
CHAPTER V

INFLUENCE OF OCEANIC INHOMOGENITIES ON SOUND PROPAGATION

-SOME CASE STUDIES

5.1 INTRODUCTION

5.1. 1 Oceanic inhomogenities and acoustics

In reality, the ocean is an extremely complex and

variable medium. In such a complex environment more complex

models of propagation incorporating statistical

characteristics of the variations might be necessary to

obtain reliable predictions of the sound field. Ocean

currents , internal waves and small -scale turbulence perturb

the horizontally stratified character of the sound speed and

cause spatial and temporal fluctuations in sound

propagation . Boundaries of large currents , such as the Gulf

Stream and Kuroshio , represent frontal zones separating

watermasses with essentially different characteristics.

Within these frontal zones , temperature , salinity , density

and sound speed suffer strong variations and hence the

acoustic propagation ( Levenson and Doblar , 1976 ). Large

eddies in the ocean are mostly observed near intense frontal

currents . The parameters of synoptic eddies vary over rather

wide range. The diameter of an eddy ranges from 25 to 500km.

Analysis of propagation studies through a cyclonic Gulf

Stream eddy revealed considerable variations in the

propagation conditions ( Vastano and Owens , 1973).

Considerable fluctuations of the intensity and phase of

sound waves arise in the presence of internal waves

(Stanford , 1974 ). We know that such characteristics of the
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ocean water as salinity, temperature, density, and current

velocity do not vary smoothly with depth, but in

discontinuous fashion. Such fine layered structure leads to

multipath of sound transmission and hence cause additional

fluctuations of phase and amplitude to the sound signal

(Stanford,1974). Thicknesses of these layers typically vary

from tens of centimetres to tens of metres.

From the previous chapters it is inferred that the

thermocline characteristics at deep and shallow regions in

the Arabian Sea are influenced by a number of oceanographic

phenomena namely meso-scale eddies, internal waves,

upwelling , sinking, undercurrent etc. These processes result

in the formation of various thermocline features such as

step structures, sharp vertical gradient and bottom

quasi-homogeneous layer with varying thermocline gradient

and thickness. In association with the temporal and spatial

variabilities in the thermocline one can expect fluctuations

in the amplitude and phase of acoustic signals transmitted

through the medium.

In the present study , some of the typical thermocline

features identified from the previous chapters are used to

delineate their role on acoustic propagation. A

range-dependent numerical model is used for the simulation

of propagation conditions.

5.1.2 DESCRIPTION OF THE MODEL

The basis of all the theoretical models of underwater

sound propagation is the wave equation.
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where V2 : Laplacian operator , 0 :Velocity potential, c
speed of sound and t: time

The parabolic equation to the wave equation is of the form

alp ap

z +
-'--+21k ---- + ko2 2

(n - 1)p = 0
az 0r

where n : refraction index which is a function of depth(z),

range ( r).and azimuth ( e), p : pressure field ( function of
range and depth ), ko:reference wave number (w/c0), :source
frequency and co : reference sound speed.

This equation is numerically solved by implicit finite

difference technique (Lee and McDaniel , 1988) which is a
marching solutions . An advantage of this solution is that

the calculation necessarily includes many receiver depths

and is therefore the results are directly suitable for

contouring.

The parabolic equation model (PE-IFD) is quite distinct

from the other two main classes of models that are commonly

used. The ray theoretical models are based on the assumption

that acoustic wavelengths are small enough so that

diffraction effects are negligible . The normal mode model is

based on the approximation that the ocean is horizontally

stratified so that coupling between the waveguide modes is

negligible. The PE-IFD model retain these two so that it is

valid to much lower frequencies and for more realistic,

non-stratified oceans.

This model is used for computing acoustic propagation

loss in both range -dependent and range-independent

63



environments. An important feature of this model is that it

can handle arbitrary surface boundary conditions and an

irregular bottom with arbitrary bottom boundary conditions.

Another important feature of the model is that it can handle

horizontal interfaces of layered media.

The inputs to the model are frequency (Hz), source

depth (m), receiver depth ( m) and range ( m) as operational

parameters . The environmental inputs are sound speed (m s-1)

profile, water depth (m), density (g/cc) atttenuation

(dB/wave length) in the water and sediment layers . Reference

sound speed and depth/ range step sizes are the tuning

factors of the model. The usual step sizes are one-fourth of

a wave length and half wave length in depth and range

respectively.

