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Chapter-l

INTRODUCTION AND PRELIMINARIES

The evolution of non-commutative ring theory spans

a period of about one hundred years beginning in the
second half of the 19th century. This period also saw

the development of other branches of algebra such as

group theory, commutative ring theory, etc. However,

the non-commutative Noetherian ring theory has been an
active area of research only for the last thirty years,
eversince Alfred W. Goldie proved some fundamental results

in the late fifties of this century.

The concept of commutative Noetherian Unique
Factorisation Domains has been extended to rings which
are not necessarily commutative, in different ways.

A.W. Chatters [1,2], D.A. Jordan [2] are the forerunners
in this direction. A.W. Chatters in [1] defined Non-
Commutative Noetherian Unique Factoriéation Domains
[NUFDS]. Although the rings of this class have many
properties of commutative UFDs, there are not many non-
commutative rings in this class. In [2], A.W. Chatters
and D.A. Jordan extended the concept of NUFD to Non-

Commutative Unique Factorisation Rings [NUFR].



REMINDER OF THE COMMUTATIVE CASE

A commutative domain R is a UFD if every non zero
element of R is @ unit or is a product of irreducible
elements which are unique except for their order and
multiplicaticr by units. Examples include the ring of
polynomials in a finite number of indeterminates over
a field or the integers; the Gaussian integers, etc,

I. Kaplansky [3]) has proved that a commutative domain R

is a UFD if and only if every non zero prime ideal of R
contains a principal prime ideal, equivalently every

height one prime ideal is principal (a heigpt one prime

in these circumstances being a prime ideal minimum with
respect to not being zero). Note that if R is a commutative
UFD then so also is the polynomial ring in an indeterminate x

over R and also R is integrally closed.

NON COMMUTATIVE UNIQUE FACTORISATION DOMAINS

In [1] Chatters considered only Noetherian domains
which are not necessarily commutative. An element p in
such a ring R is called prime if pR = Rp and R/pR is a
domain (which implies that if p divides ab then p divides

a or p divides b). The letter C is used to denote the



elements of R which are regular (non-zero divisors)
modulo all height 1 prime ideals (i.e., if p is a height
1 prime ideal and cd € P for some c &€ C and d ¢ R, then

de P ).

Definition 1,.1.

A ring R is a NUFD if every height 1 prime ideal

of R is of the form pR for some prime element p equivalently
if every non zero element of R is of the form cpy .- P,

where ¢ € C and p; are prime elements.

Even.though this non-commutative analogue 1s the exact
extension of UFD, it lacks some properties, for example,
the polynomial ring R[x] over the UFD,R, is a UFD, in the
commutative case. With these unpleasant consequences of
this extension in mind Chatters and Jordan defined Noetherian

Unique Factorisation Rings [2].

Instead of Noetherian domains, they considered the
more general prime Noetherian rings and used the characterisa-

tion of UFDs by Kaplansky in this definition.

Definition 1.2.

LLet R be a prime Noetherian ring. Then R is a

Noetherian Unique Factorisation Ring (NUFR) if every




)

non zero prime ideal of R contains a non zero principal prime

ideal.

Since every domain is a prime ring, this class of
rings contains the class of NUFDs. The rings of this
class have almost all properties of UFDs but the factorisa-

tion can be done only for those elements p with pR = Rp.

Before entering into more details of the material
of this thesis we give a brief review of the preliminary
materials.,

PRELIMINARIES

Conventions

All the vings in this thesis are assumed to be
associative and they have identity elements unless it is
otherwise mentioned. To emphasize the order theoretic
nature, we use the notations of inequalities ¢ , < , ¢
for ‘'contained in', 'properly contained in' and 'not

contained in' respectively.

We begin with the basic equivalent conditions which

are abbreviated by "Noetherian" honoring, E. Noether, who



first demonstrated the importance and usefulness of these
conditions. Recall that a collection# of subsets of a
set A satisfies the ascending chain condition (or ACC) if
there does not éxist a properly ascending infiﬁite'chain
Al‘ A2< ... of subsets from4 . Recall also that a

subset B€ 4 is said to be maximal of #, if these does

not exist a subset inA which properly contains B.

Proposition l.3.

Let R be a ring and A, be a right R-module. The

R

following conditions are equivalent.

(a) AR has ACC on submodules

(b) Every non-empty family of submodules of Ay
has a maximal element.

(c) Every submodule of Agis finitely generated.

Definition 1.4.

A module AR is said to be Noetherian if and only

if the equivalent conditions of Proposition 1,3 are

satisfied.

Definition l.5.

A ring R is right (left) Noetherian if and only if

the right R-module Ry (left R-module RR) is Noetherian.



If both conditions hold, R is said to be Noetherian.

Example 1l,6.

It is easy to observe that the 2 x 2 matrices of

ﬂ where a € Z and b,c € Q make,a ring which

E
the form 19 c

is right Noetherian but not left Noetherian.

Proposition l.7.

Let B be a submodule of A. Then A is Noetherian if

and only if B and A/B are both Noetherian.

Corollary 1.8.

Any finite direct sum of Noetherian modules is

Noetherian.

Corollary 1.9.

If R is a Noetherian ring, all finitely generated

right R-modules are Noetherian.

Definition 1.10.

Given a ring R and a positive integer n, we use

Mn(R) to denote the ring of all n x n matrices over R.

The standard n x n matrix units in Mn(R) are the matrices
th

e (for i,j = 1,2,...,n) such that ey has 1 as the i-j

entry and O elsewhere.



Proposition l.,11.

Let R be a right Noetherian ring and let S be a

subring of Mn(R). If S contains the subring

Rt = {diagonal (ryr ...,T) | T e R} of all

scalar matrices, then S is right Noetherian. 1In particular

Mn(R) is a right Noetherian ring.

Proof

It is obvious that R is isomorphic to R' and Mn(R)
is generated as a right R' module by the standard n x n
matrix units. Since R' is right Noetherian and the
number of eij's,is finite, Mn(R) is a Noetherian R'-module,
by corollary 1.9. As all right ideals of S are also right

R!'-submodules of Mn(R), we conclude that S is right Noetherian.

PRIME IDEALS

It is well known that the prime ideals are the
'building blocks' of ideal theory in commutative rings.
We recall that a proper ideal P in a commutative ring is
said to be prime if whenever we have two elements a and b
in R such that ab € P, it follows that either a € P or
b € P; equivalently P is prime if and only if R/P is a

domain.



In non-commutative rings, it turns out that it is
not a good idea to concentrate on prime ideals P such that
R/P is a domain (ab € P implies a € P or b€ P). 1In fact,
there are many non-commutative rings with no factor rings
which are domains. Thus the desirable thing is to give
a more relaxed definition for prime ideals, The key 1is
to change the commutative definition by replacing products
of elements by products of ideals which was first proposed

by Krull in 1928,

Definition 1l.12.

A prime ideal in a ring R 1is a proper ideal P of R

such that whenever I and J are ideals of R with IJ £ P,

either I < P or J ¢ P, P is said to be a completely prime

ideal, if whenever a,b € R such that ab ¢ P, either a ¢ P

or b€ P, A prime ring is a ring in which O is a prime

ideal and a domain is a ring in which O is a completely

prime ideal.

From part (c) of the following proposition it follows
that in the commutative case the prime ideals and the
completely prime ideals coincide with the usual prime ideals
and in non-commutative setting, every completely prime ideal

is a prime ideal.



Proposition 1.,13.

For a proper prime ideal P in a ring R, the following

are equivalent.

(a) P is a prime ideal
(b) R/P is a prime ring
(c) If x,y € R with xRy<P, either x € P or y € P

(d) If I and J are any two right ideals of R such
that IJ ¢ P, either I ¢ P or J £ P

(e) If I and J are any two left ideals such that
IJ £ P, either I ¢ P or J ¢ P.

It follows immediately (by induction) from the above
propositlion that 1f P is a prime ideal in a ring R and

J .,Jn are right (or left) ideals of R such that

l"l
J1J2 .o Jn < P, then some Ji < P.

Proposition 1l.1l4.

Every maximal ideal M of a ring R is a prime ideal.

Definition 1.15.

A minimal prime ideal in a ring R is any prime ideal

which does not properly contain any other prime ideal .

For instance, if R is a prime ring, then O 1is a

minimal prime ideal.
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The next two propositions guarantee the existence
of minimal prime ideals in a ring R and their connection
with the ideal O in a right Noetherian ring.

-

Proposition 1.16.

Any prime ideal P in a ring R contains a minimal

prime ideal.

Proposition 1l.17.

In a right Noetherian ring R, there exist only
finitely many minimal prime ideals, and there is a
finite product of minimal prime ideals (repetitions

allowed) equal to zero.

Remark 1.18.

Given an ideal I in a right Noetherian ring R,
we may apply proposition 1,16 to the ring R/I to get
a finite number of minimal prime ideals Q;/I, Q,/I,...Q /I
of R/I such that their product is O. Since Q;/I is a
minimal prime ideal of R/I for each i, each Qsr i=1,2,...,n
is a prime ideal of R containing I and the minimality of
Qi's assures that they are minimal among the prime ideals
containing I, Thus in a right Noetherian ring, given any

ideal I, there exist a finite number of prime ideals
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minimal among all prime ideals of R containing I, such
that their product is contained in I. Such prime ideals

are called minimal prime ideals over I.

SEMIPRIME IDEALS

Definition 1.19.

A semiprime ideal in a ring R is any ideal of R

which is an intersection of prime ideals. A semiprime

ring is any ring in which O is a semiprime ideal.

For example, the proper semiprime ideals of Z are
of the form nZ, where n is a square-free integer. 1In fact,
in a commutative ring R, an ideal I is semiprime if and
only if whenever x € R and x2€‘ I, it follows that x € I.
The example of a matrix ring over a field shows that this
criterion fails in the noncommutative case. However, we

have an analogous criterion.

Proposition 1.,20.

An ideal I in a ring R is semiprime if and only if

whenever x € R with xRx ¢ 1, then x € 1I.

Corollary 1.21.

For an ideal I in a ring R, the following conditions

are equivalent.
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(a) I is a semiprime ideal

(b) If J is any ideal such that J2 < I, thenJ < I.

Coroliary 1,22,

Let I be a semiprime ideal in a ring R, J be any
left or right ideal of R such that J" < I for some

positive integer n, then J £ I.

Definition 1.23.

A right or left ideal J in a ring R is nilpotent
provided J" = 0 for some positive integer n., More generally,

J 1is nil provided every element of J is nilpotent.

Definition 1l.24.

The prime radical of a ring R is the intersection of

all prime ideals of R.

It is easy to observe that the prime radical of any
ring is nil and R is semiprime if and only if its prime

radical is zero.

Proposition 1.25.

In any ring R, the prime radical equals the inter-

section of all minimal prime ideals.
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In Noetherian rings we have the following important

result.

Proposition 1.26.

In a right Noetherian ring, the prime radical 1is
nilpotent and contains all the nilpotent right or left

ideals.

PRIMITIVE IDEALS

Definition 1.27.

Let R be a ring and S be a subset of a right

R-module A. The .annihilator of § is defined as

{r € R | sr =0 for all s ¢ s}o If S is a subset of R,
r(S), the right annihilator of S is defined as

(re R| sz =0 for all se S} and left annihilator {(S)

is defined as {r € R| rs =0 for all s € é}o A module A

is said to be faithful if annihilator of A = Q.

Definition 1.28.

An R-module A is said to be simple if A has no
proper submodu.es., A ring R 1s said to be simple if it

has no proper ideals.
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Definition 1.29.

An ideal P in a ring R is said to be right (left)
primitive provided P = ann RA for some simple right

(left) R-module A. A right (left) primitive ring is

any ring in which O is a primitive ideal, ie. any ring

with a faithful, simple right (left) R-module.

Proposition 1.,30.

In any ring R, the following sets coincide:

(a) The intersection of all maximal right ideals.
(b) The intersection of all maximal left ideals.
(c) The intersection of all right primitive ideals.

(d) The intersection of all left primitive ideals.

Definition l.31.

A ring R is semiprimitive (Jacobson Semisimple) if

and only if the Jacobson radical J(R) of R is equal to

zero where J{(R) is the intersection defined in proposition 1.30.

SEMISIMPLE RINGS

Vector spaces, when viewed module theoretically,



are distinguished by many nice properties, For instance,
every vector space is a direct sum of one-~dimensional
subspaces. We view simple modules as analogous to one
dimensional spaces, :and the corresponding analogoues to
higher dimenaional vector spaces are the semisimple

modules; modules which are direct sums of simple submodules.

Definition 1.32.

The socle of an R-module A is the sum of all simple

submodules of A and is denoted by soc A. A 1s semisimple

if A = soc A.

In any ring R, it is easy to observe that soc (RR)
is an ideal of R. Similarly soc (RR) is an ideal of R,
but these two socles need not coincide in general. However,
there are rings in which these two coincide. For instance
R = Mn(D), where n is a positive integer and D is a division

ring. In case n = 2, the right ideals Il = [g g] R 12 = (g Eﬂ

are the simple right ideals and M2(D) = I,® I, . Similarly

MQ(D) =J,® J,, where J| = BO] y Iy = [O D] are the

1 0] O D

simple left ideals. We state a proposition,
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Proposition 1,33.

For any ring R, the following conditions are

‘equivalent.

(a) All right R-modules are semisimple
(b) All left R-modules are semisimple
(c) RR is semisimple

(a) RR is semisimple

Definition 1,34.

A ring satisfying the conditions of Proposition 1.33

is called a semisimple ring.

Definition 1.35.

A module A is Artinian provided A satisfies the
descending chain condition (DCC) on submodules, i.e.,
there does not exist a properly descending infinite chain

of submodules of A. A ring R is called right (left) Artinian

if and only if the right R-~module RR (left R-module RR) is
Artinian. If both conditions hold, R is called an Artinian

ring.

Remark 1,36.

As in the case of Noetherian structures it is easy to

observe that' A is Artinian if and only if A/B and B are
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Artinian where B is a submodule of the module A and that
any finite direct sum of Artinian modules is Artinian.
Also, if R is an Artinian ring, so is every finitely

‘generated R-module.

Now we state the celebrated theorems on simple and

semisimple rings, due to Weddernburn and Artin.

Proposition 1.,37.

For a ring R, the following conditions are equivalent.

