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Preface

The present thesis deals with the behavior of scalar quantum flelds at finite
temperature. The analysis is most relevant to the study of early universe
and high energy perticle physics. The effective potential of a quantum fidd
which is quantum corrected classical potential, determines the spontaneous
symmetry breaking. Finite temperature correction 10 the effective potential
is used to find the critical temperature at which symmetry is restored. In
the thesis, calculations are performed for $* theory ®* theory and charged
scalar fleld with a &* interaction. ®* theory is renormaligable (3+1) di-
mensions and ®° theory in (2+1) dimensions. The main theoretical tools
employed are CJT (Corowall,Jackiw and Tomboulis) formalism and Func
tional Schrddinger picture formalism. These methods are more efficient than
ordinary loop expension for determining the effective potential and analys
ing the phage gtructure of a quantum field. Variational methods are used
throughout so that non perturbative results are obtained. All calculations

in Heisenberg picture use Hartee-Fock appraximation.

Chapter 1 ig introductory in nature. It develops all the theoretical tools



required for the analysis. Chapter 2 deals with the applications of CJT
formalism for & ®* model. Chapter 3 uses the CIT method for an O(N)
symmetric theory for studying & charged scaiar field at finite chemical po-
tentinl, Chapter 4 establisher the connection between CJT formalism and

Schrédinger picture formalism both at sero and finite temperature.
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Chapter 1

Basic Formalism

1.1 Introduction

Study of symmetry changing phase transitions of a quantum field in the pres-
ence of of & surrounding thermal bath is very important in the study of the
evolution of the universe and in the analysis of very high energy collisions
where very high matter and radiation density exist. Detailed study of these
phase transitions has been extensively done by various authors [1-4]. The
effective potential method is very useful in studying spontaneous symmetry
breaking (3SB) at sero temperature [5,6]. Estimation of the critical temper
ature of phase transitions can be done by extending this approach to finite
temperature (7). These studies mainly using loop expension techniques have
played & pivotal role in framing our understanding about the early universe,

unified theories, quark gluon plasma etc.
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4 CHAPTER 1. BASIC FORMALISM

Recently there is a revival of interest in finite temperature quantum field
theory, apperemtly caused by the recognition of the importance of symmetry
breaking phase transitions and the problem of precise determination of crit-
ical temperature. An accurate analysis of phase transitions (both analytical
and numerical) becomes necessary because most of the cosmological models
critically depend on it. For example Baryon agymmetry may be generated
at the electro-weak level if the phase transition is of first order [8-11].

For the calculation of critical temperature, various perturbative and non-
perturbative techniques have been muggested [12-20). Field-theoretic quan-
tumn dynamics involves 100 many degrees of freedom which are to be reduced
for performing numerical computations. One way to do this is to use a
veriational approximation that yields an approximate wave functional in the
Schrddinger picture {34-43]. A related procedure in the Heisenberg picture
is to obtain a second Legendre transform and keep the lowest order in the
coupling constant ( Hartee- Fock approximation) for two particle irreducible
(2PT) graphs [21,22,26-28,44]. In this thesls we upe these two methods for

analysing scalar flelds at finite temperature and finite chemical potential.

Effective potential defined as single Legendre transform provides an efficient
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wey to obtain quantum corrections to the classical potential. But this popu-
lar method suffers from a serious shortcoming. Since it i defined as & single
Legendre transform , it is always & convex function. This forbids the double
well shape for the exact effective potential and implies the absence of local
maximum at the symmetric origin. But in a theory possessing SSB classical
analysig predicts & maximum at the origin. Various procedures to avold thig
difficulty have been suggested earlier {3,21,22]. One of the most afficient of
these approaches is t0 define an effective action by including a source K(z,y)
coupled to a term which is quadratic in the field variable. By this procedure
an effective potential with a proper loop expansion to each order which is
not convex, is obtained. Thig idea was first put forward by Hawking and
Moss in the comtext of quantum field theory in the early universe [23]. A
self-consistent improvement for 4he finite temperature effective potential has
also been suggested [24]. In this formalism it is possible to sum & large class
of ordinary perturbation theory diagrams that contribute to the effective ac-
tion and the gap equation which determines the form of the propagator, is
obtained by variational method. Extension of this idea 0 non-equilibrium
quantum fields has algo been performed {25].

All the above improvements developed for conventional finite temperature ef-
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fective potential are based on an important contribution by Cornwall, Jackiw
and Tomboulis (CIT). They defined the effective action for composite fields
in flat space and sero temperature as & double Legendre traneform with two
sources J(x) and K(z,y). These two sources are coupled respectively to ¢(z)
and ¢(y) [26). The CJT formalism is considered 1o be best suited for studying
phase transitions because it uses a generalised effective action in which not
only the mean fleld b:-t also the correlation functions appear as independent

variables. In ref. [26] a simple series expansion has been developed for the
-improved effective action.

The CJT formalism has recently been used to resolve various difficulties in
quantum field theory {29,30]. For example, it has been applied to the trivial-
ity problem in &* theory [31]. An improved effective potential based on this
formalism is discussed in ref. [32]. The self-consistent improvement of finite
temperature effective potential (used in this thesis) involves the summation

of daisy and superdaisy diagrams, for which & novel re-summation procedure

has been recently proposed [38].

The functional Schrédinger picture formalism for quantum fleld theory is

& generalisation from ordinary quantum mechanics to infinite number of
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degrees of freedom that comprise & field [34]. The method is suitable for
both static and time-dependemt problems at zero temperature and finite
temperature and for quantum fields far from equilibrium. It has aiso been
shown that renormalization in this model does not pose any special difficul-
ties for static or time-dependent problems [34-41). Among the applications
of this approach are scalar QED, quantum mechanics of inflation, quantum

roll process and quantum processes in non-euclidean space-time [34,35,36-
41,42,48,45).

