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PREFACE 

Quantum fields, so far have been exclusively successful in explaining the high 

energy world, up to at least the Te V scale. But, beyond the Planck time, the 

thermal energy of the universe would have been the Planck energy, 1Q19GeV and 

we need la quantum treatment of gravity, which remains still elusive. In the 

absence of a satisfactory theory of quantum gravity it is very difficult to describe 

the influence of the gravitational field on quantum phenomena. So a semiclassical 

treatment for the quantum aspects of gravity is adopted in which the gravitational 

field is treated as a classical background, while the matter fields are quantised in 

the usual way. Quantum field theory in an external classical gravitational field 

is usually regarded as a first step towards a more complete theory of quantum 

gravity. 

Quantum fields have profound influence on the dynamical behaviour of the 

early universe. The inflationary universe scenario broaches the question con­

cerning the role of a scalar field in cosmological evolution and particularly its 

influence on the development of cosmological inhomogeneities. The influence of 

quantum fields on the cosmological phase transitions, inflation, particle creation 

and cosmological perturbations have been investigated by many authors. 

This thesis deals with some aspects of the Physics of the early universe, like 

phase transitions, bubble nucleations and premordial density perturbations which 

lead to the formation of structures in the universe. A gravitationally coupled 

scalar field is used as a tool for these studies. 

Chapter 1 of the thesis gives an introduction to the phase transitions in 
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the early universe and to the cosmological perturbations. An account of effective 

potential calculations, renormalisation, spontaneous symmetry breaking, finite 

temperature field theory, quantum fluctuations and gravitational instability are 

discussed in this chapter. 

In the early universe, symmetries that are spontaneously broken today were 

restored and during the evolution of the universe there were phase transitions, 

perhaps many, associated with the spontaneous breakdown of symmetries (SSB). 

During such a phase transition it is possible for the field to acquire nonzero 

vacuum expectation values. In general, a symmetry breaking phase transition 

can be of first or second order. For a first order phase transition the change in 

the field, ifJ in going from one phase to the other must be discontinuous, while 

for a second order transition there is no barrier at the transition point and the 

transition occurs smoothly. 

First order phase transitions in the early universe are studied in Chapter 2 

using (3+1) dimensional Bianchi type-I background spacetime. We consider a 

massive scalar field coupled to the gravitational background and having ifJ6 self­

interaction. ifJ6 model is known to be nonrenormalisable in (3+ 1) dimensional 

flat spacetime. Nonrenormalizability of the field theory does not mean that the 

theory is not interesting and it does not mean, of course , that finite renormalised 

prescription for the calculation of one-loop effective potential does not exist. The 

one-loop effective potential for ifJ6 theory in a (3 + 1) dimensional Bianchi type-I 

spacetime is evaluated and it is found that the ifJ6 model can be regularised using 

the effective potential method in a {3+1)dimensional curved spacetime. 

While constructing a theory of the interaction between quantized matter fields 

and a classical gravitational field one has to identify the energy-momentum tensor 

of the quanti zed fields which acts as the source of the gravitational field. The 
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energy-momentum tensor for the present 16 self-interacting field is evaluated with 

(3+ 1) dimensional Bianchi type-I background spacetime and it is found that the 

energy-momentum tensor depends on the anisotropy of the spacetime. 

The temperature dependence of finite temperature effective potential in quan­

tum field theory leads to phase transitions. Evaluating the one loop effective 

potential at finite temperature, the finite temperature effects on the phase tran­

sitions of early universe are discussed in this chapter. The nature of phase 

transitions is examined and is verified to be of first order. The crucial depen­

dence of phase transitions of the early universe on spacetime curvature and the 

gravitational-scalar coupling is also made clear. The phase transitions, induced 

by the curvature R and the coupling constant ~ are also found to be of first order. 

(2+1) dimensional gravity exhibits novel features of interest and there are 

several important differences between the three and four dimensional problems. 

Considering the same Lagrangian density with 16 potential as in chapter 2 and 

using the momentum cut-off technique, a divergence less expression for the 16 

potential in a (2+ 1) dimensional Bianchi type-I background spacetime is obtained 

in Chapter 3. The finite expression for energy momentum tensor is obtained 

with (2+1) dimensional Bianchi type-I background spacetime also. Evaluating 

the one loop effective potential at finite temperature the finite temperature effects 

on phase transitions are studied for this model. The existence of the separate 

branches of a} implies that the phase transition is of first order (where aT is 

the order parameter). It is found that the spacetime curvature and the scalar­

gravitational coupling do play a crucial role in determining the nature of phase 

transitions in this model also. 

A first order phase transition proceeds by nucleation of bubbles of broken 

phase in the background of unbroken phase. The bubbles expand and eventually 
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collide, while new bubbles are continuously formed, until the phase transition 

is completed. While discussing the bubble collisions one has to consider the 

interaction between the bubble field and the surrounding plasma. Taking account 

of this, an exact solution for the damped motion of the bubble in the thin wall 

regime is obtained in chapter 3. 

If the phase transition is strongly first order, the universe may be domi­

nated by the vacuum energy and undergo a period of inflation. The quantum 

fluctuations in the inflaton field are the most natural choice for the seed per­

turbations. Small fluctuations in the density results in gravitational instability 

and gravitational instability causes the growth of perturbations in an expanding 

universe. The structure we observe in the universe today is the end result of the 

gravitational amplification of small primeval perturbations. The gravitational 

instability of a spatially uniform state of dust-like matter described by classi­

cal non-relativistic equations has been first investigated by Jeans. If the mass 

of a body is larger than some minimum mass called the Jeans mass, then the 

self gravity of matter will start affecting the structure of the body significantly. 

The possibility of using the instability mechanism of Jeans theory to form self­

graviting configurations from a real scalar field is described in Chapter 4. A 

scalar field approach to Jeans mass calculation is considered. 

The cosmic fluid can be treated in complete analogy to a scalar field and 

the description of cosmological perturbations in the universe can be reduced to 

the study of quantum fluctuations of a gravitationally coupled scalar field. Con­

sidering a massive scalar field arbitrarily coupled to a gravitational background, 

the stress-energy tensor expectation values are computed in this chapter. The 

vanishing of nondiagonal terms of the expectation value of Tp.v allows us to treat 

the scalar field in complete analogy to a perfect fluid. Then the energy density 
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and pressure associated with the densit.y perturbations in a Robertson-Walker 

universe are evaluated. The primeval density perturbations produced by the vac­

uum fluctuations of the scalar field are considered and the Jeans criterion for the 

structure formation is obtained. Then the expressions for Jeans length and Jeans 

mass are evaluated for a curved spacetime. 

The quantum fluctuations of a scalar field with quartic self-interaction is also 

considered in this chapter and Jeans length is evaluated. It is found that the 

self-interaction of the field influences the character of instability and the value of 

Jeans wave number KJ is altered by the effects of self-interaction. 

In Chapter 5 an anisotropic (3+ 1) dimensional Bianchi type-I spacetime 

which is spatially homogeneous is considered as the background metric. As an al­

ternative to the N representation, we can construct an (over)complete normalised 

set Irk) of coherent state for each mode of the scalar field. The stress-energy ten­

sor expectation values are computed in a coherent state. The density matrix is 

used to represent the expectation values. Then the energy density and pressure 

associated with the density perturbations are evaluated. Using these results the 

exact expression for Jeans wave number is evaluated. 

Then the distribution of matter field which is assumed to be locally anisotropic 

and is coupled to a Bianchi type-I background spacetime is considered. In ad­

dition to the quantum fluctuations, perturbations in the background metric are 

also taken into account in this chapter. The expression for the perturbed energy 

momentum tensor is obtained. It is found that for the present anisotropic case, 

the perturbation of pressure in radial and tangential directions are different and 

therefore Jeans wave number depends on the velocity component of fluctuations 

in radial and transverse directions. 

The results and final conclusions of this thesis work are given in Chapter 6. 
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Chapter 1 

Introduction 

The quantisation of gravitational field has been pursued with great ingenuity and 

vigour over the past several decades. But a completely satisfactory quantum the­

ory of gravity still remains elusive. In the absence of a viable theory of quantum 

gravity one can not describe the influence of the gravitational field on quantum 

phenomena. So a semiclassical treatment for the quantum aspects of gravity is 

adopted in which the gravitational field is treated as a classical background field, 

while the matter fields are quantised in the usual way. Quantum field theory in 

an external classical gravitational field is usually regarded as a first step towards 

a more complete theory of quantum gravity. 

In the very early universe, at high temperatures and energies, a classical de­

scription of matter breaks down and it must be replaced by a description in 

terms of quantum fields. Although, as yet, there has been no direct observation 

of the fundamental scalar particle (the Higgs particles), such particles proliferate 

in modern particle theories. To obtain inflation, we need a material with the un­

usual property of negative mass. Such a material is a scalar field describing scalar 

(spin-O) particles. They play a crucial role in bringing about symmetry break­

ing between the fundamental forces. Scalar fields were introduced by particle 

1 
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physicists long before particle cosmology came into being as a subject, but were 

pounced upon by the cosmology community because of the range of interesting 

phenomena in which they may partake. 

Quantum fields have profound influence on the dynamical behaviour of the 

early universe. The potential role of scalar field in Cosmology has been well 

discussed [1]-[11]. The inflationary universe scenario broaches the question con­

cerning the role of a scalar field in cosmological evolution and particularly its 

influence on development of cosmological inhomogeneities. The influence of quan-

turn fields on the cosmological phase transitions, inflation, particle creation and 

cosmological perturbations have been investigated by many authors [8]-[11]. 

1.1 Scalar Field 

Quantum fields are fundamental physical concepts, in terms of which the inter-

actions of the elementary particles are described. Field theory is characterised 

by a physical quantity called the action S, defined as the functional of the fields 

and has the general form 

S = J dx£( <I> (x ), 8Il<I>(x)) (1.1.1) 

.£ is a real scalar local function of fields and their spacetime derivatives and is 

called the Lagrangian density. Usually it is assumed that the Lagrangian depends 

only on the field <I> and its first derivatives. The fundamental equations of the 

classical field theory, the equations of motion, follow from the stationary action 

principle and have the form 
8S 

8<I>(x) = 0 
(1.1.2) 

The Lagrangians of simplest field theory models are polynomials of definite 
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degree in the field ~ which also depend on the first derivatives al'~ not more 

than quadratically. As regard the field ~, it is natural to consider tensors of the 

low ranks, that is, scalars </J, vectors AI" second-rank tensors Bl'v and spinors. 

For the real scalar field </J(x) the expression for Lagrangian density has the 

form, 

( 1.1.3) 

Usually the first term in the Lagrangian density in Eq. (1.1.3) is called the 

kinetic term and the second is called the mass term. The inclusion of the field's 

interactions in the simplest case is carried out by adding the polynomials over the 

fields and their derivatives of general degree higher than two to the Lagrangian 

in Eq. (1.1.3). Including the interaction, leads to the Lagrangian density, 

£(</J, al'</J) = ~TtVal'</Jav</J - ~m2</J2 - V(</J) 

where V (c/J) is the interaction potential. 

1.2 Gravitationally Coupled Scalar Field 

(1.1.4) 

The inclusion of the interaction of scalar field with the gravitational field and the 

scalar field quantisation in curved spacetime can be performed in an analogous 

way to the Minkowski spacetime [12]. Furthermore, all the ordinary derivatives 

8IJ must be changed by the general covariant derivatives \l w It is also necessary to 

ensure that the Lagrangian is scalar under the general coordinate transformations. 

Again, the integration in the expression for the action must be performed over 

the invariant volume. The form of Lagrangian density for the gravitationally 

coupled scalar field is given by 
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(1.2.1) 

where m is the mass of the field quanta. The coupling between the scalar field and 

the gravitational field is represented by the term ~R<p2, where ~ is a dimensionless 

parameter and R is the Ricd scalar curvature. The factor ";-g has been included 

to make £ a scalar density and hence to make the action a scalar. 

Two values of ~ are of particular interest: the minimally coupled case ~ = 0 

and the conformally coupled case ~ = H{n - 2)j{n - I)J == ~(n), where n is 

the spacetime dimension. In the conformally coupled case, if m = 0 the action 

and hence the field equation are invariant, not only under the general coordinate 

transformation but also under the conformal transformation, 

where a{x), the parameter of conformal transformation is an arbitrary scalar 

field. 

Setting the variation of action with respect to <p, equal to zero yields the scalar 

field equation 

[D + m2 + ~RJ<p{x) = 0 

where 0 <p = gJ.&v 'VI' 'Vv<P = {_g)-1/28J.&[{_g)1/2gJ.&v8v<pJ. 

1.3 The Effective Potential 

(1.2.2) 

The natural way to construct quantum gravity models is to apply quantum field 

theory models to theories of classical gravitational fields interacting with matter. 

In this approach, the effective action of the quantum field plays an essential role. 
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Therefore the investigation of quantum gravity models is concerned with the 

computation of the effective action and the study of its properties. 

Phase transition is characterised by fluctuation in some field variables, usually 

called the order parameter. But the calculations at the classical level shows that 

the potential energy of the ordered state is actually less than the energy in the 

disordered state. Thus in order to treat the problem systematically, a procedure 

which takes into account all the quantum fluctuations is to be considered and 

one such procedure is to calculate the effective potential of the system. 

This was introduced in quantum field theory by Schwinger [13] and was ex­

tended to the study of symmetry breaking phenomena by Jona-Lasinio [14]. An 

approximation scheme for the evolution of the effective potential was developed 

by Nambu [15] and his procedure is now known as loop expansion [1],[12]-[17]. 

The most compact and elegant way to study the symmetry properties of vacuum 

is the effective potential approach. Jona-Lasinio showed that the minima of the 

effective potential give without any approximation the true vacuum states of the 

theory. Effective potential can also be calculated by the diagrammatic method 

[18]. The virtue of this method is that it enables us to compute higher order 

corrections while still retaining a great advantage of the semi-classical approxi­

mation; the capability to survey all possible vacuum simultaneously. Hence even 

in the presence of renormalisation effects it helps to study the asymmetric but 

stable theory described by its Lagrangian. 

The effective action (EA) is the classical action with all quantum corrections 

made to it. For finding the one loop EA [1],[12]-[17] it is necessary to calculate 

the determinants of the differential operators, dependent on the mean field. For 

higher order corrections it is necessary to find the Green's function G(x, y I 4J), 

depending on the mean field. Since neither the first problem nor the second can 
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be solved in general case, approximate methods for the EA calculations have 

been put forward. In one of these methods we compute the effective action for 

the slowly changing mean fields where we can neglect their derivatives. 

Let the mean field </J{x) change slowly in spacetime. Then the effective action 

which is essentially the non-local object, may be found as a series in the mean 

field derivatives. For a slowly varying field we can leave a finite number of terms 

in these series that lead to the local approximation for the EA. 

(1.3.1) 

where Z(</J) is the generating functional of Green's functions. Every term in the 

right hand side of Eq. (1.3.1) is a function of the mean field </J(x). The term 

Veff(</J) in the local approximation for EA is called the effective potential. 

The calculation of the effective potential is connected with finding the effective 

action at the constant mean field, </J(x) = </J = constant. For calculating effective 

potential in the arbitrary order of loop expansion, it is necessary to find the 

determinants of the differential operators with a constant coefficient and the 

Green's function in the constant mean field. 

Let us consider the one loop effective potential for the scalar field theory 

with the Lagrangian density in Eq. (1.1.4). The effective action in the one loop 

approximation is 

r(1) [</J] 

i h 
= S[</J] + 2 211" In det S2[</J] (1.3.2) 

where S2[</J] is the Kernel of some differential operator depending on the mean 

field. For the present Lagrangian, the Kernel of the corresponding operator has 
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the form 

(1.3.3) 

Then we can rewrite Eq. (1.3.2) as 

'h A rei) [<fJ1 = S[rfJ1 + ~ - In det -
227r J.L2 

(1.3.4) 

where 

A = -[D + m 2 + V" (ct»]. (1.3.5) 

The operator A has the dimension 2 in mass units and the arbitrary constant 

Jl has the dimension of mass and it is introduced because the expression under 

the logarithm must be dimensionless. 

