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Chapter 1 

Fracture in Polymers 

1.1 Introduction 

The wide usage of polymeric materials in engineering is largely due to their valuable me­

chanical properties and especially due to their high strength coupled with large recoverable 

deformability. This unique combination of properties arises from the specific structure of 

polymers, namely, the presence in them of two kinds of linkages differing sharply in en­

ergy and length; strong chemical bonds between the atoms of the chain and much weaker 

intermolecular ones between the chains. Fracture is the rupture of the bonds between 

the elements of a body (atoms, molecules or ions) resulting in breakage or cleavage of the 

specimen into parts. In mathematical terms we may define a fracture processs [1] as one 

by which the sum of the degrees of connectedness of the parts of a sample or a structural 

element is increased by at least one. This definition includes the piercing of films and 

tubes, but excludes minute damages as caused by crazing or chain scission. The term 

fracture process is meant to describe the whole development of a fracture from its initi­

ation through crack growth and propagation to completion of the fracture. In contrast 

to thermal or environmental degradation and failure, the fracture process is understood 

as stress-biased material disinetegration. It carries on if and only if a drivng force exists, 

which has literally to be a force. Forces, however, will give rise to deformations. This 

means that fracture initiation will always be preceeded by specimen deformation. The 

1 
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resistance of a material to fract ure is called strength or mechanical strength. 

In the absence of flow, chain scission and chain strength determine the mechanical 

properties of polymers. In fact, there are a number of observations which support this 

assumption: 

1. with increasing number n of chain atoms, a saturated linear hydrocarbon will turn 

from gas to liquid and to solid; the solid will attain technically useful strength if n is 

around 2000; with increasing moleculear weight and chain orientation that strength 

may still be increased 50-fold [2]; 

2. the mechanical loading and rupture of virtually all natural and synthetic polymers 

leads to the scission of molecular chains and the formation of free radicals [3]; 

3. the strength and the hardness of solids increase with volume concentration of pri­

mary bonds [4]; 

4. in a number of uniaxial tensile fracture experiments the energy of activation of 

sample fracture coincided with the activation energy for main chain bond scission [3]. 

In materials such as highly oriented or liquid-crystalline polymers, the overall strength 

of the solid is likely to be governed by the strength of the chemical bonds linking chain 

segments and the calculation demands treatment on a quantum mechanical level [5]. In 

this case, a formalism at the atomic scale is more appropriate, and at non-zero tempera­

tures, one expects thermal fluctuations to cause the chemical bonds to break. It is found 

that the axial tensile modulus is an appreciable fraction (0.2 - 0.80) of the value expected 

for an assembly of parallel chains. Hookean behaviour has been assumed for strains up 

to 0.13 by Chevychelov [6]. A number of empirical anharmonic potential functions have 

been used to treat the homolytic scission of a bond in an overstressed chain. While Morse 

or Lennard-Jones functions have been used most frequently [6, 7] other functions have 

been assumed to account for bond angle deformation [8]. 

Because the interactions between atoms in a polymer are either intramolecular or 

intermolecular, the failure of a macroscopic sample of such a material can be described 
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on the molecular scale by two types of events [9]: the breaking of intermolecular van der 

Waals, hydrogen or electrostatic bonds (chain slippage or peeling apart of neighbouring 

chains), and the breaking of intramolecular covalent bonds (chain scission). 

The measured tensile strengths of solids are much lower than the theoretical strengths 

as calculated from the atomic binding forces. For organic polymers, the maximum the­

oretical strength is that of a carbon-carbon bond. In practice, the tensile strength of a 

carbon-carbon bond cannot be approached unless the molecules are highly oriented in 

the direction of the applied tensile force. Usually all polymer samples contain structural 

irregularities at which the local stress and strain are higher than the average measured 

stress and strain. Fracture occurs at the most defective point. 

1.2 Theories of Fracture 

1.2.1 Statistical Theory of Fracture 

Based purely on statistical considerations, Coleman and Marquardt [10] developed their 

important theory of breaking kinetics of fibers. They especially investigated the distrib­

ution of lifetimes of fibers under constant or periodic load and the effects of fiber length, 

rate of loading and bundle size on the strength of filaments or bundles thereof. Two sta­

tistical effects should be noted: (1) the lower strength of a bundle as compared with that 

of a monofilament ( due to the accelerating increase in failure probability K after rupture 

of the first filament within a bundle) and (2) the increase of strength with loading rate 

here derived from the reduced time each filament spends at each load level. The large 

scatter of strengths and the dependency on sample geometry may be explained by intro­

ducing the concept of flaws of different degrees of severity. When being stressed, the flaw 

since it is the weak region, may fail, leading to a void, a craze, and or to a propagating 

crack and macroscopic failure. Following Epstein's statistical theory of extreme values 

[11], the strength of a material volume element depends on the 'severeness' of the most 

critical flaw being present within that volume element. The third statistical argument 

is that fracture is the result of a large number of molecular processes. Its application 
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to polymers definitely was stimulated from many sides including fracture and fatigue of 

metals [12] or glasses [13] and the thermodynamics of reactions [14]. This interpretation 

of fracture necessitates a consideration of the correlation of the individual steps and of 

the final failure criterion. 

Recently Huang [15] has studied the general properties of failure of polymeric materials 

using Markov theory and has given a statistical theory of fracture of general molecular 

bonds of polymeric materials. He obtained a general rigorous relation between the number 

of the molecular bonds of the polymeric components and the effective life time of the 

loaded components and discovered that the relation (relative to stress, temperature etc.) 

is just the probable statistical mean one. 

1.2.2 Griffith's Theory 

If the strength of a material is limited by macroscopic flaws, then a formalism based on 

cont inuum mechanics is commonly used to investigate the distribution and time evolution 

of these flaws. The principal continuum theory of brittle fracture is that first proposed 

by Griffith [16]. In his phenomenological theory of strength, Griffith pointed out that one 

could acccount for the large difference between experimentally observed rupture strengths 

in solids and theoretically expected values by presupposing that stress and associated 

strain energy are not uniformly distributed in a test specimen, but are concentrated in 

the neighbourhood of preexisting microcracks. Rupture or brittle fracture then occur by 

propagation of these preexisting micro cracks - which presumably develop as a result of 

the preparation procedures - under the action of the high localised stresses at the crack 

tips. According to Griffith, a crack would propagate and a sample would fail in brittle 

fashion when the work required to extend the crack and create new surfaces was just 

balanced by an equal reduction in the strain energy of the specimen associated with the 

applied stress. Under these conditions, no increase in total potential energy of the system 

occurs and the energy to make the crack self-propagating comes from the elastic energy 

stored near the crack tips. 

Griffith used the Inglis equation [17] for the local stress, (TmalCl occuring at the edge of 
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a narrow elliptical crack in a uniformly stressed thin plate, namely, 

O"max = 20"0~ (1.1 ) 

where 0"0 is the applied stress, 2c is the length of the elliptical crack, and p is the radius 

of curvature. Griffith was able to show that the critical applied tensile stress, O"e, required 

to cause such a transversely oriented crack to spread was given by 

(1.2) 

where E is Young's modulus of elasticity, and, is the specific surface energy, that is, the 

energy required to form a unit area of fracture surface. Thus the stress to propagate the 

crack and produce brittle fracture decreases with increase of preexisting crack size, but 

increases with increase of modulus or with the surface energy. Griffith investigated the 

validity of the above equation by carrying out experiments on glass tubes and hemispheres 

in which he purposely introduced cracks of various sizes by use of a diamond cutter. He 

also determined E and, from separate experiments. He was able to show that, for these 

materials, his theoretical equation was approximately satisfied and that O"e did vary as the 

crack size to the negative one-half power. He also estimated that the radius of curvature 

need not be much larger than atomic dimensions and under these conditions the estimated 

local stress at the crack tip does become comparable to the expected theoretical stresses 

based on the magnitude of interatomic forces. 

The Griffith theory was further developed and generalised by Irwin [18] and others, 

but the general form of the rupture stress and crack length relation remained the same. 

The principal difficulty in applying the Griffith criterion to polymers, or even to specific 

glassy and relatively brittle polymers like polystyrene is that a considerable amount of 

energy can be dissipated in these materials by localised molecular orientation and plastic 

deformation process that occur in the vicinity of the crack, and in the craze regions 

preceding the crack tips. The propagation of the crack thus involves not only breaking of 

the interatomic bonds in the already crazed region but conversion of mechanical energy 
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to heat energy by additional viscous and plastic deformation accompanying extension of 

the crazes. The extent of crazing, and of local regions of plastic flow and chain orientation 

in the neighborhood of crack tips, has been studied by Kambour [19] and others. 

1.2.3 Continuous Viscoelastic Models 

The model of a common 'failure envelope' proposed by Smith [20] is based on a consider­

ation of the viscoelastic behaviour of continuous high polymer bodies, i.e., on the concept 

that a reduction according to the time-temperature superposition principle of the envi­

ronmental parameters stress, strain-rate and temperature should lead to corresponding 

molecular states. If a fracture criterion refers to unique limits of molecular load-carrying 

capability, then the plotting of reduced stress at break versus strain at break for different 

experimental conditions should lead to one master curve, the failure envelope. For a large 

number of natural and synthetic rubbers and vulcanizates under similar modes of mechan­

ical excitation, this concept was found to hold. It thus generally allows the extrapolation 

of the ultimate behaviour into unknown regimes of time, strain-rate or temperature. This 

model, however, does not allow prediction of the shape of the fracture envelope or the 

conversion of data obtained under different modes of excitation (uniaxial, equal biaxial 

or other multiaxial loading). 

Blatz, Sharda and Tschoegl [21] have proposed a generalized strain energy function 

as a constitutive equation of multiaxial deformation. They incorporated more of the 

nonlinear behaviour in the constitutive relation between the strain energy density and 

the strain. They were then able to describe simultaneously by four material constants 

the stress-strain curves of natural rubber and styrene-butadiene rubber in simple tension, 

simple compression or equibiaxial tension, pure shear and simple shear. 

The theory of rubber elasticity and the time-temperature superposition principle are 

adopted in the continuous elastic models. These models implicitly recognize the molecular 

origin of the viscoelastic behaviour of a material, but explicitly they do not refer to 

noncontinuous quantities such as the discrete size, structure and arrangement of molecules, 

anisotropy of molecular properties or the distribution of molecular stresses or stored strain 
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energy. A representation of a solid as a continuum is quite adequate where individual 

molecular events or discontinuities of stress or strain are either not discernible or not of 

particular importance. 

1.2.4 Rate Process Theories of Fracture 

Contrary to the continuum mechanical theories, 'molecular' rate process theories of frac­

ture recognise the presence of discrete particles or elements forming the material body. 

Rate process theories formulate a relationship between breakage, displacement and refor­

mation of these elements to deformation, defect development and fracture of the structured 

materiaL It is assumed that macroscopic failure is a rate process, that the basic fracture 

events are controlled by thermally activated breakage of secondary and or primary bonds 

and that the accumulation of these events leads to crack formation and or to break-down 

of the loaded sample. Here the basic events are defined in a general manner and not 

experimentally related to particular morphological changes. 

A stress-biased thermodynamically irreversible displacement of molecules past each 

other results in the flow of a liquid, melt or solid. A molecule in thermal equilibrium 

with its surroundings is in thermal motion, which in the case of a liquid or solid is 

predominantly a vibration around a temporary equilibrium position. The amplitude of 

vibration is constantly changing. Eyring [22] postulated that a displacement (or jump) of 

a molecule from an initial to a neighbouring equilibrium position may occur if the thermal 

energy of the molecule is sufficient to reach the activated stage, Le., the top of the energy 

barrier separating the initial and the final equilibrium positions. The rate of decay of 

activated states towards the final position was obtained by him as 

(1.3) 

Here K, is the transmission constant which indicates how many of the activated complexes 

actually disintegrate, kB is Boltzmann's, h Planck's, and R the gas constant, T is ab­

solute temperature, Uo the height of potential barrier, and 1:::.8 the difference in entropy 

between ground state and activated state. In the absence of external forces initial and 
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final equilibrium states are assumed to have the same potential energy. Then the rates 

of flow of particles across .the dividing potential barrier are the same in the forward and 

backward directions. Under the influence of external forces, however, local stress fields 

are generated. A particle thermally activated to move in the direction of , say, stress W 

by a distance >../2 then gains an amount of energy 

w = W>..q/2 (1.4) 

where q is the average cross section occcupied by the particle normal to the direction of 

motion. A particle moving in the - W direction will lose the same amount of energy. The 

first particle, therefore, needs less thermal energy to reach the activated state than the 

second particle. Consequently the rates of flow of particles across an energy barrier in 

opposite directions are biased by the local stress: 

kl = koexp(w/kT) (1.5) 

k2 = koexp(-w/kT). (1.6) 

The net flow rate, therefore, is 

K = kl - k2 = 2kosinh(w/kT). (1.7) 

In 1943, Tobolsky and Eyring applied the concept of slipping of secondary bonds to 

the breaking of polymeric threads under uniaxialload [14]. The rate of decrease of the 

number N of such bonds per unit area under constant uniaxial stress Wo is obtained as 

1 dN . 
- N dt = 2ko smh(Wo>../2NkT). (1.8) 

For large values of stress, the flow of bonds takes place almost exclusively as breakage 

and not as reformation. In that case one may use Eq. (1.5) instead of Eq. (1.7). If 

one substitutes there Wo>../2NkT by y one obtains a solution in terms of the exponential 
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integral 

-Ei(-y) = (CO dy'exp(-y')/y' = kOtb. 
i yo 

9 

(1.9) 

The lower limit of integration is yo = Wo)../2NokT = w/kT. Eq. (1.9) offfers an implicit 

relation between the expectation value of the time to fracture of the thread tb, the rate of 

flow of unstressed secondary bonds, ko, and the stress Wo acting on the No initial bonds. 

With w » kT the exponential integral may be approximated by 

-Ei( -y) = [(exp -y)/y]{1 - l/y). (1.10) 

Within the range of validity of this approximation, the logarithm of lifetime log tb, is 

almost linearly related to w; i.e., to the applied stress. Exactly this behaviour is exhibited 

by a large number of stressed metals, ceramics or polymers. 

Independently from each other Zhurkov et al. [23J in the USSR and Bueche [24J in the 

USA expressed the idea that in fracture of polymers - and also of metals - the breakage 

of primary (chemical) bonds play an important role. As a result of detailed investigations 

of the life time 7(0", T), at various stresses 0" and temperatures T, it was established [3] 

that the following relationship exists, applicable to all polymeric solids 

(1.11) 

when 0" remains constant. Here T is absolute temperature, R is the gas constant and 

Uo, , and TO are constants. The constant TO proves to be practically the same for all 

solid bodies and equal to 10-12 - 1O- 13sec. The constant Uo for polymers is close to 

the activation energy of thermal degradation E, of the macromolecules. The constant, 

is very sensitive to the structure of the polymeric body and varies considerably during 

crystallisation, plasticisation and other changes in the physical structure of the polymeric 

body. 

Analysis of data on the life time of polymeric bodies leads to the conclusion that 

failure of a body is a complex aggregate of processes among which the leading one, in 

the long run, is that of thermal degradation of macromolecules, accelerated by the action 
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of the mechanical stress. The constant 'Y in the equation reflects the efffect of the stress 

on the rate of thermal degradation of the polymer. The higher the stress and higher the 

temperature, the lower the life time of the polymer. Raising the value of 'Y enhances the 

effect of the stress on the rate of thermal degradation. Thus, mechanical breakdown of a 

polymeric body is a mechanochemical process 

It can be easily seen from the Eq. (1.11) that at sufficiently low temperatures the 

dependence of the life time on the stress (at T = constant) becomes very prominent. 

Therefore, a minor rise in stress under these conditions may change the life time by many 

orders from very high values to negligibly small ones. This leaves the impression that 

there exists a stress separating infinitely long-lived stressed bodies from those that fail 

instantaneously. Therefore, at sufficiently low temperatures a critical stress value may be 

used for practical purposes. 

The Arrhennius expressions of Bueche and Zhurkov do not contain dependence on N. 

The Zhurkov equation asserts that T, the mean lifetime of a solid, is the same as what 

one might expect to be the mean lifetime of a single bond. In fact, a number of bonds are 

expected to break prior to T. The consequence is that the remaining bonds are subjected 

to even greater stress, and the breaking process accelerates rapidly. The mean breaking 

time of a bond under the initial stress per bond is therefore taken to be a good estimate 

of the lifetime of the solid. There is no dependence on sample size, and since Zhurkov 

proposes the theory as working for any solid, there cannot be dependence on the degree of 

polymerisation. However, in a fiber of highly aligned polymer chains, the stress-bearing 

units are long segments of the chains, each of which can break at anyone of its bonds. 

Thus one expects some dependence on N. 

Following the earlier works of Eyring, Zhurkov and Bueche, these and other authors 

have continued to develop different aspects of the kinetic theory of fracture. Particularly 

in the USSR, fracture data have been interpreted in terms of the failure of regular non­

morphological model lattices [25, 26]. Gubanov et al. [25] and Bartenev [26] focussed 

on the potential energy of interaction between adjacent members of a polymer chain and 

Dobrodumov [27] on the increase of the load and - consequently - of the rate of scisssion 
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of bonds adjacent to a broken bond. 

Hsiao and Kausch [28,29] studied the effect of orientation-dependent local strain on the 

total rate of chain scission and Salganik [30] analysed the amount of thermal energy and 

the direction of relative motion imparted by statistically fluctuating phonons to adjacent 

segments. Different statistical aspects of the accumulation of molecular defects were 

treated by Goikhman [31] and Gotlib [32] who simulated the isolated production, growth, 

interaction and coalescence of defects. An energy probability theory was forwarded by 

Valanis [33] who combined the role of strain energy density, the stochastic nature of 

fracture and the fracture hypothesis of Zhurkov. The model suggested by Termonia and 

Smith [34] explicitly takes into account the role of the weak attractive forces between 

chains as well as chain slippage through entanglements. Stress-strain curves calculated 

for polyethylene agree quantitatively with experiment. 

Wheras all of the above theories refer in one way or another to the thermally activated 

breakage of one kind of molecular bonds as primary fracture event, the Bueche-Halpin 

theory for the tensile strength of gum elastomers [35] employs the idea that the viscoelas­

tic straining of rubber filaments together with the degree of their ultimate elongation 

determine the kinetics of crack propagation in an elastomeric solid. 

To the molecular processes specified above one has to add the unspecified ones, in­

ternal destruction, damage or crack formation probability. In analogy to the molecular 

description of deformation used by Blasenbrey and Pechhold [36] all of these molecular 

processes can be referred to the four physical rearrangements that can occur between 

neighbouring chain segments with parallel chain axes: change of conformation (segment 

rotation, gauche-trans transformation), cavitation, slip and chain scission. Of these chain 

scission and - to some extent - cavitation and slip are potentially detrimental to the 

load-bearing capacity of a polymer network. Conformational changes on the other hand, 

appear to be 'conservative' processes, which by themselves will modify and delay but 

never generate any progress in the development of a fracture process. 
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1.3 Simulation Studies of :Fracture 

Since the task of estimating the lifetime of a solid under stress is difficult to perform 

analytically, attempts have been made to investigate this property using molecular dy­

namics simulations. Wang et al. [37] performed molecular dynamics simulations on a 

two-dimensional set of atoms interacting through Lennard-Jones forces and found a strong 

dependence of the time until a break occurs on the applied stress. As expected, there is 

a range of stress for which the material can be seen to relax to a metastable equilibrium 

and then suddenly fail. For larger stresses, the material fails immediately, and at smaller 

stresses, the finite duration of the simulation prevented failure from appearing. This sim­

ulation confirms the metastability of the unbroken state. Finally, the critical load is found 

to decrease significantly with temperature. This latter result, especially in the context of 

explicit microscopic simulation of the failure of single crystals, provides many additional 

insights into the role of thermal fluctuations in metastable solids. They also found that 

failure is sometimes preceded by a crystal-crystal phase transition that corresponds to a 

physically allowed lattice invariant (PALl) strain. At sufficiently high temperatures they 

observed direct failure of the system via stress-induced melting [38]. 

Welland et al. [39] and Manevitch et al. [40] each studied the breaking behaviour 

of single polymer chains. Manevitch was concerned with the role soli tons might play 

in causing a polymer chain to break. He investigated these solitons using a molecular 

dynamics simulation of a chain of atoms connected by Morse potentials. The position and 

time dependent statistical probability for fracture of a one-dimensional string of Lennard­

Jones atoms has been evaluated by Welland et al. [39] as a function of the temperature, 

tension and length. A surprising exponential dependence of the fracture-site probability 

with distance from a string end is observed. 