1.2 CJT Formalism

The CJT method provides a generalization of the ordinary effective action
I'(¢) (the generating functional for single particle irreducible n-point funo-
tions). This generalized effective action I'(¢, G) depends both on ¢(z) the
expectation value of quantum field &(z), and G(x,y) the expectation value
of time ordered product T{®(z)®(y)). Physical (on-shell) solutions require
the following variational equations:

($,6) _
el (1.1)
L) _ (12)

8G(z,y)
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Consider the vacuum persistence amplitude Z(J,K) in the presence

of two source terms J(z)¢(x) and ;Hx)(¥)K(=,1):

Z(J,K) = N fDdezp [i Jtzclo@) + )o@+

@K (3
W(J K) the generating functional for connected diagrams ig defined as
Z(J, K) = expliW(J, K)) (14)
The classical action J($) = [d'zL(z) may be written as
I($) = [dzd'yh(z)D5"(z - 1)$(y) + Leu(4) (15)
Ini(9) = [d'cLin() (1.6)

Dy(z - y) i the free propegator that satisfies
D'z -3) = -(D+m*)8'(z - 2) (1.7)

The generalized effective action I'(¢, G) is the double Legendre transform:
of W(J, K)

I(®,G) = W(J,K) - fd‘ (2)8(z)J(z) -
3 [Fadie@KE IR - § [fedrCENKEY  (18)
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Where J(z) and K(z,y) are determined by

SWLJ, K)
s =@ (19)

TRt = eI + G ) (1.10)

By actually performing functionsal differentiation on eqn(1.8) we find

%Gl = ~J(z) - /d‘yK (z,9)o(¥) (1.17)
el - ke (1.12)

In the abgence of sources, eqn.(1.1) and (1.2) are regained which permit a

variational solution. The conventional effective action I'(¢) = I'(¢, G;p) where
Gy is the solution of eq.(1.2).Generalized effective action I'(¢, G) ir the gen-
erating functional for the two particle irreducible (2PI) Greens functions

expressed in terms of the full propegator. The series expansion for I'(¢, G)
is shown to be [26]:

D($,G) = Tawe(9) + 5trIn DG + sr[DiG -1 +T®@,6) (113)
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where 1ir is the functional trace, In is the functiona! logarithm and DG is
the functional product.

The inverse propegetor is defined by

8 1($)

- D - 8L (4)
) - D T (1.14)

-174, = T imi\Y)

1.3 Computation of I'® (¢, Q)

Computation of the quantity I'"?(¢, Q) is done as follows. In the classical
action J(P), the field & is shifted by ¢(z). The shifted action /(P + ¢), pos-
sepses terms cubic and higher in ®. These define an interaction part I, with
vertices depending on ¢(z). I®(¢, Q) is then given by all the 2P vacuum
graphs and the propegator is set equal to G(z,y). The theory in i1s full gen-
erality ig not translationally invariant since vertices depend on ¢(z) and G s
not & function of (x — y) alone. The propagator of the theory i8 determined
by finding the gap equation for G using the variational equations [eqns. 1.1
and 1.2},
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1.4 Effective Potential

Transationsally invariant solutions are obtained by imposing the following

conditions (homogeneous states):

¢(zx) = Constant (1.15)
G(z,¥) =Gz - y) (1.16)
I($,G) = - B$,C) fat (1.17)

where E{¢,G) is the minimum of the energy when varying over all the nor
malized states with constraims:

(®(z)) = ¢(z) (1.18)
(@(z)®(v)) = $(z)d(¥) + G(=, ) (1.10)
E($,G) = V($,G) /d’”‘m (1.20)
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where v is the gpeace-time dimension of the theory . Thus the effective po-
tential is given by

¢, G)
Vi¢,G) = ~Idz (1.21)

A series expansion for the effective potential is obtained by defining the
following fourier transformed propegators.

Gk) = fd"ze“(’"’)G(w - (1.22)
D($,k) = [z D(g;z - 1) (1.23)
Dy(k) = fa"ze“"“’)Do(z -y (1.26)
V4.G) = Ul) + 5 [>Z indet Du(R)G™1(K)
+-;- (‘;;';,zr [D71(¢, k)G k - 1] + V(4. G) (1.25)

where U(¢) is the classical potential, Viy (¢, G) is the sum of 2PI vacuum
graphs, with vertices given by (¢, ®) and the propagator is set equal to
G(k). The fleld ¢ on which vertices depend is now a constant parameter.
Trace and logarithms apply to component flelds and de&ermina:nts are no
more functional.
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1.5 Extension to Finite Temperature

To describe the theory at finite temperature we use the Euclidean time ~
gatisfying the boundary conditions 0 < 7 < 8 = & All the Feynman di-
agrams (2P1 diagrams) developed at sero temperature are valid here also.
The Feynman rules for writing the algebra of the diagrams are different at

finite temperature [22]. They are

o, = 322 (1.26)
@k
loop integral — 73 ~ 5 j oy (1.27)
vertez delta function — B(2m)" 163 6 1(2 k) (1.28)
Field ¢ satisfies the periodic boundary conditions
o(-£,0)=0,2) (1.29)

With these modifications we can write the series expansion for finite tem-
perature CJT effective potential (analog of Gibb'e poiential) with time inte-

gration suppresged and & summation performed.

d’k a1k
(21r)’ B< E ./ (2m)»-1 (1.30)
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1.6 Functional Schrodinger Picture Formal-
ism

The functional Schridinger Picture Formalism for quantum field theory has
been shown to be superior {0 conventional Fock space methods for analyzing
detailed structural properties of a quartum field [{59,70}]. In this method one
need not choose & vacuum and normal ordering is not required. Schrddinger
Picture method has been extensively used in studying solitons and other
collective phenomens, topological defects in Gauge theories and confine
ment. Time dependent problems relevant to early universe studies and non-
equilibrium thermal physics cannot be studied using conventional Green's
function methods which require an initial condition for the solution. in these
areas time-dependent Schrédinger Picture has been profitably used. Also for
analysing representations of transformation groups the method is very useful
[38]. One can achieve intrinsic regulerization and renormaligation without

any reference to vacuum state and a unique representation is obtained.
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In this method a quantum mechanical state |¥(¢)) is replaced by a functional
of the c-number field ¢(z)

|¥(2)) — ¥4, ¢] (1.81)

The action of an operator can be realized as a product and that of a canonical

momentum as & functional differemtiation.

