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INTRODUCTION

Decision-making under uncertainty is as old as mankind. Just like most of
the real world systems in which human perception and intuitive judgement play important
roles, the conventional approaches to the analysis of large scale systems were ineffective
in dealing with systems that are complex and mathematically ill defined. Thus an answer
to capture the concept of imprecision in a way that would differentiate imprecision from
uncertainty, the very simple idea put forward by the American cyberneticist L.A Zadeh
[ZA] as the generalization of the concept of the characteristic function of a set to allow

for immediate grades of membership was the genesis of the concept of a fuzzy set.

In mathematics a subset 4 of X can be equivalently represented by its
characteristic function — a mapping x4 from the universe X of discourse (region of
consideration i.e., a larger set) containing 4 | to the two element set {0, /}. That is to say x
belongs to A if and only if x4 (x) =/. But in the “fuzzy” case the “belonging to” relation
24 (x) between x and A4 is no longer “either 0 or otherwise/”, but it has a membership
degree belonging to [0,/] instead of {0,/}, or more generally, to a lattice L, because all
membership degrees in mathematical view formi an ordered structure, a lattice. A
mapping from X to a lattice L is called a generalized characteristic function and it.
describes the fuzziness of the set in general. A fuzzy set on a universe X is simply just a

mapping from X'to a lattice L.

Even though Zadeh used [0,/] as the value set of fuzzy sets, later many
researchers working on different aspects of fuzzy sets especially in fuzzy topology
modified the concept using different kinds of lattices for the membership value set.
Important among them are L-Fuzzy sets of Goguen [GO], where L is an arbitrary lattice
with minimum and maximum elements 0 and / respectively, complete distributive lattice
with 0 and / by Gantner and others [G; S; W], complete and completely distributive
lattice equipped with an order reversing involution by Bruce Hutton [HU], complete and

completely distributive non-atomic Boolean algebra by Mira Sarkar [MI], complete



Brouwerian lattice with its dual also Brouwerian by Ulrich Hohle [HO] and complete

distributive lattice by Rodabaugh [R].

Thus the fuzzy set theory extended the basic mathematical concept of a
set. Owing to the fact that set theory is the corner stone of modern mathematics, a new
and more general framework of mathematics was established. Fuzzy mathematics is just
a kind of mathematics developed in this frame work . Hence in a certain sense, fuzzy
mathematics is the kind of mathematical theory which contains wider content than the
classical theory. Also it has found numerous applications in different fields such as
Linguistics, Robotics, Pattern Recognition, Expert SyStems, Military Control, Artificial

Intelligence, Psychology, Taxonomy, and Economics.

Fuzzy topology is just a kind of topology developed on fuzzy sets and in
his very first paper Chang [C] gives a strong basement for the development of fuzzy
topology in the [0,/] membership value framework. Compactness and its different
versions are always important concepts in topology. In fuzzy topology, after the initial
work of straight description of ordinary compactness in the pattern of covers of a whole
space, many authors tried to establish various reasonable notions of compactness with
consideration of various levels in terms of fuzzy open sets and obtained many important
results. Since the level structures or in other words stratification of fuzzy open sets is
involved, compactness in fuzzy topological spaces is one of the most complicated
problems in this field. Many kinds of fuzzy compactness using different tools were
raised, and each of them has its own advantages and shortcomings. In [LO] Lowen gives
a comparative study of different compactness notions introduced by himself, Chang, T.E
Gantner, R.C Steinlage, R. H Warren etc and all the value domains used in these notions
are [0,1].

Gantner and others [G;S;W] used the concept of shading families to study
compactness and related topics in fuzzy topology. The shading families are a very natural
generalization of coverings and in particular, a /*-shading family of fuzzy sets is a fuzzy

covering in the sense of Chang [C]. Using these concepts Malghan and Benchalli [M; Bi]



defined point finite and locally finite families of fuzzy sets and introduced the concept of
fuzzy paracompact spaces. Later Mao-Kang, Luo [MA] gives another version using
quasi-coincidence relation and a-Q-covers. Arya and Purushottam [A;P] has some results
regarding fuzzy metacompact spaces using fuzzy covers. As a continuation of these
works, in the first chapter we introduce metacompactness in fuzzy topological spaces

through a-shadings.

A combinatorial game in a mathematical way was first described in the
beginning of the 17" century. More particularly Bachet De Meziriac [BA] gave the
following game called Nim. Two players alternatively choose numbers between / and /0,
the player on whose move the sum attains /00 is the winner. Bouten [BO] studied Nim
and has many interesting results. A comprehensive study on the history of game theory is
found in Worobjow [WO]. Game theoretic methods have found great many applications
in topology. Topological studies in game theory arose from the famous Banach-Mazur
game. This game related to the Baire category theorem was proposed by Mazur in 1935
and was solved by Banach in the same year. Hence the game came to be known as

Banach-Mazur game.

The term ‘topological game’ was introduced by Berge [BE] . Following an
analogy with topological groups, Berge originated the study of positional games of the’
form G (X, ¢) where X is a topological space and ¢ : X — P(X) is an upper and /or lower
semi continuous multi-valued map assigning to a position x the set @(x) of the next legal

position. (P(X) has vietoris topology). If ¢(x)=¢ then x is a terminal position.

A somewhat different meaning for topological game was proposed by
Telgarsky [T,] (Who is the main initial contributor to this field). This term has an analogy
with matrix games, differential games, statistical games etc, so that topological games are
defined and studied within topology. In a tépological game players choose some objects
related to the topological structure of a space such as points, closed subsets, open covers
etc. More over the condition on a play to be winning for a player may also include

topological notions such as closure, convergence, etc. It turns out that topological games



are related to (or can be used to define) the Baire property, Baire spaces, Completeness
properties, Convergence properties, Separation properties, Covering and Base properties,

Continuous images, Suslin sets, Singular spaces etc.

There are various frame works and notions for infinite positional game of
perfect information. But the following are the most widely used ones. We shall always
consider games of two players, called Player I and Player II where Player I starts the play
(i.e., he makes the first move). Unless otherwise stated, a play of a game is a sequence of
size o, and the result of a play is either a win or loss for each player. A strategy of Player
11is a function defined for each legal finite sequence of moves of Player I. A strategy for
Player I is defined similarly. A stationary strategy is a strategy which depends on the
opponent’s last move only. A markov strategy is a strategywhich depends only on the

ordinal number of the move and opponent’s last move.

As we have stated earlier, a pursuit evasion game G (K, X) in which the
pursuer and the evader choose certain subsets of a topological space X in a certain way is
defined and studied by Telgarsky in [T2]. Although the game resembles that of Banach-
Mazur, it provides for completely different methods and problems to be introduced.
Establishing the close relation between spaces of the class K and the space X in case of
winning strategy for one of the player make it possible to prove many theorems for

different types of topological spaces.

The main purpose of our study is to extend the concept of the topological
game G(K, X) and some other kinds of games in to fuzzy topological games and to obtain
some results regarding them. Owing to the fact that topological games have plenty of
applications in covering properties, we have made an attempt to explore some inter
relations of games and covering properties in fuzzy topological spaces. Even though our
main focus is on fuzzy para-meta compact spaces and closure preserving shading
families, some brief sketches regarding fuzzy P-spaces and Shading Dimension is also
provided. As a pre-requisite to this study, we are compelled to do some work on fuzzy

coverings also.



In the first chapter we collect the basic definitions and notions which are
required in the succeeding sections. The main results obtained include a characterization
of metacompactness in fuzzy topological spaces and a study of the behavior of a- -

metacompact spaces under perfect maps.