The model output is the transmission losses to the

specified points in the depth-range plane. The model was

implemented and validated using the transmission loss

measurements made during an acoustic experiment off Cochin

(Balasubramanian and Radhakrishnan, 1989;1990). They found

good agreement between the experimental and simulations

using the model.

The model described above is applied to simulate the

propagation conditions under different oceanic environments.

Several studies were carried out for the range-dependenet

environments for other oceanic regions (Davis et al.,1982).

The propagation under range-dependent scenario is not

reported for Arabian Sea. This aspect is investigated using

the PE-IFD model for a wide variety of oceanic features such

as layered micro-structure, internal waves and eddy in the

following sections.
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To delineate the effect of the water born features,

the influences of surface and bottom boundaries are kept

minimum in the model. A pressure release sea surface is

assumed so that the fields will vanish at the surface. An

artificial absorbing bottom (Lee and Mc Daniel, 1988) was

also assumed in the model to minimise the bottom effect.

5.2 THERMOCLIHE AS AN ACOUSTIC BARRIER

As sound propagates, its energy gets refracted in water

column depending on the prevalent sound speed gradients.

Strong refractions and hence changes in the insonification

pattern occur as the relative position of the

source/receiver changes. In the ocean vertical gradient are

more compared to horizontal. Most commonly large sound speed

gradients occur in the thermocline region which in effect

can act as a barrier for the sound energy propagating across

it. For a given sound speed gradient in the thermocline,

refraction increases with increase of the thickness of

thermocline. Similarly, for a given thermocline thickness,

higher the sound speed gradient higher the refraction. An

important feature associated with this kind of refraction is

the formation of shadow zones beneath the Lhermocline depth,

which occur for a high frequency sound located near the sea

^ surface.

The results in previous chapters indicate that the

gradients and thickness of thermocline change drastically on

climatic and synoptic time scales. The variations in

gradient is of the order of 0.050C mi to 0.14°C mi on

climatic scale whereas it is of the order of 0.05°C m1 to

0.3°C m1 in the synoptic scale. Similarly, the thermocline

thickness varies from 40 to 100m and 10 to 190m on synoptic

and climatic scales respectively . Correspondingly, the
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shadow zone variability also will be more.

5.2.1 MODEL SIMULATIONS OF TRANSMISSION LOSS

To simulate the sound propagation for different

thermocline structure , two typical profiles are identified

in the regions off Bombay ( 18°50'N , 71°35'E; depth <80m)

during January and June . Temperature profiles were obtained

using MBT . The thermal structure is characterised by a near

iso-thermal layer in January and a three-layer structure

with strong thermocline gradient in June. The formation of

the three - layer structure in June is discussed in detail in

Section 4.3.1.1. Model runs were performed by choosing a

sound source of 2 kHz frequency at 5m depth , which is

located well above the thermocline . A range-independent

environment is assumed for the computations. The

transmission loss contours for these two cases are presented

for comparison. The Figs.(5.1(a&b )) illustrate the effect of

thermocline as an acoustic barrier..

The transmission loss contours are presented along with

corresponding sound speed profiles containing the

three-layer structure ( Fig.5.1a). The thermocline gradient

is strong ( 0.25°C m1) and found at a depth of 40m. The

transmission loss contours show significant difference above

and below the thermocline depth. The transmission loss

increases slowly with range above thermocline depth, whereas

it increases rapidly below it. This indicate that the energy

below thermocline is very less compared to above it.

Similarly , the profile without thermocline and corresponding

transmission loss contours are presented in Fig . 5.lb. Unlike

the other case , this contours show that the transmission

loss increases slowly with range for the entire water

column. For instance, the 80dB contour found at a range of

66



11km below thermocline(70m), which is absent at same depth

(where the loss is about 70dB) in the near isothermal case.

This clearly indicates that the energy available below

thermocline is very much limited for an acoustic source

above thermocline. Moreover, a well marked shadow zone

(transmission loss >80dB) is present below thermocline depth

from 11km onwards, which is absent in the other case. The

model runs were performed with the source below thermocline

also indicated similar results. This suggests that

thermocline act as an acoustic barrier for the passage of

energy across it.

5.3 LAYERED OCEANIC MICROSTRUCTURE

Studies conducted by several authors indicate that the

high frequency sound propagation is drastically affected by

small scale oceanic features like inversions, step like

structures, etc. (Melberg and Johannessen,1973; Ewart,1980;

Unni and Kaufman,1983). This is mainly due to the fact that

the inhomogeneities in the oceanic environment cause

scattering and hence loss of energy for the transmitted

signal. A recent study of Hareesh Kumar et al.(1995) clearly

indicated the presence of step like structures in the

thermocline in the Arabian Sea. The study also brought out

sharp sound speed gradient associated with these step like

structures.

