

east with seven well-defined cycles (Figure 4). The inertial
oscillation started on 25 September and continued till 19
75 80 85 9 95 October (three weeks) without significant change in mean

BT > 25 direction. The maximum radius of oscillation observed was
[ T 1 ~20 km.
M ] Among the various methods of spectral analysis, rotary
// spectral analysis is ideal to estimate the dominant frequen-
20 i ol cies in vector measurements. Rotary spectrum as explained
-~ [ INDIA x’ﬁ/ % @Ds4 in Gonelld® is used to find the frequency of inertial oscil-
£ | s lation. However, the sign of the rotary coefficient differs
%; - ‘23{.24 Bay of Bengal from that of Gonella, to link the clockwise rotation with
g 15 2 lo0007 ' negative rotary coefficieAt
- | 21./ A -] The rotary spectrum of the current at the buoy site dur-
2 ﬁ ing the passage of the cyclone indicated the presence of
g 1 inertial oscillation with significant peak at the inertial
e Data Buoy 10 band in the clockwise component’(%nd considerable
— — Depression difference between the positive and negative rotary com-
—s— Cyclonic Storm ponents (Figure 5). The rotary coefficient, which indicates
—x—Severe Cyclonic Storm the strength and type of inertial oscillation at the time of
85 920 955 inertial peak is —0.99, which indicates strong circular in-

ertial oscillation. The inertial frequency (period) observed
at the buoy site is 0.67 cpd (36 h), which is higher (lower)

Figure 1. Cyclone track and data buoy location during the Septembdp@n the local inertial freQu_enCy of 0.653 cpd (36.75 h)
1997 cyclone in the Bay of Bengal. and hence shows a blue shift.
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Figure 2. Wind speed, direction and wind stress at DS4 during the September 1997 cyclone.
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Figure 3. Time series of current speed (CS), direction (CD) and SST at DS4 during the September 1997 cyclone.
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Figure 4. Progressive vector diagram of surface current at DS4 duhgure 5. Rotary spectra of surface current at DS4 during the Sep-
ing the September 1997 cyclone. tember 1997 cyclone.

The software for wavelet analysis provided by Torrenagal characteristics of inertial oscillation. It has been
and Comp@&' is used to compute the Morlet wavelet specsbserved that maximum energy is observed in the inertial
trum of current vectors to identify the time-dependent sidggand from 25 September to 7 October (Figure 6). However,
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Figure 6. Wavelet spectra of surface current vectors at DS4 during the September 1997 cyclone.
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Figure 7. Rotary spectra of wind at DS4 during the September 1997

cyclone.
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Spectral analysis of wind and SST was carried out to
find the possible oscillations in the inertial band. The rotary
spectrum of the wind during the study period exhibited a
spectral peak in the inertial band (0.69 cpd) with higher
blue shift (Figure 7). The corresponding rotary coefficient
of —0.83 supports the role of wind force in generating the
inertial oscillation. Inertially rotating wind vector with
periodicity equal to or less than half the inertial period
enhances the amplitude of the inertial oscillatfdf
Presence of significant diurnal oscillation in the wind
provided a favourable condition for the generation of in-
ertial oscillation. Power spectrum analysis of SST indicated
strong diurnal oscillation and weak signals in the near in-
ertial period at 0.69 cpd (Figure 8). Prite=ported near-
inertial oscillation in SST as the signature of horizontal
advection of SST, which plays a significant role in the upper-
ocean heat balance.

The present study reports the ocean response and the
characteristics of inertial oscillation generated by the
tropical cyclone.The inertial peak in surface current is
observed at 0.67 cpd with a blue shift. Jacebal.® re-
ported that the blue shift in inertial oscillation is due to
the presence of internal waves. Due to lack of subsurface
measurements, the present study could not address the
vertical/horizontal transfer of inertial energy. Corgiar
vely high inertial amplitude of 148.8 cm/s corresponding
to a wind stress of 0.99 N/mand the spectral peak near
the local inertial frequency indicate that transfer of momen-
tum was high’>. The moderate speed of the system, iner-
tially rotating wind vector along with the location of the
buoy which was on the right side of the track, together
contributed to the observed high inertial amplitude.

Figure 8. Power spectrum of SST at DS4 during the September 1997L. Brink, K. H., Observations of the response of thermocline currents

cyclone.
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