In Chapter II, fuzzy topological games, fuzzy winning strategies, stationary
winning strategies, etc are defined and some results related to them are obtained. The
main results are the equivalence of existence of winning strategies and existence of
stationary winning strategies for player I in the game G (K,.X) and the equivalence of
existence of fuzzy winning strategies of Player I in the game G (K,X) and of that in

G'(FK,X) .Again the behaviour of games under perfect maps is also investigated.

Chapter III deals with closure preserving shading families, countable o-
compactness and some games associated with them. Also a complete characterisation of
closure preserving shading families by fuzzy sets with finite support is provided. For this
we introduce and make use of the concept of fuzzy K-scattered spaces. Here we defme\
the concepts of accumulation points and cluster points in a language which is closely
related to that of shading families and in this frame work obtain a characterization for’

countable compactness in fuzzy topological spaces.

In Chapter IV, we have introduced and studied fuzzy P-spaces. The main
result obtained is a characterization of fuzzy P-spaces in terms of a particular type of

fuzzy topological game Gu(X).

Games in product fuzzy topological spaces are discussed in Chapter V.
The main results are the existence of fuzzy winning strategies for Player I in
G (D(KxK7), XxY) if he has the same in both G (K, X) and G (K3, Y).Here we make use

of the concepts like fuzzy rectangles , D-products etc.



Chapter VI deals with some applications of games in product a-para, o.-
meta compact spaces and fuzzy covering dimension. Every product space discussed will
have a winning strategy in some particular kind of fuzzy topological game.Further a
fuzzy version of countable sum theorem for covering dimension in terms of fuzzy
topological games is also obtained.

The idea of fuzzy sets introduced by Zadeh [ZA] using the unit interval
[0,1] to describe and deal with the non-crisp phenomena and procedures was generalized
by Goguen [GO] using some lattice L instead of [0,/]. Through out the main body of the
thesis we have been using the [0,/] fuzzy set up. However all these discussions can be
carried out in the L-fuzzy set up which in it self will yield interesting results. As a model ,
we give characterisations of metacompactness and covering dimension in the L-fuzzy
context , where L is a complete and completely distributive lattice equipped with an order
reversing involution. These constitute Appendixes I and II. Besides obtaining complete
characterization of metacompactness and covering dimension in weakly induced L-fuzzy
topological spaces, it is also shown that the extensions obtained are good in the sense of

Ying-Ming and Mao-Kang [Y; M].



Chapter -1
PRELIMINARIES AND BASIC CONCEPTS

In this chapter we collect the basic definitions and obtain some pre-requisites,

which will be used in the subsequent chapters.
1.1 Fuzzy Sets, Basic Operations and Fuzzy Topology

In his classical paper Zadeh [ZA] first introduced the concept of fuzzy sets as a
class of objects with a continuum of grades of membership. Such a set is characterised by
a membership function which assigns to each object a grade of membership ranging
between 0 and /. An immediate application of this based on the operations of union,
intersection, complementation of sets etc can be found in the theory of general topology.
All these constitute a rich body of theory which is largely parallel to that of general
topology and is called the theory of fuzzy topology. In fact general topology comes as a
particular case of fuzzy topology and this theory was put forward by Chang [C].

We follow the original definitions of Zadeh [ZA] and Chang [C] for fuzzy sets
and fuzzy topology respectively.

1.1.1 Definition [ZA] Let X be a set. A fuzzy set 4 in X is characterised by a membership
function x—144(x) from X to the unit interval / = [0,1].
Let 4 and B be fuzzy sets in X

Some Results mentioned in this Chapter are published in the paper titled Fuzzy topological Games and a-
metacompactness in the Proceedings of the Annual Conference of the Kerala Mathematical Association and the

National Conference on Analysis and Applications ( 1999) pp 89 - 91



Then
A=B < pux) = usx) forallxeX
A<Bo uax) <up(x) forallxeX
C=4AvB<& ucx) =Max {ua(x), up(x) } forallxeX
C=AAB& puc(x)=Min {us(x), us(x) } forallxeX
Complement of 4, A = E < up(x) =1\ ua(x) forallxeX
More generally, for a family of fuzzy sets 4 ={A4;: iel},

The union C = U, 4; and intersection D = ¢y A; are defined by

pclx) = Sup{ pt, (x)} xeXand

iel

pptx) = Inf{u, (x)} ex

iel
The symbol 0 and / will be used to to denote the empty fuzzy set (ugx) = 0 for all xeX)
and the full set X (ux(x) = I for all x eX) respectively.

1.1.2 Definition[C] A fuzzy topology on X is a family T of fuzzy sets in X which satisfies

the following conditions.

) 0,leT

(i) If4,BeT ,thenAABeT

(i) If A;eT for eachiel ,then u;o A; €T.
T is called a fuzzy topology on X, and the pair (X,7) is a fuzzy topological space
(fts).Every member of T'is called a T-open fuzzy set (or simply open fuzzy set).A fuzzy

set is called 7-closed (or simply closed) if and only if its complement is 7-open.

1.1.3 Definition [C] Let 4 be a fuzzy set in a fuzzy topological space (X,7).The largest
open fuzzy set contained in A4 is called the interior of 4 and is denoted by int A. The

smallest closed fuzzy set containing A4 is called the closure of 4 and is denoted by ¢/ 4.



1.1.4 Definition[C] Let f be a function from X to Y. Let B be a fuzzy set in Y with
membership function wp. Then the inverse of B, written as f "'[B], is a fuzzy set on X

whose membership function is defined by u f_,[B](x) = u,(f(x))vVxe X . On the other

hand, let 4 be a fuzzy set in X with membership function g4 The image of A, written as

fl4], is a fuzzy set in ¥ whose membership function is given by

K (D) = Sup{p,(2)} if f'[y]is not empty
zef ()

=0 otherwise forall yeY

where /'(y) = {x / flx)=p}.

1.1.5 Definition[C] A function f from a fuzzy topological space (X,7) to a fuzzy
topological space (¥,U) is F-continuous iff the inverse of each U-open fuzzy set is 7-

open.

1.1.6 Result[C] A function f from a fuzzy topological space (X,7) to a fuzzy topological

space (¥,U) is F-continuous iff the inverse of each U-closed fuzzy set is 7-closed.

1.1.7 Definition [C] A function f from a fuzzy topological space (X,7) to a fuzzy
topological space (Y,U) is F-open (resp.f-closed) iff it maps an open (resp. closed) fuzzy
setin (X,7) on to an open (resp. closed) fuzzy set in (¥, U).

1.1.8 Definition [C] Let 7 be a fuzzy topology. A subfamily B of T is a base for 7 iff

each member of 7 can be expressed as the join of some members of B.

1.1.9 Definition[C] Let 7 be a fuzzy topology. A subfamily S of 7' is a sub base for T iff

the family of finite meets of S forms a base for 7.

1.1.10 Definition[C] Let (X,7) be a fuzzy topological space. A family A of fuzzy sets is a
cover of a fuzzy set Biff B < U{4: Ae A }. It is an open cover iff each member of 4 is

an open fuzzy set. A sub cover of A4 is a sub family which is also a cover.
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1.2 Shading Families

The notion of shading families was introduced in the literature by Gantner and
others [G;S;W] as a very natural generalisation of coverings during the investigation of*
compactness in fuzzy topological spaces. In fact, In particular a /*-shading family of

fuzzy sets is a covering in the sense of Chang [C].

1.2.1 Definition[G;S;W] Let (X,7) be a fuzzy topological space and ae (0,/) . A
collection U of fuzzy sets is called an a-shading (resp. a*- shading) of X if for each
xeX, there exists geU with g(x)>a (resp. g(x)2 a ). A sub-collection of an a-shading
(resp. a*- subshading) of X which is also an a-shading (resp. a*- shading) is called an
a-sub shading (resp. a*- sub shading) of X. In a similar manner we can define / "

shading and 0-shading also.