During the 101 t h cruise of FORM Sagaz' Sampada fine

scale measurements of temperature and salinity at close

depth intervals (using Seabird CTD system; accuracy

±0.001°C) were made in the coastal waters of Cochin

(9°75'N;75°75'E) from 23 May to 3 June 1992. Vertical

profiles of temperature and salinity are characterised by

multiple subsurface maxima in salinity corresponding to the

67



-25-^

Temperature (°C)

23 27 31 1520

i

jS T

-76-1

-100J
35.0 35.5 38.0

Salinity (PSU)
-2 -1 0 1

Gradient (a-`)

Fig.5.2 Vertical profiles of temperature, salinity, sound

speed and sound speed gradient showing

micro-structure in the thermocline.



thermocline region (Fig.5.2). These maxima are separated by

pockets of low saline waters. Vertical separation between

these multiple maxima varies from 10 to 15 m and their

salinity progressively decreased with increasing depth.

Among these, the upper maximum is more pronounced. The

occurrence of the multiple maxima mostly coincided with the

reversal of flow from southerly to northerly at 50m (Hareesh

Kumar et al.,1995). Thus the prevailing flow pattern may be

mainly responsible for the formation of multiple maxima.

Temperature and salinity values of these maxima corresponds
to 23. 5 kg m-9 sigma-t surface, which is obviously the

Arabian Sea High Salinity Watermass. Below the subsurface

maxima, salinity reduced by 0.3 PSU (35.7 to 35.4 PSU). It

is interesting to note that in association with the

occurrence of these multiple maxima , either inversions (^_-

0.2°C) or step like structures (5 to 10m thickness) are

noticed in the temperature field (Fig.5.2).

The temperature profile containing step structure in

the thermocline and the corresponding salinity profile

consisting of multiple maxima are used in computing the

sound speed profle (Fig.5.2). A surface layer of near

iso-speed conditions (the sonic layer or surface duct), of

about 35 m is noticed. In the thermocline, sound speed

varied from 1525 to 1546 m s-1. The sound speed gradients

(Fig.5.2) exhibited rapid fluctuations within the

thermocline (-2 to 1 s-1) caused by thermal inversions and

multiple subsurface salinity maxima. The positive gradient

in sound speed, caused by the advection of warm and low

saline waters, coincided with the depths of multiple maxima.

5.3.1 MODEL SIMULATIONS OF TRANSMISSION LOSS

The influence of this layered micro-structure upon
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sound propagation is dependent on the sound speed gradients,

the physical size and dynamics of the microstrucutre. As the

vertical dimensions of the fine structures were of the order

of 1 to 10m ( Fig.5.2 ), their variability would be expected

to affect sound scattering in frequency ranges from

approximately one to tens of kilo hertz . This would lead to

loss of coherence and fluctuations in phase and amplitude in

the acoustic signals which in turn will degrade • the

performance of high frequency systems. This stresses the

importance of the inclusion of the fine structure variations

in acoustic propagation modelling.

A sound source of 2kHz frequency located (50m depth)

within the thermocline where the layered micro -structure is

seen , is used for transmission loss simulation . The sound

speed gradient in this region show maximum fluctuations. The

transmission loss values are simulated using the model. To

delineate the effect of micro-structure , the transmission

loss values are also simulated for the profile with smoothed

microstrcture . The transmission loss with range ( Fig.5.3)

are presented for a receiver within the sonic layer (30m).

This show the intensity fluctuation due to microstrcture in

the thermocline . The transmission loss due to

micro-structure in the thermocline is appreciably higher (2

to 4 dB ) than the other case without micro-structure.

However , for the ranges of 2km to 4km a reverse trend is

noticed . This suggests the importance of fine structure in

temperature and salinity on high frequency sound

propagation.

5.4 INTERNAL WAVES

Previous studies indicated that the internal waves have

got profound influence on acoustic propagation ( Lee,1961;
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Porter et al.,1974; Baxter and Orr,1982; Murthy and

Murthy,1986; Pinkel and Sherman,1991). This aspect was not

studied for the Arabian Sea, though several studies

(Varkey,1980; Murthy et al.,1992; Rao et al.,1995) reported

the dominance of internal waves in this region. Hence, an

attempt is made to analyse influence of internal waves on

acoustic propagation based on observations and model

simulation of transmission loss for this environment.

