
DESIGN AND DEVELOPMENT OF AN

ADAPTABLE FRAME-BASED SYSTEM

FOR DRAVIDIAN LANGUAGE,-'

PROCESSING

A THESIS SUBMITTED BY

SUMAM MARY IDICULA

IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

UNDER THE FACULTY OF TECHNOLOGY

COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE

KOCH I - 682 022

1999

CERTIFICATE

This is to certify that the thesis entitled "DESIGN AND

DEVELOPMENT OF AN ADAPTABLE FRAME-BASED SYSTEM

FOR DRA VIDIAN LANGUAGE PROCESSING" is a report of the

original work carried out by Ms. SUMAM MARY IDICULA under my

supervision in the Department of Computer Science, Cochin University of

Science and Technology. The results enclosed in this thesis or part of it

have not been presented for any other degree.

Cochin - 682 022
5th April, 1999.

~i!-1---
...---------- --- ----- - - - t '

Dr.K.Poulose Jacob
(Supervising Teacher)

Professor
Department of Computer Science

Cochin University of Science and Technology

Contents

Acknowledgement

Abstract ii

Chapter 1 Introduction

1.1 Background

1.2 Motivation and Scope 1

1.3 Outline of the Work 3

Chapter 2 Natural Language Processing - A Review

2.1 Introduction 7

2.2 Natural Language Analysis Techniques 10

2.2.1 Pattern Matching 10

2.2.2 Keyword Analysis 11

2.2.3 Syntactically Driven Parsing 12

2.2.3.1 Context-free Grammars 13

2.2.3.2 Transformational Grammars 14

2.2.3.3 Augmented Transition Network 15

2.2.3.4 Semantic Grammar 18

2.2.3.5 Lexical Functional Grammar 20

2.2.3.6 Government & Binding 21

2.2.4 Case Grammar 21

2.2.5 Conceptual Dependency 23

2.2.6 Expectation-Driven Parsing 24

2.2.7 Word-Expert Parsing 28

2.2.8 Integrated Partial Parser 29

2.2.9 Connectionism 30

2.3

Chapter 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Chapter 4

4.1

4.2

The Indian Context

System Architecture

Introduction

Dravidian Languages

3.2.1 The Common Characteristics of Dravidian

Languages

Design Methodology

Ambiguity Resolution

System Architecture

3.5.1 Morphological Analyzer

3.5.2 Local Word Grouper

3.5.3 Parser

Case study - 1 (Machine Translation) .

Case study - 2 (A NU for RDBMS)

35

39

40

40

43

49

50

50

52

53

74

79

3.7.1 Meaning Extraction 83

3.7.2 SQL Generator 85

3.7.3 Ellipses & Anaphoric References 87

3.7.3.1 Ellipses 87

3.7.3.1.1 Surface level Ellipses 87

3.7.3.1.2 Deep Level Ellipses 90

3.7.3.2 Anaphoric References 90

3.7.4 Processing of Null Responses from Database 92

3.7.4.1 E-relation 93

3.7.4.2 EG-relation 93

3.7.4.3 EXC-relation 94

3.7.4.4 V-relation 94

Implementation

Software Design Methodology 97

Classes of the System 98

4.2.1 Meaning Representation System 98

4.2.2 Machine Translation System 104

4.2.3 Natural Language Interface System 104

4.3 Platform Used 111

Chapter 5 Performance Evaluation of the Model

5.1 Introduction 112

5.2 Performance of the NLI system for Information Retrieval 114

5.3 Performance of the Machine Translation System 125

Chapter 6 Conclusion & Future Work 133

Appendix 1 136

Appendix 2 137

Appendix 3 138

Appendix 4 139

References 140

Published work of the Author 149

DESIGN AND DEVELOPMENT OF AN ADAPTABLE

FRAME-BASED SYSTEM FOR DRA VIDIAN LANGUAGE

PROCESSING

Abstract

The goal of natural language processing (NLP) is to build computational

models of natural language for its analysis and generation. These

computational models provide a better insight into how humans communicate

using natural language and also help in the building of intelligent computer

systems such as machine translation systems, man-machine interfaces, text

analysis, understanding systems etc.

This work is aimed at building an adaptable frame-based system for

processing Dravidian languages. There are about 17 languages in this family

and they are spoken by the people of South India. These languages are free

word order languages. Since most of the existing computational grammars are

positional grammars, they are not suitable for the analysis and understanding

of free word order languages. For the development of the prototype,

Malayalam (A typical language of the Dravidian family and the native

language of Kerala) language is considered in detail. But the frames

developed for its internal meaning representation are easily adaptable for other

languages coming in this group. This is because their grammar rules are

almost the same and their vocabularies are closely related. They also exhibit

structural homogeneity.

Karaka relations are one of the most important features of Indian languages.

They are the semantico-syntactic relations between the verbs and other related

constituents in a sentence. The karaka relations and surface case endings are

analyzed for meaning extraction. This approach is comparable with the broad

class of case based grammars.

The efficiency of this approach is put into test in two applications. One is

machine translation and the other is a natural language interface for

information retrieval from databases. In the first case, simple/complex

sentences in any Dravidian language could be converted to English. Here the

source is free word order language while the target isa fixed word order one.

Also the source is a verb-ending one while the target is a verb-central one.

Since English is a fixed word order language, regular patterns could be

identified in its structure. The source language sentence is mapped into one of

these patterns which is most apt. Ambiguous translations due to word sense

disambiguity are resolved by semantic tags attached to words.

In the second application a natural language interface (NLI) for information

retrieval from databases is tried. As it is known, many of the shortcomings of

the database languages could be overcome by putting an interface between the

user's native language and the database language. Since nowadays, relational

database management systems are de facto standards and SQL or SQL like

languages are commonly used, the internal meaning representation is mapped

to SQL commands. For a NU to be useful, it must accept anaphora, ellipsis

and other means of abbreviating utterances. It must be also capable of

handling user misconceptions and producing quality responses. Methods to

handle these are designed and implemented in a prototype NLI to databases.

Entity-Relationship model is used to capture the structure of the database.

Object-oriented design methodology is used for the development of the

prototype. In summary, this work makes the following contributions. It gives

an elegant account of the relation between vibakthi and karaka roles in

111

Dravidian languages. This mapping is elegant and compact. The same basic

thing also explains simple and complex sentences in these languages. This

suggests that the solution is not just ad hoc but has a deeper underlying unity.

This methodology could be extended to other free word order languages.

Since the frames designed for meaning representation are general, they are

adaptable to other languages coming in this group and to other applications.

IV

1.1 Background

Chapter 1

Introduction

Human beings speak and understand natural language. But computers

understand cryptic, artificial languages, which common people find difficult

to understand and use. With the help of AI techniques and cognitive and

linguistic theories, computers are gradually learnt to communicate in natural

language. Developing a natural language understanding system that could be

used in any kind of application still remains a dream.

Computers require a great deal of precision in communication. Some of the

characteristics of natural language that seem to cause no problems for people

but which create great difficulties for computers are ambiguity, imprecision,

incompleteness and inaccuracy. Because of these basic problems of NLP, the

central task in NLP is the translation of the potentially ambiguous natural

language input into an unambiguous internal representation. There is no

commonly agreed standard for internal representation and different types are

found useful for different purposes. Translation of an utterance into an

unambiguous internal representation requires inference based on potentially

unbounded set of real-world knowledge.

1.2 Motivation and Scope

Automated Natural language understanding systems have several potential

applications. They include natural language front-ends to databases and expert

systems, machine translation, computer aided instruction systems etc. Many

computer systems offer a range of tools for data extraction, statistical analysis

and graphical output. Since these tools have been developed independently,

the user has to express identical commands to the different software packages

in different ways. A natural language front end to all the different packages

would enable the user to be more comfortable, without need to be mindful of

the specifics of each such package. Thus users are interested in natural

language as a standard man-machine interface. The computer software best

suited to benefit from a natural language front end is the database. Databases

hold huge quantities of data. There are several artificial languages for

manipulating this data. But their usage needs knowledge about the database

model, database structure, language syntax etc.

Many of the shortcomings of the database languages could be overcome by

putting an intelligent interpreter between the user's native language and the

database language. This method has several advantages. The interpreter can

eliminate the necessity for the user to conform to an artificial syntax. It

relieves the user from knowing about the details of the database model and

data structure, data definition languages and data manipulation languages. The

interpreter enables to understand incomplete or slightly erroneous queries,

elliptical requests, anaphoric references etc. It can also recognize the logical

inconsistencies in a query and warn the user. Thus an intelligent interpreter

bridges the gap between the user and the database.

Several natural language front ends have been developed as a result of

rigorous works done in this field of artificial intelligence. But majority of

them uses English as the natural language. In an Indian context (India is a

multilingual country and fifteen languages are included in the eighth schedule

of the Indian Constitution) where only five percent of the population can boast

2

of education up to matriculation level and much less of them can work

through English, their use is limited.

Machine translation helps in melting away language barriers. The world

becomes culturally and intellectually united. However this still remains as the

dream of people working in the fascinating research area of machine

translation. The important problems that come in the way of machine

translation are word sense selection, ambiguity in the sentence structure,

pronoun reference and identification of tense and modality. These problems

point to an important inference: A sentence must be "understood" before it

can be translated.

1.3 Outline of the Work

This work is aimed at the development of an unambiguous understanding

system for Dravidian languages. The meaning is extracted from the written

text and is stored in a frame like structure. This structure is a generalized one

so that it could be easily adapted to the potential applications of NLU like

machine translation and man-machine interface. For the development of the

prototype, Malayalam language is considered in detail. But the frame

developed for its internal meaning representation is easily adaptable for other

languages coming in this group. This is because their grammar rules are

almost the same and their vocabularies are closely related.

Karaka relations are one of the most important features of Indian languages.

They explain the relationship between the verbs and other related constituents

in a sentence. They themselves do not impart any meaning, but tell how the

nouns and other parts of speech are related to the verbs present in the

3

sentence. In this work the karaka relations are analyzed for sentence

comprehension.

The system mainly consists of a morphological analyzer, local word grouper,

a parser for the source language and a sentence generator for the target

language. Simple and complex sentences are tried to comprehend. The first

stage of sentence understanding is morphological analysis. For each word in

the input sentence a lexicon is looked up and associated grammatical

information is retrieved. It includes the parts-of-speech, gender, number,

person, vibakthi form, tense, mood etc. The second stage is the building of an

internal meaning representation structure. The knowledge representation

technique selected is frames. For filling the various slots of this frame,

expectation-driven parsing is used. The verb is first spotted. Since the

languages under study are verb-ending, parsing starts from right most end.

About 80 verbs belonging to the important verb-classes of movement,

perception, emotions, vocation, transaction etc are considered. A frame

corresponding to each of these verbs is stored. Frames belonging to same

group have similar structure. After verb spotting the frame corresponding to

that verb is loaded and the various slots are filled by finding the karakas

involved in the sentence. The vibakthi forms are different for different karaka

relations. For each verb depending upon its tense, mood and voice, the

vibakthi endings differ for karaka relations. Hence a Vibakthi-karaka mapper

has been developed.

In the case of complex sentences which contain more than one phrase, the

individual phrases are first located. Here also verbs are used for demarcating

the phrases. Then the meaning representation of component phrases are

formed and they are added up to get the complete representation.

The efficiency of this approach is put into test in two applications. One is

machine translation and the other one is a natural language interface for

information retrieval from databases. In the first case simple and complex

sentences (containing one principal clause and one subordinate clause) in a

Dravidian language are converted to English. Here the source is free word

order language while the target is a fixed word order one. Also the source is a

verb-ending one while the target is a verb central one. Since English is a fixed

word order language, regular patterns could be identified in its structure.

Fifteen such patterns are used in the study and the source language sentence

is mapped into one of these patterns which is found to be most apt one.

Ambiguous translations due to word sense disambiguaty is resolved by

semantic tags attached to words. Semantic tags are keywords that denote the

real world usage of a word. This idea is closely related to the concept of

reference in linguistics. In addition to this semantic tags a set of sense

disambiguating rules are also used for the sense disambiguation of verbs and

modifiers. This method of word sense disambiguation is simple though the

effort required is high.

In the second application an NU for information retrieval from databases is

tried. The internal meaning representation is mapped to SQL commands. The

prototype of the NU developed, answers written Malayalam questions by

generating SQL commands, which are executed by RDBMS. Complex queries

are answered and in the cases of questions that can not be answered, co­

operative messages are generated. The system is user friendly and can easily

be configured for new database domains using the built-in domain editor. The

built in domain editor helps the user to describe the entity types of the world

to which the database refers. The system was tested with three database

domains. A parliament election database ,a university academic database and

a library database. The first one had 5 tables, the second had 7 tables and the

5

third had 5 tables. The size of the smallest table was 3 rows and that of the

largest table was 1500. Each query was converted to a single SQL statement

and the DBMS was left out to find the answer to the query, utilizing its own

specialized optimization techniques. Thus the full power of the RDBMS was

available during question answering.

The user misconception is an important cause of null responses. There can be

extensional misconceptions and intentional misconceptions. For generating

quality responses during the occurrence of null values, in addition to the

relations in the database scheme, Event relations, Event-Graph relations,

Exception relation and View relations are added to the knowledge base.

The natural language input becomes ambiguous due to anaphora and ellipsis.

A question is called elliptical if one or more of its constituents are omitted.

Ellipses could be of two types - Surface level ellipsis and deep level ellipsis.

Surface level ellipsis is handled by recognizing input as elliptical and getting

in some antecedents and constructing the complete sentence. Deep level

ellipsis is handled by the use of domain's knowledge and user interaction.

Anaphora refers to the general pronouns and definite noun phrases present in

the query. Anaphoric references are resolved by two filter tests. Gender­

number-person test and tests using the knowledge about the structure of the

domain.

Chapter 2

Natural Language Processing - A Review

2.1 Introduction

Natural language processing is a technology with the ambitious goal of

making communication with computers as easy as it is with people. Natural

language understanding and natural language generation are the two

components of natural language processing. The phrase NLP generally refers

to language that is typed, printed or displayed rather than spoken [1].

Understanding spoken language is the focus of speech recognition and speech

understanding.

A major division arises within NLP - general NLP and applied NLP. General

NLP could be thought of as a way of tackling cognitive psychology from a

computer science viewpoint. The goal is to make models of human languages

usage and to make them computation ally effective. Examples are general

story understanding systems developed by Chamiak [2] Schank [3] and

Carbonell [4] and. dialogue modeling systems developed by Cohen and

Perrault [5], Grosz [6], Sidner [7] and others. These works have showed that

general NLP requires a tremendous amount of real-world knowledge.

Because of the difficulty in handling the amount of knowledge required for

these tasks, the systems constructed in this area tend to be pilot systems that

demonstrate the feasibility of concept or approach, but do not contain enough

knowledge base to make them work on more than a handful of carefully

selected passages or dialogues.

7

On the other hand applied NLP allows people to communicate with machines

through natural language. It is less important in applied NLP whether the

machine understands its natural language input in a cognitively plausible way

than whether it responds to the input in a way helpful to the user and in

accordance with the desires expressed in the input. Examples are database

interfaces developed by Hendrix [8], Orosz [9], Kaplan [to] and others, and

interfaces to expert systems as in the work of Brown and Burten [11] and J.O.

Carbonell et al [12]. These systems should be capable of detecting and

resolving errors and misunderstandings by the user.

For computers natural languages are ambiguous, imprecise, incomplete and

inaccurate. Some of the factors that contribute to the ambiguity of natural

language are multiple word meaning (eg. The man went to the bank to get

some cash. The man went to the bank and jumped in), syntactic ambiguity

(eg. I hit the man with the hammer) and unclear antecedents (eg. John hit Bill

because he sympathized with Mary). People often express concepts with

vague and inexact terminology. Consider the sentences I have been waiting in

the doctor's office for a long time, The crops died because it hadn't rained in

a long time.:. Without conceptual familiarity, a computer would not be able to

differentiate between the two different lengths of time represented by the

same phrase.

People often do not say all what they mean. Their expectation of likely events

in a particular situation enables them to understand information that was not

included in the text. To be able to comprehend incomplete information, a

computer must possess the same kind of situational expectations. Human

beings are capable of understanding inaccuracies like spelling errors,

transposed words, u.ngrammatical constructions, incorrect syntax, incomplete

sentence, improper punctuation etc. A computer designed to understand

natural language must be able to understand inaccurate uses of languages at

least as well as a person. One way to resolve linguistic ambiguity is by

understanding an idea in context. The problems of imprecision could be

avoided by identifying it with situations that are familiar. The problems of

incompleteness, could be overcome by experience or expectations in certain

situations.

Because of the several basic problems of NLP given in earlier paragraph, the

central task in NLP is the translation of the potentially ambiguous natural

language input int~ an unambiguous internal representation. There is no

commonly agreed standard for internal representation and different types are

useful for different purposes. In general NLP, translation of an utterance into

an unambiguous internal representation requires inference based on

potentially unbounded set of real-world knowledge. Consider for instance:

John went out to a restaurant last night. He ordered steak. When he paid for

it, he noticed that he was running out of money. To answer question like what

did Johan pay for? Did John eat the steak?

information on restaurants, ordering, eating and other real world topics are

required. Knowledge representation techniques have not yet developed to the

stage where they can handle to an acceptable level of efficiency the larger

quantities of such knowledge required to do a complete job of understanding a

large variety of topics. Current general NLP systems are demonstration

systems that operate with a very small amount of carefully selected

knowledge specifically designed to enable the processing of a small set of

example inputs.

Applied NLP systems tackle this problem by taking advantage of the

characteristics of the highly limited domains in which they operate. Since the

domain is restricted the amount of knowledge that must be represented and the

9

number of interfaces that must be made could be reduced to a manageable

level. The current state of art of Applied NLP is natural language interfaces

capable of handling a limited task in a limited domain. Each task and domain

that are tackled require careful pre-analysis so that the required inference can

be pre-encoded in the system, thus making it difficult to transfer successful

natural language interfaces from one task to another. In the language craft

(Carnegie-group Inc.) approach this difficulty is reduced by providing a

development environment and grammar interpreter which drastically shorten

the development of new domain specific interfaces.

2.2 Natural Language Analysis Techniques

A brief overview of the techniques commonly used for the analysis of natural

language sentences is given next.

2.2.1 Pattern Matching

In pattern matching approach, the interpretations are obtained by matching

patterns of words against input utterances. Associated with each pattern is an

interpretation, so that the derived interpretation is the one attached to the

pattern that matched. Pattern matching systems are also called template

systems. ELIZA system of Weizenbaum [4] is an example of a Pattern

matching system. The carefully selected task of ELIZA was to simulate a

psychologist as he interviewed a patient. ELIZA did not construct an internal

representation of its input as such, but directly went from the input to its reply.

The input was matched by a small set of single-level patterns, each of which

was associated with several replies. For example if the user typed you are X,

ELIZA could respond What makes you think I am X, where X is an adjective.

10

Several AI programs used templates. SIR (Semantic Infonnation Retrieval)

by Bertram Raphael is an example. It could do enough logical reasoning to

answer question such as Every person has two hands. Every hand has ten

fingers. Joe is a person. How many fingers does Joe have? Another was

Bobrow's STUDENT which could solve high school level mathematical

problems stated in English. A worthy feature of STUDENT was that it used

recursive templates. Norvig re-implemented it in Common LISP [13].

To make more complete analysis of the input using the same techniques

would require far too many patterns. Many of these patterns would contain

common sub elements since they refer to same objects or had the same

concepts managed with slightly different syntax. In order to resolve these

problems, hierarchical pattern-matching methods have been developed in

which some pattern matches only part of the input and replace that part by

some canonical result. Other higher level patterns can then match on these

canonical elements in a similar way, until a top level pattern is able to match

the canonicalized input as a whole according to the standard pattern matching

paradigm. The best-known hierarchical pattern matching is the PARRY

systems of Colby [14]. Like ELIZA, this program operates in a psychological

domain but models a paranoid patient rather than a psychologist. Pattern

matching is a quick way to extract useful infonnation from natural language

input, adequate for many practical user-interface applications. HAL, the

English language command interface for the Lotus 1-2-3 spread sheet

programs is a typical template system.