1.2.2 Definition [G;S;W] A fuzzy topological space X is said to be a-compact (resp. a*-
compact) if each a- shading (resp. a*- shading) of X by open fuzzy sets has a finite a-

sub shading (resp. a*- sub shading) , where a € [0,1].

1.2.3 Definition [M;B;] A fuzzy topological space X is said to be countably a-compact
(resp.countably a*- compact) if every countable - shading (resp. a*- shading) of X by

open fuzzy sets has a finite a-sub shading (resp. a*- sub shading) ,where a € [0,1].

1.2.4 Definition [M;B,] A fuzzy topological space X is said to be « -Lindelof (resp. a*-
Lindelof ) if every a- shading (resp. a*- shading) of X by open fuzzy sets has a

countable a-subshading (resp. a*- subshading) , where a & [0,1].

1.2.5 Definition [M;B;] Let X be a set. Let U and V be any two collections of fuzzy
subsets of X. Then U is a refinement of V(U < V) if foreachg € U thereisan h eV
suchthat g < A If U, V, W are collections such that U < Vand U < Wthen U is called

a common refinement of ¥ and W.
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Note that any a-sub shading (resp. a*-sub shading) of a given a-shading (resp.

a*-shading) is a refinement of that a-shading (resp. a*-shading) .

1.2.6 Definition[M;B;] A refinement {b,;:1eT}of {a;:seS}is said to be precise if 7= §

and b, <a,for eachse S.

1.2.7 Theorem{M;B] Let { a; } and { b, } be two a-shadings (resp. a*-shadings) of a

fuzzy topological space (X,T) where a € [0,1]. Then

() {as A b,}is an a-shading of X which refines both { a, } and { &, }. Further, if both
{a;} and { b, } are locally finite ( point finite) sois{a;A b.}.

(i)  Any common refinement of { a; } and { b, }is also a refinement of {a; A b,}.
1. 3 A Characterisation of a-Metacompactness

An approach to fuzzy paracompactness using the notion of shading families
was introduced by Malghan and Benchalli [M;B;] . We extend in this section the

concept of metacompactness to fuzzy topological spaces in terms of a@-shadings and

obtain a characterisation for the same.

1.3.1 Definition [M;B;] A family {a, : se S }of fuzzy sets in a fuzzy topological space
(X,T) is said to be locally finite if for each x in X there exists an open fuzzy set g with

g(x) = 1 such that a; < /\ g holds for all but at most finitely many s in S.

1.3.2 Definition [M; B,] A family {a, : se S} of fuzzy sets in a fuzzy topological space
(X,T) is said to be point finite if for each x in X, a,(x) = 0 for all but at most finitely

many s in S. Or equivalently as as(x) > O for at most finitely many s in S.

1.3.3 Proposition [M; B;] Let {a; * se S} be locally finite family of fuzzy sets in a
fuzzy topological space (X,7). Then
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(1) {cl a; : se S}is also locally finite.

(2) Foreach S'c S, v {cla;:se S’} is a closed fuzzy set.

1.3.4 Definition [M; B;] A collection {4, : ie I} of fuzzy subsets of fuzzy topological

space X is said to be closure preserving if for each J</ , cl [VAi: ie J] =v [cl A ie J]

1.3.5 Proposition [M; B,] Every locally finite family of fuzzy sets in a fuzzy topclogical

space is closure preserving.

1.3.6 Definition [M; B;] A fuzzy topological space ( X,7") is said to be a-paracompact
(resp. a*-paracompact) if each a-shading (resp. a*- shading) of X by open fuzzy sets

has a locally finite a-shading (resp. a*-shading) refinement by open fuzzy sets.

1.3.7 Definition. A fuzzy topological space (X, T ) is said to be a-metacompact (resp. a*-
metacompact) if each a-shading (resp. a*- shading) of X by open fuzzy sets has a point

finite a-shading.(resp. a*- shading) refinement by open fuzzy sets.

1.3.8 Remark It is interesting to notice that a-metacompact will not imply /S
metacompact and S-metacompact will not imply a-metacompact when a <  where @,
B € {0,1]. This stems from the fact that we are considering the relationship between two

statements , each having two doubly quantified shadings.

1.3.9 Lemma Let U= {U; : A€ 4 } be an a-shading of X by open fuzzy sets with A4 well
ordered . Let V3 = SupU, for each e 4. If { V3 : A€ A }has a precise point finite

B<A

refinement by open fuzzy sets {W; - 4 € A} and each of 1\ SupW, has a point finite -
y>A

shading by open fuzzy sets which is a partial refinement of {Usg: B<A}. Then U has a

point finite open refinement.
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Proof
Assume that W, = 0 implies W, # Wp if A #f3. Let S; be a point finite a-shading
of 1\ SupW, for each Ae 4. Also S, is a partial refinement of {Up - B < A}. Therefore it

y>A

follows that S € .S; implies that S< Ug for some f <A

Take Py={Win S :S € Sy, S< Up forsomeff <A }. Let H=uU {P,: Ae 4}. Any
he H is of the form # = W, A § for someAde 4 such that S € S5 and S < Up for someff <A
Therefore h(x) = W; (x) A Six) for every x in X. Since {W, : Ae 4 }and S, are point
finite, so is their intersection. Therefore it follows that A#(x)>0 for at most finitely many
he H. Thus H is a point finite open collection. Also 7€ H implies that A< Ug fcr some
B.For,h=W A8 for someS € S,. Since S, is partial refinement of {Up : B < 4},
§< Up for some f<A. Therefore h < Uy for some 3.

Letx e X. Now {ie 4 : Wy(x)> o} is finite since {W, : A€ 4 }is point finite.
Let 5 be the greatest element. Therefore [1\ SupW, ] (x) > 0. ButSsis a point finite a—

y>6

shading of 1\ SupW, . Therefore #(x)> o for some 7& Ss. Now take 2 = WsA 1 where
y>8

1<Up forsome f<&. Then h(x) = Wsa 1] (x)

= Ws(x)nA t(x)

> q since {W;: Ae 4 }is an a—shading of X and {Si1:Ae 4 } is
an a-shading of 1\ SupW, . Therefore it follows that H is an a-shading of X, which

y>A

completes the proof.

1.3.10 Definition An a-shading V is said to be a point wise w-refinement of an a-
shading U if for any xeX, there is a finite K — U such that if V{x) >0 with VeV, then
V<U for some Ue K.
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1.3.11 Lemma If {U,} is a sequence of a—shadings of X by open fuzzy sets such that
1

Un+1 1s a point wise w-refinement of U, for each neN, then U, has a o—point finite

refinement by open fuzzy sets.

Proof

Take U, = {Up:Aed} with A well ordered. If U € U{U, : neN }, we denote XU)
as the smallest Se 4 such that U<Up. Then for each n>1, take W, = { W e U,: §(W) =
& (U) whenever Ue Uy+; and W<U }. We will prove that U{ W,: ne N}is an a-shading
of X. Let x €X and for every n>/ take A, = Sup{é (U) : Ue U, and U(x)> a }. Clearly 4,
exists since Uy is a point wise w-refinement of Up1. Also A4;>A>A3>. .. ... , SO there is
some yeA and m e N such that A, = y or all k&2m. Now Un.2 is a point wise w-refinement
of Un+1.Therefore for each xeX, there is a finite K < Upat , such that if Ufx)>a with
U € Unn1 and U<V for some Ve K. Therefore { Ue Unsz : Ux)> a}is a partial
refinement of K . Clearly there is some Ke K with & (K)= 7, otherwise we are left with
Am+2>Am+1 Which is not possible.