By definition of the generalised Zeta function [12, 191 we can write 

detA = exp[-((OIA)] (1.3.6) 

where ~ (z I A) is the generalised Zeta function connected wi th the operator A and 

I df,(z/A). . 
~ (QIA) = dz /z=o. Usmg Eq. (1.3.6) we can wrIte, 

(1.3.7) 

Thus the problem consists in finding ~(zl A). For an arbitrary differential operator 

A the generalised Zeta function may be represented in the form [121, 

((zIA) = r~z) 100 ids(is)Z-I ! dxK(x, xl s) (1.3.8) 

In Eo... \1.(,.7), sUDstitutin'{, the eX\lIession im classical 'action 8\<1>\, 

(1.3.9) 
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wc can write 

r(1)[cjJ] = - dx(V(cjJ) + _m2cjJ2 + ... ) - --~ (01-) J 1 i h, A 
. 2 2~ ~ 

(1.3.10) 

But from Eq. (1.3.1) we have 

(1.3.11) 

Thus from the above two expressions we get 

(1.3.12) 

and 

~(x, zl ~) = r~) 100 i ds(is)Z-1 K(x, xis) (1.3.13) 

Thus for the one-loop effective potential computations we have to find K(x, yl s). 

For a given operator A let us define the differential equation 

.oK(x, yl s) _ AK( I) 
t as - x,Y s (1.3.14) 

where operator A acts on the first argument of K(x, yl s). Suppose that the 

function K (x, y Is) satisfies the following initial condition, 

K(x, yls) = o(x - y) (1.3.15) 

For the operator A defined by Eq. (1.3.5) we can rewrite Eq. (1.3.14) as 

.oK(x, yl s) = _~[ 2 V" (A.)]K( I) 
t a 2 0 + m + 'f' x, Y s 

s I-t 
(1.3.16) 

The solution of this equation which satisfies the initial condition given by Eq. 

(1.3.15) has the form 
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iJ..L4 [iJ..L
2 

i ,,] 
K(x,y/s) = - (47ris)2 exp 4"; (x - y)2 + J..L2(m2 + V (4J))s (1.3.17) 

Substituting for K(x,x/s) from the above equation in the expression (1.3.13) we 

get, 

iJ..L4 jOOidS(iS)Z-I [i (2 " )] 
- - (47r)2r(z) (is)2 exp J..L2 m + V (4J) s 

o 

_ iJ..L4 (m2+v"(4J))Z-2 r(Z-2) 
(47r)2 J..L2 r(z) 

(1.3.18) 

Therefore the expression for the one-loop effective potential is 

N . h . fC f" h r(z - 2) 1 ow usmg t e propertIes 0 amma unctIOns we ave r(z) 
(z - l)(z - 2)' 

Substituting this Eq. (1.3.19) and carrying out elementary transformations we 

obtain, 

V(I) (4)) = V(4J) + !m24J2 + _h_(m2 + V"(4J)) (In m2 
+ V"(4J) -~) (1.3.20) 

elf 2 1287r3 J..L2 2 

The effective potential given by the above equation contains arbitrary con­

stants J..L2, A, etc. For example, let V(4J) = ~A4J4, where A is the scalar coupling 

constant. Then the effective potential depends on the parameters m 2 and A. 

These parameters m2 and A are not the observable mass and coupling constant. 

For the introduction of the observable mass and coupling constant it is necessary 

to define these parameters taking into account the conditions of the measure-

ment. This can be done by the renormalisation technique explained in the next 

section. 
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1.4 Renormalisation 

Renormalisation is the special procedure for the reconstruction of the theory un­

der consideration so that the divergences are absent and the vertex functions are 

finite. The divergences may be absorbed by a redefinition of various parameters 

mass, coupling constant etc. of the theory. 

The parameters such as mass and coupling constants which appear in the 

Lagrangian are not directly measurable quantities. In the classical point-particle 

theory, for instance, we must "dress up" the bare mass to obtain the physical 

inertial mass. The latter is, of course , finite while the former, may be infinite. 

We shall therefore give an operational definition to the fundamental parameters 

(finite in number). Renormalisation theory will then show that the perturbative 

expressions for Green functions are finite when expressed in terms of these phys­

ical parameters. The origin of divergences lies in the singular character of Green 

function at short relative distances. Equivalently, in momentum space the Fourier 

transforms do not vanish fast enough at infinity. In an intermediate step we are 

then lead to regularise the theory, that is, to replace the original expressions by 

smoother ones such that the integrals become finite. We shall thus proceed in 

three steps: (1)regularise, (2)renormalise and (3)eliminate the regularising pa­

rameters. Renormalisation will be successful if finite quantities are obtained as a 

result of this process. 

The word 'nonrenormalizable' does not mean that such theories can not 

be made finite but rather that the proliferation of their divergences and hence 

counter terms, make them unrealistic in the framework of perturbation theory 

[171. After renormalisation they will depend on an infinite set of arbitrary pa­

rameters barring any deeper principle allowing to relate them. 
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The regularisation scheme is a very important element of the theory of renor­

rnalisation. Regularisation consists of changing the original divergent Feynman 

integral into another finite integral, depending on the parameter of regularisation 

A. When the parameter A tends to a definite value (regularisation turned off) 

the regularised integral formally reduces to the original integral. The well-known 

regularisation schemes are dimensional regularisation, generalised ~ function regu­

larisation and its many loop generalisation operator regularisation, regularisation 

with the help of higher derivatives, cut-off of the Feynman momenta integrals at 

the upper limits and cutoff of the proper time integrals at the lower limit. 

Our aim is to express the proper Green functions in terms of renormalised 

Feynman integrals associated with the initial diagrams. This may be achieved by 

means of three equivalent procedures. In the first approach we add a formal series 

of counter terms to the initial Lagrangian. This in turn amounts to an order-by­

order redefinition of the parameters of the theory: the bare parameters appearing 

in the Lagrangian are implicit functions of the renormalised ones. The former 

are most unobservable and divergent as the regularisation is removed, while the 

latter are the real finite parameters of the theory, mass, coupling constants etc. 

These two procedures are equivalent to an algorithm of subtraction of the inte­

grand. This operation, due to Bogoliubov, has the merit of providing diagram 

by diagram, a finite result without any intermediate recourse to a regularisation. 

The effective potential given by (l.3.20) contains the arbitrary constant /12 

and other constants like .A. Therefore additional relations must be incorporated 

in to the effective potential and on the basis of it we can express the effective 

potential in terms of the observable mass and coupling constant. Let m~ and .AT be 
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the observable values of the mass and coupling constant and they are defined as: 

(1.4.1) 

Here 4Jl and 4J2 are constants of the mass dimension, reflecting the energy 

scale on which the mass and coupling constant are measured. 
, 

For convenience let us consider the case with, m = O. Then Eq. (1.3.20) 

becomes, 

(1.4.2) 

and let 

(1.4.3) 

Substituting Eq. (1.4.2) in (1.4.3) we get 

A = A _ 3hA~ -J.2 (In Ar4J6 ~) 
r 647r3 If' 2J-L2 + 3 (1.4.4) 

Now substituting Eq. (1.4.4) in Eq. (1.4.2) we can write 

V(l){-J.) = ~A -J.4 hA~ (In 4J2 _ 25) 
eff If' 24 rlf' + 5127r3 4J6 6 

(1.4.5) 

The above expression is called the Coleman-Weinberg effective potential [20j. 

The relations (1.4.1) and (1.4.3) are called the normalisation conditions. 

1.5 Spontaneous Symmetry Breaking (SSB) 

In the quantum frame work, the discussions on symmetries imply the existence 

of a group of transformations acting on the physical observables and on the 
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dynamical field variables. The symmetry properties of a system is characterised 

by the behaviour of its ground state. If the conserved quantities and the vacuum 

are not invariant under symmetry transformations then the symmetry of the 

system is said to be broken. This can also be stated as, if the state of a system 

does not respect the symmetry of the Lagrangian of the system, then the system 

is said to be in the symmetry broken state. 

One of the mpst important concepts in modern particle theory is that of 

spontaneous symmetry breaking (88B). The idea that there are underlying sym­

metries of nature that are not manifested in the structure of the vacuum appears 

to play a crucial role in the unification of forces [10]. 

Consider the simple theory of a real massive self-interacting scalar field fjJ with 

the Lagrangian density, 

(1.5.1) 

The minimum of the potential energy density for this field fjJ occurs at fjJ = O. 

Now, consider a theory with negative mass squared with the Lagrangian density, 

(1.5.2) 

For this case the minimum of the effective potential occurs not at fjJ = 0 but at 

~c = ±~ (Fig. 1.1). This model has a degenerate ground state. In the ground 

state ~ is either close to + ~ or to - ~; the two states have the same energy. 

This theory exhibits 88B. 8ince the quantum theory must be constructed about 

a stable extremum of the classical potential, the ground state of the system is 

either ~c = +~ or fjJc = -~, and the reflection symmetry fjJ --+ -fjJ, present 

in the Lagrangian is broken by the choice of a vacuum state. A symmetry of 
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the Lagrangian not respected by the vacuum is said to be spontaneously broken. 

Even if the field 4J is zero initially, it soon undergoes a transition to a stable state 

with the classical field 4Jc = ±~, the phenomenon known as SSB. 

VeIl 

(a) (b) 

Fig. 1.1: Effective potential V(q,) in the simplest theories of the scalar field 
(a)V(q,) in theory (1.5.1) and (b)V(q,)in theory (1.5.2) 

1.6 Finite Temperature Quantum Field Theory 

The evolution of particles in vacuum and in a thermal bath are very different. 

Similarly, the nature of evolution of field changes when coupled to a thermal bath. 

Let us consider the thermodynamic equilibrium system of the scalar particles 4J 

with Lagrangian density given by Eq. (1.5.2). 

The only parameter characterising the thermodynamic equilibrium state of 

the 1 particles at a temperature T is the density of particles in the momentum 

space, 

1 
n - .,-------

p - [exp{wp/T) - 1] (1.6.1) 

where wp = {p2 + m2)1/2 is the energy of the particle with momentum p and 

mass m. At a non-vanishing temperature all physically interesting quantities in 



15 

the system under consideration are given, not by vacuum averages, but by the 

Gibbs averages [9] defined by: 

( ... ) = Tr[exp{ -~) ... ] 
Tr[exp{ -~)] 

(1.6.2) 

where H is the Hamiltonian of the system. In particular symmetry breaking pa-

rameter in the system is not given by the vacuum expectation value a = (01110), 

but by the temperature dependent quantity a{T) = (1). 

At T f:. 0 the component ko of the momentum in all Euclidean integrals should 

be replaced by 27rnT for bosons and by {2n + 1 )7rT for fermions and instead 

of the integration over ko one should perform a summation over all integer n: 
00 

J dko -t 27rnT L . 
n=-oo 

It was Kirzhnits and Linde [21], who first suggested that spontaneous symme-

try breaking in relativistic theory could be restored above a critical temperature. 

Later, Weinberg [18] used diagrammatic method to derive a numerical value for 

the critical temperature in the Kirzhnits and Linde model. Later Dolan and 

Jackiw [22] used the functional diagrammatic method to study the field theory 

at finite temperature. They have also calculated expression for critical tempera-

ture above which SSB in a relativistic field theory can be removed. 

1. 7 Phase Thansitions 

The word phase transitions means sharp transitions of a system from one phase 

to another, usually accompanied by a change in symmetry. Simplest examples 

are freezing, melting and boiling in the case of water. The aggregates of ele­

mentary particle like quarks and leptons that populate the very early universe 

can also exist in different phases and undergo analogous changes accompanied by 
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symmetry and energy changes. 

This phenomenon is well-known in other branches of physics, especially the 

physics of condensed matter. For example, in a ferromagnetic substance there is 

no fundamental preference for one direction of magnetisation over the opposite 

direction; the underlying theory is completely symmetrical. However, when a 

sample of ferromagnetic material is cooled through its Curie point, it will acquire 

a spontaneous magnetisation in one direction or the other, thus breaking the 

symmetry. The 88B often signals a phase transition. Above the value of some 

critical parameter, the equilibrium is completely symmetric and below that, there 

is a transition to an ordered, symmetry broken phase, in which some symmetry 

breaking order parameter acquire a nonzero value. 

Our present understanding of the fundamental particle physics leads to the 

idea that the universe underwent a sequence of phase transitions. According to 

the standard hot universe theory, the universe could have expanded from a state 

in which its thermal energy would have been the Planck energy 1019 GeV. At 

this state of enormously high density, the temperature T is much greater than 

the critical temperature of a phase transition with symmetry restoration between 

gravitational, strong and electroweak interactions. Therefore the symmetry be­

tween these interactions should have been restored in the very early stages of the 

evolution of the universe. This is absolutely the farthest point to which we can 

at the moment imagine extrapolating our theories. Below this temperature the 

gravitational interaction gets decoupled from the others. 

As the temperature decreases to T", Tcl '" 1014 - 1015 GeV, a phase transi­

tion takes place, generating a classical scalar field fjJ '" 1015 GeV, which breaks 

the symmetry between the strong and electroweak interactions. When the tem­

perature drops to Tc2 '" 200 GeV, the symmetry between the weak and the 
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electromagnetic interactions breaks. Finally, at T "-J 102 MeV, there should be 

a phase transition which breaks the chiral invariance of the theory of strong 

interactions and leads to coalescence of quarks into hadrons. 

Such a high temperature as required for the grand unification is of course 

impossible to attain in any currently feasible terrestrial experiment; it is several 

orders of magnitude beyond even the temperatures in the cores of stars. However, 

in the generally accepted Hot Big-Bang model, the universe would have gone 

through this transition very early in its history. 

The phenomenon of high-temperature symmetry restoration can be under­

stood in the following way. When the <fJ field is in contact with a thermal bath, 

the interaction of <fJ particles with particles in the thermal bath will introduce a 

temperature dependent "plasma mass". On dimensional grounds this must be 

of the form m;lasma = a).,T2
, where a is a numerical constant of order unity. 

At finite temperature, let m} be the effective mass of the scalar field about the 

classical solution (<fJ) = O. At temperatures where m} < 0, (<fJ) = 0 will be an 

unstable point, signalling SSB; while at high temperatures where m} 2: 0, the 

effective mass will be real and (<fJ) = 0 becomes a stable, classical minimum of 

the potential. There is a critical temperature above which (<fJ) = 0 is a stable 

minimum and the symmetry is restored. 

The phase transitions in quantum field theory are caused by external param­

eters such as temperature, external electric field, Higgs boson masses, etc. Phase 

transitions can be induced by external gravitational field also [121. 

1.8 Inflation 

The scalar field <fJ appearing in unified theories of elementary particles could play 
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the role of a vacuum state with energy density W(IjJ) I [23, 24]. The magnitude 

of the field IjJ in an expanding universe depends on the temperature. At times of 

phase transitions, that change 1jJ, the energy stored in the field is transformed into 

thermal energy [6,10]. If, as sometimes happens, the phase transition takes place 

from a highly supercooled met astable vacuum state, the total entropy of the uni­

verse can increase considerably afterwards and the universe can become hot. The 

corresponding model of the universe was developed by Linde [9]. Guth suggested 

the exponential expansion [8, 25] of the universe in a supercooled vacuum state 

cP = o. If the universe is supercooled, it stays in the false vacuum at IjJ = 0 until 

at some stage the IjJ field tunnels across the V (1jJ) > 0 barrier and falls down the 

V(IjJ) slope to its true vacuum. As the universe cools down, there appears a new 

minimum besides IjJ = 0 and it soon becomes an absolute minimum (1jJ = IjJrnin). 

However, in the new inflationary scenario, the potential, has a barrier near IjJ = 0 

and the transition to the absolute minimum does not proceed too rapidly. In 

order for sufficient inflation to be achieved after IjJ passes through the barrier, the 

scalar field is stuck at IjJ = 0 by this potential barrier at least until the radiation 

temperature falls below H. In this supercooling regime pr (ex T 4
), soon becomes 

much smaller than Pt/> (= V(O) "'constant) and the universe undergoes inflation. 

After the supercooling regime has lasted for sometime, the scalar field de­

velops a non-vanishing expectation value, by quantum or thermal effects. After 

this stage, there appears a regime in which the scalar field can be treated as a 

classical field; which is nearly uniform over a scale of the Rubble horizon size at 

the beginning, the so-called new inflationary regime. The universe continues to 

expand exponentially due to the slow decrease in the potential energy. Since the 

perturbations of the scalar field and radiation are coupled gravitationally, the 

pre-existing perturbations of radiations may induce perturbations of the scalar 
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field which eventually turns into the density perturbations. 