An oceanographic experiment was conducted off Karwar,

west coast of India during October-November 1986 in order to

study the internal wave activity. Measurements were carried

out onboard RV Gaveshani, which was anchored at 15°O1'N and

73°21'E (depth = 90m ) for a period of 12 days (29 October to

10 November, 1996). Vertical profiles of temperature were

collected using a TSK Micom Bathythermograph (accuracy

:±0.05°C) at hourly interval. The salinity data was obtained

from hydrocasts taken once a day. During the experiment, a

deep depression was formed in the vicinity of the

observational point. Under the influence of this deep

depression, the convergence induced at its periphery caused

deepening of thermocline (Fig.5.4a). FFT analysis of

temperature at different depth levels revealed low frequency

harmonics (lower than inertial, ne, 46 hrs), which was induced

by the continuous deepening of the thermocline. To remove

this low frequency component, the temperature data set is

high pass filtered using a Yulwalker digital filter. The

frequency response of the digital filter is shown in

Fig.5.4b.

In order to identify oscillations in the thermocline,

the isotherm within the thermocline are subjected to FFT.

The most dominant harmonics are inertial (46 hour), diurnal

(24 hour) and semi-diurnal (12 hour). The harmonics of the
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inertial periodicity are generated by storm-induced wind

field. Pollard (1970) also has observed inertial

oscillations in connection with a sudden change of the wind

speed and rapid changes in barometric pressure. In order to

identify the influence of different harmonics on sound

propagation, the entire data set is subjected to Yulwalker

band pass filter. After having separated out the different

harmonics, the model simulations were carried out for the

individual data sets using the PE-IFD model.

5.4.1 MODEL SIMULATIONS OF TRANSMISSION LOSS

The internal wave spectrum occupies a continuum in

scale; from the Brunt Vaisala period to the inertial period

having all horizontal wavelengths and vertical wavelengths,

possibly from a few centimetres to the depth of the ocean.

To bring out the amplitude of the internal waves the

depth-time section of the temperature at the observation

point is shown in Fig.(5.4a). Fluctuations in temperature

field is quite evident in the thermocline region and is due

to internal wave propagation. In the absence of direct

measurements, a two-layer approximation of the ocean was

made for the computation of internal wave speed. Based on

this approximation (Pond and Pickard, 1983) the speed (v),

of the internal wave can be computed from

sea surface

P
0 = 1.022582 g cm -9

gh [(P - P') /P'] 71m / p = 1.024367 g cm9

sea bottom
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where g is the acceleration due to gravity, h is the

thickness of the top layer of weak density gradient, p is

the mean density of the bottom layer of strong density

gradient, and p' is the mean density of the top layer. The

average speed of the internal wave computed to be 40 cm s-1.

To model the acoustic fluctuations , basic assumptions

are made which allow to relate the time series measurements

to a range-dependent field (Rubenstein and Brill,1991). The

first assumption is that the temperature field is made up of

soliton-like internal waves. Since solitons are

dispersionless the temperature fluctuations with a constant

speed (internal wave speed ) can advect to yield a

range-dependent field. Secondly, the direction of

propagation of the waves is assumed to be that of acoustic

propagation.

The hourly sound speed profiles were computed

corresponding to the temperature profiles following

Mackenzie(1981). The entire sound speed profiles are

separated into discrete sets of 24. With an internal wave

speed of 40 cm s-1 this corresponds to 33.6 km of horizontal

range. The effects of internal waves on sound propagation

is more in the frequency range 5OHz-2OkHz (Etter,1991). A

3kHz source frequency source selected at 5m depth to

simulate the transmission loss.

Acoustic intensity fields are simulated under range-

dependent (with 24 profiles ) and range - independent

environments (with single profile). The first profile in the

set of 24 is taken for the range - independent model

simulation . The simulation of transmission loss is performed

for all the sets. The array of transmission loss values
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obtained from simulation for range-independent environment

is subtracted from the corresponding array for the

range-dependent environment to obtain a loss difference

array. This difference array of transmission loss is

contoured ( difference contour ) for all the individual sets.

The difference contours indicate strong ( Fig.5.5a) and weak
(Fig.5.5b ) fluctuations in the acoustic field. The strong

fluctuations are associated with transmission loss

difference of -15dB to 25dB, where as for the weak field it

mostly between -5dB and 5dB except few higher differences

(5-15dB ). These strong (S) and weak ( W) fluctuations are

clearly evident in thermal structure ( Fig.5.4a). Thus the

internal wave field can cause an acoustic intensity

fluctuation of -15 to 25dB , which is appreciably high.