2.2.2 Keyword analysis

An alternative to template matching is keyword analysis. Instead of matching

the whole sentence to a template, a keyword systems looks for specific words

11

in the sentence and responds to each word in a specific way. One of the first

key word systems was that of Blum developed in 1966. Blum wrote a

program to accept sentences such as Copy 1 file from U 1 to U2, binary, 556

bpi, and convert them into commands for a program that managed magnetic

tapes. Though he took ELIZA as his model, Blum ended up using a quite

different technique. He distinguished these kinds of key words requests (list,

copy, backspace etc.) qualifiers that further described the request, such as

binary and quantities such as 5 files or 556 bpi. His program simply collected

all the requests, qualifiers and quantifiers in the input and put them together

into a properly formed command, paying very little attention to the word order

and completely ignoring unrecognized words. Keyword systems have had a

long and successful history. Unlike template systems, they are not thrown off

by slight variations of wording. Unrecognized words are simply skipped.

These prominent keyword systems are AI Corp's Intellect, Symantec's Q&A,

and QP&QC system developed by Wallace [15]. All of them are data base

query systems. Key word systems work well for database querying because

each important concept associated with the database has a distinctive name.

2.2.3 Syntactically Driven Parsing

Syntax deals with the rules for combining words into well-formed phrases,

clauses and sentences. In syntactically driven parsing the interpretation of

larger groups of words are built up out of the interpretations of their syntactic

constituent words or phrases. In this sense it is just opposite of pattern

matching, in which the emphasis is on interpretation of the input as a whole.

In this method syntactic analysis is done completely first and then the internal

representation or interpretation is built.

12

Syntactic analysis is obtained by application of a grammar that determines

which sentences are legal in the language being parsed. The method of

applying the grammar to the input is called parsing. The important grammar

representation formalisms are listed below.

2.2.3.1 Context-free Grammar

It has been one of the most useful techniques in natural language analysis. In

context-free grammar, symbol on the left side of a rewrite rule may be

replaced by the symbols on the right side, regardless of the context in which

the left side symbol· appears. It has the advantage that all sentences structure

derivations can be represented as a tree and several good practical parsing

algorithms do exist. The context-free grammar consists of rewrite rules of the

following forms.

S ~NPVP

NP ~ DET N I DET ADJ N

VP ~VNP

DET ~the

ADJ ~ red I big

N ~ Car I child

V ~ hit I jumped

This grammar could generate the sentence The car hit the child. The parse

tree for the sentence is as shown in fig 2.1 Although it is a relatively natural

grammar, it is unable to capture all the sentence constructions found in

English. Context-free nature of the grammar does not allow agreements such

as the one required in English between subject and object.

13

s VP

the child

Fig 2.1 A parse for "the car hit the child"

Grammar that allowed passive sentences, required completely different set of

rules to handle active sentences, even though both of them have the same

internal representation. This leads to exponential growth in the number of the

grammar rules. G~dar (18) has tackled these problems to some extent by

adding augmentation to handle situations that do not fit basic grammar.

2.2.3.2 Transformational Grammar

Linguists tackled the problems specific to context free grammars, in particular

Chomsky through transformational grammar. A transformational grammar

consists of a dictionary, a phrase structure grammar and set of

transformations. In analyzing sentences, using a phrase structure grammar,

first a parse tree is produced. This is called the surface structure. The

transformation rules are then applied to the parse tree to transform it into a

canonical form called the deep or underlying structure. As the same thing can

be stated in several different ways, there may be many surface structures that

translate into a common deep structure. Although the regularities of natural

language are accounted much better by transformational grammar than

context free grammar, its computational effectiveness is not very good. It

enables to produce a sentence starting from the symbol S. Running the model

14

in the reverse direction is highly non-detenninistic. Hence parsers based on

transfonnational grammar have not played a major role in NLP.

2.2.3.3 Augmented Transition Network

As a response to the problems of transfonnational grammar, Bobraw and

Fraser [19] proposed and Woods [20] subsequently developed a method of

expressing a syntactic grammar that was computationally tractable and could

capture linguistic generalizations in a concise way than transfonnational

grammar. The formalism Wood developed was known as an augmented

transition network (A TN). It consisted of a recurrent transition network

augmented by a set of registers that could be used to save intennediate results

or global state. An example of A TN is shown in fig 2.2 This network can

recognize simple sentences of active, passive, declarative and interrogative

types with just a subject, verb, and direct object. The symbols attached to the

arc show what constituent must be recognized to traverse the arc. AUX is an

auxiliary verb (like 'is' or 'have'). NP is a noun phrase, which is defined by

another network of the same fonnalism as this arc. V is a verb and by is the

word 'by'. The numbers on the arcs serve as indices to the table 2.1, which

lists the tests that must be true to traverse the arcs and the action that must be

perfonned as the arc is traversed.

In this LISP -like notation, the asterisk refers to the constituent just parsed

and SETR sets a register, whose name is specified by its first argument, to the

value of its second argument.

15

Test Actions

l.T (SETR v*)

(SETR TYPE' QUESTION)

2. T (SETR SUBJ*)

(SETR TYPE' DECLARATIVE)

3. (agrees* V) (SETR SUBJ*)

4 (agrees SUBJ*) (SETR V*)

5. (AND (GETF PPRT) (SETR OBJ SUB])

(= V 'BE) (SETR V*)

(SETR AGFLAG T)

(SETR SUBJ 'SOMEONE)

6. (TRANS V) (SETR OBJ*)

7. AGFLAG (SETR AGFLAG FALSE)

8. T (SETR SUBJ*)

Table 2.1. Tests and Actions for the A TN in Fig 2.2

V by

--~-~
NP NP

Fig 2.2 An example of ATN

Very large ATN grammars of several hundred nodes that capture large

subjects of English have been developed. However, ATNs also have several

disadvantages.

16

Complexity and Non-modularity

As the coverage of an A TN increases, the structural complexity also increases.

Modification or augmentation of an existing A TN would cause unforeseen

side effects. For instance, suppose a new outgoing arc is added to a node

with a large number of incoming arcs to handle an additional type of phrase

which is a valid continuation of the parse represented by one of the incoming

arcs, it could lead to spurious and incorrect parses when the node is reached

via a different incoming arc. Fan-out and fan-in factors of 10 or 20 are not

uncommon in large realistic grammars.

Fragility

The current position in the network is a very important piece of state

information for the operation of an ATN. If input is slightly ungrammatical,

even by a single word, it is very hard to find the appropriate state to jump to

continue parsing. K wasny and Sondheimer [21] and Weischedel and Black

[22] had done good works in dealing with ill-formed input in natural

language. Bates [23] in his work on island-driven ATN parsing, had given

methods to solve this problems in speech input.

Inefficiency through back tracking search

Traversing an A TN requires search. The natural way to search an A TN is

through back tracking. Because intermediate failures are not remembered in

such a search, the possibility of repetition of the same sub parses arrived at

through different paths in the network, is high. Chart parsing techniques were

designed as alternatives to ATNs precisely to avoid these inefficiencies.

17

2.2.3.4 Semantic Grammar

It is a context free grammar in which the choice of non-terminals and

production rules is· governed by semantic as well as syntactic function.

Semantic grammars were introduced by RRBurton for use in SOPHIE, a

Computer-aided Instruction systems for electronic circuit debugging [24].

The goal was to eliminate the production of meaningless parses for practical

systems in limited domains. It is often more useful to use meaningful semantic

components instead of syntactic constituents such as noun phrases, verb

phrases, prepositions etc. Thus in place of nouns when dealing with a naval

database, one might use ship, captains, ports, cargoes etc. This approach

gives direct access to the semantics of a sentence and substantially simplifies

and shortens the processing.

Hendrix et al [8] developed a system named LIFER with semantic grammar.

The rules had the following format

S -7 <present> the <attribute> of <ship>

<present> -7what is/[can you] tell me

<attribute> -7length I beam I class

<ship> -7 the <ship name>1 <class name> class ship

<ship name> -7 Kennedyl enterprise

<class name> -7 Kitty hawkllafayettee

An expanded version of this grammar was used for access to a database of

information about U.S. Navy ships in the LADDER systems[25]. In addition

to defining a grammar, LIFER also allowed an interface builder to specify the

interpretation to be produced from rules that were used in the recognition of

18

input. One semantic action was associated with each rule. Database query

language statements were generated as a direct result of the recognition.

The principal advantages of semantic grammars are:

• When the parse is complete, the result can be used immediately without

the additional stage of processing that would be required if a semantic

interpretation had not already been performed during the parse.

• Many ambiguities that would arise during a strictly syntactic parse can be

avoided since some of the interpretations do not make sense semantically

and thus cannot be generated by the semantic grammar.

• Syntactic issues that do not affect the semantics can be ignored.

Some drawbacks to the use of semantic grammars are

• New grammar is to be developed for each domain, since the semantic

categories for each domain will be quite different.

• The number of rules required can become very large since many syntactic

generalizations are ruined.

• Because the number of grammar rules may be very large, the parsing

process may be expensive.

TEAM system [9] is an attempt to resolve the above problem. It focuses on a

specific class of applications, access to relational databases, and abstract out

the linguistically common aspects of a semantic grammar for such a class.

19

Building a specific interface, then, requires only instantiating a template with

the vocabulary and morphological variation required for a specific database.

This approach has the potential to produce highly efficient natural language

interfaces, at the expense of the inability to go beyond a particular class.

DYPAR system [29] combines the strengths of semantic grammars, syntactic

transformation and pattern matching into a single system that maps structures

into canonical forms before attempting to use the full semantic grammar.

That allowed many redundant and unnecessary constructions to be eliminated.

Although richer in expressive power, this approach demands more

sophistication of the grammar writer, requiring knowledge of how to write

transformation, context free rules and patterns.

2.2.3.5 Lexical Functional Grammar

It is a strong computational formalism that addresses how to extract

grammatical relations from a sentence in a positional language such as

English. LFG has been designed by Kaplan and Bresnan [26]. It postulates

two levels of representation: one based on constituent structure and the other

on grammatical furictions such as subject, object etc. In fixed word order

languages like English, positions are used for coding both theta relations.

Considerable effort had gone into the design of LFG so that it can deal with

and separate these two kinds of information. Mapping from grammatical

functions into theta roles is enumerated exhaustively in the lexicon.

LFG formalism has two major components, a context free grammar and a

functional specification. The former gives the c-structure for a sentence and

the latter gives the f-structure. The major strength of LFG is that it gives

explicit algorithms for extracting grammatical functions. Its weakness is that it

20

does not offer any theory regarding lexical ambiguity, adjuncts and optional

theta roles and mapping from grammatical relations to theta roles.

2.2.3.6 Government and Binding

It is the dominant linguistic theory. Its goal is to identify the innate structure

in human mind, which enables a child to acquire language so effortlessly. It

does not address the problems of either parsing or generation. As a result it

proposes its formalism in a form which is not amenable to computation

directly. GB keeps changing so much and so rapidly that it is difficult to know

what GB is at any given time and implement it. Hence this theory is not

popular with computational linguistics. GB grammar has three levels of

representations of a sentence - D-structure, S-structure and LF- representation.

In the GB model a crucial role is played by interacting systems of principles.

These systems of principles are X-bar theory, thematic theory, government

case theory, bounding theory and control theory. These systems of principles

place constraints thus filtering out un grammatical representations. Typically,

various principles have some parameters associated with them. These

parameters are meant to make the grammar flexible enough to account for all

the different languages.

2.2.4 Case Grammar

It is a form of transformational grammar in which the deep structure is based

on cases - semantically relevant syntactic relationships. Case grammar was

proposed by Charles Fillmore. In this formalism syntactic and semantic

interpretations are combined [27]. The central idea is that the deep structure

of a simple sentence consists of a verb and one or more noun phrases

associated with the verb in a particular relationship. Fillmore proposed the

21

following cases: agent, experience, instrument, object, source, goal, location,

type and path. The cases for each verb fonn an ordered set referred to as a

'case frame'. It indicates that the verb open always has an object. But the

instrument or agent can be omitted. Thus the case frame associated with the

verb provides a template which builds in understanding a sentence. Consider

the sentence. John killed Jim with a knife for Mary. The case frame

corresponding to this sentence is

[Kill
[Case frame
Agent
Dative
Instrument
Beneficiary
Co-agent
Location

[Modals
time
voice

John
Jim
Knife
Mary

past
active]]

Case frame differ noticeably from simple, purely syntactic, parse trees. The

relation between the head of the case frame and the individual cases are

defined semantically, not syntactically. Hence a noun in the subject position

can fill the agent case, as in the example above or it can fill an object case as

in the window broke or it can fill the instrument case as in the hammer broke

the window. Since the purpose of a natural language interface is to extract the

semantics of the input, case frame representation is powerful than syntactic

parse trees. Each case frame defines some required cases, some optional cases

and some forbidden cases. A required case is one that must be present in

order for the verb to make sense. An optional case is one that, if present,

provides more information to the case frame representation but, if absent, does

not harm its semantic integrity. Forbidden cases are those that cannot be

present with the head verb.

22

2.2.5 Conceptual Dependency

It is a semantic representation formalism developed by Schank [28]. It

attempts to represent every action as a composition of one or more primitive

actions, plus intermediate states and causal relations. Consider the sentences

John gave Mary a ball and Mary took a ball from John. Even though these

sentences differ syntactically, both sentences express the proposition that a

ball was transferred from John to Mary. In CD the primitive action ATRANS

could be used to encode the semantics of these verbs (took and gave). The CD

representations of these sentences are given below.

[ATRANS

reI
Actor
Object
Source
Recipient

possessIon
John
Ball
John
Mary]

John gave Mary a ball

[ATRANS

reI
Actor
Object
Source
Recipient

possession
Mary
Ball
John
Mary]

Mary took a ballfrom John

These two structures determine precisely in what aspects these two

propositions differ and in what aspects they are identical. Moreover inference

rules associated

with ATRANS could be invoked automatically when give and take verbs are

parsed.

Thus the CD representation of a verb is at a lower level than that of a verb in a

case grammar. It provides a greater degree of predictive power. The first step

23

in mapping a sentence into its CD representation involves a syntactic

processor that extracts the main noun and verb. It also detennines the

syntactic category and aspectual class of the verb. The conceptual processor

then takes over. It makes use of a verb-ACT dictionary, which contains an

entry for each environment in which a verb can appear. Once the correct

dictionary entry is chosen, the conceptual processor analyses the rest of the

sentence looking for components that will fit into the empty slots of the verb

structure.

2.2.6 Expectation-Driven parsing

It refers to a family of natural language understanding systems. An

expectation driven parser is a top-down parser that looks for concepts rather

than grammatical elements. Unlike a syntactic parser which might look for a

noun phrase followed by a verb phrase, an expectation driven parser would

look for an action followed by an object that the action could apply to. The

availability of conceptual structures during the parsing process is the most

distinctive feature of expectation-driven parses. A proper description of any

particular expectation driven parser needs to include the kinds of text it was

intended to handle and the kind of syntax it was extended to talk to [29].

A request has two points, a test and an action. Expectation driven parsing

algorithms uses a list of active request, initially empty and a set of global

variables where the actions of the requests can put conceptual structures. The

first request based expectation driven parse was developed for the MARGIE

inference system. MARGIE was a program developed by Roger Schank and

his students at the Stanford AI laboratory in 1975. Its intent was to provide an

intuition model of the process of natural language understanding.

24

The MARGIE system has 3 components - A conceptual analyzer, an

inferencer and a text generator. The analyzer takes English sentences and

converts them into as internal conceptual-dependency representation. The

analyzer reads a sentence form left to right word by word, putting the requests

attached to each word in a list and executing the actions of any requests whose

test are true. Usually the basic conceptual framework for the sentence is built

as soon as the main verb's requests are loaded. The various slots of this frame

would be filled while processing the remainder of the sentence.

The inference accepts a proposition stated in CD and deduces a large number

of facts from the proposition in the current context of the system's memory.

The reason behind this component was the assumption that humans

understand far more from a sentence than is actually stated. Sixteen types if

inferences were identified, including case, effect, specification and function.

The inference knowledge was represented in memory in a modified semantic

net. Consider the sentence John hit Mary. From this the systems may infer

John was angry with Mary.

Mary might hit John back.

Mary might get hurt.

The text generation module converts the internal CD representation into

English-like output. MARGIE runs in two modes. In inference mode, it

would accept a sentence and attempt to make inferences from that sentence as

described above. In paraphrase mode, it would attempt to restate the sentence

in as many equivalent ways as possible. For example, given the input John

killed Mary by choking her, might produce the paraphrases

John strangled Mary.

John choked Mary and she died because she was unable to breath.

25

The successor to the MARGIE parse was ELl (English Language Interpreter

[29]. It was a part of the SAM (Script Applying Mechanism) [30] systems.

The goal of the SAM system was to read short text about events occurring in a

stereo typical situation like story about going to a restaurant, a car accident or

a news paper report and understand events that were not mentioned explicitly

in the text and answer questions about what did and did not occur in the story.

ELl made more explicit the functional structure of requests. A new field

called SUGGESTIONS was added to each request, and it contained request to

be activated if the first request was executed. Requests adding requests were

more common in ELl than in the MARGIE parser. Nesting request in this way

reduced the number of requests active at anyone time and increased the

expectational nature of ELL

ELl also made explicit in each request, which variables its action affected. By

doing this, it was possible to dynamically chain requests together, resulting in

several improvements in request management. When the value of a global

variable changed, ELl could immediately tell which tests of which requests

might be affected. A request whose action would set a variable to a value that

wants no test could be rejected immediately. Default constraints placed on

variables could be propagated automatically to these requests where actions

were attempting to fill those variables. Once a variable was filled, other

requests attempting to fill that some variable could be removed from the list of

active requests as they are no longer needed.

ELl was succeeded by the conceptual Analyzer (CA) [31]. CA's Control

Structure was simpler that ELl. CA hid requests when parsing noun phrases

and kept a list of built concepts called the C-LIST, from which larger

structures were built. Request could not only test for particular concept in the

26

C-LIST but could also test the order in which concepts appeared in the C­

LIST. CA's active request list was sub divided into pools where each pool

contained those requests that had been added at the same time. CA always

had the most recent requests first, so that a loose stack discipline was

maintained for reducing the number of requests considered. AD-HAC

developed by Cater was an expectation driven parser. It was developed to

deal with very ambiguous sentences using a preferential approach [32]. AD­

HAC's theories were a way of exploring possible conceptual parses in a best

first manner. One novel feature of AD-HAC was that it used an ATN

syntactic parser to pre analyze the input tests and label verb groups, noun

groups, prepositional phrases and conjunctions. It removed the need for

requests attached to articles and other function words.

Micro ELl [32] also used an expectation driven parser. Each request had 3

fields; TEST, ASSIGN, and NEXT-PACKET. The ASSIGN field reduced all

actions to variable assignment. The NEXT -PACKET field of a request

contained requests to be added if the request was executed. As in CA,

requests were added in separate pools rather than merged into one list. The

most recently added packet requests had to be used or removed before the

next most recent packet could be accessed.

The MARGIE parser, ELl and CA used lexically indexed requests to construct

conceptual forms with only simple syntactic cues. Several other systems

while preserving the primary goal of producing conceptual representations

proposed significant alternatives in control structure.