®(x)| F(2)) — ¥(x)¥ (1) (1.82)
(z)|¥(2)) — “%@‘W’ £) (1.38)

The dynamical evolution of & given initial state is described by the funo
tional Schridinger equation. This equation can be derived using variational

principles if we define & time-dependent effective action {38]:

r= [a(¥(e)ia - Hiw(t)) (134)
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and impose the condition that |¥(t)) is stationary against arbitrary varia-

tions we get

B¥(¢,¢)
‘T = H¥(¢,¢) =

]‘ [—%33% + %(Vtﬁ)z + V(é)] ¥(é,t) (1.35)

In the Gaussian approximation we assume a Gaussian irial state:

¥(6,6) = exp |- [ (606) - 8 ) |2 im0

x(8) - 3@ ) +i [ f(z0) [8(@) - (e,)]  (136)

It can be peen that the Gaussian is cemtered at ¢ and the width is given by G.
X plays the role of the conjugete momentum of G and 11 that of ¢. J),ﬁ,G,

and T are the variational parameters as well a8 the expectation values:
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($(z)) = (= t) (1.37)
(—s“( )) II(:::, t) (1.88)
($(z)o)) = d’(zv t)¢(ys t) +G(z,yt) (1.89)

) = [BE@0d@n + [ Sewnbuey  (4)

Vi(4) = Nw (1.42)

For applying the formalism t0 a &4 model, the following expression for effec-

tive action can be written up to two loop level [36,37):
- is - Leoav - v Y
P= fa|f 6 -3(98) V(¢)1+]‘WEG
2 L 50— [’ 56z, 2,0)
~3 VG Ul + WDz, 2,8 -
SHG) [ Gle, =0 (142)

Identifying the first term as the classical action and performing variations

we get
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= 0 — iz f) = V2, 1) - V(@)

5b(z, 1)
PGz, 8 (143)

T = 0 B, 1) + 2 [ B, 5 O 0 0)
8 (z,¢)
= 36w + [372 - SW@) - PPOB)G(E = 0) Ple - 3) (144)

5’2% =0 — Cz,y,t) =2 [ XD

+o(z, 2,£)G(z,¥,t)] (1.45)

The static effective potential can be obtained by taking ¢ 4o be x- indapen-

dent and by putting ¥ = 0. By performing variation for G, a gap equation
for G could be written. A slightly different but equivalent method has been
used in (2+1) dimensional Liouville model [46].

1.7 Time Dependence

One of the major adva.uta.ges of the Schridinger (S) picture formalism is its

pawer to analyse tlme-dependent evolution. Starting from the variational
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equations it can be seen that for the free theory () = 0) with ¢(z) = 0
Go(k,t) osclliates with a frequency given by

1 1
2w, 20k + )l

(1.46)

The most general solution of the free equation is given by

Golk, ) = %i* [+ 2 = [+ 20" - 1) conz () - mH)| (147

where the average energy E, of the k* mode is given by

G3(k, 0)

1
B = (u + Do = 55k5)

+ %G‘l(k, 0) + %u},‘G(k, 0) (1.48)

n; is the ¥* mode particle number.

For obtaining a solution we have 1o specify the initial data that is we have
to select the initial Gaussian state. For the equations to be renormaligable

G and ¥ cannot be arbitrary, Detailed discussion of the criteria for pelecting
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initial Gaussian state are given in ref{17).

Considering the gimple case ¢(z) = 0 the initial value of G is chosen as

G = oyt + 1) (149)
where
, 1] m k
Jlim G(k,0) = = 1-3‘—k2+9°°:: } (1.50)
Jim G(k,0) = 222 :f“ﬂ(") (1.51)

a and B are non oscillatory and g,A,B and  are independent of k. The

variationsal equation in terms of G alone ig
Y l -1 _1_ -1 - 2 2 i
G =567+ -G 2[1: + +2_/*G(k,t)G (1.52)

A divergence is present in the f, G(k,t) term. ]t has been shown that static
renormalization conditions can be used to renormalize the time-dependent
equations if the initial Gaussian is correctly chosen. The condition ¢(z) # 0

algo will not affect the renormalizability.
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1.8 Finite Temperature Extension

Several attempts have been made to extend functional S.picture approach to
finite temperature [33,34]. In reference {34] S.picture method is extended to
finite temperature both for equilibrium and non-equilibrium situations. In
g picture formalism effect of temperature is considered as an external influ-
ence. System starts as a pure state and gradually evolves into a mixed state
governed by the density matrix. They propose a variational solution of the
Liouville equation through the imroduction of a Gaussian density matrix for
& mixed state. The Gaussian density matrix for one quantum mechanical

degree of freedom is taken as [34).

pan2) ~ €7 |- 5@ + 23 - 2oyed)| explil@l - ) (169)

¢ ir defined to be the degree of mixing between the states. Gaussian density

operator can be defined as follows.

o(xy, 23) =< zq|Plzz > (1.54)

v e Texp {— g(p2 -20(xp + px) + axz)] (1.55)

SR
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After proper normalizations the equations are shown to be

bw b
¢ = 2sinh - P {—E(pz - 2M(zp + pxx) + azz)] (1.66)

bw

p<wx,zz>=[“—;tanh—]l/2up[- =

2sinh bw
~ 22w, explili(ed - )] (1.57)

7 [(z? + z2) cosh bw

Using the above Gaussian density meairix the entropy and free energy can
be calculated. We use the restricted density matrix [34] in which all linear

averages vanish and bilinear averages survive. More general anzatz for the

density matrix has also been suggested.



Chapter 2

Finite Temperature CJT
Formalism - % Model

2.1 Introduction

Recently there has been considerable interest in the application of functional
techniques in field theories with dimensions less than (3+1), mainly because
some of the problems afflicting 4-dimensional theories are absent there {49
51]. According to Coleman's theorem, spontaneous symmetry breaking can
occur only when the dimensions are higher than (14+1) [53]. In (2+41) dimen-
sions the most general renormalizable theory is for a #® model. This model
has been studied earlier by using various methods and it hag been shown
that it possesses an ultraviolet fixed point in 1/N expension and Gaussian
approximation [55,56,58]. Finite temperature field theory has alsc been an-

alyzed [18,18,57]. 1t is well known that in finite temperature CJT analysis

23
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of ®* theory ,the effective potential shows a cut-off dependence due to the
presence of a (A¢*/12) term. It is natural to think that in Jower dimensions
where coupling constant renormalization is not required this difficulty will
be abeent. Even though this is found to be true for ¢ theory in (2+1)
dimensions, an unrenormalized mass term appears in the expression for ef-
fective potential for $* theory. Thus the difficulty persists in $¢ theory in a
disguised form.