The standard scenario for cosmological structure formation is based on infla­

tionary cosmology. According to this model, quantum fluctuations of the scalar 

field during the expansion era were the perturbing seeds in an initial, globally 

smooth universe. 

1.9 Quantum Fluctuations and Cosmological 

Perturbations 

For a scalar field, perfect homogeneity can not be attained and there will always 

be some residual fluctuations. So we can split the field as: 

cp(x, t) = CPo(t) + c5cp(x, t) (1.9.1) 

where CPo(t) is the classical background field and c5cp(x, t) is the perturbation of 

the field cp. 

These fluctuations can be regarded as waves of physical fields with all possible 

wavelengths, moving in all possible directions. Perturbations of the field lead to 

density perturbations. There are two distinct theories of how the initial seed fluc­

tuations of cosmological perturbations might have arisen [26]-[28]. One of these 

models involved the idea of topological defects created during phase transitions in 

the early universe. The alternative picture involves the inflationary model of the 

universe, in which the primordial quantum fluctuations get amplified and evolve 

to become classical seed perturbations [10, 29J. The main purpose of developing 

cosmological perturbation theories is to examine the properties of primordial den­

sity fluctuation necessary to explain the observed structures of the universe and 

to clarify the origin and the evolutionary behaviour of such density fluctuations. 
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1.10 Einstein's Field Equations 

Mathematically, the problem of describing the growth of small perturbations 

in the context of general relativity reduces to solving the Einstein's equations 

linearised about an expanding background. Einstein's field equation is: 

(1.10.1) 

The stress-energy tensor Tt'" is the source of gravity and G is Newton's grav­

itational constant, which we may use instead of the equivalent M;l = (87rG)-1. 

Relativistic fluid flow is described using the stress-energy tensor Tt'''. This 

is ultimately defined by asserting that 87rGTt''' is the source of gravity. From 

the Einstein's equation we learn that the stress-energy tensor is symmetric, 

At any point in spacetime, the energy density is defined as TOo, the momentum 

density is defined as TOi = TiO and the stress tensor is defined as Tij = T ji . If the 

stress is isotropic, the pressure P is defined by Tij = bij P. 

The Einstein's equation also implies that, 

(1.10.2) 

the stress-energy conservation law, encoding both energy and momentum conser-

vation. 

We can take the stress-energy tensor to be a smoothly varying function of 

position, which is equivalent to saying that we are dealing with a fluid. At any 

point in spacetime, the local rest frame of the fluid is defined as the frame in 

which the momentum density T iO vanishes. At each spacetime point the energy 
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density in the local rest frame is denoted by p : 

p= rao 

The fluid 4-velocity in this frame is u/l = (1, 0, 0, 0). A worldline with this four 

velocity is said to be comoving with the fluid. A perfect fluid is defined as one 

that is in the local rest frame, Tij = P6ij, where P is the pressure. For a perfect 

fluid, in a generic inertial frame, we have, 

(1.10.3) 

During inflation the universe contains fields as opposed to particles and indeed 

at the quantum level, we can say that this is always the case because a particle 

can be regarded as a quantised field oscillation. With fields as the source of 

gravity, general relativity can be derived from the action principle. Since the 

volume element in generic coordinate is d4xy'-g, the action of a system will be 

of the form, 

(1.10.4) 

where the Lagrangian density £ is a scalar quantity. For a scalar field with 

Lagrangian density, in a generic coordinate system, 

(1.lO.5) 

the stress-energy tensor of the scalar field is, 

T/lV = 8/l4>8v 4> - g/lV [~90{3804>8{34>+ V(4))] (1.lO.6) 

Equation (1.10.3) defines the energy density and pressure. For a homogeneous 

scalar field, 4> == 4>{t), the energy density pis 



and the pressure 

1 '2 
PI/> ="24> + V(4)) 

1 '2 
PI/> = -4> - V(4)) 

2 

1.11 Gravitational Instability 
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(1.10.7) 

(1.10.8) 

Gravity is the dominant force which governs the large scale dynamics of the 

universe. The standard theory of cosmological structure formation is based on 

the idea of gravitational instability [11], [26]-[31] according to which small initial 

irregularities in the distribution of matter become amplified by the attractive 

nature of gravity. Small fluctuations in the density results in gravitational in-

stability and gravitational instability causes the growth of perturbations in an 

expanding universe. The structure we observe in the universe today is the end 

result of the gravitational amplification of small primeval perturbations. 

The gravitational instability of a spatially uniform state of dust-like matter 

described by classical non-relativistic equations has been first investigated by Sir 

James Jeans [32]. If the mass of a body is larger than some minimum mass called 

the Jeans mass, then the self gravity of matter will start affecting the structure 

of the body significantly. 

1.12 Jeans Analysis and Jeans Mechanism of 

Structure Formation 

Jeans considered the problem of formation of galaxies in the universe as a process 
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involving the interplay between gravit.ational attraction and the pressure force 

acting on a mass of nonrelativistic fluid [30J. Jeans treatment used Newtonian 

physics and assumed a static universe [11, 33J. 

Jeans supposed the universe to be filled with a non-relativistic fluid, with 

mass density p, pressure p, velocity v, and gravitational field g governed by the 

equation of continuity 

the Euler equation 

ap - + V·(pv) = 0 at 

av 1 - + (v·V)v = --Vp+ g at p 

and the gravitational field equations 

Vxg=O 

V.g = -41rGp 

(1.12.1) 

(1.12.2) 

(1.12.3) 

(1.12.4) 

The effects of gravitation were ignored in the unperturbed solution, taken to 

be that for a static uniform fluid with p = constant, p = constant and v = O. To 

see whether any initial dumpiness can grow in size by gravitational instability, 

consider perturbations of the solution. Let us add small perturbations PI,PI, VI 

and gl to the corresponding quantities. 

The pressure is related to the energy density by the equation of state. We will 

consider adiabatic perturbations [11, 31], that is, perturbations for which there 

are no spatial variations in the equation of state. The adiabatic sound speed, Vs 

is defined as, 

V; == (~~) adiabatic 
(1.12.5) 

and since by assumption there are no spatial variations in the equation of state, 
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2 PI 
V=-

S PI 
(1.12.6) 

To first order, the small perturbations satisfy the perturbed version of 

Eqs. (1.12.1-1.12.4): 

= -47fGpI (1.12.7) 

All the quantities that do not carry a subscript "I" are now understood to 

refer to the unperturbed solution. Eqs. (1.12.7) can be combined to give a single, 

second order differential equation for PI : 

a2 
PI 2\72 G at2 - VS PI = 47f PPI (1.12.8) 

The solution takes the form 

PI ex: exp{ ik.x - iwt} (1.12.9) 

where wand k are related by the dispersion relation 

(1.12.10) 

If w is imaginary, there will be exponentially growing modes; if w is real, the 

perturbations will simply oscillate as sound (compressional) waves. From Eq. 
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(1.12.1O) it is clear that for k less than some critical value, w will be imaginary. 

This critical value is called the Jeans wave number, kJ and is given by, 

kJ = (4:fp) 1/2 (1.12.11) 

The classical Jeans analysis is not directly applicable to cosmology because 

the expansion of the universe is not taken into account and further because the 

analysis is Newtonian. So long as the expansion is taken into account, Newtonian 

treatment of the matter density perturbation is valid on scales well within the 

horizon and after matter domination. The first satisfactory theory of instabilities 

of an expanding universe was given by Lifshitz in 1946 [34]. 

For sufficiently long wave numbers, the waves described by Jeans theory be-

comes ordinary sound waves, with 

(1.12.12) 

Gravitational forces will be negligible if the gravitational energy of a sphere 

of radius k- 1 is much smaller than its thermal energy: 

Also, the expansion of the universe will have negligible effect if the expansion 

rate is much less than the frequency: 

yap« Iwl 

Both these conditions will be satisfied by the relation (1.12.12), as long as the 

wave number satisfies the condition 

k» kJ 
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just as in Jeans theory. Thus, even when the expansion of the universe is taken 

into account, we expect there to be a critical wave number, of the order k;, above 

which disturbances can not grow, but only oscillate like sound waves. 

It is useful to define the Jeans mass M J , the total mass contained within a 

sphere of radius AJ /2 = 1r / kJ. 

41r 1r 
( )

3 

MJ = 3 kJ P (1.12.13) 

Perturbations of mass less than MJ are stable against gravitational collapse, 

while those of mass greater than MJ are unstable. 

When the expansion of the universe is taken into account, the unperturbed 

solution to Eq. (1.12.7) is 

- [H (t)] 
v - r R(t) 

41rGp 
g=-T--

3 

where the scale factor R(t) satisfies the usual Friedman equation, 

·2 k 81rGpR2 

R + =--3-

or equivalently, 
.. 
R 41rGp 

---
R 3 

(1.12.14) 

(1.12.15) 

(1.12.16) 

(1.12.17) 

(1.12.18) 
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The first order perturbations in p, v and g satisfy the following set of equa-

tions: 

(1.12.19) 

. . 

VI + ~VI + ~{r.\7)VI (1.12.20) 

- 0 (1.12.21) 

(1.12.22) 

Also, since these are supposed to be adiabatic fluctuations, the pressure per­

turbation is given by PI = V;PI' The above equations are spatially homogeneous, 

so we expect to find plane-wave solutions. Indeed, solutions can be found with 

the spatial dependence, 

{ - { { ir.k } 
PI r, t) =PI t) exp R{t) (1.12.23) 

and likewise for VI and gI. The appearance of the factor 1/ R in the exponential 

means that the wavelength of these modes is stretched out by the expansion of 

the universe. Now Eqs. (1.12.19 - 1.12.22) become coupled ordinary differential 

equations: 

(1.12.24) 

(1.12.25) 
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-
kx gI - 0 (1.12.26) 

(1.12.27) 

It is convenient to split VI into two parts; along and perpendicular to the 

wave vector k : 

(1.12.28) 

where 

(1.12.29) 

ik. VI 
E=---- k2 

It is also convenient to express PI in terms of a fractional change in density 

d: 

Then Eq. (1.12.25) splits into two uncoupled equations, 

. R 
E +-E 

R 

and Eq. (1.12.24) simplifies to 

(_ v; 47rGRP) d 
- R + k 2 

(1.12.30) 

(1.12.31) 

(1.12.32) 

(1.12.33) 

From the above three equations it is implied that the rotational (or transverse) 

modes described by Vu decay as 1/ R. On the otherhand, the compressional 
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modes have a more interesting time dependence. Using Eq. (1.12.33) to eliminate 

E in Eq. (1.12.32) we get, 

.. R· v k . ( 2 2 ) o +2 R 0 + ~ - 41fGp 0 = 0 (1.12.34) 

This goes over to the Jeans dispersion relation Eq. (1.12.10) if we set R 

constant and define the wave number K as kj R as the physical wave number. 

The above one is the fundamental differential equation that governs the growth 

or decay of gravitational condensations in an expanding universe. It is clear that 
v2k 2 

the qualitative behaviour of the solution depends upon whether ~ is larger or 

smaller than 41fGp. In an expanding universe as well, Jeans wave number 

KJ~ (4:~pr (1.12.35) 

separates the gravitationally stable and unstable modes. 



Chapter 2 

First Order Phase Transitions for 
cp6 model in a Bianchi Type-I 
Universe 

2.1 Introduction 

In the previous chapter we have seen that the symmetries that are spontaneously 

broken today, were restored in the early universe and during the evolution of 

the universe there were phase transitions, perhaps many, associated with the 

spontaneous breakdown of symmetries [9, 10]. During such a phase transition 

it is possible for the field to acquire nonzero vacuum expectation values. Phase 

transitions can, in general, be of first or second order. For a first order phase 

transition the change in the field ~, in going from one phase to the other must 

be discontinuous, while for a second order transition there is no barrier at the 

transition point and the transition occurs smoothly. In a first order phase tran-

sition there is a difference between the energy density of the two phases, usually 

called the latent heat. The nature of phase transition, whether it is first order 

or not is of particular interest. If the phase transition is strongly first order, 

the Universe may be dominated by the vacuum energy and undergo a period of 

30 
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inflation. In this case, the transition proceeds by the nucleation of bubbles of 

the true vacuum. If the phase transition is of higher order or weakly first order, 

thermal fluctuations may drive the transition. 

As mentioned in chapter 1, quantum field theory in an external classical grav­

itational field is usually regarded as a first step towards a more complete theory 

of quantum gravity [35J. At high energies the quantum matter fields are free 

from all the interactions except the conformal one with an external metric. The 

requirement of the conformal invariance is especially important for the scalar 

field, as it fixes the value of the non-minimal parameter of the scalar curvature 

interaction to the conformal value. The effect of quantum conformal factor leads 

to first order phase transition induced by the curvature where the scalar field 

plays the role of order parameter [36J-[38J. 

Investigations on the effects of gravity on quantum fields dates at least since 

the work of Schrodinger [39J. In the course of cosmological expansion relic gravi­

tons can be created from zero-point quantum fluctuations of the gravitational 

field. Production of relic gravitons and primordial density fluctuations is covered 

by the theory known as particle creation in external fields [1, 40J. Zeldovich sug­

gested (411 that the production of elementary particles by the expansion of the 

universe would bring about isotropy near the Planck time. The back-reaction 

on the metric of the created particles has been studied by Lukash and Strobin­

sky [42J. They assumed that the particle creation occurred at a time to large 

with respect to tp so that the evolution of the metric at times near to could be 

treated independently of the created particles. If their results are extrapolated 

back to to '" tp then they indicate that rapid isotropisation should occur. In 

order to consider directly models in which to '" tp , one would have to use a re nor­

malised expression for the expectation value of the energy-momentum tensor of 
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the quantised matter fields. 

The influence of quantum fields and the gravitational effects on the cosmolog­

ical phase transitions have been investigated by many authors [2]-[5]. From the 

analysis based on the one loop re normalised effective potential, it is concluded 

that the scalar gravitational coupling ~ and the magnitude of the scalar curvature 

R crucially determine the fate of symmetry. At the classical level the scalar curva­

ture acts as an effective mass of the field and thus influences the phase transition 

of the system. The effect of anisotropy on the static spacetimes like Mixmaster 

or Taub Universe on the process of symmetry breaking and restoration has also 

been discussed earlier [43, 44]. 

In this chapter we discuss the quantulll field effects on phase transition and 

the temperature dependence of phase transition for a 16 theory in an anisotropic 

Bianchi type-I universe. 16 model has found applications in high energy physics 

and in condensed matter physics. Apart from its importance in high energy 

physics as a model scalar field theory, the 16 model has been used to explain first 

order phase transitions observed in ferroelectrics and structural phase transitions 

in crystals [45]. Self interactions up to 16 exhibit three, well separated lowest 

levels [46]. Boyanovsky and Masperi [46] have shown that the nature of phase 

transitions associated with such a field system may be of first order or second 

order depending on the relative depths of the wells and the strength of coupling. 

If the observed universe comes from an initially small, causally connected re­

gion, then microphysical processes could have smoothed any initial irregularities. 

The universe, rather than seeming to require the very special initial conditions 

of almost perfect homogeneity and isotropy, may be seen as evolving from more 

generic conditions to the smooth state observed today. Studies of helium forma­

tion [47]-[49] indicate that the expansion was effectively isotropic at t S 10-1 sec. 
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The isotropy of the observed cosmic black body radiation l~T /T ~ 10-3 ) has 

served as the basis for a number of investigations implying limits on the time of 

isotropisation [50J-[53J. Works based on evolutionary models involving classical 

fluids [52, 53J have concluded that isotropisation of the expansion must have oc­

curred by as early a time as t ~ 10-36 sec, a time which is close to the Planck time 

tp '" 1O-44sec. Although the overall structure of the universe is homogeneous and 

isotropic on a large scale, it is obviously inhomogeneous and anisotropic on scales 

characteristic of galaxies and their clusters. 