In a recent review, [41] Baljon et al. discussed the molecular mechanisms of rupture 

in the light of recent computational simulation studies. When the bonds in a crystalline 

solid or a polymer are pulled apart at constant velocity, they rupture through a series of 

sudden yield events during which the material reorganises. Yield events are separated by 

peroiods of elastic deformation where the stress builds until the system becomes unstable. 
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The nature of the structural change at yield events varies from system to system; small 

cavities form in the polymer film, an additional atomic layer is formed in the crystal and 

hydrogen binding sites rearrrange in the biological system. 

Knudsen et al. [42] applied the technique of Brownian dynamics simulation for the 

study of the fracture process of flexible polymer chains when they encounter an extensional 

flow field of transient character. The simulation results showed that the fracture yield 

depended strongly on flow rate and on molecular weight. The distribution of the resulting 

fragments is interpreted in terms of the conformation of the chain prior to fracture. 

Sheilg Yu-Jane et al. [43] studied the static and non equilibrium dynamic properties 

of a single linear chain under an attraction force f , by Monte Carlo simulations using a 

continuous model and by scaling calculations. Chain lengths from N = 10 to N = 100 

are considered. For these static results, the simulation data show that the average end-to 

end distance (RI) "'" N2v f at weak tension forces and for strong forces (RI) "'" NI/v-l f 

which are consistent with previous studies. The nonequal relaxation behaviour is studied 

for an initially stretched polymer chain, when the stretching force is removed. Detailed 

chain configuration during the relaxation process are analysed from the simulation data. 

Different relaxation dynamics are found for three regions, the linear, pincus and model 

dependent regimes. The non-equilibrium relaxation time 7 is derived in the linear (7 "'" 

N1+ 2v), pincus (7 "'" N 2 fl/V-2) and model-dependent regimes. These results are compared 

and are discussed in the light of scaling theories. 

Fracture of perfectly oriented polymer fibers was studied [44] by computer simula­

tion technique based on the ultimate structure model to establish the upper limit of the 

tenacity of polymers with finite molecular weight. The fracture mechanism was also inves­

tigated in terms of average molecular weight and different nature of interchain interaction. 

The tenacity of the model fibers increased with molecular weight and tended to approach 

the theoretical limit for infinite molecular weight. In the lower molecular weight cases, 

significant broadening of the stress distribution was observed under elevated stress, and 

the fracture behaviour was plastic. In the higher molecular cases, the stress distribution 

was quite narrow until a significant number of bond-cleavage o ccurrred , and the failure 
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was brittle. The primary factor of fracture was chain slippage in the lower molecular 

weight cases, and chain scission in the higher molecular weight cases. Higher tenacity 

was marked when polar ineractions were introduced, especially in lower molecular weight 

cases. This can be attributed to the enhancement of chain binding by the polar interaction 

and suppression of chain-slippage. 

A new model [45] for simulating dynamic fracture in impact loaded solids was based on 

the traditional molecular dynamics procedure, but accounted for the irreversible nature 

of the fracture process by deleting the attractive part of the particle interaction potential 

when the bond between two particles was stretched beyond a critical length. This critical 

length was determined by comparison with Griffith theory. The model was applied to a 

two-dimensional homogenous solid in the absence of a microstructure. When the impact 

zone is much smaller than the size of the sample, or the impact zone is wide and the 

impact amplitude is large, the first crack forms a finite distance ahead of the impact zone. 

Static continuum elasticity theory showed that the position of this first crack occured at 

the position of maximum tensile stress. This crack then propagates back to the edges of 

the impact zone and forward into the sample, thereby creating an x-shaped crack pattern. 

The tips of the x-shaped crack propagate more slowly than the stress wave; hence, strong 

deviations from this pattern are observed when the stress wave passes the crack tips. 

When the predominantly compressive stress wave reflects off the back free surface, a 

tensile wave propagates back into the sample creating even more damage. This damage 

occurs in bands parallel to and set back from the back surface. 

Oliveira and Taylor [46] performed extensive simulations in order to determine the 

conditions under which an an harmonic chain will break. The dynamics of a rectilinear 

chain of 100 monomers interacting via a Lennard-Jones potential were followed by solving 

a set of simultaneous Langevin equations. There are two principal results from this 

study; (1) In order for irreversible breaking to occur in a stretched chain, a bond must 

be extended to a length considerably greater than the length at which the restoring force 

is maximised. (2) The breaking rate of a bond may be expressed in terms of the product 

of an attempt frequency and an Arrhenius factor. While the Arrhenius factor may be 
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satisfactorily described in terms of the height of an effective energy barrier, the attempt 

frequency is found to be several orders of magnitude smaller than the dominant phonon 

frequencies. Later, Oliveira [47] presented a microscopic theory for fracture nucleation 

in finite chains, which may account for results found in simulations. He showed that the 

expression obtained for the characteristic breaking time scaled well and that the activation 

energy agreed with the analytical results. The delay in the fragmentation is a consequence 

of the long-range time correlation in the relative motion of two adjacent particles. This 

correlation is responsible for the origin of a self-organised memory as well as the large 

elongation necessary for irreversible break to occur. 

A one-dimensional mono atomic chain under tensile stress has been studied by molec­

ular dynamics by Bolton et al. [48]. Chains of 2-20 atoms have been simulated. A simple 

transition state theory, equivalent to a nucleation theory for one-dimensional fluids, gives 

the main features of the decay rate coefficient as a function of the applied stress. For finite 

chain lengths, an anharmonic RRKM theory provides a more accurate rate coefficient, but 

chain healing (reversible decay) in the simulated motion causes a significant deviation, 

particularly at high chain energy. The simulaton is extended to chain arrays which show 

greatly increased nonstatistical effects. Starting with atoms randomly distributed on a 

triangular lattice Chakrabarti et al. [49] had found that the stress needed for fracture 

seems to vanish and the time to complete fracture seems to diverge at the percolation 

threshold, whereas the elastic modulus vanishes at a different concentration. 

Nyden and Noid [50] investigated the kinetic stability of model polymers as a function 

of temperature, secondary structure and molecular weight. The rate constants for random 

scission of the carbon-carbon bonds were obtained from simulations starting from both 

planar zigzag and coiled conformations. The coiled polymers were found to be more stable 

t.han planar zigzag polymers with the same primary structure. The computer-generated 

rates correlated reasonably well with the functional predictions of the Rice, Ramsperger 

and Kassel theory of unimolecular reactivity; however, deviations were observed for some 

of the short-chained polymers. Computer movies revealed pronounced coiling in the 

vicinity of dissociating bonds. This behavior was examined in the light of proposed 
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mechanisms for intramolecular hydrogen transfer. 

The dynamics of Rouse chains and Morse chains was simulated both without and with 

hydrodynamic interaction between chain elements by Cascales and Torre [51]. From the 

simulated trajectories, steady-state properties such as chain dimensions and elongated 

viscosities were calculated. When hydrodynamic interaction is acccounted for by using 

the Rotne-Prager-Yamakawa tensor, the calculated dimensions and viscosities are appre­

ciably lower than when it is neglected. Carrying out simulations with varying elongational 

rate, it is possible to observe stretching and finally the fracture of polymer chains. The 

critical elongational rate, corresponding to infinite elongation in the case of Rouse chains, 

and the fracture of the Morse chain is characterised as a function of chain length. When 

the short length of the simulated chain is accounted for adequately, the elongated rate 

needed for fracture El scales with molecular weight M as El ex: M- 2• This result, pre­

dict.ed rigorously without hydrodynamic interactions, hO,lds in practice as well as when 

hydrodynamic interaction is considered. 

The macroscopic fracture response of real materials originates from the competition 

and interplay of several atomic scale mechanisms of decohesion and shear, such as interpla­

nar cleavage and dislocation nucleation and motion. These phenomena involve processes 

oyer a wide range of length scales, from the atomic to the macroscopic. Cleri Fabrizio 

et. al. review [52] the attempts to span these length scales in dislocation and fracture 

modeling by (1) fully atomistic large-scale simulations of millions of atoms or more, ap­

proaching the continuum limit from the 'bottom-up' (2) directly coupling atomic scale 

simulations and continuum mechanics, in a 'top-down' approach and (3) by defining a 

set of variables common to atomistic simulations and continuum mechanics models in 

the form of constitutive relations. A case study of the constitutive-relation approach is 

presented for the problem of dislocation nucleation from a crack tip in a crystal under 

stress; a comparison of the results of atomic simulations to the Pierls-Nabarro continuum 

model is made. 
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1.4 Models Used to Study Polymer Fracture 

1.4.1 Spin Model 

Blumberg-Selinger et al. [53] used a one-dimensional model to explore the idea that the 

unbroken state of a solid under stress is actually metastable. The model consists of N 

bonds in parallel subjected to a stress or strain. The condition of each bond was mapped 

into a spin state, an unbroken bond corresponding to an up spin and a broken bond 

corresponding to a down spin. The free energy of this model has a global minimum 

when all the bonds are broken and for small enough stress, it has a local minimum, 

which corresponds to a metastable state with some surviving bonds. For larger stresses 

the local mimimum disappears. One might call the stress at which this local minimum 

disappears, 'the breaking stress' of the sample. However, just before the stress is large 

enough to make this minimum disappear entirely, the lifetime of the metastable state may 

be quite small, since the height of the barrier between the global and local minima will be 

small compared to k8T. Therefore, the concept of breaking stress becomes somewhat ill­

defined. The extension of this model to higher dimensions required numerical calculations 

[54] which produced similar metastable behaviour. 

1.4.2 Network Models 

Numerical studies that modeled solids with a network of bonds (or fuses or springs) have 

also been performed [55]. The material is represented by a network of mechanical elements 

(bonds, springs, beams) that have their own mechanical properties. These properties 

depend on the purpose for which the model is intended. In models that are used to 

represent in detail the behaviour of specific materials, each element in the network may 

have quite complex, time-dependent properties. In most of the models, the network 

elements can exist in two mechanical states and the kinetics of failure and deformation are 

controlled by the strain-dependent transition rate between these two states. In most cases 

one of the two states corresponds to complete failure (removal) of the network elements. 

This processs may be reversible, but in most models material failure is considered an 
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irreversible process. 

In a typical Monte Carlo simulation, an element of the networks selected at random 

with a probability p(n) that depends on the local configuration n. After an element 

has been selected, it is removed from the network (or its properties are changed) and 

the network is allowed to partially or completely relax to a new mechanical equilibrium 

(subject to appropriate mechanical boundary conditions). The new network element 

bond-breaking probabilities (rates) are then calculated and the process of transition be­

tween mechanical states and relaxation is repeated many times to simulate the material 

failure or deformation process. 

The rate of failure of many materials increases very rapidly with increasing stress or 

strain. It seems natural to suppose that this macroscopic behaviour has a microscopic 

origin and that the failure of individual network elements also depends strongly on the 

local stress or strain. Consequently, models in which the failure or modification rate 

constant RI is related to the local force f associated with these elements by relations 

such as 

(1.12) 

or 

(1.13) 

have been explored. However, the assumption that the rate of failure or modification 

depends only on the local stress cannot be justified quantitatively and may have to be 

modified if an acccurate simulation of the properties of real materials is required. The 

form given by Eq. (1.13) is supported by the absolute reaction rate theory for chemical 

reactions. According to this theory, the rate constant of a chemical process can be written 

as 

R = b(T) exp( -Ea/kBT) (1.14) 

where Ea is the activation energy, kB is the Boltzmann constant,T is the temperature, 
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and b(T) is a weakly temperature-dependent preexponential factor. For stress-induced 

failure, Eq. (1.14) can be written as 

R = b(T,l)exp(-Ea(f)/kBT) (1.15) 

In most cases Ea > > kBT and the preexponential factor b(T, I) can be approximated 

by a constant. The main effect of exerting an external force on the system is to reduce 

Ea by an amount that depends on f (or the local bond length displacement b ). For a 

simple harmonic potential the elastic energy stored in a distorted bond is given by 

(1.16) 

where k is the bond force constant. 

It is assumed that Ea for bond breaking is reduced by an amount proportional to Es, 

then a value of 2 is obtained for the exponent n in Eq. (1.13). It might also be argued that 

the bond has broken when b has reached a critical value 60 and that the energy required 

to reach this displacement will be reduced by an amount proportional to f. These simple 

ideas are not realistic, and at this stage Eq. (1.13) must be regarded as an empirical 

relation. For polymers a considerable amount of experimental data support the idea that 

Ea is reduced by an amount that is proportional to the stress (a) [56, 1]. Under these 

circumstances the bond-breaking rate constant can be expressed by the form 

(1.17) 

where I/o is a thermal vibration frequency. For three-dimensional systems, the parameter 

{3 in Eq. (1.17) can be interpreted as an activation volume. For the breaking of a bond in 

a network, {3 can be interpreted as an activation length ({3') and a can be replaced by f. 

It might be inferred from the above discussion that the elements in the network should 

be interpreted on a molecular level. However in most cases a more macroscopic interpre­

tation in which the elements of the netwok represent physical structures such as grains, 

dislocations or other extended structures seems to be more appropriate. In other cases, 
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the elements in the network may represent the material in a characteristic volume of size 

(length) determined by the fracture process itself (the size of the plastic zone, for example 

[57,58]). 

The Hookian-spring model has the disadvantage that it has a zero Poisson ratio for 

a square lattice which is physically unreasonable. This has been overcome in a number 

of different ways. The first is to add a term to the Hamiltonian which penalizes bond 

bending [59]. The second is to replace the spring lattice with two-dimensional elements 

(based on Hookean springs) which results in two independent Lame constants [60]. A 

third approach is to employ Born springs which penalize rotation of the springs away 

from lattice directions [61, 62]. Hassold and Srolovitz [63] employed a Born-spring model 

to study the effects of a random distribution of defects on the fracture of an elastic 

model loaded in pure tension. The springs fail completely and irreversibly once a critical 

strain energy is exceeded. The Born potential provides an effective bending force that 

yields realistic crack microstructures, which are analyzed in detail. As the defect density 

increases, the crack becomes increasingly ramified, even though fewer spring failures are 

required for complete breakdown. The failure stress and Young's modulus approach zero 

as the system approaches the percolation threshold. 

Random fluctuations appear to be an ingredient in material deformation and failure 

processes. However, in the Monte Carlo models outlined above, randomness enters the 

models in a relatively uncontrolled fashion. The degree of randomness can be controlled 

by methods such as noise reduction in which a network element must be selected m 

times before it finally fails or is modified [64, 65]. Disorder can also be introduced in 

a quite different way. The elements in the network can be considered to be 'damaged' 

at rates given by Eqs. (1.12), (1.13) or (1.15) and to fail when the damage associated 

with the ith element reaches a threshold value (7i). Apart from the random distribution 

of threshold values that are assigned at the start of a simulation, models of this type 

with 'quenched' disorder are completely deterministic. When the damage associated with 

one of the elements in the system reaches its 7i, it is removed or modified. The system 

is then relaxed to a new mechanical equilibrium and new damage rates are calculated. 
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The damage associated with each of the bonds is then increased at the new damage 

rates until the next bond reaches its damage threshold. The simulat.ion proceeds by a 

sequence of damage growth, network m<'tification and relaxation steps until the 'material' 

fails completely or a preselected number of network elements have been modified. In these 

models the disorder can be controlled via the distribution of threshold values. In many 

cases the introduction of disorder via random bond selection or quenched disorder (random 

damage thresholds) leads to very similar damage patterns and kinetic behaviour. This 

behaviour is similar to that found for the closely related (DLA) model [66] described below. 

In this case, simulations carried out with the use of deterministic models with quenched 

disorder [67] lead to patterns that are similar to those obtained with the standard DLA 

model. 

1.4.3 The Diffusion-Limited Aggregation (DLA) Model and Re­

lated Models 

This corresponds to the random selection of growth sites with probabilities given by a 

scalar field 4> that obeys the Laplace equation 

\124> = 0 (1.18) 

with adsorbing boundary conditions (4) = 0) on the surface of the growing pattern and 

a fixed value for 4> (4) = 1) at infinity. This model has been found to describe quite well 

both kinetics [68] and the structure [69] of fluid-fluid displacement in a porous medium 

(an esentially deterministic process that takes place in a random medium with 'quenched' 

disorder). Quenched disorder can also be introduced via a random distribution of strain, 

stress or elastic energy thresholds. In models of this type, the network element that most 

exceeds its threshold may be modified [70] or more complex criteria that include 'memory' 

effects may be used [71]. 

In the DLA process [66], particles are added one at a time to a growing cluster or 

aggregate via random walk trajectories originating from outside the region occupied by 
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the cluster. Structures covering a wide range of length scales can be generated with 

improved DLA algorithms [72, 73, 74]. The DLA model is closely related to simple 

models for the growth of cracking patterns. Processes such as dielectric breakdown and 

fluid-fluid displacement are closely related to other material 'failure' processes such as 

cracking. 

The close relation between DLA and material failure is also exhibited quite explicitly 

by the dielectric breakdown version of this model [75]. In this model the Laplace Eq. 

(1.18) is discretized to give 

(1.19) 

and is solved numerically (with appropriate boundary conditions) on a lattice to obtain 

the growth probabilities (in Eq. (1.19). The discretized Laplace equation is given for 

a square lattice where <fJij is the value of the scalar harmonic field associated with the 

lattice site with cordinates (i,j)). Unoccupied perimeter sites are selected randomly with 

probabilities that are given by 

P(i,j) '" <fJ(i,jY' (1.20) 

or 

P(i,j) '" n1>(i,jY' (1.21) 

and filled to represent the growth process. In Eq. (1.21), n is the number of filled sites 

adjacent to the unoccupied perimeter site. The simple homogen1)Us (power law) relation 

betwen the growth probabilities (P) and the scalar field (<fJ) in Eqs. (1.20) and (1.21) is 

motivated primarily by theoretical considerations. A simple homogen1>us relation between 

P and 1> is expected to generate patterns with relatively simple fractal scaling properties, 

whereas more inhomogerrous complex relations between P and <fJ will lead to structures 

with more complex geometric scaling behaviour. For the case "I = 1, this model generates 

random patterns that are very similar to those associated with the DLA model. 



Chapter 1. Fracture in Polymers 23 

1.4.4 Surface Cracking Models 

A modrl for surface cracking [76] can be constructed from a triangular network of Hookean 

b(}lJd~ with central force interactions. For this system the elastic energy is given by 

E = 1/2 Lkij(lij -lO)2 
ij 

(1.22) 

where /') is the distance between the ith and jth nodes and kij = k if the nodes are 

connected and kij = 0 if the bond between the ith and jth nodes is broken. In addition, 

each node in the network is attached to the (rigid) substrate by a weak bond. The force 

txmed by this weak bond on the ith node is given by 

(1.23) 

where r. is the position in the ith node and r? is the position of attachment to the substrate 

(its position at the start of the simulation). In this model only the high modulus bonds 

ID the surface layer are allowed to break (all the nodes remain attached substrate). The 

bond-breaking probabilities are given by 

Pi rv R = exp(k6; /2). (1.24) 

(Eq. (1.13) with a value of 2 for the exponent n). The simulation proceeds via a sequence 

of bond-breaking and relaxation steps. 

1.5 Mechanical Strength and Molecular Mass 

The effect of molecular weight on fiber strength has been widely investigated by Bar­

teenev and Zuyev [77]. In low molecular weight material, chain slip occurs readily so that 

the sample strength depends solely on the strength of intermolecular attraction. Notice­

able macroscopic strength is only obtained if the molecular weight is sufficient to permit 

pbysical cross-links through entanglements or chain folds between several chains. In the 
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range of molecular weights between 1.5 and 3 x 104 g/mol, fiber strength increases with 

molecular weight, whereas at still higher molecular weights, the effect of the increasing 

number of defects introduced in processing such a fiber, tends to outweigh the effect of the 

decreasing number of chain ends. Also it is found that high strength with a high degree 

of orientation (e.g., obtained at higher drawing temperatures) requires high molecular 

weights [78, 63]. 

A stochastic model was presented by Mikos and Peppas [79] to predict the molecular 

mass dependence of the polymer fracture energy and strength for polymers with molecular 

masses higher than the critical value corresponding to the onset of entanglements. A chain 

scission criterion is invoked for the polymer chain segments crossing the fracture plane and 

being entangled about it. The presence of dangling ends was responsible for the change 

of the fracture properties with molecular mass. The predictions of the model agreed with 

experimental data of the fracture energy and strength of PM MA and polystyrene. 