27

2.2.7 Word-Expert Parsing

Small and Riegers [33] had developed this parsing formalism in a Computer

program that analyses fragments of natural language text in order to extract

their meaning in context. The parser successfully analyses input fragments

rich in word-sense ambiguity and idioms and handles a range of interesting

syntactic constructions.

Word-expert parsing (WEP) views individual words as active lexical agents

called word experts, which participate in the overall control of the parsing

processing. Each active word expert must (a) determine its own meaning or

function role in the larger text and (b) provide conceptual and control

information to other experts to enable them likewise to coordinate this

complex task. Isolated word sense discrimination is not possible, since much

of the dynamic knowledge required to complete that task must come from

other experts. Thus each expert must both ask questions of other expert and

answer ones posed to it.

Each word is mode led by a separate computer program and parsing takes

place through the successive execution of the expert programs corresponding

to the words of the input. The effect of these programs is to augment the

overall meaning representation and to alter the control flow of the overall

process. One probiem in reading from left to right is that some times the

meaning of a word does not became clear until later in the sentence, a few

more words have been seen. Since each word expert is responsible for fitting

its word on to the overall interpretation of the sentence, it sometimes needs to

wait a while. The individual word expert thus affects the high-order

processing of the word by waiting for what it needs and then forcing itself

28

back into the action, obviously disrupting the normal left-to-right flow of

things.

The parser was developed in Maryland LISP on the Univac 1100/42 at the

university of Maryland. It operates with a small vocabulary of 40

implemented word experts. The existing collection of experts is sufficient to

analyze sentences containing many different contextual usages of the content

words eat, deep, throw, pit, case, by and out. The analysis of a sentence

containing such a word entails the determination of exactly what it means in

context. The parser correctly determines the meaning of fragments such as

throw in the towel, throw the ball in the pit, throw out the garbage, throw out

the court case and throw a party. G.Adrianes of University of Leuven,

Belgium has developed a version of WEP to analyze Dutch sentences with

multiple lexical ambiguities particular to that language.

2.2.8 Integrated Partial Parser

Contrary to WEP, Integrated Partial Parser (IPP) simplified word definition to

the base conceptual minimum [34]. The most ambiguous words like be and

false had no definitions at all. Parsing was driven by requests attached to

concepts pointed to by more meaningful words like hijack and shooting. IPP

was designed to parse hundreds of newspaper articles about terrorism and

store them in a hierarchical long-term database using memory structure called

the memory-organization packet. The pars er was intelligent though to face

unknown words and unexpected grammatical constructs. Words are divided

into 5 classes: event builders, event refiners, token makers, token refiners and

function words. IPP was not as verb-centered as most expectation driven

parsers.

29

2.2.9 Connection ism

It is a highly parallel computational paradigm that supports many intelligent

activities like vision, knowledge representation, natural language

understanding, learning etc. There are several reasons to believe that

connectionist algorithms are suitable for language users. Language is

acquired by some form of learning. Human linguistic activity continually

adapts to its environment. Thus, models which show learning and adaptation

should be preferred to models in which adaptation is difficult. Rule based

systems are brittle in the sense that they often fail to generalize across input

context. Networks can often make accurate classification from partial data

and they are sensitive to context. They can handle ill-formed ungrammatical

input and are able to generalize novel outputs, by generating combinations of

previously trained outputs. A brief overview of some important works done

in NLP using this approach is given below.

One early influential connectionist model for natural language concepts has

been the model of learning the past tense of verbs developed by Rumelhart

and McClelland [35]. This model demonstrated that rule like behavior for the

building of past tenses could be realized in a connectionist pattern associator

which did not contain any explicit symbolic rules. Each word was represented

with a set of overlapping triples called wickelphones. This set of

wickelphones for a word was coded into a distributed representation of 460

phonetic features called wickelfeatures. Sequence was not represented

explicitly in this model, but implicitly in the parallel representation of

overlapping triples of wickelphones.

Another model which used a spatial parallel representation, focussed on case

role assignment in sentences. [36]. A pattern associator learned and

30

represented the syntactic and semantic knowledge for making case role

assignments. The input was a representative of the surface structure of a

sentence. The output of this model was the representation of the case role.

While this model could deal with several difficult problems of structural

disambiguation and lexical disambiguation, its representation was restricted in

length by the predefined number of surface structures and case role units.

This factor inhibited the processing of longer or more complex sentences.

Sliding windows model could represent a restricted part of a natural language

sequence spatially. Instead of presenting the whole sequence to the network,

only that part that could fit into the window was sent to the network. By

moving the window across the whole sequences, sequences of an unrestricted

length could be processed. Sejnowiski and Rosenberg had used this technique

in NET talk architecture [37]. A window of seven letters was moved over text

and the task of the network was to produce the central phoneme corresponding

to the fourth of the seven letters. Sliding window technique has the

disadvantage of restricting the sequential context by the length of the window.

A.Waibel et al [38] developed a Time Delay Neural Network (TDNN) for

sequence learning in speech processing. Each TDNN unit receives the current

input as well as the input of previous time steps. Hence each unit can keep

track of the history of input values which can support sequentiality. Based on

these TDNN units, various TDNN architectures have been successfully built

in modeling various aspects of time-dependent speech analysis.

While spatial parallel representations and sliding windows use fixed length of

the sequential context, recurrent models represent arbitrarily long sequences.

M.I. Jordan [39] proposed a recurrent model for processing sequences which

31

represents plans, states and actions as distributed vectors for a certain plan.

This network generates a corresponding sequence of output actions.

While a Jordan network can represent the preceding context, it also depends

crucially on the values of the output units. Rather than using the output units

for recurrent feed back to the next input, Elman [40] has suggested

representing context by connecting the units of a hidden layer to the input

layer. This enables the network to use the learned distributed internal

representation of the preceding context rather than the values of the output

units of the directly preceding step. These Elman networks have been trained

and tested on prediction tasks for which the next item of the sequence is

predicted based on the current input and the preceding internal context. A

typical prediction task is predicting language sequences based on simple

grammar.

Pollack J.B [41] developed a Recurrent Recursive Auto Associate Memory

(RAAM), model for representing recursive data structures. The architecture

of a RAAM is a feed forward model consisting of a compressor and

reconstructor.

The compressor maps the input into an internal reduced representation which

can be decoded by the reconstructor. The recursive use of reduced internal

representation for input and output in the RAAM leads to learning

compositional representations in a dynamically changing environment, since

the internal representations evolve over time starting from random values. In

general, recurrent models like Jordan networks, Elman networks and RAAM

are more powerful than spatial models, since they can process language

sequences of arbitrary length while spatial models are restricted by the size of

the network or the use of sliding window.

32

Another model for representing and learning syntactic, semantic and

inferential knowledge of natural language concepts is the sentence gestalt

model developed by St. John and Mcclleland [42]. It is based on an extended

Jordan network with additional hidden layers. Starting with the first

constituent, the network is trained to predict the role/filler pairs of the

complete event, even though the corresponding constituents occur only later

in the sentence. Using this architecture, natural language processing aspects

like word disambiguation, role assignments, simple form of garden path

effects could be demonstrated. This model is not capable of representing

embedded structures or phrases attached to single constituents.

Cottrell et al [43] gave an integrated connectionist model for grounding

language in perception. It combines two feed forward encoder networks,

which compress faces and names in their hidden layers. Association between

names and faces are learned by connecting the hidden layers of the two

encoder networks via additional hidden layers. After a separate training of the

two encoders and a subsequent training of the mutual association, this model

could associate names with faces and vice versa. This work has been

extended towards dynamic grounding for very simple movies.

Recently several hybrid models combines certain advantageous properties of

symbolic representation with connectionist representations have been

emerged. One of the first hybrid models for language understanding,

developed by Pollack [44], represents syntactic, semantic and contextual

knowledge for sentence understanding. A symbolic parser is used to generate

the syntactic nodes and connections of a local connectionist network. These

syntactic nodes interact with the manually encoded lexical, semantic and

contextual nodes of the local network. The local connectionist model is based

33

on interactive architecture in which competing syntactic, lexical semantic and

contextual constraints can be integrated in parallel. This integration allows

parsing difficult garden path sentences, which have some initial syntactic

structure or semantic interpretation, which has to be connected later when

additional semantic or structural knowledge is available. The main

contribution of this work is the interactive view of lexical, syntactic, semantic

and contextual knowledge in a parallel hierarchical localist network. The

main weakness of this approach is the hand coded semantic and contextual

part of the local network that has to be generated for particular sentences,

since learning semantics is not part of the original model.

The hybrid symbolic connectionist model, CIRCUS by Lehnert [45] focus sed

more on conceptual analysis. This model combines a symbolic syntactic

analysis, a symbolic semantic top down analysis and a local connectionist

bottom-up analysis based on numerical relaxation. Top-down predictions for

conceptual frames can be triggered by specific associated words and interact

with bottom-up predictions from the local network in order to transform

sentences into conceptual frames. The syntactic analysis is based on a stack

oriented conceptual analyzer that stores sentences fragments in global

syntactic buffers. Each time a new syntactic fragment has been found, the

predictive semantics module takes control to check if a slot in a top-down

concept frame can be filled. Each slot in a concept firm can have associated

hard constraints, which must be fulfilled and soft constraints, which may be

fulfilled. Since soft.constraints may be violated they provide a mechanism for

robust symbolic conceptual analysis. A local relaxation network is created for

solving attachment problems. If the local network is able to resolve an

ambiguous attachment, an additional slot can be inserted into a concept frame.

In this way, top down predictive slot filling is combined with bottom-up data­

driven slot insertion. An extended version of this conceptual analyzer has

34

been successfully applied to the parsing and categorizing of stories into

various claims of conceptual frames.

Hendler [46] has developed a hybrid symbolic/connectionist model that

combines symbolic marker parsing with connectionist processing for making

inferences in a natural language environment. The task of the marker parser is

to find inference paths in a symbolic semantic network. However a semantic

network can not anticipate all potentially useful connection to similar objects.

Therefore connectionist networks are used for representing similarity between

various objects. When a symbolic marker reaches a node in the semantic

network that is associated with micro features in a local network, the

activation of the marker in the semantic network is used to initialize the

activator of the associated nodes in the local network. Then activation spreads

within the local network and similarities between objects can be detected. If a

node in the local network receives enough activator it can activate a marker in

the semantic network and marker parsing continues. This enables the network

to make unanticipated associations between similar objects.

2.3 The Indian Context

India is a multilingual country. Developments in technology world wide are

influencing Indian languages. Indian languages exhibit a high degree of

structural homogeneity even though the scripts are different. Demands for

computer systems with input/output facilities in these scripts have been

growing steadily. The work in the direction of developing natural language

understanding systems for Indian languages was started in India by the

initiative of the Department of Electronics (DoE), government of India in the

mid 1980' s. The motivations of DoE were to make computers reach the

common man, development of application software for Indian languages,

35

development of Indian language interfaces to various application packages

like databases, spreadsheets etc.

Many projects were initiated with DoE funding at many educational and

research institutions all over the country [47]. Indian Institute of Technology

(lIT), Kanpur and Center for the Development of Advanced Computing (C­

DAC) are in the forefront of the works done in this area. C-DAC's GIST

technology and ISFOC font standards has made Indian languages usable on

computers along with many accepted software. GIST technology also makes it

possible to transliterate between different scripts. Transliteration packages are

being used increasingly for printing telephone directories, passenger lists,

degree certificates etc in bilingual formats. Solutions both in the form of

hardware and software are being offered for word processing, desktop

publishing and data processing applications.

These developments have paved the way for serious research in the areas of

natural language processing like machine translation, computer assisted

teaching, corpora development, natural language interfaces etc.

Machine Translation: lIT Kanpur is actively involved in this field from

early 1980's. The important projects carried are ANUSARAKA [48,49] and

ANGALABHARATHI [49]. In 1984, Prof. R.M.K Sinha, proposed an

interlingua approach using Sanskrit as the intermediate language for meaning

representation. During 1986-88 a prototype for translation from Hindi to

Telgu was developed by Chaitanya and Sangal which was capable of

translating very simple sentences with limited vocabulary. A karak based

conceptual graph was used for internal representation and disambiguation.

Then it was realized that for Indian languages, which are structurally close to

each other, a direct lexical substitution in a language pair could lead to

36

reasonable results in a simplistic manner. This led to the development of the

software ANUSARAKA. Here the commonality of the source and destination

language (both being Indian languages) are exploited to the fullest extent.

The approach consists of grouping the words in the source language as a

single syntactic entity and then handcrafting the lexical substitute needed for

the target language. Certain rules are devised for the postposition. Word

ordering is mostly preserved. A system between language pairs Kannada and

Hindi has been developed.

ANGALABHARTI project was launched by Prof.R.M.K Sinha for machine

translation from English to Indian languages in 1991. It is a machine aided

translation system. A pattern directed rule-based system with context free

grammar like structure is used to generate a 'pseudo-target'. The idea of the

pseudo-target is to exploit structural similarity. A number of semantic tags are

used to resolve sense ambiguity in the source language. A text generator

module for each of the target language transforms the pseudo-target language

to the target language. These transformations may lead to sentences, which

may be ill formed. A corrector for ill-formed sentence is used for each of the

target language. Finally a post-editing is done by a human being. This person

needs to know only the target language. A system for translation from Hindi

to Telgu has been developed.

Computer assisted teaching systems: Several software packages have been

available for the teaching of Indian languages. The following software

packages are available for teaching the grammar of Hindi and Sanskrit

languages.

Hindi

• UPMA - Upma - Alankar package

• A-AB - Alankar - Arthabhed package

37

• WORD - Word fonnation package

• CASMOR - Cases generation and Morphological analysis package

• GNSA - Gender, Number, Synonyms, Antonyms package

• VARNA SHISHAK - Includes 4 modules for pronunciation,

fonnatting,

exercise and evaluation

• SHABDA KOSH - for beginners and nOil-native Hindi learners

Sanskrit

General modules which include Varnamala, Sandhi, Subanta, Tignata,

Kridanta, Taddhita and Samasa are available. Word identification Modules

include Sandhi' Vacheda, Subanta vachheda and Tiganta Vacheda.

MEDHA package gives equivalent words in Sanskrit, Hindi, English,

Kannada, Tamil, Telgu and Malayalam. PRATHmHA is a machine

translation software to translate Sanskrit sentences into Kannada and

Tamil. DESIKA is a software developed for the analysis and generation of

Sanskrit words.

Corpora Development: Corpora of texts in machine readable from has

been developed for nearly 20 lakhs words in Tamil, Telgu, Kannada and

Malayalam. 15 lakhs words in Gujarathi, Marathi, Oriya, Bengali and

Sanskrit. Works :pertaining to kashmiri, Urdu, Assammi, Punjabi and Hindi

are progressing. Categories identified for manual as well as automatic

tagging of the corpora at word level include noun, pronoun, verb (finite

and non-finite) adjectives, adverbs and indeclinables.

38

3.1 Introduction

Chapter 3

System Architecture

Language comprehension requires human competence at various levels of

knowledge. These levels include morphological analysis, syntactic

analysis, semantic analysis, discourse integration and pragmatic analysis

[51]. Due to ambiguity, imprecision and incompleteness, language

comprehension is a complex task for computers. But surprisingly it is

achieved without much effort by human beings.

Automated Natural language understanding systems have several potential

applications. The standard technique used in NLU is to use a context-free

grammar formalism for processing sentences. But this methodology is

suitable only for fixed word order languages [52]. But Draviadian

languages belong to the class of free word order languages. Hence a

different approach is used in this work. It makes use of the 'karaka'

relations in the sentence for its understanding. The validity of the approach

is established by two case studies. The model developed is put to study in

two important applications. One is machine translation and the other is

development of natural language interface to databases. In the first case

study reported, translation of simple and complex sentences in Dravidian

languages to English is tried. In the second case study natural language

queries in Dravidian languages are converted to SQL (structured query

language) statements and are used for infonnation retrieval from

databases.

39

3.2 Dravidian Languages

The members of the family of Dravidian languages are the languages

spoken by the people of South India. About 17 languages are there in this

family. But about 95% of the south Indian population speak the prominent

languages Telgu, Kannada, Tamil and Malayalam [53].

3.2.1 The Common Characteristics of Dravidian Languages

The scholars and grammarians of the ancient Sanskrit language held the

view that all the South Indian languages were derived from Sanskrit and

that there was no common criteria for claiming an identity for those

languages. It seems they forget the fact that the individuality of a language

is based on grammatical structures. It is true that some of these languages

have borrowed words from Sanskrit. But in all basic details these

languages maintain distinctness. If at all there were fragile contacts

between Sanskrit and the Dravidian languages in the long past, it would be

absurd to consider the Dravidian languages as an off-shoot of Sanskrit .

According to Caldwell "The hypothesis of the existence of a remote

original affinity between Dravidian languages and Sanskrit or rather

between those languages and the Indo-European family of tongues

inclusive of Sanskrit is of such a nature so as to allow us to give the

Dravidian languages a place in the Indo-European group is altogether

different from the notion of the direct derivation of those languages from

Sanskrit" [53]. Some basic grammatical aspects are provided below which

could be used to highlight the structural homogeneity or the cognate nature

of Dravidian languages.

• Indo-European languages belong to the synthetic group and the

Dravidian languages belong to the analytical group of languages. The

Dravidian system of declensions is by means of suffixed postpositions

and separable particles. For instance, the various case markers for the

40

noun in the singular are affixed to the singular base of the noun and

plural affixes are added to the plural base of the noun. Whereas the

languages belonging to the synthetic group make use of strong affixing

structures capable of expressing different linguistic concepts.

• The condition that the object described should have accord with the

adjectives with regard to gender, number etc. is absent in Dravidian

languages. To be precise, the Dravidian languages do not possess

correct adjectival words. This deficiency is compensated by

participles. The rare modifiers which are exceptions to this also have

the structure of participles.

• Another peculiarity of the Dravidian languages is the total absence of a

device for forming degrees of adjectives. The availability of forms for

comparison of adjectives is widely seen in all Indo-European

languages.

• Another feature of the Dravidian languages with regard to verbs is the

existence of affirmative as well as negative voice. The negatives have

separate methods of expression. Eg. : Varum - Vara. In Sanskrit, the

negative is indicated by a separate word. In Dravidian language, the

adjectival and adverbial forms of two negatives, "alia" and "ilia" are

seen.

• The passive voice is absent in the Dravidian languages. A few

languages like Malayalam have adopted passive voice in imitation of

Sanskrit. On such occasions, they make use of another auxiliary verb

to execute the structure.

• Two types of plural forms for expressing the first person is seen in

most of the Dravidian languages. These plural forms either include or

41

exclude the listener, a method totally unknown to the Indo-European

languages.

• Dravidian languages have only two forms, singular or plural. Dual is

absent.

• The prefixes and suffixes used to indicate case relations are similar in

both singular and plural.

• Plurals forms are very rare in neuter gender. In some languages, plural

form is ruled out if the structure involves numerical adjectives.

• Common gender is another feature of the Dravidian languages.

E,g,: Midukkan - Midukkanmar

- Midukkar

Midukki - Midukkikal

• Dravidian languages have distinctive features in the word order in

sentences. Normal procedure is to join adjectives and adverbs before

the noun or verb. The sequence is in the form subject, object and verb.

• The rules of sandhi in Sanskrit and in the Dravidian languages are

quite different.

• Nouns are divided into two, humane and non-humane. The gender

difference is shown only in the first case. Meaning rather than form is

the basis of gender.

When we consider the forgone discussion, it becomes quite evident that

the Dravidian languages belong to an independent family quite distinct

from the Indo-European language families. Many linguists have attempted

to link the Dravidian languages with the other language families like

42

Tibeto-Burman, Ural-Altaic etc. But there is yet no unanimity of opinion

among scholars about these propositions.