2.2 &° Theory

The classical potential of the theory is given by

_ 1 ag1 ABei EBas
U(®) = 2m,,4’ + 4!!’ + GSQ (2.1)
where the subscript B indicates bare parameters. The functional operator

D is given by

D@ =-[o4mi+ 20+ Llre-n @)

After shifting the interaction Lagrangian takes the form

Lins(®,¢) = ["T"&’ + %{»‘ + %‘;—@‘ + %’&5 + %&Q‘ + g—;&&"} (2.3)
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A few of the 2P1 vacuum graphs up to three loops are shown in fig.1. We
introduce the following appraximation to obtain tractable equations. Only
those graphs with vertices depending on first order in the coupling constant
are selected. This approximation corresponds to a systematic variational
procedure and is superior to commonly used one loop appraximation. No
graphs with internal lines appear.(Note that daisy and superdaisy graphs
shown in fig.3 are of this type). This approximation is called Hartee-Fock
approximation according to which oaly the graphs shown in Fig. 2 need be
summed. Thus the sum of the relevant 2P graphs takes the form

T4, G) = 3h [2G(z,2)G(2,2) + ks [#26(z,2)G(z,2)G(z,2)
(2.4)
The expression for the finite temperature non local composite operatar ef-

fective action in Hartee-Fock appraximation becomes

1 1
rp(tﬁ,G) = Idou. -+ §tfln.DoG-1 <+ EtT(D—IG - 1) +

%/\5 /d"zG(z, z)G(z,z) + %&; jd"zG(z.z)G(?q z)G(z, z) (2.5)
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By performing variation with respect to G the modified gap equation is
obtained.

G e = D e) + | 2200er2) + B6laa)Gle0)| e -1 (29)

By iteration it can be seen that G generates all daisy and super daisy graphs
of Fig.3, which reveals the fact that we have achieved a definite improvement
in re-summation of diagrams.

Since we are interested only in transiation invariant theories we fix an an-
zatz for G and define the fourier transformed propagators jeqns 1.22,1.23 and
1.24).

d'z 1
@y oy v AR
1

= [2Z Dz — p)eitlen =
D= [ -0 = e @Y

G(k) = G(z — y)e™= =

Here the propagator is chosen in terms of an effective mass M which acts
as a variational parameter. Effective potential in terms of M? and ¢ can be

written by using static configuration and constant background field:



22. ¥ THEORY 27

Vil M) = [% w+’;—‘;¢‘+“’¢°} Py LAWY

o | 2]y
Lirg—m —A—ng’— §£¢‘ G(z z)+A—BG(a: z)G(z,z) +
2 B2 24 ’ g8 )

%c(z,z)c(z,z)c(z,x) (2.9)

Putting {5 = 0 we get 34 theory in (2+1) dimensions. Comparing the expres-
sion obtained with the Gaussian effective potential studies of Stevenson [17)
we see that both are identical in form. But as far as $° theory is concerned
both are not identical because of the term &43. 1t is interesting to note that
this factor is not contributed by the daisy or super daisy diagrams, but by
a graph with vertex not proportional to £. This graph is not considered in
Hartee-Fock appraximation.

Since the effactive potential is an ordinary function (not a functional) sta-

tionary requirements w.r.t ¢ and M? is obtained by ordinary differentiation.

?—‘:= ¢ [mi, + 563¢’+

{5 Ap €5 =
a)-¢‘ + ?G(I, 3) + E&G(z’ C)] =0 (2‘10)
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v 1 A
& An £ 8G(z,z)
—¢4 - —2-G($, z) - ?G(z, C)G(z, z)] W =0 (211)

Conventional effective potential is defined at the solution of feqn(2.11)]. The
effective mass is given by

M($) = [mi, +2267 4+ 241 2260z,0) + £6(z,2)G(e, z)] (2.12)

Required expression for the effective potential is obtained by replacing the
effective mass M by M(¢) in [eqn.(2.28)]. lequation (2.9)] shows certain very
important peculiarities of $° and $* theories relevant at zero temperature.

V) =4 b - (24| (213)

For &* theary M?(¢) is intrinsically positive. Hence if A5 < 0 only solution to
the above equation is ¢ = 0 (or potential is unbounded from below). That is

for negative Az non zero turning points do not exist. In the case of $* theory

V(g)=¢ {l\f(é) - (A—:fd»’ + g—gqb‘)] - -E [1 - f] G (2.14)
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non sero turning points are possible also for Az < 0

&@* theory in Hartee-Fock appraximation requires up to three loops for obtain-
ing the effects of §;, coupling. We have four parts for the effective potential.

Voo, M(¢)) =V + VP + V1 V2 (2.15)
_1 Aoy €

V= [2”’“” 1t 4’6] (219)

V=l fom e+ 00) (217)

V= -faﬁc;(z, £)Gz, 2) (2.18)

V= —%G(z, 2)G(z, 2)G(z,z) (2.19)

which are obtained by substituting M(¢). Effective potential for both &*
and &$* theories can be obtained from this equation.
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2.3 Renormalization

The effective mass termm M(¢) defining the effective potential is divergemt
mainly due to the presence of G(x,x). Following re-normalization prescrip-
tion is employed in (2+1) dimensions to regularize M(g) [7,24].

Define

1

G = -2 + 5 i e (2:20)

with

= [e+ 209 (221)

In (241) dimensions coupling constant re-normalization is not required.Define

m? =mi + %)J, + §I1 + §12 (2.22)
_ (PRl
h=foyn =i (4,) (22)

§ = {G(M(¢))

Using the summation procedure developed by Dolan and Jackiw {2,24,69]

the summation in time co-ordinate can be performed.

@k 1

G(z,2) = 27y 2E 5[ 2y E(e” 1)

(2.24)
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By actual evaluation, introducing a cut off parameter A

G(z,z) = G(M(¢)) + I, (2.25)

feqn.(2.24)] shows that G(M{#)) is the finite part of the vacuum propagator.

A finite expression for M{®) is obtained by expressing it in terms of the
renormalized parameters:

M) = —mi+ 58 L4+ 26(M() + GG  (220)

By switching off the £ coupling, (2+1) dimensional $* theory is obtained.
Second derivative of the tree level potential is defined as my,,, (tree level

A
M(¢) = mi (6) + 5CM) + SOMEGME) 22
M 1 &k A3
VM) = -5+ 5 IW ln(1- ) + 2= (2.28)
At zero temperature the second term vanishes and the last term is cut off
dependent. Cancellation of this divergence is obtained by combining V°,\®
and V8:
Va(M) = -%?+% %m(uﬁﬁ%-%aﬂcm-

M?
S0 -F9)  (29)

2
with n' = § and Fl¢) = [;% - % - ?gedf} ¢ (2.30)
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§ = 0 reproduces the result of Camellia and Pi. Using unre-normalized gap
equation we combine V?, V* and V2 and writing them in terms of renormalized

parameters

_ Al 2”‘32 n 24_£ _
v°+v'+v'..;{¢— A]—zm,é 8G“(M)

§
=G (M) - Fig) (2.31)

In the case of (2+1) dimensional #* theory F{¢) = & which is finite. Thus
unlike (3+1) dimensional &* theory the effective potential do not contain
any unrenormalized parameters. But in the case of ®° theory F{¢) contains
‘m* which is an unrenormalized mass parameter. But Here we can make
F(¢)=0 by adjusting the parameters suitably and make the unrenormalized
parameters vanish.
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2.4 High Temperature Expansion.