(a) R is right Artinian and J(R) = 0O

(b) R is left Artinian and J(R) = 0O

(¢) R is semisimple

(d) R = Mnl(Dl) X MnQ(DZ) X oo X Mnk(Dk) for some

positive integers NisNpyeeeyNy and division rings

Hopkins and Levitzki have proved the significant
result that if R is a right Artinian ring then R is also
right Noetherian, and J(R) is nilpotent. The following

proposition is a consequence of this result.
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Proposition 1,38.

For a ring R, the following conditions are equivalent.

(a)
(b)

R is simple left Artinian
R
(c) R is simple and semisimple
R
s

is simple right Artinian

(d)

= Mn(D)' for some positive integer n and

ome division ring D.

RING OF FRACTIONS

In the theory of commutative rings, localisation
at a multiplicative set plays a very important role. Most
important is the idea of a quotient field, without which
one can hardly imagine the study of integral domains.
A very useful technique in commutative theory is the
localisation at a prime ideal, which reduces many problems

to the study of local rings and their maximal ideals.

However, this is not the case with non-commutative
rings. Although the set of nonzero elements is a multi-
plicative set in any domain, we have examples of domains
which do not possess a division ring of quotients. It
was in 1930, that O. Ore characterised those non-commutative

domains which possess division rings of fractions. In fact,



~19-

Ore has proved a more general result by classifying

the multiplicative sets in a ring R, at which the right

(left) ring of quotients (fractions) of R exists.

Definition 1,39.

Let R be any ring. A multiplicative set D in R

is said to setisfy the right (left) Ore condition if

given r & R; s &€ D there exist r'€ R and s' & S such
that rs' = sr' (s'r = r's)., In this case D is said to

be a right (left) Ore set. If D satisfies both right

and left conditions, D is simply called an Ore set.

Property 1,40.

We have a very useful property in a right Ore set

known as the right common multiple property.

If D is a right Ore set in R, then given any

dl’d2""’dn ¢ D, there exist d € D and TysTpyeesyTy in R

such that d = dlrl = d2r2 = ... = dnrn' The left common

multiple property is defined like wise.

Definition 1.41.

A multiplicative set D in a ring R is said to be

right reversible in R, if for any d €« D, r & R with dr = O,
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there exists d'« D such that rd' = 0. D is defined

to be a right denominator set if D is right Ore and

right reversiole.

Proposition 1.42.

In a right Noetherian ring every right Ore set

is right reversible.

Definition 1.43.

Let D be a multiplicative set in a ring R.

A right gquotient ring of R relative to D is a pair (Q,f)

where Q is a ring and f is a homomorphism from R to Q

satisfying the following conditions.

(a) For any de D, f(d) is a unit in Q.

(b) For every q € Q, there exist r @R and d € D
such that g = f(r) f(d)_l.

(c) ker f = {_r € Rjrd = O for some d € D}.

Remark 1.44.

A right localisation of a ring R with respect to
a multiplicative set D is a ring RD—1={?d—l|reF1,cie Q}

such that
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(a) (@™ Har™ = (a1™hH (@™ =1 in RD™? for all d € D.

(b) The map r — rl—l is a ring homomorphism from
-1
R to RD ~.

(¢) For r,s=& R and d €D ra™t = sa7! if and only if

rc = sc for some ¢ €« D, The ¢ occurs because D
may contin zero divisors. If D cons‘sts of non

zero divisors, then rd™t = sa™! if and only if r=s.

It can he easily seen that the definitions of a right
quotient ring in 1,43 and the right localisation in remark 1.44

are eqgquivalent.

Now we state Ore's theorem.

Theorem 1,45.

Suppose D is a multiplicative set in a ring R.
A right localisation of R relative to D exists if and only

if D is a right Ore right reversible set.

Remark 1.46.

Let us write an element of RD_l as a/s where a & R,

s ¢ D and call a’' the numerator and s the denominator of this
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expression. Then it can be interpreted that two fractions
are equal if and only if when they are brought to a common
denominator, their numerators agree. It follows from the
right common multiple property of D that any two expressions
can be brought to a common denominator. So we can define the
addition of two fractions by the rule (a/s)+(b/s) = (a+b/s).
Here it can be easily verified that the expression in the
right depends only on a/s and b/s and not on a,o and s.

To define the product of a/s and b/t we determine b,€ R

and s;€ D such that bs;, = sb; and then put (a/s)(b/t):(abl/ts

1 1
Again it is easy to check that this product is well defined.

l)'

A ring R is said to be a domain if, it is without zero
divisors. It is obvious that the nonzero elements in a
domain form a multiplicative set and if D = R-0O, D trivially
satisfies the right and left reversibility conditions. From

this fact we get the following corollary of Ore's theorem.

Corollary 1.47.

A domain R has a right division ring of fractions
(right quotient division ring) if and only if D is a right
Ore set if and only if the intersection of any two nonzero

right ideals is nonzero.
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Definition 1l.48.

A domain which satisfies the condition of

Corollary 1.47 is called a right Ore domain. Left Ore

domains are defined analogously.

Ore's theorem, though proved in 1930, was only a
theoretical curiosity for a long time until Alfred Goldie
proved some results, nowadays known as Goldie's theorems,
in this direction in 1958. The importance of Goldie's
theorems is that it paved the way to many new investigations
and answered many questions posed on non-commutative ring
theory. We have seen that there are many non-commutative
domains which do not possess a right or left division ring
of fractions and there are many rings which do not have
any factor rings which are right or left Ore domains.
Instead of looking for Ore domains and division rings of
fractions, we look for rings from which Simple Artinian
rings can be built using fractions. Goldie's main result
states that if R is a Noetherian ring with O a prime ideal
(P a prime ideal), then R has (R/P has) a simple Artinian
ring of fractions. It turns out to be no extra work to
investigate rings from which semisimple ring of fractions

can be built. We begin with some definitions.
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Definition 1,49.

A requlcr element in R is any non-zero divisor,

i.e., any x& R such that r(x) = 0 and f(x) = O.

Note that if R § Q are rings and x is any element

of R which is invertible in Q, then x is a regular element

in R.

Definition 1,50.

Let I be an ideal of R. An element x € R is said

to be reqular modulo I provided the coset x+I1 is regular

in R/I. The set of such x is denoted by C(I). Thus the

set of regular elements in R may be denoted by CR(O). Often
we use the notation CR(I) for C(I).
Definition 1.91.

A right (left) annihilator ideal in a ring R is any

right (left) ideal of R which equals the right (left)

annihilator of some subset X.

Definition 1.52.

A ring R is said to be of finite right (left) rank

if RR(RR) contains no infinite direct sum of submodules.

Definition 1,53.

A ring R is said to be right (left) Goldie if RR(RR)

has finite rank and R has ACC on right (left) annihilators.
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Definition 1.94.

Let A be a right R-module and B a submodule of A.

B is said to be an essential submodule of A if BNC £ O.

for every non zero submodule C of A.

Definition 1.55.

Let Q be a ring. A right order in Q is any subring

R £ Q such that

(a) Every regular element of R is invertible in Q

(b) Every element of Q has the form ab—l for some

a e« R and some reqular element b in R.

It is clear that the ring Q in the definition 1.55
and the localization of the ring R at the multiplicative

set CR(O) are same.

Remark 1.56.

A right Goldie ring 1is any ring R, such that R has
finite right rank and ACC on right annihilators. Thus

every right Noetherian #hg is right Goldie.

Remark 1.57;

Goldie has proved that in a semiprime right Goldie ring

every essential. right ideal contains a regular element and
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that the right ideal generated by a right regular

element is right essential. As a consequence, in such
rings right regular elements are regular. Also it can
be seen easily that any ideal in a prime right Goldie
ring is essential as a right ideal and as a left ideal

and so it containsregular elements.

Theorem 1.58 (Goldie)

A ring R is a right order in a semisimple Artinian

ring Q if and only if R is a semiprime right Goldie ring.

Theorem 1.59 (Goldie)

A ring R is a right order in a simple Artinian ring

Q if and only if R is a prime right Goldie ring.

Remark 1.60.

The ring Q, as in theorem 1,58, is called a right
Goldie quotient ring of R. Analogous results exist for
left semiprime (prime) Goldie rings. When both left Goldie
guotient ring and right Goldie quotient ring exist they
can be identified and called the Goldie quotient ring.

An important property of QR is that it will be the

injective hull of RR.
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Goldie's theorems give the structure of a semiprime
(prime) right Goldie ring, as it is a right order in a
semisimple Artinian (simple Artinian) ring which in turn
is the finite direct product of matrix rings over division
rings (matrix ring over a division ring). Thus, in
particular we get the structure theorems for semiprime

(prime) right Noetherian rings.

ARTINIAN QUOTIENT RINGS

In the previous section we have seen that every
right Noetherian semiprime ring (every right Noetherian
prime ring) is a right order in a semisimple (simple)
Artinian ring. Now we see the more general case, i.e,,
when Q, the quotient ring, is simply an Artinian ring.,
Some times we call Q the total quotient ring as it
consists of all quotients with denominators varying over

the regular elements.

Proposition 1.61.

Let R be a ring which has a right quotient ring Q

which is right Artinian and let A be an ideal of R, then

AQ is an ideal of Q.
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Proposition 1.62.

Let R be a right Noetherian ring with N, the
prime radical and pl’p2""’Pn the minimal prime ideals

of R. Then,
(1) The right regular elements are regular modulo N
(2) CR(N) = cR(pl) FicR(pz)r\ ce ncR(pn)

(3) Let a,c & R with ¢ right regular, then there
exists b& R and dc&CR(N) such that ad=bc.
(4) R has a right Artinian guotient ring if and

only if, cR(o) = Cp(N).

We state a result, a characterisation of Noetherian
rings which are orders in Artinian rings, proved by

P.F. Smith [4].

Proposition 1.63.

A Noetherian ring R is an order in an Artinian

ring if and only if

gp € Spec R | P NCg(0) = ¢} < Minimal (Spec R)

e

where Spec R denotes the collection of all prime ideals of R.



SCOPE OF THE THESIS

In this thesis we define and study the properties of
a particular class 'of Noetherian rings namely, Generalised
Unique Factorisation Rings (GUFR). First of all the class
of GUFRs is a subclass of the class c¢f Noetherian rings
with over rings. A GUFR R is defined as a Noetherian ring
with an over ring S §uch that every non-minimal prime ideal
of R contains a principal ideal (i.e., there exists a p & R

such that pR = Rp ) which is so called S~invertible ideal.

It can be seen that every commutative Noetherian
integral domain is a GUFR. Further it is easy to see that
every ideal of the form pR = Rp in a prime Noetherian ring
is Q-invertible, where Q is the simple Artinian quotient
ring of R, Thus one way to look at GUFRs is as a generalisa-
tion of NUFRs [2]. The class of GUFRs is quite larger than
the class of NUFRs. A natural example of a GUFR which is
not an NUFR is given in the thesis. Many examples of non
commutative Noetherian rings are constructed by twisting
polynomials, using derivations and automorphisms, over well
known Noetherian (Commutative and non-Commutative) rings.
Using this tool of twisting of polynomials it could be seen
that there a<c even some prime Noetherian rings which are not

NUFRs but are GUFRs.
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It is found that the elements 'p' which give rise
to S~invertible ideals in the definition of GUFR are

regular elements.

The fact that every commutative domain.has a field
of fractions and every NUFR has a simple Artinian quotient
ring (by Goldie's theorem) generalises to the result that
every GUFR has a classical ring of quotients which 1is

Artinian.

Just as every principal ideal domain is a UFD, every
principal ideal ring with an Artinian quotient ring is a
GUFR. From this we get a characterisation of commutative

GUFRs.,

The polynomial ring over a GUFR is studied. It could
be proved that R[{x] is a prime GUFR, when R is so. The

general case, when R 1s not prime, is investigated.

Hereditary Noetherian Prime rings (HNP rings) constitute
a rich class of Prime Noetherian rings. We recall that a
ring R is a right hereditary ring if every right ideal 1is
projective., Left hereditary rings are defined analogously.
An HNP ring is a Noetherian prime ring which is both left
and right hereditary. We refer the reader to Chatters [5],
Chatters and Hajarnavis [6], Faith [7] and Eisenbud and

Robson [8] for details.
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Right bounded HNP rings are HNP rings in which
every essential right ideal contains a two sided ideal.
Lenagan [9] has shown that right bounded HNP rings are
rings with enough invertible ideals, i.e, in such rings

every nonzero prime ideal contains invertible ideals.,

Thus, a second way to look at prime GUFRs is through
their connection with prime Noetherian rings with enough
invertible ideals. It can be seen that if a prime Noetherian
ring R with enough invertible ideals is such that all its
invertible ideals are principal, then R is a prime GUFR.

In particular, right bounded HNP rings in which each

invertible ideal is principal, are also prime GUFRs.

After proving all the above mentioned results in
Chapter 2, we move over to Chapter 3 in which we study

different extension rings of GUFRs.

A finite central extension [10 (pp. 343-77)] ring
S of a GUFR R is shown to be a GUFR if the reqular
elements of R are also regular elements in S. As a
consequence the n x n matrix ring Mn(R) over any GUFR,6 R,
is found to be a GUFR. R[x, a, the ring of polynomials,
twisted by an automorphism over a GUFR [11] and R[x,$]
the ring of polynomials, twisted by a derivation ¢ over

a GUFR [12] are investigated.
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The concept of a ring with few zero divisors [13]
in the commutative case is generalised to the non-commutative
case and the idea of weakly invertible elements is introduced.
Some analogous results of quasi-valuation rings [13] in the
non-commutative case have been proved. We conclude Chapter 3

with a discussion of integral closure [14], [15] of a GUFR.

The technique of localisation at a prime ideal in
Commutative Noetherian rings, cannot be brought into non
commutative Noetherian rings as it i1s. This is because
of the generzl behaviour of prime ideals in non-Commutative
rings. This is a major problem (i.e., under what conditions,
can a Noetherian ring be localised at its prime ideals?)
still confronting the study of non-Commutative Noetherian
rings. At present, a theory has emerged as the correct'
one. Jategaonkar [16], Muller [17] etc. are some of the
forerunners in this study. We give a detailed discussion
of this recent development in the localisation at prime
ideals in Noetherian rings in Chapter 4 and identify some
prime ideals and cliques of prime ideals at which the

localisation is possible in GUFRs.

In chapter 5, we discuss some problems that arose in
the thesis whizh are to be investigated. Also, a possible
extension of the concept of GUFR to non-Noetherian case is
given.

The preliminary materials of this chapter have been

taken from [18], [19], [20] and [21].