The propagation conditions for different spectral bands

of the internal waves mentioned above are simulated

separately to identify their influence. It may be noted that

since only 24 profiles ( 33.6 km horizontal range) are

utilised for the present simulation spanning one day, the

effects of inertial oscillation could not be resolved.

Simulations are carried out for all the remaining sets of

data in the similar manner.

The transmission loss contours for two sets viz., the

set containing all the harmonics (Fig.5.6a ) and for the

higher frequency ( higher than semi-diurnal) harmonics

(Fig.5.6b ) indicate that they are almost similar but with

certain minor variations . To investigate further this

aspect, the difference contours for two harmonics (diurnal

and higher ) are presented in Figs .( 5.7(a & b)). The contours

greater than 10dB difference are shaded black in the

diagram . The difference field show large variations

corresponding to the diurnal harmonics than the high
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frequency internal waves. This clearly suggest that the

influence of high frequency harmonics closely resemble with

internal wave field containing all harmonics. This

established that to study the acoustic field in the presence

of internal wave, major focus has to be given to high

frequency harmonics (greater than semi-diurnal frequency)

compared to low frequency internal wave harmonics.

5.5 MESO-SCALE EDDIES

Influence of eddies on sound propagation was studied by

several authors (Weinberg and Zabalgogeazcoa,1977; mellberg

at al.,1990) and found that the eddies play a vital role in

the long range propagation. Hence, an attempt is made to

understand the influence of an eddy on sound propagation.

During MONEX-79 temperature data were collected off Somalia

normal to the coast along 8°N from west to east using XBT.

The station located near to the coast was having a depth of

300m and it increased to 4500m at a distance of 130km from

the shore and thereafter it maintained the same depth. The

vertical structure of temperature (Fig.5.8) reveals the

presence of a warm core eddy with its core temperature of

about 25°C (anticyclonic) which has an horizontal extent of

approximately 600km and vertical extent of about 400m. The

individual sound speed profiles across the eddy is presented

in Fig.5.9. A sonic layer depth of about 220m is noticed

corresponds to the trough of the eddy, where the sound speed

is about 1531 cm s-1. The sonic layer depths are vary from

one end of the eddy to the other. Corresponding to this a

sharp thermocline ( s 0.25°C m1) at a shallow depth (s 20m)

at the western periphery compared to a diffused (< 0.06°C
-i
M ) and deeper (= 40m) at the eastern side. However the

core of the eddy is characterised by a deep thermocline ('_''

220m) with a thermocline gradient of = 0.1°C m-1. Since the
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eddy was identified using hydrographic measurements without

repeating the same stations , it is difficult to compute its
movements . Thus for the present study a stationary eddy is

assumed for transmission loss computations . In order to get

the vertical profile up to station depth, a climatological

mean profile available for the region is appended to the

bottom of the observed profiles.

5.5.1 MODEL SIMULATIONS OF TRANSMISSION LOSS

In order to investigate the effect. of this warm core

eddy on sound propagation , transmission loss simulation were

carried out using the PE -IFD model. Here, the effect of

eddies on solely waterborne effect is studied. As the

horizontal extent of the eddy is very large ( 600 km), high

frequency sound would not propagate across the eddy. Such

large ranges are attained only at low frequencies of the

order of few tens of hertz . Hence, in the simulation a

source frequency of 100Hz is used. The source is assumed to

be positioned at 150m depth, well within the eddy and deep

sound channel . Computed transmission loss for the entire

range and upto a depth of 500m is presented in Fig.5.10(a &

b), which covers the extent of the eddy . In order to bring

out the influence of the eddy on sound propagation, the

computations were repeated for an identical environment

except that the water column is assumed laterally

homogeneous . This is achieved by taking the initial sound

speed profile to be representative of the entire range.

Transmission loss result obtained for both these cases

are presented in Figs.5 . 10(a&b). Here , the shaded area

represents regions with transmission loss higher than 100dB.

The 100dB value was selected arbitrarily, such that all the

convergence zones are represented in the figures. The
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periodic narrow ( 10km wide at the surface) white vertical

bands occurring in Fig.(5.10a ) are the convergence zones

which occur at a regular range interval of about 60km. The

pattern is some what smeared as the depth increases but a

high degree of insonification is evident at depths more than

250m . In contrast, Fig.5.10b, which corresponds to a

range - independent , eddy-free environment does not show

evidence of such convergence zones except at deeper levels

than the source depth . The zones are well defined and sharp

compared to the previous case. Also , the area of

insonification is much less especially at longer ranges from

the sound source. Almost similar observations were made by

Lawrence ( 1983 ) in a modelling study of acoustic propagation

across warm core eddy in the Tasman sea, where the

convergence zones rose to near surface in the presence of a

warm core eddy. The results of the simulation show the

significance of the eddy on long range sound propagation

characteristics.