One of the simplest models of an anisotropic universe that describes a ho­

mogeneous and a spatially flat universe is the Bianchi type-I cosmology. Unlike 

the FRW model which has the same scale factor for each of the three spatial 

directions, the Bianchi type-I cosmology has a different scale factor in each direc­

tion, which produces an anisotropy in expansion. Futamase has considered the 

effective potential in a Bianchi type-I universe [54J which reduces to the spatially 

flat Robertson-Walker model for zero anisotropy. Huang has discussed the fate 

of symmetry in a Bianchi type-I universe using an adiabatic approximation for 

a massless field with arbitrary coupling to gravity [55J. Berkin has also calcu­

lated the effective potential in a Bianchi type-I universe, for a scalar field having 

arbitrary mass and coupling to gravity [56J. 

cp6 model is known to be nonrenormalisable in (3+1)dimensional fl~t space­

time. Nonrenormalisability of the field theory does not mean that the theory is 

not interesting alld it does not mean, of course, that finite renormalised prescrip­

tion for the calculation of one-loop effective potential does not exist [12J. Using 

the present cp6 model, a finite expression for the one-loop effective potential is 

obtained in this chapter. The present calculations show that the cp6 model can 

be regularised using the effective potential method in (3+1) dimensional curved 
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spacetimc. 

In section 2.2, the one-loop effective potential for 4J6 theory in a (3 + 1) di-

mensional Bianchi type-I spacetime is evaluated and the properties of quantum 

field corrections to the symmetry breaking or restoration are discussed. In sec­

tion 2.3 we obtain a finite expression for the energy momentum tensor for the 4J6 

theory in this spacetime. The finite temperature effects on the phase transitions 

of early universe are discussed in section 2.4 and the nature of phase transitions is 

examined in the next section. The crucial dependence of phase transitions of the 

early universe on spacetime curvature and the gravitational-scalar coupling are 

made clear in section 2.6. Section 2.7 is devoted to discussions and conclusions 

of the present calculations. 

2.2 Quantum Field Effects on Symmetry 

Breaking and Restoration in Bianchi Type-I 

Spacetime 

Consider a massive real self-interacting scalar field </> coupled arbitrarily to the 

gravitational back ground and described by the Lagrangian density £, 

(2.2.1) 

where, the classical potential corresponding to this Lagrangian is, 

(2.2.2) 
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This Lagmngian exhibits 4J --+ -4J symmetry. The equation of mot.ion flBsoci-

ated with the Lagrangian given by Eq. (2.2.1) is, 

(2.2.3) 

in which we put m>. = K. We can write, 

(2.2.4) 

where 4Jc is the classical field and 4Jq is a quantum field with vanishing vacuum 

expectation value, (4Jq) = o. 

As it is mentioned in the previous chapter, the parameters such as mass 

and coupling constants which appear in the above Lagrangian are not directly 

measurable quantities. So introducing renormalised parameters, 

(2.2.5) 

the field equation for the classical field 4Jc becomes, 

gI-'ll \1 I-' \1 11 4Jc + [(m~ + 15m2) + (~r + <5~)Rl4Jc - 4(Kr + <5K)4J~ 

- 12(Kr + <5K)4Jc (phi~) + 3(>'~ + 15>.2)4J~ + 30(>'~ + 15>.2)4J~ (phi~) 

+ 15(>'~ + <5>.2)4Jc (4J:) = 0 (2.2.6) 

and to the one loop quantum effect, the field equation for the quantum field 4Jq 

is, 

(2.2.7) 
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The crredive pot.ential V"I I iH given hy, 

VefJ = ~ [(m~ + 6m2) + (~r + 60R][cp~ + (cp~)] - (Kr + 6K)cp~ - 6(Kr + 6K)cp~ (cp~) 

- (Kr + 6K) (cp~) + ~(,X~ + 6,X2)cp~ + 1
2
5 (,X~ + 6,X2)cp~ (cp~) 

+ 1
2
5 (,X~ + 6,X2)cp~ (cp~) + ~(,X~ + 6,X2) (cp~) (2.2.8) 

To make V cf f finite, the following renormalisation conditions are used, 

m2 = (8
2VefJ 

) r 
8cp~ tJ>c=R=O 

~r ( 8
3
VefJ ) -

8R8cp~ tJ>c=R=O 

Kr (8
4Ve fJ 

) (2.2.9) -
8cp~ tJ>c =R=O 

,X2 (
86VC

fJ ) r -
8cp~ tJ>c=R=O 

To evaluate (cp~), (cp~), and (cp~) we can adopt the canonical quantisation rela­

tions: 

[cpq(t, x), CPq(t, y)] = [7rq(t, x), 7rq(t, y)] = 0, [cpq(t, x), 7rq(t, y)] = i63(x - y) 

8£ 
where the conjugate momentum 7r q is defined by 7r q = 8( 8

i
CP) 

(2.2.10) 

Due to the 

space homogeneity we can expand the quantum field cPq by the summation or 

integration over modes in the form, 

(2.2.11) 

where Yk(X) is a normalised eigen function of the spatial part of field equation, 

while Xk( t) is that o~ the time part. An explicit functional form of the mode 
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solutions Xk{t) and Yk{X) can only be found after specifying the background 

spacetime. 

Let us consider a (3+1) dimensional Bianchi type-I spacetime with small 

anisotropy which has the line element 

(2.2.12) 

In this model the mode function can be written in the separated form as 

Yk = (27r)-3/2 exp{iK.X) and then 

(2.2.13) 

The wave equation Eq. (2.2.7) will then lead to 

where the spacetime curvature function R and the anisotropic function Q are 

(2.2.15) 

When the metric is slowly varying Eq. (2.2.14) possesses WKB approximation 

solution: 

(2.2.16) 
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where 

Substituting the above solution in Eq. (2.2.13): 

(2.2.18) 

where we denote Ai = [m~ + (~T - ~)R - 12K;Tcp~ + 15'\~cp~ + §]. 

Taking the quantum fluctuations to be of Gaussian type [57J and from the relation 

true for the Gaussian fields [58J we get, 

(2.2.19) 

where a momentum cut-off A is introduced to regularise the k-integration. From 

the renormalisation conditions given by Eq. (2.2.9), the renormalisation counter 

terms are evaluated as, 



39 

(2.2.20) 

(2.2.21) 

,\2 
8K = -Kr _ r 

60 [45'\~ (2 + In [m~ + §]) + 54K~ ] 
471' 4A2 71'(m~ + §) 

. (2.2.22) 

1 

[ A 2 + ! (m~ + §) ( 1 + In [m!:2§ ] ) ] [1 - ~ (2 + In [m!: 1 ] ) ] 
(2.2.23) 

ay: 
Substituting the renormalisation counter terms, the final expression for a~f 

obtained from Eq. (2.2.8) is calculated as, 
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(2.2.24) 

where 

B = [45>'~ 54~~ 1 
1 2 + ( 2 9.) , m r + c 

(2.2.25) 

The above equation shows that we can obtain a finite expression for the one 

loop effective potential using this cjJ6 model in (3+1) dimensional Bianchi type-I 

spacetime. Thus it is clear that the cjJ6 theory in (3+ 1) dimensions can be regu­

larised in a curved anisotropic spacetime using the effective potential method. It 

can be noted that once we let the anisotropy in the above equation to be zero, 

our result is consistent with that of the symmetric homogeneous case. 

Now we are in a position to investigate the gravitational and quantum field 

effects on the cosmological phase transitions. This can be done by considering 

the case cjJc -+ o. In the case of conformal coupling ({r = i) or vanishing scalar 

curvature (R = 0) we have, 

(2.2.26) 
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which shows that in such situations, the one-loop quantum correction does not 

change the fate of symmetry. For the other cases, we can find from the above 

equations that only for some suitable values of scalar gravitational coupling con­

stant the symmetry could be radiatively broken or restored. 

The perturbative method of calculating the effective potential can be improved 

by using Renormalisation Group (RG) approach [59]. Such RG improved effective 

potential can be calculated in curved spacetime too [60]. The condition expressing 

the independence of the effective potential from the renormalisation point leads to 

Renormalisation Group Equation (RGE) [12]. This property in renormalisable 

theories may be used for construction of the RG improved effective potential, 

which is much more exact than one loop-effective potential, because it takes into 

account of all orders of the perturbation theory. However, RG improved potential 

will not give leading log approximation in the present cp6 model, since it is not 

multiplicatively renormalisable. 

2.3 Energy-Momentum Tensor for <jJ6 Field in 

(3+1) Dimensional Bianchi Type-I Space­

time 

While constructing a theory of the interaction between quantized matter fields 

and a classical gravitational field one has to idcntify the encrgy-momentum tensor 

of the quantized fields which acts as the source of the gravitational field. In a 

semi classical theory the Einstein equations takes the form 

(2.3.1) 
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where G~ is the Einstein tensor formed from the classical metric and (T;) de­

notes the expectation value of the energy-momentum tensor of the quantised 

particle fields under consideration. Although the use of (T;) as the source of the 

gravitational field in a semiclassical approximation may not be justified when the 

probable (in the quantum sense) matter distributions differ greatly from their 

average, its use appears to be correct in the cosmological context [61J. In gen-

eral, the expectation values of .the formal energy-momentum tensors are not well 

defined and must be renormalised. Renormalisation of the energy-momentum 

tensor for free field and <p4 self-interacting field in Bianchi type-I and IX uni­

verses were studied by various authors [61J-[63J. The energy-momentum tensor 

for the <p6 field is 

1 
Tl'v = (1 - 200I'<Pov<P + (2~ - 2 )91'"Oo:<Pfr <p - 2~<p \II' \I v<P 

2 m
2 

2 4 3 2 6 + 2~91',,<pD<p - ~Gl'v<P + ('2 )91'''<P - 2K,91'''<P + 1.A 91'''<P (2.3.2) 

where GI'V is the Einstein tensor. 

The expectation value of the energy-momentum tensor can be broken into 

classical and quantum parts. The energy-momentum tensor for the classical part 

is obtained by substituting <Pc for <p in Eq. (2.3.2). Considering a (3+1) dimen-

sional Bianchi Type-I background spacetime, the 7J7J component of the classical 

renormalised energy-momentum tensor is given by, 

where k=+1,O,-1 corresponds to the positive, zero or negative spatial curvature 
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respectively. The quantum part of (T,....,) is, 

(T,....,)Q = (1 - 2~)(a~ifJiJvifJq) + (2~ - ~)9,..v(aaifJqaaifJq) - 2~(ifJq \l~ \1vifJq) 

2 

+ 2~9,..., (ifJqDifJq) - ~G~v(ifJ~) + (~ )9,..v (ifJ~) - 12K9,..vifJ~(ifJ~) 

45 2 4 (2) 45 2 2 (4) ( ) + 2A 9,...,ifJc ifJq + 2A 9,..vifJc ifJq 2.3.4 

By regularising the theory we can obtain a physically finite energy-momentum 

tensor of the system. The finite expression for the expectation value of the 

quantum energy-momentum tensor is obtained as, 

AIDI ifJ4 
+ 480BIEI(m~ + g) In(m~ + g) c 

(2.3.5) 

where AI, B I , DI and El are defined by Eq. (2.2.25). It is clear that the energy-

momentum tensor depends on the anisotropy of the spacetime. 
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2.4 Finite Temperature Effective Potential 

In section 1.6, we have seen that the nature of evolution of field changes when cou-

pled to a thermal bath. Under certain conditions, the changes may be absorbed 

in a temperature dependent potential, the finite temperature effective potential. 

The temperature dependence of finite temperature effective potential in quantum 

field theory leads to phase transitions in the early universe [64J. In this case the 

vacuum expectation value is replaced by the thermal average «P)T = aT taken 

with respect to a Gibbs ensemble [9J. 

Considering the same Lagrangian density as above, the zero loop effective 

potential is temperature independent as given by, 

(2.4.1) 

The one loop approximation to finite temperature effective potential have 

been computed by many authors [65J-[69J and is given by, 

Vf(a) 

where, a - .!. 
/J-T and 

(2.4.2) 

(2.4.3) 



The sum over n diverges; it may be evaluated as follows [65]. Define, 

Bv(E) 
--

BE 

Using the following result, 

00 1 1 
~ Y = __ + -1rcoth1rY 
~ y2 +n2 2y 2 
n=l 

we get 

Bv(E) = 2{3 (~ + 1 ) 
BE 2 e{3E - 1 

and integrating, 

v(E) = 2{3 [~ + ~ In(l - e-{3E)] + terms independent of E 

Thus we get 

Vf(Cf) 

where, 

and 

00 

_1_ J xdx In [1 - exp _(x2 + {32 M2)1/2] 
41r{33 

o 

45 

(2.4.4) 

(2.4.5) 

(2.4.6) 

. (2.4.7) 

(2.4.8) 

(2.4.9) 

(2.4.10) 
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where we put X 2 / rJ2 = Elt - M2. The integral may be evaluated by expanding 

V( {(J) as a Taylor series and in the high temperature limit we find that 

(2.4.11 ) 

The critical temperature in the present case is 

(2.4.12) 

The symmetry breaking present in the model can be removed if the temper-

ature is raised above a certain value called the critical temperature. The order 

parameter of the theory is temperature dependent. 

2.5 Nature of Phase Transitions 

The characteristic of a first order phase transition is the existence of a barrier 

between the symmetric and the broken phases [10]. The temperature dependence 

of Vel! for a first order phase transition obtained using the present 4>6 model is 

shown in Figs. 2.1{a,b) and Figs. 2.2 (a,b,c). When T » Te , the effective 

potential attains a minimum at (J = 0, which corresponds to the completely 

symmetric case. When the temperature decreases, a global minimum appears at 

(J = 0 and two local minima at (J =I- 0, which shows the existence of a barrier 

between the global and local minima. At T = Te , all the minima are degenerate, 

that means the symmetry is broken. For T < Te the minima at (J =I- 0 becomes 

the global one. If for T ::; Te the extremum at (J = 0 remains a local minimum, 

there must be a barrier between the minimum at (J = 0 and at (J =I- O. Therefore 

the change in (J in going from one phase to the other must be discontinuous, 
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indicating a first order phase transition. The phase transition starts at Tc by 

tunnelling, however, if the barrier is high enough the tunnelling effect is very 

small and the phase transition does effectively start at a temperature T « Tc 

[70]. This shows that the present model can describe first order phase transitions 

which might have taken place during the evolution of the early universe. 

Vel! 
-683536 

-683536 

-683536 

- 683536 

(J 

-0.1 -0.05 0.05 0.1 

(a) 

Vel! 

(J 
-10 -5 5 10 

(b) 

Fig. 2.1: (a) The behaviour of finite temperature effective potential as a function of a for 
fixed m = 0.9371, >. = 0.008, R = 11.2, ~ = 1.6 and T = 50 such that T» T e , for which the 
symmetry is completely restored; (b) The behaviour of finite temperature effective potential as 
a function of a for fixed m = 0.9371, >. = 0.008, R = 0.8, ~ = 0.145 and T = 10.15 such that 
T> Te 
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Vel! 

20 

15 

10 

Cl 
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Fig. 2.2: (a) The behaviour of finite temperature effective potential as a function of (1 for fixed 
m = 0.9371, >. = 0.008, R = 0.35, ~ = 0.004 and T = 8.69 such that T = Tc (b) The behaviour 
of finite temperature effective potential as a function of (1 for fixed m = 0.9371, >. = 0.008, R = 
0.31, ~ = -0.22 and T = 5 such that T < Tc (c) The behaviour of finite temperature effective 
potential as a function of (1 for fixed m = 0.9371, >. = 0.008, R = 0.3, ~ = -0.3 and T = O. 
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2.6 Dependence on Curvature Rand 

Scalar-Gravitational Coupling ~ 

Using the present ifJ6 model, it is proved that the scalar curvature, R can restore 

broken symmetries for a wide range of parameters from conformal to near minimal 

couplings, even if the temperature is below the critical temperature. Fig. 2.3 

clearly shows that the first order phase transition takes place as R changes. 

VeIl 

Fig. 2.3: The behaviour of finite temperature effective potential as a function of a for fixed 
m = 0.9371, >. = 0.008, ~ = 0.1 and T = 1. Starting from top the curves corresponds to the 
following values of the curvature: R=15, 4, 2.5, 0.5, 0.001, -0.9 

The scalar-gravitational coupling constant ~ is found to play a crucial role 

in symmetry breaking phase transitions. Classically, a positive ~ restores sym-

metry, while the opposite effects are found for negative coupling [56]. Quantum 

effects depend on the value of ~ relative to the conformal value ~. The present 

calculations show that the symmetry is restored as the scalar coupling constant 

~ is increased. This phase transition, induced by the coupling constant ~ is also 

found to be of first order. It is clear from Fig. 2.4 that there is a barrier between 
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the symmetric and broken phases. 