Chapter 2 .

GENERALISED UNIQUE FACTORISATION RINGS

INTRODUCT ION

In commutative ring theory I. Kaplansky [3]
classified the UDFs as those integral domains in which

every non zero prime 1ideal contains a principal prime

ideal,

The unique factorisation concept, in non-
commutative rings, has been investigated by several
mathematicians in different contexts. A.W. Chatters [1]
was one of the forerunners in this direction. 1In [1]
Chatters called an element p, in a non-commutative
Noetherian domain R, (henceforth called Noetherian
domain) a prime element if pR = Rp and R/pR is a domain.
This is analogous to the definition of a prime element
in a commutative Noetherian integral domain. He defined
a Noetherian Unique Factorisation Domain [NUFD] as a
Noetherian domain in which every non zero element is

of the form Cpy «++ P where p;s are prime elements

n)
and c¢ 1s a regular element in R, Equivalently R is a
NUFD 1if every height 1 prime P of R is of the form pR=Rp.

Examples include all commutative Noetherian UFDs and the
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universal enveloping algebra U(L) of any solvable or
semisimple Lie algebra in the non-commutative case.
Several basic facts about commutative UFDs are
extended to NUFDs by Chatters in [1]. M.P.Gillchrist
and M.K. Smith have proved that NUFDs are often

principal ideal domains (in one of their papers).

In 1986 Chatters and Jordan [2] investigated
unique factorisation in prime Noetherian rings. They
defined a Noetherian wunique factorisationring by analogy
with the characterisation of UFDs by Kaplansky. They
called a prime Noetherian ring a Noetherian unique
factorisation ring (NUFR) if every non zero prime ideal

contains a principal prime ideal.

In this chapter we define generalised unique
factorisation rings and study the properties of these
rings.

BASIC DEFINITION AND EXAMPLES.

Definition 2,1.

Let R be any ring and S an over-ring of R. An

ideal I of R is said to be S-invertible, if the R-bimodule

S contains an R-subbimodule I~% such that II t=1"11-R.
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Definition 2.2.

An element a in a ring R is said to be a normal
element, if aR = Ra = I. In this case we call the

ideal I,a normal ideal.

Definition 2.3.

Let R be a Noetherian ring with an over-ring S.

Then R is called a Generalised Unique factorisaticn ring

(GUFR), if every non-minimal prime ideal of R contains

a normaqu~invertible ideal.

Examples 2.4.

(1) 1In any commutative Noetherian domain D every
nonzero prime ideal contains Q-invertible principal
ideals, where Q is the quotient field of D. Thus every

commutative loetherian integral domain is a GUFR.

(2) A Noetherian unique factorisation ring, as defined
in [2] is a prime Noetherian ring R in which every non
zero prime ideal contains a normal prime ideal. Taking
S = Q(R), the simple Artinian quotient ring of R, it
can be seen that every normal element in R 1is invertible
in S and thus every normal prime ideal is S—-invertible.

So R is a prime GUFR.
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(3) We give an example of a GUFR which is neither a

commutative Noetherian domain nor a NUFR.

x.2T

Let k be a field and T = k[x,...x_}. Let I=
1 n 1 i

([ ar B

i

where k ¢ n. Set R = T/I, then P = ;iR is the unique

1
minimal prime ideal of R, where ii = xi+I for i=1,2,...,k.

[ o B

i

Localise R at P and let the localised ring be Rp. Now
it is easy to see that Rp is an over~ring of R and that

P contains no R,~invertible principal ideals. But every

p
non-minimal prime ideal of R strictly contains P and thus
contains elements of the complement of P, i.e., units
in Rp, which in turn lead to Rp—invertible principal

ideals in non-minimal prime ideal. Thus R is a commutative

GUFR.

Since R can be embedded in Rp, MQ(R) can be embedded
in M2(RP). Because of the order preserving bijection
between the nrime ideals of R and that of M2(R), M2(P)
is the unique minimal prime ideal of M2(R). None of the
elements of M2(P) is invertible in MZ(RP); therefore

MQ(P) contains no MQ(RP)~invertible normal ideals.

Let N be a non-minimal prime ideal of M2(R), then
N #M,(P). Let N = M,(Q), where Q is a prime ideal of R.
Then Q # P and hence there exists at least one element’a’

-in Q such that a € P. Then the scalar matrix X with non zero
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entries 'a’ is in M;(Q) = N. Put I =X My(R) = M,y(R)X,

then I < N. Furthermore X '€ M,(Ry), since X™' is
the scalar matrix,with non zero entries a”t which is

in R and thus I} = x~%

p
in M,(R,) and 117t = 171 = My(R). Therefore M,(R) is

MQ(R) = MQ(R)X—l is contained

p)
a GUFR which is not prime.

Remark 2,5.

(1) The principal ideal theorem for a right Noetherian
ring asserts that the minimal prime ideals over any normal
ideal has height atmost 1. Thus in a GUFR even though
every non-minimal prime ideal contains normal ideals, each
normal ideal is contained in either a minimal prime ideal

or in a prime ideal of height 1.

(2) If R is Noetherian ring satisfying descending
chain condition on prime ideals, then R is a GUFR with
the over ring S if and only if every height 1 prime ideal

of R contains an S-invertible principal ideal.

(3) By Proposition 1.16, if R is a GUFR with over ring S,
then every prime ideal contains a normal S-invertible ideal
if and only if every minimal prime ideal contains a normal

S—invertible ideal.
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Let R be a GUFR with over-ring S. We shall make
use of a certain partial quotient ring of R. Let
C ={é€ R/aR = Ra is S—invertjblg}. We prove C consists

of regular elements and C is a (right and left) Ore set.

QUOTIENT RINGS

Theorem 2.6.

Let R be a GUFR with the over-ring S. Then C

contains only regular elements and C is an Ore set.

Proof
Let a € C, we prove KR(a) = rR(a) = 0. Since

a € C, aR = Ra is S-invertible and so there exists an

R-subbimodule I™% of S such that (ar)I™% = 171(aR) = R.

Thus we can find elements r, € R, s. € 1% s for

n n
i=1,2,...,n, such that iE—l(ari)si =1, i.e aiilrisizl
n
which implies fs(a_zlrisi) = fg(l)=0 and consequently
j=
n
fo(a) ¢ A (a) ¢ lg( a Irgs;) = 1%(1) = 0 . Similarly
: i=1
rR(a) = 0.

For the second part of the theorem, let a,b € C,

then aR=Ra and bR = Rb. Now abR = a(Rb) = Rab. Since
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aR and Rb are S-invertible ideals, there are R-bimodules
17! and 371 such that (arR)I™! = (bR)I™! = R. If we write

-1 -1_~1

K" =J "I 7, it is easy to see that K-l(

abR)=(abR)K 1=R.
Thus a,b € C implies ab € C, i1.e. C is a multiplicative
set. To prove that C i1s an Ore set, let a€ C and r € R,
then ra€ Ra = aR and so ra = ar' for some r' ¢ R. Thus

C satisfies right Ore condition. Similarly C satisfies

left Ore condition.

Theorem 2.7.

Let R be a GUFR with the over-ring S. Let

1 1

T = RC™" = CT"R be the localised ring of R at C. Then

T has atmost a finite number of maximal ideals.,

Proof

Since C is. a right and left Ore set, by proposition

1.42 and theorem 1.45, T = RC™* = ¢™*

1

R exists and the
homomorphism from R to RC ~ (r — rl-l) is a monomorphism,
since C has only regular elements. Thus T is an over-ring

of S.

To prove that T has only finite number of maximal
ideals, we use the correspondence P —> PT which is a
bijection from {P € Spec R/P 0 C = @] to Spec T. Let

Pl,...,Pn be the minimal prime 1ideals of R such that
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P;0 C = ¢ for i = 1,2,...,n. Then P.Ts are prime
ideals of T for i=1,2,...,n. Let J be an ideal of T
such that PiT < J for each i = 1,2,...,n. Then

P.,To R<JOR =1 for 1 < i ¢ n. LetP;',Py',... P
be the minimal primes over I. Then it is obvious

that P £ Pj’ for i =1,2,...,n, j = 1,2,...,m and

thus each Pj‘ contains elements of C. Therefore the

product Pl'Pz'...Pm' also contains elements of C. But
Pl'Pz'...Pm' < I, consequently I contains an element C,

i.e., I contains a unit of T. Also we have 1T = (JAR)T € J.
Hence J contains a unit of T. Thus J =T and we proved

that P, T, P,T,...,P T are maximal ideals of T.
2 n

1

Further, if M is any maximal ideal, then M = PiT
for some i = 1,2,...,n. For, if M # P,T for all
i=1,2,...,n. Then MNOR is not contained in'Pi for any
i=1,2,...,n. Thus, as above, it can be seen that
(MNR)NC # @, which implies that M contains a unit of T,

contradicting the maximality of M.This completes the proof.

In an NUFR, the minimal prime ideal not containing
a normal Q(R)-invertible ideal is 0, and so, OT = O is

a maximal icaeal of T. Thus we obtain,
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Corollary 2.8.

If R is an NUFR, then T is a simple ring.

Artinian rings are generally regarded as generalisa-
tion of semisimple Artinian rings. Goldie's theorem gives
a characterisation of those rings which are orders in
semisimple Artinian rings. This result naturally gives
rise to the question: Which rings can be orders in Artinian
rings?. The importance of Artinian quotient rings is that
they will be useful in the study of localisation at a prime
ideal in Noetherian rings and in the study of finitely
denerated torsion free modules over Noetherian rings. It
is seen that there are Noetherian rings which.lack Artinian
guotient rings. However, if R is a GUFR, R always have

an Artinian quotient ring. We prove this next.

Theorem 2.9.

Every GUFR has an Artinian quotient ring.

Proof
From the definition of a GUFR, every non-minimal prime
ideal contains normal invertible ideals. The generatdrs of
these normal 1nvertible ideals are in CR(O) (the set of
regular elements of R), by theorem 2.6. Now the theorem

follows from proposition 1,63, which states that R is a
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Noetherian order in an Artinian ring if and only if

§>e Spec R/P N C,(0) = @} < Min Spec R.

Remark 2,10.

Thus, even though in the definition of GUFR, we
are not assuming that it has an Artinian quotient ring,
it turns out that GUFRs always have Artinian quotient
rings. It is also obvious that the Artinian quotient
‘Ting is an over-ring of the GUFR, and the so called
S—-invertible ideals are invertible with respect to this
Artinian quotient ring also. Hence the terminologies,
over-ring S and S-invertible ideals, can be avoided

in the definition of a GUFR.

Definition 2.11.

Let X be a right dencminator set in a ring R, If
I is a right ideal of RX_l, the set {ae R/ al"te I}

is called the contraction of I to R and & is denoted by IS.
1

If J is a right ideal of R, then {cx—l/c € I,x € X} in RX

is called the extension of J in RX™% and is denoted py J€.

Proposition 2.12.

Let X be a right denominator set in a right Noetherian

ring. Then
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(1) RX" is a right Noetherian ring.

(2) For any ideal I of RX_l, 1 is an ideal of R.
(3) For any ideal I of R, IS is an ideal of RX Y.

(4) For any ideal I of RX™%, I = (I1%)€.

(5) An ideal I of RX™% is prime (semiprime) if
and orly if I® is prime (semiprime) in R.

(6) Let P be a prime (semiprime) ideal of R.
Then P = QC for some prime (scemiprime) ideal
if and only if X ¢ C(P).

Proof:

As in [19, theorem 9.20].

Remark 2,13.

We look at T, the partial quotient ring of R at C.
Since C ¢ cR(o),.it is obvious that T ¢ Q(R), the Artinian
quotient ring of R formed by localising R at CR(O)o Now

T has the following properties.

Theorem 2.15.

Let R be a GUFR and T be the partial quotient ring

of R at C, Then

(1) T is a GUFR
(2) T has an Artinian quotient ring

(3) ¢(T) = {te T/ +T = Tt is Q(R)-invertible}
has only units of T.
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Proof

Since R is a Noetherian ring and C is a right
and left Ore set, C is a right and left denominator
set by proposition 1.42. Now T = RC™} = c™!R is a

Noetherian ring by propositiocn 2.12(1).

By theorem 2.7, T has only a finite number of
maximal ideals. We prove that they are the minimal
prime ideals of T. Let M be a maximal ideal of T. If
possible assume P is a prime ideal of T strictly contained
in M. Then P® is strictly contained in M®, (otherwise
by (4) of proposition 2.12,P = (PC)e = (Mc)e= M ). But
M is the extension, in T, of some minimal prime ideal
Py (say) of R. Since R has an Artinian quotient ring

n

CR(O) = 0 CR(Pi),by proposition 1.62, where Pl,PQ,...,P

i=1 n

are the minimal prime ideals of R. Thus we have
Cg;CR(O) < CR(Pl) and so, by proposition 2.12(B), there

exists a prime ideal Q of T such that P, = Q. Therefore

e e
M=P % =(Q% , i.e., M= (M) = (Q°)°= Q. Consequently

+—

= Pl. Also P® is a prime ideal of R

by proposition 2.12 (5). This violates the minimality of Pl'

we have P¢ < M® = Q

Thus M does not contain any prime ideal properly. Hence
the maximal ideals of T are the minimal prime ideals which
implies that T has no non minimal prime ideals and thus

T is obviously a GUFR.
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(2) Follows immediately from theorem 2.9.

(3) Follows from [1, theorem 2.7]. Still for completion
we sketch it. Let te€ C(T) < T. Then t = ac™ Y, for
some a € R and ¢ € C. Thus a = tc, where ¢ is a unit

of To Since ¢ is a unit of T, we have T = ¢T = Tc and
so ¢c € C(T), so that a € C(T). Now a € C follows from
the fact that a € R. Thus @ is also a unit in T.

Consequently t = ac™! is a unit in T.

Definition 2.15.

An ideal P in a ring R is said to be right

localisable, if C(P) = {xe R/x+P is regular in R/P}

is a right reversible set in R.

Definition 2,16.

A ring R is said to have a right quotient ring,
if CH(O) is a right reversible set. R is said to have

gquotient ring, if CR(O) is a right and left reversible set.

For instance, every GUFR has a quotient ring.

Lemma 2.17.

Let R be a Noetherien ring with a quotient ring Q.
Let P = pR = Rp be a normal prime ideal of R with p

regular. Then P is localisable,
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In the proof of lemma 2.17 we have to make use
of the well known AR property and some other localisation
techniques which we have not yet discussed in this thesis.
When we discuss the localisation at a prime ideal in

chapter 4, we will give a proof of this lemma.