3.3 Design Methodology

The karaka based approach of sentence comprehension has its basis in the

Paninian grammar. Panini, a great Indian scholar wrote a grammar system

called Ashtadhyayi for Sanskrit somewhere around 500 BC. Since Sanskrit

could be considered as a prototype for Indian languages to some extent,

this approach could be also extended to Dravidian languages. Paninian

approach addresses how to extract meaning from an utterance [54]. The

karaka relations are made use for that. Karaka relations are the semantico­

syntactic relations between the verbs and other related constituents in a

sentence. They themselves do not impart any meaning, but tell how the

nouns and other parts of speech are related to the verbs present in the

sentence.

In this work the karaka relations are analysed for the understanding of

Dravidian languages. It emphasizes the roles of vibakthi and postpositions

markers. Position and word order is brought into consideration only when

necessary. This approach is comparable with the broad class of case based

grammars.

A sentence is not only a statement of an activity but also contains

information regarding the speakers view point. The speaker's view point

usually affects the choice of verb form and it in turn affects the choice of

participants and their relation with the action. For example consider the

sentences.

1. The boy opened the door.

2. The wind opened the door.

3. The door was opened.

43

In the first sentence the speaker gives emphasis to the role of the boy. In

the second sentence the emphasis is on the role of the wind and in the third

sentence the emphasis is on the fact that the door was opened.

There are about six types of karaka relations [65]. It is clearly not possible

for them to capture the innumerable types of semantic relations among all

possible actions or states and all possible objects in the world. But they do

specify the relations of nominals that participate in the action specified by

the particular verb. They provide the maximum necessary information

relative to a verb. According to Paninian perspective there are four levels

in the understanding process of a sentence [52]. They are surface level

(uttered sentence), vibakthi level, karaka level and semantic level. The

karaka level has relationship to semantics on one side and to syntax on the

other side. The position or order of occurrence of a noun group does not

contain information about the karaka or theta roles in a sentence. The

postposition markers after nouns in north Indian languages or surface case

endings of nouns in Dravidian languages play a key role in specifying

semantic relations. These markers and case endings are called vibakthi

Consider the following four sentences.

Raman Krishnane addichhu. (Raman beat krishnan.)

Krishnane Raman addichhu. (Raman beat krishnan.)

Ramane krishnan addichhu. (Krishnan beat Raman.)

Krishnan ramane addichhu. (Krishnan beat Raman.)

In sentences 1 & 2 Raman has the same semantic relation to the verb. In

sentences 3 & 4 semantic relation of Raman is interchanged with that of

Krishnan by interchanging their vibakthi. So vibakthi is crucial in

determining the semantic roles.

44

The vibakthi fonns could be seven . They are nirdesika, prathigrahika,

samyojika, udeshika, prayojika, sambandhika and aadharika. For example,

in table 3.1 the vibakthi forms of the Malayalam noun "kavi (poet)" are

given.

Vibakthi suffix word

nirdesika kavi

prathigrahika e kavie

samyojika Ode kaviyOde

udesika ikke, ine kavikke

prayojika AI kaviAI

sambandhika inte, ude kaviude

aadharika il, kl kaviyiJ

Table 3.1 Vibakthi forms of the noun "kavi(poet)"

The six karaka are karta, karma, sakshi, swami, hethu and adhikarna.

Among the six the most independent one is called the karta karakam. The

activity actually resides in or springs from karta. The corresponding noun

is usually in the nirdesika vibakthi fonn. The result of the verb is reflected

in kanna karakam. For transitive or sakannaka verbs karta and kanna

karaka will be different. In such cases the karma karakam will be in

prathigrahika vibakthi if it is a lifeless entity. Otherwise it will be also in

nirdesika fonn. Some activities require a participant with the karta. That

participant is the sakshi karakam. For example in the sentence

Raman KrishnanOdu vazhakiUu. (Raman quarreled with Krishnan.)

"Krishnan" is the sakshi karakam. Sakshi karakam will be in samyojika

vibakthi fonn. Swami karakam is the beneficiary of the activity. For

example consider the sentence.

45

Alice pattikke mamsom koduthu. -(A lice gave meat to the dog.)

Here "patti (dog)" is the beneficiary of the activity gave. The swamI

karakam is usually in udesika / prathigrahika vibhakthi form. The hethu

karakam is the instrument for performing the action. It will be in the

prayojika vibakthi form. For example consider the sentence.

Amma kuttiye vadiyal adichhu. (Mother beat the child with a stick.)

Here "vadi (stick),' is the instrument for beating and it is in the Prayojika

vibakthi form. Adikarana karakam refers to the object (in time or space)

which helps in the execution of the activity. It will be in the aadharika

vibakthi form. For example consider the sentence.

Pustakam mesail erripunddu. (The book is on the table.)

Here "mesa (table)" is the adhikarna karakam and it IS In aadharika

vibhakthi.

However things are not always straight forward as given above. A

different vibhakthi can be used for the same semantic relation with a given

verb in a different sentence. For example consider the sentences

Raman kathakku thurannu. (Raman opened the door.)

Ramannu kathakku thurakkanam. (Raman wants to open the door.)

Ramanal kathakku thurakkappettu. (The door was opened by Raman.)

In the above sentences the noun Raman has the same semantic relationship

with the verb open in all the cases. Raman is the karta karakam in all the

three cases. But the vibakthi forms are different. This could be attributed to

the verb forms. Several verb forms could be identified taking in to account

46

tense ,mood and compounding. For example for the verb padikkuka

(learn), some commonly used verb forms are given in table 3.2

1. padichhu (learned)

2. padikkunnu (is learning)

3. padikkum (will learn)

4. padikkanam (has to learn)

5. padikku (learn)

6. padichhukazhinju (had learnt)

7. padichhekkum (may learn)

8. padikkula (will not learn)

9. padikkuvan (to learn)

10. padichittu padichittu (having learnt)

11. padikkam (shall learn)

12. padichhappol (when learnt)

13. padikkukayanennu (that learning)

Table 3.2. Verb forms of the verb "padikkuka"

It is not mandatory that all the six karakas should be there in a sentence

for its understanding. Some karakas may be optional and some may be

mandatory. In this work verbs belonging to the class of movement,

perception, emotion, hurting, vocation, and transaction are taken for

analysis. For each verb a karaka chart is stored. It contains the mandatory

and optional karaka, the vibakthi forms for each karakam and the semantic

properties. The karaka chart of some verbs in Malayalam are given in table

3.3.

47

Verb Karaka Presence Vibakthi Semantic properties

Chadukka Kartha mandatory nirdeshika animate

Adikama optional aadharika Location in space or
time

Parayukka Kartha mandatory nirdesika Human

Karma mandatory nirdesika piece of knowledge

Adikama optional aadharika location in space or
time

Sakshi mandatory samyojika Human

Uranguka Kartha mandatory nirdesika animate, having life

Adikama optional aadharika Location in space or
time

Kelkkuka Kartha mandatory nirdesika human

Karma mandatory nirdesika piece of knowledge

Adikama optional aadharika location in space or
time

Padippikkuka Kartha mandatory nirdesika Human

Karma mandatory nirdesika piece of knowledge

Swami mandatory prathigrahika human

Adikama optional aadharika location in space or
time

Fig 3.3 Karaka - vibakthi chart

The vibakthi forms are utilised for finding the various karaka. If more

than one candidate happens to be in the same vibakthi form, then the

semantic tags are used for finding the apt value. For example in the

sentence

Teacher oru katha paranju. (teacher told a story.)

48

Here the verb paranju is in form 1 and from the above table this verb has

two mandatory karakas. Both of them can be in nirdesika vibakthi form.

Hence in the above sentence both "teacher" and "katha" are valid candid­

ates for both karakas. This ambiguity is resolved by taking in to account

the semantic properties to be satisfied by the members. Hence "teacher"

becomes the kartha karakam and "katha" becomes karma karakam.

One word can have different senses. A verb or an adjective can have

different meaning in different contexts. For example the verb "pidikkukka"

in Malayalm has two senses. One is "to catch" and the other is "to like". In

both these cases the constituents of the sentences will be different. Hence

word sense disambiguation is very important in sentence understanding.

3.4 Ambiguity Resolution

Lexical ambiguity could be classified in to three types. They are polysemy,

homonymy and categorical ambiguity [55]. Polysemy refer to words

whose several meanings are related to one another. For example the verb

"open" may mean unfold, expand, reveal etc. Homonymy refers to words

whose meanings are unrelated. For example the noun "bark" may mean

covering of a tree or noise made by a dog. Categorical ambiguity refer to

words whose syntactic category can vary. For example the word "sink"

may be a noun or a verb. In the sentence "I fitted a steel sink in the

kitchen", sink is a noun whereas in the sentence" Nails sink in water" sink

is a verb.

In this work three information is used for word sense disambiguation.

They are local word grouping (grouping of words those can collectively

perform a syntactic role in a sentence) , syntactic information and semantic

tags. Semantic tags are key words that denote the real world usage of a

word. Roger Schank had suggested eleven primitives for actions and Y.

Wilks had also advocated a similar concept called semantic formula. The

idea of using semantic tags to link a word and the object it denotes is

closely related to the concept of reference in linguistics. Some of the

semantic tags used in the work are animate, in animate, human, non­

human, physical, abstract, speech, place, event, quantifiable etc. Even

though this method of word sense ambiguity resolution is simple, all the

rules for disambiguation must be manually identified and put in the

lexicon. Considerable skill is required for the identification of semantic

tags. But if the domain of the text is known a priori, this approach is

computationally feasible.

3.5 System Architecture

The schematic diagram of the system is given in fig 3.1. The important

modules are the morphological analyser, local word grouper and the

parser.

Sentence

Morphological
Analyzer

Words with

Grammatical
Features

Local Word
Grouper

L...-____J

Word

Groups

Fig 3.1. Schematic diagram of the system

3.5.1 Morphological Analyser

Meaning
Representation

Structure

All natural languages have a large vocabulary of words. But all words are

not root words. Most of them are derivatives of root words. For example in

English the root word "come" has several derivatives. They are come,

comes, coming and came. Hence storing all the derivatives of all words

50

will lead to a lexicon of very huge size. Hence in this work to keep the

lexicon size optimum, root words along with the endings of derivative

words are stored.

The complexity in the morphological structure of words could be

attributed to the irregularity of languages [56]. Much of the irregularity

comes from the fact that words come into a language from other languages

and their internal structure reflects the morphological structure of the

source language as well as that of the host. For example in Malayalam lots

of Sanskrit and Tamil words could be seen.

Words could be analysed as consisting of a root and a prefix or suffix. In

this work the prefix derivative words are considered as separate words

since prefixes change the meaning of words. But suffixes only change the

category information of a word.

The morphological analyser processes each word in the input sentence and

gives the various syntactic features of the word. They include category,

gender, number, person, case, tense etc . In Dravidian languages there are

five parts of speech. They are noun, pronoun, verb, modifiers and

dhyodhakam. Dhyodhakam includes suffixes, prefixes, postpositions etc.

Since they are not independent words, they are not stored in a lexicon.

Separate lexicons are kept for nouns, pronouns, verbs and modifiers. The

format of the records stored in each lexicon is given below.

Noun {root, {suffix, vibakthi}, gender, number, person, semantic

properties}

Pronoun {root, {suffix, vibakthi}, gender, number, person, semantic

properties }

Verb {root, {suffix, verbform} }

Modifier {root, category}

51

In the lexicon for modifiers, category information is also stored. This is

because modifiers could be of seven types. They are pure, demonstrative,

qualitative, quantitative, numerical, participle, and adverbial. A sample of

the dictionary entry is given below.

The noun "radha" is stored as

(radha,O:nirdeshika,e:prathigrahika,Odu:samyojika,ikkz:udeshika,AI:prayo

gika,il:aadharika,ude:sambandhika,female,singular,third, {human})

The pronoun "aval" is stored as

(aval,O:nirdeshika,ai:prathigrahika,odu:samyogika,kkuz:udeshika,AI:prayo

gika,il:aadharika,udei:sambandhika,female,singular,third, {human})

The verb padikkuka is stored as

(padi,chhu: 1 ,kkunnu:2,kkum:3,kkanam:4,kku:5,chhukazhinju:6,chhekkum

:7,ikkula:8,kkuvan:9,chittu : lO,kkam: ll,chhappol: 12,kkuyanennu: 13)

The lexicon of modifiers contains information like the following.

(ethu, demonstrative),

(venthingal : pure),

(nazhi, quantitative),

(randu, numerical),

(vegam, adverbial),

(padichha participle),

(nalla : quality).

3.5.2 Local Word Grouper

The function of this module is to form the word groups using the

information based on adjacent words. The module takes into account the

modifiers preceeding nouns, pronouns and verbs. As given in the above

section modifiers could be mainly of seven types. From the morphological

52

analyser category of each word could be obtained. If any modifier is

present it will be grouped with the following noun/pronoun or verb. For

example in the following sentences the word groups are underlined. The

local word grouper, groups the words.

1. Ee roopa ennikku venda. (I don't want this money)

2. Venthingal udichhu (The moon had risen)

3. Orupara nellu thannu. (One litre paddy was given)

4. Nooru roopakku nallu pattiya vangi. (Four dogs were bought for hundred

rupees)

5. Odunna vandikku brake venum. (Running car needs brake)

5. Vellutha pakshi parannupoi. (The white birdflew away)

6. Avan A paadam nannayi padichhu .(He learnt that lesson properly)

3.5.3 Parser

The function of the parser is to accept the local word groups and produce

the parse structure. After parsing the meaning content of the sentence will

get stored in a frame like structure as given fig 3.2.

The verb structure given in the fig 3.2 is only general. The parser has to

identify the karaka relations among the word groups and to identify word

senses. As given in the above section the karaka chart for each verb gives

information about the mandatory and optional karaka of each verb.

Expectation driven parsing is used for filling the slots. First the verb in the

sentence is spotted. Since Dravidian languages are verb ending, parsing

starts from right. Word sense ambiguity is resolved using semantic tags.

The following constraints are observed while parsing.

1. For each of the mandatory karaka there should be exactly one word

group satisfying the syntactic and semantic criterion.

53

Verb
Root:
Verb form:
Tense:
Person:
Modifier:

Kartha karakam
root:
Category:
Modifier:

Value:
Category:

Number:
Gender:
Person:

Karma karakam
Root:
Category :
Modifier:

Value:
Category:

Number:
Gender:
Person:

Sakshi karakam
Root:
Category:
Modifier:

Value:
Category:

Number:
Gender:
Person:

Swami karakam
Root:
Category:
Modifier:

Value:
Category:

Number:
Gender:
Person:

Hethu Karakam
Root:
Category:
Modifier:

Value:
Category:

Adhikarna karakam
Root:
Source:
Destination:
Location:
Time:
Date:

Fig. 3.2 General frame structure of verbs

54

2. For each of the optional karaka there should be at the most one word

group satisfying the syntactic and semantic criterion.

3. There should be exactly one karaka relation for each word group.

The analysis of simple and complex sentences are carried out. Complex

sentences contain one principal clause and one or more subordinate clause.

In complex sentences, component phrases are demarcated by verbs. In this

work complex sentences with one principal clause and one subordinate

clause are considered. The analysis of several complex sentences showed

that the subordinate clause verbs usually end with one of the following

forms.

1. van (eg. parayuvan, kelkkuvan, chaduvan)

2. ittu (eg. paranjittu, kettittu, chadittu)

3. ppol (eg. paranjappol, kettappol, chadiappol)

4. kondu (eg. paranjukondu, kettokondu, chadikondu)

5. athu (eg. parajathu, kettathu)

6. ennu (eg . parayukayanennu, kelkukkayanennu)

Meaning representation structure corresponding each clause is developed.

While filling the slots, if it is found that the mandatory karaka for

subordinate clause or main clause is not available in the concerned phrase

then they are to be obtained from adjacent phrases. That is karaka sharing

is required. Studies enabled to come up with the following rules in filling

the slots in the structure appropriately.

1. If the subordinate clause verb is having the ending "van" and if the

sakshi karakam of the main verb is not given explicitly in the

principal clause, then the kartha karakam of the subordinate clause

is shared with the sakshi karakam of the principal clause. For

example the Malayalam sentence.

krishnanodu markettilakku pokkuvan raman paranju.

55

To krishnan to market to go raman told

(Raman told Krishnan to go to market.)

2. If the kartha karakam of the main verb is not given explicitly in the

principal clause, then the kartha karakam of the subordinate clause

is shared with the kartha karakam of the principal clause. For

example the Malayalam sentences

kutti ammayude pattu kettittu urangi.

Child mother's song having heard slept

(The child slept having heard mother's song.)

raman manga thinnukondu veettilakku pooi.

raman mango eating to home went

(Raman went home eating mango.)

seetha ramane kandappol punchirichhu .

seetha raman when saw smiled

(Seetha smiled when she saw Raman.)

A set of simple and complex Malayalam sentences is given below. The

parse tree and meaning representation structure of each of them are also

given.

Simple Sentences

S.l kutti avante pusthakam vayichu.

vayichu (read)

kartha A karma

kutti pusthakam (book)
(child)

modifier

avante (his)

Fig. 3.3. Parse structure for sentence S.l

56

Verb
Root
Verb form
Tense
Number
Person
Modifier

vayi
fonn-l
Past tense
Singular
3rd

NIL
Kartha Karakam

Root
Category
Modifier
Number
Gender
Person

Kutti
Noun
NIL
Singular
Alinga
3rd

Kanna karakam
Root
Category
Modifier

Value

Pusthakam
Noun

: avan
Category : Sambandhika

Number : _ Singular
Gender : Neuter
Person : 3rd

Fig. 3.4. Frame structure for sentence S.l

S.2 Indiayila janangal narayanane pradhanamanthriyayi thiranjeduthu.

thiran jedhuthu (elected)

karma ~ikarna
janangal (people) narayanan india

modifier

pradhamanthri
(prime minister)

Fig. 3.5. Parse structure for sentence S.2

57

Verb
Root thiranjad
Verb form form-l
Tense Past
Number Plural
Person 3rd

Modifier NIL
Kartha karakam

Root Janam
Category Noun
Modifier NIL
Number Plural
Gender Alinga
Person 3rd

Karma karakam
Root narayanan
Category Noun
Modifier
Value : prathanamanthri

category complement
number singular
gender male
person 3rd

Adhikarna karakam
Root India
Category noun
Modifier NIL
Number singular
Gender Neuter
Person 3rd

Fig. 3.6. Frame structure for sentence S.2

58

S.3 Raman avante pusthakam nallavanaya syaminu koduthu.

koduthu (gave)

kartha swami

raman pusthakam (book) syam

modifier modifier

avante (his) nallavanaya (good)

Fig. 3.7. Parse structure for sentence S.3

59

Verb
Root kodu
Verb form form-l
Tense past
Number singular
Person 3rd

Modifier NIL
Kama karakam

Root ram an
Category noun
Modifier NIL
Number singular
Gender male
Person 3rd

Karma karakam
Root pusthakam
Category noun
Modifier

Value avan
Category sambandhika

Number singular
Gender neuter
Person 3rd

Swami karakam
Root syam
Category Noun
Modifier

Value nallavan
Category qualitative

Number singular
Gender male
Person 3rd

Fig. 3.8. Frame structure for sentence S.3

60

S.4 E kathakku vegam thurakkulla.