Vel! 

15 

Fig. 2.4: The behaviour of finite temperature effective potential as a function of u for fixed 
m = 0.9371, A = 0.008, R = 0.3 and T = 3. Starting from top the curves corresponds to the 
following values of the curvature: ~ = 6.5, 2.3, 1.25,0.01, -0.3, -0.7 

2.7 Discussion and Conclusions 

According to renormalisability considerations, degree of the interaction potential 

can not be higher than four in (3+1) dimension [12]. The present calculations 

show that the rjJ6 theory in (3+ 1) dimension can be regularised in curved space-

time and one can obtain finite expression for the one loop effective potential. 

The vacuum expectation values of the stress-energy tensor defined prior to any 

dynamics in the background gravitational field give us the information about the 

particle creation and vacuum polarisation [71]. 

In this chapter we have closely examined and verified the temperature depen-

dence of the phase transitions in the early universe and verified their nature to be 

of first order as the transition is found to be discontinuous. In most of the works 
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on cosmological phase transitions, the coupling to the background gravitational 

field is ignored. One deals with the Quantum field theory in flat spacetime at 

finite temperature and the expansion of the Universe serves only to decrease the 

temperature. However, at sufficiently early times the spacetime curvature can be 

expected to be important. Many authors have argued that such effects may be im­

portant in the context of cosmological phase transitions in Grand Unified models 

[12], [72]-[75]. Vilenkin and Ford have shown that spacetime curvature can dras­

tically change the behaviour of the system [76]. O'Connor and co-workers have 

confirmed the effect of spacetime curvature and arbitrary field coupling on the 

phase transitions of the early universe [77]. Janson [78], Grib and Mosteparenko 

[79] and Madsen [80] have independently shown that the interaction with the 

external gravitational field may lead to SSB. The present work proves that the 

phase transition taking place during such a SSB is first order. It is found that for 

( = 0 or R = 0 the system remains in the symmetry broken state for all values 

of T ::; Tc. As the temperature is increased above Tc, the symmetry is restored 

depending also on the values of ( and R. It is also found that symmetry can be 

restored either by increasing the value of ( or by increasing the value of R keeping 

the temperature constant. This shows that the scalar-gravitational coupling and 

the scalar curvature did play a crucial role in determining the nature of phase 

transitions that took place in the early universe. 

These results may be useful for the study of quantum thermal processes in 

the early universe. To examine the symmetry behaviour of the early universe 

closely one should take into consideration the effects of spacetime curvature and 

finite temperature corrections in their full rights. 



Chapter 3 

Phase Transitions and Bubble 
N ucleations for cjJ6 Model in 
(2+1) Dimensional Curved 
Spacetime 

3.1 Introduction 

(2+ 1) dimensional gravity [81]-[85] exhibits novel features of interest. There are 

several important differences between the three and four dimensional problems. 

First of all the divergences in the gravitation action induced by scalar loops in 

4 dimensions can, by power counting, be proportional to 1, R, R2, RJ.lvRJ.lV and 

Ro:{3"(~Ro:{3"(~ (or suitable combinations of them). In three dimensions the situa­

tion is simplified, as the only candidates are 1 and R [82]. General relativity is a 

geometric theory of spacetime, and quantizing gravity means quantizing space-

time itself. Ordinary quantum field theory is local, but the fundamental physical 

observables of quantum gravity are necessarily nonlocal. Ordinary quantum field 

theory takes causality as a fundamental postulate, but in quantum gravity the 

spacetime geometry and the causal structure, are themselves subject to quantum 

fluctuations. Again, perturbative quantum field theory depends on the existence 

52 
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of a smooth, approximately flat background, but there is no reason to belieye that 

the short-distance limit of quantum gravity even resembles a smooth manifold. 

Faced with these problems, it is natural to look for simpler models that share the 

important conceptual features of general relativity while avoiding some of the con­

ceptual difficulties. General relativity in (2 + 1) dimensions is one such scheme of 

formulation [81]. Another important feature of the conformally invariant scalar 

theory in three dimensions is that its 1J6 coupling can in principle, induce a di­

vergence in the four-point Green's functions necessitating a 1J4 coupling, which is 

not conformally invariant [6]. 

Field theory of (2+1) dimensions may exhibit several features of interest in 

condensed matter physics, which are not in (3+ 1) dimensional field theory, de­

scribing high energy physics. (2+1) dimensional ifJ6 theory finds applications in 

the study of vortex solution of the abelian Chern-Simons theory [86], blackholes 

in string theory [1], etc. In this chapter the first order phase transition in a 

(2+1) dimensional curved spacetime for 1J6 model is discussed. In the pre\·ious 

chapter we have obtained a divergenceless expression for the one-loop effective 

potential for the 1J6 model in a (3+1) dimensional Bianchi type-I spacetime. This 

chapter is organized in the following way. In section 3.2 we evaluate the one-loop 

effective potential for 1J6 theory in a (2 + 1) dimensional Bianchi type-I space­

time and obtain a divergenceless expression. A finite expression for the energy 

momentum tensor for the 1J6 theory in this spacetime is obtained in section 3.3. 

The finite temperature effective potential for the same theory is evaluated and 

the finite temperature effects on the phase transitions are discussed in the next 

section. In section 3.5 the nature of phase transitions for the present model is 

examined and is clarified to be of first order. The crucial dependence of phase 

transitions on spacetime curvature and the gravitational-scalar coupling is made 
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clear in section 3.6. A first order phase transition proceeds by nucleation of bub­

bles of broken phase in the background of unbroken phase. In section 3.7 the 

interaction between the bubble field and the surrounding plasma is considered 

and the expansion of bubbles in such a damping environment is discussed. It is 

found that there exists an exact solution for the damped motion of the bubble in 

the thin wall regime. The discussions and conclusions are presented in the final 

section. 

3.2 One-loop Effective Potential for q;6 Theory 

in (2+1) Dimensional Bianchi Type-I Space­

time 

Let us consider a massive self interacting scalar field 4J coupled arbitrarily to the 

gravitational back ground and described by the Lagrangian density £ 

£ = ../-g {~[gJl'" 0Jl4Jo",4J - ~R4J2J - ~A24J2(4J2 - mj A)2} 

The equation of motion associated with the Lagrangian (3.2.1) is, 

(3.2.1) 

(3.2.2) 

in which we put mA = K. Writing 4J = 4Jc + 4Jq , where 4Jc is the classical field and 

c/Jq is a quantum field with vanishing vacuum expectation value, (4Jq) = 0, the 

field equation for the classical field 4Jc is given by, 

gJl"'\l Jl \l v4Jc + [(m; + 6m2
) + (~T + 6~)RJ4Jc - 4(KT + 6K)9~ - 12( KT + 6K )4Jc (4J;) 

+ 3(A; + 8A2)4J~ + 30(A; + 6A2)4J~ (4J;) + 15(A; + 6A2)4Jc (4J~) = 0 (3.2.3) 
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where the bare parameters m, ~, K, and>' are replaced by the renormalised terms. 

To the one loop quantum effect, the field equation for the quantum field 4>q is, 

The effective potential Veff is given by, 

VeIl = ~[(m~ + 15m2
) + (~r + &~)R][4>~ + (4)~)l- (K,r + &K,)4>~ 

1 
- 6(K,r + &K,)4>~ (4)~) - (K,r + &K,) (4)~) + 2(>'; + 15>.2)4>~ 

(3.2.4) 

+ 1
2
5 (>.; + 15>.2)4>~ (4)~) + 1

2
5 (>.; + 15>.2)4>~ (4)~) + ~(>.; + &>.2) (4)~) 

(3.2.5) 

To make Veff finite, the following renormalisation conditions are used, 

(3.2.6) 

Consider a (2+1) dimensional Bianchi type-I spacetime with small anisotropy 

which has the line element 

(3.2.7) 

In this model the mode function of the quantum field 4>q can be written in 

the separated form as Uk = C-1/4 (27r)-1 exp(iK,.X)Xk(7]). The wave equation Eq. 

(3.2.4) will then lead to 
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where the spacetime curvature function R and the anisotropic function Q are 

-1· 2 _ "'" _ ai _ 1 ""'( )2 ( ) R = 8C (H +H + Q), H - ~hi' hi -~' Q - 16 ~ hi - hj 3.2.9 
i ~ i<j 

When the metric is slowly varying, Eq. (3.2.8) possesses WKB approximation 

solution: 

(3.2.10) 

where, 

1 

Wk = { C [m; + (~r - k)R - 12~r<P~ + 15'\;<p~ + 2t *] + Q } 
2 

Using the above solution we get: 

= _1_ [A + A2 _ A 1/2] 
1671" 2A 2 

where A2 = (m; + (~r - k)R - 12~rl/>~ + 15'\;l/>~ + §). 
And we get, 

= -- 2A2 + A - 2AA2 1 + -3 [ 2 1/2 ( A2 )] 
1671"2 2A2 

(3.2.11) 

(3.2.12) 

where a momentum cut-off A is introduced to regularize the k-integration. From 

the renormalisation conditions given by Eq. (3.2.8) the re normalisation counter 

terms are evaluated and substituting the renormalisation counter terms, we ob­

tain f);:ff from Eq. (3.2.5) as, 
ul/>c 
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where, 

(3.2.14) 

Thus it is clear that we can obtain a finite expression for the one loop effective 

potential for the cjJ6 model in (2+1) dimensional Bianchi type-I spacetime. In 

the previous chapter it is shown that cjJ6 potential can be regularized in (3+1) 

dimensional curved spacetime. In this section a divergenceless expression for the 

cjJ6 one-loop effective potential in a (2+1) dimensional Bianchi type-I background 

spacetime is obtained. 
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3.3 Energy-Momentum Tensor for cjJ6 Field in 

(2+1) Dimensional Bianchi Type-I Space-

time 

Considering a (2+1) dimensional Bianchi type-I background spacetime, the finite 

expression for the expectation value of the quantum energy-momentum tensor is 

obtained by adopting momentum cut-off regularization technique: 

Cf2 (A2 + §) 
1287l"C3 A~/2 

(3.3.1) 

where A2 , B2 , D2 and E2 are defined by Eq. (3.2.14). For this case also it is clear 

that the energy-momentum tensor depends on the anisotropy of the spacetime. 

A knowledge of TJ1v is important for two reasons. It can be used to assess the 

importance of quantum effects on the dynamics of the gravitational field itself, 



59 

that is the back-reaction problem. Also, it is frequently a more useful probe of 

the physical situation than a particle count. In regions of strong gravity, vacuum 

polarisation effects, akin to those in QED can lead to important phenomena even 

in the absence of actual particle creation. 

3.4 Finite Temperature Behaviour 

To evaluate the finite temperature effective potential, the vacuum expectation 

value is replaced by the thermal average (fjJh = aT. Considering the same 

Lagrangian density as above, the zero loop effective potential is temperature 

independent, 

(3.4.1) 

The one loop approximation to finite temperature effective potential [65]-[68] 

is given by, 

Vf(a) 

(3.4.2) 

where, 

(3.4.3) 

Proceeding as in the previous chapter, in the high temperature limit [8] it is 

obtained that 

(3.4.4) 

where ~(z) ,is the Riemannian Zeta function [87], ~(z) = f: ~ , [Re Z > 1]. 
n=l n 
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In the (2+1) dimensional case also, the symmetry breaking present in this cp6 

model can be removed if the temperature is raised above a certain value called 

the critical temperature. The expression for critical temperature in this case is 

obtained as 

(3.4.5) 

The order parameter of the theory is temperature dependent. The temper­

ature dependence of finite temperature effective potential leads to phase transi-

tions. 

3.5 First Order Phase Transitions 

On shifting the field from cp to cp+u in the equation (3.2.2) and taking the Gibbs 

average of the corresponding equation we get: 

OUT + (m2 + ~R)UT - 4KUT3 - 12KuT (cp2) - 12Ku~ < cp > + 15-\2uT (cp4) 

+ 30-\2U~ (cp3) + 30-\2uf (cp2) + 15-\2uf (cp) + 3-\2U~ = 0 (3.5.1) 

Using the standard finite temperature Green's-function methods we can find 

that in the high temperature limit, 

(cp2) = 4~ f. (EXP(k~~) _ 1) , (cp4) = 3[(rjJ2)J2 and (cp3) - (cp) = o. Thus 

equation (3.5.1) becomes 

OUT + (m2 + ~R)UT - 4KUf - 12KuT (cp2) + 15-\2uT (cp4) 

+ 30-\2uf (cp2) + 3-\2U~ = 0 (3.5.2) 
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Assuming that aT is a constant we obtain, 

aT [(m2 + ~R) - 41w~ - 12K (cli ) + 15;\2 (cjJ4) + 30;\2a~ (cjJ2) + 3;\2ail = 0 

(3.5.3) 

This equation has degenerate solutions: aT = 0, and 

2 
(JT = 

{ (4m - 30), (.p2)) ± (4m2 - 12{R - 96),m (.p2) + 900),2 ( (.p2))2 + 180 (.p4)) ~ } 

6;\ 

(3.5.4) 

Each of these solutions defines a possible phase of the field system with its 

characteristic excitations. On heating the field system from absolute zero, the 

two branches of a~ given by the above equation coincide at a temperature for 

which 

(3.5.5) 

yielding a common value of aT. The existence of the separate branches of a~ 

implies that the phase transition is of first order [10, 88]. Numerical results 

obtained using equation (3.5.4) clearly shows that the order parameter does not 

vanish even for very high values of the temperature. Fig. 3.1 gives the variation 

of the two branches of a~ with respect to temperature. It is found that the two 

branches coincides at a particular value of T given by equation (3.5.5). From 

the figure it is' clear that there is a discontinuity for the variation of the order 

parameter with temperature, indicating a first order phase transition. 

The temperature dependence of Ye!! obtained for'the present cjJ6 model in the 

(2+ 1) dimensional background spacetime is shown in Fig. 3.2. It is found that for 

T » Tc the effective potential attains a minimum at a = 0, which corresponds 

to the completely symmetric case. When the temperature decreases, a global 
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Fig. 3.1: Variation of the two branches of O"f with respect to temperature. The two curves 
coincide after the temperature which satisfies equation (3.5.5), where m = 3.9371, >. = 0.8, R = 
0.9 and ~ = 0.2 

Veff 

-15 -5 5 10 15 

Fig. 3.2: The behaviour of finite temperature effective potential as a function of 0" for fixed 
m = 0.9371, >. = 0.008. Starting from the top the curves corresponds to the following values 
of the parameters: (i)R = 3.3, ~ = 2.54, T = 25 such that T » Tc, (ii)R = 1.93, ~ = 0.198 
and T = 18.5 such that T > Tc, (iii)R = 0.42, ~ = 0.02 and T = 9 such that T = Tc, (iv)R = 
0.35, € = -0.3 and T = 5 such that T < Tc 
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minimum appears at (J = 0 and two local minima at (J =1= 0, which shows the 

existence of a barrier between the global and local minima. At T = Tc , all the 

minima are degenerate, which implies that the symmetry is broken. For T < Tc 

the minima at (J =1= 0 become global minima. If for T ~ Tc the extremum at 

(J = 0 remains a local minimum, there must be a barrier between the minimum 

at (J = 0 and at (J =1= O. Therefore the change in (J in going from one phase to 

the other must be discontinuous, indicating a first order phase transition [10], 

[70,88]. 

3.6 Dependence on Curvature Rand 

Scalar-Gravitational Coupling ~ 

Veff 

(J 

-15 -10 -5 5 10 15 

Fig. 3.3: The behaviour of finite temperature effective potential as a function of a for fixed 
m = 0.9371, >. = 0.009, ~ = 0.1 and T = 4. Starting from top the curves corresponds to the 
following values of the curvature: R=20, 3, 0.99, 0.02, -0.72. 

Fig. 3.3 clearly shows the crucial role of scalar curvature R in determining the 

fate of symmetry and the phase transitions for the present model. From the figure 
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it is clear that the first order phase transition takes place as R changes. It is found 

that for R = 0 or ~ = 0 the system remains in the symmetry broken state for 

all values of T ~ Tc. As the temperature is increased above Tc, the symmetry is 

restored depending on the values of R and ~ also. It is also found that symmetry 

can be restored either by increasing the value of R or by increasing the value of 

~ keeping the temperature constant, even below the critical temperature. It is 

clear from Fig. 3.4 that there is a barrier between the symmetric and broken 

phases. Thus the phase transition, induced by the coupling constant ~ is also 

of first order. This shows that the scalar-gravitational coupling and the scalar 

curvature do play a crucial role in determining the nature of phase transitions. 