Experimentally, Sambasivam et al. [80] could find the different possible mechanism 

responsible for the failure of polystyrene films. It was found that for polystyrene films, 

at very low molecular weights, substantially 100% pull out occcurs. At the middle mole­

cular weight range, chain scission and chain pull out contribution to the total energy are 

approximately equal. For very high molecular weights, the chain scission contribution 

is about 90 %. A scaling relationship is proposed between the molecular weight of the 

polymer and the fraction of chains undergoing scission. 

Huai and Kamer [81] investigated criteria for craze failure at a crack tip and the de­

pendence of craze failure on the molecular weight of the polymers. Their micromechanics 

model is based on the presence of cross-tie fibrils in the craze microstructure. These 

cross-tie fibrils give the craze some small lateral load bearing capacity so that they can 

transfer stress between the main fibrils. This load transfer mechanism allows the normal 

stress in the fibrils directly ahead of the crack tip in the centre of the craze to reach the 

breaking stress of the polymer chains. They have solved for stress field near the crack tip 

and used it to relate craze failure to the external loading and microstructural quantities 

such as the craze widening (drawing) stress, the fibril spacing, the molecular weight and 
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the force to break a single polymer chain. The relationship between energy flow to the 

crack tip due to external loading and the work of local fracture by fibril breakdown is 

also obtained. The analysis shows that the normal stress acting on the fibrils at the crack 

tip increases linearly as the square root of the craze thickness, assuming that the normal 

stress distribution is uniform and is equal to the drawing stress acting on the craze-bulk 

interface. The critical crack opening displacement and hence the fracture toughness is 

shown to be proportional to 1 - (Me/qMn)2 where Me is the entanglement molecular 

weight, Mn is the number average molecular weight of the polymer before crazing and q 

is the fraction of engaged strands that do not undergo chain scission in forming the craze. 

1.6 Some Other Important Results from the Studies 

on Polymer Fracture 

Using a rigorous ab initio method Crist et al. [82] have evaluated the energy of cova­

lent bond deformation of a -CH2-CH2- ethylene repeat unit at strains upto 0.6. The 

computational scheme involves subtracting energies of axially strained normal parafffins 

differing in length by one ethylene unit. At small strains it is found that the deformation 

is contributed to equally by C-C bond stretch and by C-C-C bond angle opening. At 

higher strains the majority of the deformation is accomplished by C-C stretch. 

Cris,t Jr. et al. [83] modeled the chain as a series of truncated harmonic oscillators, 

each of which has a critical extension x~ to break and argued that the chain of N such 

oscillators will require an overall displacement of exactly N x~, since the equally stretched 

situation will always be of lowest potential for any given chain extension. In an actual 

polymer backbone, the bond anharmonicity will cause this behaviour to alter; above a 

certain critical extension, the potential can be minimised by extending some bonds and 

shortening others and it is this critical extension which corresponds to the energy criterion 

for fracture.The authors have presented a simple model based upon a coupled chain of 

N Morse oscillators, to characterise the fracture of a single polymer chain. There exists 

a critical overall extension tlLc below which the fracture is energetically unfavorable 
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but above which fracture is favoured both energetically and kinetically. This elongation 

6.Lc scales as N 1/ 2• For the critically stretched chain, the activation energy for rupture 

increases with N. Long chains must be stretched beyond this critical value to fail within 

experimentally meaningful times. Chains of all lengths subjected to the same force will 

fail with the same activation energy, provided this force is large enough to stretch each 

chain to tl.L > tl.Lc. Observed activation energies are less than kDc, where Dc is the 

bond energy. It is proved mathematically by Liu Yongning [84] that if the strain is larger 

than a critical strain, the atomic thermal movement can contribute to fracture; otherwise 

it has no influence on fracture. 

PIa Oscar [85] proposed a discrete model of linear springs for studying fracture in thin 

and elastically isotropic brittle films. The method enables us to draw a map of the stresses 

in the material. Cracks generated by the model, imposing a moving thermal gradient in 

the material, can branch or wiggle depending on the driving parameter. It was also found 

that [86] whenever the interfiber spacing was too small, breaks in one fiber caused breaks 

in the adjacent fiber. 

Starting from a model of microcrack propagation in craze on a mesoscale, the kinetic 

process of microcrack propagation resulting from fibril breakdown in the crack tip zone is 

mathematically formulated by a combination of fracture mechanics and fracture kinetics 

[87]. A micro crack evolution equation involving both the geometric structure parameters 

of craze and the meso-mechanical quantities is obtained. After solving this evolution 

equation, a statistical distribution function of micro crack size which evolves with time 

and the moment generating function of microcrack size are derived. Any-order averaged 

damage function can be therefore deduced. Specifically, the analytic expressions of the 

first order averaged damage function and its damage rate are presented which correspond 

to a similar definition of damage mechanics. 

A new method [88] for predicting the time to brittle fracture of polyethylene includes 

a model which is based on the concept of the crack layer, i.e. a system consisting of the 

strongly interacting crack and process zone and the kinetic equations which govern the 

crack-layer growth. The processs zone in polyethylenes usually appears to be a thin strip 
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of drawn material extending along the crack line. This permits a characterisation of the 

crack layer by two parameters: the crack and process-zone lengths. The two parameter 

crack-layer kinetic model allows description of slow crack growth as the discontinuous 

process which is commonly observed in the brittle fracture of polyethylenes. The model 

also predicts a relationship between time to failure and applied stress, identical to that 

established experimentally. The material parameters of the kinetic model can be deter­

mined by experiments on smooth specimen, i.e. are independent of slow crack growth and 

require relatively short-term observations. Thus the combination of the material testing 

and the mathematical modeling of the crack layer evolution are proposed as a method for 

lifetime prediction in the brittle fracture of polyethylene. 

A model study of brittle fracture of polymers [89] shows that the relation v = v(F) 

between the crack-tip velocity v and the driving force F exhibit discontinuous transition 

and hysterisis. For short polymers, at the onset of crack propagation the polymer chains 

separate by pulling out the molecular chains. Rapid crack motion occurs at higher driving 

force, where the polymer chains break. This is in contrast with brittle materials and the 

difference is attributed to inertia, which is less important during pull out of molecular 

chains, than the models where the crack motion involves breaking strong short-ranged 

bonds. 

Levitov and Shytovand [90] argue that breaking of an atomic chain under stress is 

a collective many-particle tunneling phenomenon. They have studied classical dynam­

ics in imaginary time by using a con formal mapping technique and derived an analytic 

formula for the probability of breaking. The result covers a broad temperature interval 

and interpolates between two regimes: tunneling and thermal activation. Also, they have 

considered the breaking induced by an ultrasonic wave propagating in the chain, and 

proposed to observe it in a scanning tunneling microscopy experiment. 

Sambasivam et al. [91] have studied extensively the fracture behaviour of polystyrene 

films and latex. They found that the most probable deformations in polystyrene films 

included the scissor-like opening of the 1090 C-C-C angle and the extension of the original 

1.54A distance between carbon atoms. They have also determined experimentally the 
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molecular friction coefficients and the energy for chain pull-out for a polystyrene latex 

and compared with the theoretical values. They found that [92] in fracture behaviour, 

the main effects are chain scission and chain pull-out. With increasing molecular weight 

and annealing times, chain scission becomes more important. Mechanical properties such 

as fracture energy, generally increase with annealing. 

Sjoerdsma and Boyens [93] developed a theory to describe the fracture probability of 

high impact polystyrene. By assuming that fract ure initiation is a consequence. of the 

impingement of crazes due to the craze thickening process, an equation for the fracture 

probability as a function of the strain is derived. Experiments support the validity of 

this equation qualitatively while the stress and temperature dependence of the fracture 

probability correlate in the expected manner with the strain rate. An approximation 

shows the calculation of the fracture probability as a function of time. 

Doerr and Taylor [94] analysed the concept of the breaking strength of a polymer 

chain by means of a study of the dynamics of a rectilinear chain of monomers connected 

by Hookian bonds. A formalism is then developed whereby the average time to breaking 

of the chain can be calculated as a function of temperature and strain. Correlations in 

space and time in the motion of the chain lead to breaking times that are not simple 

functions of the chain length. The predicted breaking times are appreciably smaller than 

those that would be found in a chain in which the thermal motions of the monomers were 

uncorrelated. 

It is found that [95] at low temperature and or high strain rates the polyethylene fibre 

shows brittle failure, displaying a pronounced strain rate and temperature dependence of 

the tensile strength. At high temperatures and or low strain rates a transition from a 

brittle to a ductile failure mode could be observed. This brittle-ta-ductile transition is 

analysed in terms of competitive failure modes, which leads to a simple model that can 

be used to predict the strain-rate dependence of the transition temperature. In the brittle 

failure mode it is observed that an increase in strain rate and or decrease in temperature 

leads to a reduction in work of fracture. 
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Transition State Theory 

2.1 Introduction 

The problem of escape from metastable states is ubiquitous in almost all scientific areas. 

Reaction-rate theory has received major contributions from fields as diverse as chemical 

kinetics, the theory of diffusion in solids, homogenous nucleation and electrical transport 

theory, to name a few. The theory originated with Arrhenius [96], who, inspired by van't 

Hoff, demonstrated that the temperature dependence of the rate of change of optical 

isomers is characterized by an activation energy Et. Forty years of intensive research on 

activated reactions culminated with Eyring's famous paper on the absolute rate theory 

[97] and the deceptively simple expression 

(2.1) 

where fo is known as the prefactor, whose dimensions are time- 1 and kB is Boltzmann's 

constant. Perhaps Eyring's main contribution to chemistry and physics was his demon­

stration that the transition state theory (TST) formula (2.1) is applicable to a wide variety 

of chemical and physical processes, particularly for larger systems. 

In this chapter we review the different approaches for calculating the rate of reactions. 

Since we use the classical as well as the quantum transition state theory in our polymer 

breaking problem, we discuss these theories somewhat in detail. A brief account of the 

29 
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other theories are also given. 

2.2 Classical Thansition State Theory 

The relationship between transition state theory and dynamical theories was first dis­

cussed by Wigner [98] who emphasised that the theory was a model essentially based 

on classical mechanics. The following assumptions are made in deriving the TST rate 

expression. 

1. There exists a transition state which can be identified as a dividing surface sepa­

rating reactants from products, or more generally, any two physical states that are 

separated by a bottleneck in phase space. 

2. Thermodynamic equilibrium must prevail throughout the entire system for all de­

grees of freedom. All effects that result from a deviation from the thermal equilib­

rium distribution, such as the Boltzmann distribution are neglected. 

3. The rate of an elementary process is identified with the crossing of the representative 

point across the critical surface in the direction of the reaction products. 

4. The electronic and nuclear motions can be separated (equivalent to the Born­

Oppenheimer approximation in quantum mechanics). 

5. Any orbit crossing the dividing surface will not recross it. 

The TST rate is proportional to the total flux of classical trajectories from reactant 

to product side of the dividing surface. This flux is calculated either with the Boltzmann 

weighting function at a given temperature T (canonical TST) or with a delta-function 

weighting accounting only for the trajectories of a given total energy E (microcanonical 

TST). Canonical TST was originally put forward by Polanyi and Wigner [99] and devel­

oped further by Petzer and Wigner [100], Eyring [97], Wynne-Jones and Eyring [101], 

and Evans and Polanyi [102]. Microcanonical TST was devoloped mainly by Rice and 

Ramsperger [103], Kassel [104] and Marcus [105]. When applied to unimolecular reactions, 

it is known as the RRKM theory [106]. 
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2.2.1 Canonical Transition State Theory 

Now we give the details of the canonical transition state theory (see Nikitin [107]). Con­

sider a system of n interacting atoms. The Hamiltonian is given by 

1 3n .. 
H = "2 ~aij qiqj +U(ql' q2,···, q3n) 

t) 

(2.2) 

where qi are the generalised coordinates characterising the position of the atoms. We can 

also express Eq. (2.2) in terms of the generalised momenta as 

1 s 

H ="2 ~gijPiPj + U(ql,q2, ... ,q3n). 
t) 

(2.3) 

where s is the number of degrees of freedom and the kinematic coefficients aij are con­

nected with the gik by the relation L Uijgik = 6ik . An element of phase volume dr has the 
j 

s 

form dr = IT dpidqi, and the number of states in the volume element dr is dr / h S. The 
i 

reaction coordinate qr is chosen in such a way that it is normal to the dividing surface and 

on it takes a given value q;. Since the number of particles in phase space is proportional 

to the partition function, the normalised distribution function on the critical surface must 

have the form: 

(2.4) 

where HO< = H (Pi, qi) Iqr=q:, and f3 = 1/kBT. The partition function Q is defined as 

(2.5) 

The current of particles along qr will be proportional to the mean rate of change of phase 

volume (ft), at points of intersection of the critical surface by the reaction coordinate, i.e. 

at qr = q;. Now the averaging can be done by integrating the distribution function f (Pi, qi), 

over all momenta and coordinates. The limits of integration for pr are determined by the 

condition that the current is taken into account only in one direction. i.e. qr= L griPi 2: 0 
i 
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(see assumption 3) and for all other momenta and coordinates over the interval from -00 

to too. Thus we obtain the following basic formula for the rate constant of the process 

k = tOO qr dPr Joo exp [-,8H*dr*] 
}qr=O hs 

-00 Q 
(2.6) 

where dr* = IT dpidqi. If we assume that in the expression for the kinetic energy in H*, 
iior 

the part corresponding to the motion of qr is separable, we can write H* as 

H* = Et + H~. (2.7) 

1 ·2 * 1 '"""' .. * * ( *) where Et = "2mr qr, Ho = "2 L...J G.nm qnqm +U and U = U ql, q2,· .. ,qr,· .. ,qs . Then 
n,mior 

the Eq. (2.6) can be written in the form 

1 1000 

dEt J * * Iq Q* (Eo ) k = - -exp(-,8Et ) exp(-,8Ho)dr = --exp -- , 
Q 0 h h Q kBT 

(2.8) 

where Eo denotes the minimum potential energy of the activated complex. 

(2.9) 

Q* is the total partition function of the activated complex, the energy of which is measured 

from the level Eo. Le. 

Q* = hsl_l J exp [-,8 (H~ - Eo)] dr*. (2.10) 

2.2.2 Microcanonical Transition State Theory 

Microcanonical TST is particularly useful for unimolecular reactions. In this approach, a 

rate constant is determined for the micro canonical ensemble of reactant molecules [108, 

109, 110] i.e., an assemby of molecules, for which there is an equal population of all states 

at a particular energy. The microcanonical rate constant k(E) is for reactants whose total 

energy is E. The canonical TST rate constant k(T) is a Boltzmann average over k(E) 

and is given by 



Chapter 2. Transition State Theory 33 

k(T) = 10
00 

k(E)P(E)dE (2.11) 

where the reactants have energy E, P(E) = N(E)exp(-E/kBT)/Q is the normalised 

Boltzmann probability, and the microcanonical TST rate constant k(E), is the specific 

rate constant for reactants with total energy between E and E + dE. 

Microcanonical transition states are reactive systems which have a total energy H = E 

and a value for the reaction coordinate qr which lies between q; and q; + dq;. The reaction 

coordinate potential at the transition state is Eo. For a bimolecular reaction, the combined 

states of the reactant molecules at total energy E define a supermolecule. The fraction of 

supermolecules that lie at the transition state (Le., at qr ranging from q; to q; + dq;) 

with reaction coordinate momenta in the range from p; to p; + dp; may be found from 

statistical mechanics. This fraction is 

dN(q;,p;) _ dq;dp;fH=E-Et-Eo df* 

N fH=Edf 
(2.12) 

All supermolecules that lie within q; and q; + dq; and with positive p; will cross the 

transition state towards products in the time interval dt = J-Lrdq;/p;. Also dp; = l4;dE;. 
Pr 

Thus, from Eq. (2.12), the reactant-to- product flux through the transition state for 

momentum pi is 
dN(q; ,p;) _ NdE~ fH=E-Ei-Eo df* 

dt fH=Edf 
(2.13) 

To find the total reaction flux, Eq. (2.13) must be integrated between the limits Et = 0 

and Et = E - Eo which gives 

1 dN ft=E-Eo df* 
N dt = k(E) = fH=E df 

G*(E - Eo) 
hN(E) 

where G*(E - Eo) is the sum of states at the transition state. 

(2.14) 
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2.2.3 Variational Transition State Theory 

Classical transition state theory gives the exact rate constant if the net rate of reaction 

equals the rate at which trajectories pass through the transition state. These two rates 

are equal, however, only if trajectories do not recross the transition state: any recrossing 

makes the reactive flux smaller than the flux through the transition state. Thus, the 

classical transition state theory rate constant may be viewed as an upper bound to the 

correct classical rate constant. 

One can consider different positions for the transition state along the reaction path 

and calculate the rate constant corresponding to each. The minimum rate so obtained 

is the closest to the truth, assuming that quantum effects related to tunneling and non­

separability are negligible. This procedure is called variational transition state theory 

[111: 112, 113, 114]. There are both canonical and micro canonical versions of variational 

transition state theory. The microcanonical approach involves calculating k(E), and find­

ing the minimum rate constant that is obtained when the position of the dividing surface 

is varied. This minimum is then inserted into Eq. (2.11) and k(T) is obtained by numeri­

cal integration. In the canonical approach, the values of k(T) are calculated by numerical 

integration of Eq. (2.11). The minimum value of this k(T), when the dividing surface is 

varied, is then accepted as the best estimate of the rate constant. 

2.3 Quantum Mechanical Transition State Theory 

A basic difficulty in the generalisation of classical transition state theory to quantum 

mechanics is that the reaction criterion cannot be formulated as the condition that a 

trajectory pass through a critical surface. This is connected with the fact that, in a 

quant.um mechanical observation, the coordinates and momenta of a system cannot be 

asssigned simultaneously. The uncertainty in the value of the reaction coordinate at the 

transition state must be at least the size of the wavelength associated with the motion 

along the reaction coordinate; i.e., the transition state is not localised. 
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In classical transition state theory, the potential energy is constant and the reac­

tion coordinate motion is separated from the remaining internal motions at the localised 

position along the reaction coordinate which defines the transition state. Quantum me­

chanical delocalisation of the transition state along the reaction coordinate can lead to 

two problems. 

1. In the region 6.q, the potential will not be flat and it is incorrect to treat the reaction 

coordinate as being a classsical translational motion. Also since the potential is 

usually having a concave-down shape, quantum mechanical tunneling will occur 

through the potential. 

2. If there is curvature along the reaction coordinate in the region 6.q, the reac­

tion coordinate is not separable from the remaining internal degrees of freedom 

[108, 111, 115, 116]. Thus, the rate constant expression cannot be factored into a 

frequency kBT /h for the reaction coordinate and a partition function for the remain­

ing degrees of freedom. Also, since the curvature couples the reaction coordinate 

with the remaining modes, tunneling cannot be treated as a one-dimensional reac­

tion coordinate barrier-penetration problem. Instead, there will be a multitude of 

tunneling paths which involve all the coordinates[117, 118, 119]. 

Clearly, then, there are many difficulties in deriving a quantum mechanical transition 

state theory expression which does not include the separable reaction coordinate approx­

imation. To obtain a working transition state theory expression, the separable approxi­

mation is asssumed and corrections are made to the classical rate constant of Eq. (2.8) 

to account for quantum effects. It is well known that quantum partition functions are re­

quired for most vibrational motions. This effectively leads to a barrier for reaction which 

is not the classical barrier, but the difference in zero-point energies between the transition 

state and the reactants. Also in the transit of the representative point over the potential 

barrier, there is a probability of over-barrier reflection and tunnel transmission. As a 

result of these, in calculating the current along the reaction coordinate, in Eq. (2.6) the 

integral (00 9.r e-p~/2I-'rkBT dPr should be replaced by tOO P(Et)e-Et/kBTdEt where P(Et) 
}qr=O h }-oo h 
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is the transmission probability. Integration over Et extends into the region of negative 

energy also, since in quantum theory the probability of tunnel transition can be taken into 

account. To maintain the maximum analogy between the classical and quantum formulae, 

the TST rate constant is multiplied by an energy or temperature dependent 'transmission 

coefficient' to correct for nonclassical motion along the reaction coordinate. We rewrite 

Eq. {2.8} as 

(2.15) 

where X is known as the transmission coefficient. From the above arguments we see that 

(2.16) 

We can calculate X for a one-dimensional potential barrier with one maximum [107]. For 

this, the first step is to get an expression for the transmission probability. 