Evaluation of the effective potential at high temperature up to one loop
level has been done earlier in (3+1) and (1+1) dimensions [2,58]. Additional
terms appearing in the expression for the effective potential can be obtained
by evaluating G(M(¢)), for T << 1. The relevant integral leqn. 2.20] is
of the form [69)]

z*tdz 1
ha(y) = l"(n) E AR (2.32)
m
v="s (2.33)
These integrals satisfy the differential equation
dh,.y _ vhea
4~ n (2.34)

High temperature expansion for the integral is obtained by using the identity

1
o= st 22 T (2.35)
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Multiplying the integrand by a factor ™ for convergence, performing term
by term integration and letting ¢ — 0 at the end we get

r 1 y 1

9 = 0.5772. - - which is the Euler constant.

ha(y) = —In(1 — &7) (2.37)

Other can be found by using the differential equation (eqn.(2.34)]. We have:

ﬂ .[ (2x)? E(eﬂ!? 1) / (2x)? E(e&' W) (2.38)

By using the formmula | eqn.2.37] we get

() =28 4 Loy _ ) (2.39)

Which can be used to evaluate V. at high temperature using |eqn.(2.30)].
High tempef.ature expansion for the effective mass can be obtained from jeqn.
(2.26)}.

R [ 4
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2.5 Conclusions.

A self-consistent improvement for the finite temperature &‘ theory is ob-
tained as an extension of CJT formalism. Certain peculiarities of the $¢
field theory in (2+1) dimensions are analywed. $* theary in (2+1) dimen-
sions does not contain any unrenormalized terms unlike its {(3+1) dimensional
counterpart. $° theory in (2+1) dimensions contains divergent terms in the
form of an unrenormalized mass parameter in the expression for effective
potential, but can be made to vanish. In this model physically meaning-
ful stable theory is possible both for positive and negative A, indicating the
possibility of bound states. High temperature expansion for the effective
potential is obtained.

Behavior of the effective mass can be clearly understood by numerically
solving the equation for effective mass. Figures (4-7) show these graphs for
certain relevant values at zero temperature. The straight region paralle] to
the ¢ axis indicates imaginary values of the effective mass. It is clear that
this region indicates a broken symmetry phase. comparison between ®* and
3° theories show that they are identical in shape except for higher numerical
values for ° model. A study of the behavior of effective mass for different
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couplings is also given (in weak coupling range gince the reliability of the
approximation in the strong coupling range is not well established). Shape
of the graph is same for a reasonable range of couplings with a notable dif-
ference in the stretch of the straight region.

Graph for eflective mass at finite temperature (fig. 8-15) shows that as
temperature increases the straight region gradually decreases indicating an
approach to symmetry restoration (critical temperature). At sufficiently high
temperature symmetry is found to be restored. Graphs presented are for $°
model, but the behavior is identical for $* model.

Using the numerically obtained value of the effective mass effective potential
can be calculated (fig. 16 — 18). The graphs clearly indicate broken sym-

metry phase at zero temperature. Approach to symmetry restored phase is
/indicated in fig.19.
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Chapter 3

CJT Formalism at Finite
Chemical potential

3.1 Introduction

Recently there has been considerable interest in the effects of finite charge
on a quantum field theory. The phase structure ,effective potential at fixed
charge and Bose-Einstein condensation have been recently analyzed [60-886].
The analysis is important because the nature of the phase transitions will
be affected by the presence of of various conserved charges. Ipso facto the
value of the critical temperature of phase transition at which the scalar bo-
son effective mass vanishes will be considerably altered. In this chapter we
extend the finite temperature CJT formalism [chapter 2] for scalar fields, to
charged scalar field so as to include the effects of conserved charge, through
the introduction of chemical potential x {61,62,63,67,69].

37
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Charges can be bosonic or non-bosonic. In the latter case scalar bosons do
not carry charge. The only way in which the chemical potential x4 can con-
tribute to the effective mass is through the fermion loops. Effect on critical
temperature is very small because of the smallness of the Yukawa couplings
[67,88]. It has been shown that for bosonic charges, the chemical poten-
tial has striking effects on the critical temperature and the phase structure.
Analysis of the problem has been carried out both by using perturbative
as well as non-perturbative methods {80,64,85]. For simplicity we consider
only a charged scalar field with a chemical potential. Extension to several
component fields is straight forward.

An earlier analygis of the phase structure of the theory does not offer an ex-
pression for one loop effective potential [61,63]. In ref |64] one loop effective
potential is obtained and the consequences are studied. It is hoped that CJT
formalism will yield a much more satisfactory picture of the phase structure
of the theory.
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3.2 Formalism

We consider the O(2) invariant Hamiltonian density () for a charged scalar
field ®. (8=1,2) which is given by
1 1
H= o WeTa + E(VQ.).(V‘I’.) +

l 2 i 2
™M @e®e + (2u20) (3.1)

The conserved charge Q is given by

Q= fd’z(%m — Pamy) (3.2)

In the above equations r represents the canonically conjugate momentum.
Introduction of the chemical potential i is done by computing the net back
ground charge in the grand canonical ensemble. The grand canonical parti-
tion function is defined to be

Z(B, p) = triexp|-AH' — pQ)) (3.3)
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The u dependent Hamiltonian density is

M(p) = H — pldhma — dam) (3.4)

CJT formalism considers this partition function as the generating functional
for finite temperature Green’s functions of non local composite fields. H’
includes the effect of sources J and K, and the path integral representation

takes the form (suppresging an irrelevant normalization constant)

Zss( S K) = [D8:D%;exp [~1(3, 1, 4 K)] (3.5)
1@, 1K) = I(&, 1) + fd‘: [8:(2)J1(2) + Ba(2) Jo(2)
+5 [0 @Kz @) +