Veff 

-10 -5 5 10 

Fig. 3.4: The behaviour of finite temperature effective potential as a function of 0' for fixed 
m = 0.9371, A = 0.009, R = 0.2 and T = 5. Starting from top the curves corresponds to the 
following values of the curvature: ~ = 9, 2, 0.85, 0.025, -0.35, -0.8. 

3.7 Bubble Nucleation and Expansion 

A first order phase transition proceeds by nucleation of bubbles of broken phase 

in the background of unbroken phase [8]. Decay of met astable vacuum state with 
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!/J = 0 proceeds via quantum tunnelling [10] with the nucleation of bubbles of 

the asymmetric phase. The bubbles expand and eventually collide, while new 

bubbles are continuously formed, until the phase transition is completed. 

Consider a massive self interacting complex field cP coupled arbitrarily to the 

gravitational back ground, with the cp4 potential 

(3.7.1) 

with a minimum at Icpl = 0 and a set of minima at Icpl = [m±~] 1/2, connected 

by U(l) transformation. When the temperature is below Tc , a false vacuum is 

found at cp = 0 and true vacuum at cp = CPo =I- o. As the temperature increases, 

the false vacuum will decay to the true vacuum state via bubble nucleation. 

During a first order phase transition as in Fig. 3.2, at a temperature T < Tc , 

where JV(cp) 1 at a minimum with cp = CPo =I- 0 is much lower than the barrier 

height in V(cp) between cP = 0 and cP = CPo, the thin wall approximation [8] is 

valid. The equation of motion for this system is 

(3.7.2) 

Let us consider the minimally coupled case ~ = O. For the thin wall regime, 

the approximate solution of Eq. (3.7.2) is obtained as 

{
m }1/2 

Icpl = 2A (tanh [m(x - Ro)] + 1) (3.7.3) 

where Ro is the bubble radius at nucleation time and X2 =1 x 12 -t2 . The kink 

like shape of this solution, obtained numerically is shown in Fig. 3.5. 

While discussing the bubble collisions [89]-[91], one has to consider the in­

teraction between the bubble field and the surrounding plasma. As the bubble 

wall sweeps through a specific point, the Higgs field·<jJ acquires an expectation 
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Fig. 3.5: Shape of the solution given by Eq. (3.7.3) 

value and the field coupled to it acquires mass. Thus particles without enough 

energy to acquire the corresponding mass inside the bubble will bounce-off the 

wall (thus imparting negative momentum to it), while the rest will get through. 

Obviously, the faster the wall propagates the stronger this effect will be, since the 

momentum transfer in each collision will be larger and thus a force proportional 

to the velocity with which the wall sweeps through the plasma appears. Thus 

considering the damping effect of the surrounding plasma on the motion of the 

walls we insert a frictional term in the equation of motion, 

8JJ8JJip +, I~I ei8 
= - ~~ (3.7.4) 

where I~I = 8 ~:I, () is the phase of the field and ,stands for the friction 

coefficient. 

To find the solution of Eq. (3.7.4) in the thin wall limit, first we suppose 

that solution for which the wall has the form of a travelling wave do exist [90]. 

Writing ip in polar form ip = pe i8
, we can rewrite Eq. (3.7.4) and for a single 
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bubble configuration we take the phase of the bubble () to be constant. Then the 

equation for the modulus of the field is 

a ap. p + ,p = _ av (p) 
p. ap (3.7.5) 

Because the wall thickness is much smaller than the radius of the bubble, we 

can go to (1+1) dimensions to get an approximate expression for the terminal 

velocity of the bubble under this equation in the thin wall limit. Inserting the 

ansatz p = p(x - xo(t)) leads to 

.2)" (.. . ) I aV(p) 
(1 - Xo P + Xo + ,Xo P = ap (3.7.6) 

where p' = ~~. Multiplying by p' and integrating over -00 ::; x ::; +00 we get, 

(io +1';'0) (Tp"dx ) ~ 1= V'dx ~ t1V (3.7.7) 

where ~ V is the potential energy difference between the false and the true vacuum 

phases. For the initial conditions xo(t = 0) = Ro, xo(t = 0) = 0, the solution of 

Eq. (3.7.7) is 
1 a 

xo(t = 0) = -at + _(e-;t - 1) + Ra , ,2 (3.7.8) 

where a == 6. V/(J p'2dx). Thus for values of t » ,-I the bubble walls will have 

reached their terminal velocity 

~V 
(3.7.9) Vter = ,(J p'2dx) 

To get an approximate expression for p valid within this regime, it suffices to 

rewrite Eq. (3.7.5) with an ansatz p = p(r - ro(t)), where r is the usual radial 

coordinate. Using TO = 0, TO ~ Vter, we get, 

2 a2p 2 ap aV(p) 
(1- Vter )!:) 2 + (- +,Vter)"!:l = -!:)-

ur r ur up (3.7.10) 



According to Eq. (3.7.9) the terminal velocity roughly goes like 

.6. V .6.Vdm 
Vter = --;:;:2-- -

,(~~v dm ) 

m 

2 ,Ptv 
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(3.7.11) 

where dm is the bubble wall thickness and Ptv is the true vacuum value of the 

field. At the values of r for which the first derivative of the field is important 

(r,....., R for thin wall bubble), we have R,Vter '" dm « 1, and the second term in 

the second parenthesis of Eq. (3.7.10) is negligible when compared to the first. 

Again, since the radius of thin walled bubble is very large, we can also neglect 

the term (~) aaP in the standard thin wall approximation. Thus we get, 
r r 

(1- 2 )a2p = aV(p) 
Vter &2 ap (3.7.12) 

where r is the radial coordinate and Vter is the terminal velocity of the bubble 

walls. For the present 4>6 potential the solution for Eq. (3.7.12) is obtained as 

p = {;: (tanh [m(r jlV:':~ Ro)] +1) r (3.7.13) 

which is simply a Lorentz-contracted moving domain wall. Thus it is clear that 

there exists an exact solution for the damped motion of the bubble in the thin wall 

regime. Fig. 3.6 gives the kink like shape of this solution obtained numerically. 

The bubbles of the new phase nucleated within the old one subsequently 

expand and collide with each other. This would take place via Kibble mechanism 

[92]. In order to justify Kibble mechanism, one must follow the evolution of 

amplitude and phase of cl> [93]-[95]. The regions of the old phase trapped within 

the new one give birth to topological defects [10]. 
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Fig. 3.6: Shape of the solution given by Eq. (3.7.13) considering the damping effect 

3.8 Discussion and Conclusions 
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In this chapter a divergenceless expression for the rjJ6 one-loop effective potential 

and energy-momentum tensor in a (2+1) dimensional Bianchi type-I background 

spacetime is obtained. The temperature dependence of phase transitions for the 

4>6 model is closely examined and the nature of phase transitions for the present 

model is verified to be of first order. 

In the present work, considering a rjJ6 potential we have proved that the grav­

itational effects are of particular interest in a (2+1) dimensional Bianchi type-I 

spacetime. The phase transition taking place in a (2+1) dimensional Bianchi 

type-I background spacetime, during such a 88B is of first order. 

As the bubbles of the low temperature phase expand, they expel heat into 

their surroundings, heating the high temperature phase up to Tc. At this point 

the pressure of the high temperature phase prevents further expansion of the low 

temperature phase. After all, Tc is the temperature at which the two phases have 
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equal pressures and can coexist. 

To get the false vacuum and to study the bubble nucleation Ferrera et al. 

[90, 91] has introduced a cp3 term in the cp4 potential. But in the present cp6 

model, false vacuum at cp = 0 and true vacuum at cp = CPo # 0 occur naturally at 

temperatures T < Te. Considering the interaction between the bubble field and 

plasma an exact solution for the damped motion of the bubble in the thin wall 

regime is obtained for the present model. Whether or not the universe recovers 

from a first order phase transition and any relics are left behind depends upon 

the nucleation, expansion and collision of bubble and on the process of eventual 

transition to the new phase. 



Chapter 4 

Scalar Field Approach to Jeans 
Mass Calculations 

4.1 Introduction 

The formation of large scale structure still remains as an unsolved problem in Cos­

mology. Gravity is the dominant force which governs the large scale dynamics 

of the universe [26J-[31J. The standard theory of cosmological structure forma­

tion is based on the idea of gravitational instability [27, 33J according to which 

small initial irregularities in the distribution of matter become amplified by the 

attractive nature of gravity. Small fluctuations in the density results in gravita­

tional instability and gravitational instability causes the growth of perturbations 

in an expanding universe [96J-[98J. The structure we observe in the universe 

today is the end result of the gravitational amplification of small primeval per­

turbations. There are two distinct theories of how the initial seed fluctuations 

might have arisen [96J. One of these models involved the idea of topological 

defects created during phase transitions [10J in the early universe. The alter­

native picture involves the inflationary model of the universe, in which the pri­

mordial quantum fluctuations get amplified and evolve to become classical seed 

71 
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perturbations [26, 30, 99]. 

Normal physical processes can act coherently only over sizes smaller than 

Hubble radius. Thus any physical process leading to density perturbations at 

some early epoch, t = ti, could only have operated at scales smaller than H-1(ti). 

But most of the relevant astrophysical scales were much bigger than H-l(t i ) for 

reasonably early epochs. Thus if we want the seed perturbation to be originated 

in the early universe, then it is difficult to understand how any physical process 

could have contributed to it. But at sufficiently small t, if A(t) « H-1(ti) then 

the physical processes can lead to an initial density perturbation. It is possible 

to make this if the scale factor, a(t) increases rapidly (eg., exponentially) with 

t for a short period of time as in the case of inflation. The most natural choice 

for the seed perturbations is the quantum fluctuations in the inflaton field 4J(x, t) 

[11, 100]. 

The gravitational instability of a spatially uniform state of dust-like matter 

described by classical non-relativistic equations has been first investigated by 

Jeans [32]. If the mass of the matter distribution is larger than some minimum 

mass called the Jeans mass, then the self gravity of matter will start affecting the 

structure of the body significantly. Perturbations for which the wave number is 

smaller than the Jeans wave number can grow to form different structures in the 

universe. 

The theory of linearised density perturbations in an expanding universe can 

be reduced to the study of a real scalar field in an external classical background. 

Perturbation in a universe filled by scalar field minimally coupled to gravity is 

clearly described by Mukhanov, Feldman and Brandenberger [101]. They have 

calculated the growth rates of perturbations and the analysis is applied to study 

the evolution of fluctuations in inflationary universe models. Density fluctuations 



73 

of a cosmological quantum real scalar field in a coherent state is studied and 

Jeans instability mechanism is generalized in this context by Bianchi, Grasso and 

Ruffini [102]. Gravitational instability of spatially uniform state of a relativistic 

scalar field on time dependent back ground is discussed by Khlopov, Malomed 

and Zeldovich [103] and the instability is demonstrated to be similar to the Jeans 

instability. They have shown that the effects of self-interaction of the field may 

drastically alter the character of the instability. Considering a complex scalar field 

with a positive mass and quartic self-interacting term in the potential, Jetzer and 

Scialom [104] have derived the Jeans wave number in the Newtonian regime. 

The possibility of using the instability mechanism of Jeans theory to form 

self-graviting configurations from a real scalar field is described in this chapter. 

A scalar field approach to Jeans mass calculation is discussed. The expression 

for Jeans mass for a (3+1) dimensional spatially flat Robertson-Walker universe 

is evaluated. The cosmic fluid is treated in complete analogy to a scalar field and 

it is considered that the description of cosmological perturbations in the universe 

can be reduced to the study of quantum fluctuations of a gravitationally coupled 

scalar field. Considering a massive scalar field arbitrarily coupled to a gravita­

tional background, the stress-energy tensor expectation values are computed in 

section 4.2. The vanishing of nondiagonal terms of the expectation value of Tp.v 

allows us to treat the scalar field in complete analogy to a perfect fluid. The en­

ergy density and pressure associated with the density perturbations are evaluated 

in the next section. In section 4.4 the primeval densityperturbations produced 

by the vacuum fluctuations t5qy of the scalar field are considered and the Jeans 

criterion for the structure formation is evaluated. These results are used to eval­

uate Jeans wave number and Jeans mass for the present case in section 4.5. In 

section 4.6 scalar field with quartic self-interaction is considered and the Jeans 
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wave number is evaluated. The discussions and conclusions are presented in the 

last section. 

4.2 Stress-Energy Tensor Expectation Values of 

the Gravitationally Coupled Scalar Field 

Consider a massive scalar field cp coupled to the gravitational background and 

described by the Lagrangian density 

(4.2.1) 

and energy-momentum tensor, 

(4.2.2) 

where L = (_g)-1/2£. In the gravitationally coupled case, 

(4.2.3) 

Consider a Robertson-Walker spacetime with background metric 

(4.2.4) 

Taking the conformal time transformation, 8t = aOT} and denoting ocp =~, 
OT} 

we can write the diagonal components of stress-energy tensor as, 
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and for i = 1,2,3, 

For the the minimally coupled case, ~ = 0 the nonzero components of energy-

momentum tensor can be obtained as, 

(4.2.7) 

and 

2 1 [. 2 ~ 2] 2 m2 2 Tii = (8iljJ) + 2 ljJ - L- (8j ljJ) - ai (2)ljJ 
]=1 

(4.2.8) 

Each mode of the quantised scalar field can be expanded in even and odd parity 

modes, 

(4.2.9) 
k 

Substituting the above expression in equations (4.2.7) and (4.2.8) and apply-

ing (271")-3/2 J d3x to the result yields the spatially averaged components, 

and 

where L extends over both even and odd parity modes. 
k 

The annihilation operator ak is defined by 

where P"k = -i8/ 8qk 

(4.2.10) 

(4.2.11) 

( 4.2.12) 
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The complex function /3-(TJ) is a solution to the classical equation of motion 
le 

corresponding to the Lagrangian density, Eq. (4.2.1), such that 

d/3- d/3~ /3* _le - /3 _le = i 
k dTJ k dTJ 

(4.2.13) 

The expectation values of the diagonal components of the stress energy tensor 

are obtained as, 

(4.2.14) 

and 

(4.2.15) 

The vanishing of the nondiagonal terms of the expectation values of the com­

ponents of TJ1.v allows us to treat the scalar field in complete analogy to a perfect 

fluid. 

4.3 Energy Density and Pressure Associated with 

the Quantum Field Fluctuations 

The equation of motion associated with Lagrangian in Eq. (4.2.1) is given by 

(4.3.1) 

For a scalar field, perfect homogeneity can not be attained and there will 

always be some residual fluctuations. So we can split the field as: 

cp(x, t) = CPo(t) + 6cp(x, t) (4.3.2) 
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where 4>o(t) is the classical background field and b4>(x, t) is the perturbation of 

the field 4>. b4>(x, t) satisfies the field equation: 

(4.3.3) 

where we have assumed that b4> is small. Each mode of the quantized scalar field 

fluctuations can be expanded in even and odd parity modes as, 

b4>(x.t) = (27rt3
/
2 L[atXk(t) cos f.x + a-kX:'k(t) sin f.x] 

k 

Substituting Eq.(4.3.4) in Eq.(4.3.3) we obtain, 

( 4.3.4) 

(4.3.5) 

Considering the minimally coupled ~ = 0 case we can write the diagonal 

components of energy-momentum tensor for the quantum fluctuations as, 

3 2 

bTrrrJ = 2~2 (8T](b4»)2 + 2~2 L (8i(b4»)2 + ~ (b4»2 
i=l 

(4.3.6) 

and for i = 1,2,3, 

1 3 2 

bTii = 2 (8T](04»)2 + ~ ~ (8i(04»)2 - a2~ (04))2 
t=l 

(4.3.7) 

The expectation values of the diagonal components of the energy-momentum 

tensor of quantum field fluctuations are obtained as, 

(4.3.8) 

and 



where 

and L: extends over both even and odd parity modes. 
k 
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(4.3.9) 

(4.3.10) 

To completely fix the representation, a boundary condition must be imposed 

on Xk(1]). In most models there exists a regime 1] = 1]WKB defined by the WKB 

condition 

(4.3.11) 

in which we require 

(4.3.12) 

and 

lim _d X-,-"k'-'..{ 1],;,,;,,) = iw -x -( 1] ) 
TJ-+TJW K B d7J k k 

( 4.3.13) 

The interpretation of (niC) as a particle number is valid only in a WKB regime 

defined by wt ~ < < wk' This condition will be valid for modes with wavelength 

smaller than Rubble radius (oscillation period < < expansion time scale). In such 

a regime we require the WKB limit equations (4.3.12) & (4.3.13) for X-. Evaluat-
k 

ing equations (4.3.8) and (4.3.9) in the WKB limit we get a simplified expression 

for the diagonal components of the expectation value of energy-momentum tensor 

of quantum fluctuations as, 

(4.3.14) 
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and 

(4.3.15) 

The vanishing of the nondiagonal terms of the expectation values of the com­

ponents of T/-L II allows us to treat the scalar field in complete analogy to a perfect 

fluid. The similarity of the gravitational instabilities of a free scalar field and 

dust-like matter was pointed out by Turner [105J. 

