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Chapter 1 

1.1· Introduction 

The term reliability is used in the present 

study to denote the probability of a device, component, 

material or structure, performing its intended function 

satisfactorily, for a givell length of time in an environ­

ment for which it is designed and is often used as a 

yardstick of the capability of the device to operate 

without failure when put into service. Eventhough the 

above definition of reliability is explained with refer-

ence to the failure behaviour or length of life of an 

equipment, it is equally applicable in the analysis of 

any duration variable that describes a well defined 

population subject to decrementation due to the operation 

of forces of attrition over time. Accordingly, the 

concepts and tools in reliability have found applications 

in many areas of study such as biology, medicine, engineer-

ing, economics, epidemiology and demography. Reliability 

analysis~ originally perceived as an area involving special 

class of problems inviting application of probability and 

statistics, has in recent times developed into a field 

that stimulates original research in new frontiers of 
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statistics such as non-p3rametric character of distribu­

tion functions, ranking, identification and selection 

procedures and inference based on truncated, censored 

and post mortem data •. 

A fundamental problem in reliability analysis, 

when the data on failure times is the only input, is to 

identify the underlying distribution that is supposed to 

generate. the observations. Generally it is not easy to 

isolate all the physical causes that contribute individually 

or collectively to the failure mechanism and to mathematically 

account for each and as such the task of identifying the 

correct model representing the data becomes very difficult. 

In many situations, the fact is that the information content 

on the failure or ageing pattern available from the data 

is rarely specific enough to enable the analyst to narrow 

down his consideration to a particular model. When the 

data alone is the criteria for the ~odel selection it is 

customary to start with a general system of distributions 

and then to select an appropriate member from the system 

that fits the data. The dilemma one has to face here is 

that many of the models used in this connection have 

markedly different right tail behaviour and the sample 

size may not be large enough to notice such differences. 
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The legitimacy of the model is ascertained by its 

consonance with the data as revealed through techniques, 

such as probability plots or tests of fits like Kolmogrov-

Smirnov statistic, Cramer-Von Moses Statistic, Anderson­

Darling statistic, or the cl~ssical ~2 or likelihood 

ratio tests, which are at best only approximate evalua­

tions. Some times a model may fit the data reasonably 

well, but the physical consirlerations of the system may 

point out to a failure pattern that is inconsistent with 

the best fitting model. An illustration of this point 

is the lognormal distribution, which has a failure rate 

that increases over time, then decreases, and finally 

approaches to zero for sufficiently large values of time; 

and yet it may fit to certain failure time data that 

does not follow the above pattern. All these point out to 

the need for some legitimate method of arriving at a model 

and some accurate criteria that assert the soundness of 

the method. A standard practice adopted in most modelling 

situations is to ascertain the physical properties of the 

process generating the observations, express them by 

means of equations or inequalities and then solve them 

to obtain the model. In reliability, analysts have 

developed certain basic concepts such as failure rate, 

mean residual life, vitality etc. through which the 
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physical characteristics of the failure mechanism can 

be adequately described and therefore these concepts 

form the basis of specifying a probability distribution 

of failure times. The only exact method of determining 

a probability distribution is to use a characterization 

theorem, which in general terms say that under certain 

condi tions a family of distributions .:F is the only one 

possessing a designated property @ . Thus if one can 

translate the characteristics of the failure mechanism 

in terms of the failure rate, mean residual life or an 

ageing criter~~~nd if there exists a probability 

distribution characterised by such a property, the 

problem of model identification is satisfactorily 

---

resolved. This brings in the relevance and need of 

characterization of probability distributions by 

reliability concepts which is the focal theme of the 

present study. The endeavour here is to present 

characterization theorems of some important distributions 

or families that are potential lifetime models. As 

already mentioned, apart from the point of view of 

reliability theory, the results obtained here are of 

interest in their own right in statistical distribution 

theory and also in various applied studies where concepts 

in reliability theory are used with differing inter-

preta tions • 
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1.2. Basic Con~~s in Reliability 

It is evident from the foregoing discussions that 

most of the difficulties in reliability modelling can 

be substantially reduced by appealing to certain concepts 

associated with the failure process, that permit differ-

ent distributions to be distinguished. In the present 

section we discuss these concepts and review the results 

that will be used in the sequel. 

1.2.1. Univariate Case ----------

Let X be a non-negative random variable on a 

probabili ty space (.J:)., y, p ) with distribution function 

! F(x) = P[X~x]. In the reliability context, X generally 

represents the length of life of a device, measured in 

units of time and the function, 

R(x) = I-F(x) 

Y = p[X)x], 

is called the survival or reliability function because 

it gives the probability that the device will operate 

without failure for a mission time x. 
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1.2.1.1. Failure rate 

Defining the right extremity L of F(x) by 

L = in f t x: F ( x) =1}, 

the failure rate h(x) of X, when F(x) is absolutely 

continuous with respect to Lebesgue measure with 

probability density f(x), is defined for x < L by 

h(x) = lim + P [x<X ~ x+ulx > x ] 
u -~ 0 u 

= M R x ' 

d (-;log R(x». = dx (1.1) 

In the general case, when X is a random variable on the 

entire real line, Kotz and Shanbhag (1980) define the 

failure rate as the Radon-Nikodym derivative with respect 

to Lebesgue measure on {x:F(x) < I} , of the hazard 

measure, 

H(B) = J dF/[I-F(x)], 
B 

for every Borel set B of (-00, L). Further the distribution 

of X is uniquely determined by the relationship 
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R(x) = 11 [1-H(u)]exp[-Hc(~' c)], 
u<x 

(1.2) 

where, He is the continuous part of H. When X is non­

negative and has absolutely continuous distribution 

function, (1.2) reduces to 

x 
R(x) = exp [ - J het) dt]· (1.3) 

o 

1.2.1.2. Mean Residual Life 

The mean residual life (MRL) , known in early 

literature in actuarial studies as expectation of life, 

was reintroduced in the reliability context by Knight 

in 1959 (see, Kupka and Loo, 1989). It represents the 

average life time remaining to a component which has 

survived time x. When X is defined on the real line with 

E(X+) < =, the B-measurable function 

r(x) = E[x-xlx~xJ, (1.4) 

for all x such that p[X~x] ) 0 is called the MRL function 

of X. In the case when X is non-negative with E(X) < = 

and F(x) is absolutely continuous with respect to 

Lebesgue measure, 

= 
r(x) = Rfx) J R(t)dt 

x 
(1.5) 
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Further, for every x in (0, L), 

h(.x) = l+r' p1 -rrx (1.6) 

and 
r(o) x dt R(x) = ITXT exp[- I ITtT ] . (1.7) 

0 

Watson and Wells (1961) have obtained general conditions 

on a life distribution so that the MRL operated for some 

fixed time period is greater than the original mean life 

and in this context they have examined the Weibull, 

gamma, lognormal and extreme value distributions. This 

work was extended by Weise and Dishan (1971) by assigning 

cost functions and by considering the economic aspects 

burn-in and replacements. Bryson and Siddiqui (1969) 

use the decreasing MRL function as a criterion for ageing 

and derive some implications with reference to other 

criteria based on failure rate, survival function etc. 

A test statistic for a decreasing MRL has been proposed 

by Hollander and Proschan (1975). In view of the 

pivotal role the exponential distribution has in life 

length studies, the conditions under which asymptotic 

exponentiality can be achieved is of some interest. 

Among other results, Meilijson (1972) shows that for 

a non-negative random variable X, the transformation 
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Y = X-(x/r(x» that satisfy 

lim r(x+yr(x» / [r(x)] = c, 
x~ 00 

a constant) guarantee that Y has exponential distribution. 

By virtue of equation (1.7) an MRL function 

uniquely determine a distribution and therefore, modelling 

can be done through an appropriate functional form for 

r(x). However one cannot choose freely any real valued 

function r(x) on (0,00) as an MRL,as the function 

g(x) = 1+x2 will testify. One set of necessary and 

sufficient condition for r(x) to be an MRL given by 

Swartz (1973) is that along with (107), 

( i) r(x) ) 0, 

( ii) reo) = E (X) I 

(iii) r' ( x) ~ -1, and 
00 

dx ( iv) ! r(x) should be divergent. 
0 

Although the failure rate, MRL and survival 

function are in one-to-one correspondence with each other, 

Muth (1977) consider the MRL to be a superior concept 

than the failure rate on the following grounds. 
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(a) Regarding the ageing phenomena the two 

concepts are not equivalent. A decreasing MRL does 

not imply an increasing failure rate, though the 

converse is true. Thus the DMRL class is more general 

in character. 

(b) The failure rate accounts only for the immediate 

future in assessing faiJ.ure phenomenon as described by 

the derivative of R(x), where as the latter is descriptive 
00 

of the entire future implied through J R(t)dt. 
x 

A consequence of this is that a component may experience 

deterio~ation though its failure r3te may be zero at a 

certain point. 

(c) It is advantageous to use the MRL function as a 

decision ~aking criterion for replacement or maintenance 

policies. The expected remaining life of the component 

gives an indication of whether to replace or to re-schedule 

and this could be more useful than the failure rate to 

formulate maintanance policies. 

1.2.1.3. Vitality Function 

The concept of vitality function is introduced by 

Kupka and Loo (1989) and they define it as the B-measurable 

function on the real line 
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m{x) = E[xlx~x] 

00 

= 
1 R\iT J tdF{ t) . 

x 
(1.8) 

The vitality function satisfies the following properties, 

(i) m(x) is non-decreasing and right continuous 
on (-00, L) 

(ii) m(x) > x for all x < L. 

( iii) lim 
x~ L-

m( x) = L. 

( iv) lim m{x} = E(X) . 
X-} -00 

Moreover, m{x} is related to r{x) by 

m{x) = x + r(x). 

The main contribution of the paper is that it 

provides a tool to clarify the link between the decreasing 

nature of MRL and the increasing nature of the failure rate 

through the concept of normalised increasing vitality 

property in the interval [A,S] defined by 

ITlt~LQl 
i1bJ < m(a+x t b+x) 

r (b+x) 
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where,a,b, a~b, are interior points of [A,B], b+x<L 

and 

b 
m(a,b) = J m(t)dt_ 

a 

Precisely, they proved that if F has increasing vitality 

property together with decreasing MRL,then F has increas­

ing failure rate property on [A,S] with respect to x. 

1.2.1.4. Variance Residual Life 

The variance residual life (VRL) of a non-negative 

random yariable with survival function R(x) is defined as 

v (x) = V(x-xIX~x) 

= E[(X-x)2IX~x] 2 - r (x) • (1.9 

The concept was introduced by Launer (1984) where he used 

it to define certain new classes of life distributions 

and to provide bounds for the reliability function for 

certain specified class of distributions. Gupta et al. 

(1987) proved that 

V (:x) = 
00 2 
J r(t) R(t)dt - r (x) (1.10) 
x 



and 

dV( x) 
dx 
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(1.11) 

He showed that the increasing (decreasing) VRL distribu­

tions have close relationship with increasing (decreasing) 

MRL models, but the former provides a more general class 

of distributions in comparison to many other criteria for 

discriminating life distributions. Several bounds that 

improve upon those given in Launer (1984) on the moments 

and reliability function are also developed. In another 

investigation,Gupta (1987) considers the residual life 

distribution and compares the behaviour of the reliability 

concepts of the original distribution with those of the 

former. Further the monotonic properties of the VRL are 

also characterized in terms of the residual coefficient 

of variation. 

1.2.1.5. Memory 

It is well known that a continuous non-negative 

random variable X possesses the lack of memory property 

(LMP) if the relationship 

p[x>x+ylx>y] = p[x>x] (1. ll) 

holds for· all real x.y > 0, 
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which is a characteristic property of the exponential 

distribution. Galambosand!Kotz (1978) establishe that 

(l~~) is equivalent to r(x) - E(X) or to hex) = k, a 

constant. From the definition in terms of r(x) noted 

above, the meaning of the concept is well explained in 

the sense that the component possessing LMP is 'as good 

as new' as its ~lL is the same as at age zero. But the 

classical definition (1.1~ does not specify what one 

understanrls by the memory of a distribution. Muth (1977) 

defines the memory at a point x as 

M(x) = - r'(x) 

and for an interval (a,b) as 

M(a,b) = (M(a)-M(b»/(b-a). 

He classifies distributions according as they possess 

(a) positive memory whenever for x > 0, r(o)-r(x) ~ x 

which includes perfect memory when the equality sign holds, 

(b) negative memory if r(o)-r(x) < x, and (c) lack of memory 

in case r(x) = reo). The global memory of a distribution 

on (0, 00) is defined as 

00 

M = J M(x) w(x)dx 
o 
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where,w(x) is a weight function which Muth (1977) 

chooses as 

w(x) = 2 j R(t)dt / E(X)2 
x 

In this way he shows that the memory can be measured 

by 

M = 2 
1 - n 

wher~n ~s the coefficient of variation of X and 

considers the nature of the distribution as of positive 

memory if M > 0, negative memory for M < 0 and no memory 

if M = O. The formula for M works for the exponential 

distribution as in this case n=l and M=O. However, in 

the discrete case, the counterpart of the exponential 

distribution is the geometric distribution for which M 

is not zero and therefore, a modified measure is called 

for. These aspects are discussed in Nair (1983). 

1.2.2. Bivariate Case 

The main problem in generalising the univariate 

concepts introduced in the previous section into higher 

dimensions is that it cannot be accomplished uniquely. 
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The definitions in the bivariate set up largely depend 

on how one visualises the physical situation in a manner 

comparable to the univariate case. As we shall see, most 

natural extensions of the univariate case fail to 

provide us a meaningful definition that takes care of 

the joint variation or dependency structure underlying 

the component variables. In the following, we shall 

assume that X = (X l ,X2 ) is a non-negative random vector 

admitting absolutely continuous distribution function 

F(xl ,x2 ) with respect to Lebesgue measure. The survival 

function of X denoted by 

which is related to F as 

where F.(x.) is the distribution function of X1 .• ,1 1 

The density of X is 

= 
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where, 

(1.15) 

However, we note that from (1.15) 

oH . 1 oR 

~ = - R 'O'X':" ' 1 

and 

o2H 1 oR oR 1 02R 
ox 1 oX2 = ~ oX2 Ox! - R ox1ox2 

which gives 

oH oH o~ 
a(x l ,x2 ) = ~ 8x2 - 8x1 Ox ' (1016) 

2 

as the differential equation connecting the failure 

rate and the survival function. It is easy to observe 

from (1.16) that being a second order partial differential 

equation, H and hence R need not be determined uniquely 

from a(x1 ,x2 ). A simple proof of Basu's result that 
-a1x1-a2 x2 

a(x1 ,x2 ) = c, a constant implies R(x1 ,x2 ) = e 

can be derived from (1.16). 

A second approach to defining BVFR is provided by 

Johnson and Kotz (1975) who take it as the vector valued 

function, 
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h (x l' x2 ) ( ~ ~ 
) H (x l' x2 ) , = Oxi 8x2 

( ~H ~H ) = ~xl 
, 

~x2 
, 

= ( h l (x l ,x2)' h2 (x l ,x2»· (1.17) 

Observe ~hat hi (x l ,x2 ) is the analogue of the univariate 

failure rate in the sense 

h i (x 1 ,x2 ) = 

When the components h i (x l ,x2 ) exist and are continuous 

in an open set containing R2+={(x1 ,x2 )lx i > 0, i=1,2} 

by choosing a path orthogonal to the axis connecting 

(0,0) and (x l ,x2 ) in R2+, we have the representation, 

from Ga1ambos and Kotz (1978), 

xl x2 
R (x l' x2 ) = exp [- J hl(tl,o)dt l - J h2 ( xl' t2 ) d t2 ] 

0 0 

or alternatively 

x2 xl 
R( x!' x2 ) = exp[-J h2 (o,t2 )dt2 - !h l (t1 ,x2 )dt1] 

0 0 

(1.18) 

(1.19) 
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as an extension of the one-dimensional relationship (1.3). 

Thus the vector h(xl'~2) uniquely determine the distribu­

tion of X through (1.18) and (1.19). Each of the components 

in h(x l ,x2 ) depends, in general, on xl and x2 and to reduce 

this redundancy of variables in the structure of the 

failure rate, Shanbhagand Kotz (1987)have proposed some 

modifications. In the case of a non-negative continuous 

random vector X the modification in (1.17) is to take 

the vector 

h* ( xl' x2 ) = (h1(X1Ix2)' h2 (x2 », 

where 
J 

- 0 
hl(x1Ix2) =dxl log P[X1)XIIX2)X2] 

and 

h2 (x2 ) - 0 log P[X2)X2 ]. = ()x2 

From (1.20) and (1.21), 

and 

so that 

Xl 
exp [- J h1(tlx2 )dt] 

o 

x 2 
= exp [- J h2 (t)dt], 

o 

exp 

(1.20) 

(1.21) 
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Thus the new vector h*(x l ,x2 ) also determines the 

distribution of X uniquely, subject to the order in 

which the variables are taken in the definition. 

1.2.2.2. Bivariate Mean Residual Life 

As a natural extension of the univariate definition 

in (1.5), Buchanan and Singpurwalla (1977) define the 

bivariate MRL function g(x l ,x2 ) by 

00 00 

J J P(Xl>xl+tl , X2>x2+t2 ) 
o ~o ____ ~~ __ ~r-________ _ 

R (x l' x2 ) Xi > 0 (1.23) 
i = 1,2. 

Although g(xl ,x2 ) seems to be a reasonable and direct 

extension, nevertheless, it does not share the most 

essential property of the univariate MRL function, viz. 

that, it determines the corresponding distribution function 

uniquely. 

A second definition for bivariate MRL function is 

provided in Shanbhag and Kotz (1987) and Arnold and 

Zahedi (1988) which proceed almost on similar lines. 