If U € Uy with K<U, we have y = 6(K) < §U) < Ap= y. Therefore &K) =6(U)
and hence it follows that Ke W1.Also {Ue Wy Ulx)> a} is a partial refinement of
K. Therefore U<K for some U € Uns2 . Clearly K(x)> « . Thus U{W,: neN} is an
a-shading of X.

Now we will construct a o-point finite refinement. Let Vig= u{WeW, : §W)= [}
forany n>1, fed. If Vi, = { Vup : fed}. The collection U{V,: neN} is an a-shading
of X and refines U;. We will show that each V, is point finite. Let A’ 4 be such that
Vag(x) >a for every aed’. Pick corresponding Ws € W, with Wg(x) >a and&(Wg)= f3 for
every Be A*. We know that each U,., is a point wise w-refinement of U, and W“C U..
Therefore it follows that there is a finite H < U,.; such that {W, aeA’}is a partial
refinement of H By definition of W,, we have W, < H for He H implies a =6(W,)

= §(H) . Now since H is finite, A" is finite and the lemma 1s complete.
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1.3.12 Definition A collection U of fuzzy subsets of a fuzzy topological space X is said to
be interior preserving if Int (A {W.-WeW})=n(Int {W -WeW}) for every WcU.

1.3.13 Definition A collection U of fuzzy subsets of a fuzzy topological space X is said to

be well monotone if the subset relation * < is a well order on U.

1.3.14 Definition A collection U of fuzzy subsets of a fuzzy topological space X is said to
be directed if U, V e U implies there exists a W € U such that U v V< W.

1.3.15 Result A well monotone collection of open fuzzy sets is interior preserving and
directed.
Proof

Proof follows from definitions 1.3.13, 1.3.14 and the fact that if U is a well

monotone collection of open fuzzy sets, then so is {/nt U : UeU}.

1.3.16 Definition Let X be a fuzzy topological space and H be an @-shading of X. Then
for any xe X, we define St(x, H)=v {heH : h(x)>0}.

1.3.17 Lemma If an a-shading U of X by open fuzzy sets has a point finite a-shading
refinement H such that xe /nt ( St(x, H)) for every xeX, then U has an open point wise
w-refinement .
Proof

Since H is a refinement of U, for he H, take Uye U such that # < U,,. For any xe X,
let V= [Int (St(x,H)] A Inf {Un:heH and h(x)>0}. Now the collection V={V,: xe X} is
the discrete point wise w-refinement of U by open fuzzy sets. For, each xeX we want to
find out a finite K < U such that if Vy(x)>0 with V; € V then V, <K for some K K. Now
take K= {Uy: Uy>h, h(x)>0}. Since H is point finite, clearly K is finite and K c U. This

completes the proof.
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1.3.18 Lemma If U is an interior preserving a—shading of X by open fuzzy sets, then U"
has a closure preserving closed refinement if and only if U has an interior preserving
point wise w-refinement by open fuzzy sets, where U” is the collection of all unions of
finite sub-collections from U.
Proof
If F is a closure preserving closed refinement of U" and xeX, then let

Ve=[Inf {U:Ue U and Ufx)>0}]\ [Sup {F:Fe F and F(x)=0}]. Then the collection
{V»xeX} is an interior preserving point wise w-refinement of U by open fuzzy sets .

Conversely suppose V is an interior preserving point wise w-refinement of I/ by
open fuzzy sets. For Ue U, let Py= {xeX: St (x,V) < U}. Then P ={ Py: Ue U" }is a

closure preserving closed refinement of U

1.3.19 Lemma If U is a point finite a-shading of X, then U has a closure preserving
closed refinement.
Proof

We know that a point finite a-shading of X by open fuzzy sets is an interior
preserving open point wise w-refinement of itself. Therefore lemma follows from lemma

1.3.18 above.
1.4 Main Theorem

1.4.1 Theorem For any fuzzy topological space (X, 7) the following are equivalent.
() X is a—metacompact
(i)  Every a—shading U of X by open fuzzy sets has a point finite refinement H
such that /nt (St(x, H))(x) >0 for every xeX.
(iii)  Every a—shading U of X by open fuzzy sets has a point wise w-refinement
by open fuzzy sets.
(iv)  Every well-monotone « -shading of X by open fuzzy sets has a point finite

open refinement.
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(v)  Every directed a -shading of X by open fuzzy sets has a closure preserving

closed refinement.
(vi)  For every a -shading U of X by open fuzzy sets, U” has a closure preserving
closed refinement.
Proof

Trivially (i) =(i1)

(i1) =>(ii1) follows from lemma 1.3.17

(i11) = (1)

From repeated application of (iii) and lemma 1.3.11 it follows that if U is an « -
shading of X by open fuzzy sets , then U has an « -shading refinement U{V, : n € N}
such that each ¥, is a point finite collection of open fuzzy sets. For each n >/ take
Gn=Sup{V:Ve Vi, k<n} and let W be a point wise w-refinement of G = {G,: ne N}.
Now G is directed and hence {St(x,W): xe X}refines G. Now if Pi= {x : St(x, W) < G,}
then cl Ph<Gp,and X=v { P, :ne N}.

Take H, = [ V\v Px: Ne n, k<N}. Then H =u {H,: neN} is a point finite open’
refinement of U. This completes the proof of (iii) = (i).

(i) = (iv)
Clearly follows from the definition of a-metacompactness.
(iv) = ().

Suppose that (iv) is true. Then if possible let X be not a-metacompact. Then there
is a smallest cardinal number x such that there exists an a-shading U of X by open fuzzy
sets with no point finite open refinement and | U= u. Therefore every a-shading W of
X by open fuzzy sets with | wil<| Ulhasa point finite open refinement. Express U as
U= {Uy: A<} and take V5= Sup { Up : B < A}for each A<y .Clearly the collection V' =
{ VA : A< i } is a well monotone a-shading of X. Then by (iv) we have point finite
(precise) a-shading refinement { Wy : A< u } by open fuzzy sets. Now let /3 = 1\ Sup{Wp
- >4} for every A< . Then (J\Fp)u { Up: B = A} is an open a-shading of X with-
cardinality less than z.And by the minimality of g it should have a point finite

refinement by open fuzzy sets say I, .Take Sy= { /e I;: I A F; # 0} Then from lemma
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1.3.9 it follows that U must have a point finite a-shading refinement by open fuzzy sets.
This is a contradiction and hence the proof of (iv) = (1) is complete.
(V)& (vi)

U” is the collection of all unions of finite sub collections from U. Clearly U*is
directed and hence has a closure preserving closed refinement.

Conversely let U be a directed a-shading of X by open fuzzy sets. Clearly U” is a
refinement of U and by (vi) U has a closure preserving closed refinement say ¥. Then
V< U< U. Therefore it follows that Vis a closure preserving closed refinement of U
(1) = (vi)

Given that X is a-metacompact. Therefore every a-shading U of X by open fuzzy
sets has a point finite a-shading refinement say V. Then by lemma 1.3.19, V has a
closure preserving closed refinement. Since V< U implies V< UF the proof of (i) = (vi)
is complete.

(vi) = (iv)

Let U be a well monotone a-shading of X by open fuzzy sets. Then by Result 1.3.15
it follows that U is interior preserving. Now U” is always directed and by (v) we get U"
has a closure preserving refinement by closed fuzzy sets. Then by lemma 1.3.18 , U” has
an interior preserving point wise w-refinement by open fuzzy sets, say U,. Take U;= U.