Lemma 2.18.

Let R be a GUFR and P = pR = Rp be a non-minimal

prime ideal of R. Then p is reqular and P is localisable.

Proof

Since P is a non minimal prime ideal of R, from the
definition of GUFR and by'theoramn 2.6, P contains a regular
normal element e(say). Therefore e = pPr; = Iyp for some
ry»Ip € R. Now the regularity of p follows from the
regularity of e. The second part of the lemma follows

from lemma 2,17 and from theorem 2.9.

Lemma 2.19.

Let R be a GUFR and P be minimal prime ideal of R.

Then P cannot contain any normal invertible ideal.

Proof
Suppose if possible that P contains a normal

invertible ideal aR = Ra (say). Then a € CR(O) by
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theorem 2.6, Since R has an Artinian quotient ring,

n .
0 CR(Pi), where Py,P,,...,P are the distinct
i=1 i

minimal prime ideals of R, so that P

Cpl0) =

I

P.l for some 1,

1 <i<€n. Thus a€ CR(O) < CR(P.) CR(P) contradicting

the fact that aR = Ra € P.

Remark 2.20.

We consider a special case of GUFRs, i.,e. GUFRs
with all height 1 primes are of the form pR = Rp. Then,
by lemma 2.18 each p 1s a regular element in R and so
each pR = Rp is invertible (in Q(R)) and thus p € C.
Further it can be seen that,each ¢ € C can be written as

Upy eee Ppo for scme unit u in R and for some positive
integer n, and p;s are such that piR = Rpi is a height 1
prime ideal of R for i =1,2,...,n. Thus the ring T,
localised ring of R at C, coincides with the partial
quotient ring of R with respect to the multiplicative
set generated by the elements p of R such that pR = Rp

is a height 1 prime.

Theorem 2.21,

Let R be a GUFR and every height one prime ideal
is of the form pR = Rp for some p € R. Then the following

are equivalent.
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(1) CR(P) < CR(O) for ecach height one prime ideal P of R.
(2) R = Tf](f)Rp), where T is the partial quotient ring
of R at C and NR, is the intersection of all

P
localis=d rings of R at its height one primes.

Proof

By lemma 2.18 each height 1 prime ideal 1s localisable

and so Rp exists for each height 1 prime P of R.

Assume 1 . Then every element in CR(P) is.a regular

element and so the homomorphism (r —— rl”l) from R to R

P

is a monomorphism and hence R ¢ RP for each height one prime.

Also Rp < Q(R) for each height one prime. Thus R < Tn (N Rp).

Now let g€ 'Tfl(f\RP), then q = r(upl,.. p )~l€ T, where u

n
is a unit of R and piR = Rpi,for i=1,2,...,n,is a height
one prime,by remark 2.20. Since g €r1Rp, q € Rp for each

i
i=1,2,...,n, where Pis are the height one primes piR=Rpi

for i = 1,2,...,n"and so there are s; € R and c; € C(Pi)

for i=1,2,...,n such that g = sici"l for each i=1,2,...,n.

Therefore
-1
)

q = r(upl...pn = Sici—l for i = 1,2,...,n

i.e., qupy...p = r€ R.
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We have %16 CR(pn) and upy ...;%16 R ,so there exists
t € CR(pn) and s € R such that up; --. p,t = c_ s, since

CR(Pn) is a right Ore set. Then

i
ge)

= — 1 c =
¢, § = up; ... (pnt) = up; ... pn_l(t pn)C Rp = PR

3 —_ \j
where t' is such that pnt = t'p Now c,€ CR(Pn) and

n.
S € Pn implies that s € Pn = an = an and so

s =p,r = rl'pn for some rl,rl'e R. Thus rt = qup; e
p t =aqc.s =qc ry'p € P . Again t € CR(Pn) implies

T € Pn and so r = P Ty = r2'pn for some r2,r2' € R.

)"l

Therefore g = r(upl...pn

= ' p (p

-1 -1 =1y _
r2'(pn~l cee Py U ) = IQ(Upl eer Py

Repeating the argument n-l1 times, we gét g = mu"l where

m € R and u is a unit R. Hence qg € R and it follows that
TN (N RP) $ R. This completes the proof of 1 implies ‘2
Conversely assume 2 . Then R ¢ Rp for each height one
prime P of R and so the homomorphism f(r — rl-l) from

R —— Rp is one-one (remark 1.44). Let d € CR(P) and
assume sd = O for some O # s € R, then sdd™! = s171 = 0.
Thus s € kerf = O. This contradiction enables us to
conclude that d is left regular. Now d is right reqular
follows from the fact that R has an Artinian quotient

ring and so every left regular element of R is regular in R,

(Proposition 1.62).
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Remark 2.22,

Prime GUFRs are the prime Noetherian rings in
which every non zero (non minimal) prime ideal contains
a normal Q(R)- invertible ideal, where Q(R) is the
simple Artinian quotient ring of R. Thus every NUFR is
a prime GUFR. Examples of prime GUFRs which are not
NUFRs are given in Chapter 3. As 1in corollary 2.8, it
can be seen that, if R is a prime GUFR, T 1s a simple

Noetherian ring.

Noetherian rings in which every prime ideal contains
a normal invertible ideal are a generalisation of GUFRs.
But we show that there is nothing to be gained by this

extension as such rings turn out to be prime GUFRs.

Theorem 2.23.

Let R be a GUFR in which every prime ideal contains

normal invertible ideals. Then R is a prime GUFR.

Proof
First we prove, in GUFRs with every prime ideal
contains normal invertible ideals, every non zero ideal

contains a normal invertible ideal.



Let I be a non zero ideal of R. Let Pl,P2 oo Pm
be the minimal primes over I (remark 1.18). Then the
product PlP2 oee Pm < I. By hypothesis, for 1 ¢ 1 {(m,
there exists ai€ R such that aiR = Ra.l < Pi and each

aiR = Rai, for 1 < i < m, is invertible. Then

8185 o amR = Ra,...a < Py ... Pm < I and a8y .- amR is

invertible.

Now let I and J be two non zero ideals of R. It
follows by the above paragraph that there exists a € 1
and b € J such that aR=Ra and bR=Rb and they are invertible.
Thus, by lemma 2.6, both a and b are regular. Consequently
O £ abe 1J and we have I1J # 0. Therefore the product of

two nonzero ideals of R is non zero, which implies R is prime.

A

Definition 2.24.

A ring R is said to be a sub direct product of the

rings {Si/i € i} , 1f there is a monomorphism

K: R — S = TS, (the direct product of Sis) such
i€7

that m. oK is surjective for all i, where mi: § — S, is

the natural projection.

Proposition 2.25.

R is a sub direct product of S., i€ I)if and only

L

if 5, is isomorphic to R/Ki, where K ;s are ideals of R

with N K. = 0.
j e 1 *
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Proof:

As in [22, Proposition 2.10].

Theorem 2.26.

Every semiprime GUFR 1s a sub direct product of

prime GUFRs.

Proof:

Let P . Pn be the minimal prime ideals of R.

1

Then igl Pi = 0, since R 1is semi prime. Thus, if we
show that R/Pi, for 1 ¢ i ¢ n, is a prime GUFR, then

the theorem follows from proposition 2.25. It is clear
that R/Pi is a prime Noetherian ring, for 1 < i < n.

Let P/Pi be a non zero prime ideal of R/Pi. Then P is a
non-minimal prime ideal of R with Pi < P, So there
exists an element a € P such that aR=Ra is invertible.

By lemma 2.19, a & P, and thus a is a non zero element

of R/Pi with E(R/P.l) = (R/P.l)E, where a = a+P,. Also
E(R/pi) = (R/Pi)é' is Q(R/Pi)-—invertible, where Q(R/Pi)

is the simple Artinian quotient ring of R/Pi' Now R/Pi

is a prime GUFR follows from the fact that a € P/Pi.

PRINCIPAL IDEAL RINGS

It is well known that every commutative principal
ideal domain is a UFD. We prove an analogous result for

GUFRs.



Recall that a right (left) regular element in a

ring R is any element x such that xy = O implies y = O

(yx = O implies y = O).

Lemma 2.,27.

Let R be a Noetherian ring in which every left
regular element is regular. Suppose aR = Rb for some

a € R and b regular in R. Then aR = Ra and a is regular.

Proof:

Since aR = Rb, we have a = ub and b = av, for some
u and v in k. Thus bv = av2 € aR = Rb and
b = av = ubv = u(bv) = u(av2) € u(aR) = uRb, therefore
there exists an element p in R such that b = upb,
i.e. (l-up)b = O, By regularity of b, up = 1, so that
u is left reqular and from hypothesis u is regular. Now
using the regularity of u and the eguation up = 1, it

can be seen that up = pu = 1., Consequently
aR = Rb = Rpub = (Rp)ub = Rub = Ra

Now the regularity of a follows from the regularity

of b and the fact that Ra = Rb.



54

Theorem 2.28.

Let R be a Noetherian ring in which the principal
left ideals generated by regular elements are also
principal right ideals. Then R is a GUFR if and only

if R has an Artinian quotient ring.

Proof:
Assume that R has an Artinian quotient ring Q(R).

Let P be a non-minimal prime ideal of R, Then,P()CR(O)£¢,

by proposition 1.63. Let b € P/7CR(O), then by hypothesis

there exists an element a € R such that Rb = aR. Since

R has an Artinian quotient ring, every left regular element

is regular (Proposition 1.62). Hence, by lemma Z.27, we

have a € CR(O) and aR = Ra. Since a le Q(R), aR = Ra

is Q(R)-invertible., Also P contains aR = Ra. This

completes the proof of thesufficient part.

The necessary. part of the theorem follows from

theorem 2..9.

Corollary 2.29.

Suppose R is a Noetherian ring in which every regular
element is normal. Then R is a GUFR if and only if R has

an Artinian quotient ring.
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The next theorem characterises the GUFRs in

commutative case.

Theorem 2,30.

If R is a commutative Noetherian ring, then R is

a GUFR if and only if R has an Artinian quotient ring.

Proof:

Follows from theorem 2.28, as, in every commutative

ring the principal left ideals are two sided ideals.

POLYNOMIAL RINGS

Remark 2.31.

It is obvious that when P is a prime ideal of R[x],
Pa R is a prime ideal of R. If P is a prime ideal of R,

. n . a n
the map aj + a;x + ... + a x — (aO+P)+(al+P)n A n+P)x

is clearly a surjective homomorphism from R[x] to (R/P)[x] with

kernel PR[x]. Consequently ngx is isomorphic to (R/P)[x],

and thus (R/P) is isomorphic to a subring R' of (R{x]/PR[x]).
First we consider the case when R is a prime GUFR.

By a central element in a ring R, we mean any element x in R

such that xr = rx for all r € R.



Lemma 2,32.

Let R be a prime GUFR and T be the partial quotient
ring of R at C. Then every non zero prime ideal of T[x]

can be generated by a central element in T[x].

Proof:

Although the proof is similar to the proof given
in {2], we give it. Let P be a non zero prime idcal of
T[x]. Since R is prime GUFR, as in corollary 2.8, it can
be seen that T is a simple Noetherian ring. Let f be a non-
zero polynomial of P of least degree, deg f = n (say).
The subset of T consists of the leadiné coefficients of
the polynomials of P of degree n, together with zero,
is a non zero ideal of T and this equal to T, since T
is simple. Thus 1 is an element of that ideal and hence
without loss of generality we can assume that f is a monic
polynomial. Let g € P, using division algorithm g = fqg+r,
where q and 1 are in T[x] and deg r < deg f or r = O,
but r = g.fq € P and f is a polynomial of least degree
in P, which implies r = O. Hence g = fq € fT[x]. i.e.,
P ¢ fT(x] and so P = fT[x]. Furthermore x.f = f.x and sf-fs€ P
for all s € T, and its degree < degree f. Thus sf-fs =0
and we get sf = fs for sll s € T and consequently

fT{x] = T[x]f.
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Theorem 2.33.

Let R be a prime GUFR, then so is R[x].
Proof:

Since R is a prime Noetherian ring, so is R[x].
Let Q(R[x]) be the simple Artinian quotient ring of R[x].

Let P be a non zero prime ideal of R{x]. Then

Case-1

PAaR # 0. Since PAR is a non zero prime ideal
of R and R is a prime GUFR, PAR contains an element 'a’
such that aR = Ra. So aR[x] = R[x] a is contained in P

and is Q(R[x])- invertible.

Case-11
PnR = 0. Then PT{x] # T[x], for, if PT[x] = T[x],
then for any a € C, a = al ~ = % € T{x] = PT[x], which

implies a € P and thus O # a€ PN R = 0. But PT[x] is a
proper prime ideal of T[x] and so, by lemma 2,32,

fT{x] = T[{x]f = PT[x], for some f € T[x]. Therefore,

by using common multiple property of C, f = ga for

some a € C and g€ P. So we have g = fa and

gR = faR = fRa = Rfa = Rg. This together with g.x = x.g
implies that gR[x] = R[{x]g and that gR[x] = R[x]g is
contained P. Since R{x] is prime Noetherian, g is a
regular element of R[x] and so gR{x] is Q(R[{x])-invertible.

Thus P contains a normal invertible ideal.
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Therefore, in both cases we have proved that P
contains a normal invertible ideal and so R[x] is a prime

GUER.

Remark 2.34.

Let P be a prime ideal of R. Then PR{x] is a prime

ideal of R[x]. We write
Ep = {fG R[x}/kf+PR[x])(R[x]/PR[x]) = (R[x]/PR[x])(f+PR[x]8
Since R[x]/PR[x] is prime,

(£+PR[x]) (R{x]/PR[x]) = (R[x]/PR{x]) (f+PR[x]) implies
that f+PR[x] is regular in R[x]/PR[x] and that

f € CR[x] (PR[x]). Therefore Eps; CR[X](PR[X]) for each

prime ideal P of R. Also we write

c' = {fc-: R[x] /fR[x] - R[x]f}_».

If RWis a GUFR, clearly C= C'.

Theorem 2.35.

t
Let R ve a GUFR and suppose Ej < CR[x](O) n c,

for every minimal prime ideal P of R. Then R[x] is a GUFR.

Proof:
Since R is a GUFR, R has an Artinian quotient ring
and so R[x] has an Artinian quotient ring [23, theorem 3.6].