Verb:

thurakkulla (not open)

kartha

kathakku (door) vegam (quickly)

modifier

E (this)

Fig.3.9. Parse structure for sentence S.4

Root
Verb form
Tense
Number
Person
Modifier

thura
form-9
future
singular
3rd

Value
Category

Kartha karakam

vegam
adverbial

Root
Cateogory
Modifier

kathakku
noun

Value E
Category demonstrative

Number : singular
Gender
Person

: nueter
: 3rd

Fig. 3.10. Frame structure of sentence S.4

61

S.S kurachhu ezhuthukal innu labichu.

labichu (got)

kart~ ~hikarana (time)

ezhuthukkal (letter) innu (today)

modifier

kurachhu (some)

Fig. 3.11. Parse structure of sentence S.S

Verb
Root labi
Verb form form-I
Tense past tense
Number plural
Person 3rd

Modifier NIL
Kartha karakam

Root ezhuthukal
Category noun
Modifier:

Value kurachu
Category quantitative

Number plural
Gender neuter
Person 3rd

Adhikarna kanakam
Source NIL
Destination NIL
Location NIL
Time innu
Date NIL

Fig. 3.12. Frame structure of sentence S.S

62

S.6 nammal pavangalle sahayikkanam.

sahayikkanam (help)

nammal (we) pavangall (poor)

Fig. 3.13. Parse structure of sentence S.6

Verb
Root sahayi
Verb form form-4
Tense future
Number plural
Person 1 sI

Modifier NIL
Karthakarakam

Root nammal
Category pronoun
Modifier NIL
Number plural
Gender alinga
Person 1 SI

Karma karakam
Root pavan gall
Category noun
Modifier NIL
Number plural
Gender alinga
Person 3rd

Fig. 3.14. Frame structure of sentence S.6

63

Complex sentences

C.I Hariyude varthamanam kettittu Shyam chirichhu.

chirichhu (laugh)

karth.j\emporal precedence

shyam kettittu (hear)

shyam varthamanam (talk)

modifier

hari

Fig. 3.15. Parse structure for complex sentence C.l

64

Main verb
Root
Verb form
Tense
Number
Person
Modifier

Kartha karakam
Root
Category
Modifier
Number
Gender
Person

Subordinate verb
Root
Verb form
Tense
Number
Person
Modifier

Kartha karakam
Root
Category
Modifier
Number
Gender
Person

Karma karakam
Root
Cateogory
Modifier

chiri
form-l
past tense
singular
3rd

NIT...

Shyam
noun
NIT...
singular
male
3rd

Ke
form-lO
past tense
singular
3rd

NIT...
/ from main clause/

Shyam
noun
NIT...
singular
male
3rd

varthamanam
verbal noun

Value : Hari
Category : sambandhika

Number singular
Gender neuter
Person 3rd

Fig. 3.16 Frame structure of the complex sentence C.I

65

C.2 Teacher kuttiyodu pusthakam vayikkuvan paranju.

paranju (told

teacher vayikkuvan (to read)

kutti (child) pusthakam (book)

Fig. 3.17. Parse structure for complex sentence C.2

66

Main verb
Root
Verb form
Tense
Number
Person
Modifier

Kartha karakam
Root
Category
Modifier
Number
Gender
Person

Sakshi karakam
Root
Cateogory
Modifier
Number
Gender
Person

Subordinate verb
Root
Verb form
Tense
Number
Person

Kartha karakam
Root
Cateogory
Modifier
Number
Gender
Person

Karma karakam
Root
Category
Modifier
Number
Gender
Person

para
form-l
past tense
singular
3rd

NIL
/ from sub-ordinate c1ause/

teacher
noun
NIL
singular
alinga
3rd

kutti
noun
NIL
singular
alinga
3rd

vayi
form-9
future
singular
3rd

kutti
noun
NIL
singular
alinga
3rd

pusthakam
noun
NIL
singular
neuter
3rd

Fig. 3.18. Frame strucutre of the complex sentence C.2

67

C.3 Raman kathakku thurannappol poocha chadi.

chadi (went out)

temporal precedance

poocha (cat) thurannappol (when opened)

raman kathaku (door)

Fig. 3.19. Parse structure for complex sentence C.3

68

Main clause: verb
Root chadi
Verb form form-l
Tense past tense
Number singular
Person 3rd

Modifier NIL
Kartha karakam

Root poocha
Category noun
Modifier NIL
Number singular
Gender neuter
Person 3rd

Subordinate clause
Verb root thura
Verb form form-l 2
Tense past tense
Number singular
Person 3rd

Modifier NIL
Kartha karakam

Root raman
Category noun
Modifier NIL
Gender Male
Person 3rd

Karma karakam
Root kathakku
Category noun
Modifier NIL
Number singular
Gender neuter
Person 3rd

Fig. 3.20. Parse structure for complex sentence C.3

69

C.S kutti pattu padikkukayanennu amma paranju.

paranju (told)

amma padikkukayanennu (learning)

kutti pattu (song)

Fig. 3.23. Parse structure of complex sentence C.s

70

Main verb
Root para
Verb form form-I
Tense past tense
Number singular
Person 3rd

Kartha karakam
Root amma
Category noun
Modifier NIL
Number singular
Person 3rd

Gender female

Subordinate verb
Verb para
Verb form form-I 3
Tense present tense
Number singular
Person 3rd

Modifier NIL
Kartha karakam

Root kutti
Category noun
Modifier NIL
Gender neuter
Person 3rd

Karma karakam
Root pattu
Category noun
Modifier NIL
Number singular
Gender neuter
Person 3rd

Fig. 3.24. Frame structure of sentence C.S

71

c.s kutti pattu padikkukayanennu amma paranju.

paranju (told)

amma padikkukayanennu (learning)

kutti pattu (song)

Fig. 3.23. Parse structure of complex sentence C.s

72

Main verb
Root para
Verb form form-I
Tense past tense
Number singular
Person 3rd

Kartha karakam
Root amma
Category noun
Modifier NIL
Number singular
Person 3rd

Gender female

Subordinate verb
Verb para
Verb form form-I 3
Tense present tense
Number singular
Person 3rd

Modifier NIL
Kartha karakam

Root kutti
Category noun
Modifier NIL
Gender neuter
Person 3rd

Karma karakam
Root pattu
Category noun
Modifier NIL
Number singular
Gender neuter
Person 3rd

Fig. 3.24. Frame structure of sentence C.S

73

3.6 Casestudy - 1 (Machine Translation)

The capability of the meaning representation frame was tested by using it

in translation of sentences given in Dravidian languages to English. Here

the source language is a free word order and the target language is fixed

word order. The frame in which the meaning is stored is given to an

English language generator. Hence in the lexicon the English equivalents

of the words are also stored. In this work the sentences are considered as

isolated. The schematic diagram of the machine translation system is given

in Fig 3.25.

English is a rich language with enormous variety of patterns or sentence

structures [65]. Precisely, a universal set of patterns is yet to be identified.

It is really a tough task to develop a system capable of handling all these

structures. Hence the domain of analysis is restricted to 15 patterns. The

patterns considered are given below. Sample sentences belonging to each

category and the corresponding Malayalam equivalents are also given.

1. Subject + verb

Birds are flying

Pakshikkal parakkunnu

2. Subject + verb + direct object

Mohan opened the door

Mohan kathakku thurannu

3. Subject + verb + indirect object + direct object

I gave her my pen

Njan entta pena avalkku koduthu

74

-.
I

V
I

.. ..
S

en
te

nc
e

le
xi

co
n

~

m
or

ph
ol

og
ic

al
 .

an

al
yz

er

J
'-I

.
I

K
ar

ak
a-

W
or

ds
 w

It
h

V
ib

ak
th

i

gr
am

m
at

ic
al

 I
ch

ar
t

fe
at

ur
es

lo
ca

l
w

or
d

W
or

d
pa

rs
er

gr

ou
pe

r
gr

ou
ps

kn
ow

le
dg

e
ba

se
 ..

I-
-.

--
.::

::
...

-.
...

..J
.

IS

I
~

.
I

M
ea

ni
ng

I

E
ng

r
h

re
pr

es
en

ta
ti

on

ge
ne

ra
to

r
~

E
ng

bs
h

se
nt

en
ce

s

st
ru

ct
ur

e

F
ig

 3
.2

5
S

ch
em

at
ic

 d
ia

gr
am

 o
f M

ac
hi

ne
 T

ra
ns

la
ti

on
 S

ys
te

m

4. Subject + verb + object + object complement

We found the trunk empty.

Njangal petti kaliyayi kkandu

5. Subject + verb + preposition + prepositional object

He failed in examination

A van pareeshakku thottu

6. Subject + verb + to-infinitive

She desired to go there

Aval avedi pokkuvan aaghrahichhu

7. Subject + verb + object + to-infinitive

She ordered Gopi to stay in bed

Kattillil aayirikkuvan aval gopiyodu aavashyapettu

8. Subject + verb + object + present participle + clause

I found him playing cards

A van cheettu kalikkunnathu njan kandu

9. Subject + verb + perfect participle + clause

Syam laughed having heard Hari's talk

Hariyudai varthamanam kettittu syam chirichhu

10. Subject + verb + object + perfect participle + clause

Raman drew a figure having taken sudha's pencil

Raman sudhayudai pencil eduthittu padam varachhu

11. Subject + verb + object + past participle + clause

I saw raman taken my bag

Raman entta bag editthatthu njan kandu

76

12. Subject + verb + that + clause

He admitted that he had written a letter

Oru ezhuthhu ezhuthiyennu avan samathichhu.

13. Subject + verb + object + that + clause

He told me that he is coming on Sunday

A van thingalazhchha varukayanennu ennodu paranju

14. Subject + verb + when - clause

The bird flew away when the door was opened

Katakku thurannappol pakshi parannupoi

15. Subject + verb +object + when - clause

Father bought a shirt when he came yesterday

Acchhan ennalai vannappol oru shirt konduvannu

These patterns form the skeleton of the sentences to be generated. The

sentences considered would get mapped to the most appropriate pattern. A

set of rules were used for that. It is given below.

• The kartha karakam gets mapped to the subject.

• If the main verb is transitive then its karma karakam will be the direct

object.

• If the main verb is transitive then the swami karakam of it will get

mapped to the indirect object.

• If the verb has a sakshi karakam then it becomes the object of the

sentence.

• The hethu karakam and ahikarna karakam are placed as prepositional

clauses towards the end of the target sentence. Since the hethu karakam

refers to the instrument case, the proposition used in the target sentence

are by or with. Since the ahikarana karakam refers to the position in

. time or space, the prepostions used in the target sentence are at, on,

over, behind and in.

77

• If the modifier of the karma karakam belongs to the category of

complement then the complement will appear after the object as in

pattern 4.

• Certain verbs like wait, agree, count, belong etc attaches a preposition

before the object. Such sentences get mapped to pattern 5.

• If the subordinate clause verb's ending is "van' and if the main verb

has a sakshi or swami karakam the sentence get mapped to pattern 7

else to pattern 6.

• If the subordinate clause is verb's ending is form "athu ' and if the

main verb has a sakshi or swami karakam the sentence get mapped to

pattern 8.

• If the subordinate clause verb's ending is "ittu ' and if the main verb

has a sakshi or swami karakam sentence get mapped to pattern 10 else

to pattern 9.

• If the subordinate clause verb's ending is "thu' and if the main verb

has a sakshi or swami karakam the sentence get mapped to pattern 11.

• If the subordinate clause verb's ending is "ennu' and if the main verb

has a sakshi or swami karakam the sentence get mapped to pattern 13

else to pattern 12.

• If the subordinate clause verb's ending is "ppol' and if the main verb

has a sakshi or swami karakam the sentence get mapped to pattern 15

else to pattern 14.

For translation, the meaning representation structure for each sentence is

generated. Then using the rule base given above the corresponding English

language equivalent is obtained. The English translation of a Malayalam

story obtained by this system is given in chapter 5. It contains only

sentences that could be mapped in to one of the 15 structures given above.

Dravidian languages are less ambiguous than English. This is due to the

fact that these languages are highly case-inflected [57]. These inflections

78

disambiguate the semantic content of the sentences. For example, the

following sentences in English are syntactically and semantically

ambiguous.

I saw a man on the hill with the telescope.

When this sentence is translated and written in Malayalam, the sequence of

words and particularly their inflections disambiguate the semantics as

illustrated below.

Njan telescoppinal malayudai mukallil oru manushanai kanddu.

Njan telescoppulla manushanai malayudai mukallil kandu.

Njan telescoppulla malayudai mukkallil oru manushanai kandu.

These sentences respectively indicate that the telescope was used to spot a

man, or that the man had a telescope, or that the telescope was installed on

a hill. The low ambiguity in sentence meaning facilitate translation from a

Dravidian language to English comparatively easier than the other way.

3.7 Casestudy -2 (A Natural Language Interface for RDBMS)

In the second application an NU for information retrieval from databases

is tried. As it is known, many of the shortcomings of the database

languages could be overcome by putting an interface between the user's

native language and the database language. This method has several

advantages.

1. The interface can eliminate the necessity for the user to confonn to an

artificial syntax.

2. It relieves the user from knowing about the details of the database

model, data definition languages and data manipulation languages.

3. The interface enables to understand incomplete or slightly erroneous

queries, elliptical requests, anaphoric references etc.

4. It can also recognize the logical inconsistencies in a query and warn

the user.

79

Since nowadays relational database management systems are de facto

standards and SQL or SQL like languages are commonly used, the internal

meaning representation is mapped to SQL commands. In this application

the design is oriented towards solving the following important issues.

1. If the NLI uses only a very small subset of the language, then it doesn't

have good practical significance. Because the user may find to his

irritation that he has to remember which particular way of saying

things is acceptable.

2. If the database is not large and not used for reasonably complex

information retrieval then it is not worthwhile constructing the NLI.

Because the nature of this work is manpower intensive.

3. In addition to straightforward queries, the system should be capable of

handling complex queries, which include multi-relational queries and

those containing conjunctives and quantifiers.

4. The NU should give quality responses and should be capable of

handling user misconceptions.

5. The NU should handle anaphoric and elliptical requests.

The NU prototype answers written Malayalam questions. These questions

are translated to SQL commands and they are executed by the DBMS.

First the meaning of the query is extracted and stored in a frame. The

karaka relations are used for it. Here the source language is a free word

order language and the destination is a formal language having a definite

format. The schematic diagram of the NU system is given in fig 3.26.

Any SQL statement will have a SELECT clause, FROM clause and a

WHERE clause. The SELECT clause has the field names to be projected.

The WHERE clause contains the conditions to be satisfied for selecting

records from tables. The FROM clause contains the tables to be joined.

80

Q
ue

ry

M
or

ph
ol

og
ic

al

...
J

L
ex

ic
on

..

an
al

vz
er

I
~

L

W
or

ds
 w

it
h

S
ur

fa
ce

el

li
ps

is

G
ra

m
m

at
ic

al

K
ar

ak
a

-
A

na
ph

or
a

fe
at

ur
es

V

ib
ak

th
i

ha
nd

le
r

ha
nd

le
r

ch
ar

t
J

~
~

0
0

~
t

~f
..

M
ea

ni
ng

S

Q
L

L

oc
al

W

or
d

P
ar

s e
r

....
ge

ne
ra

to
r

....
.

-
w

or
d

-
R

ep
re

se
nt

at
IO

n
gr

ou
ps

st

ru
ct

ur
e

gr
ou

ps

j
S

Q
L

j

st
at

em
en

t
1

1
~r

.
D

ee
p

le
ve

l
K

no
w

le
dg

e
D

B
M

S

....
D

at
ab

as
e

I
~

el
li

ps
is

ba

se

-.t
.

ha
nd

le
r

R
es

po
ns

e
...

O
ut

pu
t

.....

ge
ne

ra
to

r
~

F
ig

 3
.2

6
S

ch
em

at
ic

 d
ia

gr
am

 o
f

th
e

N
L

I
sy

st
em

Domain knowledge is essential for an NU to achieve an acceptable level

of performance [58]. The domain knowledge is stored in the Entity­

Relationship (E-R) diagram. The E-R diagram consists of entities,

attributes and relationship between entities. An election information

system, an academic information system and a library information system

are considered for study. Their E-R diagrams are shown in Appendix I, 2

& 3. The entities are represented by rectangles, relationship between

entities by diamonds and attributes of entities by rectangles with rounded

corners.

The words appearing in the query are mapped to entities, attribute names,

values and relations. The proper nouns can be mapped to values, common

nouns to attribute names and entities and verbs to relationships between

entities. Taking into account the application, the above appropriate values

are also stored along with each category of words. Separate lexicons are

kept for proper nouns, common nouns, pronouns, verbs, relational words,

query words and quantifiers. The formats of the records stored in the

various lexicons are as given below.

Proper noun

(root, {suffix, vibakthiforms} ,gender,noun,person,databasefields)

Common noun (root, {suffix,vibakthi forms },gender,noun,person, database

field names / database tables)

Pronouns (root, {suffix, vibakthiforms} ,gender,number,person)

Verb (root, tables involved)

Query word (root, database field names)

Relational words (root, operator)

Quantifiers (root)

82

3.7.1 Meaning Extraction

Investigations have shown that in the languages considered, conditional

clauses come towards the beginning of the query and the values to be

projected or outputted come next. Certain patterns are noted in the format

of the conditional clauses. They are

1. <proper noun><attribute>

2. <numeric> <attribute><relation>

3. <numeric> <relation><attribute>

4. <numeric> <attribute>

5. <quantifier><relation.<attribute>

Certain patterns are also observed in the format of phrases containing the

values to be outputted. They are

1. <attribute><query word>

2. <entity> <query word>

3. <entity's> <attribute> <query word>

4. <query word> <entity> <verb>

5. <verb> <entity's> <attribute> <query word>

6. <query word><verb>

7. <verb><entity><query word>

The conditional clauses form the karma karaka of the representation. The

values to be outputted form the kartha karakam. It is also possible to write

a query without a verb in Malayalam. In such cases the verb is considered

as "be" verb. For example the query "Indiayudai pradhanamanthri aare ? .

(who is the prime minister of India) "doesn't contain a verb.

The meaning content of the query is stored in a structure as given below.

83

Verb

Root:

Kartha karakam

Query word:

Attribute:

Entity:

Karma karakam

Value:

Attribute:

Relation:

Quantifier:

Since there can be many number of conditional clauses in a query, the

kanna karakam is kept as a list. The first step in the processing of the

query is morphological analysis. Then word grouping according to the

patterns identified above is done. Then the parser will fill the slots of the

meaning representation structure appropriately.

The above process can be explained by considering the query SI given

against the election database.

SI. ernakulam mandalathil ethra sthanarthikal malsaricchu ? (How many

candidates contested from Ernakulam constituency?)

After morphological analysis, we get the word categories as (ernakulam -

proper noun), (mandalathil, attribute),(ethra, query word), (sthanarthikkal,

entity) and (malsaricchu, verb). The local word grouper then finds that

there is one conditional clause according to pattern 1 and one output clause

according to pattern 4. The parser then builds the following structure.

Verb : malsarichhu

Kartha karakam

Query word : ethra

Attribute:

Entity: sthanarthikkal

84

Karma karakam

Value: ernakulam

Attribute: mandalam

Relation: =
Quantifier:

3.7.2 SQL Generator

This module generates the SQL statement corresponding to the

information content stored in the meaning representation structure. The

algorithm used for it is given below.

1. From the kartha karakam get the database fields to be included in the

SELECT clause and the tables to be included in the FROM clause.

2. From the karma karakam list get the conditions to be included in the

WHERE clause and the tables to be included in the FROM clause.

3. Get the complete list of tables to be included in the FROM clause and

find the join conditions, if any. Include these join conditions in the

WHERE clause.

4. Write the SQL command.

The election database has got five tables. They are candidate, constituency,

party, win and contest. Certain tables could be joined directly. But certain

other tables require a mediator to get joined. This factor is judged by the

E-R diagram of the database. The E-R diagram of the election database is

given in appendix I. From the figure it could see that if a join operation is

required between the tables win and party, it could be done via the table

candidate. Hence a list is maintained which helps in the joining of various

tables involved. A sample is given below.

(contest, cand) ::- contest.candcode = cand.candcode

(contest, cons) :: -contest.conscode = cons.conscode

(win, cand) ::- win.candcode = cand.candcode

85

(win, cons) :: -win.conscode = cons.conscode

(party, cand) ::- (party.partycode = cand.partycode).