Then by repeated use of lemma 1.3.18, we get a sequence ( U,)," of a-shadings of X by

open fuzzy sets such that U,+; is an interior preserving point wise w- refinement of U,.
Then by lemma 1.3.11 U has an open refinement {V,: neN} where each V, is point
finite. For each nelN , take g,= Sup { V': Ve Vi, k <n}. Now {g,: neN}is a directed a-
shading of X by open fuz;y sets and must have a closure preserving refinement by fuzzy
closed sets say F. Then F may be expressed as {F,- neN}. where F, < g, Take
H,={V\SupF, : VeV, }. Consider H=u { H, : neN}. This is point finite for, let

k<n
xeX, we want to prove that A(x)>0 for at most finitely many #eH . Now every heH is of

the form V' \Sup F,, for some Ve V, .If possible let h(x)>0 for infinitely many heH .

k<n

Now clearly V(x)>0 for infinitely many Ve V,,. This is a contradiction since each V,, is
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point finite. Therefore H is a point finite a-shading refinement of U by open fuzzy sets.

This completes the proof.

Now we give an example of a-metacompact space which is not a- paracompact.

1.4.2 Example

Let X be the deleted Tychnoff plank 7o = 7'\ {(®w;, @)} where T is the Tychnoff’s
plank given by [0,m1]x [0,w] where w; is the first uncountable ordinal and w is the first

infinite ordinal. Let ae€[0, /) be any number. Define for each ¢ €[0,w) and

Pel0,wr) Uf={(,6,7):g< Yy £ w} and for each Ae [Ow;) and de [Ow)

Vj ={(y,0): A<y <w,}. Let T be the fuz.zy topology generated by taking each point p
of [0,w/)x [0,w) as fuzzy points with value 7 where a< 17 < / and characterestic

functions of [/ f and Vj as the open sets. Now (X,T) is a-metacompact. For, any a-

shading of X by open fuzzy sets has a refinement conéisting of one basic neighbourhood
for each xe X .Any such a-shading refinement U is point finite, since an arbitrary point’

xeX can have at most three members of U such that Ux)> a where Ue U.

Now the space (X, 7) is not a -paracompact. For, consider the a -shading of
X by sets Up= X\ B and U, =V:-l forn = 1,2,3... where B =ya where 4 = {(w, n) :

0 < n<w} has no locally finite refinement . For, if possible let {¥ ,} be a locally finite

refinement. Now for each ne N, we may define an ordinal «, of to be the least ordinal

such that characterestic function of VZ is contained in just one W, If a = Supa, < @,

every neighbourhood of (a, w) will have non zero meet with infinitely many members of

(W}
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1.5 Metacompactness and Mappings

1.5.1 Proposition Let f* X —2— Y be an F-closed F-continuous mapping, where X and Y
are fuzzy topological spaces. Then if {U,: €A} is a closure preserving family of fuzzy seis in
Xthen so is {f{U.): aeA}
Proof

Since fis F-continuous, it follows clearly that flc/ U,) < ¢l AU,) for every aeA.
Now we have U, < ¢l U, for every aeA. |
Therefore AUa)< flcl Uy).
Thatis ¢/ [ AU)] < ¢l [flc! Uy)]-

= flcl Uy) since fis F-closed

Therefore we get ¢/ [ AU.)] =fcl Uy) for every aeA.

Now for any collection {f{U,): aeA}, clearly we have
v cl [fUL)] £ c[v{flUy: aeA}]

Again flUg) < ¢l [f(Us)]
= flcl Uy).

Therefore we have V{f{Uy): acA} < v {flcl Uy) : aeA}

Thatis ¢l [V{f(Uy): aeA}] < cl[v {fcl Us): aeA}]
=cl[f [V (clUy) : aeA]]
=cl[flcl[v { Us : aeA})]since {U;: aeA} is closure preserving
=f(cl[v {Us : aeA}])since F is F-closed
=fv{cdUs : aeA})
= v{f(clUy): aeA}
=v{cd[f(Us):aeA]}

Thus we get v c [fUL)] 2 cl[V{f(Uy): aeA}]

And hence we have A el (U] = cl [V{flUy): aeA}]

This completes the proof.
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1.5.2 Proposition Let X and Y be two fuzzy topological spaces and let f: X —>— Y be
finite to one. If U = {U,: aeA} is a point finite collection of fuzzy sets in X, then {AUs,):
aeA}is also a point finite collection in Y.
Proof

Given that fis on to and finite to one. Therefore for every y €Y, we have a finite
(support) fuzzy subset £'(y)in X. Let xe f7'(y). Then since {U, aeA} is a point finite
collection in X, Uyx(x)>0 for at most finitely many aeA Now since f~/(p) is finite, we get
a finite sub-collection Ur of U. Now consider the collection {flug): up €Ufp }.This is

finite and f{ug)(y)>0 for all ur €Ur. Thus {{U,): aeA}is a point finite collection in Y.

1.5.3 Theorem Let X and Y be two fuzzy topological spaces and let /- X —2>— Y be a

finite to one F-open F-continuous mapping. If X is a-metacompact then so is Y.

Proof:

Given that X is a-metacompact. Let U be an a-shading of ¥ by open fuzzy sets.
Since £ is F-continuous, it follows that U’ = {f/(U) : Ue U } is an a- shading of X by
open fuzzy sets. Since X is a-metacompact , it follows that U’ has a point finite a-
shading refinement by open fuzzy sets say V. Now clearly {f{V): Ve V' } is a point finite
a-shading of ¥ and it refines U also. Since fis F-open, f(V) is also open. Hence Y is

a-metacompact.

1.5.4 Theorem. Let /- X —™% Y be F-continuous, F-closed function. If X is a-
metacompact , then Y is also a-metacompact.
Proof

Let U be an a-shading of ¥ by open fuzzy sets. Then by a characterization of a-
metacompactness in 1.4.1, it is enough to prove U has a closure preserving a-shading
refinement by closed fuzzy sets. Where U” is the collection of all unions of finite sub
collections from U. Now since fis F-continuous W= {f (Uy: Ue U} is an « -shading of
X by open fuzzy sets. Since X is a-metacompact, it follows that W' has a closure

preserving a-shading refinement F by closed fuzzy sets. Since f is F-closed it follows
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that f(F) is closed for each FeF Thus {f(F) : FeF } is the required closure preserving a-

shading refinement of U” by closed fuzzy sets.

1.5.6 Definition Let X and Y be two fuzzy topological spaces.Then f: X —— Y is F-open

a-compact if fis F-open with a-compact fibers, where fibers of a mapping f: X —— Y

are the sets /() for yeY.

1.5.7 Definition Let X and Y be two fuzzy topological spaces. f: X —— Y is pseudo F-
open if whenever f(y) <U, yeY and Uis an open fuzzy set in X, then y e Int (f{y)).

1.5.8 Definition Let U be a collection of fuzzy subseéts of a fuzzy topological space X.

We say that U is a-compact finite if {UeU : UAK # 0} is finite for any a-compact subset -
Kof X.

1.5.9 Lemma Locally finite families of fuzzy sets are a-compact finite.

Proof

Let U be a locally finite family of fuzzy subsets of a fuzzy topological space X.
Let K be a-compact. Since U is locally finite, for any x € K, we can find an open fuzzy
set w, such that wy(x)=1 and U, < I\w, holds for all but at most finitely many s . Now
clearly { wy - xeX } is a I*-shading of K and since K is a-compact we get a finite sub
shading say{wy; ,wx2, ... wy} for some finite £ where each of w,, has non empty meet

with at most finitely many Ue U. Hence it follows that {Ue U :UAK # 0} is finite.