[H@t @ BE@KEsE] (8
I(@,1) = [#(z)d'(v) [:() Dehlz ~ v)E: ()] +
2@ ) [#2(2) D5l =z — 1)%a(n)]

+u[®17a — 72®s) + Lins(P) (3.7)

Jont(®) = /d‘zc.',u(a:) (3.8)

Dii(z - ) = =10 +m? ~ )8z ) (3.9)



3.3. EFFECTIVE POTENTIAL 41

Using Hamilton's equations we get [61,85]

p(@172 — Bamy) = p(B1 %2 — 8:%4) (3.10)

Presence of the chemical potential ;» modifies the classical potential and the
4 dependent Lagrangian can be written as

L) = 7ebe — H{u) = % ,8. 8, — V(@) + p(@1508s + Babo®y) (3.11)

V&) = 5(m? - 8.8, + 5(8.8.7 (312)

3.3 Effective Potential

Quantum corrections to the classical potential defined above can be obtained
by means of the effective potential evaluated in the CJT approach. The ex-

pression for the effective action is obtained as a double Legendre transform
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of In Z, and eliminating J and K in favor of ¢ and G |chapter 1,Section 2].The
functional operator which is the propagator of the interacting theory in the
presence of chemical potential is (a,b=1,2)

DA(ia4) = —I0 + " — i + S (P (best (= 1)

~Fh@REME-y)  (313)

The vertices of the shifted theory give the interaction part of the Lagrangian

A‘Q‘(a:) (3.14)

Lins(¢, D) = —%«ﬁ.(z)@.(z)y(x) +5

where $%2 = 3.3,
Presence of the chemical potential will not alter the diagrams to be counted

which are obtained by Hartee-Fock appraximation [Chapter 2 Fig 2. The

series expansion for the effective action is

Tu(6,G) = Luw (6, ) + %trln DG+ 5(D76 - 1) +

3 J72 (6@ 2)Gu(e2) 4 26ule, )Gz )] (315)
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The integral sign also includes the summation over discrete frequencies. By
stationarizing this effective action with respect to the propagator G, the gap

equation can be written as

Ga(z,3) = D2z sl + 5 [6uGicler ) + 26 e, )] B2 —1)  (38)

For translation invariant field theories with constant classical background
field the effective potential can be derived from the effective action [chapter
1}. The definition of the fourier transformed propagator used in chapter 2
[eqns. 2.7 and 2.8] can be applied here also taking care of the fact that as a
consequence of the introduction of the chemical potential the mode frequency
will have two values (K2+M2)} = ;. The tree level mass matrices are given by

m, = (m? — 12 + 3 47)bu + Jhubh (3.17)

Du(k) = 55Dl — ) explik(z — 1))
1
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The ansatr for the full propagator G is fixed in terms of an effective mass

matrix M,

Calk) = [T Gule — ) explibz )
1
- T (3.19)

To simplify the analysis we assume that the effective mass associated with
both the component fields is M{¢). The shift associated with one of the
fields is assumed to vanish (¢, = 0,¢; = 1) [80]. The u dependent effective
potential is then given by

Vet Byl M) = 2 = )+ 22t 4
[EE 101 + M(9)) — 210(6) - m, — 22460z, 2)

+A—85-G(z,z)G(z, z)  (3.20)

3.4 Effective Mass

Stationary requirements with respect to ¢ and M? lead to

v

0= =9 [mg, — 2+ 22 %G(z.z)] (3.21)
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m -—ml,--’\—‘B —/\BG(:: x)]a—ca—(;;;—z)

- (3.22)
M) =ml+ 24+ 26(ez)  (329)

It has been shown in chapter 2 { eqn. 2.10] that non zero turning point is

absent in $* theory at zero temperature for negative \. In the presence of
chemical potential

Vi) = M) - 2 - 28] (3.24)
Here m? — ;2 is not positive-definite, and hence, SSB is posaible for nega-
tive,positive and zero values of the coupling constant A. Thus the presance of
p? considerably alters the nature of the phase transition. At zero tempera-
ture, considering the classical potential we note the following. Normally SSB
take place only for M? < 0. finite temperature correction increases this mass
parameter, and at the critical temperature 7., m? = 0, and symmetry is
restored. The presence of u* decreases the magnitude of m® and critical tem-

perature increases. SSB can take place for positive m? also when m? < p2.

In terms of the effective mass the static effective potential is

Vetr = Viawn + 2 xn(k=+M=<¢))— "G(z.zmz,z) (3.25)
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3.5 Renormalization

Performing the summation in the time coordinate considering the effect of u

we can write [60,69).

k1 2 (k1
¢ = [t 5/ E
1 1
i [exp(ﬁ(E-i- =1 aplBE—p)= 1} (3.26)
k_ 1 %k
=S 5 o
[ln (1 — X5} +1n (1 — AZ-#)] (3.2m

V. gives the familiar one loop effective potential at finite chemical potential
with the mass term replaced by the effective mass M{¢).

We find that the introduction of the chemical potential does not introduce
any new divergences in the theory. The renormalization procedure employed
mref[?] can be used here also to remove the divergences. Introduction of u
alters the finite part of the propagator G(x,x) [24]. To avoid confusion we
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denote the renormalization scale by 7 instead of u. In (3+1) dimensions

G(M(¢)) = Af efz) In (M‘y’)

+

2 k1 1 1

= = + 3.28
8 2w°E{a=p(ﬂ(E+#)—l exp(B(E—#)—l} (3.28)
At T=0 the first term alone will survive. The finite cut-off independent

effective mass is obtained as

M) =5 md + 324+ ZC(M(4) (3.29)

The finite expression for effective mass is written in the same form as that
of the theory with x = 0. But the two expressions are not identical be-
cauge of the difference in the definition of G(x,x). Similarity in form permits
exactly similar calculations. The final expression for the effective potential is

Vauloh M) = - =~ SMPGM) + 2 [ w_ _;_}

% [;“_1: In(1 — exp(B(E + 1)) + In(1 — exp(B(E — ))) —

1, A
# ¢ - 3¢ (3.30)
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The unrenormalized A term does not get cancelled even with the introduc-
tion of the chemical potential. The integral appearing in the definition of
G(M(¢)) is difficult to be evaluated analytically. We evaluated the integral
numerically [Table 1]

3.6 (2+1) Dimension

Expression for the effective potential in (2+1) dimensions can be easily ob-
tained by using the results of chapter 2 |eqn. 2.9] by putting £ = 0. After
appropriate modification in the definition of G(M(¢)) we get

RURRE CIY

1 1
pr(ﬂ(E+ B —1 + p(BE —p) — 1] (3.31)
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Integrals appearing in the above equation have been evaluated earlier [60].