Let X = (X l ,X2 ) be a random vector on R2 with joint 

distribution function F(x l ,x2 ) and L = (L l ,L2 ) be a 
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vector of extended real numbers such that 

Li = inf (xIFi(Xi) = 
tion fu~ction of Xi. 

I} where Fi(x; is the distribu­
+ Further let E(X i ) < -, for ,1'=1,2. 

The vector v~lued Borel measurable function r(x l ,x2 ) 

on R2 defined by 

= E(x-xlx~x) 

for all x = (xl'x2 ) €. R2 , xi < L1' i=1,2, such that 

p(X>x) > 0 and X ~ x implies Xi > x., i = 1,2, is 
- 1 

(1.24) 

called the bivariate mean residual life function (BVMRLF). 

When (X 1 'X2 ) is continuous and non negative (1.24) is 

equal to 

(1.25) 

In this case, the components of BVMRLF are given as 

= (1.26) 
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and 

= 
00 

1 . J ( ) ( ) R xl,t dt. R xl ,x2 x2 
(1.27) 

It is shown by the above authors that r(x l ,x2 ) 

determine the distribution of X uniquely. The unique 

representation of the survival function in terms of 

r(x l ,x2) is provided as, (Nair and Nair (1988» 

= 

R(xl,o) r 2 (x l ,o) 

r 2 (x l ,x2 ) 

R(o,x2) r l (o,x2 ) 
r l (x l ,x2 ) 

x 
2 dt 

exp[- J r (x t)] 
o 2 l' 

x 
[ Jl dt ] . 

exp - ( t ) 
o rI' x2 

From the last two equations, it follows that one can 

arrive at the following 

= 

(1.28) 

(1.29) 

(1.30) 

(1.31) 
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The BVMRL in (1.24) and the bivariate failure 

rate in (1.17) are related by 

They also showerl that 

(i) r i (x l ,x2 ) will be the same as the univariate 

MRL's of the component variables Xi' i=1,2, if and 

only if Xl and X2 are independent, 

(ii) r i (x l ,x2 ) = ai; i=1,2 a constant, independent 

(1.32) 

of both Xl and x2 , if and only if Xl and X2 are independent 

and exponentially distributed, 

(iii) ri(x l ,x2 ) = bi (x 3 _ i ), i=1,2, if and only if 

(X l ,X2 ) fol16ws the Gumbel's bivariate exponential 

distribution. 
and 

(iv) A necessary and suffici~nt condition for a vector 

valued function r(x l ,x2 ) to be a BVMRLF are 

( a ) r i ( xl' x2 ) l 0 • 

(b) r i (o,o) = E(X i ) J 



and hence 

This gives 

1 + 

or 

26 

= 
- 0 log R(xl'X2 ) 

bX 1 

* Assuming the continuity r 1 (x 1 ,x2 ) at zero, 

R(o,x2 ) = C( x2 ) 

Likewise, from (1.34), 

* x2 r 2 (o) dt R (0, x2 ) = * 
exp[- ! 

* r 2 (x2 ) 0 r 2 (t) 

(1.35) 

(1.36) 

(1.37) 

] . (1.38) 
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Combining (1.36), (1.37) and (1.38), 

* * r l (0,x2 ) r 2 (0) 

* * r 1 ( x!' x2 ) r 2 ( x2 ) 

We notice that 

and 

so that the expression (1.39) is identical with that 

obtained in Nair and Nair (1989) already cited in 

equation (1.31). 

1.3. Characterizations 

(1.39) 

The fact that'a probability distribution can be 

uniquely determined by the failure rate, MRL function 

or vitality function makes it apparent that these basic 

concepts in reliability are tools for characterizing 

lifetime distributions. It is well known that for a 

non-negative random variable X'with F(o+) = 0, the 

condi tion h (x) = 7' , where .,.. is a con s tan t, charac terize s 

the exponential distribution with density function 



f( x) = -rx e 
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x,r.) o. 

Cox (1962) observed that the MRL function r(x) is 

constant, for the exponential dj.stribution. Later 

Gu8rrieri (1965) and Cundy (1966) have studied the 

MRL function for various distributions. They 

established that for a non-negative random variable X 

with finite mean, the MRL function r(x) = c, a constant, 

is a characterizing property of the exponential model. 

Shanbhag (1970) has shown that the vitality function 

m(x) = x+k, x > 0, with P(X < 0) = 0, E(X) < ~ and k 

is constant, characterizes the exponential law. It is 

evident from the discussions we have had on h(x) and r(x) 

that the constancy in one of them implies and is implied 

by the other and therefore, all these results through 

independently established over looks this fact. At the 

same time, in terms of physical interpretation of the 

failure phenomenon they describe different characteristics. 

Reinhardt (1968) has established that for a non-negative 

strictly increasing function h(x) with h(A) = 0 and 

h(B) = + ~ for some A < B, E[h(X)lx>y] = h(y)+h(b) for 

all A < y < 8, where b is a constant, implies that h(X) 

is exponential. Under the assumptions ~X)Y}= {h(X»h(Y)} 

and taking Z = h(X) and z = h(y), Hamdan (1972) has 

proved that E[zIZ)z] = z+h(b) for all z > 0 is equivalent 
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to the constancy of the MRL (see also, Swartz (1973». 

Galambos and Kotz (1978) however point out the use 

of functions h(.) that are strictly monotone presents 

no new mathematical problems as always in this case 

{X)y} = {h(X) ) h(y)J and therefore theorems with mono­

tone h(.) ara reiteration of the respective linear case 

proved earlier. A general result in this direction 

given by Laurent (1974) and Vartak (1974) is the follow-

ing. 

Theorem 1.1. 

Let r(x} ~ 0 be a decreasing and differentiable 

function for 0 ~ x < 00 with r'(x) ) -1 and r(o) ~ -1. 
A 

Assume that J 
o 

l+~(Jj) dx is finite or infinite accord-

ing as A is finite or infinite. If X is a non-negative 

random variable with continuous distribution function 

F(x ) such that r(x) = E(x-xIX)x), then the survival 

function R(x) will be given by 

x 
R(x) = exp [- J 

o 
l+r' ~y) dy ] 
:dy ~ x ~ O. 

Sahobov and Geshev (1974) have considered the above 

problem in more general way. Let X ) 0 be a random 

vnriable with survival function R(x). Assume that 
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E(X k) is finite, where k ~ 2 is a given integer. If 

= 

) -ex for x > 0, then R(x = e ,x > 0 and Q > O. The 

case when k = 2 was treated by several authors (see 

Laurent (1974), Dallas (1975». Nagaraja (1975) has 

characterized the exponential distribution using the 

conditional variance. For a nonnegative random variable 

X, with Var(X) < ~, the relaticnship V(xlx>x) = c, a 

constant, holds if and only if X is exponential. 

In this connection, we observe that a unification 

of all these results proved independently by various 

authors,can be brought about under a single framework. 

To do so, we treat the residual life defined earlier 

as a random vector Y and note that it has survival 

function 

s(y;x) = Rffif R x (1.40) 

for all y and x s u ch t ha t R ( x ) ) O. When X is distributed 

e)(ponentially, 

R (x) = exp[ - )-. x] , x, l' > 0 

and therefore, 

S(y;x) = -"}Iy e • (1.41) 
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Conversely, when S(y;x) has the form (1.41) 

R(x+y) = 

so that as x tends to zero R(y) - ?-y = e • Therefore 

X is exponential as in (1.41). Thus the distribution 

of X and that of the' residual life Y are identical in 

the exponential case. Whence, the corresponding 

expected values must be equal and most of the characteriza-

tions belong to this category. This points out to the 

fact that some general conclusions can be drawn if one 

looks at the residual life di~tributions as a whole, 

instead of probing the properties of summary measures 

derived from it. However, when used as tools of model 

identification, it is far more convenient to ascertain 

the behaviour of such measures as the mean, variance 

etc. ra the r than studying the whole d i s tribu tion i tsel f • 

The utility of the characterizations so far reviewed is 

to be assessed in this sense. 

Most of the characterizations given above, in 

terms of the moments of residual life are shaped so as 

to cover exponential distributions. In an attempt to 

study the structure of moments of residual life, which 

they call truncated moments, Gupta and Gupta (1983) 
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derived a recurrence relation satisfied by them. 

They show that in general one higher m?ment does 

not determine a distribution uniquely and that the 

ratio of two higher moments will be required to do so. 

The paper includes characterization of the exponential 

distribution by the property 

~2 (x) 
2 

~ 1 (x) 
= 2 

and the power distribution through 

where, 

~r( x) 

~ 2(x) 
r-l 

= c, c ~ 2, a constant, 

~ (x) = E[(x-x)rlx>x] r=1,2, •.• 
r 

Eventhough ~ (x) does not generally determine a r , 

distriqution uniquely, in the exponential case ~r(x)=k, 

a constant is a characterizing property as shown by 
) 

Dallas (1981) and again by Gupta and Gupta (1983). 

Mukherjee and Roy (1986) have studied some special 

relationships between the failure rate hex) and the MRL 

function r{x) that can provide unique distributions. 

According to them if E(X) is finite, then 
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hex) r(x) = k, a constant, 

characterize exponential distribution when k=l, 

Pareto type 11 with 

R( x) = ( 1+ x/a)-q ; q > 2 

when k > 1 and finite range distribution with 

R{ x) = (l- x/R)a, a > 0, 0 < x < R - -

when 0 < k < 1. The Pareto case is also discussed in 

Sullo and Rutherford (1977). Also if the coefficient 

variation of residual life c(x) = k, a constant, 

characterize the above class of distributions for the 

different ranges of values of k in the order just 

described. 

A brief discussion of these results seems to be 

in order. In view of (1.6) 

r{x) hex) = 1 + dr( x) 
dx 

so that the condition r(x) hex) -- k simplifies to 

r(x) = (k-l)x+c (1.42) 

and conversely, where c = reo) = E(X). Thus the given 
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condition can be linked with d~~X) = (k-l) which for 

k ~ 1 ( 5 1) describes the class of distributions with 

increasing (decreasihg) MRL with the exponential 

distribution as the boundary. The property r{x)h{x)=k 

can be viewed from another angle also. From (1.6) and 

(1.8), 

m'{x) = h(x) r(x) 

and according to the characterising property, this 

would mean decreasing vitality rate (positive ageing) 

for the finite range distributions, increasing vitality 

rate (negative ageing) for the Pareto distribution and 

a constant vitality rate (no ageing) for the exponential 

distribution. 

From (1.42) it is evident that a linear MRL 

function of the form 

r{x) = ax+b 

holds if and only if X is exponential for a = 0, X is 

Pareto 11 for a > 0 and X is finite range distribution 

for a < o. The result for the Pareto model has a long 

history, which dates back from Hangstroem (1925), the 

details of which are available in Arnold (1983). 
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The mo s t gerw ra J resul t in th i s connec tion seems to be 

given by Kotz and Shanbhag (1980) which states that the 

MRL will be a polynomial or a reciprocal polynomial 

(failure rate is a reciprocal polynomial or a polynomial) 

if and only if 

G(x) = exp [-a(x-o:)] a > 0 

or 

G( x) = [l-c(x-o:)]n, c > 0, n < - 2 

or 

G( x) = [l+c(x-o:)]~ c,r ) 0 

where" 

G( x) = R(x)/R(a) . 

A generalisation of ihese results in two dimensional 

random variables will be taken up in Chapter: 

The attainment of increasing MRL for the Pareto 11 

distributions can be accomplished in a different manner 

also. When the distribution of X is exponential with 

parameter ~ and the uncertainity in ~ is summarised by a 

gamma distribution, the compound distribution so arrived 

is Pareto 11. Morrison (1978) and Gupta (1981) have 

exploited this fact to arrive at a characterization by 
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saying that the MRL is linearly increasing if and only 

if the distribution of 7' is gamma. This compounding 

method via the exponential parameter allows itself an 

extremely useful physical interpretation in reliability 

analysis and the procedure can be easily extended to 

cover exponential distribution in higher dimensions. 

These aspects will be investigated in the present thesis 

in a subsequent chapter. 

Osaki and Li (1988) established the following 

theorem for thp. gamma distribution using the relationship 

between the failure rate and the vitality function. 

Theorem 1.2. 

Let X be a non-nega ti ve continuous random variable 

with dis1;ribution function F(x) and mean !l; then X has a 

gamma distribution with F(x) as 

x a(at)~-l -at 
F(x) J e dt = 

0 ~ 

if and only if 

m{x) = ~ + 
xh{x} 

ex for all x ~ 0 (1.43) 
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where ~ = ~/a and m(x) and h(x) are the vitality 

function and failure rate of X defined in (1.8) and 

(1.1) respectively. 

Other than the standard distributions so far 

discussed, certain derived models are also of significance 

in reliability, especially for comparison purposes. Two 

major contributions in this context are those of the 

equilibrium distribution specified by the density function 

= x > 0 (1.44) 

and the length biased distribution with density function 

= 
xf(x) 

IJ. 
x > 0 (1.45) 

associated with a random variable X with finite mean IJ.. 

Since equilibrium distributions are not directly discussed 

in the present study we refer to Gupta (1976), Gupta and 

Kirmani (1987, 90), Gupta et al. (1987) for the literature 

on the subject. Length biased distributions form a particular 

case of what are called weighted distributions, introduced 

by Rao (1965) and later studied extensively by various 

authors in differing contexts. The important results 
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relevant to the current investigation are presented in 

Chapter 2 to ensure the continuity of discussion there. 

Unlike in the univariate case, the characterisations 

based on the mUltivariate concepts in reliability are of 

recent origin and are still in the formative stages. As 

remarked in section 2, there is no unique extension of 

univariate concepts into higher dimensions and often the 

choice depends upon the actual dependency relation one 

expects between the concerned variables. Much effort has 

not been spared to link the various definitions and to 

evaluate the relative merits of the different approaches. 

In the remainder of this section, we summarise a few 

resul ts tha t have a ppeared in this area. 

Basu (1971) has shown that no absolutely continuous 

bivariate distribution with constant failure rate exists, 

except in the special case when the marginals are independent 

exponentials. Precisely, he shows that for R(x l ,x2 ) satis­

fying 

= 0 (1.46) 
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under the assumptions 

- ]-. xl - "2 x2 
e ' ,R(o,x2 ) = e and R(o,o)=l, 

-1'1xl-~x2 . 
e 1S the only solution to 

the above second order partial differential equation (1.46). 

Consequently, we cannot have an absolutely continuous bi-

variate exponential distribution exhibiting dependence 

between the constituent variables. Puri and Rubin (1974) 

generalised this result as follows by removing the condi-

tion on the marginals to be exponential. For a given ~>O, 

the only absolutely continuous distribution with a(xl,x2)=~' 

is the one which are mixtures of exponential distributions 

with density function given by 

for xl ,x2 > 0 where the probability measure G is concentrated 

on the set A = {ul u2 = ~-l, ul'u2 > oJ. Later, Marshall(1975) 

has shown that the distribution of (Xl 'X2 ) is Marshall and 

Olkin (1967) bivariate exponential if and only if 

R ( xl + t , x2+ t) 
R(t,t) is both increasing and decreasing in t • 

Ga1ambos and Kotz (1978) have identified the situation when 

the failure rate defined in equation (1.17) is strictly 
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constant and locally constant vectors. The only 

multivariate distribution for which the multivariate 

failure rate is a globally constant vector is the 

exponential model with independent exponential marginals. 

Also, the failure rate h(x) = (hl(x), h2{x)) where 

hi(x) = ci(x j ), i,j i t j ( h(x) is locally constant 

and continuous) if and only if the joint distribution 

is Gumbel's (1960) bivariate exponential specified by 

the survival function 

-alx1-a2x2-9xlx2 
= e 

xl ,x2 > 0 

a l ,a2 > 0; 0~Q~ala2· 

Jupp and Mardia (1982) have established that every 

multivariate distribution whose mean exists can be 

determined by its MRL function. For the random 

(1.47) 

vector X on X>b, the MRL r(x} = Ax+k for some constant 

matrix A and constant vector k if and only if X can be 

partitioned into independent random vectors which have 

shifted multivariate exponential distribution. Later, 

Nair and Nair (1988) have shown that the vector valued 

MRL function in equation (1.25) is of the form 

(a l (x2 ),a2 (x1 » if and only if the distribution is 
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Gumbel's bivariate exponential ~ith parameter 

a l = al(o+)-l, a2 = a2 (0+)-1 and OS9~ala2. Further, 

the MRL function is strictly constant if and only if 

the distribution is bivariate exponential with independent 

marginals. The result of Mukherjee and Roy (1986) has 

been generalized by Roy (1989) to show that the product 

hi(x) ri(x) = c.; i = 1,2 characterizes Gumbe1's bivariate 

exponential when c=l, bivariate Pareto with survival function 

xl ,x2 ) 0, a l ,a2 ) 0 

o S b ~ (c+1) a l a 2 

when c>l, and bivariate finite range model with 

d 
(I-Plxl-P2x2+qxlx2) 

o < xl < PI 
-1 

o ( x2 < I-Plxl/P2-qxl 

Pl,P2,d)0, I-d ~ q/PIP2 < 1 

(1.48) 

(1.49) 

when O(c(l. A detailed discussion of the properties of 

the models (1.47), (1.48) and (1.49), which will be 

denoted respectively in the sequel by E(al ,a2 ,9), 

P(a l ,a2 ,b,c), F(PI,P2,q,d) and several new characteriza­

tions of these models will be presented in the subsequent 

chapters. 
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1.4. The Present Study 

The present work is organised into six chapters. 

After the present introductory chapter, where we have 

pointed out the relevance and scope of the study along 

with a review of the definitions of basic concepts 

used in reliability analysis and the main results 

associated with them, the remaining chapters are 

addressed to some new results. 