1.5.10 Theorem If /- X —— Y be an F-continuous pseudo f-open a- compact with X a-
paracompact, then Y is a- metacompact.
Proof

Consider an a-shading U of Y by open fuzzy sets. Now since fis F-continuous it
follows that U'={f /(U): Uc U} is an a-shading of X by open fuzzy sets. Given that X is

a-paracompact . So U’ has a locally finite_a-shading refinement by open fuzzy sets say
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V. Now consider K= {f(V) : Ve V }. Since f is F-open a-compact and for every yeY,
%) is a-compact, from Lemma 3.16 it follows that f () has non empty meet with at
most finitely many members of V. Also since every locally finite family is point finite, it
follows that V' is point finite and hence K is also point finite . Since f'is pseudo F-open it
follows clearly that y e Int(st(y,K) for every yel . [where st(x,U) = v{Ue U : U(x)>0].

Now from the characterization of a-metacompactness in theorem 4.1.1, the proof is

complete.
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CHAPTER-1I
THE FUZZY TOPOLOGICAL GAME G (K, X)

2.1 Introduction

A pursuit evasion game G (K,X) in which the pursuer and the evader choose
certain subsets of a topological space in a certain way is defined and studied by
Telgarsky [T2]). In this chapter we generalise the concept of topological games in to a
fuzzy topological space and some results related to them are obtained. Just like in the
case of G(K,X) , the fuzzy topological game G'(K,X) has plenty of applications ‘in fuzzy
topology especially in fuzzy metacompactness etc, which will be discussed in the

succeeding chapters.

2.2 The Fuzzy Topological Game

2.2.1 Notation By K we denote a non empty family of fuzzy topological spaces, where
all spaces are assumed to be 7, That is all fuzzy singletons are fuzzy closed. I” denote the
family of all fuzzy closed subsets of X. Also X € Kimplies I ¢ K. DK (FK) denote the
class of all fuzzy topological spaces which have a discrete (finite) fuzzy closed a-shading

by members of K.

2.2.2 Definition Let K be a class of fuzzy topological spaces and let X € K . Then the
fuzzy topological game G (K,X)is defined as follows. There are two players Player / and
Player /I . They alternatively choose consecutive terms of the sequence(E ), F), £ F),...) of
fuzzy subsets of X. When each player chooses his term he knows K, X and their previous
choices. A sequence (E,F},ExF>,...) is a play for G'(K,X) if it satisfies the following-

conditions for each n 21.

Some Results mentioned in this Chapter are published in the paper titled Fuzzy Topological Games I in the Far East J.

Math. Sci.,Spl. Vol (1999) Part IIT (Geometry and Topology), 361-371.



(1) E,isachoice of Player/

(2) Fhisachoice of Player I/

3) E.elnK

(4 F.el

5) E, v F, <F,; whereFp=X

6) E.n Fr=0
Player / wins the play if Inf F, = 0. Otherwise Player /I wins the Game.

nzl

2.2.3 Definition A finite sequence (E,F,ExF),........ LmFm) 1s admissible if it satisfies

conditions (1) -- (6) for each n <m.
2.2.4 Definition  Let S be a crisp function defined as follows

STU(FY 225 FAnK
Let S,={X} n2l
S;={Fe ' . (S'(X),F) is admissible for G'(K,X)}. Continuing like this inductively we get
Si= {(I1,FoFj,....... Fn) : (E,,F),E5 F,.. .[E, F,) is admissible for' G (K,X) where Fy=X and
Ei=S (E,FLE;F,.. Fi.)for each i <n}. Then the restriction S of S to U, S, 18
called a fuzzy strategy for Player I in G (K, X).

2.2.5 Definition If Player I wins every play (E,F,E5F>,.. . EnFy, ) such that

..............

E, =S (FLF....... ,Fu.1) , then we say that S'is a fuzzy winning strategy.
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2.2.6 Definition S: F —=25 [ ~K is called a fuzzy stationery strategy for
Player I in G (K,X) if S(F) < F for each Fe [* We say that S is a fuzzy stationary
winning strategy if he wins every play ( S(X),F,S(F1),F>.....)

From definitions above, we get

2.2.7 Result A function S: I —=2 F K is a fuzzy stationary winning strategy if
and only if it satisfies
() ForeachFe ', S(F)<F
(i) If {F,: n2> 1} satisfies S(X) A F;=0and S(F,) A F,+;= 0 foreachn >/ then
InfF =0.

n21

2.2.8 Theorem Player I has a fuzzy winning strategy in G (K,X) if and only if he has a
fuzzy stationary winning strategy in it.

Proof'is similar to that of Yajima [Y;] and for completeness we are including it.

Proof:

Sufficiency part follows clearly. Conversely let § be a fuzzy winning
strategy of Player I for G (K,X). Well order '\{0} by < . Let H be any non empty
closed fuzzy subset of X. |
Claim-(1) Now we will prove that there is some F(H)=(F,FF5,...Fy,) € (F)"
satisfying
) SC(FoEFy,.....F) nH =0for 0<i <m-1.

(i) S(Fo,Fy,....F) N H= 0
(iil) Fi«=Min{Fe I’ :H <F <F; and F/\' S(F1,F>,...F)=01} for 0 < i < m-1 where
Fo=X and F(H)=0 may occur.

To prove the above claim assume the contrary. Then we can inductively choose
some (F},F5,....) € (F )" such that S(F},F5,...Fi) A H = 0 and
F.=Min{Fe I : HSF<F; and S(F},F,,...Fi.;) AH =0 }for each k2/.
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Now (E, F) E, Fy....) where Ex= S(F),F>,...Fy.;) is a play for each k>1 for G'(K,X) and by
definition of fuzzy strategy ,we have Inf F, = 0. Also H<F} for all k>/. There fore

k21

H < Inf F, = 0.This is a contradiction to H # 0. Thus claim- (1) holds.

k21
Take $*(0) = 0 and S*(H) = S(F 1, F5,...Fm) A Hwhere F(H)= (F1,F>,...Fp)
for each He I \ {0}.Then $* is a function from I into I » K such that S*(H) <H for
each He I' . We will prove that S* is a fuzzy stationary winning strategy for Player / in

G (K,X).

Let (E;,H,E2H,,.....) be a play such that E,=5*(X) and E=S*(Hn.1)
for n > 2. We show that Inf H, =0. For n <m, take F(H) /,=(F,F>,...F,) and

nx1
\FH) |=m
Claim-(2)
We will show that there are some (F,F,..) € ( ' )® and a sequence

k(1)<k(2)<....such that k& > k() implies (F),F>,...F,) = F(H,) /, for each n >1.

Take Fp=X and assume that (F,F>,...F,) € (I )" and { k(i) : i <n} has been
already chosen . First we will prove that | F (Hy) | >»n for each & > k(n) . Let k > k(n),
then by induction we have F(Hy) /, = F(Hypw) /n = (F1,F>,...Fy) .

If S(Fo,F>,...Fy) A Hym=0, then from Hy <Hyy it follows that S(Fo F,..Fn) A Hy =0 .
Otherwise if S (FoF,...Fn) A He # 0 by (ii) of Claim-(1) above we have F(Hym)
=(Fo,F>,...F,) sothat S*¥( Hywm) = S(Fo,F2,...Fn) A Hym.
Hence S(Fo,F>,...EFn) A He = S*( Him) A Hk.