2 @kl
6l2mE

1 1 .
L‘P(ﬂ(E Fa -1 epBE—p - 1] = o=

: JEE 1n(1 - exp(B(B+ ) +1n(1 — exp(B(E— )

1 [M 2 37 = M2
=2 [ wpw -+ X
L MR L ar it e+ BD) e

Where ( represents Riemann’s zeta function. Using the above equations n a

finite expression for effective potential is obtained.

Charge density is defined as the negative derivative of the free energy with

respect to the chemical potential [80,85,89):

p= 22D (3.34)
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It has been shown earlier that [60)

8 _ el2 nZ
50 =~ |2 - 22— 2

+%(3M’ - ,ﬁ)ﬁ] (3.35)

In the above equation terms are taken up to first order in 8.

S5 (M~ )] + e (3.38)

3.7 Conclusions

Extending the CJT formalism at finite temperature to include finite chemical
potential.the effective potential for a charged scalar field is evaluated. Our
study shows that the inclusion of u alters the phase structure of the theory.
In (241) dimensions the effective potential could be evaluated in a closed
form. Charge density also is calculated.
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Numerical evaluation of the effective mass yields a graph (fig. 19) similar to
that of the 4 = 0 model. This is only natural since when variation with re-
spect to G is performed, all dependence on i disappears. Graph (fig. 20-23)
representing variation of V*(¢) for different values of A, shows the possibility
of a minimum value away from ¢ = 0. This is an expected result and has
been shown analytically [61,63]. The integral appearing in G{M{¢))in (3+1)
dimensions is evaluated numerically (Table-1). Numerical evaluation of the

effective potential at various temperature can be obtained using these values
of integrals.

Our computational ability permits only an upper limit two orders of mag-
nitude higher than the temperature value considered. It seems that more
sophisticated computational procedures will not alter the values consider-
ably.
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Chapter 4

Schrodinger Picture Formalism

4.1 Introduction

Variational methods in functional Schrédinger picture have been shown to
be very useful in the study of detailed structures of the quantum fields,
both for the bosonic and fermionic field theories [38,42,47]. Recently vari-
ous interesting applications of this formalism has been presented. In (2+1)
dimensional Thirring model [52]. Gaussian approximation provides better
information than the large -N approximation. it has been used to derive
(241) dimensional effective potential in Liouville model [46]. Quantum fleld
theoretic analysis of inflation dynamics in a (2+1) dimensional universe has
been worked out using this method [71]. Taking into consideration the re-
cent interest of the formalism in (2+1) dimensional theories we propose to

apply the method to the most general renormalizable scalar theory in (2+1)

53
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dimensions that is a #° model. We find that the effective potential expression
that emerges using functional Schrddinger picture is same as that derived
using CJT formalism in chapter 2.

4.2 Effective Action

We propose to apply the formalism to a $° model and since $° coupling
effects show up only at the three loop level we write the expression up to

three loops [chapter 1,eqn. 1.41].

P= fa|[ 1% - 3(véP - v+ [ BG-

2 fw 265 - [ 367z 2.0)

V6 1 )l + 3B e 2.1)] -
%vw(a) [Gtzz 07 %v@(&) [G¥@=t) (4.1)

In this chapter we follow the standard practice in the functional Schrédinger
picture representing expectation values as ¢ equivalent to shift ¢ used in

preceding chapters. Identifying the first term as the clasgical action and per-
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forming variations we obtain

ar 2 -
._,_=O_an’t =V§ s _“1)
et (z,t) (=, t) (¢)
—-;—V‘”(&)G(z. z,8) — %v@(&)c;’(z, z,t)
oT

——— =0 — X(z,y,t) + 2 | E(z,z,t)E(z, y.t
Fos JRCEDL

-6t s[5t oo oot
_i.v(‘)(&)G“(z, z, t)] &lz—y)

6[‘ .
s =0 e = e moens

+o(z, z,t)G(z, y,t)}

4.3 Static Effective Potential

(4.2)

(4.3)

(4.4)

It has been shown that renormalization of time-dependent equations can be

achieved along the same lines of the renormalization of the static effective

potential. We therefore evaluate the static effective potential for $° model

at zero temperature. This can be achieved by taking ¢ to be ‘x* independent
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and putting ¥ = 0. The clasgical potential for the model is given in chapter

2 leqn.2.1]. The effective potential is given by given in chapter 2. By evalu-

ating the derivatives we get

f -
rid

1 5, Aay . € 24
+(§m’+z¢’ +§¢)G(z,z)

. 1 o A
Veis(¢,G) = 5m2¢2 + E¢‘ +

A -
+ (g + %ﬁ) C(z,7) + %G“(z, z)

+-;-t7'G_1 (z,z) — %VEG(&:, z)

(4.5)

By performing variation with respect to G the gap equation is obtained.

Ua o (2 A, €
ZG (x,y)—[ & +m +2¢2+24¢

+%G(z. y) + %&’G“(z, v+ %@(z, y)] 8z — )

(4.8)

Assuming translation invariance the Fourier transform of a function is de-

fined as
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fla) = [ome=fik) (47)
G(z,1) = f:%% {k’ +m?+ %&2 + EEZ&‘] x
A £, ¢ .
EG(:c, z)+ Zo&’G(z, z)+ EGa(z, z)} (4.8)
ko1
Cla,2) = o aE + 2P (4.9)

where an anzatz is fixed for G in terms of an effective mass [chapter 2,eqn.2.6].
The effective mass M is treated here as a variational parameter which is @

dependent.The static effective potential can be written as

k
Vi M) = 5 [ (B + M)+
A P
(%mw + Z!-d" + g—";&a)
Ag »
+% {M —my — —22:#2 - %5‘] G(z,z)+

+ [% + %&’] G*(z,z) + 74%6"(:5, z) (4.10)
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Eqn (4.10) shows that the eflective potential expression obtained here is
the same as the one obtained using Gaussian effective potential approach
[17). This is only natural since when time dependence is not taken imto
account definitions of effective action in both the approaches coincide. From
the earlier analysis [chapter 2] it also becomes clear that the formalism is
equivalent to CJT approach at zero temperature . Both the equations differ
by a £¢* term. This term does not contribute when daisy and super daisy
diagrams are considered through Hartee-fock appraximation. At ¢* level
both the approaches are exactly identical.