Several characterization5 of specific models 

such as exponential, Pareto, gamma etc. based on the 

functional forms of the failure rate, MRL function and 

vitality function were presented in the previous section. 

A unification of many of these results is achieved in 

Chapter 2 where we prove a general theorem that 

characterizes the entire Pearson family of distribut-

ion by means of the relationship. 

m(x) 

where, m(x} is the vitality function, h(x) is the 

failure rate, ~ = E(X) is the mean and ao ,a l ,a2 are 

constantS. An analogous result in the discrete case 

for the Ord family is also presented and several exist-

ing results are deduced as particular cases. The ageing 
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patterns of equipments can be studied by comparing 

the structural properties of their life lengths with 

those from the corresponding length biased distributions. 

In this context, we derive certain necessary and suffic­

ient conditions under which the members of the Pearson 

family are form-invariant (that is having the same 

form for the dens i ty) with respect to the fo rrnation 

of their length biased distributions. For this sub­

class of the Pearson family, some characterizations 

based on reliability concepts are established. 

In chapter 3, the class of bivariate models 

having the property that the components of their MRL 

function are linear in the respective variables are 

derived. This extends the results for the class of 

distributions consisting of exponential, Pareto and 

finile range. The corresponding bivariate case, includes 

the exponential mod~l E(al ,a2 ,Q), bivariate Pareto 

distribution P(a l ,a2 ,b,c) and the bivariate finite 

range distribution F(Pl,P2,q,d), already mentioned 

in equa tions (1.47), (1.48) and (1.49). The dis tribu-

tional properties along with the dependence structure 

among the component variables, some characterizations 

and certain specific reliability problems where the 
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mode can be arplied, are investigated. Various 

results obtained in Lindley and Singpurwalla (1986) 

and Nayak (1987) are deduced as special cases. 

Characterization based on properties of medn, 

higher moments and the median of the residual life 

become apparent when the whole distribution of 

residual life is looked into. With this purpose, in 

chapter 4 the concepts of residudl life distributions 

(RLD) in the bivariate set up is introduced and form 

of the RLD in many specific situations are examined. 

It is shown that for the class of distributions 

investigated in chapter 3, the RLD is of the same . 
form as the parent distribution. Further, a necessary 

and sufficient condition under which they become in-

variant are investigated. The ageing behaviour when 

life times follow the parent distribution is inferred 

from that of the RLD. 

The concept of bivariate variance residual life 
- ----- ----

(VRL) is introduced in chapter 5, some results that 

relate VRL with MRL function are proved and the propert-

ies of life distributions with monotone VRL function are 

discussed. With a view to ascertain the significance 

of the VRL concept, a few theorems concerning the 
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implication between monotone VRL and monotone failure 

rate (MRL function~are proved. The properties of VRL 

function and its relation to the conditional coeffic-

ient of variation are exploited to characterize 

certain probability distributions. 

Chapter 6 is devoted to study of bivariate 

vitality functions. The definition and properties of 

bivariate vitality function are presented. We define 

the concept of local memory of bivariate distributions 

and examine its relationship with bivariate vitality 

functions. It is shown that a measure of local memory 

can be provided in terms of the conditional coefficient 
, 

of variation. The prospect of characterizing probability 

distributions in a bivariate Pearson set up using a 

relationship between the vitality function and the 

failure rate that extends the result of chapter 2 is 

also investigated. 



Chapter 2 

CHARACTERIZATIONS OF THE PEARSON FAMILY OF DISTRIBUTIONS 

2.1. Introduction 

The normal distribution enjoyed a pivotal role 

in all kinds of statistical analysis till the end of 

the ninteenth century and most theoretical developments 

took place on the assumption that the population is 

normal or at least approximately so. However, when the 

interest was focussed on describing natural phenomena 

by finding statistical distributions that fit the data, 

it became apparent that the samples from many sources 

show characteristic~ that are markedly different from 

normal." The then prevailing practice of attributing 

departure from normality to errors in measurement or 

to imprecise methods of collection, began slowly giving 

way to the belief that such departures depicted certain 

inherent features of the population that required 

alternative models. By the turn of the twentieth century 

non-normal curves became an accepted fact and efforts 

were under way to generate systems of curves which 

include the normal only as a particular case. Of the 

different approaches initiated to meet this end, 

Karl Pearsonts contribution to describe a system of 
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distributions by the differential equations 

1 
T{Xj 

-(x+d) 
= (2.1) 

still stands out as a convenient family that includes 

many important probability models. Among them the 

normal, exponential, gamma, beta, Pareto, finite range 

etc. are used extensively as lifetime distributions 

and we have reviewed characterizations of these distri-

butions by reliability concepts. Instead of looking 

at characterizing individual members of the family, in 

the present chapter we present some results that hold 

good for the entire system, and then verifying that many 

of the existing results can be obtained as particular 

cases of the general theorem. 

2.2. Characterization by relation between failure 

rate and vitality function* 

Let (J).,..Y, p) be a probability spac e and X be 

a random variable thereon such that the range of X is 

H = (a,b) for some real a < b; where a can be - - and 

* The results in sections2.2 and 2.3 have appeared in 
IEEE Trans. Rel. Vol. 39(1991) (reference 63 ) 
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and b can be +~. Assume that the distribution function 

F(x) of X is absolutely continuous with respect to 

Lebesgue measure and that f(x) is its density. Then the 

distribution of X: .n. -.:;> H belongs to the Pearson system, 

if the density function is differentiable and satisfies 

the equation (2.1). 

Theorem 2.1. 

Let ~ = E(X) 

if b = + ~ and lim (b +bl X+b2X2 )f(X)=O 
x~b 0 

if b (~. A necessary and sufficient condition for the 

distribution of X to belong to the Pearson family is that 

for all x in (a,b) 

m(x) (2.2) 

Proof: 

Suppose that X is a member of the Pearson family. 

Then, from the equation (2.1), 

(2.3) 

where, R(x) is the survival function of X. 
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Integrating by parts and using the assumptions of the 

theorem, (2.3) becomes. 

b 
= -(x+d) R(x) - J R(t )dt . 

x 

That is, 

(2.4) 

The equation (2.4) can be written as 

m( x) 

in which, 

Il = 
bl-d 

1-2a2 

and 

a i 
bi 

i = 0,1,2. = 1-2b2 

Conversely, if the relationship (2.2) is satisfied, then 

b 
!tf(t)dt = (2.5) 
x 
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DifforentlaUng (2.!"")) with respect to x, 

and finally, 

f'(x) = , 

which completes the proof. 

Deductions. 

1. For the gamma distribution, 

f(x) = a(ax)f3-1 e-ax / run, 

direct calculations show that 

a = 0, o 

Accordingly) 

-1 -1 a 1 = a ) a2 = 0 and ~ = f3~ . 

which is the result of Osaki and Li (1988). 

(2.6) 
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2. When X is norreal N(a,a}, 

so that 

m{x) = 
2 a h{x) + a 

as observed in Kotz and Shanbhag (1980). 

2.3. Discrete Case 

The literature on reliability analysis is 

heavily biased towards continuous models and the 

use of discrete distributions in this context has not 

been properly investigated or exploited. Frequently, 

in reliability analysis, we need to know the probability 

that a specific number of events will occur or to 

calculate the average number of events that are taking 

place. For example, suppose that p is the probability 

that light bulb will fail during the first 100 hours of 

service. Then on string of 25 lights, what is the 

probability that there will be 'n' failures during this 

100 hours period. To answer this question, we have to 

consider a discrete model representing by probability 

mass function. Xekalaki (1983) points out that the 

discrete models are more appropriate in a variety of 
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applied problems due to the limitations in measuring 

equipments and to the fact that many continuous life 

length distributions can be very well approximated by 

the corresponding discrete counterp~rts. Gupta (1985) 

has given an example of discrete random variables that 

occur naturally, such as the case with the time to 

failure in fatigue studies measured in terms of the 

number of cycles to failure. Moreover, in the type I 

censoring, the number of failured units upto a c~rtain 

time period can be represented by a discrete distribution 

and this may be used to study the failure process of the 

system. These considerations have opened up a spurt 

in char~cterization of discrete models using reliability 

concepts. For details we refer to Xekalaki (1983), 

Gupta (1984), Nair and Hitha(1989), and Hitha and 

Nair (1989). 

Let X be a random variable in the support of the 

set of non-neqative integers with the probability mass 

function f(x) and the survival function R(x) ~ p(X~x). 

Then the failure rate hex) of X is defined (Kalbfleisch 

and Prentice (1980» as 

hex) = ~ RTXT x = 0,1,2, ••• (2.8) 



53 

Further, R(x) can be written in terms of hex) as 

x-I 
R( x) = 11 (l-h(t» (2.9) 

t=o 

As in the continuous case, here also the failure rate 

hex) uniquely determines the survival function R(x) or 

the distribution of X. 

The discrete analogue of MRL function r(x) of X 

given in equation (1.4) is defined in the same fashion 

as 

r(x) = E[x-xlx>x] 

00 

E R(t) 
t=x+l (2.10 ) = 
R(x+l) 

and the vitality function m(x) of X is 

m(x} = E[xlx>x] . (2.11) 

Further, h(x), r(x) and m(x) are related to one another 

by the following identities (Hitha and Nair, (1989)) 

m(x) = x + r(x) (2.12) 
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:r(~ . 
I1X+IT (2.13) 

With the aid of the above definitions we establish the 

following characterization theorem for the family of 

discrete distributions described by the difference 

equatton 

f(x+l)-f(x) = 
- (x+d) f( x) 

2 
bo+bl x+b2x 

(2.14) 

which is the ex tensi'on of the Pearson sys tern to the 

discrete case given in Ord (1967). This theorem includes 

the result of Osaki and Li (198~) concerning the negative 

binomial distribution as a particular case. 

Theorem 2.2. 

Let X be a random variable with support as the set 

of non-negative integers with finite mean. Then the 

distribution of X belongs to the family mentioned in (2.14) 

if and only if the relationship 

(2.15) 

where, ~ = E(X), is satisfied for all non-negative integer 

values of X. 
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Proof: 

We first prove the necessary part of the 

theorem. When(2.l5) holds 

n 
E tf(t) = 

x+l 

where n ) x+l, can be finite or infinite. The last 

equation reduces to 

n 
(x+l)R(x+l)+ E R(t+l) = 

x+l 

2 
(a o+a 1x+a 2 x )f(x+l) 

+ ~R (x+l) . 

Now, changing the variable x to (x-I), in equation 

(2.17) and subtracting (2.17) from it, we get 

(2.16) 

(2.17) 

(2.18) 

On simplification, the equation (2.18) leads to (2.14) 

with the con3tants bo ,bl ,b2 and d as 

i = 0,1,2 
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and 

d = 

The converse part of the Theorem follows by retracing 

the above steps. 

Corollary 2.1. 

Taking ao = (l_r)p-l, a l 

-1 
~ = rp we find that 

-1 = p 

m(x) = .!: + 
p 

[(l-r)+x] h(x) 
p 

a2 = 0 and 

characterizes the negative binomial distribution with 

probability mass function 

f(x) = ( X-I) pr(l_p)n-r 
r-l 

as proved in Osaki and Li (1988). 

x ~ r 

The result of the last two theorems are operational 

in a practical situation once we know the value of d,8 o ,a l 

and a2 for various members of the respective families. 

The a. ' s 
1 

are related to the bits inthe systems and express-

ions for the latter in terms of the moments of the 
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distribution are well known (see Johnson and Kotz (1969) 

and Ord (1967». For easy reference, however, we present 

in Tables 1 and 2 the values of b i for some popul~r models 

that are members of the two families. 

Table 2.1. 

Values ao,al,a2'~ for some continuous distributions 

Model 

Gamma 
a~e-axx~-l 

r~ 
(exponential for ~=l) 

Beta x I-x __ ~ ~-l 
B p,qr 

Lomax cac(x+a)-(C+l) 

Pareto a -a-l ak x , x~k 

d-l 
Finite range ~(l- ~) ;0< x<R 

2 2 
Normal 1 - ( X-IJ.) /2(1 

'{21t'O e 

Student's t 1 
,r., (v v ) ,v B ~,~ 

2 -(v+l) 
(1+ ~) ~ 

0 -1 0 ~a-l a 

0 (p+q) -1 _(p+q)-l p(p+q)-l 

0 a(c-l)-l (c_l)-l a(c-l)-l 

0 _k(a_l)-l (a_l)-l ak(a-l)-l 

0 R(d+l)-l _(d+l)-l R(d+l)-l 

2 
0 0 (1 

o o 
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Table 2.2. 

Values of a o ,a l ,a2 and ~ for discrete distributions 

Model 
--_ .. _ .. _--

-p x 
Poisson ~~ x. 

Negative (x-I) r x-r 
Binomial r-l p q 

(Geometric r=l) 

waring(a-b) (b)x 
(a)x+l 

Negative hyper 
geometric 

(~_I)(N-M ) 
x+l-a M-a+l 

(N) 
x N-x 

Beta Pascal 

A 
( k+.x-l 

x 
A+B-l ) 

A 
( A+k) ( k+A+B+x-l ) k+A 

1 

q 

1 

q 

-1 
P 

.. ---.---.- --.---- _._--

o 

o 

o 

p 

np 

-1 np 

(a+l) (a-b-J)-1 (a+2~-b-l)-1 (a-b-lf1 b(a-b-l)-1 

N(l-a) N+a-l -1 a{N+ll 
M+l M+l M+l M+l 

A+B+k A+B+k+l 1 AB 
A-I A-I A-I A-I 
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It appears to be in order to observe that the 

above theorems are of importance in reliability modell­

ing in consideration of the following aspects. 

1. Many distributions belonging to the two families 

such as gamma, beta, normal, hypergeometric and binomial 

do not have simple closed form expressions either for the 

failure rate or for the MRL function to extract a useful 

identity connecting the two. The theorems provides such 

expressions. 

2. Extra flexibility is imparted in the choice of the 

model, as one can use the system as the basis of the model 

and then select a particular member depending on the 

values of the constants d, ao ' aI' a2 dictated by 

physical considerations or empirical evidence~ 

3. Not only many models that are extensively used in 

reliability analysis belong to the systems, but as an 

inherent property of the system, their truncated versions 

also are members. This helps when the data is truncated 

from the left or right. 
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2.4 Length biased models 

Let (.n.,T ,p) be a probability space and X:..n.~ H 

be a random variable where H = (a,b) is the subset of the 

real line with a ~ 0 and b > a can be finite or infinite. 

The distribution function F(x) is assumed to be absolutely 

continuous with respect to Lebesgue measure with probability 

density function f(x) and w(x) is a non-negative function 

of X such tha t IJ. = Ew(X)(oo. The. random va riable Y with 

probability density function 

g(x) = w(x) f(x) 
IJ. 

x > 0 (2.19) 

is said to have a weighted distribution associated with X. 

When the counting measure is employed instead of the 

Lebesgue measure, the same equation (2.19) holds for the 

weighted distribution in the discrete case for x = 1,2, ••• , 

where g(x) and f(x) obviouslyare interpreted as the 

respective probability mass functions. 

While, different weight functions such as xa(a > 0), 

eax etc in the continuous case and again xa, l-(l-a)x 

(O(a(l) , 1 t x x+ , etc. when X is discrete have 

been used by various researchers, the simplest and most 

extensively studied form appears to be x. In this 
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situation (2.19) specialises to 

g(x} = xf(x) 
~ 

x ) 0 (2.20) 

and ~ = E(X). The version (2.20), often called the length 

biased distribution corresponding to X, will be the focus 

of attention in the rest of this chapter. 

Although Rao (1965) introduced distributions of type 

(2.19) and cited practical examples where w(x) = x or xa 

are appropriate, the form (2.20) has found a place much 

earlier in the discussions given in Cox (1962) relating 

to renewal theory. Instead of the usual practice in 

random sampling of selecting units from the population, 

with probability of selection of each unit the same,regard­

less of the values of x it carries, Cox (1962) perceived 

the idea that from a population of failure times distributed 

according to f(x), the selection of any unit in the population 

is proportional to its length (or size), the random variable Y 

which is the failure time of the component whose life falls 

in the sample, has ~robability density function (2 .20~ 

This explains the terminology length biased distribution 

to such a model. It seems however that the same idea has 

originally been conceived much before as evidenced from 

Daniels (l942) who discusses length biased sampling in the 
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analysis of the distribution of fibre lengths in wool. 

Practical problems where length biased models arise in 

a natural way include the analysis of a family size and 

in the study of albinism (Rao, 1965), family data in 

human heridity (Neel and Schull, 1966) ,aerial survey and 

visibility bias (Cook and Martin, 1974), forest disease 

and line transcend sampling (Patil and Rao, 1977), 

renewal theory (Cox, 1962), cell cycle analysis and pulse 

labelling (Takahashi, 1966) and efficacy of family screen­

ing for disease (Zelen, 1974). An exhaustive account of 

the research in this area is available in Patil and Rao 

(1977) and in Gupta and Kirmani (1990). 

There are many situations when an investigator 

collects observations from real world phenomena and such 

data may not reproduce the original distribution believed 

to be true. Since the characteristics of the original 

distribution are the object of inference, one has to look 

into the structural relationship existing between the 

original model and the one that is realised in practice. 

This is especially important when length biased sampling 

is resorted to in drawing observations from the population. 