Thus the SQL command for the query SI is

Select COUNT (candidate.candname)

From cons, contest, cand

Where cand.candcode = contest.candcode AND

contest.conscode= cons.conscode AND

cons.consname= "ernakulam".

Consider another query.

S2. Ettavum kuduthal vote labichha sthanarthi aare? (ndjooago .e.Jsi((1)m4 aQJ:J5i

eJa74/ mflLl:J('f}:JmlLl7 ~(D~ ?)

(Candidate with the highest vote?).

The frame containing the meaning of the query is

Verb : labichha

Kartha karakam

Query word: aare

Attribute:

Entity: sthanarthi

Karma karakam

Value:

Attribute :vote

Relation

quantifier: ettavum

The analysis of the above representation shows that two tables are

involved. (candidate and contest) . Hence the SQL command is

86

Select candidate.candname

From Candidate, contest

Where Candidate.candcode = contest.candcode

AND

Contest. vote = (Select MAX(contest. vote)

From contest.)

3.7.3 Ellipsis & Anaphoric References

To support natural interaction, it is desirable to allow the use of anaphoric

reference and elliptical constructions across sentence sequences. In a

general context, references and ellipsis are hard problems. But in this case

the restricted domain of discourse that is defined by the database makes it

possible to address these problems.[58]

3.7.3.1 Ellipsis

A question is called elliptic if one or more of its constituents are omitted.

For brevity in communication, it is important for an NU to handle ellipsis.

There are two types of ellipsis.

• Surface level ellipsis. This IS detected and handled by the

parser at the syntactic level.

• Deep level ellipsis. This is detected and handled during

morphological analysis. A rule base has been kept for it .

3.7.3.1.1 Surface Level Ellipsis.

The parse structure information is sufficient to handle this type of ellipsis.

An elliptical request is processed by making use of contextual knowledge.

For processing an elliptical request, first we have to recognize that the

query is elliptical. A query is elliptical at the surface level if the kartha

87

~arakam is missing. An assumption is made such that in the parse structure

the elliptical fragment corresponds to that of the previous query and there

is no syntax violation in the question. The parser is modified so that

instead of failing for the above query, it invokes the ellipsis handler and

generate the complete meaning structure. For eg if the query sequence is

kottayam districtillai congerssintta sthanarthikkal aarelam? Marxistinttayo ?

(Cl db 0 5CJl) 0 1Q1~CJl)1cufl Cldboriloocru16'lCT6o cru"LLl om OdH01 db cib ~6'l(l)~oo ?

Qlocbcru1cru" oo16'lCT6oClCJl)O ?)

(who are the congress candidates contested from kottayam ? marxist?)

The first query is a valid query and after parsing, the structure returned is

Verb: be

Kartha karakam

Query word : aarellam

Attribute:

Entity: sthanarthikal

Karma karakam

Value: Kottayam

Attribute: Jilla

Relation: =

Quantifier:

Value: Congress

Attribute: party

Relation: =

quantifier:

The second query is processed as follows. The parse structure for the

second query is

Verb:

Kartha karakam

Query word:

Attribute:

Entity:

Kanna karakam

Value: marxist

Attribute: party

Relation: =
quantifier

Since the kartha karakam is mISSIng it is considered as an elliptical

request. The elliptical handler super imposes this structure over the

structure of the previous query. Thus the complete structure of the second

query becomes

Verb: be

Kartha karakam

Query word : aarellam

Attribute:

Entity: Sthanarthikal

Karma karakam

Value: Kottayam

Attribute: Jilla

Relation/quantifier: =

Value: Marxist

Attribute: party

Relation: =

This structure is equivalent to that of the query kottayam districtil marxist

partyudai sthanarthikkal aarellam? Then the corresponding SQL

command is generated.

89

3.7.3.2 Deep Level Ellipses

The user input is recognized as elliptical at deep level, if all the

constituents needed for word grouping are not present in the input. The

methods for resolution of deep level ellipsis are

• Use of domain knowledge

• User interaction

In this work both the methods are used. A knowledge base has been kept

for deep level ellipsis resolution. The system will rephrase the query

containing deep level ellipsis. Some examples of queries with deep level

ellipses are discussed in the table 3.4

Original query with deep level System rephrased query

ellipsis

Aluvaude MLA aare? Aluva mandalathil ettavum kuduthal

~eJJOJavJ6)S n(j)6)QlQl6)~ ~m vote labhichha sthanarthi aare?

~eJJOJ Ql6fBeJ mrm'cun n(BOO OJJ 0

ce,~sJcmcun aOJo~ eJa1..g.jcmomc86l'?

Kollamkkar aarellam Kollam mandalathila sthanarthikkal

6)ce,o~oce,om ~6)Cl)~oo aarellam

6)ce,o~o Ql6fBeJmrm'6)eJ cro"LOomo-

m LO' ce,CJO ~6)Cl)~oo?

Bjpude sthanarthikkal aarellam BJP partyudai sthanarthikkal

mJ16)r;Qn...l1avJ6)S cro" lLlomomLO'- aarellam

ce,CJO ~6)Cl)~oo? mJ16)r;Qn...l1 nJom31avJ6)5 cro"LOomo-

mLO'ce,CJO ~6)Cl)~Oo?

Table 3.4. Queries with deep level ellipses

3.7.3.3 Anaphoric References

The tenn "anaphora" refers to reflexive pronouns, general pronouns,

definite noun phrases etc. Anaphora resolution involves finding referents

90

of these in a discourse which may consist of more than one sentence. The

detection of anaphora is done by the parser. The referent is found out from

the candidates using the following methods.

• Agreement of the referential pronoun with the candidates in the

previous query in gender and number.

• Using the domain knowledge supplied by the E-R diagram.

In the first method all the candidates those are not in agreement in number

and gender of the anaphor is filtered out. For example consider the

following two query sequences.

1. Computergraphicsenna pusthakam ezhuthiyathu aare ?

Athinte vila enthu ?

2. Computergraphicsenna pusthakam ezhuthiyathu aare ?

Ayalude address enthu ?

In the first query the anaphor "athinte" refers to the book and in the second

case the anaphor "ayalude" refers to the author. The first anaphor agrees

with number and gender of the candidate "book", while the second

anaphor agrees with those of candidate "author".

The second method is used if the first one fails in filtering out a candidate.

It makes use of the domain knowledge. For example in the query

Computergraphicsenna pusthakathinnta vila enthu?

Athu aare ezhuthi ?

Here the anaphor "athu" could refer both to book and cost. These two

candidates agree in number and gender with the anaphor. Hence the first

method fails. But the verb "ezhuthi " refers to the relation "publish" which

is between the book and the publisher. Hence the candidate selected is

book. This information is obtained from the domain Knowledge.

91

3.7.4 Processing of Null Responses from Databases

The SQL statements given to the underlying DB MS may some times

produce null responses. Database systems rarely contain all of the

information necessary to model their domain. Hence null values arise in

many database access. Natural language front-ends are designed to

accommodate naive users. The more informal the query language is, the

more sophisticated the system needs to be in order to comprehend and

answer queries properly. User misconception is an important cause of null

responses. User misconception [59,60] can be classified into

misconceptions that fail extensionally and misconceptions that fail

intentionally. Intentional failure arises when the user has a misconception

about some domain relationships and about entities that can participate in

some relations. Extensional failure can be due to the non existence of

certain object or due to the nonexistence of a tuple or due to the fact that

the event which is responsible for the desired value has not been taken

place as yet.

For generating quality responses during the occurrence of null values, a set

of relations are stored in the knowledge base. This is in addition to the

relations in the database schema. The newly added relations are E- relation

(Event relation). EG~relation (Event- Graph relation), EXC-relation

(Exception relation) and V -relation (View relation). These relations could

be explained with a database which contains information about the

academic matters of a university. The database schema is given below.

Student (Stud-id, name, address, birth-year, dept-id)

Courses (Course-id. name, text)

Department (dept-id, name, head, estd-year)

Teacher (teach-id, name, address, designation, dept-id)

Quarter (q-year, q-season)

92

Entrolls (stud-id, q-year, q-season, course-id, mark)

Offers (teach-id, q-year, q-season, course-id)

3.7.4.1 E- relation (Event)

It is a binary relation. It gives the exact or approximate date for the

occurrence of the event. For example, in the E-relation table 3.5 of the

event final exams, dates of commencement of exam of various semesters

will be stored.

E - Relation
Final-Exam

Season Date

Spring 20/4/96

Summer 22/8/96

Fall 10112/96

Table 3.5 The E- relation

3.7.4.2 EG- relation (Event- Graph)

This is a binary relation which stores the precedence relationships of

different events occurring in the application domain. There are two

attribute fields in the relation. The SUP and SUB fields. An event that can

appear in these two fields is just any attribute existing in the database or an

event relation in the knowledge base. For example if marks is an attribute

field in the database and final-exam is an event in the knowledge base,

then the tuple (final-exam, enrolls.marks) in the EG-relation mean that

the value of the final-grade will be known only after the final-exam event

has happened. It is shown in table 3.6

93

EG - Relation

SUP SUB

Final-Exam EntroIls.mark

Table 3.6 EG -relation

3.7.4.2 EXC- relation (Exception)

This is a binary relation which informs all the exceptional facts existing in

the application domain. The tuples of this relation are concept- exception

pair. The concept refer to attributes in the database and exception is a view

in the V-relation or a basic entity in a database.

EXC - Relation

Concept EXC

Course. text Thesis-course

Table 3.7 The EXC- relation

3.7.4.4 V- relation (View)

This is a unary relation which contains all the views defined in the EXC­

relation. The definition of a view is similar to a view definition in system

R. For example the view definition of thesis-course is

DEFINE VIEW thesis-course

AS SELECT courses.code

FROM courses

WHERE courses.course-id > cs51

94

The knowledge base contains a collection of view definitions of the

V _relation.

v - Relation

Thesis-course

Table 3.8 V-Relation

The procedures Check-Exception and Check-Temporal-Event gives

appropriate interpretation of the null values. This could be illustrated with

the following example taken from the university academic database.

Suppose the query is "CS51 enna courseintta pusthakam ethe ? . The SQL

statement corresponding to it is

SELECT course. text

FROM course

WHERE course.course-id = "cs51".

The result of the query is NULL. Instead of giving the answer" don't

know", The check-exception procedure gives a more apt response. This

procedure checks whether any exception is stored for the attribute

course.text in the EXC- relation. From fig Table 3.7 thesis-course is an

exception to it. This exception is a view and it is executed. The course

CS51 is a member of this set. Hence the message corresponding to this

exception is given to the user . The response given is the Malayalam

language equivalent of the statement "CS51 is a thesis course. Hence no

textbook for it ".

Consider another query . "CS51 innu thomasinnu ethra mark kitti ". The

SQL statement corresponding to it is

95

SELECT entrolls.mark

FROM entrolls, student

WHERE student.stud-id = entrolls.stud-id AND

Student.name = "thomas" AND

Entrolls.course-id = "eS5}".

The result of the query is NULL. First check-exception procedure is

initiated. Since no exception is associated with the attribute, entrolls.mark,

the procedure check-temporal-event procedure is initiated. From the EG­

relation table, the event final-exam should precede the attribute

entrolls.mark. From the E-relation the time for the final-exam is obtained.

The reason for getting the NULL answer was that the final-exam was not

over. Hence instead of giving the response "don't know", the response

produced is "final-exam not over. Hence marks not available".

96

Chapter 4

Implementation

4.1 Software Design Methodology

Object-oriented methodology of software development is selected for this

system. This method of software development was first proposed in the late

1960s. However it took al most 20 years for object technologies to become

widely used. During the first half of the 1990s object-oriented software

engineering became the paradigm of choice for many software product

builders and information system professionals. As time passes, object

technologies are replacing classical software development approaches. Object

technologies do lead to a number of inherent benefits that provide advantages

at both the management and technical level.

Object technologies lead to reuse, and reuses of program components lead to

faster software development and higher-quality programs. Object-oriented

software is easier to maintain because its structure is inherently decoupled.

This lead to fewer side effects when changes have to be made and hence less

frustration for the software engineer and the customers. In addition, object­

oriented systems are easier to adapt and scale (ie. Large systems can be

created by assembling reusable subsystems).

An object-oriented model of computer software exhibit data and procedural

abstractions that lead to effective modularity. A class is an 00 concept that

encapsulates the data and procedural abstractions that are required to describe

the content and behavior of some real world entity. The data abstractions

(attributes) that describe the class are enclosed by a wall of procedural

97

abstractions . The only way to reach the attributes is t~ go through one of the

procedural abstractions that comprise the wall. Therefore the class

encapsulates the data and the processing that manipulates that data. This

achieves information hiding .

4.2 Classes of the System

The classes identified for the general meaning representation system, machine

translation system and natural language interface for databases are given in

this section.

4.2.1 Meaning Representation System

The important classes identified for the system are given in fig 4.1.

No Name of classes

1 Morphological-analyser

2 Local word grouper

3 Parser

4 Noun

5 Pronoun

6 Verbs

7 Modifiers

Fig 4.1 list of classes used in the general meaning representation system

The class definitions are given below.

98

Class morphological analyser

protected:

char query [];

char querywords [][];

char wordcategory [][];

int wordpointer [];

public:

} ;

getquery ();

separatewords ();

getwordcategory ();

Class localwordgrouper : public morphological analyser

} ;

Protected:

char wordgroups[][];

Public :

Wordgrouping ();

Class parser : public localwordgrouper

protected:

char Vroot[] ;

int Verb form[];

char Tense[] ;

99

int Vperson :

char Vrnodifier [];

char KKroot[];

int KKcategory ;

char KKrnvalue[] :

int KKrncategory;

int KKnurnber ;

int KKgender ;

int KKperson ;

char KRroot[];

int KRcategory ;

char KRrnvalue [];

int Krmcategory;

int KRnumber ;

int KRgender ;

int KRperson ;

char SKroot [];

int SKcategory ;

char SKrnvalue[] ;

int SKrncategory;

int SKnurnber ;

int SKgender ;

int SKperson ;

char SMroot[] ;

int SMcategory ;

char SMrnvalue[] ;

int SMrncategory;

int SMnurnber ;

int SMgender ;

100

int SMperson ;

} ;

char HKroot [];

int HKcatcgory ;

char HKmvalue[] ;

int HKmcategory;

char AKroot [];

char AKdestination[];

char AKtime[] ;

char AKdate[] ;

public:

gecpropertics_oCwords();

fill_slots ():

show_structure ();

Class noun

{

private:

public:

char root I 1;

struct form

char suffix [];

char vibakthi [];

}ST;

int gender. number, person;

char semantic properties [];

101

add_values_to_Iexicon ();

search_value ();

Class pronoun

} ;

private:

char root [];

struct form

char suffix [];

char vibakthi [];

}ST;

int gender, number, person;

public:

add_ values_ta_lexicon ();

search_value ();

Class Modifier

} ;

private:

char root [];

int category:

public:

add_ values_ta_lexicon ();

search_value ();

102

Class Verbs

private:

char root [];

struct form

char suffix [];

int verbform;

}ST;

public:

add_ values_to_lexicon ();

search_value ();

};

:he algorithm of the meaning representation program is as given below.

Display the start screen.

Read query.

Separate the words in the query.

Get categories of words.

Get the pointers to word properties.

Make word grouping.

Get the properties of the words.

Fill the slots of the meaning representation structure.

Display the meaning representation structure.

103

4.2.2 Machine Translation System

It makes use of all the classes given in section 4.2.1. In addition to that it has a

class which generates sentences in English. Its definition is given below.

Class generator : public parser

} ;

Protected:

Char wordgroups[] [];

Public :

Pattern_identification ();

Generate_English_sentences ();

Display_sentences ();

4.2.3 Natural language Interface System

Class morpbologicalanalyser

protected:

char query [];

char querywords [] [];

char wordcategory [] [];

int wordpointer[];

public:

} ;

getquery ();

separatewords ();

getwordcategory ();

104

Class localwordgrouper : public morphological analyser

} ;

Protected:

char conditionalwordgroups[][];

char outputwordgroups[];

Public:

Wordgrouping ();

DeepLevelEllipsisHandler();

Class pars er : public localwordgrouper

protected:

char Vroot[] :

char kkQweryWord [];

char kkAttribute [] ;

char kkEntity[] ;

struct karmakarakam

char krValue [] ;

char kr Attribute [];

char krRelation :

char krQuantifier [];

} kr[]:

public:

gecproperties_oCwords();

105

} ;

fill_slots ();

AnaphoricReferenceHandler();

SurfaceLevelEllipsisHandler();

Class SQL~enerator : public parser

Protected:

char SQL_statement [];

Public:

} ;

ProcessVerbs ();

ProcessKarthaKarakamList ();

ProcessKarmaKarakamList ();

loinTables () ;

FormSQLstatement ();

Class Response~enerator: public SQL_generator

private:

int error;

public :

} ;

displayResults ();

displayErrorMessages ();

CheckException ();

CheckTemporalEvent ();

106

Class propernoun

private:

public:

} ;

private:

char root [];

struct form

char suffix [];

char vibakthi [];

}ST;

int gender, number, person;

char dbfieldnames[][];

add_alues_to_lexicon ();

search_value ();

char root [];

struct form

char suffix [];

char vibakthi [];

}ST;

int gender, number, person;

char databasefildnames[][];

107

};

{

public:

} ;

add_ values_lo_lexicon ();

search_value ();

private:

char root [];

struct form

char suffix [];

char vibakthi [];

}ST

int gender, number, person;

char databasetablenames[][];

public:

add_ values_lO_lexicon ();

search_value ();

Class Verbs

{

private:

public:

}

char root [J;

char tableslnvolved [];

add_ values_lo_lexicon ();

search_value ();

108

Class qweryWord

private:

public:

} ;

char root [1:

char databasefieldnames[][];

add_ values_to_lexicon ();

search_value ();

Class relation Words

private:

public :

char root [];

char operator:

add_ values_to_lexicon ();

search_value ();

Class quantifier:

private:

public:

} ;

char root l J:

add_ values_to_lexicon ();

search_value ();

109

Chapter 5

Performance Evaluation of the Model

5.1 Introduction

There are two basic types of performance evaluation. Black box evaluation

and glass box evaluation. Black box evaluation measures system perfonnance

on a given task in terms of well defined input/output pairs and glass box

evaluation examines the internal working of the system. Black box evaluation

focuses on the accuracy of the output, user-friendliness, modularity,

portability and maintainability. Black box evaluation is done without knowing

anything about the inner workings of the system. The NLP systems could be

judged on the basis of the following aspects

Coverage and Habitability

Coverage is a characterization of the linguistic competence of a system.

Habitability measures how quickly and comfortably a user can recognize and

adapt to system's limi tations. The coverage of the NLP system could be

measured along dimensions like lexical coverage, syntactic coverage and

semantic coverage [61]. Lexical coverage refers to the size of the vocabulary,

internal structure of the vocabulary and the easiness with which the

vocabulary could be extended. Syntactic coverage refers to the range' of

syntactic phenomena the system can deal with. It includes complex verb

fonns, relative clauses, various question fonns, passives, comparatives,

subordinate clauses, ellipsis etc. Semantic coverage refers to the extent to

which the system understands the domain. The critical issues regarding

coverage are whether the system has enough coverage to let users meet a

112

reasonable proportion of their needs, whether the user can quickly find an

appropriate way of expressing a request and whether the user can easily learn

to avoid the system's blind spot.

A system's habitability is reduced if the user is led to believe that the system

has capabilities that are beyond it and there is no clear indication of the

boundaries. This can happen if the language the system presents to the user is

not the language that the user can present to the system. The difficulties in

achieving habitability with a semantic grammar are based on the factt l that

without great care such grammars can give users misleading clues as to

coverage.