We denote the quotient ring of R[x] by Q(R[x]).
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Let P, be a non-minimal prime ideal of R[x].

1
Then,

Case-1.

Plf\ R is a non minimal prime ideal of R. Then,
from the definition of GUEFR, pln R contains an element'i
such that aR = Ra ¢ Plﬂ R and aR = Ra 1is invertibleo
Hence aR[x] = R[x]a ¢ P, and it is easy to see that

aR[x] = R[x]Ja is Q(R[x])-invertible.

Case-11.

P,N R is a minimal prime ideal of R. Let P = Plﬂ R.

1
Then PR{x] is a minimal prime ideal of R[x] and so

PR[x] # P, i.e., PR[x] ¢ P By lemma 2.19, P contains

1°
no normal invertible ideals and as in the proof of theorem 2.26

(R/P) is a prime GUFR.

Since (X/P) is a prime GUFR, (R/P)[x] is a prime
GUFR by theorem 2.33 and hence so is (R[x]/PR[x]). Since
PR[x] < P, there is a g € P, such that
(g+#PR[x]) (R[x]/PR[x]) = (R[x]/PR[x]) (g+PR[x]) is contained
in P, (where P,' is the copy of P, in R[x]}/PR{x]), i.e.,
g€ Ep < CR[X](O)O C' and thus g is regular in R[x] and
gR{x] = R[x]g. Consequently gR[x] = R[x]g is contained

in P, and is Q(R[x])-invertible.

Thus in both cases P, contains Q(R[x])=-invertible,

normal ideals. Hence R[x] is a GUFR.
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RINGS «ITH LENOUGH INVERTIBLE IDEALS

ile recall that a ring R is said to be right (left)
hereditary, if all of its right (left) ideals are
projective. If R is Noetherian, then R is left hereditary
if and only if R is right hereditary [6, corollary 8.18]

and in this case R is called hereditary.

Definition 2.306.

If every essential right ideal of a ring R contains

a non zero ideal, then R 1is said to be right bounded. By

symmetry we define left bounded rings and R is said to

be bounded it it is both left and right bounded.

Definition 2.37.

If every non zero ideal of a ring R contains an

invertible ideal, then R is said to be a ring with enough

invertible ideals.,

We state some results that are given in [8].

Lemma 2.38.

If R is a right bounded hereditary Noetherian prime

Ring, then R has enough invertible ideals.

Lemma 2.39.

If R has enough invertible ideals, then R 1s bounded

or premitive,
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Lemma 2.40.

I1f R is a prime GUFR, then R is a ring with enough

invertible ideals.

Proof:
Since R is a prime GUFR, every non-zero prime ideal
contains a normal invertible ideal. Now, if I is any non
zero prime ideal of R and Pl’P2 .o Pn are the prime
ideals minimal over I, the product Pl ...'Pn < I and 1is
obvious that PlP2 .o Pn contains an invertible ideal

as each P:.L contains normal invertible ideal for 1 < i < n.

Lemmas 2,39 and 2.40 together gives

Theorem 2.41.

If R is a prime GUFR, then R is either bounded or

primitive.

Definition 2.42.

If an ideal I of a ring R contains a regular element,

then I is called an integral ideal.

GUFRs can be characterised using their integral

ideals.
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Theorem 2.42.

I.Let R be a Noetherian ring with an Artinian
quotient ring., Then R is a GUFR if and only if every

integral ideal contains a normal invertible ideal.

Proof

Assume that R is a GUFR. Let I be an integral
ideal and Pl,P2 N Pn be the prime ideals minimal over I.
Suppose if possible that Pi is minimal for some i. Since
I is an integral ideal, there is an element x ¢ I(1CR(O)
and x € I implies x € Pi. Let Ql’Q2 . v Qm be the minimal
m

primes of R. Then CR(O) = jg& CR(Qj), since R has an
Artinian quctient ring. Now the minimality of Pi implies

that Pi = Qj for some j, 1 ¢ j £ m. Thus

X € CR(O) =

n>s

CR(Q.). Consequently x € CR(Qj) and

j=1 J

x € Pi = Qja From this contradiction, we conclude that

each Pi is non-minimal for 1 € 1 ¢ n. Thus each Pi, for

1 ¢ 1< n, contains a normal invertible ideal and now

the proof follows as in the proof of lemma 2.,40.

Conversely, since R has an Artinian quotient ring,
every non minimal prime ideal of R countains a reqgular
element, i.e., each non-minimal prime ideal is an integral
ideal. Thus each of them contains a normel invertible

ideal by aszumption. This completes the proof.
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Theorem 2.44.

If R is a right bounded hereditary Noetherian
prime ring in which every invertible ideal is normal.

Then R is a prime GUFR.

Proof:

Since every invertible ideal 1s normal, the

theorem follows from lemma 2,38,

COMPLETELY FAITHFUL MODULES

Definition 2.45.

Let R be a ring and M be a right R-module. Then

(1) Unfaithful if it is not faithful,

(2) Completely faithful if A/B is faithful
for all submodules A > B of M.

(3) Locally unfaithful provided every finitely
generated submodule is unfaithful.

(4) Locally Artinian provided every finitely

generated submodule is Artinian.

From theorem 2.40 and the results [23, lemma 2.4,

theorem 2.6],we get the following theorems for a prime GUFR.
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Theorem 2.46.

Let R be a prime GUFR and M be a cyclic R-module,

If N is a submodule of M such that

(1) N is completely faithful and M/N unfaithful, or

(2) N is unfaithful and M/N completely faithful,
Then N is a direct summand of M,

Proof:
As in [ 24, lemma 2.3].

Theorem 2.47.

Let R be a prime GUFR and A,B,C right R-modules,

Then the exact sequence O ? A > B > C —> O

splits provided any one of the following statements holds.

(1) A is completely faithful and C is locally
unfalthful,

(2) A is unfaithful and C is completely faithful,

(3) A is locally unfaithful and C is completely
faithful,

Proof:

As in [24, theorem 2.4].

Remark 2.48.

For any mocule M, it can be proved, using Zorn's



lemma, thet there existc a unique maximal completely

faithful submodule C(M), which contains every completely

faithful submodule of M. [24, lemma 2,2].

Theorem 2.49.

Let R be a prime GUFR and let M be a locally
Artinian right R-module. Then there exists a locally

unfaithful submodule N of M such that M = C(M) @ N.

Proof

As in [24, theorem 2.6].



Chapter-3

EXTENSIONS AND RINGS WITH MANY NORMAL ELEMENTS

INTRODUCT ION

In this chapter, we discuss rings which are extensions
of GUFRs namely the finite centralising extensions, Ore
extension and the ring of polynomials twisted by a derivation.
Also we introduce the concept of rings with many normal

elements.

We show that any finite centralising extension of a
GUFR is a GUFR. As a corollary of this result, Mn(R), the
n x n matrix ring, over a GUFR R is a GUFR. A sufficient
condition for the Ore extension, over a Noetherian ring
with Artinian quotient ring, to be a GUFR is obtained. The

Noetherian rings with Artinian quotient rings such that

the Ore extensions over them are prime GUFRs are characterised.
The skew polynomial rings over some special Noetherian rings

are investigated.

We extend the concept of rings with few zero divisors{13]
in the commutative case to rings with many normal elements
in the non-commutative case. By introducing the concept of
weakly invertible elements, we study some properties of

Noetherian rings with many normal elements. Also, we prove

some results.on the integral closure of Noetherian rings, in

this chapter.
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CENTRALISING EXTENGSIONS

Definition 3.1.

Let R and S be rings with R ¢ S. If the R~module

S; has a finite set of generators .{zi/izl,Q,...,n]

each of which normalises (i.e., z;R = Rz, for each i,

1 <i<n). Then S is called a finite normalising

extension of R. If z,r = rzi,for all i=1,2,...,n

and for all r € R; then R is called a finite centralising

extension of R.

Definition 3.2.

Let S be a finite centralising extension of R.
If, I € Spec S has the property that (JNnR)/(INR) is
essential as an ideal of R/(INR) for each ideal J of S

with I < J, then we say that S satisfies essentiality at I.

If this holds for every 1 € Spec S, then we say that 8

satisfies essentiality.

Lemma 3.3.

Let S be a finite normalising extension of R and
P € Spec S. Then PAR is a semiprime ideal of R. However,

if S is a finite centralising extension then P N R is prime.

Proof:

As in [10, theorem 10.2.4.]
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Lemma 3.4.

If S is a finite normalising extension of R and

S is right Noetherian, then S satisfies essentiality.

Proof:

As in [10, proposition 10.2.12].

Theorem 3.5,

Let R be a GUFR and S be a finite centralising
extension of R, Also suppose that C ¢ CS(O), where
C = {a € R/aR=Ra 1is invertible} . Then S is a GUFR.

Proof:

Since S is a finitely generated left and right
R module, S is Noetherian. Now we prove C is an (left
and right) Ore set in S. Let a € C and s € S, then
zn)

3.5 = a(zlrl + 2Ty + eee + 2 rn) = a(rlzl+ eos + T

n n

Il

' a ' a e o o ' = l ‘T o O ) ' . : l »
r;'zja + ry'zya+ + 1,'z,2 (rl z)+ +I zn)a s'a

Here we are assuming that {zb22,.925} is a centralising
set of generators of S over R and we used the property
that for each r € R ar=r'a; for some r'€ R. Thus for
any s € S5, there exists s' € S such that as = s'a, i.e.
aS ¢ Sa. Similarly we have Sa < aS, it follows that € 1is

an Ore set as in theorem 2.6.
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Since C ¢ CS(O), T =sc™t = ¢™1s is an over-ring

of S and since every centralising extension is a
normalising extension, by lemma 3.4, S satisfies
essentiality. Let P be a non minimal prime ideal of S.
Then, by lemma 3.3, PA R is a prime ideal of R and it

is a non minimal prime ideal of R. For, if POR is
minimal, then Pon R = PA R for any minimal prime ideal
PO of S with Po <P (Po necessarily exists as P is non-
minimal), which is a violation to the essentiality of S
(because under these circumstances (Pn R)/(Poﬂ R) should
be essential in R/PJ\ R and so (Pn R)/(Poﬁ R) should be
non zero in R/Pon R). Consequently there exists an element
O # a € C such that aR=Ra ¢ PN R and hence aS=Sa ¢ P is

T-invertible., This completes the proof.

Corollary 3.6.

If R is a GUFR, then so is Mn(R).

Proof:

Clearly we can identify R with the subring of scalar

matrices, in Mn(R). Then Mn(R) is a finite centralising

extension of R, with generators, the matrix units,

c../ i=1,2,...,n. It is also easy to see that every
ij’ .
j=1,2,...,n.
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regular element of R is regular in Mn(R). Now the

corollary follows from theorem 3.5.

TWISTED POLYNOMIALS

In this section we study some aspects of the
relationship between a ring R, where R is a Noetherian
ring an automorphism a, and the Ore extension ring
R{x,x] = S. The elements of S are polynomials in x
with coefficients from R written on the left of x.

We define xr = a(r)x for allr € R. A typical element
n

of S has the form, f(x) = ajta;x+ ... +ax =a_ +

n

xa—l(al) + ee. + X a—l(an), where n » O and a. € R.

The automorphism a on R can be extended to S by setting

a(x) = x so that

a(f(x)) = a(ao) + a(al)x + e.e + oc(an)xn

Definition 3.7

An a-ideal I of a ring R with an automorphism «

is any ideal I of R with a(I) ¢ I. An a-prime ideal of R

is an a-ideal P such that if X and Y are two a-ideals
with XY < P, then either X < P or¥Y < P. R is said to be

an a-prime ring, if O is an a—-prime ideal.
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Remark 3.8.

It is easy to see that, if R is a Noetherian ring
and I an a-ideal, then a(I) = I and if R is a prime
ring, then R is an a-prime ring. Further, if S = R[x,a]

is an Ore ex*ension of R, then xS = Sx and x € CS(O).

We need some lemmas from [11].

Lemma 3.9.

Let R be a Noetherian ring and S = R[x,a] be an

Ore extension of R. Then

(1) S is Noetherian

(2) An a-prime ideal P of S (or R) is a semiprime

ideal.

(3) If A is an a-ideal of S, S/(ANR)S is isomorphic
to (R/{(AOR)) [x,a].

Lemma 3.10.

Let P be a prime ideal of S. Then either

(1) x€P and P = PAR + xS, or
(2) x € CS(P) and a(P) = P.
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Lemma 3.1l1,

Let P be a prime ideal of S, such that a(P) = P;

then PN R is a prime ideal of R and a(PNR) = P NR.

Lemma 3.12.

Let P be a prime ideal of S with a(P) P; then

(PAR)S is a prime ideal of S.

Theorem 3,13.

Let R be a Noetherian ring with an Artinian quotient
ring and let a be an automorphism on R. If every non zero
a-prime ideal of R contains a normal invertible a-ideal;

then S = R[x,r] is a GUFR.

Proof:

By lemma 3.9, S is a Noetherian ring. Suppose that
every non zero a-prime ideal of R contains a normal
invertible a-ideal., We shall show that S has an Artinian
quotient ring Q(S) and every non-minimal prime ideal of S

)
contains a normal invertible ideal.

Assume that S is not prime. Let P be a non-minimal
prime ideal of S. If x € P, then x € CS(O) by remark 3.8.

If x ¢ P, then x € CS(P) and «(P) = P by lemma 3,10.
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In this case PN R is an a-prime ideal by lemma 3.11

and Pn R # 0. For, if PAR = 0, then O is an a-prime
ideal of R again by lemma 3.1l, and hence oS = 0O 1is a
prime ideal of S by lemma 3.12, which is not possible

as S is not prime.

Since PO R is a non zero a-prime ideal of R, by
assumption, it contains a normal invertible a-ideal
aR = Ra, it follows that a € CR(O). Now we prove that
a € cs(o). . Let f(x) € S. Then

n . .
f(x) = a, t apx + ...+ axy, where n is a non-negative

integer and I for 1 < i< n, are in R. Consider

f(x).a = (a_ + a

n
X 4+ 00 + @a_X )a
o 1 n )

n

a
ao + al

a(a)x + ... + anan(a)x

and so if f(x)a = 0, then a; =0 for all i=1,2,...,n,
as « is an automorphism. i.e. f(x) = O. Similarly, if
a.g(x) =0 for some g(x) € S, we get g(x) = O and thus
a is regular in S. Thus in both cases (i.e., x € P and
x € P) we proved that P contains a regular element.