The paper by Gupta and Kirmani (1990) address this question 

and they develop several relationships that are of 
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relevance to reliability analysis concerning the 

random variables X and Y. If G(y), .k(Y) and s(y) 

represent respectively the survival function, failure 

rate and MRL of Y, they show that 

G( x) = mhl R( x) (2.21) 
~ 

k(x) x h( x) (2.22) = iii@ 

and 
00 

t+tf!1 [J du ] s( x) *+ J (2.23) = rTt exp - rrur dt. m x x x 

The above identities along with some characteriza­

tion theorems cited in Gupta and Kirmani (1990) show 

how length biased sampling affects the original distribu­

tion and how the correuponding reliability characteristics 

change under such a scheme of sampling. While comparing 

the distribution under length biased sampling with the 

parent model, it will be of some definite advantage if 

the original distribution keeps the same form under length 

biased sampling also, except possibly for a change in the 

parameters. In the next section, we prove a general 

theorem in this direction by identifying those distribu-

tions of X belonging to the Pearson family that retain 

the same form of the distribution of Y. Since the 
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parameters of the distribution can often be interpreted 

in terms of the population characteristics this would 

mean that, a theorem of this kind provides a tool to 

ascertain the changes in such characteristics as a result 

of length biased sampling. 

2.4.1. A Closure Property 

When the distribution of Y is of the same form 

as that of X, we say that the distribution of X is closed 

with respect to length biased sampling. Retaining the 

notations of Section 2.2, we investigate the conditions 

under which the family in equation (2.1) induce the 

closure property. A major distinctien made in the present 

section from the previous discussion of the Pearson family 

is that, the discussion is confined now only to distribu-

tions of non-negative random variables. 

Theorem 2. 3. 

Among the members of (2.1) with b2 ~ 1 , in the 

support of the real line having the subset (a,b), a~O and 

b>a can be finite or infinite, X and Y have the same type 

of distribution if and only if b =0 and the probability o 

density function of Y satisfies 



where, 

and 

Proof. 

1.dg 
'9wdx 

Ci = 

d1 = 

65 

= 

b i 
i 1-b2 

= 

d-b1 
1-b2 

From (2.20), we have 

1 
9TXT 

dg( x) 
dx = 1 

ITXT 

(2.24) 

1,2. 

df(x) + .! 
dx x (2.25) 

First, suppose that X belongs to the family (2.1) and 

that X and Y have the same type of distributions. Since 

Y also must belong to the Pearson family, the equation 

(2.25) leads to 

1 
= -x 

= 

This identity is satisfied if and only if the following 

conditions hold. 
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C b = O. (2.26) 
0 0 

b2 = c2 (1-b2 ) (2.27) 

(d-bl)Co = bo(cl+d l ) . (2.28) 

bo+b1d 1 = co(l-b2)+(d-bl)cl-boc2 (2.29) 

bl +b2d l = ~1(1-b2)+(d-bl)c2 .' (2.30) 

The three different possibilitles arising out of condltion 

(2.26) are 

( i) bo ~ 0 and c 
0 = 0 

( ii) bo = 0 and Co ~ 0 

(iii) bo = 0 and Co = o . 

When bo ~ 0 and Co = 0, from (2.28) 

while, 

from (2.29) along with (2.27), leave the equation, 

2 Thus (x+d) is a factor of (bo+bl x+b2x ) and therefore 

from (2.1) 



1 
TIXT 

where, 

a. 

df(x) 
dx = 

67 

Thus the distribution of X will be of the form 

with 

c 

(2.31) 

(2.32) 

For c ) 0, a. ) 0 (2.32) represents the Pareto 11 model. 

From (2.24) we find in this case that, 

g( x) = c(c_l)a. c- l x(x+a.)-(C+l) , 

which does not have the same form of density as x. 

In the second case, when b = 0 and c ~ 0, we o 0 

have a situation parallel to case (i) and the densities 

of X and Y do not have identical forms. Thus the first 

two cases lead to inadmissible solutions. This leaves 

us to examine the third possibility Co = 0 and bo = O. 
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These values when inserted to equations (2.29) and (2.30) 

result in 

and 

Solving the last two equations for cl and dl after using 

(2.27) in (2.31), the resulting values are 

d1 
d-b l 

= r::E2 (2.33) 

and 

c. 
bi 

i 1,2. = l-b2 
, = 1. 

(2.34) 

The various models generated by the above two equations 

depend on the nature of the roots of the equations 
2 2 

clx + c2x = 0 and b1x + b2x = O. The roots of the 

first equation are 0 and -c l /c2 , while that of the 

second are 0 and -bl /b2 • However, since c I /c2 = b1/b2 

from (2.34), the two roots of these equations have 

identical nature and therefore X and Y have the same 

type of distribution with possibly different parameters. 

The change in parameters are governed by equation (2.33) 

and (2.34). 
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Conversely, suppose that bo = 0 in (2.1). Then 

from (2.24) and (2.25) 

1 df( x) 
f(x) dx 

where, 

d = 

= 

= 

= 

and 

x+d 
2 

blx + b2 x 

This completes the proof. 

1 -x 

(2.35) 

1,2. 

The idea of form-invariant length biased distribu-

tions have been discussed earlier in an investigation by 

Patil and Ord who shows that a necessary and sufficient 

condition for a distribution to be closed with respect 

to formation of length biased distribution is that it 

must belong to the log exponential family. The result 

in Theorem 2. 3 does not provide any new model that is 

not presented in the log exponential family. The major 
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difference between the two investigation is that our 

study is confined to the Pearson family and utilises 

a different approach with application pointed towards 

reliability analysis. The result will be used in the 

next section to characterize some important distributions 

belonging to the sub-class of the Pearson family defined 

in the differential equation (2.35). This sub-class,to 

be denoted by C, contains the b~ta distribution of the 

first kind and second kind and their translations (by 

the transformation Z = aX), the gamma, the inverted gamma 

and the Pareto type 1. The exponential, Pareto type 11 

and finite rAnge models discussed ~arlier have no form­

invariant structure on their own, but when regarded as 

special cases of the above mentioned families, the same 

property can be attributed to them. 

2.4.2. Characterization of form-invariant len~biased 
distributions~y reliabili1Y-£oncepts. 

In the light of Theorem 2.1 reflecting the 

relationship between vitality function and failure rate 

for th~ Pearson family, it is possible to achieve several 

characterizations of the class of models in C. 
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Theorem 2.4. 

If lim (b l X+b2 X2 ) f(x) = 0, the probability 
x ~ b 

density function f(x) belongs to C if and only if 

where, 

Proof: 

(2.36) 

When X belongs to C. from the Theorem 2.1, m(x) 

and hex) can be related as 

m(x) (2.37) 

From (2.22) and (2.37) we recover (2.36). The only if 

part follows from the equations (2.22) and (2.37) and 

the Theorem 2.1. 

Theorem 2.5. 

Under thp. conditions of Theorem 2.4, f(x) belongs 

to C if and only if 

(m(x)-~)(l-2b2)x 
v(x)-~ = m(x)(1-3b2 ) (2.38) 
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where, 

vex) = E(Vlv>x) and ~ = E(V). 

Proof: 

Suppose that f(x) belongs to C. Then from (2.37) 

m(x)-~ = (2.39) 

And similarly, 

v(x)-m2 = (2.40) 

where, 

Eliminating k(x) and hex) using the equations (2.39) 

and (2.40) we obtain (2.38). The only if part results 

from retracing the above steps. 

There is an elegant relationship that characterize 

the Pareto I law among the class of all absolutely 

continuous distributions with non-negative support. In 

the following, we denote that MRL function of X by r(x) 

and that of V by sex). 
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Theorem 2. 6. 

For a continuous non-negative random variable with 

E(X2) < ~, sex) = kr(x) for k>l if and only if X has 

probability density function 

Proof: 

We find from Gupta and Kirmani (1990) that 

k(x) = xh(x)/(x+r(x» 

and hence 

1+ 5' ~ x) 
s{x = 

where, the primes denote differentiation. 

(2.41) 

(2.42) 

Substituting sex) = kr(x) in the equation (2.42), we 

get, 

r(x) + kr'(i) r(x) = x(k-l). 

Accordingly r(x) must be linear and the only solution 

is r(x) = x/{a-l) with a = (2k-l)/(k-l). In the Pareto 

case, r{x) = x/a-l and sex) = x/a-2, and therefore, the 

condition of Theorem 2.6 is verified. 
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Corollary: 

For a continuous non-negative random variable with 

E{X) < ~, k{x) r{x) = 1 if and only if X has probability 

density function (2.41). 

2.5. Discrete Length Biased Distribution 

Analogous to the continuous case, the length 

biased distribution of a discrete random variable X 

with the set of non-negative integers as the support is 

defined as (Gupta, 1979), 

g(x) = xf(x) 
~ 

where, ~ = E{X) < ~. 

x = 1,2, . . . (2.43) 

Clearly, the above random 

variable,Y will have no zero in its support. Applying 

a displacement of Y to the left, by taking Z = Y-l, Z 

would be realized by length biased sampling on X with 

the above dispacement and the support becomes the set 

of non-negative integers (see Patil and Ord, 1976). 

The resulting probability mass function of Z is 

p(x) = g(x+l) for x = 0,1,2, ••• 

With the notations of Section 2.3, we investigate 

the conditions under which the family in equation (2.14) 

induce the closure property. 
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Theorem 2.7. 

Among the members of the family (2.14) with 

b2 ~ 1, in the support of non-negative integers,X and 

Z have the same type of distribution if and only if 

either 

1) bo = d and the distribution of Z satisfies 

with 

or 

g(x+l)-g(x) 

g( x) 

= 
l+d-b l 
1-62 

= 

and 

(2.44) 

2) b1 = bo+b2 and the distribution of Z satisfies 

with 

= 

Proof: 

d-b o 
= I-b2 • 

From the definition, 

ili+1 )-g(x) 
9 (x) = 

(x+l) f(x+l) - !i1~ 
xf(x) 

(2.45) 

(2.46) 
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First, the necessary part will be proved. For this, 

suppose that Z satisfies 

~l)-g(x) 
g{x) = 

From (2.l4) and (2.47), using (2.46), we have 

= 

That is, 

Equating coefficients on either side, the following 

conditions hold. 

= 

C2 (bl -l-d)+C l (b2-l) = -b2d1-b1 . 

c2(bo-d)+cl(bl-l-d)+co(b2-l) = -bo-bld l • 

cl(bo-d)+co(bl-l-d) = -bod l • 

c (b -d) = O. o 0 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

(2.52) 
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The three different possibilities arising out of 

last equa tion are 

i) b 
0 

= d and C 
0 F 0, 

ii) b 1= d and C = 0, 
0 0 

and 

iil) b = d and C = o. 
0 0 

When bo = d and Co 1= 0, 

and 

9 ( x+ l) -g ( x) 

g{x) 

where, 

and 

Cl ±fcl2_4CoC2 
2c2 

= 

x+d 

(b2-l)x+bl -l-d 
·--=-.... 2-

bo+bl x+b2 x 

the 
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~oots of bO+bl X+b2X2 = ° by virtue of the relationship 

mentioned above between c i and bi and the two equations 

therefore produce roots of identical nature. Hence X 

and Z have form-invariant distributions. 

In the second case, substituting co=O in equations 

(2.49), (2.49) and (2.~l), the following equalities 

result. 

cl = bo (b2d+b2-b1 ) . 
1"b2d-bo ) (l-b2 ) 

(b2d+b2-bl ) (d-bo ) 
= 

(b2d-bo ) (l-b2 ) 

substituting these values in the equation (2.48) we 

have, 

Thus, whenever b1-bo-b2 ~ 0, (x+d) is a factor of 
2 (bo+bl X+b2 X ) and then 

1 
= 

(2.53) 
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and 

ffiTll x+a 
f x = x+b+l 

where, 
(b l -b2d-l) 

a = b2 

and (b l -b2d-b2 ) 
b = b2 

Solving the above equation, 

f{x) 

with k as the normalising constant, and 

(a) = a(a+l) •.• (a+x-l) . 
x 

When b>a<:>r O(b2 <1,the distribution of X is Waring 

with 

f{x) 
(b-a) (a) x 

= (b)x+l 
, x = 0,1,2, ••• 

but, the distribution of Y is 

g{ x) 
(b-a)(b-a-l) x{a) = _________________ -=x x = l,2, ••• 

and that of Z is 

(2.54) 



p(x) = 

80 

(b-a)(b-a-l)(x+l)(a)x+l 

a(b)x+2 
x = 0,1,2, ••• (2.55) 

Thus X and Z are not form-invariant. The remaining 

case arising out of equation (2.53) iS,when b1=bo+b2 , 

d-b 
d l 

0 = I-b2 

b2 
C2 = I-b2 

and 

= 

In this case, 

while, 

llx+lHhl frxr-

, 

, 

- (x+d) 
= 

(x+d1 ) 
= - x( cl+C2x) 

The distribution of Z satisfies 

ili+l)-p(x) 
p(x} = 

(2.56) 

(2.57) 

(2.58) 

The roots of (x+l)(bo+b2 x)=O are x=-l and x = -bo/b2 

and those of (x+l) (c'1+c2+c2 x}:o are x=-l and 
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x = --- = 

Hence, when b1=bo ' the distribution of X is closed 

with respect to the formation of the distribution of Z. 

On the other hand if bo=d and co=O as in case (iii), 

we have again three different cases, namely 

(a) bo = 0 and d1 1= 0 

(b) bo 1= 0 and d1 = 0 

and (c) bo = 0 and d 1 = 0 

Considering case (a), we must have 

f(X+l~-f(X) 1 = - bl +b2 x f x) 

and 

f ( x) 

with kl as the normalising constant, m and 

n = 

Notice that if n>m or O(b2<1, the distribution of X 

will be Waring with probability mass function 

f(x) 
(n-m)( m) . x , x = 0,1,2, ••.• 
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The corresponding length biased distribution, specified by 

q(x) = 
(n-m) (n-m-l) x(a)x 

(b) t x = 1,2 •.• 
m x+l 

or 

p(x) 
(n-m) (n-m-1) (x+l)(a) 1 x+ , x=O t 1 t 2 , ••• = 

is not form-invariant. 

When bo ~ 0 and d l = 0, we have a parallel result 

that the distribution of Z is Waring, but that of X has 

form (2. 55) • 

Finally, the values bo = 0 and dl = 0 provide us 

This implies either cl = 0 or bl = 1. 

If cl = 0, from (2.48) and (2.49), we should have bl =b2 

or bl =bo+b2 ;the cases already discussed leading to form­

invariance. 

When bl=l, from (2.48) and (2.49) 

c 2 = b2 /(1-b2 ) 
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and 
= 

In this case, 

ili+l~-r(U 
f x = 1 

and the distribution of X has the form (2.54). 

Accordingly, the distribution of Z is not identical 

with that of X. 

Conversely, when bo=d and g(x) satisfies (2.44). 

Then, 

where, 

where, 

and 

x( x+ll-:f( ><1 = frxr-

b. 
~ 

d 

C i 
= l+c ,i = 0,1,2. 

2 

= 

= 

This completes the proof. 

x+d 
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We give two examples to illustrate the results 

of the theorem. 

1. For the negative binomial distribution with probability 

mass function 

f(x) ( x_I ) prqx-r 
= r-l x=r, r+l, ••. , 

= x+(l-r)!(l-g) 
(x!l-q)+(l-r)!(l-q) 

and therefore, b =d o 
l-r 1 

= l-q , b l = I-q and b2 = ° . 
Thus X and Z have form-invariant and g{x) satisfies 

g(x+l)-g(x) 
g(x> 

2.When X is Poisson, 

= 

= 

x+(l-r-q)/(l-q) 
Txll-q)+(I-rII-q) 

x+l-I' 
x+l 

Since bl = bo+b2 , with b2 = 0, the distribution of X 

is closed with respect to the length biased distribution 

and probability mass function is given by 

g{ x+l) = 
-/'I x e 

xi x = 0,1,2, ••. 
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Besides the above two models some others belonging 

to the family that satisfy the closure property are the 

binomial, the hypergeometric, the binomial beta and the 

beta Pascal. 

2.5.1. Characterizations of discrete life distributions 

The survival fUnction G(x), corresponding to (2.43) 

is given by 

G(x) = m(x-l} R(x} 
~ 

(2.59) 

where, m(x) is the vitality function of X. Then the 

survival function p(x} of Z is specified by 

p(x} = m(x} R(x+l} 
~ 

(2.60) 

Denoting by u(x) and e(x) the failure rate and the MnL 

function of Z, we have, 

u(x) = (2.61) 

and 
00 

1: R ( t+ 1 ) m ( t) 

e(x-l}= x 
R(x+l)m(x) (2.62) 



86 

In analogy with the continuous case, the above 

identities connecting reliability characteristics 

of X and Z can be employed in the characterization 

of the distribution of X. 

Theorem 2.8. 

The probability mass function f(x) satisfies 

(2.14) if and only if 

u(x) = (x+l)h(x+l) 

Proof: 

When f(x) satisfies (2.14), from Theorem 2.2 

(2.63) 

Substituting the above identity in the equation (2.61) 

we have (2.63). The only if part follows from (2.61) 

and (2.63) along with Theorem 2.2. 

Theorem 2.9. 

The probability mass function f(x) satisfies (2.14) 

if and only if 

v(x)-"2 = (x+1)(m(x)-~)(1-2b2) 

m(x) (l-3b2 ) (2.64) 
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where, 

v(x) = E[Vlv>x] 

and ::: E (V) . 

Proof: 

When f(x) belongs to the family (2.14) 

(2.65) 

Similarly, 

v(x)-~ ::: (2.66) 

where, 

Dividing (2.65) by (2.66) and simplifying the resulting 

identity, using (2.61), we have (2.64). The converse 

part of the theorem follows by retracing the above steps. 

As· a point of departure from the family specified 

by Theorem 2.7, some characterization will be presented 

associated with distributions which are not its members. 

The geometric, Waring and negative hypergeometric 

distributions are shown to be'unique models from the 
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class of all discrete distributions with non-negative 

integers as support satisfying certain simple properties. 

Theorem 2.10. 