Inference

This is the process of drawing logical conclusions based on the data in the

database or general knowledge of the subject domain. Retrieving only data

that is explicitly stored in a database is usually insufficient to meet a nonnal

user's needs. The system should have the capability to infer new infonnation

from that already existing in the database.

Anaphora

Pronouns are special case of the linguistic phenomena called anaphoric

reference. Pronouns usually refer objects explicitly mentioned in previous

discourse. Sometimes they can refer to objects mentioned later. Pronouns can

also refer to actions. NLP systems should be capable of handling the usage of

pronouns. Sometimes pronouns refer to objects in the computer's previous

response, not just objects in the user's own language

Ellipses

In conversation, people often leave out large portion of sentences, assuming

that the listener, who shares the context being discussed, can fill in the

missing parts. A good NLP system should be capable of handling any kind of

ellipses.

113

Quantification

The use of words like some, every, all and any can complicate NU system

because their interpretation often depends on wide ranging commonsense

knowledge or on detailed knowledge of the particular domain. The NU

system should be capable of tackling quantification appropriately.

Presentation of output

This includes formatting reports and tables, interfacing to graphics modules

and generating output in the user's own language.

5.2 Performance of the NLI System for Information Retrieval

The black box testing of the system was carried out with three databases. An

election database, an academic database and a library database. A summary

of the performance of the system is given in the table 5.1. The system was

evaluated by giving about 30 typical queries from each application domain.

The queries included simple straight forward queries, multi-relational queries,

queries with conjunctions, and quantifiers, elliptical queries and queries with

anaphoric references.

The table shows that the accuracy of the system is 100% for simple straight

forward queries. The queries of this type manipulates only a single relation for

getting the output. For multi-relational queries , excluding queries with

anaphoric / elliptical references the accuracy of the system is around 90 %.

The accuracy of the anaphoric / elliptical queries is around 85% . Accuracy

could be increased by adding more rules to the knowledge base used by the

parser module of the system.

114

Percentage of Queries correctly
interpreted

No. of] Multi relational queries
Database Quest-

Query type ~ Cl)
Cl)

Names ions s:: I-< ;::::; I-< cB .~ .~ Cl)
t;::: ~ 0

asked Cl)
.~ ..r::::: u .-..r::::: ;j s:: 0..

b.OO" ;j ~ o..~ .-
@~ ~ '2' ;j

I-< Cl 0
Cl) U

Straight
forward 15%
Queries

Election 30 100% 92% 95% 85%

Multi
85%

Relational
Queries

Straight
25%

forward

Academic 30
Queries

100% 87% 92% 82%

Multi
75%

Relational
Queries

Straight
20%

forward

Library 30·
Queries

100% 93% 92% 87%

Multi
80%

Relational
Queries

Table 5.1. Perfonnance Table

115

The Lexicon creator program could be used for creating the lexicon for the

various application domains. Since the content of the lexicon is very much

dependent on the structure of the database, a person who is thorough about the

database schema is responsible for the development of it. No change in the

meaning representation format is required. But the tables and some rules

associated with the SQL generator are to be rewritten since the rules in this

module are domain dependent. For handling modifiers, which refer to special

procedures and verbs which refer to the relationships between the basic

entities, new rules are to be added to the SQL generator module. Hence a

person having at least the proficiency of a programmer is required for

customizing this system for any database. The system could be scaled to

larger databases.

Glass box evaluation of the system focuses on the performance of the

important functional modules of the system. In this case the performance of

individual modules like morphological analyser, parser, semantic interpreter,

response generator, SQL generator etc were evaluated separately. A black box

evaluation of a particular component's performance could be -considered as a

form of glass box evaluation. For example the evaluation of a parser with a

set of specified input/output pairs would be a black box evaluation of the

parser. Since it is an evaluation of a component that cannot by itself perform

an application, and since it will give infonnation about the component's

coverage that is independent of the coverage of the system in which it might

be embedded, this can be considered as providing glass box information for

the overall system [62]. The testing of the individual modules were carried

out when the system was under development.

The table 5.2 gives a comparison of the various size aspects of the three

databases. The important fact derived from the table is that the size of the

116

lexicon is significantly small when compared to the size of the database. An

important issue in NUs to DBMS is the relative size of the lexicon as

compared to the size of the database itself [63,64]. As mentioned chapter 3,

the lexicon stores all words that are to be understood by the system. While

attribute values are stored repeatedly in the database, they are stored only once

in the lexicon. For example, in the election database, the party name is stored

for each candidate in the database, while party names are stored only once in

the lexicon. Also numeric values and code values are not stored in the lexicon.

These two factors make the size of the lexicon significantly small when

compared to the size of the database.

Some of the typical queries processed by the systems are given next. First the

text in Malayalam is given. Then the Roman notation of it is -given. Then

query in English language, which is equivalent to it, is given next. Finally the

SQL statement and result of query processing are given.

1. nJ Oe.J 0 ml a (Jl)0 tJ cfb Ql tiT'Be.J mnnlm, ~ l<m en) l.C om om l.Cl cfbab Qlm,croml.!3z1l ?

pAIA niyojk mNtlwwi21 ewR szWanaRWik2L m2lsriccu?

(How many candidates contestedJrom Pala constituency?)

SELECT COUNT(candidate.candname)
FROM candidate, contest, cons
WHERE candidate.candcode = contest.candcode AND

contest.conscode = constituency.conscode AND
constituency.consname = 'pAl A'

candidate.candname

8

117

Ratio of
Rows No. of Size of

Database No. of Table Names Per Attributes Database
Names Tables Table per table to

Lexicon

Party 4 2

Constituency 100 4

Election 5 Candidate 400 4 5 : 1
Contest 400 4

Win 100 3

Student 100 5

Quarter 3 2

Courses 30 3

Academic 7 Department 4 4 7: 1

Teacher 17 5

Entrolls 800 5

offers 30 4

Books 1500 5

Borrower 100 3

Library 5 Circulation 400 2 3 : 1

Publisher 10 3

Topic 10 2

Table 5.2 Database size comparison table

118

2. c: cm OQ) en> n{i)CID en> lOO m oduo1 avJ 6>5 ruaven> n{i)lcm ?

wOrnsz enn szWnaRWiyute vyz ewR ?

(What is the age of the candidate Thomas ?)

SELECT candidate.age
FROM candidate
WHERE candidate.candname = 'wOrns'

Candidate. age

56

3. 70 ruavcro1am cfb~5Jcme.JJ~ en>lOomomlO1cfbab ~6>m~oo ?

70 vySi21 kutuwluLL szWanaRWiK21 ArellAM?

(List the candidates with age greater than 70.)

SELECT candidate.candname
FROM candidate
WHERE candidate. age > 70

Candidate.candname

1. ke. KruNAkrV
2. ti. PqAVsisz
3. vrcgIsz
4. eIl.seviyrc
5. seviyrcaRkkIl
6. eM.pi.pHIOsz
7 eM.pi.mANi

4. C:cfbo6TWl<nen> nJom31av1am Clcmooorum ~6>m~oo ?

KOQgrsz pA2Rtti21 wORRv2R ArellAM?

(List the candidates who have lost the contest in Congress party.)

119

SELECT candidate.candname
FROM candidate, win,party
WHERE candidate.candcode <> win.candcode AND

candidate.partyname = party.partyname AND
party.partyname = 'kOQgrsz'

candidate.candname

I. pi.ke.pwRosz
2. eM.pi.mANi

5. 6TlJ16)ZQn.J1cft6) n{j)l<m aClJo3J cib1§1 ?

bijepikkz ewR Vottu kitti?

(What is the total number a/votes won by BIP party ?)

SELECT SUM (contest. vote)
FROM contest, party, candidate
WHERE contest.candcode = candidate.candcode AND

candidate.partyname = party.partyname AND
party.partyname = 'bi.je.pi'

contest.vote

10,11156

6. acibO§(]l)o :;Q1EAd(]l)1~ :;Q(]l)1-9zj acibomnloocru" cibom ~6)CO~Oo ?

kOttyM jillyi21 jyicc koQgrszkA2R ArellaM?

(Who are the Congress candidates who have won/ram kottayam

district?)

SELECT candidate.candname
FROM win, candidate, constituency, party
WHERE candiadte.candcode = win.candcode AND

win.conscode = constituency.conscode AND
candidate.partyname = party.partyname AND

120

party.partyname = 'kOqgrsz' AND
constituency.district = 'kOttyM'

candidate.candname

1. eM.pi.pHIOsz
2. si.je.Zskkz

7. n(j)ClJl6')S~Oo <Jdho61l'bloocrul6')m,o m)L£lomodH.aldhCib Q)concruCl)l~ ?

evitellAM kOQgrsi2nte szWAnA2Rwik2L m2lsriccu?

(Give the names of the constituencies from which congress candidates

have contested ?)

SELECT constituency.consname
FROM contest, candidate, constituency, party
WHERE candiadte.candcode = contest.candcode AND

contest.conscode = constituency.conscode AND
candidate.partyname = party.partyname AND
party.partyname = 'kOQgrsz'

constituency. Consname

1. pAl A
2. wOtupuV
3. krinAgppLLi

8. <Jdho61l'bloocrul6')m,o n(j)6')cm~oo m)L£lomomL£lldhCib gg(Jl)l~ ?

kOQgrsi2nte ewellAM sWanaRWik2L jyiccu?

(List the names of the candidates who have won with a congress ticket.)

SELECT candidate.candname
FROM win, candidate, party
WHERE candiadte.candcode = win.candcode AND

candidate.partyname = party.partyname AND
party.partyname = 'kOQgrsz'

121

candidate.candname

1. e.joQsz
2. sumM

9. nJoeJo<Jl)1cofl ~<Jl)1~cID ~cO ?

pAIAyi21 jyiccwz Arz?

(Who has wonfrom Pala ?)

SELECT candidate.candname
FROM candidate, win, constituency
WHERE win.candcode = candidate.candcode AND

Win.conscode = constituency.conscode AND
Constituency.consname = 'pAIA'

Candidate.candname

1. sjlv2n

1 o. 6) lnJ onLlcrocb CZctDOalcro" nJ o1?d1~ ru1n9::f <Jl) 6lmcib n(i3 ru ?

pRoPs2R wOmsz pTippicc ViYyff2L Ev?

(Give the names of courses offered by Pro! Thomas.)

SELECT course.coursename
FROM teacher, offers, course
WHERE teacher.teachid = offer.teachid AND

offers.courseid = course.courseid AND
teacher.teachemame = 'wOmsz' AND
teacher.designation = 'pRoPs2R'

122

course.coursename

I. deRRAbesz
2. gr APikzsz

11. ~~o !me..JCJlso6ll11cfMn:) OJ1GP&ctl)LC1c:e,~6)savJo CJn.lcO ctl)(l)1c:e, ?

ellA iLtRONiksz vidyarthikkaluteyum pErz Wrik ?

(Give the names of all students of the Electronics department?)

SELECT student.name
FROM student, department
WHERE student.deptid = department.deptid AND

department.deptname = I iLtRONiksz I

student.name

I. ejoQsz
2. sumM

12.!me..JCJlS06ll11c:e,cro1m?l ~lctl) OJ1G~O&ctl)LC1c:e,cib ~tlT"B ?

ILtRONiksze2L ewR vidyarthikkal unndu?

(How many students are there in the Electronics department ?)

SELECT COUNT(student.studname)
FROM student, department
WHERE studenLdeptid = department.deptid AND

department.deptname = I iLtRONiksz I

Student.studname

123

1 3. a (U) 00 oa 6TlJ m5' a db Ogl cru16> mo ~ClJao zQ III om c66)" n(i)lctl> ?

dERRAbEsz kOVzsi2nte AvREjz mA2Rkkz ewR

(what is the average mark of database course?)

SELECT AVG(entroIls.mark)
FROM entroIls, course
WHERE entrolls.courseid = course.courseid AND

course.coursename = 'dERRAbEsz'

entroIls.mark

56.5

14. 1 oacun db~SJctl>mn ClJ1C3~ Omctl>11l1dbcib @~ (U)1')d0mgJ6>IlI6>mo n(jl6>ctl>liIoo?

lOOn kutuw21 vixyA2RwWikL uLL dipARRum2neRz EweIlAM

(Which departments have more than JOO students?)

SELECT department.deptname ,COUNT(student.studname)
FROM department, student
WHERE student.deptid = department.deptid
GROUP BY department.deptname
HAVING COUNT(student.studname) > 100

Department.deptname

1. mawwmaRRikzs

15. dbonJcU3mlcnon!l1ce; cru16>mo n(i)lctl> nJJm5' ctl>db6lmcib @15TTf ?

kMpUtt2RgrAPikzsi2neR ewR puswkff2L untz?

How many books are their for computer graphics?

SELECT COUNT (book.accno)
FROM book, subcode
WHERE book.scode = subcode.scode AND

subcode.string = 'kMpUtt2RgrAPiksz'

124

book.accno

1. 15

1 4. 6) db • ~ CIO n(j) lcm ruJ cm" cm db 6lffi db n(j) 5 J mrn>13J 6f1! ?

k.AS ewR puswkff2L etuwwittuntz?

(How many books did K.Asha take ?)

SELECT COUNT (circulation. Idno)
FROM circulation, borrower
WHERE circulation.idno = borrower.idno AND

Borrower.name = 'k.As'

Circulation.Idno

1. 5

5.3 Performance of the Machine Translation System

In the system for machine translation, the lexicon creator object is used for

building the lexicon. The vocabulary is spread over 4 dictionaries. About

2500 root words are stored in the dictionaries. Declarative sentences in the

active voice are analyzed. Both simple and complex sentences are considered.

Since in a general context anaphoric references are difficult to consider,

sentences are treated isolated. Each sentence is analyzed independently, with

the result that a previous sentence doe not affect the interpretation of the

following sentence. Any ambiguity in this regard is transferred from source

language to destination.

125

Several sentences were translated using this system. Some sample sentences

are given in table 6.3.a and table 6.3.b. The sentences are coded using the

Roman notation given in appendix - 4. In the tables "M" denotes the Roman

notation of the sentence, "E" denotes the English Translation and "Pattern"

denotes the pattern to which the Malayalam sentence is mapped. Sentences in

pure Malayalam language is also given with in brackets.

The story about the Lion and the Rat translated by the system from

Malayalam to English is given next. The text in Malayalam is given in table

6.4 and the text in Roman notation is given in 6.5 and the English translation

obtained is given in table 6.6.

The sentences were selected in such a manner that they could be mapped to

one of the 15 patterns selected in chapter 3. All the sentences generated

correct translation. The analyzer's ability was tested further by letting it handle

more types of sentences. During this extension stage, it was found that more

verb forms should be included, more semantic tags were required for word

sense disambiguation, more patterns should be added to the generator and

more rules regarding karaka sharing should be included. The performance of

the system increases by incorporating more knowledge to the system.

126

1.

M
.

ku
tti

av

2n
eR

Pu

sz
w

kM
 v

A
yi

cc
u

E.

T
he

 c
hi

ld
 r

ea
d

hi
s

bo
ok

.
(d

hl
31

<l

m
)C

lJ6
')m

o
nJ

lc
n)

 CD
>d

ho

Cl

JO
Q1

>1
~.

)

P
at

te
rn

.
(S

ub
je

cH
V

er
b+

O
bj

ec
t)

2.

M

kA
R

R
z

at
ik

ku
nn

u
(d

hO
g

<l
m)

s1
cB

6"
llC

ID
l.)

E.

T
he

 w
in

d
is

 b
lo

w
in

g.

Pa
ttr

en
.

(S
ub

je
cH

 V
er

b)

3.

M

rA
m

u
rA

ju
vi

nz
 p

e2
ns

i2
1

ko
tu

w
w

u
(c

no
Q

lm

cn
oZ

Ql
Cl

J1
crl

'
6'

)n
Jm

cr
o1

~
6')

dh
OS

lC
DT

ml
·)

E
.

R
am

u
ga

ve
 R

aj
u

a
pe

nc
il

Pa
tte

rn
.

(S
ub

je
cH

V
er

b+
In

-d
ir

ec
t o

bj
ec

t+
di

re
ct

 o
bj

ec
t)

!j

4
M

.
rA

m
u

pA
w

R
ff

2L
 v

qw
w

ey
A

yi

(cn
OQ

ll
nJ

Ol
CD

>6
lm

cib

ClJ
,1C

DT
m1

a:v
oa:

v1
dh

CJ
Ild

h1
)

E
.

R
am

u
w

as
he

d
th

e
pl

at
es

 c
le

an

Pa
tte

rn
.

(S
ub

je
cH

 V
er

b+
O

bj
ec

H
O

bj
ec

t c
om

pl
em

en
t

5.

M

av
2n

bA

gz

w
ir

yu
nn

u
(m

m
ru

m

61
lIo

cn

CD
>1

cna
:vl

CI
Dl

)
E

.
H

e
is

 S
ea

rc
hi

ng
 f

or
 t

he
 b

ag

Pa
tte

rn
.

(S
ub

je
cH

 V
er

b+
pr

ep
os

iti
on

+
Pr

ep
os

iti
on

al
 O

bj
ec

t)

6.

M

rA
ju

ey

uw
w

z
ay

kk
uv

A
2n

m

R
nn

u
E.

R

aj
u

fo
rg

ot
 t

o
po

st
 th

e
le

tte
r

(c
nO

ZQ
 m

n{j

)CJ
IlC

Dl1
ll

mm
a:v

cB
6"

llC
lJo

m
Ql

OC
ID

 l)

Pa
tte

rn
.

(S
ub

je
ct

+
 V

er
b+

to
-I

nf
in

ite
)

T
ab

le
 6

.3
a

So
m

e
Sa

m
pl

e
Se

nt
en

ce
s

T
ra

ns
la

te
d

- N 0
0

~

E
.

H
e

to
ld

 m
e

to
 g

o
th

er
e

P
at

te
rn

.
(S

ub
je

ct
+

V
er

b+
ln

di
re

et
 o

bj
ec

t+
to

-i
nf

in
it

e)

8.

M
.

av
2n

 p
A

lM
 k

tk
ku

nn
W

z
fA

2n
 k

N
tu

E

.
I

sa
w

 h
im

 c
ro

ss
in

g
th

e
br

id
ge

.
P

at
te

rn
.

(S
ub

je
ct

+
 V

er
b+

P
re

se
nt

 P
ar

ti
ci

pl
e+

cl
au

se
)

9.

M
.

su
X

vu
te

pe

2n
si

21

et
uw

w
it

tz

rA
m

u
pt

M

vr
cc

u
E

.
R

am
an

 d
re

w
 a

 f
ig

ur
e

ha
vi

ng
 t

ak
en

 S
u

d
h

's
 p

en
ci

l
P

at
te

rn
.

(S
ub

je
ct

 +
 V

er
b+

O
bj

ec
t +

P
er

fe
ct

 P
ar

ti
ci

pl
e+

cl
au

se
)

10
.

M
.

e2
ne

R
 p

E
rz

 v
iL

ic
cw

z
F

A
2n

 k
et

tu
.

E
.

I
he

ar
d

m
y

na
m

e
ca

ll
ed

.
P

at
te

rn
.

(S
ub

je
ct

+
 V

er
b+

O
bj

ec
t+

P
as

t
pa

rt
ic

ip
le

+
cl

au
se

)·

11
.

M
.

ku
tt

i
pT

ik
ku

ky
A

N
en

nz

am
m

pR

ff
u

E
.

M
ot

he
r

to
ld

 t
ha

t
th

e
ch

il
d

w
as

P

at
te

rn
.

(S
ub

je
ct

+
 V

er
b+

th
at

-c
la

us
e)

12
.

M
.

kw
kz

w

uR
nn

pp
02

L
 p

U
cc

 c
A

ti
.