The problem of the calculation of P(Et ) can be put in the following way. In the 

region I (see Fig. 2.1) there is an incident current of unit amplitude, which is described 

by the wavefunction 

(2.17) 

In the same region there is also the reflected current with unknown amplitude X, 

,T,- () X -il!dl:. 
~l qr = e Ii, (2.18) 

In region II there is only the transmitted current with amplitude Y, 

(2.19) 

The explicit assignment of the wavefunction in region 1 and II is equivalent to the impo­

sition of boundary conditions on the solution of the wave equation describing the motion 

of the representative point in terms of the coordinate qr' 
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Figure 2.1: Penetration of a one-dimensional potential barrier by a particle; state A-above 
barrier transmission (Et> 0); state B- tunnel transmission (Et < 0). 
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(2.20) 

The solution of this equation in the region of the potential barrier, with the specified 

boundary conditions, allows well-defined amplitudes X and Y to be determined, and 

hence the transmission coefficient P = IXI 2 and the reflection coefficient Q = IYI 2 
. 

Now consider a particular case. Suppose the energy of the particle is such that, in the 

region near the top of the barrier, the conditions for classical motion are violated, but, in 

the range of variation of Et under consideration, the potential energy in this region can 

be represented in the form of a series, about the maximum, in the coordinate qr, where 

all the terms in the series, beginning with the cubic, are discarded (a so-called parabolic 

barrier). In this case U(qr) = Eo - (k/2)q; should be substituted into Eq. (2.20), after 

which it can be solved exactly. The expression 

P{E,) = [1 +exp (-2~') r (2.21) 

where w; = (k/Jl)1/2 is obtained for the transmission coefficient [120]. 

For an energy sufficiently close to the peak of the barrier, the reflection coefficient will 

be of order unity, which is connected precisely with the violation of the quasi-classical 

motion in the barrier region. It is not difficult to see that w; may be interpreted as 

the frequency of small vibrations of the representative point near the minimum of the 

'inverted' potential barrier. 

The coefficient X is calculated by formula (2.16). Since, for sufficiently high tem­

peratures, energies E '" Eo make the main contribution to X, expression (2.21) can be 

subst.itut.ed into (2.16), ignoring the inaccuracy due to the deviation of the form of the 

barrier from the parabolic. The final result may be approximately represented in the form 

x 
X=-.­

smx 
(2.22) 

where x = ~~f' This value of X is used in the next chapter for calculating the rate of 

breaking of the polymer. 
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2.4 Kramers' Theory 

A very different approach to the theory of a~tivated rate processes was suggested by 

Kramers in his serminal paper of 1940 [1211. An interesting review of the development 

of the theory may be found in Ref. [1221. In contrast to TST, which at best allows for 

the solvent to modify the free energy of activation, Kramers suggested that the solvent 

(or other medium) applies a frictional force on the reacting solute. The frictional force 

dissipates energy from the system to the bath; this is counteracted by random force which 

arises from fluctuations in the bath. The friction and the random fluctuations are related 

by a fluctuation dissipation relation. The existence of friction and random fluctuations 

causes two opposing effects. In the low friction limit, Kramers argued that without any 

external source of energy reaction cannot occur. Reactants must cross an energy barrier, 

and without any source of energy they wiil not have the necessary energy. The interaction 

of the solvent with the solute is the mechanism of energy transfer. In this underdamped 

regime, any increase in the damping strength implies an increase in the fluctuational force 

and will result in an increase in the reaction rate. 

In the limit of moderate to strong damping, the frictional force is substantial enough to 

cause a fast exchange of energy between solute and solvent so that the solute is maintained 

in thermal equilibrium. However, the frictional force makes it difficult for the particles 

to move and the rate is limited by the spatial diffusion of the particle across the barrier 

separating reactants and products. As the damping increases, the diffusion time increases 

and the rate decreases. In Kramers' theory, friction plays a critical role. The dependence 

of the rate on friction is described in terms of a bell-shaped function. Only its maximum 

value is given by a TST expression which does not include any dependence of the rate 

on friction. Kramers' modification of the rate expression in the spatial diffusion limit is 

often referred to as a dynamical re crossing correction induced by the solvent. 

Kramers modeled the interaction in terms of a one-dimensional Langevin equation 

(2.23) 
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where the the reaction co-ordinate q has a mass m and feels a potential w(q). The 

random force ~(t) is Gaussian with zero mean, and its correlation function is related to 

the damping constant, through the second fiuctation dissipation theorem: 

(2.24) 

where 8(x) is the Dirac delta function. 

Kramers' model is simple. It is one-dimensional and assumes that the friction is 

Markovian. He derived an expression for the rate in the underdamped and spatial diffusion 

limits. He did not derive a uniform expresson for the rate valid for all values of the damping 

strength. This is the Kramers' turnover problem, which was solved only in the late eighties 

by Pollak, Grabert and Hanggi [123] and is known as PGH theory. A multidimensional 

generalisation of Kramers' problem in the spatial diffusion limit was proposed and solved 

by Langer [124]. The multidimensional energy diffusion limit was solved by Matkowsky, 

Schuss and coworkers [125, 126]. A multidimensional turnover theory has been recently 

formulated [127]. 

It has been recognised for some time that the Markovian property of the random force 

in the Langevin equation is often violated and so a generalised version of the Langevin 

equation incorporating memory effects into the random force has been developed. Use 

of this model along with dynamic corrections led to the development of the Grote-Hynes 

[128] theory of activated reaction rates. This elegant correction to the Kramers' theory is 

accurate when the frictional forces are moderate to high and the harmonic approximation 

to the reaction barrier is appropriate. In addition, because the theory is classical, any 

quantum mechanical effects are excluded. 

Progress in the activated rate theory has been made possible by an observation of 

Zwanzig [129] that a generalised Langevin equation can be formally related to a micro­

scopic Hamiltonian system in which a discrete harmonic bath is bi-linearly coupled to a 

system coordinate: 

(2.25) 
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The harmonic bath with bi-linear coupling allows the classical bath degrees of freedom 

to be analytically integrated out to yield an effective potential which is formally identical 

to a generalised Langevin equation in which the dependent friction is given by the cosine 

transform of the spectral density of the bath. This spectral density is the most basic 

description of the external bath. For the discrete Hamiltonian above it is given by 

7f c2 

J (w) = - L -k-[c5(w - Wk)] 
2 k mkwk -

(2.26) 

Using this formal device of the microscopic Hamiltonian leading to a generalised 

Langevin equation, along with variational transition state theory, Pollak and co-workers 

11301 have developed a body of work in which it is shown that applying variational tran­

sition state theory to the discrete Hamiltonian in Eq. (2.25), and then passsing to a 

continuum limit can reproduce Grote-Hynes theory, and also potentially predict correc­

tions. In addition, Pollak, Grabert, and Hanggi [123] have developed a 'turnover' theory 

which can describe reaction rates out of the range of applicability of Grote-Hynes theory 

from low to high frictional regimes. Voth and co-workers [131] have numerically studied 

more complicated classical Hamiltonians in which friction is spatially dependent. 

Recently, Schwartz [132] used a methodology in which he defines the rate in terms of 

the flux auto correction function and proceeds via the recently developed interaction rep­

resentation for nonadiabatic corrections to adiabatic evolution operators to study t.he rate 

of a chemical reaction when the reaction is placed in a dissipative bath. This methodology 

is an infinite order resummation of nonadiabatic corrections to evolution operators. The 

approach produces an analytic expression which yields accurate results over a range of 

temperatures, viscosities and system parameters through the Kramers turnover region. 

2.5 Centroid Approach 

The theory of Feynman path centroid dynamics can be applied to the calculation of 

quantum barrier crossing rates. The formulation starts from the exact definition of the 

quantum survival probability of the reactant state and the reaction rate is then defined 
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as the steady-state limit of the decay rate of the survival probability. Voth, Chandler and 

Miller [133] have used this approach to develop a 'quantum transition state theory' which 

has been further developed by Voth [134] to provide an approximate quantum rate theory 

for condensed phase reactions. The centroid approach has the great advantage that it 

is relatively simple to apply. One needs to compute only diagonal matrix elements, a 

computation which is feasible using quantum Monte Carlo techniques. 

A variational formulation of the centroid theory, has also been presented [135] and 

found to improve the resulting estimates. A recent numerical development has been the 

application by Topaler and Makri [136] of their adiabatic propagator algorithm to the 

Hamiltonian of Eq. (2.25). Numerical calculations can then produce rates of reaction 

as a function of viscosity of the solution. Finally Georgievskii and Pollak [137] have 

recently developed an approximate quantum theory that seems to be able to reproduce 

the numerical results of Makri and Topaler [136] in the high friction limit. 

Based on an approximation for the initial reactant state and the centroid molecular 

dynamics (CMD) approximation for the dynamics, Jang and Voth [138] recently obtained 

a new approximate rate expression which is equal to the path integral quantum transition 

state theory (PI-QTST) expression multiplied by a transmission factor of order unity. This 

factor varies with the choice of the dividing surface in the low temperature limit, but it 

is invariant to that choice at higher temperatures. It is then shown that the PI-QTST 

rate expression results from the quadratic barrier approximation for the calculation of the 

transmission factor only. The potential to use the new rate expression as an improved 

version of the PI-QTST is also tested for model systems. For certain choices of the 

diriding surface, it is shown that the new reaction rate expression results in improvement 

orer the PI-QTST results. The overall formulation also yields a better understanding 

of the barrier crossing dynamics viewed from the centroid perspective and the rigorous 

origin of the PI-QTST formula. 
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2.6 Flexible Transition State Theory 

The first version of quantum TST to satisfactorily account for large amplitude motion was 

flexible transition state theory (FTST) which was introduced by Wardlaw and Marcus 

1139]. Like all variational theories, FTST allows the transition state to be 'mobile' and 

not associated with any particular potential energy surface (PES) feature - it typically 

occurs at larger interfragment separations for low energies and angular momenta, and at 

smaller separations for high energies and angular momenta. However, FTST also treats 

the transition state as 'floppy' and not associated with any particular geometry - there 

are large amplitude motions (transitional modes) which are coupled to each other and 

to overall rotation of the molecular system. Typically transitional modes correspond 

to free rotations of the separated fragments that evolve into vibrational motions of the 

parent molecule. The strength of FTST is the avoidance of approximations concerning the 

transitional modes by inclusion of the full transitional mode potential ( or, the entire PES, 

if available) and by an exact enumeration of the transitional mode contribution to the 

transition state sum of states. This enumeration can only be feasibly acccomplished by a 

classical treatment of the transitional modes through phase space integrals, which neglects 

quantum effects (like zeropoint energy) and which makes an individual variational location 

of the reaction bottleneck for each quantum state impossible. A thorough discussion of the 

advantages, limitations, and approximations of FTST is provided in recent review articles 

1140]. Subsequent fundamental developments in FTST have been made by Aubanel and 

Wardlaw [141], Klippenstein and Marcus [142], Klippenstein [143] and Smith [144]. 

A simple formula for the canonical flexible transition state theory expression for the 

thermal reaction rate constant is derived by Robertson, Wagner and Wardlaw [145] that is 

exact in the limit of the reaction path being well approximated by the distance between the 

centres of mass of the reactants. This formula evaluates classically the contribution to the 

rate constant from transitional degrees of freedom (those that evolve from free rotations 

in the limit of infinite separation of the reactants). As a result of this treatment, the 

formula contains the product of two factors: one that exclusively depends on the collision 

kinematics and one that exclusively depends on the potential energy surface that controls 
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the transitional degrees of freedom. This second factor smoothly varies, in the classical 

limit, from harmonic oscillator to hindered rotor to free rotor partition functions as the 

potential energy surface varies from quadratic to sinusoidal to a constant in its dependence 

on the relative orientation angles of fragments. Recently they have got a completely 

general canonical and micro canonical (energy-resolved) flexible transition state theory 

(FTST) expression for the rate constant for an arbitrary choice of reaction coordinate 

[1461. The derivation is thorough and rigorous within the framework of FTST and replaces 

their previous treatments which implicitly involved some significant assumptions. The 

rate expressions apply to any definition of the separation distance between fragments in 

a barrierless recombination (or dissociation) that is held fixed during hindered rotations 

at the transition state, and to any combination of fragment structure (atom, linear top, 

nonlinear top). The minimization of the rate constant with respect to this definition can 

be regarded as optimizing the reaction coordinate within a canonical or microcanonical 

framework. The expression is analytic except for a configuration integral whose evaluation 

generally requires numerical integration over internal angles (from one to five depending 

on the fragment structures). The form of the integrand in this integral has important 

conceptual and computational implications. The primary component of the integrand is 

the determinant of the inverse G-matrix associated with the external rotations and the 

relative internal motion of the fragments. 



Chapter 3 

Transition State Theory of Breaking 

of a Polymer 

3.1 Introduction 

In this chapter we use Quantum Transition State Theory (QTST) to derive an expression 

for the rate of breaking of a polymer subjected to a force at one of its ends. We make 

use of a multidimensional version that has been applied successfully to calculate the rate 

in a variety of problems [147, 148, 122]. It uses the harmonic approximation for all 

the vibrations and the reaction coordinate, and has the advantage of having tunneling 

contributions included in the rate. The expression for the rate is [107]: 

R = n Q~ e-/3Ea • 

47rsin(h,Bn/2) Q 
(3.1) 

Eais the activation energy of the reaction. Q~ denotes the partition function for the 

transition state, with only the stable modes included. Q is the partition function for the 

initial state and ,B = 1/(kBT). n is the frequency of the unstable mode and 41rsin(~{3n/2) 
is the contribution of this mode to the rate. It includes tunneling contributions too [107]. 

Under the harmonic approximation for all the modes, the rate is 

45 
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n ITj sinh (h~Wj) _r.E 
R= ~ e,",a 

4?T sin( h~n) IT} sinh (h{32Wj ) 
(3.2) 

Jij is the frequency of the mode for the initial state and wJ is the corresponding frequency 

for the transition state. In the above equation, the product for the transition state does 

not include the unstable mode and this is indicated by the superscript + on the product. 

While the above expressions are fully quantum mechanical, taking the temperature to be 

large, and assuming 1i~Wj < < 1, we can get the classical limit for the rate. The result is 

_ 1 ITj Wj -(3Ea 
Rclassical - 4 ITt t e . 

?T j Wj 
(3.3) 

3.2 The Model 

The model that we consider is the following: A single polymer molecule has one end fixed 

and a force is acting on the other end, as shown in Fig. 3.1. We imagine the polymer 

to be a chain of units of mass m joined together by bonds obeying the Morse potential. 

Thus, denoting the position of the nth atom as Un and taking the number of bonds to be 

N, we can write the potential energy of the system to be 

N 

\'total(UI, U2, U3, ... UN) = L VM(un - Un-I - b) - FUN· (3.4) 
n=I 

We take 'U{) to be fixed and equal to zero. In the above, the Morse potential VM is defined 

by 

v: (u - U - b) - D (1 - e-a (un -un - 1-b»)2 M n n-I - e , (3.5) 

De, a. and b are parameters characterizing the Morse potential. The force acting on the 

last atom is F and it causes the last term in the potential energy in the Eq. (3.4). From 

the variables Un, it is convenient to change over to a new set of variables Yn, the distortion 

of the nth bond from its equilibrium length b. Putting Yn = Un - Un-I - b, we can write 
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Figure 3.1: The model investigated consists of N units each of mass rn, joined together 
by bonds obeying the Morse potential. It is fixed at one end and is acted upon by a force 
F acting at the other end. 
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the potential energy as 

N N 

Viotal(Yl, Y2, Y3, ···YN) = :L VM(Yn) - F:L Yn - NbF. (3.6) 
n=l n=l 

The last term in the above equation is a constant and is of no consequence in the dynamics 

and hence we shall omit this term. The above potential energy is a sum of N separate 

terms: 

N 

Viotal(Yl, Y2, Y3, ···YN) = :L V(Yn) 
n=l 

with the modified potential for each bond, V(y) defined by 

(3.7) 

(3.8) 

Thus we see that the effect of an externally applied force at one end is just to change the 

potential of each bond from the Morse potential to this new modified Morse potential, 

V(y). To understand the form of this potential, we give plots of V(y)j De for different 

values of Fl in the Fig. 3.2, where Fl is the dimension-less force defined by Fl = 2F j(Dea). 

The figure shows that for any non zero value for the force F, the potential has two extrema, 

one being a minimum and the other a maximum. We denote the values of Y for the two 

as y±. 

3.2.1 Expression for y± 

These can be obtained using the condition for extrema. i.e. the first derivative is zero. 

Differentiating (3.8) we get 

At. the extrema, 

which on solving gives 

dV 
- = 2aD (1 - e-ay

) e-ay 
- F dye. (3.9) 
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Figure 3.2: Shapes of the modified Morse potential plotted against ay, for different values 
of F\. 
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y± = -In . 1 [ 2 ] 
a 1 ± V1- FI 

(3.10) 

~ote that the above definition implies y+ < y_. For any FI < 1, each bond is metastable 

lsee Fig. 3.2). It can go over the barrier if it gets a certain activation energy, resulting in 

the breaking of the bond and consequently of the polymer. 

3.2.2 Expression for Activation Energy 

The activation energy for breaking anyone of the bonds is given by 

(3.11) 

Substituting the value of y+ and y_ in Eq. (3.8), 

E = D [VI - F + FI In {I - VI - FI }]. 
a e I 2 1 + VI - FI (3.12) 

As one increases F I , the values of y+ and y_ get closer. Also, there is lowering of the 

barrier for dissociation. If the dimensionless force FI = 1, y+ = y_ and the activation 

energy is zero. The breaking of the polymer is no longer an activated process. This 

limiting force is F = Dea/2. 

3.3 The Single Bond Breaking Rate 

The simplest approach to the calculation of the rate would be the following: We consider 

the vibrational motion of just one bond that may break and neglect coupling to the rest of 

the system. This is obviously a crude approximation. As the motion involves stretching 

of the bond between two units, each unit having a mass m, the reduced mass for the 

vibrational motion is m/2. The potential energy for the vibration in the neighborhood of 

the minimum of the potential is ! V" (y+) (y - y+)2 where V" (y+) is the second derivative 

of V{y) with respect to y evaluated at y+. V" (y+) can be easily found to be 
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(3.13) 

So the frequency of vibration of the diatomic molecule is 

(3.14) 

In a similar manner, the frequency of the unstable mode is 

(3.15) 

Since we are interested in only one mode, the product in the numerator of Eq. (3.2) 

will be containing only one factor and that in the denominator, no factor. Substituting 

n =!1s and Wj = Ws in Eq. (3.2), we get the rate to be 

Os sinh (h(3W. ) 
R - 2 -(3Ea 

s - 471" sin( h(32n.) e . (3.16) 

3.4 The Normal Mode Analysis 

3.4.1 The Eigenvalue Problem 

Having made the simplest possible analysis of the problem, we now proceed to make a rig­

orous multidimensional calculation of the rate. This requires a normal mode analysis [149J 

of vibrations of the chain around the equilibrium position as well as around the transition 

state. In the following, we make this for the transition state. The calculations are similar 

and simpler for vibrations around the equilibrium position. The transition state has one 

of the bonds stretched (the one that breaks) - the bond length is y_ which corresponds to 

the maximum of the potential V(y). All the other bonds have an equilibrium bond length 

equal to y+, which is the minimum of the potential V(y). We denote the displacement 

of the ph atom from its equilibrium position by f,j and take the bond between the atom 

numbers n - 1 and n to be the one that breaks. Then, for small amplitude vibrations 
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around the transition state, under the harmonic approximation, we have the Hamiltonian 

(3.17) 

The quantities w+ and w_ are defined by the equation mw;, = ± V" (y±) and are given by 

We can write down the classical mechanical equations of motion for the atoms as 

m ~n-2= -mw! (~n-2 - ~n-3) + mw! (~n-l - ~n-2) , 

m ~n-l= -mw! (~n-l - ~n-2) - mw: (~n - ~n-d, 

m ~n= mw: (~n - ~n-d + mw! (~n+l - ~n) , 

m ~n+l = -mw! (~n+l - ~n) + mw! (~n+2 - ~n+d , 

We can write solutions of the form 

(3.18) 

(3.19) 

(3.20) 
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where w is the frequency with which the ph atom is vibrating. Using this in the sets of 

equations (3.19), we get the following equations. 