Let X be a non-negative integer valued random 

variable. Then a necessary and sufficient condition that 

PfX)ll R x = l+dx (2.67) 

is that the distribution of X is 

(i) geometric, G(p) with probability mass function 

f(x) x = pq x = 0,1,2, ... , 

when ~d-l = 0 

(ii) Waring, W(a,b) specified by 

f(x) = (b-a) (a)x/(b)x+l' x = 0,1,2, •.• 

when ~d-l > 0 

(2.68) 

(2.69) 

(iii) negative hypergeometric distribution, H(k,n) with 

f(x) = (-1)( -k ) / (-In-k ) x=o,1,2, •.• 
x n-x 

when ~d-l ( o. 

(2.70) 



89 

Proof: 

When (2.67) holds, from the equation (2.60) 

m(x-1) = ~+~dx 

and consequently 

r(x-l) = (~d-l)x + ~-l. (2.71 ) 

The MRL function of X of the form al+blx characterizes 

the distributions (2.68), (2.69) and (2.70) (see Nair 

and Hitha (1989». 

Conversely, when X is G(p) (W(a,b); H(k,n» 

PfX)1} = (1+ Ex) (1+ b-a X' 1 + ~ x ) 
R x q' a' n+k 

This completes the proof. 

Theorem 2.11. 

For the random varia~le in Theorem 2.10, the 

relationship 

u(x) = d, c > 0 

holds if and only if X is G(p) (W(a,b) or H(k,n» 

according as dc-l = 0 (dc-I> 0 or dc-l < 0). 

(2.72) 
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Proof: 

When (2.72) holds, from the equation (2.61), 

m{ x) = d + dcx , 

which leads to 

r(x) = d + (dc-l)x. 

The remaining part of the proof will follow from Nair 

and Hitha (1989). 

The results in sections 2.4 and 205 are reported 

in Sankaran and Nair (1992d). 



Chapter 3 

BIVARIATE MODELS WITH LINEAR MEAN 
RESIDUAL LIFE COMPONENTS 

3.1. Introduction 

The discussions in the previous chapter were 

confined to univariate life distributions and represent­

ations that enable their unique determination. In 

addition to these, there exist a large class of problems 

in reliability that necessitate the generation and use 

of multivariatc distributions like the study of multi­

component systems where a random variable has to be 

associated with the lifetime of each component. The 

system works in unision with the various components 

and therefore the life distributions of all of them, 

indivirlucLlly ,1nd collectivrd.y would be of jntorest in 

evaluating the performance of the system. Bivariate 

distributions rHO often singled out for det<liled study 

in view of its special relevance to sy~tems consisting 

of two components. The pre-occupation with multi­

variate normal distribution by most researchers of early 

days coupled with the widespread belief that normal 

law holds either exactly or approximately in many 

natural phenomena led to a slow progress in generating 

non-normal multivariate models. Consistent with this 
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general trend, the literature on life distributions 

in higher dimensions is limited and even those models 

that have already surfaced needs detailed scrutiny. 

Galambos and Kotz (l97S) lists the different 

methods of constructing a multivariate distribution as 

(a) extending a univariate system to the multi­

variate set up, 

(b) deriving the model through the mathematical 

relations between the joint distribution and its 

marginals, 

(c) postulatinq a multivariate form via extending 
the functional form of the corresponding uni­
variate family, and 

(d) extendinq a meaninqfll.l. characterl7.inq property 

of the univariate case to the multivariate case 

and then deriving the distribution characterized 

by such a property. 

As already mentioned a desirable option in many 

modelling problem is to look out for the physical 

properties of the system and to extract a probability 

distribution consistent with them. The failure rate, 

MRL function etc. being the summary characteristics of 

the failure pattern~, in the present chapter we 
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postulate the form of such tunctions in developing 

the required models. A functional form that is 

simple in nature and at the same time can depict 

the difterent patterns of ageing via decreasing, 

increasing or constant mean residual life will serve 

our purpose. Motivated cy the result of Kotz and Shanbhag 

.(19~O) in the univariate case that a linear MRL 

function or a reciprocal linear failure rate function 

characterizes the family consisting of the exponential, 

Pareto and finite range distributions, we concentrate 

on u qenerulization of this form to qenerute a class 

of corresponriing bivariate distributions anrl examine 

its properties and applications in reliability analysis. 

The univariate exponential, Pareto and finite range 

models have been elaborately explored in literature 

in the context of characterjzation, reliability 

modelling and a variety of other applications. Extens­

ions of these models by generalising different character­

istic properties in the univariate case, may often lead 

to different bivariate versions. In other words the 

bivariate models, we are seeking, need not inherit 

extended versions of all the univariate characteristics. 

Thus it is our endea~our here to examine the nature of 

the chuiacterizations brought out by the new models. 
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In the rest of this study an attempt is made to resolve 

some of these problems. 

3.2. The Models 

Let X = (X 1 ,X2 ) be a bivariate random vector 

admitting absolutely continuous distribution function 

with respect to Lebesgue measure in the positive 

octant H2+ =[lX,y) I x,y > o} of the two dimensional 

Euclidean space H2 • For (xl,x2)~ R2+' the MRL r(x 1 ,x2 ) 

defined in equation (l.~4) is vector valued with 

components 

In the following theorem we identify the models that 

are uniquely determined by the tact that r i (x l ,x2 ) is 

linear in xi. 

Theorem ~.l. 

The random vector X defined above has an MRL 

function r(x 1 ,x2 ) w~th components of the form 

r.(x 1 ,x2) = Ax. + B.lx.) i,j = 1,2, i F j, 
1 1 1 J (3.1) 

where, Bi(X j ) ) U for all Xj ) 0 1f and only if it is 

distributed as 
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(a) Gumbel's (l~60) bivariate exponential distribution 
with survival function, 

when A = 0, 

a l ,a2 ) 0, x1 ,x2 ) U 

° ( 9 ~ a 1 a:l 

(b) bivariate Pareto distribution specified by 

-c 
H(xl'x~) = (1+alxl+a2x2+bxlx2) ; x1 ,x2 >,0 

a 1 ,a2 , c > ° 
U ~ b 5. (c+ l) a 1 a 2 

when A > 0, 

(c) bivariate finite range model with 

'l/hen A < 0. 

(3.2) 

(3.3) 



96 

Proof: 

The sufficiency part will be first established. 

When A = 0, (3.1) becomes, 

= 

That this form characterizes .the Gumbel's bivariate 

exponential distribution is proved in Nair and Nair 

(1988). We now turn to the other two cases. Suppose 

that A > o. Using the formulas in equations (l.L~) 

and (l.29), connecting the survival function and the 

components of the MRL, 

AX l -c AX2 -c 
R (xl' x2 ) = (1+ B1(0) ) (1+ sTx ) ) 

2 1 
(3.5) 

and also, 

AX2 -c AX 1 -c 
R (x l' x2 ) = (1 + 82 (0) ) (1+ B~) ) 

1 2 
(3.6) 

where, 1 > O. c = A 

On equating the expressions in (3.5) and (3.b) , 

xl x2 AX I x2 x2 xl AX 1 x2 
+ -- + ~lB2Tx:tT = - + Bl~ x2 ) + ---)(3.7) 

tJ.l 82 (x1 ) ~2 ~l2B 1 ~ x2 

where, ~l . ... B. (0+) , i = 1,2. 
1 ] 



97 

Dividing the equation (3.7) by xl x2 and simplifying 

yield, 

(3.8) 

That the la3t equation holds for all x1 ,x2 > 0 would, 

howevef, mean that 

A + 1 --.l_ 
~.8.(x.Y x.Bj(X.) - ~.x. 

1 J 1 1 1 J 1 

Hence for i=l, 

Substituting (J.9) in (3.5), 

= Q, a con s ta n t 

independent of both 

xl and x2 • 

(3.9) 

-c 
= (l+alx l + a2 x2 + bx l x2 ) 

with a. = 
1 

i = 1,2, and b = AQ. 
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Now we derive the conditions on the parameters that 

render (3.3) the status of a survival function. When 

(3.3) is a joint survival function,R(xl,o) and R(o,x2 ) 

are the mar9inal survival functions of Xl and X2 • 

This gives rtl,a?,c > O. From the condition 

R(xl'o~ ~ R(x l ,x2 ) for all xl ,x2' we get b ~ O. The 

probability. density function corresponding to (3.3) is 

-(c+2) 
f(x 1 ,x2 ) = c[c(a l +bx2 ) (a2+bx1 )+a 1a2-b] (1+alxl+a2x2+bxlx2) 

(3.10) 

This comples the proof of the sufficiency part when A>O. 

When A<O, 

AXl d AX2 )d R (xl' x2 ) = (1- B~ ) (1- -~ ) 8 2 xl 
(3.11) 

and 

R (xl' x2 ) 
AX2 d AX1 

) = (1- -~» (1_ B0>;> 8 2 0 
(3.12) 

where, 

-1 
d = A > O. 
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Identifying (J.ll) and (3.12) and then simplifying 

the resulting equation as in the previous case renders 

1 1 
+ A f3; i,j 1,2. i I: j --- XiBj(x i } ~iBjlxiT 

= = 
Xi~j 

and 

Bl (x2 ) 
(~2-Ax2 )~1 

(3.13) = 
1-12 ( I-Ill ~ x2 ) 

Substituting (3.13) in (3.12), the survival function 

of X is 

where 

Pi = ~ i=1,2. 
~i 

and 
q = A~ 

The marginal density of Xi is 

since 

f.lx.) 
1 1 

= 

f.(ch) 0, 
1 

)d-l 
dp.l1-p. Xl' 

1 1 

i = 1,2. 

T 

___ ~ I, • r 
, ), 

The probability density function corresponding to (3.4) 

is given by 
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f(xl,xL) = d[q-PIP2+d (qx I - P2) (qx2 - Pl)] 

d-2 
(I-PI x 1-P2x2+qx 1 x2 ) . 

The condition f(o,o) ~ 0 implies 

(3.14) 

Since 

have 

R ( xl' x2 ) 5-

~P < 1. 
PI 2 -

R(~,o) for all xl ,x2 > 0, one must 

Conversely, the MRL functions of 

the Gumbel's bivariate exponential, bivariate Pareto 

and the bivariate finite range distributions are 

respectively 

r E(x1 ,x2 ) ( 1 1 
= a l +Qx2 

, -- ) , a2+Qx l 
(3.15) 

r p (xl'x2 ) ( .l l+a2 x2 x2 
= c-l + la 1+bx2 ) (c-l)' c-l + 

1+a1x1 
) \a2+bx1) (c-l) (3.16) 

and 

rFlxl,x2) (- l I-PLxL -x2 
= d+l + l PI -q x2 ) ( d+ 1) , d+l 

+ 
I-P1 x1 

) . 
(d+l)(P2-qx1) (3.17) 
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It is easy to see that the conditions of the theorem 

are necessa ry. 

Corollaries. 

li) When ~ = 0 ~n (~.2), 

(3.18) 

showing that Xl and X2 are independent and exponentially 

distributed. In this case, 

a constant vector, characterizes (3.18). 

(ii) Setting b = 0, in (3.3) 

which is the model obtained in Lindley and Singpurwalla 

(1986) under a different set of conditions. The MRL 

function,characteristic of the model) has form 

r( xl' x2 ) = 
Xl 1+a2 x2 

(-+--c-l a l 

so that the components are linear in both xl and x2 

with positive coefficients. 
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(iii) For b = a l a2 in (3.3), Xl and X2 have 

independent Pareto 11 distributions with survival 

functions 

Ri(X i ) = (l+aixi)-C, i=1,2, 

and ith component of the MRL is linear in xi alone. 

(iv) Taking q = 0 in (3.4), 

We have the bivariate finite range model, given in 

Roy (1989). The components of the MRL function are 

again linear with negative coefficients. 

(v) In the case q=PIP2' the survival function 

of X=(X1 ,X2 ) is the product of survival functions of 

univariate finite range distributions and thus Xl and 

X2 are independent. 

(vi) The bivariate failure rate defined in 

equation (1.17) for these models of theorem is of the 

form 
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c· ori ..:>lncc, 
1+ ox:-

h i (x l ,x2 ) 1 -. 
r i (x l ,x2 ) 

= eX i + Di(x j ), 

with 

c = A( l+A)-l 

and 

O. (x.) = B.(x.) (l+A)-l. (3.21) 
1 J 1 J 

The forms of the failure rates ir. the different cases 

considered in corollaries i to v follow immediately 

from the trRnsformntions in (3.21). 

Note: 

The bivariate exponential distribution with a l =a2=l 

and its properties are discussed in Gumbel (1960). The 

bivariate Pareto has appeared in a different context 

in Hutchinson (1979) and is a particular case of the 

bivariate Burr distribution cited in Johnson and 

Kotz (1972). 

3.3. Bivariate Pareto Distribution 

Inspite of the appearance of the form of the density 

function of the bivariate Pare to distribution described 
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in section 3.2 in some earlier investigations as 

cited at the end of the last section, the distribu-

tional properties do not seem to have been discussed 

anywhere. Accordingly we explore this aspect in the 

rest of this section and list the salient properties. 

( 1) The m~rgin~l distribution of X. is . 1 

() ( ) -(c+l). 
f. Xi = ca. l+a.x. ,1=1,2, 1 1 1 1 

which is of univariate Pareto 11 form whose properties 

are discussed jn Arnold (198~). In partjcular the mean 

and variance 0 f X. a re 
1. 

= 

and 

= c 
2 2 • 

(c-l) (c-2)a. 
1 

(3.22) 

(2) The conditional distribution of Xl' given X.=x. 
J J 

i,j=1,2, i~j as 

g:(x·lx.) = 
1 1 J 

Once this form of the conditional probability density 
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function is assumed, it can be shown that Xl is 

Pareto type 11 if and only if X2 is of the same 

form (Hitha and Nair, 1991). 

(3) By direct calculation from the conditional density 

given above, 

E[Xi!Xj=XjJ=[ajc(c-1)(ai+bXj)2](1+ajXj) 

[ a j c ( a i + b x j ) + b -8 1 rt 2] I. 

Accordingly, for O<b~(c+l)ala2' the regression 

curves are non-linear. Specialising for b=O, 

equiltion (3.23) becomes, 

E [X. I X . =X .] = 
1 J J 

l+ajx j 
(c-l)a i 

and the regression turns out to be linear. The 

two lines intersect at 

(3.?3) 

which is not (E(X l ), E(X2 » as in the bivariate normal 

case. Further, the coefficient of correlation in this 

situation is c- l which is always positive. 
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Also, 

00 00 

From Erdelyi et.al. (1954) 

00 

f 
o 

v-1 
x rv I bl-V+f' v-p 1 

dx = - Y F(~,v~+P; ~y) (3.24) 
ill+P a~ 

where,F(p,q,r;t) represent the hypergeometric function, 

F(p,q,r;t) = 

With the aid of (3/24), 

00 

J 
o 

~ (2+n Ig+n 
n=o Ir+n 
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and 

j xldx l 

o (a2+bx l )(1+a l xl )c 

Thus, 

(3.25) 

From (3.22) and (3.25), the coefficient of correlation 

between Xl and X2 for the general model turns out to be 

where, y = 

(4) From the reliability point of view, the conditional 

distribution of X.·given X.=x. is not of particular 
1 J J 

significance. It is of more interest to study the 

conditional distributions of Xi given Xj)X j ' which 

has the density function, 

f.(x'.lx.>x.) = ca.(x.)[l+a.(x.)x.]-c-l 
11 J J 1 J 1 J 1 

(3.26) 
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. 1 

= 
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Equation (3.26) reveals that such conditional 

distributions again are of Pareto 11 form. This 

fact e~ables the characterization of the bivariate 

Pareto distribution (Hitha and Nair (1991». 

( 5) 
c(a.+bx.) 

1 J 

it is evident that hi (x l ,x2 ) decreases on xi and 

accordingly the distribution of X=(X l ,X2) is bivariate 

decreasing failure rate in the sense of Johnson and 

Kotz (1975). 

Similarly, IJsin~ the MRL components, 

one can see that r i (x1 ,x2 ) is an increasing function 

of x .. Therefore X is IMRL (2) (Zahedi (1985». 
1 

(6) The Basu's failure rate defined in equation (1.13) 
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(7) The distribution has modified MRL vector 

(equations (1.33) and (1.34» 

( 1+alxl+a2x2+bxlx2 

(c-l)(a l +bx2 ) 
) . 

(8) If (XI (i), X2(i», . 1 2 1= , , ••• ,n are independent 

and identically distributed random variables follow­

ing bivariate Pareto, then (min Xl(i), min X2 (i) ) 

also has the same distribution. 

(9) Generalised versions of several bivariate distri-

butions that could be meaningful from the context of 

reliability such as Pareto of Mardia (1962),version of 

Burr model of Johnson and Kotz (1972), logistic of 

Satterthwaite and Hutchinson (1978) are obtainable 

through monotonic transformations, described in 

Nayak (1987), on (303). F 1 . Y -1 or examp e, settlneJ .=X.+a. . 111 

will result in the g~nernlised M~rdia family specified 

by 

after some obvious reparametrisations. 
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3.4. Physical Interpretation of the Bivariate 
Pareto Model 

In the study of reliability of series and 

parallel systems assessment of their component 

reliabilities is an important practical problem. 

The component reliabilities assesserl at the manu-

facturinq stage or at the quality performance test 

stage are usually taken as the reliability expected 

of the .components at all subsequent stages of its 

utility. In general, the environmental conditions 

under which a component is operating need not be the 

same as that in the laboratory where preliminary tests 

are performed to mpasure the reliability. Otten a 

component may perform better or worse in an environment 

different from that of the test site. This brings in 

the problem of studying the effect of change in operat-

ing conditions in evaluating the reliability of a system. 