Considering the first and second terms alone of eqn{4.10) it can be seen
that one loop effective potential result is contained in the expression with
the mass term replaced by the effective mass. Identity with the Gaussian
effective potential results become more transparent if we make the following

correspondence in notation.

k 1
Clas) — b= [ s (4.11)
1k \

M—0Q (4.13)
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4.4 Finite temperature calculation for ®® model

The Hamiltonian for 8 $ model is given by [33,34]

= [£2(310(2) - 56(2)V*6(2) + pmid¥(z)
+ge) + 54@) (414)
To evaluate the expectation values the following variational procedure is
used. Gsussian density matrix for a free theory is obtained as an extension
of density matrix described in chapter 1[eqn. (1.52). This density matrix
is chosen as a test function. for the interacting theory this test function is
expressed in terms of variational parameters and variation is performed with

respect to them. For a free field theory density matrix (test function) is
written as [33,70]

p(dra) = det? [wtanh(é;—)] exp H fd’z jd"y
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[¢n (z){weoth(Bw))(z, ¥)é1(y) + da(z)(w coth(Bw))(z, ¥)¢a(v)
—2¢(z)(wesc h(Bw)(z, y)éa(w)]]  (4.15)

In terms of the variational parameters A, E, {2 and b the demsity matrix for

the interacting theory is written as

s, ba) = Nexp [~3 [z [Eylin(@)A(z,0)ir(v)

+ha(z)A(z, Y)a(y) — r(2) E(z, y)da(¥)]] (4.16)
where
N = det*? [Q tanh (9;—))] (4.17)
Az, y) = Q(z,z) coth bﬂ(g, y) (4.18)
E(z,y) = 20(z, z) csc hbX(z, y) (4.19)

Average values are obtained for any observable O by the relation
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(0) = [Ds0(9)0(#, ) (4.20)
Thus
(#2)0)) = 50 coth(E) (1) (421)
) = frel2ED)
5059
= %Qcotb(%)(z, y) (4.22)

By evaluating the entropy S = —{plnp) and (H), we can calculate the
Helmbholtz free energy F:

F=U~TS (4.23)

BF =trpin p + ftrpH = (In p) + B(H) (4.24)

The effective potential is obtained from the free energy by

F
Vess = Tdz (4.25)
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The evaluation of the entropy function and the expectation value of the
Hamiltonian for a & theory has already been given [33]. Additional terms
appearing in the expectation value of $¢ theory are a ¢? dependent part and
a ¢ independent part. We consider only the ¢? independent part because in
the CJT formalism we used the Hartee Fock appraximation which eliminates
the ¢? dependent term.

(H) = [¢a (—m2¢2 + g+ ¢ ¢°)
+ iz Ea + % (-v2 +m? 4+ 5&) a-l] coth —E-(z, 2)
;2 (n-l coth m) (z,2) (n-l coth "Q) (2,2) +
ri (o) o) (o S 7))
(Q“ coth%) (z,z) (4.26)

Taking the already computed value of entropy the expression for free energy
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can be written [33]
BF =trin (2smh ) +ﬁ/d° (-m’qS2 + %d" + é¢e)

+ fdaz {gﬂ + 8 (—V2 +m® + Ed’:) ! — —bfl] coth é;l(z' z)

4 2
g; (Q“ cothb—n-) (z,2) (Q‘ ! coth — bﬂ) (z,2) +

1{’; (9-1 coth — m) (z,2) (srl coth ?) (z,z)

X (Q"‘cotb %) (z,2) (4.27)

Taking into account the translation invariance of the theory and using the
fourier transform expression for Effective potential is obtained.

mff—/aqk(mnh—)wfm( m'? + ¢‘+f¢ﬂ)

k(B B( ry 2. A\ )
-+ 2‘”2[49+ (V+m +—¢)Q —§bQ]coth2(z,z)

O ([P con ) (e [P0 con ) e+
ﬁf (/‘f 1:0-’ coth — )(z,z) (/—%Q‘lcotbm) (z,2)
x (oo cn ) o) )
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The above equations can be varied in different ways. But we have to impose
the condition that the correct free theory expression is obtained by putting
A = 0. This is true if we choose {2 and b as variational parameters. First of

all we vary with respect to 2 keeping bf? fixed.This produces the following

gap equation.

=KF4+m’+= )«352-%- €¢ -+-A —kﬂ“coth(%z—)-i-

§[ —’:9‘1 coth (bﬁ) —::Q“ coth (?)} (4.29)

Varying with respect to b2 keeping £ constant we get b=p5 where [eqn.(4.29)]
is used. Thus one of the variational parameters introduced is identified as

the inverse temperature. Put

BT VI IEY, SN
M=mn’+ A¢+24$¢+4 27:2Q coth >

13 k__ 0 k__ b2
€[[Ehnteon (D) fEhres (2)] e

The expression for effective mass becomes
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M=FP+m (4.31)

In (2 sinh -bzﬁ) =In(1 — ) (4.32)

The expression for finite temperature effective potential is

Vegs = 1 2¢’+}:+£+2 2x2(k2+M’)""’

o in(1 — )~ 2 -t - 27

‘ _ 2
-3¢ [0 ‘°°“‘(7) +

L (P on'2) o reon D) «

ﬂ

272 w2
& (ko o B [EE g1 oo B
+ ( 21‘_20 coth ) ( 1130 coth >
k -1 bQ

In order to compare with the effective mass expression obtained for $° model

we make the following identification.
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Gz, z) — /gg-n-‘ coth (?) (4.34)

By comparing with the finite temperature effective potential expression for

®*° model we can see that both equations are identical.

The preceding procedure can also be used to establish the equivalence be-
tween CJT formalism and Schrodinger picture formalism for the charged
scalar field with a finite chemical potential [chapter 3]

4.5 Conclusions

In this chapter we have established the equivalence between self-consistent
composite operator formalism and functional Schrédinger picture formalism
both at zero temperature and finite temperature. The equations are exactly
identical. As far as ® model is concerned use of Hartee-Fock approximation
eliminates diagrams depending on ¢ and hence the expressions are not ex-

actly identical. This raises certain doubts about the validity of Hartee-Fock
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approximation in $® model. But when the purpose is to include daisy and
superdaisy diagrams in the summation and when we consider only scalar

models the appraximation is valid.
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