< Expmyrs A Hppye

=0

Thus in both cases S(Fy, F>,...Fy) is disjoint from H. By the choice of F(H}) this means
\FH) | >n
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Let F+i(k) be the (n+1)" term of F(H,) for k>k(n) . This exists since we
have already proved that | F(Hy) | > n. Now take Fpy = Min { Fua(k) - k > k(n)}.
Choose some k(n+1)> k(n) suchthat Fj.;=F,. (k(n+1)). Let k> k(n+1) .
Clearly Fpe; < Fyes (k). Also F(HY, = F(Hipne1)) /n

' = (F),F>..Fy) and Hy< Hipe1)

By (ii) of claim-(1) above we obtain Fp+1(k) < Fra(k(n+1)) = Foa. Hence Fpoy = Fou(k)
whenever k£ > k(n +1). This means(F},F>,...Fne) = F(Hi)/n+1 for each k > k(n+1). Thus
claim - (2) holds.

Now consider (£, F;,EsFo...... En.F,) such that £, = S (Fo.F1,.Fa......, F.;) for
I<i<nand F, = X. This is an admissible sequence in G (K,X). By the definition of fuzzy’

winning strategy we have Inf F, =0 . Also by claim-(2) , each F, is in terms of some

nzl
F(Hy) . Then from (ii) of claim- (1), it follows that Hyx < F;, for each F}, . Therefore we
have Inf H, < Inf F, But Inf F,= 0. Therefore it follows that /nf H, = 0. Thus S* is

nz1 nzl nz1 nx1

a fuzzy stationary winning strategy for Player I in G (K, X).

2.2.9 Proposition Let K and K; be two classes of fuzzy topological spaces with K, K;

and if Player I has a fuzzy winning strategy in G (K, X) , then he has a fuzzy winning
strategy in G' (K3, X).

Proof
From Theorem 2.2.8 it follows that Player I has a fuzzy stationary winning

strategy in G~ (Ky, X). say S. From theorem 2.2.8 it suffices to prove that Playerl has a’

nto

fuzzy stationary winning strategy in G'(Kz, X). Now §: | —=me I n K; . Then by
Result 2.2.7 we have S(F) < Fwhere F ¢ I whereandif {F,:n2N} ' satisfies
SX) A F1=0and S(Fy) A Foey=0foralln > 1, then Inf F,= 0.

nzt

Now define S*: I —=2» F~K; by F— S(F)A K,. Now we will show that $* is

a fuzzy winning strategy for G~ (K2, X).
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Now S*(F) = S(F) A K3,
< S(F)
<F
Therefore S* is a stationary strategy for Player [ in G (K3, X).

Now to prove that S* is winning, we want to prove that Player I wins every play

of the form (S*(X), F;, S*(F)),....... ). For that we want to prove that /nf F,= 0. Now we

n3l
have S*N)AF; =[SX) A K AE
= SX)AK:AF;
=0 Since S is a stationary winning strategy of Player 1in G~ (K, X).
Also S¥(F) A Fne1 =S(F) AK2 A Foyg
=0
By Result 2.2.7 it follows that/nf F,= 0. Therefore S* is a fuzzy stationary winning

nzl

strategy for Player Iin G~ (K3, X).

2.2.10 Proposition Let Y be a fuzzy closed subspace of a fuzzy topological space X. If
Player I has a fuzzy winning strategy in G’ (K, X). Then he has a winning strategy in
G (K, Y).
Proof
Let S: F —™°» [ ~ K be a fuzzy stationary winning strategy of G (K, X).
Now define S*: I/ —2¢ 5 " ~K by F'>S(F) AY where F'= F AY and Fe I
Now S*(F)=S(F) Y
<F AY
= F
Thus S* is a fuzzy stationary strategy of Player Iin G’ (K, Y).
Let { F,”:n=>1}cC ]_Y where F,’= F, nY forsomeF,e I

Now S¥Y) AF;' = [S(X) AYIAEY)
=[SXOAYIALFInY]
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=SX)ANY A Fy
= ( since § is winning
Also S*(Fy’) A Fper’ = 0 follows clearly. Therefore from Result 2.2.7, it follows that
Inf F,= 0. Therefore it follows that /nf F', = 0. Thus proving $* is a fuzzy stationary

nzl nz1

winning strategy of Player I in G~ (K, Y).

2.3 Finite and Countable Unions

Clearly we have K < FK and X € FK implies X c FK .

2.3.1 Proposition If Player I has a fuzzy winning strategy in G (K, X) , then he has a-
fuzzy winning strategy in G~ (K, X).

Proof

Let S be a fuzzy winning strategy for Player Iin G~ (FK, X) . We will try to define
a fuzzy strategy ¢ for G’ (K, X). Now take Eo=X , E;=S(Ey) and Fo=E,. Now E;e F~FK
. Therefore E; =V{H;m : m <k;} where {H;, : m <k;} < '~ K We set F;=H,, and
(Fy)=F,. Also take F> € I’ in such a way that F; A F,= 0 and also set F; =F, A H 1
Fa) for G (K, X) . Take Fays; = t(Fo Fi,............ Fou))=Fus AH 1y . Take Fygize I

with Fajer < Fopy and Foge2 A Foyey = 0. Take E>= Fyy42 . Now clearly E/nE, =0

and #(Fy F,; F,)=F; . Continuing like this we get an admissible sequence (Fy, F,

and set E; =S, E; , E;) . Since E;e F'~ FK |, we have E; = v{H;3n m <ks}

where each Hyme ' K.

n21

Now {E;, : neN} c{ F,, : neN }.Therefore it follows that Inf F,,= 0.. Therefore 7 1s a

nxl

fuzzy winning strategy for Player I in G (K, X) .
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2.3.2 Remark From K < FK and Proposition 2.2.9 it follows that if Player I has a fuzzy
winning strategy in G~ (K, X), then he has a fuzzy winning strategy in G~ (FK, X).

From Remark 2.3.2 and Proposition 2.3.1 we get

2.3.3 Theorem Player I has a fuzzy winning strategy in G (K, X) if and only if he has’
the same in G~ (FK, X) .

2.3.4 Proposition If a fuzzy topological space X has a fuzzy closed countable a-shading
{X,: ne Njsuch that Player I has a fuzzy winning strategy in G (K, X,) for each ne N
then he has a fuzzy winning strategy in G~ (K, X) .

Proof

Let S, be a fuzzy stationery winning strategy for Player I in G~ (K, X,) for each
ne N. Now itis  enoughifwe prove that Player Ihas a fuzzy winning strategy in
G (FK, X). Now we take S(X)=S;(X) and assume that (E,F,E;,....E,F,) is an
admissible sequence in G’ (FK, X) such that E; =S(F),F>F3,... Fi.;.) for each i <n where
Fo=X. Take Epe; = S(FAFo Fa. Fr) = Sup S, (F, A X,)

k<n+l

Consider the Play (£, FL,E>,.....) in G’ (FK, X) such that E=S(F,,FF3,... Fy...)
for all n>/ . Now take an m > / . By definition of Play we have FEyiy A Fopy = 0.-----——- ¢))
Here Eqey =Sup S, (F, A X))

ksns]
> Sy(Fpr Xu)
Also Fp+; AXu< Fne; . Therefore from (1) it follows that
[Su(Fa A Xi) ] A [ Fass A Xin ] =0 for each n2m. Now since Sy, 1s a stationary winning
strategy for Player Iin G~ (K, X,) , we have.
S Far Xm) € Fan X, foreach n2>m.
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Therefore [FoA X 1 A[Fpsi A Xw] =0 foreach n2m . Thus Apom [Fanr Xn] =0
We also have Fy+; < F, and hence it follows that /nf F, =0. Thus Player I has a

n21

winning strategy in G (FK, X) , hence the proof is complete by Theorem 2.3.3.