Un the ground that most studies on reliability 

do not take into consideration, the influence of the 

operating environment to the system, Lindley and 

~ingpurwalla t1986), proposed a method of modelling the 

life lengths of the components of a system and derived 

a bivariate ~areto distribution that could accommodate 

such changes in the operatlng envlronment. lhe major 
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assumptl0ns used in developing the model were: 

(i) 
, 

the components life lengths are independent 

exponential variables, and 

(ii) the influence of the operating conditions 

change the original failure rates al and a2 to ~al 

and ~a2' where the uncertainity in ~ is described by 

a gamma distribution. 

The distribution obtained under (i) and (ii) 

is given in equation (3.19). In this formulation 

~>l, ~<l and ~=l respectively suggest a harsh, mild 

and same conditions of use as compared to the laboratory 

environments. The assumption of independence of the 

components made by Lindley and Singpurwalla (1~~6) 

is not always a reality as the life lengths of a system 

can depend on one another. Instead of assuming 

independent exponential laws for the component lives, 

Bandyopadhyay and 8asu (1990) proposed a dependence 

structure among them by permitting the system to operate 

in a test environment consisting of shocks that lead 

to the Marshall-01kin (196'/) bivariate exponential 

distribution. In this way, they obtained a bivariate 
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Pareto law with survival function J 

R(xi'x2 ) = (1+alxl+a2x2+a12maxtxl,x2»)-b, 

xl ,x2 >0, a l ,a2 ,b>0, a I2LO, 

(3.2'1) 

which included the Lindley-Singpurwalla model as a 

special case when a I2=O. 

Apart from making provision for dependent 

life lengths, the generalisation of Bandyopadhyay 

and 8asu (1990) incorporates into the system the 

remarkable property of bivariate lack of memory 

defined as 

inherent in the Marshall-Olkin distribution. However, 

in situations where the simultaneous failure of compon­

ents in a two-component parallel system is not to be 

expected, the Marshall-Olkin model is not appropriate 

and an absolutely continuous bivariate exponential 

distribution is more realIstic. Accordingly, we assume 

that the component life lengths Xl and X2 tollow the 

Uumbel's bivariate exponential ~aw with survival function 

t~.2), whose dependence structure is difterent from 
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that of (3.27). In the process, the bivariate lack 

of memory property is sacrificed and in its place 

the bivariate local lack of memory defined as 

p[Xi>ti+silxi>si' Xj>t j ] = P[xi>tiIXj>tj]' 

i,j=1,2, i~j, 

which is characteristic of distribution (302) (see 

Nair and Nair (1991» is retained. Recalling that, 

when X=(X l 'X2 ) follows Gumbel's exponential distribu­

tion (3.?), the bivarinte failure rate defined in 

equation (1.17) is 

(3.28) 

The effect of the operating environment being to 

increase or decrease (3.28) by a quantity p, the new 

model is to be characterized by the failure rate. 

which again leads to the Gumbel's exponential with 

survival function 

(3.29) 

In view of the uncertainity involved in ~, we associate 
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with ~ a gamma distribution with parameters m and c. 

After averaging (3.29) using this distribution of ~, 

the joint survival function of Xl and X2 is arrived 

at as 

where, 

a. = n./m and b = g/m, i=1,2. 
1 1 

Notice that the above survival function corres-

ponds to the bivariate Pareto distribution analysed 

in the previous section and that the Lindley-Singpurwalla 

model is its particular case. The MRL function of the 

Gumbel distribution has components that are locally 

constant and the impact of the change in environment 

is that they become a linear function of the life-

times. The physical interpretation we have now obtained 

leads some further analysis leading to the comparison 

of the effect of test and operating conditions on the 

reliability of the system. 

3.5. Applications to Reliability of Series Systems 

Consider a two-component series system in which 

the life times of the components have joint distribution 
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(3.2) and the environment effect is described as 

in the previous section. The system reliability 

at time t is then given by 

For such a system the failure rate is 

= 
c(a l +a2+2bt) 

2 (l+a 1 t+a2 t+bt ) 

and the mean residual life is 

= 
2 

l+a 1 t+a2 t+bt 

(c-l) (a 1+a2+2bt) 

(3.30) 

The corresponding expressions for LindleY-Singpurwalla 

models are readily obtained by setting b = O. Accordingly} 

the relative error in the reliability function as 

defined in Gupta and Gupta (1990) is 

= 

which decre~ses from zero to -1 as a fUnction of t. 
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The relative error in [~llure rate is 

= 

= 

hb(t)-ho(t) 
ho(t} 

This is an increasing function of t with minimum 

va.lup. zero and rnnximurn vAlue unitYoOn ttH~ other hund, 

the error in mean residual life decreases in t from 

1 2 to zero, as seen from the expression, 

e (t) = r 

2 (a 1+a2 )(1+a 1t+a2 t+bt ) 
-=------.-.. ---- - 1 

(a 1+a2+2bt) (l+a l t+a2 t ) 

or from the relationship [l+eh(t)][l+er(t)] = 1. 

The extreme values of the relative error jn all the 

three cases do not depend on the parameters of the 

model. 

A comparison of model (3.30) which incorporates 

the effect of environment and the counterpart 

which corresponds to the laboratory environment (~=l) 
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seems worthwhile. The failure rate of the former is 

and that of (3.31) is 

hl(t) ~ h2 (t) according as the expression 

If tl and t2 are the roots of the equation obtained by 

setting Qt2+(a1+a2 )+m-c = 0, it is 8asy to see that one 

root, say t 2 , is always either negative or imaginary. 

The last case being of no interest, the sign of above 

equation depends on the other root 

Since E(.~) = c/m~ this shows that h1(t) ~ h2 (t) according 

as E(~) ~ 1, giving conditions for a harsher, same or 

milder operating environment, irrespective of the values 

of the parameters a 1 ,a2 and Q. 

These results in the last four sections are 

taken from Sankaran andNair (1992 b). 
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The importance of the univariate finite 

range distribution in the analysis of life time 

data is given in Mukherjee and Islam (1983) who 

observe that " statistical theory does not restrict 

a finite urpor limit to the life tjrne of iln e(lllir­

ment and many failure time distribution are defined 

over the range (0,=), but the designed life time 

of equipment should only be finite". 

Further, since life tests are usually censored 

or truncated, the observed life time of equipment 

varies over only a finite range. It is therefore, 

worthwhile to look at a genpralisation of the finite 

range distribution in higher dimensions which is 

precisely the model (3.4) derived in Section 3.2. 

The properties of this model bears a very close 

resemblence to that of the bivariate Pareto distribu­

tion' especi21ly in the expressions of the various 

population characteristics. However, the reliability 

characteristics is seen to behave more or less in the 

opposite sense. 
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Properties. 

1. The probability density function corresponding 
to (3.4) is 

f ( xl' x2 ) -- d ( 1-IJ 1 x.1 -P2 x2+ q x 1 x2 ) d -2 [ n ( Pl-q x2 ) ( P2 -q xl) 

+ q-PlP2] . 

2. The marginal distributions of Xi are 

( ( ) d-l 1 f. x.) = dp. l-p.x. d>O, O(x.< -- ,i=1,2 
1 1 1 1 1 1 p. 

1 

which is univariate finite range model. 

Further, 

= 

and 
= 

3. The conditional distribution of Xi given Xj=Xj is 

g.(x·lx.) = 
1 1 J 

i,j - 1,2 

i " j 

which is not the finite range distribution. 
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4. The conditional expectation, 

2 -1 
[Pjd(d+l)(Pi-qXj) -] (l-PjX j ) 

[Pjd(Pi-qXj)+q-PlP2] 

and hence, the regression curves are non-linear. 

When q=O, the equation (3.32) becomes, 

(3.32) 

and the regression turns out to be linear. In this 

1 case, the correlation coefficient is - d ' which is 

always negative. 

5. The conditional distribution of Xi given Xj>Xj is 

h.(x·lx.>x.) 
1 1 J J 

. d ( Pi -q x j ) xi ( Pi -q x j ) d-l 
= - ( 1-· - ) 

(l-p.x.) (l-p.x.) 
J J J J 

and is of the finite range form. This fact enables 

the characterization of the bivariate finite range 

distribution (see Hitha and Nair (1991». 

6. The bivariate failure rate, defined in the equation 

(1.17) is 

) . 
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Since the components hi (x1 ,x2 ) increases in xi' the 

distribution (3.4) has increasing failure rate property. 

7. The bivariate MRL vector, defined in the equation (1.24) 

is 

decreases as xi increases, 

and therefore, the djstribution of X=(X,X2 ) is having 

DMRL-(2) (see Zahedi (1985». 

9. The reJ.ationship, 

is a characteristic property of the model. 

9. The Basu's failure rate defined in (1.13) is 

d[d(Pl-qx2)(P2-qxl)+q-PlP2] 
2 

(1-Plxl-P2x2+qxlx2) 

10. The distribution has modified MRL (equations (1.33) 

and (1. 34» 

I-Plxl-P2x2+qxlx2 
( ~d+l)(Pl-qx2) 

I-P2 x2 
P2(d+l) 

) . 
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The three different models arising from 

the characterization theorem of Section 3G2 

from a class that enjoy several interesting propert­

ies. Various distributional properties discussed 

in the previous sections form the basis of our 

future investigation in this direction. Regarding 

the Gumbel's exponential distribution, since a full 

discussion is available in Nair (1990), we mention 

only such properties that are of interest to the 

present study at the appropriate places. 



Chapter 4 

BIVARIATE RESIDUAL LIFE DISTRIBUTION 

401. Introduction 

While reviewing the literature on characteriza­

tion of life dist~ibutions in Section 1.3 reference 

was made to the notion of residual life distribution 

(RLD) nnd'it was pointed out there that the basis of 

many characterizations can be traced to the form of 

the RLD. However, this point has only been recognized 

very recently. A comparision of the RLD and the 

parent distribution is informative in the study of 

the reliability characteristics. Some results using 

this approach in the univariate. case have been reported 

in Gupta and Kirmani (1990). Since this concept does 

not appear to have been introduced in the bivariate 

case, the primary concern of the present chapter is 

to define bivariate RLD; The failure rate (MRL) 

determines a distribution uniquely and therefore, it 

follows that the failure rate (MRL) of the RLD will 

enable us to identify the form of RLD. In situations 

where the failure rate (MRL) of the basic distribution 

has the same form as the corresponding characteristic 

of the RLD, we can conclude that the parent distribution 
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is form-invariant with respect to the construction 

of the RLD. This argument will be used in the forth-

coming discussions to identify a certain class of 

distributions that possess the closure property just 

described. We also infer the structure of the basic 

life pattern from that of the distribution of residual 

life. 

4.2. Definition and Examples 

As in the previous chapter we suppose that 

X = (X l ,X2 ) is a random vector admitting absolutely 

continuous survival function R(x l ,x2 ) with respect to 

Lebesgue measure in the support of R2+. For x=(x l ,x2 ) 

and y = (Yl'Y2) in R2+' the bivariate RLD is defined 

by the survival function 

G(y;x) = p[x>x+ylx>x] 

= ftL~ ~ (4.1) 

for all y ( R2+ and those values of X for which R(x) > o. 

In the above definition the ordering X>x implies Xl>xl 

and X2>x2 • 
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Examples 

Here, we give examples of some bivariate 

distributions and their residual life distributions. 

1. When X follows Gumbel's exponential distribution 

with ~urvival function (3.2), the bivariate RLD of X 

is given by 

G(y;x) 
-(al+Qx2)Yl-(a2+Qxl)Y2-QY1Y2 

= e 

which is again Gumbel's exponential model with para­

meters (a l + Qx2), (a2+ Qx l ) and Q. 

2. For the Marshall-Olkin distribution specified by 

the RLD is of the form I 

R(y;x) = e 
-alYl-a2Y2-a12[max(xl+Yl,x2+Y2)+max(xl,x2)] 
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3. In the case of bivariate Pareto distribution 

with survival function (3.3), the RLD is given by 

G(y;x) 

which is again bivariate P~reto. 

4. When the distribution of X is bivariate finite 

range given in (3.4), the RLD of X follows again finite 

range, specified by 

G(y;x) 

d 
= [1- (Pl-qx2)Yl+(P2-Qxl)Y2-qYlY2 ] 

(1-PlxI-P2x2+qxlx2) 

4.3. Properties 

1. E Y(x) = r(x), (4.2) 

where, Y(x) = (Y 1 (x),Y2 (x» is the random variable 

with survival function (4.1). 

Proof: 
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(R ( x 1 ' x2 » -1 
co ()R{ x1+Y1' x2 ) 

= f Y1 8Y1 dY1 
0 

(R(X1 ,X2 »-1 
co 

= J R(X 1+Y1,x2 ) dY1 
0 

= r 1 (x). 

Similarly, 

Thus, the mG3n of the RLD, is the MRL vector we 

have encountered in Chapter 1. 

Further, the marginal survival functions of 

(2.1) are given by 

G. (y. ;x) 
1 1 

, Yi ) 0 

i,j=l,2, i~j. 

(4.3) 

Since, the MRL determines the corresponding distribu-

tion uniquely, the functional forms of E Vex) characterize 

the probability law of X. 

2. In the following discussion)we denote by 

vector valued failure rates of X and V respectively and 
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the corresponding WlL's we then have 
J 

and 

Proo f: 

ht(x+y) 

= r.(x+y), for i=1,2. 
1 

For i=l, 

= 

= 

= 

- a log R(x l +Yl,x2+Y2) 
aY l 

The MRL, for i=1, 

00 

Sl(Yl'Y2) = G(y;x)-I J G(y;x)dy. 
YI 

(4.4) 

(4.5) 
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[R(x+y)j-l 
00 

= J R(xl+t, x2+Y2) dt 
YI 

[R(x+y)]-l 
00 

= J R(t,x2+Y2)dt 
xI+Y1 

= rl(xl+Yl' x2+Y2)' 

On similar lines, 

From the above result, when ri(x) is linear in xi' 

the MRL corresponding to Y, Si(X)Jis also linear in 

Yi. This shows that X follows the distributions 

defined in the eC{ut'ltions (3.?), (3.3) and (3.4), if 

and only if the distribution of Y(x) is of the same 

form. 

3. The distribution of X is bivariate IFR(l) (DFR(l» 

if and only if 

ki(Y) ~ (~) hi(Y)' (4.6) 

for all Yi>O, i=1,2. 
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Proof: 

1\ bl Vd T'i.l Lr> ri1nOIlIJl vec tor X 1-; ';,11 cl l.o hil vC' 

IFR(l) property if and only if 

for all x. ,y. ) 0, i = 1,2. 
1 1 

Therefore, from (4 0 4), 

4. X is bivrtriate DMRL (1) (IMRL(l» if and only if 

for all y. ) 0, i = 1,2. 
1 

Proof: 

From Zahedi (1985), 

for all x. ,y. ) 0, i = 1,2. 
1 1 

or 

(4.7) 
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5. X is bivariate NBU(VS) (NWU(VS» if and only if 

G(y) ~ (~) R(y) (4.8) 

Proof: 

From the definition (Buchanan and Singpurwalla (1977») 

6. For i=1,2, hi(y) ~ ki(y) if and only if ~~~~ is non­

decreasing in Yi' for all Yl'Y2 > o. 

Proof: 

(== ~> 
a log TIfit 

~ 0 ay. 
1 

log ~~~~ is non-decreasing in Yi. 

RC}'} . d .. G\YJ 1S non- ecreas1ng 1n Yi 
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Si(Y) 
7. If si(Y) ~ ri(y) and ri(y) is non-decreasing 

in Vi' then h. (y) < k. (y), i=1,2. 
1 - 1 

Proof: 

Si(Y) 
ii{Y) is non-decreasing implies 

si(Y) 
log ri(y) is non-decreasing and therefore, 

(4.9) 

where, primes denote the derivative with respect 

to Yi" Since si(Y) S ri(y) and the inequality (4.9) 

leads to 

l+s i ' (Y) l+ri'(y) 
~ 0 

si(Y) ri\YJ 
or 

ki(y) ~ hi(y)· 

8. X is IFR if and only if Y is NBU(VS) 

Proof: 

By definition (Buchanan and Singpurwalla (1977» 

Y is 
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Y is NBU (VS) ~ G(YI+tl'Y2+ t 2) ~ G(YI'Y2) G(tl ,t2 ) 

for all YI'Y2,t l ,t2 > 0 

R(x l +y1 ,x2+Y2) 
< RTxl,X;Y--

R ( xl + t I' x2+ t 2 ) 
R( xl' x;r---

Since the above inequality is true for all x.,y. and 
1 1 

ti ) 0, we have 

R ( xl + t I ' x2 + t2 ) 
( ) --- is decreasing in x1 ,x2 • 

R x J ' x2 

Therefore, from Marshall (1975), X is IFR. 

The converse part follows by retracing the above steps. 

9. X is IFR if and only if Y is NBUFR. 

Proof: 

A bivariate random vector X is said to have 

bivariate new better than used in failure rate (NBUFR) 

property if and only if 
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hl(xl,O) > hl(o,o) 

and 
h2 (0, x2) ~ h2 (o,o) for all xl ,x2 > o. 

y is NBUFH (===a) kl(yl'°) ~ kl(o,o), and 

k2 (0, Y2) ) k2 (0,0) 

( ) h l (x l+yl'x2 » hl (x l ,x2 ), and 

h2 (x l ,x2+Y2) ) h2 (x l ,x2 ). 

Thus I X is IFR (J ohnson and Kotz (1975». 

s. (y) 
10. X is DMRL (1) and r~(Yr is non-decreasing in Vi' 

i=1,2 together implies X is IFR. 

Proof: 

The inequality (4.7) and si(y)/ri(y) is non-decreasing 

in Yi together leads, 

Thus I X is IFR, from (4.6). 
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4.4 Characterizations~ properties of RLD. 

In this section, we establish certain trans-

formations under which the RLD's of some bivariate 

distributions are identical with the original 

distributions. The result in this section is to 

apppar in Sankaran and Nair (1992 a). 