2 cO _ 2 2 cO 2 cO W ~l - w+~j - w+~i+l' 

W2~_2 = w! (~~-2 - ~~-3) - w! (~~-1 - ~~-2) , 
w2~_1 = w! (~~-l - ~~-2) + w: (~~ - ~~-l) , 
w2~~ = -w: (~~ - ~-l) - w! (~~+l - ~~) , 

w2~~_2 = w! (~+l - ~~) - w! (~~+2 - ~+l) , 

2CO 2 cO 2 2 cO W ~N = -w+~N-l + w+~N· 

(3.21) 

We have N such equations. We write the above equations in the form of an eigen value 

problem as 

-1 2 -1 0 0 0 0 ~~-2 ~~-2 
0 -1 2 -1 0 0 0 ~~-1 ~~-l 

w2 
+ 0 -1 1-, , 0 0 0 ~~ =w2 

~~ (3.22) 

0 0 , 1-, -1 0 0 ~~+1 ~~+l 
0 0 0 -1 2 0 0 ~~+2 ~~+2 

where 

(3.23) 

The equation can be written as 

(3.24) 

where 
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D n - 1 -1 

1)t: 2 
-1 1-, , 

(3.25) N =w+ , 1-, , 
, D N - n - 1 

the matrix D n - 1 denoting an (n - 1) x (n - 1) square matrix having the form 

2 -1 

-1 2 -1 

D n - 1 = -1 2 -1 (3.26) 

-1 2 -1 

and 

(3.27) 

From equation (3.24), it follows that 

(3.28) 

Here I is the identity matrix. This implies that 

(3.29) 
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le shall in the following assume that the polymer is fairly long and that it is a bond in the 

:'lik that is broken, as this simplifies our analysis. In principle one can analyze other cases 

ll.'<l, but it is tedious. Further, we do not expect the rates to be very different even if it is 

:ot a bond in the bulk that is broken. The above implies that nand N - n are taken to 

~ large numbers. We now have to find the frequency of the unstable mode and the ratios 

dthe partition functions in the Eq. (3.1). These quantities are very conveniently found 

JSing the partitioning technique and Green's matrix. The formulae from the partitioning 

~eclmique which we use are given in the appendix A. 

3.4.2 The Green's Matrix. 

\\'e now consider the Green's matrix, which we define by: 

(3.30) 

Here (;]2 = w2 /w!. Let us now evaluate the first diagonal element of the Green's matrix, 

thichwe denote as d1in (w 2 ). Partitioning the Green's matrix as in the following equation, 

[ ]

-1 
-2 2 1 

GO,n(w2 ) = w - -2 

1 w - D n - 1 

(3.31) 

.nd using the formulae (A.2) of appendix A leads to the first diagonal element of the 

Green's matrix to be 

(3.32) 

In the limit where n is very large, the first diagonal element of the Green's matrix has to 

be independent of n. That is d1in (w2 ) ::::::J d1i- 1
(W 2 ). We shall then omit the superscripts 

nand n - 1. Then we get the result 

(3.33) 

thich can be solved for c<fl (w2), to get 
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(3.34) 

Using the condition that G?l (w 2 ) --+ 0 as w2 --+ ±oo leads to 

(3.35) 

In determining the matrix element for 0 < w2 < 4, we have assumed w2 to have a small 

negative imaginary part. 

3.4.3 The Frequency of the Unstable Mode 

The frequencies of the modes are determined by the determinantal equation (3.29). i.e. 

Iw2 -1)\,1 = O. Denoting w2 = w2/w! this equation may be written as Iw 2 - Dkl = 0, 

with 

-2 D w - n-l 1 

1 w2 -1 +, -, 
-, w2 - 1 +, 1 

1 -2 D w - N-n-l 

Using the partitioning technique (see Eq. (A.I) of appendix A), we get 

Iw2 
- D~I = Iw 2 

- Dn_111w2 
- DN-n-11 

( 

w2 - 1 + "V - d!,n-l (w2) -"V ] 

det I 11 I = O. 
-2 ,N-n-l -2 

-, W - 1 +, -ct:l (w ) 

(3.36) 

(3.37) 

The unstable mode has an imaginary frequency. Hence we are looking for a solution of 

the abO\"e equation with w2 = _0,2, with 0, real. If the breaking of the polymer occurs 
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lOt too near the ends, then we can replace the matrix elements of Green's matrix in the 

above equation with CCfl (_02) and this leads to the equation 

[ 

-2 0 -2 1 -0 - 1 + , - Gll (-0 ) -, _ 
det 2 2 - O. 

-, -0 - 1 + , - G?l (-0 ) 
(3.38) 

~ubstituting for G?l (w2 ) using the Eq. (3.35) gives 

-2l1 - 2 + 2, + 0 + 2 - 0 + 40 + 2, x ( 
-2 -2 -/=4 -2 ) 

( 
-2 -2 J=4 -2 ) -20 -2+2,+0 +2- 0 +40 -2, =0. (3.39) 

:e( _02 + 4')' - Vrr'- + 40
2

) ( _0
2 

- Vrr'- + 40
2

) = O. The second factor cannot be equal 

iQ zero for nonzero values of O. Therefore the first factor should be equal to zero. i.e. 

(3.40) 

- 2,), 
From this we get 0 = ~, and hence 

(3.41) 

Substituting the value of, from Eq. (3.23), 

(3.42) 

3.5 The Rate: Transition State Theory 

\\how proceed to the calculation of the rate of the reaction using the Eq. (3.2). Under 

the harmonic approximation, the rate given by this equation can be calculated exactly. 
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Using the infinite product representations 

00 ( X2) sinh(x) = x IT 1 + 22 
n=1 n 7r 

(3.43) 

and 

00 ( x2) sin (x) = x IT 1 - 22 
n=1 n 7r 

(3.44) 

for sin( x) and sinh( x), we can write the rate given by the Eq. (3.2 ) as 

fl . [~floo {I + (~)2}] n -{3E J 2 1=1 2l1r 
R = -e a • 

47r (~) floo {l- (~)2} fl' [~floo {I + (~)2}l 2 1=1 2l1r k 2 1=1 217r 

(3.45) 

In the above, the prime in the product fl~ indicates that the unstable mode of the transi­

tion state is to be left out from the product. In the eigen value problem we had considered 

the unstable mode to have an imaginary frequency in. This means that if we include this 

mode also in the product in the denominator, (wf)2 = - n2 where i denotes the index 

for the unstable mode, we can write the rate to be 

We define PI by the equation 

g ([2 + (~)2) 

PI = g (l' + (~) ') 

so that the expression for the rate can be written as 

(3.46) 

(3.47) 

(3.48) 
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Now we calculate In(PI). Defining z = T~;{3, we can write 

(3.49) 

In the above, the second term on the right hand side contains summation over all the 
w~ 

normal modes of the transition state, including the unstable mode. We know that :=:t are 
w+ 

eigenvalues of the matrix D Nand (wJ) 2 are eigenvalues of the matrix D~. Therefore 
w+ 

the Eq. (3.49) may be written as 

(3.50) 

Hence In (PI) = In 1[2 + z2DNI-ln 1[2 + z2D~I. Thus we get 

(3.51) 

Now, 

[2 + z2 Dn - 1 -z2 

-z2 [2 + z2(1 _ ,) ,Z2 

,Z2 [2 +z2(1-,) ,Z2 

,Z2 [2 + Z2 D N - n - 1 

(3.52) 

Similarly, 

[2 + Z2 Dn - 1 
_Z2 

_Z2 [2 + 2Z2 -Z2 

_Z2 [2 + 2Z2 -Z2 
(3.53) 

-Z2 [2 + Z2 D N - n - 1 



Chapter 3. Transition State Theory of Breaking of a Polymer 60 

Again using the same partitioning as in the Eq. (3.36) for both numerator and denomi­

nator of Eq. (3.51) gives 

PI=~--~----------------------------~~~ (3.54) 
[2 + z2(1- ,) - z4 Xn - l ,z2 

,z2 [2 + z2(1 -,) - Z4XN_n _ 1 

In the above, Xn - l is the last diagonal element of [[2 + z2b n _ 1r l
• In the case where n 

and N - n - 1 are both large, this would be independent of n and we will denote it by X. 

Now, from the Eq. (A.2) of the appendix, ([2 + 2z2 - Z4 X)-l is the last diagonal element 

of [l2 + z2D n r l
. Thus X = ([2 + 2z2 - Z4X)-1 which on solving for X ,we get 

Using this in the Eq. (3.54), we get 

We can write PI in a convenient form as 

by defining R[[,,] as 

R[[,-1] 
PI = R[[,,] 

(3.55) 

(3.56) 

(3.57) 

(3.58) 
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We can now find the value of Po by taking l -7 0 limit and this gives 

The product IIpI has to be evaluated numerically. We can make the convergence faster 
1=1 

by adopting the following procedure - We define 

ql = S[l, -1]/S[l,,], (3.60) 

with 

(3.61) 

00 

It is clear that as l -7 00, PI -7 ql. Then the infinite product TIPI can be rewritten as 
1=1 

below: 

with 

ITPI = IT R[l, -1] = IT S[l, -1] IT R[m, -1]/S[m, -1] = 1\;1 IT ql (3.62) 
1=1 1=1 R[n,,] 1=1 S[l,,] m=l R[m"lIS[m,,] 1=1 

_ 00 R[m, -1l1S[m, -1] _ 00 {1 + (Rlm,~t~:~~i,-lJ)} 
1\;1 - II R[m,lI S[m ,] - TI { 1 + (R1m,,),j-S1m,')'J)} 

m=l , 'm=l Slm,')'j 

(3.63) 

which can be evaluated numerically and is found to be rapidly convergent. The infinite 
00 

product IT ql can be analytically evaluated, in terms of the Gamma function r [150, 151]. 
1=1 

We can write 
S[l, -1] (l2 + 2Z2)2 - Z4 

ql = = 2 S[l,,] (l2 + z2(1 - ,)) - ,2Z4 

(l + izvl3)( l - izvl3) 
(l + zy'2, - 1)(l - zy'2, - 1)· 

(3.64) 

Hence 

(3.65) 
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We can also write the classical expression for the rate as 

_ -(3Ea nJiPol Rclassical - 41T IPo le . (3.66) 

Substituting the value of Po from Eq. (3.59) and n from Eq. (3.42) gives 

(3.67) 

The fully quantum mechanical expression may be written as 

R = ",Rclassical (3.68) 

where 
r(1 + zJ2, - 1)r(1 - zJ2, - 1) 

'" = r(1 + izJ3)r(1 - izJ3) "'1· 
(3.69) 

with z = .B~+. We refer to", as the quantum correction factor. The term "'1 in the above 

equation is defined by the Eq. (3.63). 

3.6 Calculations for the Lennard-J ones Potential: 

Hone assumes a Lennard-Jones potential for the interaction between two successive atoms, 

separated by a distance y, then the modified potential V (y), is given by: 

V(y) = c [ (a;, ) 12 - 2 (a;, ) G]_ Fy. (3.70) 

Just as in the case of the Morse potential, this also has a minimum (y+) and a maximum 

(y_) for real y > 0 , F > O. These values of y± can be calculated as follows. Differentiating 

Eq. (3.70) with respect to y, and equating the derivative to be equal to zero gives 

(3.71) 
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Putting x = y/aLJ gives 

( -1 1) 12c: 13 + --7 - F = O. 
aLJx aLJx 

Multiplying throughout by aLJ x
I3 /12c: gives 

with 

f 
FaLJ 

1= 12c: . 

63 

(3.72) 

(3.73) 

(3.74) 

Numerical investigation shows that the two roots coalesce at !I = 0.2241584081. Hence 

the potential would cease to have a minimum if the force at the end of the polymer exceeds 

Fe = 12c:(0.2241584081)/aL J" 

3.7 Results 

Having obtained the rate one can calculate the life-time of a bond as T = (1/ R). We 

now use the above expressions to calculate the rate of the dissociation of a bond of a 

polyethylene molecule that is subject to stress. For the calculations, following Oliveira 

and Taylor [46], we take the value of De to be 360 kJ / mole. m is taken to be the 

mass of the -CH2- unit. For the Morse potential, the force constant for small amplitude 

vibrations near the minimum is 2Drp2. Following Oliveira and Taylor [46], we take this 

to be 280 N fm, and use this to fix the value of the Morse parameter a. Thus the limiting 

force Dea/2, for which breaking is no longer an activated force can be calculated to be 

4.5738 x 10-9 dynes per molecule. We give in Fig. 3.3 a plot of the logarithm of the 

lifetime of the bond against the applied force for several temperatures. The lifetimes 

calculated using Eq. (3.16) (single bond breaking rate) are compared with the results of 

multidimensional transition state theory in Fig. 3.5 for two temperatures lOOK and 300K. 

We see that a very rough estimate of the rate can be obtained by a simple approximation 

that considers the dynamics of only the bond that breaks. 
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Figure 3.3: Plot of logarithm of lifetime/s against the applied force, for polyethylene at 
a range of temperatures, using the Morse potential. Note that Fl = F/(Dea/2) and for 
polyethylene, the limiting force is Dea/2 = 4.574 X 10-9 N. 



:hapter 3. Transition State Theory of Breaking of a Polymer 

5~--------------------------------------~ 

3 

'.~ 

1 

-1 . ~. 

.... \ 

-3 

\1 
\ \ 

- single bond 
. \ ---QTST 

lOOK' \ 
, \ 

", \ 
" \ 

\. 
\ , 
\' \\ 

\\'. \\ 
'-5 '---__ "--_____ .1....-_.,-"--.1....-__ .1....-__ .l.....-_--'-__ ----' 

0.5 0.6 0.7 

Fl-> 
0.8 0.9 

65 

Figure 3.4: The figure compares the lifetimes calculated using Eq. (3.16) and the result 
of multidimensional transition state theory. It shows that a rough estimate of the rate 
can be obtained by a simple approximation that considers the dynamics of only the bond 
that breaks. 
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The Fig. 3.4 compares the result for the Morse potential and the LJ potential (with the 

parameters c: and aLJchosen so as to reproduce the dissociation energy and force constant 

of the bond). The LJ potential leads to a much smaller lifetime, typically by a few orders 

of magnitude. This obviously means that the activation energy for breaking is sensitive 

UJ the actual potential that is used to fit / the way the fitting is done. The Fig. 3.6 gives 

plot of the quantum correction factor for the rate for a range of temperatures, estimated 

using the Morse potential. It is found that the quantum correction factor is always greater 

than unity - in all our calculations, quantum transition state theory leads to higher rates 

than classical transition state theory. The correction, however, is important only if the 

temperature is less than 150 K. 

A general conclusion from the calculations is that at normal temperatures, if the force 

is somewhat greater than half the limiting force, then the bond would break in a matter 

of seconds. More specifically, we now look at the problem of breaking strain, to which 

quite a bit of attention is given in references [46] and [94]. We also did calculations 

for polyethylene, finding the lifetime of a bond as a function of the strain of the bond. 

wgarithm of the lifetime is plotted as a function of the amount of strain S ( = the amount 

by which a bond is stretched). Fig. 3.7 plots logarithm of the lifetime against S. It is 

seen that the variation is exponential and that in a small range of S, the lifetime varies 

rapidly from 105 seconds to 10-5 seconds. 

It has to be remembered that these results are for the lifetime of one bond. The 

polymer has a large number (N) of such bonds. All these bonds, except the ones near 

the two ends would have the same rate of breaking and therefore the rate of breaking 

of a polymer would be equal to N times the rate calculated by the Eq. (3.68). We now 

compare our results using the classical rate expression with the simulation results of Taylor 

and Oliveira [46]. For this we use the same conventions as they have used for choosing the 

units of energy, distance, time and temperature. i.e. energy in units of the binding energy 

~,distance in units of the lattice parameter aLJ, temperature in units of c: / kB and time in 

units of the smallest period for phonon oscillations, TO = 27r /wo where Wo = 12Jc: /2maL. 
Fig. 3.8 compares logarithm of the lifetime for one bond calculated with the above theory 
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Figure 3.6: Plot of the quantum correction factor for the rate as a function of the force, 
for different temperatures. Calculations were done using the Morse potential. 
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:igure 3.7: Logarithm of the (lifetime/s) of a single bond plotted against the strain for 
~e Morse potential. S is the amount by which the bond is stretched. The plot shows 
:nat in a fairly narrow range of S the lifetime changes exponentialIy from IcY' seconds to 
:u-5 seconds. 
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d those of the simulation results. We find that result of transition state theory is 

:ghly 100-1000 times too large! 

J,8 Conclusion 

~ this chapter we derived an expression for the rate of breaking of a polymer using 

:~tidimensional quantum transition state theory. Using this expression, we calculated 

:erate of breaking of polyethylene. The potentials used were: Lennard-Jones and Morse, 

::d these were found so as to reproduce the dissociation energy and force constant. With 

~s procedure, the two potentials lead to rather different values for the activation energy, 

s a result of which the rates differed somewhat. On comparing the results with the 

:mulations of Oliveira and Taylor [46], we found that they differ by orders of magnitude. 

i'e shall discuss the reason for this in the chapters 5 and 6. 



Chapter 4 

Breaking when the Polymer 

Contains a Foreign Atom in the 

Main Chain 

4.1 Introduction 

In the last chapter we have applied the transition state theory for the breaking of a poly­

mer. It is theoretically possible to get expression for the rate of breaking if there are 

diferent atoms present in the main chain of the polymer. In the experiments of Gamier et 

al. [152]' they measured the single-polymer entropic elasticity and the single covalent bond 

force profile using two types of atomic force microscopes on a synthetic polymer molecule, 

polymethacrylic acid in water. The conventional atomic force microscope is well known 

for its good force resolution, allowing the investigation of an individual molecule's proper­

ties, such as entropic elasticity, [153, 154, 155J bond strength between biological receptors 

and ligands [156], and more recently, strength of a single covalent bond [157J. The con­

ventional atomic force microscope allowed them to distinguish two types of interactions 

present in this system when doing force spectroscopic measurements: the first interaction 

is associated with adsorption sites of the polymer chains onto a bare gold surface, the sec­

ond interaction is directly correlated to the rupture process of a single covalent bond. All 
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these bridging interactions allowed them to stretch the single polymer chain and to deter­

lIline the various factors playing a role in the elasticity of these molsecules. By optimizing 

the polymer length so as to fulfill the elastic stability conditions, they were able to map 

out the entire force profile associated with the cleavage of a single covalent bond. Exper­

imental data coupled with molecular quantum mechanical calculations-strongly suggest 

that the breaking bond is located at one end of the polymer chain. 

Gamier's [152] experiment involved four types of bonds, Au-Au, Au-S, C-C and C-S 

bonds. It is difficult to get an analytic expression for the rate of breaking, though they 

have shown that breaking bonds are the A u-A u or Au-S bonds, both residing at the 

extremities of the polymer chain. In the following we try to derive an expression for the 

rate of breaking of a polymer which contains a foreign atom in the main chain itself but 

not towards the end. The model is given in Fig. 4.1. 

4.2 Expression for the Rate 

From chapter 3 we have the expression for the rate as 

(4.1) 

If we can neglect the quantum factor, the expression reduces to 

(4.2) 

Here Ea represents the activation energy, n represents the frequency of the unstable mode 

and Po is the ratio of the product of the square of the frequencies in the equilibrium and 

transition states. Hence we need to calculate these. 

4.2.1 Calculation of Activation Energy 

Let the Morse parameters corresponding to this new bond be D: and a' and the mass of 

the new atom be M. We assume that the new bonds are weaker and hence when the force 
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9 

Figure 4.1: The model investigated consists of N units each of mass rn, and another atom 
of mass M connected between the nth and n + 1th units joined together by bonds obeying 
the Morse potentiaL It is fixed at one end and is acted upon by a force F acting at the 
other end. 
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; applied, one of these bonds will break. In Eq. (3.7) we have to add one more term i.e. 