In order to highlight the magnitude of acoustic

intensity variation caused by the presence of the eddy,

transmission loss as a function of range at a depth of 100m

for both the cases are presented in Fig.5.11. About 15-20dB

convergence gain is evident from the figure . Lateral shift

in the pattern of the convergence zones of the order of

about 10km is also noticed. The width of the convergence

zone and lateral shift in the zone are all depend on the

detailed nature of the eddy field.
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CHAPTER V1

SUMMARY AND CONCLUSIONS

The present study has been undertaken with the

objectives to understand the thermocline variability in the

Arabian Sea and to investigate its influences on acoustic

propagation . Though this type of study has been carried out

for the other oceanic regions , the thermocline variability

and associated acoustic propagation were not understood well

for the Arabian Sea. One of the preliminary tasks was to

identify the various oceanographic features that are

responsible for the thermocline variability . The outcome of

this study was that various factors such as eddies, internal

waves , water masses , upwelling /sinking, undercurrents,

summer /winter cooling and monsoon effects influence the

structure of thermocline in the Arabian Sea, in the spatial

and temporal domains.

In the present study major focus has been given to

understand thermocline variability in the Arabian Sea as a

whole. The typical parameters which are used to describe the

thermocline characteristics are its top , thickness , gradient

and oscillations . Subsequently to investigate the different

processes prominent in the the coastal waters which have

bearing on the thermocline characteristics , transects of

temperature normal to the coast were analysed. The

uniqueness of this data set is that several hydrographic

sections were repeatedly made to cover the same stations. As

the variabilities observed in the thermocline was found to

be occurring on different time scales, the investigation was

further extended to cover the short term aspects also. This
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was achieved by analysing time series measurements made at

several locations in the Arabian Sea . These data sets were

collected for coastal as well as deep waters covering

monsoon and non monsoon periods. After having described the

thermocline variability , the propagation characteristics for

different types of thermocline were investigated.

Climatological studies indicated that during

pre-monsoon periods entire Arabian Sea was characterised by

shallow thermocline (30-40m ) due to surface heating. With

the commencement of summer monsoon thermocline further

shoaled in the the coastal regions due to upwelling. On the

other hand deep thermoclines (> 120 m ) were noticed for the

same period in the central Arabian Sea due to sinking and

increased vertical mixing . One of the major findings is that

strong spatial variability was noticed from July to

September in the entire Arabian Sea. The scenario changed as

the winter sets in. The thermocline was pushed down (>70m)

in the coastal region. Thermocline thickness suggested that

it is less than 40m in the northern Arabian Sea throughout

the year . It increased (> 100m ) and average thermocline

temperature drops to less than 20°C during summer monsoon.

The thermocline gradient was found to be between 0.04°and

0.14°Cm 1. Weak gradients are noticed in the northern

Arabian Sea due to interaction of two different watermasses

( Arabian Sea High Salinity and Persian Gulf watermasses).

The decrease of gradient in the equatorial Arabian Sea from

January to June is attributed to equatorial undercurrent

which caused the spreading of isotherms in the thermocline.

Large variations in thermocline characteristics are

noticed off the west coast of India on an annual cycle.

Large cross shore and onshore dynamic processes were found

to be responsible for the observed thermocline variability.
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In response to these processes the thermocline was found to

shoal and deepen along the entire west coast. One of the

important findings of this study is that on an annual cycle

the thermocline characteristics were found to exhibit a time

lags from southern to northern locations.

Deep thermocline (> 60m) is noticed off Ratnagiri from

January to March . From May onwards the thermocline moved up

due to upwelling and it almost surfaces (=10m) during summer
monsoon . The shallow thermocline is noticed even up to

December . The thermocline gradient also increases during

this period ( 0.3°C M-1 in October) which decrease to 0.08°C

m1 in January . The influence of northward flowing

undercurrent on thermocline variability was found to be

negligible north of Ratnagiri.

Deep thermocline (> 60m) is noticed off Kasargod from

December to February. During pre -monsoon months it shoals to

less than 25m due to accumulation of heat in the upper

layers with very warm SST (>30°C) associated with Indian

Ocean warm pool. The thermocline during this period was

thick (> 190m ) with weak vertical gradient (0.075 °Cmi).