Theorem 4.1. 

The necessary and sufficient condition that 

G(Y;x) satisfies the relationship 

G{u{X)Y; x) = R{y) (4.10) 

for all x,y > 0, where 

u(x) = (4.11) 

is that X i3 distributed either as P(a l ,a2 ,o,c) or 

F {Pl,P2,o,d) or E(a1,a2 ,o). 

Proof: 

Assume that condition (4.10) is satisfied. 

Then from (4.1) we can write, 
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Denoting x1+Y1u(x) = s, x2+Y2u(x) = t, we have 

on differentiating (4.12), 

~ u(x) = 

oR ou oR [ ou 
()S Y 1 ()X2 + at 1+Y2 Ox2 ] 

and 

(4.14) 

(4.16) 

Bec~use of the absolute continuity of R, the partial 

derivatives mentioned above exist. 

When Y2 tends to zero in (4.13), 

oR ou 
()S [1+ y 1 Ox ] 

1 
(4.17) 

Eliminating ~ between (4.14) and (4.17), we have 
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and whence, by making Yl tend to zero, 

The last two equations lead to 

] . (4.18) 

The right side of (4.18) is independent of both 

Xl and x2 and therefore, 

QU 
aI' a constant. 

~ 
= 

Similarly, 

QU 
a2 • OX; = 

The above two conditions hold good if and only if for 

some k, 

u{x) = 

Since u{o,o) = 1, k=l. 

Thus, 
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The three admissible cases about the values of 

a l and a2 are that either a r a2=O, or al>O, a2 >O 

or al<O, a2<0. In the first case r(xl ,x2 )=(rl ,r2 ) 

where both r l and r 2 are independent of Xl and X2 • 

This is true if and only if X is distributed as the 

product of two independent exponentials (Nair and 

Nair, 1988) • When both a l and a 2 are positive reals, 

we find from the equation (1.28) that 

(4.19) 

For R(x l ,x2 ) given above to be a proper survival 

function, one should have a2r 2 ~ alr l • Now, the 

roles of r l (xl'x2 ) and r 2 (xl'x2 ) in (4.19) can be 

interchanged and this leads to the condition 

alr l S a2 r 2 and hence alr l = a2 r 2 = c, with c > O. 

Thus X follows P(a 1 ,a2 ,o,c). When a 1 ,a2 < 0, taking 

a 1 = -PI and a2 = -P2' PI,P2 > 0 and repeating the 

above steps, 

so tha t X is 

The converse part follow from examples 1,3 and 4. 

• 
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As a consequence of Theorem 4.1, we get the 

following characterization theorem connected with 

the proportionality of the two components of vector 

valued failure rate h(x l ,x2 ). 

Theorem 4.2. 

The relationship, 

is satisfied for all xl ,x2 > 0 if and only if X 

follow one of the distributions in Theorem 4.1. 

Proof: 

(4.20) 

Eliminating dR 
Os and dR ot from equations (4.13) 

through (4 0 16) we have for i,j=1,2, i~j 

and whence 

oR [ du ] dR du = -r- 1+ ~ y. - ~ ~- y. ox. ox. 1 ox. ox. 1 

du 
dX l 

J 1 1 J 
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Since the second expression in the above product 

non-zero, we find 

= 

or 

Since the equations (4.13), (4.14), (4.15) and (4.16) 

taken together characterize the three distributions 

given in Theorem 4.1, the relationship (4.20) is 

satisfied for those three distributions. 

This completes the proof. 

In the following theorem we address to a more 

general question, by Appealing to the functions 

r 1 (x) 
u 1 ( x) = () and r l 0 

characterizations. 

Theorem 4.30 

r 2 (x) 
u2 (x) = --r7\ to provide some 

r~ \ o} 

The RLD admits the r.onditions 
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G(y.u.(x);x) = R.(y,) i=1,2 J 
1 1 1 1 

(4.21) 

where, Ri(Yi) is the m~rginHl survivnl function 

of Vi' if and only if X follows one of the distribu­

tions specified in equations (3.2), (3.3) and (3.4). 

Proof: 

and 

When X follows exponential, E(al ,a2 ,Q), for i=l 

a 1 (a 1+ Q x2 )-1 

-(a1+Ox2 )x1 
= e 

so that 

= 
-aIY e 1 

Where as for Pareto P(a1 ,a2 ,b,c) 

and 

giving 

= 
(l+alxl+a2x2+bxlx2)al 

a 1+bx2 

-c 
G1(Yl;x) = [1+(al+bx2)Y1!(1+a1xl+a2x2+bxlx2)] 

< G1 (y1u1 (x);x) = (1+a1Yl)-C 

= R1 (Yl)' 
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In the finite range case F(Pl,P2,q,d) 

and 
d 

Gl(Yl;x) = [1-(Pl-qx2)Y1/(1-P1x1-P2x2+qxlX2)] . 

Thus, 

= 

(1-P1Yl)d 

Rl(Yl) • 

To prove the only if part, we proceed along the lines 

of Theorem 4.1. The equation (4.~1) is equivalent, 

for i=l, to 

(4.22) 

From (4.17) and (4.14) 

(4.23) 

or 

(4.24) 

Dividing the equation (4.23) by (4.24), we get 
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l+Yl 
DU l Rl(Yl) 

~ 
- dR (cm ) 

OYl 0Vl Yl=O 

which implies 

DUI 
a l ~ 

= 

or 
ul(x) = a 1 x 1 + B 1 ( x2 ) • 

Similarly, 

Using the same arguments in Theorem 4.1, we have 

Thus the MRL function is of the form 

which is a characteristic property of the family of 

distributions mentioned in Theorem 4.3 and the proof 

is complete. 

Corollaries: 

1. Taking i=l and allowingx2 to tend to zero, the 

conditions stated in Oakes and Dasu (1990) that 
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characterizes the univariate exponential, Pareto 

and finite range distributions result. 

2. u1(x) = u2 (x) in Theorem 4.3 char~ctrrizes the 

reduced models of Theorem 4.1. 



Chapter 5 

SIVARIATE VARIANCE BESIDUAL-LlfE 

5.1. Introduction 

It is evident from the earlier discussions 

that the three basic reliability concepts namely, 

the survival function, the failure rate and the 

mean residual life are equivalent, in the sense 

that knowing anyone of them, the other two can be 

uniquely determined. Another concept which has 

generated interest in life length studies in recent 

years is the variance residual life (VRL) which was 

briefly reviewed in Section 1.2.1.4. A special 

feature of the VRL is that it does pot determine 

the corresponding life distribution uniquely. This 

and the fact that monotone behaviour of the VRL 

generate classes of distribution that are not 

covered by similar behaviour of the other concepts 

makes it an interesting proposition to extend the 

concept from the,univariate to the bivariate case. 

As i~ the case of bivariate MRL, the bivariate VRL 

is useful in modelling and analyzing failure data 

of a two-component system which does not satisfy the 

assumption of independence among the components 
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life times. Apart from looking at several properties 

of this function, in the present chapter we develop 

some characterization theorems of the life distribu-

tion associated in the previous chapter. Further, 

we introduce four new classes of life distributions 

that are determined by the monotone behaviour of the 

VRL. Also, the monotonic properties of the VRL are 

characterized in terms of the residual coefficient 

of variation and is used to study the behaviour of 

VRL for cert~in family of bivariate rlistributions. 

It is demonstrated that using these different ageing 

criteria derived from the VRL, one can make comparison 

among various lifetime models generated in different 

physical situations. 

5.2. Defini tion_~!}d Properties 

Let X = (X l ,X2 ) be a bivariate random vector 

admitting absolutely continuous distribution function 

with respect to L~besgue measure in the positive octant 

R2+ ~ {(X l ,x2 )lx l ,x2 > oJ of the two dimensional 

Euclidean space R2 and having survival function R(x l ,x2 ). 
2 Assume that E(X i ) < =, i = 1,2. Then the random vector 

(5.1 ) 
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where, 

(5.2) 

is defined as the bivariate variance residual life and 

Vi (x l ,x2 ) as its components. The properties of VRL 

are the following, 

1. 

Proof: 

(5.4) 
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Substituting (5.4) on (5.2), we recover (503). 

On similar lines, 

(5.5) 

Formulas (5.3) and (5.5) express the VRL vector in 

terms of the survival function and the mean residual 

? (5.6) 

Proof: 

Differentiating (5.3) with respect to xi' we have 

(5.7) 

Using the relationship, 

h i (x 1 ,x2 ) 

or. 
1 + 1 OX":" 

1 = , 
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I 

the equation (5.7) becomes 

The relationship (5.6) will be used in the sequel to 

explore the monotone behaviour of VRL. 

3. When Xl and X2 are independent random variables 

(5.8) 

Proof: 

When Xl and X2 are independent 

and 

Thus, 

V 1 (xl' x2 ) 
00 

R(x1,olR(o,x2 J {lr1(v,o) R(V,o) = 

2 R(o,x2 )dy - r 1 (x1 ,o) 

= Vl(xl,o) . 
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Similarly 

It is e<lsy to sce that VI.(x1,0) and V2 (x 1 ,o) <lrC' the 

univariate VRL's of the component variables Xl and X2 • 

4. The VRL in general does not determine a distribution 

uniquely. 

Proof: 

To prove the assertion, consider the bivariate 

Pareto model of Lindley and Singpurwalla (1986) with 

(5.9) 

For this distribution, by direct computation we get 

Substituting in (5.4) 

co 

R ( x!' x2 ) = ! r 1 ( y l' x2 ) R ( Y 1 ' x2 ) d Y 1 • 
Xl 

(5.10) 



Differentiating both sides of (5.10) with respect 

to xl' we have 

oR 2(1+a 1 x1+a 2x2 ) 

Ox 1 + a 1"[ c-l){ c-~ It (x l' x2 ) 

Dividing by R(x 1 ,x2 ) and using the definition of 

bivariate failure, (5.11) becomes 

(5.11) 

Further simplification is achieved by using the relation­

ship between hl (x l ,x2 ) and r l (x l ,x2 ). This leaves the 

differential equation 

where, 

and 
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Treating x? nS a constant, (5.12) is Riccati's 

equa tion, wld ch c,'n be solved by the rnpthod described 

in Simmons (1974, p. 63). 

(l+a l xl +a2 x2 ) .. 
Since ~ = ----aifc- l ) sat1sf1es (5.12), we choose 

it as a particular solution to write the general 

solution of (5.12) as 

r 1 (x l ,x2 ) = 
1+n l Xl +a2x2 

al(c-l) 

where, Z satisfies the equation, 

(5.13) 

The next step is to solve (5.13). Towards this end, 
1 . . 

we set y = Z 1n (5.13) to find 

(5.14) 

which is of the well-known linear form. 

Substituting the expressions for A(x l ) and S(x l ) in 

(5.14), we have 

(5.15) 
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The solution of the above equation will be 

fp( xlHx1 
y.e 

where, 

p(x l ) 
2a l (c-l) 

= 1+a l x1+a2x2 

and 2 
-al (c-l)(c-2) 

Q( Xl) = 2 (l+a 1 xl +a 2x2 ) 

By direct integration, 

and 

Therefore the solution of the differential equation 

(5.15) is 
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Thus the general solution of (5.12) is prescribed 

as 

A simj1ar result can be obtained in the case of 

r 2 (x l ,x2 ). We have therefore different sequences 

of truncated moments arising from (5.12) and each 

such sequence must correspond to a particular 

distribution and our assertion is completely proved. 

5.3. Characterizations 

Eventhough,VRL in general does not determine a 

distribution uniquely, we can use the relationship 

among VRL and MRL to characterize certain bivariate 

life models. Further, in certain cases VRL itself 

can be employed to characterize some bivariate distri-

bution. 

Theorem 5.1. 

The VRL vector 

(5.16) 

where, cl and c2 are independent of both xl and x2 if 

and only if X=(X l ,X2 ) is distributed as E(u l ,u2 ,O). 
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Proof: 

To prnvp thp ~Rsertion we directly 

from (506) that 

This implies r i (x l ,x2 ) = ~ i' a constant independent 

of both xl and x2 . 

Therefore, from Nair and Nair (1989), Xl and X2 follows 

E(a l ,a2 ,O). Conversely, when X = (X l ,X2) follows E(al ,a2 ,O), 

the VRL 

is a constant vector and the proof is complete. 

Theorem 5.2. 

The random vector X=(X l ,X2 ) follows Gumbel's 

bivariate exponential model E(al ,a2 ,Q) if and only 

if 

v (.x 1 ' x2 ) = ( 81 ( x2 ), 82 ( xl» " 

Proof: 

(5.17) 

For the Gumbel's bivariate exponential distribution 
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so that the if part is true. 

Conversely, from (5.6) and the stipulated form 

for V ( xl' x2 ) , 

or 

Vi (xl' x2 ) = 

Therefore, 

which is a characteristic property of the Gumbel's 

bivar'iate exponential distribution established in 

Nair and Nair (1988). 

Sometimes it is more convenient to deal with 

the coefficient of variation of residual life rather 

than the VRL. We now prove a characterization theorem 

based on the values assumed by the coefficient of 

variation 

where, 

= • 
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Theorem 5.3. 

Let X=(X 1 ,X2 ) be a non-negative random vector 

admitting absolutely continuous distribution function 

with respect to Lebesgue measure, such that E(Xi2)<~. 

Then Ci (x l ,x2 ) = k, a constant if and only if X is 

and 

(i) Gumbel's exponential distribution 

E(ul ,u2 ,Q) for k=l, 

(ii) bivariate Pareto Model P(a l ,a2 ,b,c) 
for k> 1 

(iii) bivariate finite range distribution 

F (p l' P2 ' q , d ) for O( k( 1 • 

Proof: 

We first prove the necessary part. The given 

condition can be stated as 

V 1 ( xl' x2 ) = Q r 12 ( xl' x2 ) , 

where, 

Then from (506), 
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we have 

= 

where, 

m = 
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()r1 
1 + 0'X'"i 
r 1 r Xl' x2 ) , 

m, 

The general solution to the last equation is 

r 1 ( Xl' x2 ) = mx 1 + B 1 ( x2 ) • 

Similarly one can obtain, 

We conclude that the distribution of X is as stated in 

Theorem 5.3 from Theorem 3.1. 

In seeing the converse is true, note that 

for E(a1,a2 ,Q), 

2 Ci (xl' x2 ) = 1, 

for P(a l ,a2 ,b,c), 

2 c Ci (x l' x2 ) = c-2 

and for F(Pl,P2,q,d), 

2 d Ci (xl'x2 ) = d+'2 . 
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Corollary 

When X2 ~ 0 in V1(x1 ,x2 ), the univariate 

property 

holds if and only X is exponential, Pareto and finite 

range as proved in Mukherjee and Roy (1986). 

5.4. Monotone behaviour of VRL -------

The reliability concepts like failure rate, MRL 

etc. are used to describe the pattern of functioning 

of the systems of components. However, in order to 

have a fuller understanding of the importance of 

various distributions in reliability theory, various 

notions of ageing are helpful (see Barlow and Proschan 

(1975». Traditionally ageing is conveniently 

discussed and various life distributions are assessed 

in terms of the monotonic behaviour of failure rates 

or W~LFs. The aim of the present section is to 

introduce new classific~tions of bivariate distributions 

based on the monotone behaviour of VRL. The relation­

ship oi the classes so defined with other classes 

existing in literature and the chain of implications 

among them are also. examined. Various classes and 
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their interpretation in terms of ageing behaviour 

are detailed below. In defining the various classes 

we have kept in mind that, the definitions should be 

based upon conditions imposed upon the joint survival 

function and not on the constituent random variables, 

they should be valid for the established definitions 

in the univariate case and that the arguments that 

generate bivariate definitions should be natural 

extensions in some sense of the corresponding uni-

variate definition of VRL. 

Definition 5.1. 

A bivariate life distribution or random vector 

is decreasing (increasing) variance residual life-l 

(D (I) VRL - 1 ) if 

(5.18) 

The condition (5.18) is appropriate when the components 

in a system with d~fferent ages xi are required to 

survive different times Yl'Y2 and implies that for 

DVRL-(l) (IVRL-(l» distribution, the VRL at various 

ages decreases (increases) as the component ages. 
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The ages xl and x2 are chosen to be distinct by 

anticipating a replacement policy or by consider-

ing new components at the same time origin after 

which time moves at different rates for the two 

components which is true of accelerate life test 

situations where the stresses operating on the two 

components are different. Obviously, the boundary 

of the two classes satisfy 

in which case X is both OVRL-l and IVRL-I. The 

following theorem explains the situation when (5.19) 

holds good. 

Theorem 5.4. 

The bivariate random variable X is both DVRL-(l) 

and IVRL (1) if and only if Xl and X2 are independent 

and exponentially distributed. 

Proof. 
, 

Condition (5.19) is equivalent to 

Vi (xl ~ x2 ) = 

a constant independent of xl and x2 • The result now 

follows from Theorem 5.1. 
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Definition 502. 

A bivariate distribution or random variable 

is said to be DVRL-(2) (IVRL-(2» if 

and (5·10) 

The physical situation when condition (5 0 20) is 

of interest occurs when the individual lives of the 

components when the other has survived a specific life­

time are subject to study. In fact (5.20) means that 

given a two-component system with ages xl and x2 ' 

the VRL of the ith component can be decreased(increased) 

on replacing it by a similar component of larger age. 

Using differential calculus (Xl 'X2 ) is DVRL (2) (IVRL(2» 

according as 

aV 1 
< (~) 0 (5021) Oxi , ... 

and 

OV2 
$ (~) o p 

oX2 

The boundary of the class is obviously the one satisfying 

the equality in (5.20). More precisely we have, 
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Theorem 5 0 5. 