I I I I I 

V(y) = De(1- e-a y )2 - Fy . (4.3) 

rhere y' corresponds to the new atom. When the force is applied all bonds except the 

ew bond will be having y = ~ In [1+k] . (see Eq. (3.10) ). For the new bond the 

quilibrium extension will be y~ = lr In [ g] and the transition state extension 
a 1+ I-FI 

rill be y~ = ~ In [ g] where F; = 2F j(D:a'). The activation energy for the 
1- I-FI 

rocess is ( see Eq. (3.12) ) 

, - ' [V ' F; { 1 - V 1 - F{ }] ~-~ 1-~+-~ V . 
2 1 + 1 - F{ 

(4.4) 

:.2.2 Calculation of n 

.8 in the previous case we denote the displacement of the jth atom from its equilibrium 

osition by C,j and the new atom by (. We assume that the bond between the new atom 

nd the(n+ 1)th atom is breaking. Then, for small vibrations around the transition state, 

'e have the Hamiltonian 

'he equations for the normal modes are: 

2CO 2cO 2 2cO 2,..0 
mw <"n-l = - mwO<"n_2 + TnWO<"n-1 - mWO<;;n , 

2CO 2cO 2,..0 M 2cO M 2(0 
TnW <"n = -TnWO<"n-1 + mWO<;;n + W+<"n - W+ ' 

MW2(0 = -Mw2 cO + Mw 2 (0 _ Mw 2 (0 + Mw2 cO 
+<"n + - -<"n+l J 

2CO M 2(0 M 2cO 2cO 2cO 
mw <"n+l = W_ - w_<"n+l + TnWO<"n+1 - TnWO<"n+2' (4.6) 
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Dividing all equations by w~, third equation by M and other equations by m, and putting 
2 w2 w2 

~ = w2 , ::t = 1+ and -:-j- = 1_ we get, 
;0 Wo Wo 

2,0 cO ,0 ,0 cO 
tu '3 = -,+I"n + 1+'3 - 1-'3 + I-I"n+l , 

20 M 0 Moo 0 
tu ~n+l = -,-( - -'-~n+l + ~n+l - ~n+2 

m m , 

fhe above equations can be written in a matrix form as tu2~0 = D~+l~O where 

D* -N+l -

2 -1 

-1 2 -1 

1+ -,- 1-

M"" I_M"" -1 m (- m (-

-1 2 

fhe frequencies of the modes are determined by the determinantal equation 

vhere 

(4.7) 

(4.8) 

(4.9) 
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[lAJ
2
1 - D~+d = 

w 2 
- Dn - 1 1 

1 2 1 M r;:; - - ;:;-1+ M 
+;:;-1+ 

r;:;2 -,+ +,_ 
M -;:;-,- 1 

1 r;:;2 - D N - n - 1 

Using the partitioning technique we get 

2 1 M CO,n-l 
W - - -""+-rn' 11 

1+ 

M 
+;:;-1+ 

r;:;2 - 1+ + 1_ 

M -rn l -

-,- =0. 

2 1 + M CO,N-n-l r;:; - ;:;-,- - 11 

(4.10) 

(4.11) 

The unstable frequency has an imaginary frequency. Hence we can look for a solution 

of the above equation with r;:;2 = -!i, with 0 real. We take dtln
-

1 = cft(-n-l = 

act! (_0
2

) . Thus the above equation reduces to 

-0 - 1 - -,+ - LT, -0 -2 M rtO ( -2) 
m 11 

1+ 

M 
+rn l + 

-2 
-0 - 1+ + 1- =0. 

(4.12) 

n can be found out by solving the above equation. The frequency of the unstable mode 

can be calculated using 0 = w+O. 

4.2.3 Calculation of Po 

We take PI as 
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where 

112+Z2D~+11 = 

l2 + z2D n _ 1 

-z2 2M 
-z m'+ l2 + z2 + z2 ~ '+ 

-Z2,+ l2 + z2,+ - z2,_ 

Using the partitioning technique we can write 

l2 + z2 + z2~,+ - Z4Xn _ 1 

_z2,+ 

l2 + z2 + z2~,+ - Z4X n _ 1 

-z2,+ 

2M 
-z m'+ 

l2 + 2z2,+ 

Z2,_ 

l2 + z2 - z2~,_ 

Z2,_ 

l2 + z2 - z2 ~ ,_ - z4 Xn - 1 

We can calculate Po by taking the limit of PI in the limit l -+ O. It is found that 

(4.13) 

(4.14) 

( 4.15) 

( 4.16) 

4.3 An Example - Polyethylene Containing One Sul-

phur Atom 

Using these expressions we have calculated the rate of breaking of polyethylene which 

contains one sulphur atom. We take the values of the Morse parameters De of C-C and 
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Figure 4.2: Plot of logarithm of lifetime against the applied force, for polyethylene and 
polyethylene containing one S atom at temperature 200K using the Morse potential. 
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c-s to be 360 kJ/mol and 250 kJ/ mol [158J and the force constants of C-C and C-S to 

be 280 N/m [46J and 300 N/m [159J. Fig. 4.2 compares the logarithm of life time in the 

I two cases. We can see that the rate has been increased by many orders of magnitude. 

This is not surprising since there is a change in the exponential factor due to the decrease 

in the activation energy. 

4.4 Conclusion 

In this chapter, we derived an expression for the breaking of a polymer molecule which 

contains one foreign atom in the main chain of the molecule. Using this, we performed the 

calculations for polyethylene which contains a sulphur atom. The rate of breaking of the 

C-S bond was found to be three orders of magnitude greater than that of the C-C bond. 

This is due to the lower activation energy for breaking the C-S bond. If the polymer 

contains N C-C bonds, the probability of breaking will be N times that of a single bond. 

Usually, there are thousands of C-C bonds in the polymer and therefore, we expect that 

the probability of breaking a C-C bond will be greater than that of the C-S bond and it 

will be a C-C bond that is likely to break when a force is applied. 



Chapter 5 

Polymer-Plus-Reservoir Model 

5.1 Introduction 

In Chapter 3 we have seen that our transition state results for the breaking of the polymer 

do not agree with the simulation results of Oliveira and Taylor [46]. This is not very 

surprising because the simulations (see Eq. 3 in [46]) contain a damping force introduced 

to represent the interchange of kinetic energy between a monomer and its neighbours on 

other chains which is assumed to take the form of a viscous force. A random force term 

is also included to model the interact.ion with a thermal reservoir at temperature T. This 

force is generally assumed to have the property that its value at one position and time 

will be uncorrelated with that at other positions and times. We expect that our transition 

state theory results may agree with the simulations if we account for these two forces. 

This is not difficult to do, using the method given in Weiss [160]. A brief account of the 

method is given in the following section. 

5.2 Classical Langevin Equation 

A vast number of situations in nature can be adequately described by a system wit.h one 

or few degrees of freedom in contact with a rather complex environment whose number of 

degrees of freedom tends to infinity. In the classical limit the dynamics is described by a 
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l..1ngevin equation which contains a frictional force which is proportional to the velocity 

and an additional random force arising from the fluctuations of the environment. The 

fiuctuating force f(t) is usually taken to be Gaussian and is characterised completely by 

Ihe ensemble averages 

(J(t)) = O. (5.1) 

(J(t)f(t')) = Kcl(t - t'). (5.2) 

For a white noise source, the frictional force is local in time, and the Langevin equation 

for a particle of mass M, having position q, has the Markovian form 

M q (t) + M, q (t) + V'(q) = f(t) (5.3) 

where the stochastic force f(t) is 6-correlated according to 

(5.4) 

where T is the temperature of the environment. The Langevin equation (5.3) describes 

a heavy Brownian particle M immersed in a fluid of light particles and driven by a 

systematic force F = - V' (q), where V (q) is an externally applied potential. The average 

effect on the heavy particle is contained in the friction force and the fluctuating force 

vanishes on an average. If the heat reservoir is a source of coloured noise as in many 

practical cases, the Langevin equation has the form 

M q (t) + M J~oo dt',(t - t') q (t') + V'(q) = f(t). (5.5) 

5.3 System-Plus-Reservoir Models 

For many complex systems we do not have a clear understanding of the microscopic origin 

of damping. However, sometimes one might be able to acquire knowledge of the power 
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spectrum of the stochastic force in the classical regime. Therefore, it is interesting to set 

l

up phenomenological system-plus-reservoir models which reduce in the appropriate limit 

t~ a description of the stochastic process in terms of a quasiclassical Langevin equation 

of the form (5.5). To make the elimination of the reservoir tractable, it is necessary to 

IImpose the restriction of linearity, i.e., anyone degree of freedom of the environment is 

sufficiently weakly perturbed that it is permitted to put up a system-reservoir coupling 
• 

which is linear in the reservoir coordinates. The simplest model of a dissipative quantum­

mechanical system that one can envisage is a particle of mass M coupled linearly via its 

displacement q to a collection of Harmonic oscillators. 

The Hamiltonian for the system is 

(5.6) 

The above Hamiltonian has been used to model dissipation by many authors. A harmonic 

potental was used for V(q) by Rubin [161] for classical systems and Senitzky [162]' Ford 

et al. [163] and Ullersma [164] for quantum systems. Zwanzig [129] treated the model 

in the classical regime for a nonlinear potential. From this Hamiltonian, one derives the 

equation of motion as 

M q + ~~ + M lot I (t - r) X (r) dr = ~ (t) (5.7) 

(see Eq. (3.31) in [122]) with the heat bath prepared initially in thermal equilibrium, ~(t) 

obeying 

and 

Defining 

(5.8) 
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e can write 

2 1000 J (w) ,(t) = - -- cos (wt) dw 
7rM 0 w . 

(5.9) 

In putting 

J (w) = M,w, (5.10) 

e get 

(5.11) 

hich leads to ohmic damping, which is the case considered by Oliveira and Taylor [46]. 

his approach is very powerful and has been used extensively to solve the classical and 

!uantum Kramers' problem [122]. 

;.4 Polymer Molecule Connected to a Bath of Har-

monic Oscillators 

low we consider a polymer molecule containing N monomer units. To introduce dissi­

ation each unit is imagined to be connected to N harmonic oscillators (N -+ 00). The 

[amiltonian for the system can be written as 

(5.12) 

'le can write the equations of motion for the system and find normal modes. The equa­

.ons for normal modes can be written in a matrix form as w2(0 = V~ (0. The matrix V~ 

'e have to consider will be a N x N square matrix where N =N + N N; (0 repesents the co­

rdinate vector defined as (J = [~ ~ ... ~Rr xYl xY2 ... xg1 xg2 ... ... XCJvN] 
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here (ri is the tanspose of (0. The angular frequencies of the normal modes for the tran­

tion state are the eigen values of the matrix 'D~ and those for the equilibrium state 

:e the eigen values of the matrix 'D~. If we take the bond between the atom numbers 

and n + 1 to be the one that will break, (which is what is assumed in the Eq. (5.12)) 

le two matrices differ only for four elements which are (n, n )th, (n, n + 1 )th, (n + 1, n )th 

ld (n + 1, n + 1)th elements. The matrix 'D~ would have one unstabe mode, which is , 

le reaction coordinate. The frequencies are determined by the determinental equation 

/2 - 'D~I = 0, where 

~ _[A B] 'DN - . 
C D 

(5.13) 

he matrices A, B, C and D are defined as A = 

BI 0 

0 B2 0 
B= (5.14) 

0 BN 

Cl 0' 

0' C2 0' 
C= 

0' CN 



Chapter 5. Polymer-Plus-Reservoir Model 

md 

D= 

ot DN 

vhere the matrices B i , C i and Di are defined as 

o 

_..£li. 
mu 

o 

_ _ _..E.N..i..], 
m"'i 

2 
WNi 

86 

o is a row matrix of order N given by 0 = [ 0 0 - - 0],0' = OT and ot is an N x N 

rero matrix. 

We can write 

lw' - V~I = det [~ ~ 1 = det [A-BD-le] x det D. (5.15) 

n- l 
is a diagonal matrix with elements of the form 21 2. BD-IC is a N x N square 

W -wij 

N c~. 
matrix with only diagonal elements of the form L M .. ( '; _ 2)' To find the normal 

i=l m,) W Wij 

modes, one has to put the left hand side of Eq. (5.15) equal to zero and solve for w. Since 

det D cannot be zero, the other determinant should be equal to zero. i.e., 
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o 
2 2 2 ~ 1 1 IT: 2 ( ) W - W+ - i=l Mmi2 -;;;y; + w2-w12 

W 2 
+ 

(5.16) 

>.4.1 Calculation of n 

~r this we have to solve Eq. (5.16) with W = in. Now the diagonal elements can be 

;ritten in a simple form since 

1 1 
Wfj + -n2 - Wfj 

(5.17) 
( 1\2 2) 2· ~{, + W ij W ij 

{e write 

(5.18) 

here 

ssuming Jj (w) = A1,w, to have ohmic friction, we get 

)w \\·e write Eq. (5.16) with W = in. 

=0. 
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o 

detV = =0 
-w~ 

(5.19) 

where V is a N x N square matrix. We take the Green's matrix (jJ = [-02 
- Dnrl 

where Dn is the n x n matrix having the form 

2w! +0, _w2 
+ 

-w2 2w! +0, _w2 

Dn= + + 
_w2 

+ 2w! +0, 

As discussed in chapter 3 if Gfl represents the first diagonal element of the Green's matrix 

we have the relation 

(5.20) 

which on solving gives 

(5.21) 

As in chapter 3 we simplify Eq. (5.19) using the partition technique and we get 

-02 
- w! + w: - 0, - c<flw! 

-w: =0. (5.22) 

On solving, we find 
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V2w: + w~V16w-: + 2,2w: + ,2w~ -,(2w~ + w!) 
n = 2(2w: + w~) . 

(5.23) 

5.4.2 Calculation of Po 

Po is the ratio of the product of the square of the frequencies in the equilibrium and 

transition states. But the squares of the frequencies of the normal modes in the tran­

sition state are the eigen values of the matrix V~ and we know that the product of 

the eigenvalues of a matrix is equal to the value of its determinant. Now we try to 

evaluate detV~. The matrix V~ is defined by Eqs. (5.13) and (5.14). We use the iden-

tity det [~ : 1 = det [A - BD-le] x detD. Now A is an N x N matrix, B is an 

N x (N N) matrix, e is an (N N) x N matrix and D is an (N N) x (N N) matrix. The 

matrix BD-le will be an N x N matrix given by 

Hence the matrix A - BD-le will be the same as the matrix if there is no friction. 

Now we have to find only the ratio of the determinants. detD is the same for both the 

numerator and denominator. Hence we see that the value of Po is the same as the case 

where there is no friction. i.e. 

The above result and Eq. (5.23) gives 
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?igure 5.1: Plot of logarithm of the lifetime against the strain for the Lennard Jones 
)ot.ential for the two cases: without damping (solid curve) and with damping (dotted 
~urve). Energy is given in units of c, distance in units of aLJ, temperature T in units 
)f c:/kB and time in units of TO. Here T = .05 and 1 = 0.25wo. The figure shows that 
iamping can increase the lifetime by only one order of magnitude. 
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Figure 5.2: Variation of the lifetime against the viscosity parameter! in units of wo/27r. 
Energy is given in units of c, distance in units of aLJ. temperature T in units of ~/kB and 
t.ime in units of TO. Here T = .05 and S = .03. 
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U sing this expression we have calculated the rate of breaking of the polymer. We use 

the same units of energy, distance, time and temperature that Oliveira and Taylor [46] 

have made. i.e. energy in units of the binding energy c, distance in units of the lattice 

parameter aLJ, temperature in units of c/kB and time in units of the smallest period 

for phonon oscillations, To = 27r/wo where Wo = 12Jc/2maL. Fig. 5.1 shows a plot of 

logarithm of the lifetime for one bond calculated with the above theory. The viscosity 
• 

parameter I is taken to be equal to O.25wo as in the simulations of Oliveira and Taylor 

[46]. We can see that though the lifetime increases, the increase is very small, especially, 

in the large force regimes. Fig. 5.2 gives the variation of the life time with the viscosity 

parameter I in units of wo/27r. 

5.5 Conclusion 

Oliveira and Taylor [46] included friction from the surroundings in the simulations. There­

fore, in our transition st.ate theory approach, it is necessary to include friction. For this, 

we assumed that each atom in the chain is coupled to a collection of harmonic oscillators, 

with t.he coupling adjust.ed so t.hat each atom is subject to Ohmic friction and the noise. 

Using this approach, we calculated the rate of breaking of the polymer. Although the 

rates were found to be lower, the results still were not in agreement with the simulations. 

The reason for t.his is that the bonds, once broken can still come back and heal. In the 

next chapter, we analyse this process. 



Chapter 6 

Beyond Transition State Theory: 

Rate of Separation of the Broken 

Ends 

6.1 Introduction 

III the t.hird chapter we have seen that the rates calculated using quant urn transit ion 

state theory do not agree with the simulat.ion results of Oliveira and Taylor [46]. We 

incorporated damping int.o the system in the previous chapter by introducing the idea 

that each unit of the polymer is connect.ed to a large number of harmonic oscillators. 

Though we found that the rate is decreased, t.he agreement wit.h the simulations is still 

poor. 

In this chapter we look more closely at the actual dynamics taking place during the 

breaking process. The breaking of the polymer requires activation energy to be possessed 

by a bond to dissociate, the probability of this being c{3Ea. If thermal fluctuations giye the 

bond the energy Ea, then it can dissociate, with a frequency 1!. v'iPJ (see the Eq. (3.66)). 

The time of crossing the barrier is tcross = 1/ (1!. v'iPJ). However, even if crossing (i.e. 

the bond is broken) has occurred, it is not necessary that the reaction should occur. Once 

the crossing has occurred, the two ends have to separate by a minimum distance, within 
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which it is possible for the broken ends to come back and heal the bond. We now calculate 

the time required for the two broken ends to separate by this minimum distance. The two 

broken ends separate from one another by translational motion. The potential energy of 

the system decreases as a function of the separation of the two ends and since the bond 

is already broken, this decrease is mostly due to the externally applied force. This is 

obviously linearly dependent on the separation. Denoting the minimum distance as dc, 
• 

we find the average time required to move apart by this distance. 

6.2 Connection with Brownian Particle 

The classical Hamiltonian describing the motion is: 

(6.1) 

In the above, a is the slope of the potential energy curve, in the region where the potential 

is linear in distance of separation (i.e. linear in (b + ~n - ~n-d). On looking at the 

equations of motion, one realizes that. they separate into two uncoupled parts, one for 

each broken part. It is enough to analyze only one of them, as the behavior of the other is 

identical (provided both the chains are long). So we consider the part of the Hamiltonian 

corresponding to j ~ n. Renumbering the atoms (n, n + 1, n + 2, ... ) as (0,1,2 ... ), and 

taking the chain to be very long (N -7 00), we can write the Hamiltonian as 

(6.2) 

The problem now is to calculate the time that it takes ~o to exceed the value ~c given that 

its initial value was zero, and that the chain is at a temperature T. Obviously, as both the 

ends are executing translational motion, the distance that each one has to cover would 

be ~r: = d,j2 . The time should be determined mainly by the long wavelength modes of 

the chain. To describe these modes, one can use a continuum approximation to the above 

Hamiltonian. The continuum version has the advantage that one can obtain analytical 
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results. The Hamiltonian is 

(6.3) 

In the above, subscripts t and x indicate partial differentiation with respect to these 

variables, p is the density of the chain per unit length ( = m/b+, b+ being the length of a 

stretched bond, at its equilibrium position) and T = mb+w! is the tensio~ in the chain. 