Therefore, every non-minimal prime ideal of S contains
a regular element and hence S has an Artinian quotient

ring Q(S) (say) by proposition 1.63.
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Now, if x € P, then xS = Sx 1s contained in P
and xS = Sx is Q(S)-invertible. Otherwise, we prove

that aS = Sa is Q(S)-invertible, where a is as in the

above paragraph. Let g€ S and assume g=co+clx+;..+cmxm
where c¢; € R, for 0 ¢ i ¢ n. Since a(aR) = aR, it
follows that a(a) = au, for some unit u in R. Consider
gea = (c_ + ¢, x + + cxMa = ca + c,xa + +c_xMa
L ] O l . 8 0 m o l e e o m
=ca+ c,ala)x + + c ak(a)xk+ c_am(a)x™
O l . e k . o » m
= c.a + c,ad,x + c,ad xk + c_ad_x™
o} 1771 °tt Yk k *tt tm Tm
i-1
[where d.l = ) aj(u), where m stands for product]
j=0
= ac ! + ac,'d,x + + ac,'d xk + ac_'d_x™
O' '1. l e @ o 'k km . o @ m m
= a(c] 4 cyptdyx 4 ...+ et odox )

= ag' where g' = ¢! + c ‘dlx + .. + cm'dm'x"1€ S

1

Thus Sa ¢ aS and similarly aS ¢ Sa. Also a € P and the

proof is complete as aS = Sa is Q(S)-invertible (since

a € cS(o)).

Next assume that S is prime. Then S has a simple
Artinian quotient ring Q(S) by Goldie's theorem. 1In this
case, the proof is similar to the proof given in

[2, theorem 4.1], we sketch it,
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Let P be a non-minimal prime ideal of S. If x¢€P,
then xS = Sx < P and is Q(S)-invertible., Otherwise,
consider E = {a € R/aR = Ra is an invertible a-ideal of ﬁ}.
It is easy to see that E is an Ore set in R. Let T be the
localised ring of R at E. Then a can be extended to an
Y

automorphism B on T such that B(ac ) = oc(a)c—l for all

ac™l € T. Thus T* = T(x,B] is an Ore extension of T and

T is B-simple, i.e., T and O are the only Pf-ideals of T.

As in the proof of lemma 2.32, it can be seen
that for any prime ideal P of T* with x € P, there exists

a central element f € T¥* such that P = fT* = T¥*f,

If POR # O, the proof is as in the general case.
If PR =0, x € P, it can be seen that x § PT* and PT*
is a non zero prime ideal of T* and thus PT* = fT* = T*f
for some f € T*, by the above observation. It is obvious
that xf = fx and Rf = fR. By the common mﬁltiple property
of £, we have f = gd~% where g€ P and d € E. Using the
fact a{d) = du (since a(dR) = dR) for some unit u in R

and dR = Rd, we get

Rg = Rfd = fRd = fdR = gR and

xg = xfd = fxd = fa{d)x = fdux = fdxu™t = gxu—l,

!
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so that Sg = gS ¢ P. Since S is prime g € CS(O) and

hence gS = Sg is Q(S)-invertible. Thus when S is prime
every non zero prime ideal P contains a normal invertible

ideal and so S is a GUFR.

Remark 3.14.

In the proof of the above theorem, we have not used
the non-minimality of P. Thus in S every (non zero)
prime ideal contains a normal invertible ideal. Hence
S is a prime GUFR by theorem 2.23,and R is an a-prime ring
by lemma 3.11. However, in this case we have the follow-

ing characterisation.

Theorem 3.15.

Let R be a Noetherian ring with an Artinian quotient
ring and let « be an automorphism on R. Then S = R[x,a]
is a prime GUFR if and only if R is an a-prime ring in
which every non-zero a-prime ideal contains a normal

invertible a-ideal.

Proof:

Sufficient part of the theorem follows from theorem 3.13.
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Necessity

Since S is a prime ring it follows that R is
a—-prime. Let P be a non-zero a-prime ideal of R.
Because PS is a non-zero prime ideal of S, there 1is a
non-zero element g of PS such that gS = Sg is Q(S)-
invertible, where Q(S) is the simple Artinian quotient

ring of S. Clearly x ¢ PS., For, if x € PS, then

n
X = i rifi’ where r;€ P and f, € S, (1)

for O ¢ 1 ¢ n.
Equating the coefficient on both sides of (1) we get

roaol + rlall + r2a21 + ce. + rnanl = 1

and the remaining coefficients in R.H.S of (1) vanish.
k.

(Here we are assuming that fio= a5t ax+ een o+ aikix .
for each i and ki is a non-negative integer). But each
ry € P, for 0 ¢ i ¢ n, implies that 1 € P. Thus g £ x,
and without loss of generality we may assume that

n .
= X o e w X . .
g cO + Cy + + cn , Where Ci € P for each 1

Since gS = Sg, we have gR = Rg and since g is regular
in S, g is reqular in R. Now CiR = Rci for each 1.

For, let r € R, then a *(r) € R. Since gR = Rg, there



-78-

is an r' € R such that

i i ny —i
(co+clx+ fee FCTXT 4 ... 4C X oo (1)

n
— 1]
= T (co+clx + ...+ C X ).

Equating the ith coefficients, we get

c;T = r'ci, which implies c.R ¢ Re, and similarly
Rci < CiR' This observation together with the fact that
g is reqular in R implies that cy is a regular element

of R, for some i, O < 1 < n.
Next we prove CiR = Rci is an a-ideal of R. We

. ny _ ny _,
consider afr)x (co+clx t oeee + € X ) = (co+clx+...+cnx )r'x

for some r'€ R. Equating the ith term coefficients of

this expression we get a(r) a(ci) ciaYr'), i.e.

— 4 1 —
a(rci) = cia(r ) and hence a(ciR) = a(Rci) $ c4R.

Thus the non zeroaprime ideal P contains at least
one regular element cy such that ciR = Rci is an a-ideal
and c,R = Re; is Q(R)-invertible, since c, € CR(O). This

completes the proof.
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Definition 3,16.

If R is a ring and d : R — R is a derivation
on R, then the extension S = R{x, é] of R is the ring
of skew polynomials with coefficients written on the
left of x. Here xa is defined as, ax + & (a), for all

a € R.

Definition 3.17.

An ideal I of R is said to be a 4 -ideal if
d(I) ¢ I. A &-ideal I of R is said to be & -prime,
if for all § -ideals A,B of R such that AB ¢ I, either

A ¢ IorB¢<TI.

The following lemma relates the ideals R and those

of S =R [x,d]

Lemma 3.18.

(1) If J is an ideal of S, then JAR is a §-ideal of R.
(2) If I is a 4§ -ideal of R, then IS is an ideal of S.

(3) If P is a prime ideal of S, then PO R is a
S -prime ideal of R.

(4) If Q is a d -prime ideal of R, then QS is a

prime ideal of S.

{(5) If R is Noetherian, then so is S.
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Proof:

As in [12, lemma 1.3].

Lemma 3.19.

Let R be a Noetherian ring and 4 : R — R

a derivation. Then the following are equivalent.
(1) R[x, d] is prime
(2) R is d -prime
(3) The prime radical N of R is a prime ideal of R
k

and n §$YN) = 0 for some integer k.

i=1

Proof:

As in [12, theorem 2.2].

Remark 3.20.

If a Noetherian ring R with a derivation satisfies
any one of the above equivalent conditions, then CR(O)=CR(N)

so that R has an Artinian quotient ring.

Theorem 3.21.

Let R be a 4 -prime Noetherian ring such that every
non-zero & -prime ideal contains a normal invertible

d -ideal. Then R[x, d] is a prime GUFR.

Proof:
S = R[x,d ] is Noetherian by lemma 3.18(5). S is
prime by lemma 3.19 and both R and S have Artinian quotient

rings by remark 3.20 and Goldie's theorem respectively.
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=L
1

Then E is an Ore set consisting regular elements and the

Let E be R/ bR =Rb is an invertible J-ideal} o
localised ring T, of R at E, is an n-simple ring, i.e.,

O and T are the only n-ideals of T, where n is the
extension of 4 to T defined by n(ac —l) = cf(a)c_l for

all ac”le T. If P is a non-minimal prime ideal of S,

then as in the pattern of the proof of the theorem 3,13,

we have, PT[x,d ] = fT{x,d ] = T[x, & Jf, for some fe¢ T[x,d]
and we get f = gd"l for some g€ P and d € E and we have

gR = Rg. Also, xg = xfd = fxd = f(dx + 4§(d)) = fdx+£4(d)

fdx + fdu, for some u€ R.

Thus xg = fd(x+u) = g(x+u) and it follows that Sg £ ¢S
and similarly gS ¢ Sg. Thus gS = Sg is contained in P

and is Q(S)-invertible, since g € CS(O).

RINGS WITH MANY NORMAL ELEMENTS

In this section we introduce the concept of many
normal elements, which 1s a generalisation of GUFRs,
By a normal element, we mean a normal regular element

in this section.

Definition 3.22.

Let R be any ring. Then R is called a ring with

many normal elements if R has only a finite number of

prime ideals not containing any normal elements.
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Examples 3.23

(1) 1In [13], a commutative ring with few zero divisors
are defined as any commutative ring with only a finite
number of maximal O-ideals, where a maximal O-ideal 1is an
ideal maximal with respect to not containing non-zero
divisors. Since every maximal O-ideal is a prime ideal,
it follows that in the commutative case, rings with few

zero-divisors are rings with many normal elements.

(2) If R is a GUFR, then every non-minimal prime ideal
contains a normal element. Since the number of minimal
prime ideals in any Noetherian ring is finite, it follows

that every GUFR is a ring with many normal elements.

Remark 3.24.

Let R be a Noetherian ring with many normal elements
and C = {ac:R/aR = Ra 1is norma%} . Then as in theorem 2.7,
it can be provea that C is an Ore set and the localised

ring T = R} = ¢4

R has only a finite number of maximal
ideals, precisely the extensions of the prime ideals of R
not containing normal elements. Also T is an over-ring,

since C has only regular elements.

We state a theorem known as the "prime avoidance"

theorem [20, proposition 2.12.7].
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Theorem 3.25

If A and B are two ideals of a ring R and

O = {Pl e P& is a collection of prime ideals of R

with A~B % P.

l’

N Cer

then either A ¢ B or A < P.1 for

i=1

some 1i.

Theorem 3.26

Let & and ' be finite collections of non zero
prime ideals in a ring R with neither P { Q nor Q { P
for any PE A and Q € & Then there exist at least one

element ue N P such thatug¢g U Q.
P& a Qe a'

Proof:

Let & = {Pl pn} and &Y = {Ql Qm} . Then

<

m m
Pl < U Qi. For, if Pl < Q. P.~ 0 < U Q..

1 i? 1

' Cs

Thus by "prime avoidance" either P, = O or P

1
some j, which is impossible, Similarly

m m
P.¥ U Q.. Denote U Q. = U. Then there exists
27 4= B i=1 *

0 # p, € P, such that plﬁ‘ U and O # P> G P, such that
Py £ U. Now p;Rp, # 0. For, if p;Rpy, = 0, then

lep2<é Qj for each j and thus P € Qj or py & Qj for
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each j which is not possible. An argument using 'prime
avoidance" theorem again shows that Rpl Rp2R £ U.

Thus there exists at least one element p € Rpl Rp2R such
that p € U. Since p € Rp; Rp,R, p & P;N P,. Next
consider P3 and proceed as above, we get an element

p!' € Rp Rp3R such that p' e U, also p' € Rp Rp3R such
that p' € U, also p' € Plf\P2(\P3. Continue the process
until all the Pi’s exhausted, we get an element

n m
u € N P, such thatu¢ U Q..
i=] * j=1

Definition 3.27.

Let R be a ring and S an over-ring of R. Then a

weakly S~invertible element in R is any element a in R

n
such that 1 = I a.ab, for some a,,b. in S, for 1<i<n.
i=l 1 1 1 1 =
Equivalently the ideal SaS = S.

Examples 3.28.

(1) Every unit in a ring R is weakly R-invertible.

(2) If R is a prime Noetherian ring with the
simple Artinian quotient ring Q(R), Q(R)aQ(R)=Q(R)
for any O # a € R, Thus every non zero element

in R is weakly Q(R)-invertible.
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Theorem 3.29.

Let R be a Noetherian ring with many normal
elements and T be the partial quotient ring of R
at C:(ae R/a is normal} . Then for any z in T and
x € C, there is & an element u such that z + ux is

weakly T-invertible.

Proof:

By remark 3.24, T is an over-ring of R and T

has only a finite number of maximal ideals.

Let A = [M/M is a maximal ideal of T with z € M}

and P g {M/M is a maximal ideal of T with z ¢ M}

Then 4 and A' are finite collections of prime ideals
and neither M ¢ M' nor M' ¢ M for any ME A and M'€ &' |
as they are maximal ideals. Thus by theorem 3.2, there
exists an element u &€ M, for all M € A' and u ¢ M

for any MEA . Then the element z+ux &€ M for any maximal
ideal of T. For, if z+ux € M for some M€ A, then

z+ux-z = ux € M. But x € C and so x * € T, it follows

that u = ul™t = uxx te M;if z + ux € M for some M € A',
then z+ux-ux = z € M. Further, if & =@, then take u =0

and if A' = @, then take u = 1.
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Thus the ideal T(z+ux)T is not contained in any

maximal ideal of T and hence (z+ux) is weakly T-invertible.

Theorem 3,30.

Let R be a Noetherian ring with many normal elements
and I be a one sided ideal of R containing a normal element.
Then I can be generated by a set of weakly T-invertible

elements.

Proof:

Suppose I is a left ideal. Let (21,22,,..,25} be
a generating set of I and x be a normal element in I.
Consider Zys by theorem 3.29, there exists an element
ul‘ such tha< zl+ul'x is weakly T-invertible. Since
' -1
ul' = u;Cy for some ule R and c, € C, we have

_ -1 _
u, = ull = ul'cl

not containing ul' and uy belongs to all maximal ideals,

does not belong to the maximal ideals

which contains ul'. Thus as in the proof of theorem 3,29,
z) + upx is a weakly T-invertible element in R. Similarly
we get a collection {zi+uix} of weakly T-invertible
elements for each - Since x 1s normal, x € C and so

x 1s invertible in T. Thus {zi+uix,x} is a collection

of weakly T-invertible elements in I. We prove this is

generating set for I.
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Let re€ I. Then r = rlzl+r222+ eeo + rnzn

where T, € R, for 1 < i < n.

ie€e, T = Tyjzy + T{U X + IpZy + oo T2+ T UX

- (rlul + ToUy + .ee 4 rnun)x
= rlkzl+ulx) + r2(22+u2x) + ... + rn(zn+unx)

- (rlul + ToUs + oo + rnun)x.