A bivariate distribution will be DVRL-(2) 

and IVRL-(2) if and only if it is the Gumbel's 

bivariate exponential model. 

Proof: 

From (5.21), the distribution satisfies the 

conditions of the theorem if and only if 

oV 1 
0 dX l = 

and 
oV2 

0 0x2 = 

or when 

v ( xl' x2 ) = (8 1 ( x2 ), 82 ( xl) ) 

which is the characteristic property of Gumbel's 

exponential model by Theorem 5.2. 

There exists ,an implication between the DVRL _(2) 

(IVRL~(2» class and the DMnL_(2) (IMRL-(2» class, 

where the latter is defined by the condition 

rl(xl+y, x2 ) < (» r l (x l ,x2 ) -
and (5.22) 

r2 (x l' x2+Y ) < (~) r2 (x l' x2 ) -
for all (x 1 ~ x2 ) in R + 

2 and y > O. 
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Theorem 506. 

Let E(X i 2 ) be finite and the life distribution 

is DMRL (2) (IMRL (2». Then X = (Xl'X2 ) is 

DVRL (2) (IVRL (2) at all points for which R(x l ,x2 »O. 

Proof: 

We prove the result only in the DMRL case. 

The proof for the dual case will follow by reversing 

the inequality signs. Sinc~ the random ~ector has 

DMRL (2) distribution, one can write from (5.22) that 

and (5.23) 

for all tl ~ xl > ° and t2 ~ x2 > 0. Since R(x l ,x2 ) 

is positive for all xl 'x2)o' it is true from (5.23) 

that 

(5.24) 

The first term on the left of the equation (5.24) is 
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from equation (5.4) and using the relationship 

00 

R ( x I ' x2 ) r I ( x I ' x2 ) = J R ( t I ' x2 ) d t I ' 
Xl 

2 the second term simplifies to - 2rl (x l ,x2 ). Thus 

(5.24) reduces to 

CV I 
Hence from (5.6), ox: 5 o. Similarly there holos 

cV I 
the inequality ~ ~ 0 and thus the distribution is 

2 
DVRL (2). 

There exists a characterization of the DVRL-(2) 

(IVRL-(2» models in terms of the coefficient of 

variation of residual life, which is presented in the 

following theorem. 

Theorem 5.7. 

, 
The distribution of X=(X1 ,X2 ) has DVRL-(2) (IVRL-(2» 

if and only if Ci (x1 ,x2 ) ~ (~) 1, where Ci (x1 ,x2 ) is 

defined in section 5.3. 

Proof: 

The result follows from the identity, 
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= 

derived from (5.~). 

Definition 5.3. 

A bivariate random variable X on its distribution 

is said to have DVRL-(3) (IVRL-(3» if 

Vi(Xl+Y, x2+Y) ~ (~) Vi (x l ,x2 ) 

for all (x l ,x2 ) in R2+ and y > o. 

(5.25) 

This condition is of interest when the components 

have different ages xl and x2 and our concern is to a 

common time horizon y. The difference in ages contem-

plated here can arise out of a replacement policy and 

the common time y is of particular significance when 

we look at a series system. The condition (5.25), 

on the other hand, can be interpreted in the following 

way. As the system ages, the VRL of all components 

decrease (increase). Again the distribution separating 

the DVRL-(3) class and IVRL-(3) class should satisfy 

the property 

(5.26) 
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Theorem 5.8. 

A bivnriate random vector X in the support 
+ 2 . 

of R2 . with E(X i ) < ~, is both DVRL-(3) and 

IVRL-(3) if it is distributed in the Marshall-

Olkin bivariate exponential form.· 

Proof: 

When X follows Marshall· and Olkin exponential 

model, it satisfies the bivariate lack of memory 

property 

R(xl+y, x2+Y) = R(x l ,x2 ) R(Y,y) 

and from Zahedi (1985), 

(5.27) 

(5.28) 

Using (5.27) and (5.28) in the equation (5.3), we have 

Thus X has both DVRL-3 and IVRL-3 

Definition 5.4. 

The random vector X or its distribution is said 

to possess the DVRL-(4) (IVRL-(4» property if 

(5.29) 

for all x,y > o. 
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The physical situation contemplated here is thata 

two-component system starts working at the same time 

and our interest lies in observing its performance 

after a time y. It follows that the condition (5.29) 

has the interpretation that the VRL of each component 

decreases (increases) as the components age. 

The following ~elationship hold among the various 

calsses of DVRL (IVRL) distributions 

DVRL-(l) ~ DVRL-(3)~ DVRL-(4) 

! 
DVRL-(?') 

and 

IVRL-(l) ~ IVRL-(3) ~ IVRL-(4) 

! 
IVRL-(2) 

These implications follow directly from the respective 

definitions of the various classes. At the same,the 

question of reverse implications in each case is also 

of considerable importance. Some results in this 

connection are presented in the following theorems. 

Theorem 5.9. 

IVRL-(2) does not imply IVRL-(3) and IVRL-(2) 

does not imply IVRL-(4). 
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Proof: 

Consider the Gumbel's exponential distribution 

with 

From direct calculations 

V 1 (x l' x2 ) 
1 

= ( a l +Qx2 )2 

and 

V2 (x l ,x2 ) 1 = 2 (a2+Qxl ) 

Clearly, 

V 1 ( xl + Y , x2 ) = V 1 (x l' x2 ) 

and 

V2 (xl'x2+y) = V2 (x l ,x2 ) 

Thus X has IVRL-( 2) property. 

Since, 

and 

X does not satisfy the property IVRL-(3). Similarly, 

X does not have the property IVRL-(4) and the proof is 

complete. 
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Theorem 5.10. 

IVRL-(l) does not imply DVRL-(2) and 

IVRL-(l) does not imply DVRL-(4). 

Proof: 

Taking 

R(x 1 ,x2 ) = (1+a 1xl +a2 x2 )-C, xl ,x2 > 0, 

the VRL vector is 

Obviously, 

but 

and 

Thus IVRL-(l) does not imply DVRL-(2). 

Similarly, 

Vi(x+y,x+y) f Vi(x,x). 

Hence, IVRL-(l) does not imply DVRL-(4). 
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Theorem 5011. 

DVRL-(l) does not imply IVRL-(?) and also 

DVRL-(l) does not imply IVRL-(4). 

Proof: 

From, 

the VRL, 

Vi (x l' x2 ) = , i=1,2. 

It is evident that 

Since, 

and 

DVRL-(l) does not imply IVRL-(2). 

On similar lines, we have 

Thus DVRL-(l) does not imply IVRL-(4). 

The results in sections 5.2 and 5.3 of the present 
chapter form part of Sankaran and Nair (1992 c). 



Chapter 6 

BIVARIATE VITALITY FUNCTION 

6.1. Introduction 

The manner in which ageing affects various 

components and devices is of primary concern in 

reliability analysis and life distributions are 

often classified according to different criteria for 

ageing. Such criteria uses the monotone behaviour 

of the basic characteristics such as failure rate, 

mean residual life etc. Recently, Kupka and Loo(1989) 

have employed a new method of measuring the phenomenon 

of ageing with the aid of vitality function which is 

the expectation of a random variable X conditioned 

on X>x. The properties of vitality function and its 

relationship to the other ageing concepts were discussed 

in Section 1.2.1.3. In the following sections we extend 

the notion of vitality function to the bivariate case 

and point out some of its applications in the analysis 

of lifetime data. The contents of the present chapter 

are due to appear in Sankaran and Nair (1991). 
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6.2. Definition and Properties 

Let X = (X 1 ,X2 ) be a random vector in the 

support of (x l ,x2 )la i < xi ~ bi' i = 1,2} for 

a i ~ - ~ and bi ~ + ~, with survival function 

R(x l ,x2 ). For values of xi < b i such that p[X~x]> 0 

and Xi + = max (O,Xi ) satisfying E(X i +) < ~, the vector 

valued function, 

(6.1) 

where, 

is called the bivariate vitality function of X. In a 

two-component system, where the life lengths of the 

components are XL and X2 (which are non-negative), 

ml (x1 ,x2 ) measures the expected age at failure of the 

first component as the sum of the present age xl and 

the average lifetime remaining to it, given the 

survival of the second at age x2 • A similar inter­

pretation can be given to ~(xl,x2). By straight 

forward integration, we have 

(6.3) 
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and 

(6.4) 

The mi's are, in general, different from the univariate 

vitality functions of the component variables Xi 

specified by 

with 

if and only if Xl and X2 are independent. 

Further, 

where, 

the expressions on the right hand side are 

evaluated as limits. Moreover, 

x. 
l. 

for all a. < x. < bi. 
l. l. 

In view of the relationship, 

mi ( xl' x2 ) = xi + r i ( xl' x2 ) ) 

(6.5) 

(6.6) 
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R(x l ,x2 ) is uniquely determined from bivariate 

vitality function. Also, the bivariate failure 

rate h(x l ,x2 ), given in (1.17), is related to 

m(x l ,x2 ) by 

and hence 

(6.7) 

(6.8) 

All the above properties are direct implications of 

the corresponding results concerning bivariate MRL 

reviewed in Nair and Nair (1989). 

6.3. Measure of Local Memory 

Traditionally, the influence of age on equipment 

behaviour is manifested through, either positive ageing 

in which the equipment gradually deteriorates in its 

functioning as time progresses, or negative ageing 

indicating a beneficial effect due to increase in age 

or no-ageing where it continue to have some capacity 

to perform regardless of age. Life distributions that 
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are characterized by no-ageing or lack of memory 

property (LMP) as it is called in probability 

calculus, form the boundary of the class of distri­

butions belonging to the other two categories. In 

the univariate case it is well known that the only 

continuous distributions that possess the LMP is 

the exponential distribution and therefore it forms 

the dividing line'between distributions that represent 

posi{ive and negative ageing behaviour. However, in 

the bivariate case, notion of LMP can be spelt in more 

than one way (see Section 3.4) and we choose in our 

present discussion, the definition based on the local 

behaviour of the component variables. The random 

vector (XI 'X2 ) is said to possess the local lack of 

memory (LLMP) if there holds the relationship 

and 

From (6.9) we have, 

R(x1+t1 ,x2 ) 

R(X 1 ,X2) 

(6.9) 

= 
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Integrating the above equation and using the 

definition of bivariate MRL given in (1.26), one 

can see that the above equation is equivalent to 

r l (xl' x2 ) = r l (o,x2 ) 

or in terms of vi tali ty function 

ml (x l ,x2 ) = xl +ml (o,x2 ) • 

Defining 

01 (x l' x2 ) = ml(xl,x2)-ml(o,x2) 

and 

D2 (x l ,x2 ) = m2(xl,x2)-m2(xl'o), 

it is clear that Di {xl ,x2 ) indicates the gain in 

the conditional mean life of the ith component in 

the interval (o,xi ) when the second has survived 

age x j • Since x. 
l. 

is the actual age attained by the 

i th component, °i(xl ,x2 ) = x. 
l. 

represents the si tua tion 

when it did not age in (o,x.) while D.(xl ,x2 )(x.(>x.) 
l. l. l. l. 

corresponds to its positive (negative) ageing. Noticing 

()O. 
that ~ 

i 

()mi 
= ~ , we propose the following definition 

1 

of local memory at a point. 
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Definition 6.1. 

At a point x = (x l ,x2 ), the random vector X 

has positive local memory (PLM) if and only if 

cm. 
~ < 1 for i = 1,2, negative local memory (NLM) if ox. 

1 

and only if 
00. 

1 
ox. > 1 for 

1. 

i=1,2 and local lack of 
cm i 

memo~y (LLM) if and only if ~ = 1 for i=1,2. 

Since 
ODi > 0 > 
-~-- 7 1 is equivalent to ~(Di-X') 7 0, one 
uX i "- uX i 1. "-

can use the latter expression also in defining local 

memory. 

Examples: 

(i) For the Gumbel's bivariate exponential law 

with survival function (3.2) 

for every xl ,x2>0 so that (3.2) possesses LLM. 

(ii) The bivariate Pareto distribution, with 

survival function (3.3), has NLM at each point of its 

support since, 



and 

cm. 
1 

~ 
1 
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= 

= c(C_l)-l > 1. 

(iii) The bivariate finite range model, 

specified by the survival function (3.4), satisfies 

the condition for PLM at each point in its support. 

This follows from 

It is obvious that a bivariate distribution 

need not have the same type of memory at various 

points and accordingly it is of some interest to have 

a consolidated measure of local memory that spreads 

over the entire support. Such a measure will be 

useful in (a) comparing the overall ageing behaviour 

in different populations by a single index, and 

(b) in selecting models that conform to the objectives 

of the experimenter. 

One way of arriving at such an overall measure 

is to consider a weighted average of the local memories 
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at various points in support of the disttibution 

as done by Muth (1980) in the univariate case. 

Thus a measure of lccal memory of a bivariate 

distribution can be prescribed as (a1(x2 ),a2 (x1», 
where, 

00 

= J (6.11) 
o 

i, j = 1,2, i~j, 

for a suitably chosen weight function Wi " In the 

present investigation our choice is 

Wl (xl ,x2 ) 

(6.12) 

and 

(6.13) 

This choice of the weight function is motivated by 

the desire to obtain a measure that reduces to the 

corresponding quantity in the univariate case discussed 

in Muth (1980). Specialising for i=l in (6.11) and 
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noting that as xl tends to infinity W1 (x1 ,x2 ) and 

ml (x I ,x2 )-x1 by virtue of equation (6.3) tend to 

zero and lim(D I -x1 ) = 0 as xl tend to zero, we have 

by partial integration of (6.11) 

(6.14) 

where, 

2 Now, under the assumption of E(X1 ) < ~, 

00 00 

00 

= 2 J t 1 R ( t 1 ' x2 ) d t 1 . (6. 16 ) 
o 

From equation (6.3), 
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00 

= 2 I [ml(xl,x2)-xl]R(xl,x2)dxl" 
o 

(6.17) 

Equations (6.14) and (6.15) lead to 

1 00 = 2[ml (o,x2 )R(o,x2 )]- ! R(x l ,x2 )dx1 
o 

-E(x~lx2~~2) [ml (o,x2 )]-2. 

One can write 

00 
00 00 ()R I R(xl'x2)dx1 = - J J (ox:)dx1dx2 

0 o x x2 2 

Ill) GO ()2R 
= If xl ( dx1dx2 

)dx1dx2 
o X2 

= R(o,x2 ) m1 (0, x2 ) " 
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Thus, 

a 1 (x2 ) = 2-[m1 (o,x2)]-2 E[x~IX2~x2] 

2 = l-C 1 ( x2 ) , (6.18) 

where, Cl (x2 ) is the coefficient of variation of Xl 

conditioned on X2~x2. Thus the measure of overall 

memory of a distribution over the entire support is 

(6.19) 

Using the ~easure (6.19) one can classify distribution 

according to the type of memory they possess. 

Definition 6.2. 

A continuous bivariate random vector X has 
2 PLM(NLM, LLM) according as Ci(x j ) is < 1(>1, =1) 

for i,j=1,2; i~j. 

The proposed measure is unit free and is directly 

related to the absolute dispersion in the variable. 

Apart from the application to life length studies, the 

measure can also be used to characterize bivariate 

distributions. 
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6.4. Characterizations using Bivariate Vitality 

Function 

Although the general relationship between 

bivariate vitality function and bivariate failure 

rateegoverned by (6.7), there exist some explicit 

expressions connecting the two that characterize 

several bivariate distributions. First we prove a 

general theorem and then obtain some useful deductions.i 

Let X be the random vector specified in Section 6.2 

possessing a probability density function f(x l ,x2 ). 

Wri ting, 

L. = (Q. ,d. ,n i ); Yi=(x. ,x j ,1); Z.=(x. ,1) 
1. 1. 1. 1. 1. 1. 

A. = 
1. 

Pi ki gi 

k i 0 fi 

9i fi c i 

. , 

where, the elements of Li and Ai are real and i,j=l,2 

with i~j. 
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Theorem 6.1. 

A necessary and sufficient condition that 

f(X 1 ,X2 ) satisfies the differential equations 

is that 

Here, 

Proof: 

PlO = 2p.+Q., 
1. 1 

When i=1, (6.20) reads 

We have, 

(6.20) 

(6.21) 

and R. = 29 .+n .• 
1 1 1 

(6.22) 
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and 

Hence by applying integration by parts on (6.22) 

and 

Substituting, 

() 
= ~ R("2-x2) 

()R c)1l2 
= (l12- x2)"5X:'" + R ox. 

1 1 

into (6.23), we have 

(6.24) 
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Using the definition of hl (x l ,x2 ) in (6.24), and 

then simplifying, we recover (6.21), specialised 

for i=l. For i=2, the procedure is similar. As 

the converse follows by retracing the above steps, 

our proof is complete. 

Though the expression (6.21) looks some what 

lengthy, when we pdhere to specific models simple 

expressions will result, as the following corollaries 

show. 

We illustrate this by some examples. 

Corollary 6.1. 

The relationship m(x)B = - H 

where, 

2Pl 2k 
B = ( 2k 2P2 

) 

and 

H = ( h 1 ( x), h2 ( x» , 

characterizes the bivariate normal law, 
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(or its truncated form in the appropriate support) 

2 
for all PIPP2,k such that Pl,P2 > 0 and PIP2-k ~ O. 

Corollary 6.2. 

The random vector (Xl 'X2 ) follows the bivariate 

law with exponential conditionals (Arnold and Strauss 

(1988» with probability density function 

if and only if 

a 1 ,a2 >0, b~O 

xl ,x2 > 0 

The models described by (6.20) is a sub-class 

of the bivariate Pearson family discussed in Johnson 

and Kotz (1972) and includes several models useful in 

reliability analysis. The above results form a 

bivariate extension of the characterization of the 

univariate Pearson family given in Theorem 2.1. 
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