The speed of sound in the chain is given by c = JT / p. We imagine that ~(O, t) = 0 until 

t = 0, with the rest of the chain at thermal equilibrium, appropriate to a temperature 

T. Up to this time, the last term in the Eq. (6.3) is not present in the Hamiltonian. At 

t = 0, the chain is broken, and the last term is now present, and it represents the fact 

that the chain can lower its potential energy by moving its end. Writing the equation of 

motion for the string gives forced wave equation 

P~tt (x, t) = Tf"xx (x, t) + 0:15 (x). (6.4) 

To solve the above equation, we use transform techniques. We first define the Fourier 

cosine transform of ~(x, t) by 

Z(w,t) = 10
00 

dxf,,(x,t)cos(wx). (6.5) 

We take the Fourier cosine transform of equation (6.4) to get 

- 2-
P~tt(w, t) + Tw ~ (w, t) = 0: - Tf"x (0, t). (6.6) 

Once the chain is broken, the end of the chain is not under strain and hence we put 

(8(b:,t)t=o = O. Now we introduce the Laplace transform of Z(w, t) by 

(6.7) 
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This obeys the equation 

(6.8) 

where 

(6.9) 

Solving for 3( w, s) 

Taking the inverse transforms leads to 

( -1 [
2 loo 1 (Q - -)] ~ x, t) = £ ;;: lo dwcos (wx) (ps2 + Tw2) -; + P~t (w, 0) + sp~ (w, 0) (6.10) 

where £-1 stands for the Laplace inverse. As we are interested only in the motion of the 

end of the chain, we put x = 0 in the above to get 

Q 
~(O,t)= J'/pt+((t) (6.11) 

with 

(6.12) 

Here 

() 21000 -( ) -1 ps 
(1 t = - dw~ w,O £ ( 2 T 2) 

7r 0 ps + w 

21000 = - dw~(w, 0) cos(cwt). 
7r 0 

Thus 

(6.13) 
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and 

21000 
- -1 p 21000 

- sin (cwt) Cdt) = - dW~t (w,O) L ( 2 T 2) = - dW~t (w,O) . 
7f 0 ps + w 7f 0 cw 

(6.14) 

The equation (6.11) shows that the broken end of the chain undergoes translational motion 

with a uniform velocity equal to "Jr-p. In addition, it undergoes diffusive motion, due to 

thermal fluctuations which is represented by the term C (t). In the appendix, we calculate 

the correlation function for this and show that 

(6.15) 

The above correlation function is just that for Brownian motion, with a diffusion coefficient 

D = kaT. Thus the motion of the end of the chain is the same as that of a Brownian 
pc 

particle of mass unity, drifting with a velocity v in the positive direction, having the 

diffusion coefficient D. 

6.3 The First Passage Time: 

In our problem we need the average time that such a Brownian particle spends in a region 

with ~ < ~c before going out for the first time from this region. It is given that it started at 

~ = ° and is drifting in the positive direction with a velocity v towards the point ~c (> 0) 

and it is also undergoing diffusive motion. This is essentially a first passage problem and 

may be solved by finding the probability densit.y P (~, t) for the particle to be at ~ at the 

time t, given that it was at ~ = ° at the time t = 0. P (~, t) obeys the diffusion equation 

(6.16) 
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This has to be solved subject to the condition that P (~c, 0) 

calcula te the survival probability 

o. Then, one has to 

l
Ee 

Psurv (t) = -00 d~P (~, t) (6.17) 

/ 

from which the average time that it spends in the region may be obtained as 

(t) = 100 dtPSUTV (t). (6.18) 

To solve the equation (6.16) we use Laplace transform techniques. We first define P (~, s) = 

{oo dtP (~, t) e-st
. It obeys the differential equation Jo 

(6.19) 

This equation is to be solved, subject to the condition that P (~t;, s) = O. We give the 

det.ails of the solut.ion in t.he appendix. The solution is found to be 

exp [v;-I~I~] 
- 2D 
P (C s) = -~;======~ 

<", ..jv2 + 4Ds 

exp [V€-(~C+I€-;~I)v9+4Ds] 

..jv2 + 4Ds 

From t his, we obtain t.he Laplace t.ransform of the survival probability 

The (1\"erage survival time is then 

(t) = {oo P (t) dt 
In 

= lim {oo e-st P (t) dt = lim P (s) = ~(:!v. 
t~n Jo s~o 

(6.20) 

(6.21) 

In the last step we have used the L' Hospital's rule. Interestingly, this is just the time that 

one would have estimat.ed neglecting the diffusive motion of the chain end [165]. Now, 
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taking ~e = de/2 and using v = m' we find the average passage time of the two ends, 

over the distance de to be 

(t) = depc/ (2a) . (6.22) 

Now one has the problem of choosing the value of de. The simplest estiu{ate that one can 

make is that the ends should be separated by a distance equal to the stable bond length. 

Let be represents the position corresponding to the bond length such that energy of the 

final state is equal to the energy of the initial state (see Fig. 6.1). We take the potential 

between b_ and be to be linear, neglecting the curved portion near the top of the barrier. 

Let l = be - b_. Then, the slope a of the potential is given by a = 6.E /l, which leads to 

the crossing time as: (t) = ldepc/ (26.E). Using this expression, we have estimated the 

time of crossing the distance de for the Lennard Jones model. This is compared with the 

time of crossing the barrier (= 1/prefactor of the rate in the classical equation) in Fig.6.2. 

The results show that in the small force regime, the first passage rate is considerably lower 

than that of the crossing rate and hence is the rate determining step. The actual crossing 

frequency may be obtained by adding the two times and then taking its inverse. The 

logarithm of the lifetime so obtained is plotted in Fig.6.3. On comparing the results with 

those of the simulation, we find that the agreement is still poor. The modification in the 

rate is small and is still about 100 times the result of the simulation! What could be the 

reason for this? 

6.4 First Passage with Friction 

While our calculations till now have considered the vibrational motion of the atoms of 

the chain in isolation, Oliveira and Taylor has an external friction and fluctuating force 

in their simulations (see their Eq. 3) [46]. So perhaps it is not surprising that our results 

are not in agreement with the simulation. We now make the same kind of analysis for the 

chain in presence of friction. Due to the presence of friction, the problem can no longer 

be described by a Hamiltonian. But we write the continuum version of their equations of 

~.. •• 4" .. - - - '.. 
.' ..... ~4,' _.,. 

~ 

. ~. 
, . 
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Figure 6.1: The figure shows that beyond the transition state potential energy is approx­
imatelya linear function of bond length. At be the potential energy of the bond is equal 
to its equilibdum value. 
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Figure 6.2: The figure compares the time required for crossing the barrier (t-:ro",,) and the 
time required for the broken ends to separate to the critical distance. The distance is in 
units of aLJ and time in units of TO. 
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motion, which is: 

pf"tt (x, t) + p,f"t (x, t) = Tf"xx (x, t) + a6 (x) + f(x, t), (6.23) 

'I is the friction coefficient, and f(x, t) is the fluctuating force, having the mean zero and 

correlation 

(6.24) 

This stochastic wave equation can be analyzed just as earlier. Following the same proce-

dure as earlier, we have 

~ (x, t) = (6.25) 

£-I[~ (COdwcos(wx) ( 2 1 T 2)(~+P~t(W,0)+sP~(W,0)+<I>(W'S))]. 
7r io ps + p,s + w s 

In the above. 

<I> (w,s) = {CO dt {CO dxcos(wx)f(x,t)e-st. 
io ill (6.26) 

As ill t.he previous case, we are interested only in the position of the end of the chain, 

which is: 

~ (0. t) = £-1 (6.27) 

[~ {CO dw (2 1 T 2) (a + P~t (w, 0) + sp~ (w, 0) - P'~t(W, 0) + <I> (w, s))]. " in ps + p,s + w s 

In the above, all terms other than the first term on the right hand side are random, arising 

froIll thermal fluctuat.ions. So OIl calculating the averages of both the sides, we get 

(f" (0, t)) = £-1 [~ {CO dW---:---::---_a_~] 
7r in s (pS2 + p,s + T w2) 

= £-1 [ _ / ~ ] = ~te-'Yt/2 (Io (rt/2) + 11 (rt/2)). 
pCSyS +,s pc 

(6.28) 

In t.he above, In (rt/2) denotes modified Bessel function of order n [166]. As earlier, the 

average survival time is given by solving the equation (f" (0, t)) = d,j2 for the time t to 



Chapter 6. Beyond Transition State Theory: Rate of Separation of the Broken Ends103 

find the time for travelling a distance d()2 by one end of the chain. This is the survival 

probability of the chain. This result, is only an approximation. Strictly speaking, we 

should write down an analogue of the diffusion equation (6.16) for this problem and solve 

it to find the survival time. As the random terms in this equation are mOIe complex than 

the ones in the equation (6.16), we have not done this. In the earlier problem we saw that 

the random terms had no effect on the average survival probability. So we neglect their 

influence in this problem too. 

Using this, we have estimated the time of crossing the distance de in the presence of 

friction. In the small force regime the calculated time is two-three orders greater than 

the time taken for crossing the barrier. Applying this correction we have calculated the 

lifetimes for a polymer under LJ potential. In Fig. 6.3 we compare the values of the 

logarithms of lifetimes for the three cases- (1) without considering the motion of the 

broken ends (2) considering the motion of the broken ends but without friction and (3) 

with friction. Our calculations which takes account of friction differs only one order of 

magnitude from t.he simulations of Oliveira and Taylor [461. 

6.5 Conel usion 

In this chapter, we analysed the motion of the broken ends after the breaking has occured. 

The two ends have to be separated by a minimum distance, within which it is possible for 

t he two broken ends to come back and. heal the bond. We calculated the time required 

for the two broken ends to separate from one another by this critical distance. In the 

absence of friction, for the range of parameters considered in the simulation, t.his time is 

of the same order of magnitude as that. is required for crossing the barrier. However, in 

the presence of friction, the calculated time is two to three orders of magnitude greater 

than the t.ime taken for crossing the barrier, thus making our results in agreement with 

the simulations within an order of magnitude. 
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Figure 6.3: Plot of logarithm of the lifetime against the strain for the Lennard Jones 
potential for the three cases: transition state theory (solid curve), motion of broken ends 
,,·ithout friction (dotted curve) and with friction (dashed curve). Energy is given in units 
of E, distance in units of aLJ, temperature T in units of c/kB and time in units of TO. Here 
T = .05 and, = 0.25:.Jo. The figure shows that the damped motion of the broken ends 
can increase the lifetime by two orders of magnit ude. 



Chapter 7 

Summary and Conclusions 

In this chapter we summarise the entire work that had been done in this thesis. 

7.1 Expression for the Rate Using QTST 

We considered a single polymer molecule which is imagined to be a chain of N units of 

mass m joined together by bonds obeying the Morse potential. It has one end fixed and 

a force F is acting on the other end. We use multidimensional quantum transition state 

theory (QTST) to derive expressions for the rate of breaking of the polymer. The force 

modifies the potential of each bond so that for any nonzero value for the force F, the 

potential has two extrema, one being a minimum and the other a maximum. If a bond 

gets a certain activation energy, it can go over the barrier resulting in the breaking of the 

bond and consequently of the polymer. The activation energy can be easily calculated as 

the difference in the potential of the two extrema. As the simplest approach, we consider 

the vibrational motion of just one bond that may break and neglect coupling to the rest 

of the system. If coupling is included, the partition function will involve N frequency 

factors. But we need to consider only the ratio of the partition functions at the two 

extrema. The unstable frequency in the transition state and the ratio of the square of the 

frequencies of the equilibrium and transition states can be found using partion technique. 

The rate expression is derived also for the special case in which there is a foreign atom 
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along the main chain of the polymer. The calculations are repeated for a polymer whose 

units interact by Lennard-Jones potential. On comparing our results with the simulation 

results of Oliveira and Taylor, we see that our results are larger by orders of magnitude. 

7.2 Polymer Molecule in the Presence of a Bath of 

Harmonic Oscillators 

Oliveira and Taylor [46] have included friction in their starting equation for the simulations 

and so and we consider our system to be present in a bath of harmonic oscillators which 

can interact linearly with every unit. To be in agreement with Oliveira and Taylor [46] we 

take the friction to be Ohmic and also neglect quantum effects. We do the normal mode 

analysis for this and obtain an expression for the rate. But although the rate is found to 

be decreased, the decrease is only of one order of magnitude, and still the final result is 

not in agreement with the simulations. 

7.3 Rate of Separation of the Broken Ends 

To understand this discrepancy, we go beyond TST. We assume that even if the crossing 

over the barrier has oceured, it is not necessary that the reaction should occur. After 

the crossing, the two ends have to separate by a minimum distance, within which it is 

possible for the two broken ends to come back and heal the bond. We calculate the 

time required for the two broken ends to separate from one another through this critical 

distance. For this we assume that after the breaking, the potential energy decrease is 

linearly dependent on the separation of the two ends. Using a continuum approximation 

we write the equation of motion for the system in the form of a forced wave equation. 

iThe solution of the wave equation shows that the broken end of the chain undergoes 

itranslational motion with a uniform velocity. In addition, it undergoes diffusive motion 
I 

Idue to thermal fluctuations. Calculation of correlation function shows that the motion of 
I 

Ithe end of the chain is similar to that of a Brownian particle. We calculate the average 
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time that such a particle spends within the critical distance before going out for the first 

time from this region. This is compared with the time of crossing the barrier. The results 

show that in the small force regime, the first passage rate is considerably lower than that 

of the crossing rate and hence the rate determining step. The actual frequency may be 

obtained by adding the two times and then taking the inverse. On comparing the results 

with those of the simulations, we find that the agreement is still poor. 

7.4 Separation in the Presence of Friction 

We attribute this discrepancy to the fact that as the broken ends are moving, they suffer 

damping due to the friction of the surrounding medium. We analyse the motion of the 

broken ends in presence of friction by solving the continuum version of the equations used 

by Oliveira and Taylor. We obtain an expression for the mean position of the broken 

end as a function of time from which we can calculate the time needed for the end to 

travel the critical distance. It is seen that in the small force regime the calculated time 

is two-three orders greater than the time taken for crossing the barrier thus making our 

results in agreement with the simulations within an order of magnitude. 

7.5 Conclusions 

The main findings of our work are summarised below. 

1. The life time of the bond is somewhat sensitive to the potential that is used in the 

calculations - using Lennard-Jones or the Morse potential lead to rather different 

answers. 

2. For a given potential, a rough estimate of the rate can be obtained by a simple 

approximation that considers the dynamics of only the bond that breaks and neglects 

t.he coupling to neighboring bonds. Dynamics of neighboring bonds would decrease 

the rate, but usually not more than by one order of magnitude. 
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3. For the breaking of polyethylene, quantum effects are important only for tempera­

tures below 150 K. 

4. The lifetime strongly depends on the strain and as the strain varies over a narrow 

range, the lifetime varies rapidly from 105 seconds to 1O-5seconds~ 

5. If we change one unit of the polymer by a foreign atom, say by one sulphur atom, 

in the main chain itself, by a weaker bond, the rate is found to increase by orders 

of magnitude. 

6. Introducing friction into Multidimensional transition state theory can decrease the 

rate but by only one order of magnitude. 

7. The rate determining step for the process in most cases is the separation of the 

broken ends from one another. This is particularly true, If there is friction on the 

two ends from the surroundings. 



Appendix A 

Partitioning Formulae 

The matrix identities that we use in the text are given below. For any square matrix of 

the form [~ :], with A and 0 square matrices, one has 

det [~ ~] ~ detAdet [0 - CA-IB] (A.l) 

and 
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The Correlation Functions 

For calculating the correlation functions ((I(t l )(I(t2)), ((2(t 1)(2(t2)) and ((2 (tJ)(1 (tz))) we 

need the correlation functions (~t(Xl' 0), ~t(X2) 0)), (~x(Xl) 0), ~x(X2' 0) and (~t(Xl' 0), ~x(X2) 0). 

To find these) we consider the chain to be semi-infinite) with the end of the chain held 

fix(xL and the Hamiltonian to be 

(B.1) 

Before r he breakillg, the chaill is at equilibrium at, a temperature T and at the Lime of 

breaking (t, = 0), the positions ~(x, 0) and velocities ~t(x, 0) have the probability distrib­

ution functional [167] 

(B.2) 

where 

N = [/ D~(x,O) / D~t(x,O)exp [- k~T[~P 10
00 

dX~t(x,O)Z + ~T 10
00 

dX~x(x,0)21]rl 
(B.3) 

is t.he normalization factor. In the above, J D~t(x, 0) / D~(x) 0) stands for functional 

integration over all possible ~t(x) 0) and ~(x) 0). Any correlation function involving ~t(x, 0) 
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and ~x(x, 0) may be calculated as functional derivatives of the generating functional 

G U(x), k(x)] = N J D~(x, O)D~t(Xl O)P[~(x, 0), ~t,(x, 0)] 

(B.4) 

The functional can be easily evaluated and one obtains 

[
kBT (1 (00 1 (00 )] G [j ( x ) , k (x) J = exp -2- p J 0 dx j (x) 2 + T J 0 dx k ( x ) 2 . (B.5) 

Now we evaluate the correlation functions of ~t(x, 0) and cEx(x, 0) as functional derivatives 

of the generating functional. Thus, 

(B.6) 

(
k8T ) 2 [kBI' (1 (00 1 (00 , )] + -p- j(x2)j(xd exp 2 p In dxd(xl)2 + T I

n 
dX2k(xd 2 

. 

Hence, from Eq. (B.7), 

(8. 7) 

Similarly. 

(B.8) 
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i.e. , 

(B.9) 

B.1 The Correlation Function for (1 (t) 

Now we consider ((1(t1)(1(t2)) . Using the Eq. (6.13), we write 

As ~(O, 0) = 0, we can write 

~(X, 0) = {X dXf~x' (x', 0). In 
Hence 

(B.IO) 

l.e .. 

(B.11) 
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B.2 The Correlation Function of (2(t) 

Now we consider the correlation function of (2(t), which is defined by the Eq. (6.1.1.)) of 

the text 

(B.12) 

Now, 

Using the cosine representation of 6 function gives 

Fsing t.he above in the Eq. (B.12) gives 

(B.13) 

B.3 The Cross-Correlation Function of (1 (t) and (2(t) 

(B.14) 



Appendix C 

Solution for P (~, s) 

VVe write the Eq. (6.19) 

The equation has to be solved for the two regions, ~ < 0 and'; > 0 . 

\Ve rewrit.e the Eq. (C.l) for ~ < 0 as 

The general solution is 

- (v + vv2 + 4sD ) (v - vv2 + 4sD ) P(~, s)_ = Cl exp 2D .; + C2 exp 2D .;. 

Sillce \vhen ~ ---+ -00. P(~, s)_ should be zero, we have 

- (v + vv2 + 4sD ) P(~, s)_ = Cl exp 2D .;. 

Similarly for'; > 0, the general solution is 

- (v + vv2 + 4sD ) (v - vv2 + 4sD ) 
P(~, s)+ = C3 exp 2D ~ + C4 exp 2D .;. 

Here we use the boundary condition that at ';0 p = O. Hence, 
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(C.l) 

(C.2) 

(C.3) 

(CA) 

(C.5) 
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(
V + J v2 + 4sD ) (v - J v 2 + 4sD ) 

C3 exp 2D ~~ + C4 exp 2D ~~ = o. (C. G) 

Therefore we get, 

(
-2Jv2 + 4sD ) 

C3 = -C4 exp 2D ~~. (C.7) 

Since the two solutions match at ~ = 0, we have, 

(C.S) 

Now we integrate Eq. (C.l) between the limits -E and +E with the result that 

(C.g) 

Since P(~: s) is continbus, as E -+ 0, the first and third terms on the left hand side become 

equal to zero and hence 

(C.lO) 

as E -+ O. i.e. 

(C.D) 

as E -+ O. i.e. 

-D [c (~ Jv2 
+ 4SD) _ C (~_ ylv

2 
+ 4SD) _ C (~ ';v

2 
+ 4SD)] = l. 

3 2D + 2D -f 4 2D 2D 1 2D + 2D 
(C.12) 

Substituting the value of Cl from Eq. (C.S) and simplifying we get, 

1 
(C.13) 
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Using Sq. (C.7) we get, 

I (-2VV
2 + 4sD ) 

C3 = - V . exp D ~c. 
v 2 +4s0 2 

(C.l4) 

Thus, by substituting the values of the constants in the Eqs. (CA) and (C.5), the solution 

for P( E, s) becomes, 

for.; > 0, 

P(C s) = 1 [ex (v - vv
2 + 4sD ) _ ex (v + vv

2 + 4sD c _ 2vv
2 + 4sD )] 

.." vv2 + 4sD P 2D ~ p 2D <" 2D ~~ 
(C.l5) 

and for ~ < 0) 

P(C, s) = 1 [ (v + vv
2 + 4sD ) _ (v + vv

2 + 4sD C 2vv
2 + 4sD C )] 

<.." }112 + 4sD exp 2D ~ exp 2D <,,- 2D <"c . 

(C.16) 

Eqs. (C.IR) and (C.16) can be combined together as 

(C.17) 



References 

[1] H. H. Kausch, Polymer Fracture, Springer-Verlag, Berlin (1978). 

[2] N. J. Capiati and R. S. Porter, J. Polym. Sci., Polym. Phys. Ed. 13, 1177 (1975). 

[3] S. N. Zhurkov, Intern. J. Fracture Mech. 1, 311 (1965). 

[4] L. Holliday and W. A. Holmes-Walker, J. Appl. Polym. ScL 16, 139 (1972). 

[5] B. Crist, M. A. Ratner, A. L. B rower , and J. R. Sabin, J. Appl. Phys. 50,6047 (1979). 