Thus r© can be generated by [zi+uix,x} . This completes

the proof.

Theorem 3,3l.

Let R be a Noetherian ring with many normal elements.
Also assume that for any pair of weakly T-invertible elements

x and y, either Rx ¢ Ry or Ry ¢ Rx. Then

-~

A = {I/I is a left ideal of R containing a normal elemen?}

is linearly cordered.

Proof:

Let I and J be two elements of A o Suppose if
possible that I £ J and J £ I. Then, by theorem 3.30,

there exists at least one weakly T-invertible element b (say)
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in the generating set of I such that b ? J and

similarly there is a weakly T-invertible element

¢ €J such that ¢ ¢ I. Since Rb ¢ I and Rc § I,

we have Rc £ Rb and similarly Rb ﬂ,Rc, which contradicts

the hypothesis. Thus either 1 < J or J £ I, and the

proof is complete.

Theorem 3.32.

Let R be a Noetherian ring with many normal
elements., Also assume that for any pair of weakly
T-invertible elements x and y either xR £ yR or

yR < xR. Then = {I/1I is a right ideal of R
containing a normal element

is linearly ordered.

Proof:

As in theorem 3.31.

INTEGRALLY CIOSED RINGS

Definition 3,33.

Let R be any ring and M be an R-module. Then M
is said to be integrally closed if any endomorphism of
any finitely generated submodule extends to an endomorphism
of M. A ring R is said to be right (left) integrally closed

if Ry(RY) is integrally closed [14].
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Definition 3.34

Let R be a subring of Q. We say that R is classicaly
right (left) integrally closed in Q, if R contains any

element y of Q for which there exist elements a s@19 3
n _ n-1
of R such that y = 8, T Y3+ ..ot Y a1

n n-l) .

(y =a_ + a;y + ...+ oa gy

o R is classically integrally

closed in Q if it is classically right and left integrally

closed in Q [14].

Lemma 3,35,

Suppose the ring R is integrally closed and is an order

in a ring Q. Then the following assertions are true.

-1

(1) bmb "€ R and b1

mb € R for all b € CR(O) and m€ R.

(2) If A is a finitely generated submodule of Q; and
f € End A, then there exists d € R such that f(a)=da
for all a€ A.
Proof
As in [14, lemma 2.12].

Theorem 3,326.

Let R be a semiprime right Noetherian ring with the
semisimple Artinian quotient ring Q.  Suppose alse that
f(1)eR for all feknd W,. Then R is clussically right

inteagrally closed in Q.
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Proof

First we prove that R is right integrally closed.
Let I be a right ideal of R such that fl € End IR' Then

£, € HomR(IR RR). Since Iy and Ry are CR(O) torsion

free submodules of R fl can be extended to f2 € HomQ(IQ, RQ)

R’
[16, corollary 2.2.5], i.e., £, € HomQ(IQ,Q). Since Q is a
semisimple Artinian ring, every unitary right Q-module is
injective, and so in particular QQ is injective. Thus

f. € HomQ(IQ,Q) can be extended to f, € End QQ and thus

2

f, € End QRo Now f4 = fB/R € End RR’ which follows from

3
the hypothesis that f(1) € R for all f € End RR' Also

f = f,. Therefore fl € End IR can be extended to

4/1 1

4 € End RR' This completes the proof that RR is right

integrally closed.

f

We prove R 1s right classically integrally closed

in Q, as in [14]. Let y € Q such that yn=ao+yal+...+yn-lan_l
where n > 0 and a; € R for 0O £ i < n-l. Let A be the right
R submodule of Q generated by l,y,y2,....,yn-l . Then

vyA = A and f(a) = y.a 1is an endomorphism of A. Thus by
lemma 3.36, there exists d € R such that f(a) = da for all
a €A, Since 1 € A, we have f(l) = d and consequently

y = d € R anda the proof is complete.
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Corollary 3.37,

Let R be a semiprime GUFR with the quotient ring Q.
Also suppose that f(1l) € R for every right and left R
endomorphism f of Q. Then R is classically integrally

closed in Q.

Examples 3,38

(1) Corollary 3.6 states that Mn(R) is a GUFR, whenever
R is a GUFR. Thus for any commutative Noetherian integral

domain R,M_(R) is a prime GUFR.

(2) Let R = k[t,y] be the polynomial ring in two
commuting indeterminates over a field k of characteristic
zero. Let be the derivation 2y %¥ + (y2+t) %;. Then R
has only two ~prime ideals, namely (y2+t+l) and tR + vyR.
The only height 1 primes of R[x, d ] are the extensions of
these two dJ -prime ideals., It is easy to see that these
extensions contain normal invertible ideals and so R[x,d ]

is a GUFR. But R[x,d] is not an NUFR [2, example 5.2.].



Chapter 4

LOCALISATION

INTRODUCTION

In this chapter, we investigate the localisation
at prime ideals in GUFRs. Persuaded by the importance
of localisation in commutative rings and its application
in the study of modules over commutative rings, several
mathematicians investigated localisation at prime ideals
in non-commutative rings, in particular in Noetherian
rings, after Goldie proved his theorems for prime and

semiprime Ncetherian rings.

But, because of the general behaviour of prime
ideals in non-commutative rings, the complement of a
prime ideal need not be a multiplicative set in general.
Although the complement of every completely prime ideal
in a Noetherian ring is a multiplicative set, there are
some compietely prime ideals, whose complements do not
satisfy the Ore condition. Thus in general the
localisation at the complement of a prime ideal can be

ruled out in Noetherian rings.

So, instead of looking at the complement of a
prime ideal P in a Noetherian ringR, if we look at the
set CR(P) = {r € R/r+P is regular in R/P} , then we

can gain something. We say that a orime ideal in a
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Noetherian ring is right localisable if CR(P) is a
right Ore set., It is obvious that in commutative rings

C.,(P) coincides with the complement of P in R. But

R ,
unlike in commutative rings, CR(P) need not be a right

Ore set in many cases.

First we look at the obstacles to the localisation
at a prime ideal in Noetherian rings and then discuss
a newly developed technique of localisation at a

;collection of prime ideals in which the elements are

related in a special manner.

We begin with an example. Most of the material
in the preliminaries of this chapter is taken from [16],

[25] and [26].

Example 4.1,

Let k be a field and let R be the 2 x 2 upper
triangular matrices over k. Then R is an Artinian (and
thus Noetherian) ring with two prime ideals, the ideal Q
of matrices in R whose upper left corner is zero and the
ideal P of matrices in R whose lower right corner is zero.
Now R/P and R/Q are both isomorphic to k, and QP = O.
Also PQ = PNQ =7, the Jacobson radical of R. Note that
Q and P are completely prime ideals and thus C(Q) = R—Q

and C(P) = R—P.
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Now if [a b] ec(Q) and [g ?] €R,

o ¢

the a bl a~ld o d el ° l] i.e. C(Q) is
"o C o o o f oo}’ 77

a right Ore set and thus Q is right localisable.

On the other hand, C(P) is not right Ore, since for the

0

-1
0] o 1
element§ [o Clj ¢ C(P) and [o ¢ R.

[
¢C(P) if and only if f = ¢ = 0, but in that

[o1]

3

Q.
o ol
iHh

¢C(P).

O

je}]

wn

1)
o Q!
tth @,

Definition 4.2.

Let D be a right Ore set in a ring R, and M be a
right R-module. An element m eM is said to be torsion
if md = O for some d € D. T{(M) ={m € M/md = O} is
called the torsion submodule of M. If T(M) = M, then
M is said to be torsion module and if T(M)=0, then

M is said to be torsion free.

Note that in example 4.1, R/P and R/Q are prime
Noetherian ringsand so the regular elements in these

rinas are Ore sets. Also note that JP = QJ = O and thus
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J is faithful and torsion free as both right R/P and

left R/Q module.

Lemma 4,3.

Let R be @ right Noetherian ring, C is a right
Ore set in R, and A ard B be ideals of R with A <B.
Suppose also that r(B/A) = P and [(B/A) = Q, where
P and Q are prime ideals of R, and that B/A is torsion-
free as a right R/P-module. If C <« C(P), then also
C < c(Q).

The situation in example 4.1 is exactly the same
as in lemma 4.3. Thus to localise the ring of example 4.1
at a right Ore set C inside CR(P), we must include CR(Q).
Thus C < CR(P) ncR(Q). But CR(P) 0 CR(Q) = units of R.

Since C has only units, we cannot localise R,at C, further.

Definition 4.4.

Let R be a Noetherian ring and Q,P be prime ideals
of R. If there exists an ideal A of R with QP £ A < QQOP
such that J(QNP/A) =Q and £(Q O P/A) = P and
Q NP/A is left R/Q, right R/P torsion free module,
then we say that Q is linked to P (via A < QMNP) and

denoted by Q m> P,
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Remark 4,5.

It can be seen that in Noetherian rings the torsion
free condition in the definition of 4.4 is equivalent to
the condition that every non zero sub-bimodule of Q N P/A

is faithful as a right R/P and as a left R/Q module.

Definition 4.6,

Let R be a Noetherian ring. Suppose Spec R denotes
the collection of all prime idealsof R. We say a subset
X of Spec R is right stable, if whenever P € X, Q € Spec R,

and Q ~~» P, we have Q € X. We say X is stable if Q ~» P

implies either both Q,P € X or both Q,P ¢ X. If

P e Spec R the right clique of P denoted by rt cl(P), is

the smallest right stable subset of Spec R containing P.
The cligque of P € Spec R is the smallest stable subset

containing P.

Thus we have the following corollary of lemma 4.3.

Corollary 4.7.

If R is a right Noetherian ring and C is a right
Ore set contained in C(P), then C< N, (Q)/Q e rt cl p}.

If C is an Ore set and R is Noetherian, then

csn{cgl/ae c1rl.
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Remark 4.8.

We note two things about links between prime

ideals,

(1) Q~~>P if and only if Q/QP ~~» P/QP in R/QP.

(2) If C is any right denominator set in R disjoint
from Q and P, then Q~» P if and only if

ac ! avs et in rCTY [27].

Examples 4.9.

(1) 1In example 4.1 the only prime ideals of R are
Q and P and the rt cl P = {P,Q} .

(2) In a commutative Noetherian domain R, if
P is any prime ideal rt cl P = {P}.

Definition 4.10.

Let P be a right localisable prime ideal in a ring
R and Ry be the localised ring of R at C(P). If for any
finitely generated right Rp—module M, containing a simple
right Rp-submodule S, which is also essential in M,
M is Artinian, or equivalently MP" = O for some n, then

P is said to be classically right localisable.

Definition 4.11.

A right R-module M is said to be uniform, if

every non zero submodule of M is essential in M.
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Remark 4,12.

Let P be a classically right localisable prime
ideal in R, Q be a prime ideal of R with Q < P, and
there exist a f,g uniform R-module M, with ann(M) = Q,
containing a copy U of a non zero right ideal of R/P.
By passing to R/Q, we assume Q = O. We can localise at
CR(P) and get the simple RP/PRP-module U ® Rp inside

p
implies that MP" is Cr(P)-torsion, so MP" A U = 0.

M @Ry, so there is an n with (M ®Rp) PR, = O. This

Thus MP" = 0 and hence P" = 0. This contradiction
shows that apart from the links between prime ideals
we have another obstruction to localisation at a prime

ideal.

Definition 4.13.

A prime ideal P, in a ring R, satisfies the right

second layer condition (s.l.c) if the situation of the

above remark does not occur, i.e., no such Q exists.

Left second layer condition 1s defined analogously.

Theorem 4,14,

Let R be a Noetherian ring and let P be a prime
ideal of R, Then P 1is classically right localisable
if and only if {P} is right stable and P satisfies

the right second layer condition.
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Definition 4.15.

An ideal I of R is said to have the riaght

Artin-Rees (AR) property if for any finitely generated

right R module M containing an essential submodule L
with LI = O, there is a positive integer n such that
MI" = 0. 1In this case we call I a right AR ideal.

Left AR property is defined analogously.

Remark 4.16.

(1) A prime ideal P with the right AR property
always satisfies the right second layer

condition,

(2) An icdeal I of R is right AR if and only if
for every right ideal K of R, there is a
positive integer n such that K(’\In < KI.

Theorem 4,17.

If R is a Noetherian ring and P is a prime ideal
with the right AR property, then P is classically
localisable if and only if there is no prime ideal Q

of R with P < Q and Q ~» P.

Lemma 4,18.

Suppose an ideal in a right Noetherian ring R has
the right AR property. If Q ~» P in Spec R and if I § P,
then I £ Q.
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Lemma 4,19.

An invertible ideal in a (right) Noetherian ring

has the (right) AR property.

Let R be a Noetherian ring with a quotient ring Q.
Let P = aR = ka be a prime ideal with'a'regular° Then
R has a partial quotient ring S obtained by localising

R at the Ore set {1,a,a2

.o j It is easy to see that

P = aR = Ra is S—~invertible and hence P has, the (right
and left) AR property. Using induction and regularity

of a, it is easy to see that C(P) ¢ c(P™ for every n.
Now by [28, proposition 2.1}, P is localisable which gives

the proof of lemma 2.17.

Given a prime ideal P, any right localisation at P
must be found by inverting a right Ore set C <« CR(P).
Thus, in fact, C é(}{CR(Q)/Q ¢ rt cl P} by corollary 4,7.
Let X  Spec R and define C(X) = a{c (Q)/Qe x}. If X
is a right clique and if we want to localise at X, then
C(X) must be a right Ore set. We also want some nice

properties for the quotient ring.

Definition 4.20.

Let R be a Noetherian ring and X < Spec R. Then
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X is classically right localisable if C(X) is a right

Ore set and the localisation R, =R C(X)_l has the

following properties.

(1) For every P € X, the ring RX/PRX is Artinian.

(2) The only right primitive idcals are PRy, for
P € X.

(3) Every finitely generated Ry-module which is
an essential extension of a simple right

RX—module is Artinian.

Definition 4.21.