E
.

T
he

 c
at

 w
en

t o
ut

 w
he

n
th

e
do

or
 w

as
 o

pe
ne

d.

P
at

te
rn

.
(S

ub
je

ct
 +

 V
 er

b+
w

he
n-

cl
au

se
)

(ct
m>

OJ
ern

n
J
O
~
o

cB
,S

c6
6l

Jc
m

cr
o

6T
ID

oe
rn

cB
,6

m
J.)

(c
ru

JW
Cl

l)J
6)

S
6)

nJ
ern

cru
1c

ob

r4D
sJC

O'r
n)1

3"
m

Oa
ler

n

nJ
So

O
J
m
~
)

(r4
D

6)
er

no

C
:n

Ja
l

OJ
1~

1~
CO

>J

6T
ID

oe
rn

C:
cB
,~
)

(c
B,

J§
1

nJ
o1

 c6
6lJ

 cB
,Cl

l)O
 6)

6T
T)

(m

ctm
>12

l2l
nJ

06
rn

W
lJ)

(cB
,C

O>
dh

CO

>J
oc

m
c:c

)d
oc

ib
n
4
~

.!l
Jo

s1
.)

T
ab

le
 6

.3
b

S
om

e
S

am
pl

e
S

en
te

nc
es

 T
ra

ns
la

te
d

1. 63colcOOcob 63COJ crulonOo 63COJ cfh031cob ~06lffiJdhavoavlcoJCIDJ.

2. 63COJ nm~l @CIDJ cfh6TTSJ.

3. ~ nm~l crulonOcmml6)CTOO amlSJcmm cfh~lcOOJruOCTO CIDJS6lffil.

4. crulonOCOTmlmJ C8(3n9:j~o ruCIDJ.

5. crulonOo nm~l6)av CID1CIDJ6)alcID nJ06lUTl!)J.

6. nm~l CID6)CID 6)cfhO~COJ6)CIDcID nJ06lUTl!)J.

7. 63COJ (31rucruo crulon(6)cmm nme .. 11 crunOoavlcOOO6)alCIDJ nJ06lUTl!)J.

8. crulonOo nm~l6)av ru13av~.

9. 63COJ (31rucruo ~ crulonOo 63COJ 6)cfh6TT)lavlcob oJ16TT)J.

10. amlcID ~..!1Icmmlcob cnrogrJ' g!Jl~.

1 1. amlCIDJ C8dh313" nm~l C8rucno ruCIDJ.

1 2. nm~l 6)dh6TT)lavJ6)S cfhavO nJ~6)cfh6"T1f amlOJCOTmJalogl.

1 3. crulonOo 6)cfh6TT)lavJ6)S nJJocmmJ ruCIDJ.

14. crulonOo nm~lcB6l' mmlnJo6lUTl!)J.

1 5. crulonOo amlCIDl6)CTOO ruCJllcB6l' C8nJoavl.

Table 6.4 Malayalam text of the story "The Lion and the Rat"

129

1. orikk21 om siMhm om katti21 urffukyAyirnnnu.

2. om eli iwu kNtu.

3. A eli siMhwwi2neR atuwwu kLikkuvA2n wutffi.

4. siMhwwinnu xeshyM vnnu.

5. siMhM eliye winnumennu pRffu.

6. elie wnne kollrnwennu pRffu.

7. om xivsM siMhwwinne eli shAyikkAmennu pRffu.

8. simhM elie vittyccu.

9. om xivsM A siMhM om keNiyill vINu.

10. awz uccwwiIl g2Rjjiccu.

11. awz kettz eli vEgM vnnu.

12. eli kenniyute kyRz pllukoNtu aRwwumAtti.

13. siMhm kenniyute puRwwu vnnu.

14. siMhM elikkz nni pRffu.

15. simhM awi2neR vVikkuz pOyi.

Table 6.5 Story in Roman Notation

130

1. Once upon a time a lion was sleeping in a forest.

2. A rat saw this.

3. That rat started to play near the lion.

4. The lion grew angry .

5. The lion said that it will eat the rat.

6. The rat said not to kill it .

7. The rat told that it will help the lion one day.

8. The lion set the rat free.

9. This lion fell into a trap one day .

10. It roared loudly.

11. The rat came quickly having heard it .

12. The rat cut open the trap with its teeth.

13. The lion came out of the trap.

14. The lion thanked the rat.

15. The lion went its way.

Table 6.6 English Translation of the Story

131

The results show that the method comprising the usage of verb boundaries as

phrase markers, the karaka based approach of extracting meaning from

phrases and the frame structure for meaning representation IS an ideal

approach for sentence comprehension in Dravidian languages .. The object­

oriented methodology used, facilitates portability and scaling up of this model.

132

Chapter 6

Conclusion & Future work

The conventional methods of sentence analysis make use of a context-free

grammar and a parser before proceeding further. Context-free grammars

are capable to handle order and position elegantly. Hence they are suitable

for processing positional languages like English. But Dravidian languages

or other Indian languages are basically free word order languages. Hence

the technique of processing these languages with CFG is actually a misfit.

In this work an alternative approach more efficient in the context of Indian

languages is suggested. This approach makes use of the karaka relations

for sentence comprehension. An intermediate representation of the

sentence is built from the karaka relations. This representation is

unambiguous and general.

This approach is based on the concept that the verbs convey the action part

in a sentence and the karaka-vibakthi relations enable to find the respective

places of the various components in the sentence. Instead of the

conventional NP-VP grammars, verb boundaries are adopted as phrase

markers and phrase-level representations are build to convey the complete

meaning of a sentence.

The validity of the approach is established through studies on two

application-oriented experiments. In the first experiment translation is

done from a free word order language to fixed word order one. Here both

source and destination are natural languages. In the second experiment the

target language is an artificial language with a rigid syntax. The same

meaning representation technique is used in both the cases. The difference

133

is in the generation of target language sentence. Anyhow both use pattern

directed methods. The results obtained are encouraging.

Simple and complex sentences of declarative type and interrogative type

are selected for analysis. It could be extended to handle imperative and

exclamatory sentences. Complex sentences with more than one

subordinate clause and compound sentences could also be explored.

In the first experiment isolated sentences were only considered. Hence the

methods for resolving anaphora were not studied. In a general context this

is a difficult job. However work could be extended in the direction of

resolving anaphoric references in the intermediate representation. In the

second experiment anaphora and ellipsis are handled satisfactorily since

the domain is fixed. The possibility of improving system performance by

tolerant towards user errors like spelling mistakes, sentence structures,

agreement rules etc could be investigated.

Word sense disambiguation is done with semantic tags. This scheme is

basically simple to implement. But it is an ad hoc scheme as no universal

set of semantic primitives is yet identified. The lexicon should be built

carefully after considering all the cases.

Since karaka relations are present in almost all Indian languages, an added

advantage of this approach is its adaptability to all Indian languages. The

general nature of the meaning representation structure and the object based

design of the system helps in achieving easy transportability to a new

application. This work could be extended to other free word order

languages, other than Indian languages. The chances of applying this

approach to fixed word order languages could also be probed. What is

needed is the coding of vibakthi information in the word position.

134

However, as far as machine translation is considered, this approach has a

serious drawback of loosing surface structure in the internal representation.

In fact this approach presumes a perfect understanding of the source

language. For translation among languages, which are structurally close to

each other, a direct lexical substitution in a language pair could lead to

reasonable results in a simplistic manner.

In this work the input was given as typed text. A voice recognition system

could also be included in the system so that input cO,:!ld be given as spoken

text, making it particularly useful in information booths.

135

References

1. Wendy B. Rauch-Hindon, Artificial Intelligence in Business, Science and

Industry, vol .1, Prentice-Hall, New Jersey, 1986.

2. E.C.Charniack, Towards a Model of Children's Story Comprehension, TR-

266, MIT AI Lab, Cambridge, MA, 1972.

3. RC.Schank, Conceptual Information Processing, North-Holland,

Amsterdam, 1975.

4. A vron Barr, Edward A. Feigen baum, The handbook of Atficial

Intelligence, Vol 1, William Kaufmann Inc, California, 1981.

5. P.RCohen and C.RPerrault, Elements of a Plan-based Theory of Speech

Acts, Cog.Sc 3,1979.

6. B.J. Orosz, The representation and use of focus in a system for

understanding dialogues, Proceeding of the fifth International joint

conference as Artificial Intelligence, Cambridge, MA, 1977.

7. c.L. Sidner, Towards a Computational theory of Definite Anaphora

Comprehension in English Discourse, TR-537, MIT AI lab, Cambridge

MA,1979.

8. 0.0. Hendrix, Human Engineering for Applied National Language

processing, Proceedings of the fifth International Joint Conference on

Artificial intelligence, Cambridge MA,1977.

140

9. BJ. Grosz, TEAM: A Transportable Natural Language Interface System,

Proceedings of the Conference on Applied Natural Language processing.

Santa Monica, CA, February, 1983.

10. J.Kaplan, Cooperative responses from a Portable Natural Language Query

System, Artificial Intelligence. vol 19, no.2, 1982.

11. J.G.Brown and R.R.Burton, Multiple representation of Knowledge for

Tutorial Reasoning in D.G.Bobrow and A.Collins (eds), Representation

and Understanding, Academic press, New York, 1975.

12. J.G. Carbonell, W.M.Boggs, M.L.Mauldin and P.G.Anick, The

XCALIBUR Project, A natural Language Interface to Expert Systems,

Proceedings of the Eight International Joint Conference on Artificial

Intelligence, Karlsrube, FRG, 1983.

13. P.Norvig, Paradigms of Artificial Intelligence Programming: Case Studies

in Common Lisp, Kaufinann. California, 1991.

14. R.e. Parkinson, K.M.Colby and W.S. Faught, Conversational Language

Comprehension using Integerated Pattern - matching and Parsing,

Artificial Intelligence Vol. 10, No.2, 1977.

15. Mark Wallance, Communicating with Databases in Natural language,

Ellis Horwood, England, 1984.

16. William B. Gevarter, Intelligent Machines, Prentice- Hall, Inc, Englewood

Cliffs, New Jersey, 1985.

141

17. Michael A. Coyington. Natural language Processing for Prolog

Programmers, Prentice-Hall, Englewood Cliffs, New Jersey, 1994.

18. G. Gazdar, Phrase Structure Grammar and Natural Language, Proceedings

of the Eight International Joint Conference on Artificial Intelligence,

Karlsrube, FRG, August, 1983.

19. D.G.Bobrow and J.B.Fraser, An Augmented State Transition Network

analysis Procedure, Proceedings of the first International Trait

Conference on Artificial Intelligence, Washington D.e., 1969.

20. W.A.Woods, Transition network Grammars for Natural language

Analysis, CA CM 13 (10), October,1970.

21. S.C Kwansy and N.K Sondheimer, Relaxation Techniques for Parsing

Grammatically Ill-Fonned Input in Natural language Understanding

System, American Journal of Computational Linguistics 7 (2), 1981.

22. R.M. Weischedel and J.Black, "Responding to Potentially unparseable

Sentences, Am.J. Computatallinguistics 6, 1980.

23. W.A.Woods, W.M.Bates, G.Brown, B.Bruce, e.Cook, J.KloYstad,

J.Makhoul, B.Nash-Webber, R.Schwartz, J.Wolf and V.Zue, Speech

Understanding Systems, Final Technical Report 3438, Bolt, Bernack and

Newman, Cambridge, MA, 1976.

24. Avron BaIT, .Edward A. Feigen baum, The handbook of Atficial

Intelligence, Vol II, William Kaufinann Inc, California, 1982.

142

25. William B.Gevarten, Intelligent machines, Prentice-Hall, Inc, NJ, 1985.

26. R.M.Kaplan and Joan Bresnan, Lexical functional grammar : A formal

system for grammatical representation, In Joan Bresan (ed), The Mental

Representation of Grammatical Relation, MIT Press, Cambridge, MA,

1982.

27. Elaine Rich, Kevin Knight, Artificial Intelligence, Tata McGraw - Hill

Publishing Company, 1991.

28. R. Schank and C.K.Riesbeck, Inside Computer understanding, Lawrence,

Erlbaum. Hillsdale, NJ, 1980.

29. c.K. Riesbeck Conceptual analysis, III R.C.Schank (ed), Conceptual

Information Processing, North Holland! American Elsevier,

Amsterdam, 1975.

30. R.Schank and R.Abelson, Scipts, plans, goals and understanding,

Lawrence Erlbaum, Hillsdale, NJ, 1977.

31. L.Birnbaum and M.Selfridge, Conceptual Analysis of Natural language, in

R.C Schank and C.k. Riesbeck (eds), Inside Computer Understanding,

Lawrence Erl baum, Hillsdale, NJ, 1981.

32. Y. Wilks, A Preferencial Pattern-matching Semantics for Natural

Language Un~erstanding, Artificial Intelligence 6, 1975.

143

33. S.Small and C.Rieger, Parsing and Comprehending with Word Experts (A

Theory and its Realization), in W.G.Lehnert and M.Ringle (eds),

Strategies for Natural language Processing, Lawrence Erlbaum, Hillsdale,

NJ,1982.

34. M.Lebowitz, Memory-based Passing, Artificial Intelligence, 21, 1983.

35. D.E. Rumelhart, J. McClelland , On Learning the Past Tense of Verbs in

D.E. Rumelhart, J. McClelland (eds) Parallel Distributed processing ,vol.

2, MIT Press, Cambridge, MA, 1988.

36. J.L. McClelland and A.H. Kawamoto, Mechanism of Sentence processing

: Assigning Roles to Constituents in D.E. Rumelhart, 1. McClelland (eds)

Parallel Distributed processing, vol. 2, MIT Press, Cambridge, MA, 1988.

37. T.J. Sejnowski, C.R. Rosenberg, NET talk: a parallel network that learns

to read aloud, Technical Report JHUIEECS-86/01, John Hopkins

University Press, Baltimore, MD ,1986.

38. A Waibel, T. Hanazawa, G. Hinton, K.Shikano, K.J.Lang, Phoneme

recognition Using Time Delay Neural Networks, IEEE Transactions on

Acoustics, Speech and Signal Processing, 37, 1989.

39. M.I.Jordan, Attractor Dynamics and Parallelism in a Connectionist

Sequential Machine, Proceedings of the Eighth Annual conference of the

Cognitive Science Society, 1986.

144

40. J.L.Elman, Representation and Structure in Connectionist Models,

Technical Report 8903, CRL, University of California, San Diego, CA

1989.

41. J.B.Pollack, Recursive Auto-Associative Memory: devising compositional

distributed representations , Proceedings oJ the Tenth Annual ConJerence

oJthe Cognitive Science Society, Montreal, Canada, 1988.

42. M.F. SUohn, J.L.McClelland, Learning and Applying Contextual

Constraints in Sentence Comprehension, Proceedings oJ the Tenth Annual

ConJerence of the Cognitive Science Society, Hillsdale, NJ, 1988.

43. G.Cottrell, B.Bartell, C.Haupt, Grounding meaning In Perception,

Marburge H. (ed) Proceedings of the J 4th German workshop on Artificial

Intelligence, 1990.

44. J.B.Pollack, Implication of recurslve distributed representations in

Touretzky D.S (Ed). Advances in Neural Information Processing systems,

Morgan Kaufmenu; San Matro, CA, 1989.

45. W.G.Lehnert, C.Cardie, D.Fischer, J.McCarthy, Description of the

CIRCUS system as used for MUC -4, Proceedings oJ the fourth message

understanding Conference, 1992.

46. J.Hendler, Developing hybrid symbolic connectionist models. In: lA

Baurden, lB.Pollack (eds). Advances in Connectionist and Neural

Computation Theory, VoU : High level Connectionist Models, Ablex

Publishing Corporation, Norwood, NJ, 1991.

145

47. W.R.Deshpande, Technology development for Indian languages :

Language understanding and machine translation, in. S.S.Agarwal, Subas

Pani (ed.) Proceeding of Information technology application in language.

script and speech. New Delhi, India, 1994.

48. Akshar Bharti, Vinceent Chaitanya, Rajeev Sangal, Anusaraka or

Language Accessor : A short introduction, TRCS - 93-205, Department of

Computer Science & Engineering, lIT Kanpur, 1993.

49. Akshar Bharti, Vineent Chaitanya, Rajeev Sangal, Anusaraka. as a

measuring devices for the linguists. TRCS - 93-210, Department of

Computer Science & Engineering, lIT Kanpur, 1993.

50. R.M.K. Sinha and K.Sivaraman, ANGAL-BHARTI : A machine aided

translation system from English to Indian languages - an overview -

Technical Report TRCS - 93-173, Department of Computer Science and

Engineering, lIT Kanpur, 1993.

51. G. Gazdar and C. Mellish. Natural language Processing in Lisp.

Addison-Wesley, 1989. Prolog version also available.

52. Akshar Bharathi, Vineet Chaithanya, Rajeev Sangal, Natural Language

processing- A paninian perspective, Printice~Hall of India, New Delhi,

1996.

53. N.N.Moosath, Dravida Baksha Syasthram, National Bookstall, 1973.

146

54. Akshar Bharati, Rajeec Sanyal, Parsing free word order languages in the

Paninian frame work, TRCS-93-171, Departmen.t of Computer Science

and Engineering, lIT, Kanpur, India, 1993.

55. R.M.K.Sinha and K. Sivaraman, Ambiguity Resolution in Anglabharati,

TRCS-93-174, Department of Computer Science and Engineering, lIT,

Kanpur, India, 1993.

56. R.M.K. Sinha, Aditi Agrawal and Chinmoyee Sanyal, Morphological

analyser, TRCS - 93-176, Department of Computer Science lIT, Kanpur,

India, 1993.

57. N. Alwar, S.Raman, "An AI based approach to 'machine translation ill

Indian languages, ACM Communications, May 1990.

58. Akshar Bharati, Y.Krishna Bhayava, Rajeev Singal, Reference and

Ellipsis in an Indian Languages Interface to Databases , TRCS - 92-147,

lIT, Kanpur.

59. J. Kaplan. Cooperative Responses from a Portable natural language Data

Base Query System, Artificial Intelligence, 1982.

60. Mimi Kao, Nick Cercone, Wo-shun Kuk, Providing quality responses with

natural language interfaces: The Null value Problem, IEEE Transactions

on software engineering, vo1.14, no.7, July, 1988.

61. B.Rondand etal, A procedure for the evaluation and improvement of an

MT system by the end-user, in Machine Translation 8, No 1-2, Special

issue on Evaluation ofMT systems, 1993.

147

62. K.Sparck Jones and J.Galliers, Evaluating Natural Language processing

system. An Analysis and Review, Heidelbery and Berlin: Springer Verlag,

1996.

63.1. Androutsopoulos. Interfacing a Natural Language Front-End to a

RelationalDatabase (MSc thesis), Technical paper II, Department of

Artificial Intelligence, University of Edinburgh, 1993.

64. 1. Androutsopoulos, G. Ritchie, and P. Thanisch. An efficient and

Portable Natural Language Query Interface for Relational Databases. In

P.W. Chung, G. Lovegrove, and M. Ali, editors, Proceedings of the 6th

International Conference on Industrial & Engineering Applications of

Artificial Intelligence and Expert Systems, Edinburgh, U.K., Gordon and

Breach Publishers Inc., Langhome, PA, U.S.A, June 1993.

65. AR.Rajaraja Verma, Keralapaniniyum, India Press, Kottayam, 1985.

66. P.C.Wren, H.Martin, High School grammar and composition, S.Chand &

company, 1988.

67. N.R. Adam, A Gangopadhyaya, A Form-Based Natural Language Front­

end to a CIM Database, IEEE Trans. on Knowledge and Data

Engineering, vo1.9, no.2, Mar-Apr 1997.

148

	TITLE
	CERTIFICATE
	Contents
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References