4.4 Primeval Density Perturbations and the Jeans 

Criterion 

The vacuum fluctuations of the scalar field 6cjJ generate a primeval density per-

turbation in the early universe. Such a primeval perturbation is regarded as a 

viable candidate for the origin of large scale structure. Let us consider the matter 

in the universe to be a scalar field minimally coupled to gravity and described 

by the Lagrangian density in Eq. (4.2.1). In the conformal time coordinates the 

field equation is 

(4.4.1) 

where V' = ~~ and iI = ~ using conformal time. 

Perturbing Eq. (4.4.1) and linearising the equation of motion for the scalar 

field perturbation 6cjJ is obtained as, 

(4.4.2) 

k2 

where we have \}2 = -2". Vs is the speed of propagation of perturbation [11, 101, 
a 

106J. v; = 1 for scalar field matter and v; = 6p/6p for ideal gas matter [106J. As 

it is already mentioned we consider subhorizon modes only. Until a few Rubble 
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times after the horizon exit, the last term of the above equation is negligible [11]. 

To be more clear, compare the last term with the one before it. At the epoch 

of horizon exit, k = aH, because of the slow-roll condition [8] M;l V" < < V is 

equivalent to m2 < < H2. Thus for cosmological perturbations we can rewrite the 

above equation as 

( 4.4.3) 

The perturbations bq;(x, t) in the scalar field leads to the perturbations in 

energy density bp(x, t). So using Eq. (4.4.3) we can write as 

.. _. v2k 2 

b+2H b+~b=O 
a 

( 4.4.4) 

where b = bp is the density contrast parameter. Since the scalar field is coupled to 
p 

the gravitational background field we have to consider the effects of gravitational 

field potential also. Including the gravitational field potential, the above equation 

becomes, 

( 4.4.5) 

The primeval density perturbations satisfy the adiabatic condition [11] for 

density contrast. For cosmological perturbations Vs is the speed of sound. 

The above equation tells us how or whether gravitational instability leads to 

the growth of condensation in the expanding universe. The right hand side of the 

equation shows the competing effects of gravity and the pressure gradient force. 

At very long wave length k - 0, the equation reduces to the zero pressure case. 

At very short wave length, large k, the pressure term dominates and b tends to 

oscillate as a sound wave. The pressure and gravity terms balance when the wave 

length is equal to the Jeans length given by, 

( 4.4.6) 
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which corresponds to the classical Jeans criterion for the structure formation. 

Consider the relation: 

(4.4.7) 

where, u~ = (1,0,0,0) and PI and PI are the first order fluctuation amplitudes of 

the corresponding quantities. The energy density and pressure associated to the 

quantum field perturbation are, 

and ( 4.4.8) 

From the definition of the sound velocity of adiabatic perturbations [11], [31], 

[106] 
2 PI k; 
V=-=--

S PI W~(7]) 

In a nonrelativistic regime ki < < m and we can write, 
a 

4.5 Jeans Length and Jeans Mass 

( 4.4.9) 

(4.4.10) 

Jeans explained that starting from a homogeneous and isotropic fluid, small fluc­

tuations in the density PI and velocity VI could evolve with time. He showed 

that density fluctuations can grow in time if the stabilizing effect of pressure is 

much smaller than the tendency of the self-gravity of a density fluctuation to 

induce collapse. When the pressure inside the perturbed fluid is greater than the 

self-gravity, the perturbation will propagate like an acoustic wave with velocity 

VS. Jeans calculations were done in the context of a static background fluid [32]. 

The theory of instabilities of an expanding universe was given by Lifshitz in 1946 
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[34]. He also concluded that there exists a critical wave number kJ above which 

disturbances can not grow but only oscillate like sound waves. 

During most phases of the expansion of the universe, we can approximate the 

expansion factor by a(t) ex: tn with a suitable n which is less than unity [26]. For 

the matter dominated case [31], the scale factor a(t) ex: t2/ 3 and for the spatially 

flat '" = 0 case, 
1 

P = 67rGt2 
(4.5.1) 

Using Eq. (4.4.10) we can write as 

(4.5.2) 

Eq. (4.4.5) then takes the form, 

(4.5.3) 

where 

( 4.5.4) 

The solutions of Eq. (4.5.3) are, 

(4.5.5) 

where In(x) are Bessel functions of the first kind. The Bessel function In(x) 

oscillates for x » 1 as shown Figs. 4.1 (a & b). For x < 1, the solutions 0+ and 

L behave as in Figs. 4.2 (a & b). Both the growing as well as damped modes 

are present. It is evident from the Fig. 4.2 that the growing modes dominate 

over the decaying modes. 

The critical condition x = 1 gives, 

(4.5.6) 
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Fig. 4.1: (a) Oscillating mode 0+; (b) Oscillating mode L 
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Fig. 4.2: (a) Growing mode 6+; (b) Decaying mode L 

Eq. (4.5.4) & (4.5.6) together imply that 

(4.5.7) 

Substituting the expression for sound velocity in Eq. (4.5. 7) the classical 

Jeans length for the perturbations is obtained as, 
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where 

(4.5.8) 

where K = ~, the physical wave number [26, 30]. The Eq. (4.5.3) has sinusoidal 
a 

solutions for K > KJ (Fig. 4.1) and exponential (growing as well as damping as 

in Fig. 4.2) solutions for K < K J. If K » KJ we get sinusoidal disturbances 

that do not grow but simply propagate like sound waves. In this case the gravi­

tational forces and the expansion of the universe may be neglected [30]. The only 

disturbances that have any prospects of growth are those for which K < K J. 

The Jeans mass for the perturbations [30, 31] is then given by, 

_ ~7I"P (271")3 = 3271"13/4p1/4 (_1_)3/2 
3 KJ 3 mVG 

_ 32 13/4 1/4 (mpl)3/2 _ 102 1/4 (mpl)3/2 - -71" P - - P -
3 m m 

(4.5.9) 

The fluctuations will have a chance to grow under its self-gravitation if the 

mass of perturbed matter is greater than M J . It may grow under its self-gravitation 

to form a galaxy. 

4.6 Density Perturbations and Jeans Wave num-

ber for a Scalar Field with Quartic Self-

Interaction 

Now let us consider the quantum fluctuations of a scalar field with quartic self 

interaction described by the Lagrangian density, 
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(4.6.1) 

The velocity of perturbations is obtained in this case as 

v2 _ ~ k; 
s 3 a2 (m2 + ~<P6) 

(4.6.2) 

It is clear that the velocity of fluctuation depends on the self-interaction of 

the scalar field. 

For this self-interacting field the Jeans wave number K J is obtained as, 

(4.6.3) 

0.000086 

0.000085 

0.000084 

0.000083 

Fig. 4.3: Effects of self-interaction on the value of K J 

The instability growth rate monotonically falls off when K2 increases from 0 

to K;' The above equation implies that the self-interaction of the field influences 

the character of instability and the value of Jeans wave number K J is altered 

by the effects of self-interaction. Fig. 4.3 shows the effects of self-interaction on 



87 

the value of K J . The critical value of the wave number K J , above which the 

disturbances can not grow, is higher for the self-interacting field with A > O. 

4.7 Discussion and Conclusions 

The key idea in studying the formation of structure in the universe is that of 

gravitational instability. It depends on the nature of the universe as a whole, for 

example on how rapidly it is expanding and on how much material is in it to 

provide the gravitational attraction and it also depends on the form of the initial 

irregularities. 

Jeans considered the problem of formation of galaxies in the universe as a 

process involving the interplay between gravitational attraction and the pressure 

force acting on a mass of nonrelativistic fluid. So long as the pressure forces are 

negligible an overdense region is expected to accrete material from its surround­

ings by the gravitational attraction and thus becoming even more dense. The 

denser it becomes the more it will accrete, resulting in an instability which can 

ultimately cause the collapse of a fluctuation to a gravitationally bound object. 

The knowledge of Jeans wavelength AJ = 27r / K J provides an estimate of the size 

of the objects which can be formed by gravitational collapse. 

It is generally assumed that at early times the particle content of the universe 

formed an ideal gas. In the present work, the cosmic fluid is treated in complete 

analogy to a scalar field and the description of cosmological perturbations in 

the universe is reduced to the study of quantum fluctuations of a gravitation ally 

coupled scalar field. The primeval density perturbations produced by the vacuum 

fluctuations, 8<jJ, of the scalar field is considered and the Jeans criterion for the 

structure formation are evaluated. 
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The possibility of using the instability Jeans mechanism to form self-gravitating 

configurations from real scalar field is discussed in this chapter. Bianchi and 

co-workers [102] have clearly discussed the physical meaning of how the Jeans 

instability occurs in a scalar field. Khlopov and co-workers have discussed the 

gravitational instability of a free scalar field and for a self-interacting scalar field. 

The Jeans wave number is obtained from the solution of dispersion relation of 

the perturbations of a scalar field [103]. Jetzer and Scialom have considered the 

linear scalar mode perturbations and they have obtained the expression for Jeans 

wave number starting from the general relativistic wave equations and solving 

the dispersion relation [104]. In the present work the same result is obtained 

by a different approach. Scalar field approach to Jeans mass calculation is dis­

cussed. The application of classical Jeans theory to scalar field is conditioned 

by the vanishing of the expectation values of the nondiagonal components of the 

energy-momentum tensor. The scalar field is treated in complete analogy to a 

perfect fluid and the energy density and pressure associated to the gravitational 

perturbations are evaluated. The exact expression of Jeans wave number for the 

perturbations is obtained. The present work shows that the value of K J, that is 

the critical value of the wave number above which the disturbances can not grow, 

is altered by the effects of self-interaction of the field. 

Briefly, quantum fluctuations in an expanding universe can lead to energy 

density perturbations. It is usually assumed that there exist small primordial 

perturbations which slowly increase in amplitude due to gravitational instability 

to form the structures we observe at the present time on the scales of galaxies and 

galaxy clusters. The simple criterion needed to decide whether the fluctuation 

will grow with time is that the typical length scale of a fluctuation should be 

greater than the Jeans length >"J for the fluid. 



Chapter 5 

Jeans Mass Calculations for an 
Anisotropic Case 

5.1 Introduction 

A scalar field approach to Jeans mass calculations are performed in the previous 

chapter and the possibility of using the instability mechanism of Jeans theory, 

to study the formation of structure in the universe is discussed. The superdense 

matter may be anisotropic, at least in certain density ranges. It is of considerable 

interest to determine the extent to which local anisotropy can alter the structure 

of massive objects [107]. The role played by local pressure anisotropy in the onset 

of instabilities have been studied and it has been shown that small anisotropies 

may drastically change the stability of the system [108]. Herrera and Santos 

[109] have studied the Jeans instability criterion for interstellar gas that can 

produce anisotropies during its evolution. In this chapter distribution of matter 

which is coupled to a Bianchi type-I background spacetime is considered and the 

density perturbation in such a distribution is studied. The possibility of using 

the instability mechanism of Jeans theory to study the formation of structure, 

for an anisotropic case is studied in this chapter. 
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The quantum state of the scalar field near the initial singularity is inaccessible 

to an observer at the present time just as the state of the quantised scalar field 

inside the event horizon of a black hole is inaccessible to an observer at infinity 

[110]. Hawking's suggestion [111] is that this ignorance of the actual state of the 

quantised field is best expressed by taking a random superposition of all allowed 

states in the inaccessible region [112]. It is assumed that all the phase informa­

tion is lost so that the system can no longer be described by a pure quantum 

mechanical state. It is possible, however, to construct a density matrix from 

which expectation values may be calculated [113]. Berger constructed a coherent 

state representation [112] valid even near the singularity for each mode of the 

quantised scalar field in a classical spatially homogeneous and anisotropic back­

ground cosmology. The stress-energy tensor expectation values are calculated in 

a coherent state representation and it has been found that the values so obtained 

coincide with the classical values expected for the zero-point energy. Coherent 

states are minimum uncertainty states [114]. For the coherent state the uncer­

tainty is minimum in amplitude and phase and hence it is the closest possible 

quantum mechanical state to a classical field. 

As an alternative to the N representation, a coherent state representation is 

constructed for each mode of the scalar field in this chapter. The stress-energy 

tensor expectation values are computed in a coherent state in section 5.2. The 

density matrix is used to represent the expectation values. Then the energy den­

sity and pressure associated with the density perturbations are evaluated. Using 

these results the exact expressions for Jeans wave number for the present case 

is evaluated in section 5.3. Then the distribution of matter which is assumed to 

be locally anisotropic is considered in the next section and the density perturba­

tions in such a distribution is studied. In section 5.5 the metric and matter field 
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perturbations are considered and from the calculations of section 5.6 it is found 

that for the present anisotropic case, the perturbation of pressure in radial and 

tangential directions are different. Discussions and conclusions are presented in 

section 5.7 

5.2 Energy Density and Pressure Associated to 

the Perturbations with an Anisotropic Back­

ground Spacetime 

To probe the quantum effects in Cosmology, coherent states (cs) are being used. 

Gravitation and other primordial perturbations created from zero point fluctua­

tions in the process of cosmological evolution should be in a coherent state. cs 

representation for each mode of a quantised scalar field in a classical spatially 

homogeneous anisotropic background is constructed in this section. The expec­

tation values of stress-energy tensor, TJ.'II of a free scalar field are calculated in 

cs. Then the energy density and pressure associated to the perturbation are 

evaluated. 