Let X ¢ Spec R. Then X satisfies the right

intersection condition if for any right ideal I of R

such that I F\CR(P) £# @ for every P ¢ X, the intersection
I OC(X) is non-empty. We say X satisfies right

second layer condition if every prime ideal in X

satisfies right second layer condition and we say X

satisfies the incomparability condition if there do not

exist prime ideals P,Q ¢ X with Q < P.

Proposition 4.22.

If R is a Noetherian ring and X is a right stable
subset of Spec R satisfying the right intersection
condition and right second layer condition, then C(X)

is a right Ore set.
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Theorem 4,23.

If R is a Noetherian ring and X § Spec R, then

X is classically right localisable if and only if

(1) X is right stable,
(2) X satisfiés the right second layer condition,
(3) X satisfies the right intersection condition, and

(4) X satisfies the incomparability condition.

Thus we have characterised the classically right
localisable subsets of Spec R in Noetherian rings.

The same can be done for classically left localisable

subsets by defining the left second layer condition,

left interscction property and left stability etc,

analogously.

We conclude this section of preliminaries with two

theorems.

Theorem 4.24.

If R is a Noetherian ring and X is a right stable
subset of Spec R satisfying the right second layer condition
and the right intersection condition, then C(X) is a right

Ore set.
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Theorem 4.25.

If R is a right Noetherian ring and X 1s a finite
subset of Spec R, then X satisfies the right intersection

condition.

MINIMAL PRIMES IN GUFRs

We have seen in chapter 1 that every GUFR has an

n
Artinian quctient ring and so CR(N) = N CR(P.),
i=1 1

where Pl, ey Pn are the minimal primes of R, is a
right Ore set. Also in chapter 1, we proved that the
minimal primes cannot contain any normal invertible
ideals, i.e., P, N C = @, for each i, 1 < i < n.

Now we look at the right cliques of minimal prime ideals

of a GUFR.

First we state some lemmas.

Lemma 4.26,

Let D be an Ore set in a prime Noetherian ring R.

Then D consists of regular elements or O € D.

Lemma 4.27.

Let R be a prime Noetherian ring and C be an Ore
set in R such that O ¢ C. Let M be a torsion free
right R-module. Then MCulis a torsion free right RC"l

module.
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Lemma 4.28.

Suppose P and Q are maximal ideals in a Noetherian

ring R. Then Q ~~ P if and only if QP # Q 0 P.

Theorem 4,29.

Let R be a GUFR and P,Q € Spec R with P € Min Spec R

and Q ¢ Min (Spec R). Then Q is not linked to P.

Proof:

Suppose Q~— P. Since Q is not minimal, there
exists a normal invertible ideal I of R such that I £ Q.
By lemma 4.19, I has (right and left) AR property. Thus
we have a positive integer n such that I"n(PnQ) < I(PnQ)
by the left AR property of I. Because of the link from

Q to P, we have an ideal A of R with QP £ A < QM P such
that ¢ (2L ) = pana £( Q52 ) - q. Thus,

(@oP)1"< (@npP)n 1" = 1"n(QnP) ¢ I(QNP) < Q(QNP) < A.
i.e. (QOP)I" ¢ A and so 1" ¢ x (0P ) = p. since P

is prime I < P, which violates the assumption that P is
minimal and contains no normal invertible ideals. There-

fore Q~~ P.

Theorem 4,30.

Let R be a GUFR and P,Q € Min (Spec R). Then

Q~ P if and only if QP #Q N P.
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Proof:

IfQ~~P, it is obvious that there exists an

ideal A with QP ¢ A < QNP and thus QP # QNP.

Conversely, assume QP # Q AP. Suppose if
possible that Q ~A P, The set C of regular normal

elements is an Ore set in R and PNnC = QnC = ¢, since

P and Q are minimal primes. So by remark 408,QC_L«7» pcT1

in Rc™Y. But Qc™! and Pc™! are maximal ideals of RC™T

by theorem 2.7 and hence by lemma 4.28, QC™%+ pc™t=qc™in pc™1:
Now let x € Q n P, then ¥ = x17 e pc™n qc7t,

i.e., x € (7Y (pc™Y), thus there exist a; € Q, b, e P

and ci,diez C for i=1,2,...,n such that

n n a. b,
- - -1
x=x1"t=%= 5 (ae, M Ty = 1 2 AL But
i=]1 i=1 i i
ai bi ai.b !
ST Tagcd for each 1 = 1,2,,..,n, where bi'€ R
i i iTi
| I | — t
and c;' € C such that b, c;' = c; b, (remark 1.46).
X n aib.'
Therefore = = L ——+ .Now b. € P, therefore
1 . d.c. 1
i=1 171
cibi' = bici' ¢ P, for each 1 =1,2,...,n. i.e,
R c.b.' < P. Since cs € C, R c; = ¢y R, which implies
cy R bl' ¢ P fori=1,2,...,n. Hence bi'e: P for each

i=1,2,...,n,as CnP =@, c; € C for each i = 1,2,...,n
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and P 1s prime. Consequently aibi' € QP for i = 1,2,...n

and so % € (QP)C-l. Since C has only regular elements,
we have x € QP, it follows that QNP £ QP, which contradicts

the assumption that QNP # QP and we have Q ~~+»P.

Remark 4,31.

Let P be a minimal prime ideal in a GUFR. Define,
Xo(P) ={a € spec R/Q~P},
x,(P) ={Q € Spec R/Q~P, for some P, € xo(p)}
X:Hl(p): {Q € Spec R/QMPj for some Pjexj(P)} for j > 1.
By theorems 4,29 and 4.30 we have

X, (P) ={Qe Min Spec RAQP # QN PJand

X;p1(P) = {a € min spec R/QP, # QAP for some P, exj(p)}
for j =0,1,2,... . Thus we have the right clique of
P = v Xj(P) = X(P).

j=o0

Theorem 4.,32.

Let R be a GUFR and P a minimal prime ideal of R.

Then, right clique of P = X(P) = ] Xj(P), where
j=o
X, (P) :{QE Min spec R/QP # Q 0 P} and
X5 (P) ={Q € Min spec R/QP, # QN P, for some P € xj(p)}

for j = 0,1,2,...
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Theorem 4.33.

For each minimal prime P in a GUFR, X(P) is a

classically right localisable set.

Proof:

For each j = 0,1,2,...}Xj(P) is a subset of

Min (Spec R) and so X(P) = t’ X.(P) is also a subset
j=o0

of Min (Spec R). Since Min (Spec R) is finite, X(P)

is also finite and thus by theorem 4.25, X(P) satisfies

right intersection condition. The elements of X(P)

are minimal primes and so none of them properly

contains any other prime ideal of R and so X(P)

satisfies right second layer condition. Further X(P)

has only incomparable elements as they are minimal,

and X(P) is right stable as it is a right clique. Now

the theorem follows from theorem 4.23.

HEIGHT 1 PRIME ID:ALS IN A GUFR.

Now we look at the height 1 prime ideals of a
GUFR. We state a lemma, the proof of which follows

from [16, corollary 3.3.10].

Lemma 4.34.

Let R be a Noetherian ring. An ideal I of R has

right AR property if and only if for every right R-module
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M annihilated by I, (M) = u annE(M)In, where E(M)
n=1

is the injec*tive hull of M.

Theorem 4,35.

Let P be a height 1 prime ideal of a GUFR. Then'

P satisfies the right second layer condition.

Proof:
Assume that there exists a prime ideal Q of R

such that Q < P and Q = ann M for some finitely generated

uniform right R-module M containing a copy U of a non

zero right ideal of R/P. Since P is height 1 prime, Q

is a minimal prime ideal of R and so Q contains no

normal invertible ideal. Let I be the normal invertible

jdeal contained in P. Put J = I+Q. Then J/Q is an

invertible ideal of R/Q and so it has the right AR

property. Since M is an R/Q module, by the above lemma

(=)

we have E(M) = U ann (J/Q". But M is finitely
oy 2PPE(m)

generated and is contained in E(M). This together with

‘ n . . .
the fact that {annE(M)(J/Q) _} is an ascending chain of

submodules of E(M) implies that there exists a positive

integer k such that M ¢ annE(M)(J/Q)k, i.e., M(J/Q)k=0

which implies (J/Q) < ann M = Q and JX/Q < . Hence
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Jk { Q. Consequently J ¢ Q, since Q is prime. Thus

I £ Q, which contradicts the selection of Q. Therefore

P satisfies the right second layer condition.

Corollary 4.36.

Let P be a height 1 prime ideal of a GUFR such
that {P} is right stable. Then P is classically right

localisable.

Proof:
This is an immediate consequence of theorem 4.14

and theorem 4,35.

A semiprime ideal S of a Noetherian ring is said
to be classically right localisable if the finite set
of prime ideals associated with S is classically right
localisable. Thus we get another consequence of theorem

4.35 and theorem 4.23.

Corollary 4.37.

Let S be a semiprime ideal in a GUFR and éssume
that the associated prime ideals of S are height 1
prime ideals. Suppose also that the collection of
associated primes is right stable. Then S is classically

right localisable.
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Definition 4.38.

Let R be a Noetherian ring. A subset X of Spec R

is said to be a sparse subset if, given any Q € Spec R

and given any ¢ ¢ CR(Q), we have
Q £afpe x /<P c & Cx(P)} .

Remark 4,39.

Let R be a GUFR and I be a normal invertible
ideal of R. Put X;= {PeSpec R/ height P = 1 and I ¢ P
Then by principal ideal theorem X # @ Let Q& Spec R
and ¢ € C(G). Then, if Q is minimal,I cannot be

contained in Q, since R is a GUFR, whereas

n{? c XI/ Q<P and c ¢ CR(P{} contains I. Further,
i1f Q is nonminimal, then height of Q > 1 and so there
exists no height 1 prime P such that Q ¢ P and so
;{P € XI/Q < P; c 4 CR(Pz}z @. Thus in both cases
Q # Q{Pe X{/Q<P, ¢ ¢ CR(P)j. Therefore X; is a

spérse set in R.

Theorem 4,40.

Let R be a GUFR and I be a normal invertible ideal
of R. Also assume that for a prime idealQ,ﬁDE XI/Q A~>PJ
is right stable. Then {P € XI/Q “093} is a classically

right localisable set.
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Proof:

Put X = ip € X{/Q ~> P} . Since the elements
of X are height 1 prime ideals, X satisfies the right
second layer condition and the incomparability condi-
tion. The sparsity of XI implies that X is finite
[16, theorem 6.2.14] and so X satisfies the right
intersection property. Now the result follows from

theorem 4.23 and the hypothesis that X is right stable,.

From Theorem 4.3 and

-~ 4.25 it follows that
Theorem 4.41.

Every finite right stable set consists of height 1

prime ideals in a GUFR is right classically localisable.
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REMARKS

In this concluding chapter, we shall review some
of the results given in the previous chapters and discuss

the scope of further work.

In chapter 2, we have proved that every GUFR has
an Artinian quotient ring, by proving that every non-
minimal prime ideal contains a regular element, which
gives rise to a2 normal ideal. Thus the definition of a
GUFR can be reformed as -a Noetherian ring in which every

non-minimal prime ideal contains a normal regular element.
]

The theorem 2,30 that R is a commutative GUFR if
and only if r. has an Artinian quotient ring, leads to
the relevant question; is every commutative Noetherian
ring a GUFR? Or does every commutative Noetherian ring
have an Artinian quotient ring? In particular cases of
commutative Noetherian rings, it.can be proved that they
have Artinian quotient rings. For instance, if R is a
commutative Noetherian irreducible (i.e., for ény ideal
A of R, A < AjNn A,, whenever A < A, and A2) ring, then
R has an Artinian quotient ring. In the general case,

we can say only upto the extent that a commutative

Noetherian ring R can be embedded in a commutative
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Artinian ring, more precisely, R is a subdirect product
of irreducible Noetherian rings, i.e. rings with Artinian

gquotient rings.

In theorem 2,35, to prove that R{x] is a GUFR, we
assumed that EP < CR[X](O)f)C' for every minimal prime
ideal P of R. We do not know whether this condition can
be relaxed. However, other than for prime rings R, no
examples of R[x]s,with non minimal prime ideal. P, could
be found out with the property that <« ... PN R is a

minimal prime ideal in R.
e shall state a result given in [29, pp. 59-60].

Lemma 5.1.

Let R be a right order in Q and AR a submodule of
QR that contains a regular element of R. Then AR is a
projective if and only if there exist elements Yy e Yq

in Q and a; ... 2 in A such that yiA < R for all i and

n

1l = a1Y) + @p¥p + oee. + anyn.

Now if R is a right bounded prime GUFR and I is
an essential right ideal of R, then I contains an ideal J,

which in turn contains a normal ideal aR = Ra (say) of R
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11 _R and a™ta = 1. Thus by the lemma given

and so a
above, in a right bounded prime GUFR, every essential
right ideal is projective, which 1is a partial converse
of theorem 2.44. We do not know whether every right

ideal of a right bounded prime GUFR 1is projective.

Another question that arose in chapter 2 is about
the integrally closed rings. We proved that the semi-
prime GUFRs are integrally closed, if every right and
left endomorphisms of Q over R takes the identity
element of Q to R itself. The relevant question is:

If R is a commutative Noetherian UFD, then, is every R
endomorphism of Q takes the identity element of Q to R?
(Here Q is the quotient field of R). The question is
important because in the case when R is a commutative

Noetherian UFD, it is always integrally closed.

In chapter 3, we proved that the finite centralising
extension of a GUFR is a GUFR. The case of finite normalising
extension of a GUFR is yet to be proved. The obstacle in this
case 1s that we cannot connect the prime ideals of R with
the prime ideals of a finite normalising extension directly.

(lemma 3,.3)
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In chapter 4, theorem 4.35 assures the right
second layer condition for height one prime ideals
in a GUFR. The right second layer condition for a
prime ideal of height > 1 in a GUFR is yet to be
discussed. Also, it is not yet investigated whether
{P € Xl/Qf*’P} in theorem 4.40, is always right
stable or not. However, from [26], it follows that,
in a GUFR if every height 1 prime ideal is maximal,
then each XI is right stable, satisfies the right
second layer condition (theorem 4.35) and the in-

comparability condition.

It may be possible to extend the concept of
GUFRs to (non-Noetherian) rings with (left and right)
Krull dimension [30]. The analogous nature of such
rings with Noetherian rings is a major source of
interest in them. The invertible ideals, in rings
with (left and right) Krull dimension, also behave
well, A study of invertible ideals in rings with

Krull dimension is given in [31].
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