With the progress of upwelling the gradient in the upper

thermocline increases to over 0.2°C m1. However, in the

lower thermocline the gradient was weak (=0.08°C m1). This

is due to increased shear mixing associated with southerly

surface currents and northerly undercurrent.

The deep thermocline observed during December-February

shoals during pre-monsoon due to intense surface heating off

Cochin. The upward movement of isotherms in the thermocline

is evident from March and it surfaces by July/August, with

strong vertical temperature gradient (>0.2°C mi ). Upwelling

continues up to October . The down slopping of the isotherms
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towards the coast in the lower thermocline is an indirect

evidence of the presence of sub-surface northward

undercurrent. As a result, in the lower thermocline weak

temperature gradient (0.03°C m1) are noticed due to strong

shear mixing. The commencement of sinking results in the

deepening of thermocline (>100m) in December. During this

period the temperature gradient increased (0.15°Cm-1) which

was an unique feature observed in this region.

Off Cape Comorin deep thermocline is observed (>70m)

from December to January. Another important result that can

be seen from vertical section of temperature was the

occurrence of a clockwise eddy ( warm core) centered about

150 km from the coast. The core temperature of the eddy was

found to be 27°C and its radius about 50 km. At the centre

of the eddy thermocline was deeper by about 50m compared to

its peripheries. The thermocline surfaces by July/August due

to upwelling as off Cochin and Kasargod. During major part

of the year upwelling dominated (March-October) compared to

sinking (November-February) process.

The analysis further revealed that surfacing of

thermocline leads to significant cooling in the surface

layers -960C off Cape and Cochin, 4°C off Kasargod).

However, the thermocline did not surface off Ratnagiri. The

downward movement of thermocline (sinking) starts by

October, October-November, November and January off Cape,

Cochin, Kasargod and Ratnagiri respectively. Thus it was

observed that there was a time lag of about a month for the

commencement of sinking process from south to north.

The average temperature decreases sharply at all

locations due to upwelling compared to periods of sinking.

The annual range of average temperature of thermocline is
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maximum off Cochin (5°C) and minimum ( 3°C) off Ratnagiri.

Average rate (per month) of upward movement of isotherms was

found to be 30m , 23m, 29m and 11m off Cape, Cochin, Kasargod

and Ratnagiri respectively, suggesting stronger upwelling

off the south west coast of India. The deepening rate

isotherm was found to be about 2 to 5 times faster during

the period of sinking , compared to that of upwelling.

The T-S analysis indicated the presence of Arabian Sea

high salinity watermass in the thermocline throughout the

year. However, the effect of Bay of Bengal watermass was

marginal in the thermocline. The low saline equatorial

Indian Ocean watermass is also evident in the thermocline.

The average temperature of thermocline indicated

drastic cooling from pre-monsoon to monsoon . The cooling is

found to be maximum south of 14°N and north of 20°N: The

strong upwelling off the south west coast of India and

winter cooling north of 20°N coupled with pre-monsoon

heating induced large annual ranges in thermocline

temperature (=10°C).

The analysis of short-term variability of thermocline

at selected locations in the Arabian Sea brought out several

interesting features. A three-layer vertical temperature

profile with strong thermocline (2.5°C in lOm) was observed

off Bombay in June /July, whereas much weaker thermoclines

were observed in the central Arabian Sea . This strong

thermocline off Bombay was the result of intense pre-monsoon

heating followed by vertical mixing in the upper 50m (due to

monsoon activity ) over the remenant of winter water. The

dynamic aspects of three layer structure investigated with

the help of Richardson number indicated high values (7.4 in

thermocline ) off Bombay. This is an evidence of the
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suppression of turbulence which enabled the three layer

structure with strong thermocline gradient to be maintained

throughout the period of observation. Further the thickness

of the thermocline was only 10m at this location.

The thermocline was shallower off Karwar in September

(5m) compared to June (20m) mainly due to the effect of

upwelling. The thermocline gradient also showed a higher

value of 0.3°C m1 in September compared to January (0.15 °C

m 1. Another note worthy feature at this location was the

presence of bottom isothermal layer. The spectral

characteristics indicated that oscillations of inertial,

diurnal and semi-diurnal periodicity occur in the

thermocline.

The effect of upwelling on thermocline characteristics

is clearly evident in the temperature profiles off Cochin.