[6] A. D. Chevychelov, Polym. ScL 8, 49 (1966). 

[7] A. Peterlin, Int. J. Ftact. 11, 761 (1975). 

[8] A. 1. Gubanov, Polym. Mech. 3, 408 (1967). 

[9] J. Smook, W. Hamersma and A. J. Pennings, J. Mater. Sci. 19, 1359 (1984). 

[10] B. D. Coleman and D.W. Marquardt, J. Appl. Phys. 28, 1065 (1975). 

[11] B. Epstein, J. Appl. Phys. 19, 140 (1948). 

[12] T. Yokobori, Kolloid-Z 166, 20 (1959). 

[13] A. Stuart and O. L. Anderson, J. Am. Ceramic Soc. 36, 416 (1953). 

[14] A. Tobolsky, H. Eyring, J. Chem. Phys. 11, 125 (1943). 

[15] Y. C. Huang, Proc. Int. Conf. Compos. Mater. Energy, 156 (1995). 

[16] A.A. Griffith, Phil.Trans. Roy. Soc. A 221, 163 (1921). 

117 



REFERENCES 118 

[17] C.E. Inglis, Tran. Roy. Inst. Nav. Archit. 60,219 (1913). 

[18] G. R Irwin, J. Appl. Mech. 61, 449 (1939). 

[19] R P. Kambour and RE. Robertson, Polymer Thermal Analysis, A.D. Jenkins (Ed.), 

North-Holland Publishing Co., Amsterdam, 1972, Chap. 11. 

[20] T. L. Smith, Reology, Vol. 5, F. R Erich (ed.)' New York, Academic Press (1969), 

p. 127. 

[21] P. J. Blatz, S. C. Sharda and N. W. Tschoegl, Trans. Soc. Rheol. 18, 145 (1974). 

[22] S. Glasstone, K. J. Laidler and H. Eyring, The Theory of Rate Processses, New York: 

McGraw Hill (1941). 

[23] S. N. Zhurkov and B. N. Narzullayev, Zhur. Techn. Phys. 23, 1677 (1953). 

[24] F. Bueche, J. Appl. Phys. 26, 1133 (1955), F. Bueche, J. Appl. Phys. 28, 784 (1957), 

F. Bucche, J. Appl. Phys. 29, 1231 (1958). 

[25] A. 1. Gubanov and A. D. Checychelov, SOy. Phys. Solid State 4, 681 (1962). 

[2G] G. ?\'I. Bartenev, Polym. Mech. (USA) 6, 393 (1970). 

[27] A. V. Dobrodumov and A. M. El'yashevich, SOy. Phys. Solid State 15, 1258 (1973). 

[28] C. C. Hsiao, J. Appl. Phys. 30, 1492 (1959). 

[29] H. H. Kausch and C. C. Hsiao, J. Appl. Phys. 39, 4915 (1968). 

[30] R L. Salganik, Int. J. Fracture Mech. 6, 1 (1970). 

[31] B. D. Goikhman, Strength Mater. (USA) 4, 918 (1972). 

[32] Yu. Ya. Gotlib, A. V. Dobrodumov, A. M. El'yashevich and Yu. E. Svetlov, SOy. 

Phys. Solid State 15, 555 (1973). 

133] K. C. Valanis, Report G 378-ChME-00l (1974), University of Iowa, Iowa City, USA. 



REFERENCES 119 

[34] Y. Termonia and P. Smith, Macromolecules 20, 835 (1987). 

[35] F. Bueche and J. C. Halpin, J. Appl. Phys. 35, 36 (1964). 

[36] W. Pechhold and S. Blasenbrey Kolloid-Z. Z. Polymers 241, 955 (1970). 

[37] Z-G. Wang, U. Landman, R. L. Blumberg-Selinger, and W. M. Gelbart, Phys. Rev. 

B 44, 378 (1991). 

[38] R. L. Blumberg Selinger, R. M. Lynden-Bell and W. M. Gelbart, J. Chem. Phys. 

98, 9808 (1993). 

[39] R. W. Welland, M. Shin, D. Allen and J. B. Ketterson, Phys. Rev. B 46, 503 (1992). 

[40] L. I. Manevitch, L. S. Zarkhin and N. S. Enikolopian, J. Appl. Polym. Sci. 39, 2245 

(1990). 

[41] R. C.Baljon Arlette and M. O. Robbins, Comput. theor. Polym. Sci. 9,35(1999). 

[42] K. D. Knudsen, J. G. Hernandez Cifre and J. Garcia de la Torre, Colloid Polym. Sci. 

275, 1001 (1997). 

[43] Sheng Yu-Jane, Lai Pik-Yin and Tsao Heng-Kwong, Phy. Rev. E 56, 1900 (1997). 

[44] T. Matsuda and K. Tai, Polymer 38, 1669 (1997). 

[45] R. W. Smith and D. J. Scrolovitz, Modell. Simul. Mater. Sci. Eng. 2, 1153 (1994). 

[46] F. A. Oliveira and P. 1. Taylor, J. Chem. Phys. 101, 10118 (1994). 
I 
1 

:[47] F. A. Oliveira, Phy. Rev. B. 57, 10576 (1998). 

\48] Kim Bolton, Stur Nordholm, H. W. Schranz, J. Phy. Chem. 99, 2477 (1995). 

\49] B. K. Chakrabarti, D. Chowdhury and D. Stauffer, Z. Phys. B. - Condensed Matter 

62,343 (1986). 

\50] M. R. Nyden and D. W. Noid, J. Phys. Chem. 95, 940 (1991). 



REFERENCES 120 

[51] J . .T. Lopez Cascales and J. Garcia de la Torre, J. Chem. Phys. 95 ,9384 (1991). 

[52] Cleri Fabrizio, S. R. Phillpot, D. Wolf and S.Yip, J. Am. Ceram. Soc. 81, 501 (1998). 

[53] R. L. Blumberg-Selinger, Z.-G. Wang, W. M. Gelbart and A. Ben-Shaul, Phys. 

Rev. A 43: 4396 (1991). 

[54] R. L. Blumberg-Selinger, Z.-G. Wang, and W. M. Gelbart , J. Chem. Phys. 95, 

9128 (1991), R. L. Blumberg-Selinger, R. M. Lynden-Bell and W. M. Gelbart, J. Chem. 

Phys. 98, 9808 (1993). 

[55] P. Meakin, Science 252, 226 (1991). 

[56] A. J. Kinloch and R. J. Young, Fracture Behaviour of Polymers, Applied Science, 

London (1983). 

[57] R. O. Ritchie, W. W. Geberich and J .. H. Underwood, Encyclopedia of Physical Sci­

ence And Technology, Academic Press, New York (1987), vol. 5, p. 594. 

[58] D. S. Dugdale, J. Mech. Phys. Solids 8, 100 (1960). 

[59] L. M. Schwartz, S. Feng, M. F. Thorpe and P. N. Sen, Phys. Rev. B 32, 4607 (1985). 

[60] R. Garcia-Molina, F. Guiinea and E. Louis, Phys. Lett 60, 124 (1988). 

[611 M. Born and K. Hllang, Dynamical Theory of Crystal Lattices, Oxford University 

Press, New York (1954). 

[62] P. N. Sen and M.F. Thorpe, Phys. Rev. B 15, 4030 (1977). 

[63] G. N. Hassold and D. J. Srolovitz, Phys. Rev. B 39, 9273 (1989). 

[64] C. Tang. Phys. Rev. A 31, 1977 (1986), J. Kertesz and T. Vicsek, J. Phys. A 19, 

L257 (1986). 

[65] J. Nittmann and H. E. Stanley, Nature 321, 663 (1986). 

[66] T. A Witten and L. M. Sander, Phys. Rev. Lett. 47, 1400 (1981). 



REFERENCES 121 

[67] J. D. Chen and D. Wilkinson, Phys. Rev. Lett. 55, 1892 (1985). 

[68] K. J. Maloy, F. Boger, J. Feder, T. Jossang and P. Meakin, Phys. Rev. A 36, 318 

(1987). 

[69] K. J. Maloy, J. Feder and T. Jossang, Phys. Rev. Lett. 55, 2688 (1985). 

[70] W. A. Curtin and H. Sher, J. Matter. Res. 5, 535 (1990). 

[71] H. J. Herrmann, J. Kertesz and L. de Areangelis, Europhys. Lett. 10, 147 (1989). 

[72] P. Meakin, J. Phys. A 18, L661 (1985). 

[73] R. C. Ball and R. M. Brady, J. Phys. A 18, L809 (1985). 

[74] S. Tolman and P. Meakin, Phys. Rev. A 40, 428 (1989). 

[75] L. Niemeyer, L. Pietronero and H. J. Weismann, Phys. Rev. Lett. 52, 1033 (1984). 

[76] P. Meakin, Thin Solid Films 151, 165 (1987). 

[77] G. M. Barteenev and Yu. S. Zuyev, Strength and Failure of Viscoelastic Materials, 

Oxford: Pergamon Press (1968), p. 143ff., E. H. Andrews, Fracture in Polymers, Edin­

burgh: OliveI' and Boyd (1968). 

[78] D. C. Prevorsek, J. Polym. Sci. C 32, 343 (1971). 

[79] G. Mikos Antonios and A. Peppas Nikolaos, J. Chem. Phys. 88, 1337 (1988). 

[80] M. Sambasivam, A. Klein and L. H. Sperling, J. AppL Polym. ScL 58,357 (1995). 

[81] C. Y. Hui and E. J. Kamer, Polym. Eng. Sei. 35,419 (1995). 

[82] B. Crist, M. A. Ratner, A. L. Brower and J. R. Sabin, J. AppL Phys. 50, 6047 (1979). 

[83] B. Crist Jr., Jens Oddershede, J. R. Sabin, .1. W. Perram and M. A. Ratner, J. Polym. 

Sei. 22, 881 (1984). 

[84] LiuYongning, lnt. J. Fract. 86 L3 (1997). 



REFERENCES 122 

[85] PIa Oscar, Modell. Simul. Mater. Sci. Eng. 4, 193 (1996). 

[86] Moon chay-Kwon and G. Mcdonough WaIter, J. Appl. Polym. Sci. 67, 1701 (1998). 

[87] Li Qiang, He Ziru, Song Mingshi and Tang Aoqing, Macromol. Theory Simul. 5, 183 

(1996). 

[88] A. Chudnovsky, Y. Shulkin, D. Baron and K. P. Lin, J. AppL Polym. Sci. 56, 1465 

(1995). 

[89] B. N. J. Persson, J. Chem. Phys. 110, 9713 (1999). 

[90] L. S. Le\Oitov, A. V. Shytovand and A. Yu. Yakovets, Phys. Rev. Lett. 75,370 (1995). 

[91] M. Sambasivam, A. Klein, T. N. Thomas, N. Mohammadi and L. H. Sperling, Polym. 

Mater. Sci. Eng. 68, 161 (1993). 

[92] L. H. Sperling, M. Sambasivam and A. Klein, Polym. Mater. Sci. Eng. 73,45 (1995). 

[93] S. D. Sjoerdsma, J. P. H. Boyens, Polym. Eng. Sci. 34, 86 (1994). 

[94.] T. P. Doerr and P. L. Taylor, J. Chem. Phys. 101, 10107 (1994). 

[95] I. E. GO\'aert and T. Peijs, Polymer 36, 4425 (1995). 

[96] S. Arrhenius, Z. Phys. Chem. (Leipzig) 4, 226 (1889). 

[97] H. Eyring, J. Chem. Phys. 3, 107 (1935). 

[98] E. Wigner, J. Chem. Phys. 5, 720 (1937). 

199] M, Polanyi and E. Wigner, Z. Phys. Chem. Abt. A 139, 439 (1928). 

1100] H. Petzer and E. Wigner, Z. Phys. Chem. Abt. B15, 445 (1932). 

[101] W. F. K. Wynne-Jones and H. Eyring, J. Chem. Phys. 3, 492 (1935). 

[102] M. G. Evans and M. Polanyi, Trans. Faraday Soc. 31, 875 (1935). 

[103] O. K. Rice and H. C. Ramsperger, J. Am. Chem. Soc. 49, 1617 (1927). 



REFERENCES 123 

[104] L. S. Kassel, Proc. Nat. Acad. Sci. USA A14, 23 (1928). 

[105] R. A. Marcus, J. Chem. Phys. 20, 359 (1952); R. A. Marcus, J. Chem. Phys. 43, 

2658 (1965). 

[106] W. L. Hase, Dynamics of Molecular Collisions, Part B, Plenum New York (1976) 

p. 121. 

[107] E. E. Nikitin, Theory of Elementary Atomic and Molecular Processes in Gases 

Oxford: Clarendon (1974), Chapter 1. 

[108] P. Pechukas and F. J. McLafferty, J. Chem. Phys. 58, 1622 (1973). 

[109] B. C. Garrett and D. G. Truhler, J. Chem. Phys. 70, 1593 (1979). 

[110] R. A. Marcus, J. Chem. Phys. 45, 2138 (1966); ibid. 2630 (1966). 

[111] D. G. Truhlar and B. C. Garrett, Acc. Chem. Res. 13,440 (1980). 

[112] D. M. Bishop and K. J. Laidler, Trans. Faraday Soc. 66, 1685 (1970). 

[113] J. C. Keck, J. Chem. Phys. 32, 1035 (1960). 

[114] \V. 1. Hase, J. Chem. Phys. 64, 2442 (1976). 

[115] B. H. Mahan, J. Chem. Ed. 51, 709 (1974); W. H. Miller, Acc. Chem. Res. 9, 306 

(1976). 

[116] H. S. Johnston and D. Rapp, J. Am. Chem. Soc. 83, 1 (1961). 

[117] R. A. Marcus and M. E. Coltrin, J. Chem. Phys. 67,2609 (1977). 

[118] W. H. Miller, N. C. Handy and J. E. Adams, J. Chem. Phys. 72, 99 (1980). 

[119] R. T. Skodje, D. G. Truhlar and B. C. Garett, J. Chem. Phys. 85, 3019 (1981); 

B. C. Garett and D. G. Truhlar, J. Chem. Phys. 81, 309 (1984). 

[120] L. D. Landau and E. M. Lifshitz, Quantum mechanics (2nd edn.) Pergamon Press, 

Oxford (1965). 



REFERENCES 124 

[121] H. A. Krarners, Physica 7: 284 (1940). 

[122] P. Hanggi, P. Talkner and M.Borkovec, Rev. Mod. Phys. 62, 251 (1990). 

[123] E. Pollak, H. Crabert, and P. Hanggi, J. Chern. Phys. 91, 4073 (1989). 

[124] J. S. Langer, Ann. Phys. 54, 258 (1969). 

[125] B. J. Matkowsky, Z. Schuss and E. Ben-Jacob, SIAM J. Appl. Math. 42, 835 (1982). 

[126] B. J. Matkowsky, Z. Schuss and C. Tier, SIAM J. Appl. Math. 43, 673 (1983). 

[127] E. Pollak and E. Hershkowitz, Chern. Phys. 180, 191 (1994). 

[128] R. F. Crote and J. T. Hynes, J. Chern.Phys. 73,2715 (1980). 

[129] R. Zwanzig, J. Stat. Phys. 9, 215 (1973). 

[130] E. Pollak, J. Chern. Phys. 85, 865 (1986); (b) E. Pollak, S.C. Tucker and B. J. 

Berne, Phys. Rev. Lett. 65, 1399 (1990). 

[131] .T. B. Strauss and C. A. Voth, J. Chern. Phys. 96, 5460 (1992); (b) J.B. Strauss, 

J.:~d. Gornez Llorente, and G. A. Voth, ibid. 98, 4082 (1993). 

[132] S. D. Schwartz, J. Chern. Phys. 105, 6871 (1996). 

[133] G. A. Voth, D. Chandler and W. H. Miller, J. Chern. Phys. 91, 7749 (1989). 

[134] G.A. Voth, Chern. Phys. Lett. 170, 289 (1990). 

[135] M. Messina, G. K. Schenter, and B. C. Carrett, J. Chern. Phys. 99, 8644 (1993). 

[136] M. Topaler and N. jVlakri, J. Chern. Phys. 101, 7500 (1994). 

[137] Y. Georgievskii and E. Pollak, J. Chern. Phys. 103, 8910 (1995). 

[138] S. Jang, A.G. Voth, J. Chern. Phys. 112, 8747 (2000). 

[139] D. M. Wardlaw and R. A. Marcus, Chern. Phys. Lett. 110, 230 (1984); J. Chem. 

Phys. 83, 3462 (1985). 



REFERENCES 125 

[140] W. L. Hase and D. M. Wardlaw, Biomolecular Collisions Chemical Society, London 

(1989): D. M. Wardlaw and R. A. Marcus, Adv. Chem. Phys. 70, 231 (1988), Part 1. 

[141] E. E. Aubanel and D. M. Ward law , J. Phys. Chem. 93, 3117 (1989). 

[142] (a)~ S. J. Klippenstein and R. A. Marcus, J. Chem. Phys. 87, 3410 (1987); 

(b) J. Phys. Chem. 92,3105 (1988). 

[143] S. J. Klippenstein, Chem. Phys. Lett. 170, 71 (1990); 214, 418 (1993); J. Chem. 

Phys. 94,6469 (1991); 96,367 (1992); J. Phys. Chem. 98, 11459 (1994). 

[144] (a) S. C. Smith, J. Chem. Phys. 95, 3404 (1991); (b) 97, 2406 (1992); (c) J. Phys. 

Chem. 97, 7034 (1993). 

[145] S. H. Robertson, A. F. Wagner and D. M. Wardlaw, J. Chem. Phys. 103, 2917, 

(1995); Robertson et al., Faraday Discuss. Chem. Soc. 102, 65 (1995). 

[146] S. H. Robertson, A. F. Wagner and D. M. \Vardlaw, J. Chem. Phys. 113, 2648 

(2000). 

[147] A.A. Ovichinnikov and Yu. 1. Dakhnoskii, J. Electroanal. Chem. 202, 1 (1989). 

[148] K. L. Sebastian, J. Chem. Phys. 90, 5056 (1989). 

[149] A. A. Maradudin, Theory of Lattice Dynamics in the Harmonic Approximations, 

Solid State Physics Supplement 3, Academic Press (1964). 

[150] M. Abramowitz, 1. A. Stegun, Handbook of Mathematical Functions, Dover Publi­

cations, rnc, New York (1964). 

[151] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th edition, 

Cambridge University Press, New York (1927). 

[152] L. Gamier, B G Manuel, E. W. van der Vegte, J. Snijders and G. Hadziioannou, 

J. Chem. Phys. 113,2497 (2000). 

[153] C. Ortiz and G. Hadziioannou, Macromolecules 32, 780 (1999). 



REFERENCES 

C, 8251 

126 

[154] M. Rief, J. Pascual, M. Saraste and H. E. Gaub, J. Mol. BioI. 286, 553 (1999). 

[155] J. E. Bemis, B. B. Akhremitchev and G. C. Walker, Langmuir 15, 2799 (1999). 

[156] E. 1. Florin, V. T. Moy and H. E. Gaaub, Science 264, 415 (1994). 

[157] M. Grandbois, M. Beyer, M. Rief, H. Classen-Schaumann and H. E. Gaub, Science 

283, 1727 (1999). 

[158] R. C. Weast (Ed. ), CRC Handbook of Chemistry and Physics, CRC Press Inc. 

Florida (1982). 

[159] A. Vijay and D. N. Sathyanarayana, Journal of Molecular Structure, 327, 181 

(1994). 

[160] U.Weiss, Quantum Dissipative Systems, World Scientific (1993). 

[161] R. J. Rubin, J. Math. Phys. 11, 309 (1960); ibid. 2, 373 (1961). 

[162] J. R. Senitzky, Phys. Rev. 119, 670 (1960). 

[163] G. \V. Ford, M. Kac and P. Mazur, J. Math. Phys. 46, 504 (1965). 

[164] P. Ullersma, Physica (Utrecht) 32, 27, 56, 74, 90 (1966). 

[165] K. 1. Sebastian and R. Puthur, Chemical Physics Letters 304, 399 (1999). 

[166] Abramowitz, 1. Stegun, Handbook of Mathematical Functions, equations (4.3.89) 

and (4.5.69), Dover Publications, Inc, New York (1964). 

[167] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Third edition, 

chapters 1-6, Clarendon Press, Oxford (1996). 


	Title
	Certificate
	Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Appendix A
	Appendix B
	Appendix C
	References