5.2.1 Scalar Field Gravitationally Coupled to Bianchi 

Type-I Spacetime 

Consider a massive scalar field <p coupled arbitrarily to the gravitational back­

ground and described by the Lagrangian density 

(5.2.1) 



with energy-momentum tensor, 

where L = (_g)-1/2 £. In the gravitationally coupled case, 

T~v = (1- 2~)8~~8v~ + (2~ - ~)gl'"gQf38Q~8f3~ - 2~~ \l~ \lv~+ 
2 

2~gl',,~D~ - ~G~v~2 + ~ gl',,~2 
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(5.2.2) 

(5.2.3) 

Consider a (3+1) dimensional Bianchi type-I spacetime which is spatially 

homogeneous and has the line element 

a 
ds2 = dt2- L a~(t)(dxi)2 (5.2.4) 

i=l 

as the background metric. Taking the conformal time transformation, 

at = C1/28T] where C = (ala2aa)2/a and denoting : =~, we can write the 

diagonal components of stress-energy tensor: 

and for i = 1,2,3: 

2 1 ai · 2 1 2 
[ 

2 2 ( a )] 1ii = (1- 2~)(8i~) - (2~ - 2) C ~ -ai ~ aJ(8j~) 

~ (6 62 
) 22m2 2 + 6- - - - + K ~ - a· (-)~ C 2C 4C2 t 2 (5.2.6) 

Considering the minimally coupled case, ~ = 0 we get, 

(5.2.7) 
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and 

(5.2.8) 

Each mode of the quantized scalar field can be expanded in even and odd parity 

modes, 

cp(x) = (271')-3/2 L[qk(ry) cos f.x + q-k(ry) sin f.x] 
k 

(5.2.9) 

Since the background metric is spatially homogeneous we require the quantum 

state of the system to be also spatially homogeneous. Thus we need consider 

only the spatially homogeneous modes of the expressions in Eqs. (5.2.7) & 

(5.2.8). Substituting the above expression in Eqs. (5.2.7) & (5.2.8) and applying 

(271')-3/2 J d3x to the result yields the spatially averaged components, 

and 

where 

and L extends over both even and odd parity modes. 
k 

(5.2.10) 

(5.2.11) 

(5.2.12) 
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5.2.2 Energy-Momentum Tensor Expectation Values in 

Coherent State 

As an alternative to the N representation, we can construct an (over)complete 

normalized set J r k) of coherent state for each mode of the scalar field. The 

behaviour of the classical scalar field near the cosmological singularity [115, 116] 

is best followed quantum mechanically by constructing such a representation 

[113, 117]. Coherent states are defined to be eigen states of the annihilation 

operator, 

a-Jr-) - r-Jr-) k k - k k 

where r k is the time dependent complex number and af is defined by 

a­k 

where 

.d(3"k(T}) A .(3 ( ) A 

- -z d qk- + 1, - TJ p-T} k k 

(5.2.13) 

(5.2.14) 

The complex function (3-(T}) is a solution to the classical equation of motion 
k 

corresponding to the Lagrangian density such that 

d(3 d(3* 
(3:--..1. - (3- ---.l. = i 

k dT} k dT} (5.2.15) 

Taking the expectation values of the diagonal components in the coherent state 

[118] we get, 

(T .. )~ = 32~C ~ { [ (~j)' + W~(~){J;'] r~ + [ (:-)' + W~(~){J:l rf' 
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and 

+ [(df3;c)
2 

+ (2k; C - W~{ry)) f3~] r~2 
dry a; k le k 

+ [I ?; I' + c: c - W~(~)) 11l,I'] (2r~ + I)} 

(5.2.17) 

The coherent state for the scalar field is the product over modes of the coherent 

state for each mode. We assume the modes to be noninteracting so that the 

density matrix for the field is just the product of the density matrices for each 

mode. Thus we find a density matrix 

(5.2.18) 

where 

The density matrix given by Eq. (5.2.18) may be used to evaluate expectation 

values through (A) = tr{pA), where (A) is the expectation value of any operator 

A. Using the density matrix, the stress-tensor expectation values are evaluated 

as: 

(5.2.19) 

where 
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(5.2.20) 

Thus 

(5.2.21) 

and 

(5.2.22) 

The coherent states are parametrised by initial conditions for the scalar field. 

These states become the usual minimum-uncertainly wave packets if (and only 

if) the time scale for the evolution of the background spacetime is much greater 

than the periods of oscillation of the modes of the scalar field, H » T [119J. 

In such a regime we require the WKB limit equations, given by Eqs. (4.3.11)-

(4.3.13) for {3_. Evaluating Eqs. (5.2.21) and (5.2.22) in the WKB limit we get 
k 

a simplified expression for the diagonal components of the expectation value of 

energy-momentum tensor, 

(5.2.23) 

and 

(5.2.24) 

Thus the energy density and pressure associated to the perturbation are obtained 

as, 
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(5.2.25) 

and 

k~ 
PI = 3

1
2 ((n_) + 1/2) 

4871" aiwk k 

(5.2.26) 

Using the definition Eq. (5.2.12) of wk and the metric Eq. (5.2.4), it is clear 

that the trace of (TJv) is formally zero for a massless scalar field. Regularization 

of the vacuum stress-energy term may yield a trace anomaly [1]. 

From the definition of the sound velocity of adiabatic perturbations [11, 31, 

106] we get: 

In a nonrelativistic regime ki < < m and we can write, 
ai 

2 1 k; 
v =---

8 3 a~m2 
1 

(5.2.27) 

(5.2.28) 

For the Bianchi type-I spacetime with scale factors ai, let. V = aIa2a3 be the 

'volume scale factor' [10]. Then the mean scale factor (i ex: V I/3 and C ex (i2. Let 

us put (i instead of ai in Eq. (5.2.28). Then, 

2 1 k; 
v =---

8 3 (i2m2 
(5.2.29) 

Rewriting the metric for the Bianchi type-I spacetime, using spherical polar 

coordinates, 

(5.2.30) 
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with 

R~(t) 2( ) 
(1 _ kr2) = a l t 

(5.2.31) 

Taking c = 1 we get, 

and 

The Einstein equation Ge = kTt with k = 87r and Tt =diag(p, -Pr, -P9, -Pt/» 



[
RI R2 RJl2 k 1 

87rpt/> = - RI + R2 + RIR2 + R~ 

5,:~ .:>. , 
/fHN 
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(5.2.33) 

Let it be the mean scale factor of the Bianchi type-I universe with metric in 

Eq. (5.2.30). Then 
.. 

R 
H=-= 

R 
and ~ = -q(t)[H(tW (5.2.34) 

and Eqs. (5.2.33) become 

87rp = -3 [k2 + ~] R R2 

and 

8~p = - [2 ~ + i + ;,] (5.2.35) 

For a system behaving like dust p = 0 and P = po~ where the subscript 

'0'· denotes the corresponding quantity in the present epoch. Using the above 

equations we can write 

3 (2 k ) 
P = 87rG H + it2 (5.2.36) 

3k 
where 87rGR2 is the contribution due to anisotropy, PAN [10]. 



100 

5.3 Jeans Wave Number Calculations 

Let us consider the simple case with al = a2 = a3 = a and k = O. Then the 

equation that tells us how or whether gravitational instability leads to the growth 

of condensation in the expanding universe is given by Eq. (4.4.5) and for the 

present case it can be written as, 

(5.3.1) 

where ~ = PI , the density contrast parameter. 
P 

During most phases of the expansion of the universe, we can approximate the 

expansion factor by a(t) ex: tn with a suitable n which is less than unity. For the 

matter dominated case, the scale factor a(t) ex: t2/3 . 

Proceeding as in the previous chapter we get the final expression for Jeans 

wave number as 

(5.3.2) 

5.4 Energy Density and Pressure Associated with 

the Anisotropic Matter Field Distribution 

Now let us consider the distribution of matter field which is assumed to be locally 

anisotropic and is coupled to a Bianchi type-I background spacetime. In addition 

to the quantum fluctuations, perturbations in the background metric are also 

taken into account in this section. Let us consider a real scalar matter field 

distribution ~ which is assumed to be locally anisotropic, gravitationally coupled 

to an anisotropic background spacetime. 
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For the anisotropic matter the energy momentum tensor is 

T~ =diag(p, -Pr, -Pe, -p,p). Let us consider the case with Pe = P,p, which we 

denote by P.L called the tangential pressure and Pr the radial pressure. So we can 

write, 

(5.4.1) 

5.5 Metric and Matter Field Perturbations 

As it is already mentioned in the previous chapter we can split the field into 

unperturbed and perturbed parts: 

cjJ(x, t) = cjJo(t) + 6cjJ(x, t) (5.5.1) 

To model the universe more realistically the perturbation in the background 

metric also is to be included. The perturbation 6cjJ(x, t) leads to the perturbations 

in energy density 6p(x, t) and hence in the metric of spacetime. In this case, it 

is convenient to split the metric into two parts, the first being the background 

metric and the other describing how the background spacetime deviates from the 

idealized background model. 

(5.5.2) 

The metric perturbations are of three distinct types: scalar, vector and tensor 

perturbations. Both vector and tensor perturbations exhibit no instabilities. Vec-

tor perturbations decay kinematically in an expanding universe whereas tensor 

perturbations lead to gravitational waves which do not couple to energy den­

sity and pressure inhomogeneities. However, scalar perturbations may lead to 
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growing inhomogeneities [11, 101] which, in turn have an important effect on the 

dynamics of matter. 

The energy-momentum tensor can also be also decomposed into background 

and perturbed parts. 

(5.5.3) 

where oT~ is linear in matter and metric perturbations o<p and 09Ot{3' Substituting 

Eq. (5.5.1) and Eq. (5.5.2) in the above equation we obtain the background 

energy-momentum tensor for the minimally coupled case, in conformal time as 

(5.5.4) 

and 

(0) i 2 1·2 1 [~ 1 2] m
2 

2 
T i = -(8i <p0) - 2C <Po +2 8 a~ (8i <p0) + T<Po (5.5.5) 

and the first-order perturbation 

and 

From Eq. (5.5.7) it is clear that the perturbations in pressure is different in 

different directions and oPr =I- OP.l.· This implies that the velocity of perturbations 

will be different in radial and transverse directions. 
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5.6 Jeans Wave Number Calculations for an 

Anisotropic Medium 

Any region with very slightly higher density will gravitationally attract matter 

from surrounding regions and thereby increasing in density. Correspondingly any 

regions of density lower than average will have matter removed by the gravita­

tional attraction of neighbouring regions. 

From the definition of sound velocity of adiabatic perturbations we get the 

expression for velocity perturbations in the radial direction as 

(5.6.1) 

and in the tranverse direction 

2 8pl. 
vsl. = 8p (5.6.2) 

where 8Pr and 8pl. denote the first order fluctuation amplitudes of the corre-

sponding quantities. 

Let us take the scale factor as 

(5.6.3) 

The term bi(Xi) causes the anisotropy in the scale factors, which is taken as 

time independent. The above form of scale factor gives a direction independent 

Rubble constant as it is expected in the actual case. When bi(Xi) = 0 the above 

form leads to the isotropic case. The Rubble constant and deceleration parameter 

are 

H=c:.=~ 
a 3t 

and 
all q= --- =­
aH2 2 
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For the k = 0 - the spatially flat case [30], 

1 
p = 67rGt2 

(5.6.4) 

For the present anisotropic case the equation that tells us how or whether 

gravitational instability leads to the growth of condensation in the expanding 

universe is given by 

(5.6.5) 

where, Ki is the physical wave number [26, 30] of perturbations in the ith direction. 

For a general specific heat ratio" pressure varies as p"l and the speed of sound 

is 

('Pr) ~ (,p"l) ~ ..,-1 Vsr = - = - ex. p 2 

P P 

and 

(,Pl.) ~ (,p"l) ~ :t.=.! Vsl. = - = - ex. p 2 

P P 
(5.6.6) 

And Eq. (5.6.4) implies that 

(5.6.7) 

Eqs. (5.6.6) and (5.6.7) show that 

(5.6.8) 

Then Eq. (5.6.5) takes the form, 

(5.6.9) 
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where 

(5.6.10) 

and , is the specific heat ratio. 

The solutions of Eq. (5.6.9) are, 

(5.6.11) 

where In(x) are Bessel functions of the first kind. The Bessel function In(x) 

oscillates for x » 1. For x < 1, both the growing as well as damped modes are 

present and the growing modes dominate over the decaying modes. 

The critical condition x = 1 gives, 

(5.6.12) 

Eqs. (5.6.10) & (5.6.12) together imply that 

(5.6.13) 

which corresponds to the Jeans criterion. Thus we get the Jeans length for the 

perturbations in the ith direction as, 

where 

(5.6.14) 

Equation (5.6.14) shows that the Jeans length depends on the velocity com-

ponent of fluctuations in the radial and transverse directions and thus on the 

direction of wave propagation. 
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5.7 Discussion and Conclusions 

Instability is the first step to an understanding of where the structure in the 

galaxy distribution [120] came from; it grew by gravity out of smaller struc­

tures that existed earlier. Once the universe becomes matter dominated, small 

primeval density inhomogeneities grow via the Jeans or gravitational instability 

into the rich array of structures present today [10]. Chan, Herrera and Santos 

have explained that different degrees of instability will lead to different patterns 

of evolution in the collapse of self-graviting objects [108]. 

Chan et al. [108] have shown that small anisotropies may, in principle, dras­

tically change the stability of the system. Herrera and Santos [109] have shown 

that for systems with anisotropic pressures, instabilities may develop for masses 

of several orders of magnitude smaller than the corresponding Jeans mass for an 

ideal locally isotropic gas. 

In this chapter we have been discussing the possibility of using the Jeans 

instability mechanism to form self-gravitating configurations from an anisotropic 

field distribution. We consider the distribution of matter field which is assumed 

to be locally anisotropic and is coupled to an anisotropic background spacetime. 

The energy density and pressure associated with the anisotropic matter field 

distribution are evaluated. Vanishing of the expectation values of the nondiagonal 

components of TJ.'I/ allows to treat the scalar field in complete analogy to fluid 

distribution. Considering the metric and matter field perturbations it is found 

that for the present anisotropic case, the perturbation of pressure in radial and 

tangential directions are different. This implies that the velocity of perturbations 

will be different in radial and tangential directions. The Jeans wave number for 
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the present case is evaluated. It is found that the Jeans length depends on the 

velocity component of fluctuations in radial and transverse directions and thus 

on the direction of propagation of the fluctuations. 



Chapter 6 

Results and Conclusions 

Quantum aspects of the gravitational interaction plays an essential role in theo­

retical high energy physics. The questions of the quantum gravity are naturally 

connected with early universe and Grand Unification Theories. In spite of numer­

ous efforts, the various problems of quantum gravity remain still unsolved. In this 

condition, the consideration of different quantum gravity models is an inevitable 

stage to study the quantum aspects of gravitational interaction. The important 

role of gravitationally coupled scalar field in the physics of the early universe is 

discussed in this thesis. The major results and conclusions of the present work 

are summarised in this chapter. 

The temperature effects in the theory of induced gravity coupled to matter 

fields are discussed in chapters 2 and 3. Bianchi type-I background spacetime is 

considered in which the computation of the effective potential can be performed 

exactly. 

(i) Considering a 4J6 self-interacting scalar field gravitationally coupled to an 

anisotropic background spacetime, a divergenceless expression for one loop effec­

tive potential is obtained and it is proved that 4J6 potential can be regularised in 

curved spacetime. 

108 
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(ii)Finite expressions of the energy momentum tensor for the <p6 theory in 

(3+1) and (2+1) dimensional spacetimes are obtained. The vacuum expectation 

values of the stress-energy tensor defined prior to any dynamics in the background 

gravitational field give us the information about the particle creation and vacuum 

polarisation. 

(iii)The temperature dependence of phase transitions for the <p6 model is 

closely examined and verified. The nature of phase transitions for the <p6 model 

is discussed and is found to be of first order. 

(iv)The crucial role played by scalar-gravitational coupling and curvature in 

determining the nature of phase transitions are also studied. The interaction 

with the external gravitational field may lead to SSB. The models described in 

chapters 2 nd 3 prove that the phase transitions taking place during such a SSB 

is first order in nature. 

(v)A first order phase transition proceeds by nucleation of bubbles of broken 

phase in the background of unbroken phase. Considering the interaction between 

the bubble field and the surrounding plasma the expansion and collisions of bub­

bles in such a damping environment is discussed. It is found that there exists an 

exact solution for the damped motion of the bubble in the thin wall regime. 

These results are useful for the study of quantum thermal processes in the 

early universe. To examine the symmetry behaviour of the early universe closely 

one should take into consideration the effects of spacetime curvature and finite 

temperature effects in their full rights. Whether or not the universe recovers 

from a first order phase transition and any relics are left behind depends upon 

the nucleation, expansion and collision of bubble and on the process of eventual 

transition to the new phase. 

If the phase transition is strongly first order, the universe may be dominated 
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by the vacuum energy and undergo a period of inflation. The quantum fluctua­

tions in the inflaton field are the most natural choice for the seed perturbations. 

The quantum fluctuations during the period of exponential expansion generate 

classical energy density perturbations which look like small amplitude plane waves 

of all wavelengths superimposed with a spectrum which is in good agreement with 

the requirements for successful structure formation. 

In chapter 4, the cosmic fluid is treated in complete analogy to a scalar field 

and the description. of cosmological perturbations in the universe is reduced to 

the study of quantum fluctuations of a gravitationally coupled scalar field. 

(vi)The primeval density perturbations produced by the vacuum fluctuations 

64> of the scalar field are considered and the Jeans criterion for the structure 

formation is evaluated. 

(vii)The possibility of using the Jeans instability mechanism to form self­

gravitating configurations from a gravitationally coupled scalar field distribution 

is studied. A scalar field approach to Jeans mass calculation is discussed and the 

expression for Jeans mass for a (3+1) dimensional spatially flat Robertson-Walker 

universe is evaluated. 

(viii)It is found that the self-interaction of the field influences the character 

of instability and the value of Jeans wave number K J is altered by the effects of 

self-interaction. 

(ix)The results obtained in chapter 4 are generalised to an anisotropic case in 

chapter 5. For an anisotropic matter distribution the velocity of perturbations 

will be different in radial and tangential directions and it is found that K J depends 

on the velocity of fluctuations in radial and transverse directions. 
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