The thermocline shoaled and the isotherms moved up between

April and June. The temperature at 60m dropped by as much as

6°C during this period. The 25°C isotherm moved up at an

average speed of 1.1 m day- Iand thermocline gradient also

doubled (0.1 to 0.2 °C m1) during this period. The vertical

current shear increased from 0.005 s-1 to 0 .25 s-1 from April

to June showing increased turbulence in the lower

thermocline. This suggested increased mixing in the

thermocline due to southerly surface flow and northerly

undercurrent in June. The Richardson number decreased from

0.2 to 0.05 during this period suggesting dynamic

instability.

The thermocline variations on short time scales

differed markedly in the deep stations compared to coastal

stations. In the eastern Arabian Sea intense surface heating

produced a shallow thermocline (~20m) during pre-monsoon.
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With the progress of the monsoon though thermocline deepens

to 100m the isotherms within it moved up. This resulted in

the increase of thermocline gradient (< 0.1 to >0.02 °C m-i).

Oceanographic aspects of thermolcine characteristics

for the Arabian Sea indicated that large variabilities in

both spatial and temporal domains exist. In association with

these variabilities one can expect large variations in the

acoustic propagation characteristics also. This is due to

the fact that temperature is one of the important parameters

determining sound speed in the ocean . This clearly indicate

that opriori knowledge of thermocline characteristics is

very much essential to understand the propagation conditions

in the sea . Transmission loss and sound speed are the two

important parameters which are commonly used to describe the

propagation conditions in the ocean medium.

Simulation of transmission loss carried out with the

help of a range dependent model (PE-IFD) for different

features associated with thermocline indicated that each of

them affect propagation in a distinct manner. As the

thermocline acts as a barrier for the passage of acoustic

energy from either side, occurrence of shadow zones are

associated with its characteristics. Shadow zones, the

regions of weak sound intensity, were found to exhibit large

variations depending on the thermocline gradient and

thickness. When thermocline gradients were sharp it was

found that a prominent shadow zone occurred at near ranges

and vice versa. Sharp gradients in thermocline were

generally found to exist during the periods of upwelling in

the coastal Arabian Sea. Thus one can expect prominent

shadow zones during this period.

Numerical experiments carried out with different
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thermocline features indicated large fluctuations in the

intensity of acoustic energy. Typical case studies were

carried out to simulate the propagation conditions for

oceanic layered microstructure, internal waves, meso-scale

eddy field.

The results indicated that inclusion of layered

microstucture in the propagation model is important as it

was found to influence intensity fluctuation in the acoustic

field. A deference (with and without microstructuree) of 2-4

dB transmission loss was found to exist for a source of 2

kHz frequency when the layer thickness was 2_1Om. The

oscillations associated with thermocline (internal waves)

are found to influence propagation to a large extent. In the

presence of weak internal wave activities (identified from

thermal structure) the transmission loss fluctuation was

found to be -5 to 5 dB. On the contrary, it was -15 to >20

dB for strong internal wave field. This clearly establishes

that internal waves can cause large fluctuations (3 to 4

times) in the acoustic intensity. Further, influence of

different harmonics on sound propagation suggested that

periods higher than the semi-diurnal (12 hrs) were

predominant compared to low frequencies. This also establish

major focus has to be given to high frequency harmonics

compared to low frequency harmonics. Simulations carried out

for a warm core eddy with a source of 100Hz frequency at

150m depth revealed that convergent zones are found to

extend to the surface. This suggest that more energy would

be available in the near surface region compared to a

situation where eddy is absent. Moreover the area of

insonifications is found to be much less and sharp in the

absence of an eddy field and vice versa. Another important

result is that there was a convergence gain of 15-20 dB at

100m depth in presence of eddy. A lateral shift of about
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10km was noticed in this pattern at this depth.

FUTURE OUTLOOK

In the present study the problem of thermocline

variability in the Arabian Sea has been addressed in terms

of various oceanographic factors and their influence on

acoustic propagation. Though a number of oceanographic

factors could be identified from the data sets used,

specific data collection programme need to be planned to

address the thermocline aspects in greater detail. In this

programme the aspects like layered microstructure,

directional internal waves, eddies, currents etc need to be

monitored for basin wide at close spatial and temporal

resolutions. However, the tremendous logistics involved for

carrying out such a programme prevented us from taking up

this task. Systematic observations of thermocline with

relevent data on various physical processes would enable to

develop a numerical model of the thermocline.

The study could be further extended using the fine

scale measurements to study more realistic transmission loss

characteristics which can be used as a back ground to asses

the propagation conditions. The transmission loss studies

carried out in the frame work of a range dependent model

need to be validated with proper experimental data. This

would improve the capability of underwater surveillance.
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