2.3.5 Theorem Let X be a fuzzy topological space with a fuzzy subset £ such that
Ee I~ E . If Player I has a fuzzy winning strategy in G (K, F) for each Fe F with
E A F=0, then Player I has a fuzzy winning stratey in G~ (K, X)

Proof
For each Fe Fwith EAF=0, Let Srbe a ﬁlziy stationary winning strategy for

Player 1in G’ (K, F) . Now we will find out a fuzzy winning strategy S for Player I in
G' (K, %)

Define S(X)=E and (E},F},EFs,.....E.F,) be an admissible sequence in G~ (K, X)
such that Ey = S(FoFun,F.....Fip ) for each i < n where Fy = X. Take Eyn=
S(Fo.F1,,F>,..... F) = Sg 1(Fy). Consider the play (E),F,EyF,,.....) Now clearly EqqA
Fu= 0. That is Sg;(F) A Foae1= 0. Also Sg (X)) A F1= E 1A F/= 0 Since Sr, is a stationery

winning strategy, it follows that /nf F, = 0. Thus Player I has a fuzzy winning strategy in

nxt .

G (K, X).
2.4 Games and Mappings

2.4.1 Theorem Let X and Y be two fuzzy topological spaces and K; and K; be two classes
of fuzzy topological spaces such that X € K; and ¥ € K, . If fis an F-continous function
from X on to ¥ which maps all E € I n K to f{E) € I' n K; and if player [ has a fuzzy
winning strategy in G (K),X) , then Player I has a fuzzy winning strategy in G~ (K2, Y).
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Proof

Let S be a fuzzy stationary winning strategy for Player / in G~ (K}, X). Thus player
[ wins every play of the form (S(X), F), S(F)) , ... ) . Now we will define a stationary
winning strategy ¢ for Player/ in G (K3, Y). Now consider the play ( ¢«(Y), P, «(P)), P>....)
where P,=t(Fy) and ¢ : ' —=° 5 [' ~ K> is defined by #(P,) = f[S(F,)]. Now 1is a
stationary winning strategy for G* (Ka,Y).

For, ((Fy) = f[S(F)
<f(FY
= P, 'There fore ¢ is a fuzzy stationery strategy.
Now #(Pn) A Pt =fIS(EJIAS (Fnst)
= [IS(FW) A Fuii]
= f0)
=0
Also ()AP, = fIS(X)IAP,
=SSO~ f(F)
=f[S(X) NFi1)
= f0)
=0

There fore it follows from Result 2.2.7 that /nf F, =0 and hence ¢/ is a stationary

n21

winning strategy for Player Iin G~ (K3, 1).

2.4.2 Theorem Let f: X—™°- Y be an F-continuous F-closed mapping such that
fUE) e F n K; whenever E € F ~ K. Then if Player I has a fuzzy winning strategy in
G’ (K 1), then Player I has a fuzzy winning strategy in G (K1,X).

Proof
Let S be a fuzzy stationery winning strategy for Player I in G’ (K3,Y) . Therefore
Player I wins every play of the form (S(Y), F1, S(F1), ..... ). Now we will define a function
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into

tF —2°» F ~ K; as follows. Now f* X—"¢ ¥ is F-closed and hence we take
Po=f"'(Fn) where P, € F and #(Py) =f'[S(F)] forall P, € I
Now #(Pa) = /7' [S(F»)]
< fF)
=P, . Thusis a fuzzy stationary strategy.
Now consider the play (1(X), Py, ((P), ....)

H(Po) A Prsy =f"[S(ED] A Py
=fSEDN] A FHEFned)
= ISEY A Fuuil
=f0)
=0.

Also 1(X) AP1=f[SCO] AP
=SS EFD)
=/SC0) A Fi]
=f(0)
=0.

Therefore from Result 2.2.7 it follows that /nf P, = 0 and hence ¢ is a winning

strategy also. Thus ¢ is a fuzzy winning strategy for Player I in G'(K},X). This completes
the proof.

As an immediate consequence of Theorem 2.4.1 and Theorem 2.4.2 we get the

following two Theorems.

2.4.3 Theorem Let X and Y are two fuzzy topological spaces and f:X——"— Y be an F-
continuous function and f'(E)e I m K; whenever E € I* ~ K. If Player II has a fuzzy
winning strategy in G’ (K., X). Then Player I has a fuzzy winning strategy in G~ (K>, Y).

2.4.4 Theorem Let /* X—™% Y be an F-continuous F-closed mapping such that
fUE) I' ~n K, whenever E € ' ~ K;. If Player /I has a fuzzy winning strategy in
G (K3, Y), then Player I/ has a fuzzy winning strategy in G (K..X).
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2.4.5 Definition [M;Bz] Let 0<a</ (resp.0<a<I). An F-closed F-continuous function f
from a fuzzy topological space X to a fuzzy topological space ! is said to be a-perfect

(resp. a*-perfect) if and only if £~/(3) is a-compact (resp. a*-compact ) for each ye?Y.

2.4.6 Definition A class K of fuzzy topological spaces is said to be a-perfect if Xe K is

equivalent to Y e K, provided that there exists an a-perfect map from X onto Y.

From Theorems 2.4.1,2.4.2, 2.4.3 and 2. 4.4 next theorem follows immediately.

2.4.7 Theorem Let K be an a-perfect class of fuzzy topological spaces and if there is an
« -perfect map from X on to ¥, Then
(i) IfPlayer I has a fuzzy winning strategy in G (K ,X).then he has
the same in G~ (K}, ).
(i) If Player II has a fuzzy winning strategy in G’ (K ,X).then he has
the same in G~ (K, Y).
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CHAPTER - III

CLOSURE PRESERVING SHADING FAMILIES

In this chapter we study closure preserving shading families and weakly o-
discrete families and a complete characterisation of spaces with closure preserving shading
families by fuzzy sets with finite support are obtained. This characterisation involves the
concept of fuzzy K-scattered spaces and hereditarily metacompact spaces. Some close
relationships of K-scattered a-metacompact spaces and countably a-compact a-metacompact

spaces with the Game G (DK, X) are investigated

3.1 Closure Preserving Shading Families

3.1.1 Definition A fuzzy topological space X said to be weakly o-discrete if X is the

supremum of a countable number of discrete subsets {X;: n2/} such that v{ X;; I<i <n}isa

closed fuzzy set in X for each n2>1, where a subset D of a fuzzy topological space X is discrete

if D is a discrete space given the subspace topology.

3.1.2 Lemma Let (X 7) be a fuzzy topological space and let U= { U;: xeX} be an a- shading
of X by open fuzzy sets such that Ux(x) >a for each xeX and U,< U, whenever U, (x) >a
Then the collection /={F : xeX } isa closure preserving a- shading of X where F; is defined

as follows . Fy = {yeX: Uysx) >aand F;(y)= Uy(y)} for each x in X.

Some Results mentioned in this Chapter are included in a paper titled FuzzyTopological Games, a-Matacompactneaa

and a-Perfect maps to appear in Glasnik Mathematicki Vol 35 (55) (2000), 63-72.



Proof

First we will show that Fis an a-sh.ading of X. Let x€X, then clearly Uy(x) >a . Now
from the definition of F it follows that Fy (x) = Ux) >a . There fore Fis an a-shading of X.

Again to prove Fis closure preserving , clearly we have v clFy <cl| v Fy 1. Now
ye ye

let o[ v Fy I(x) >a where a €(0,1]. clearly Uy(x) >a where U, € U . Then there is a'y, in
ye

Y such that Fypo A Ur #0. Let z be a point in Fyp A Uy with [Fyo A Uy ] (z) >a .Then clearly
Udz) >a . Also Uz) >a . Therefore U< Us. Also F,(z) >a .Therefore U.(yy) >a by
definition. But U,<U,. Therefore Ux(yg)> . This implies Fyo(x) >a. Therefore ¢/ [F,o(z)] >a .

Thus v, [cl Fy ] >« .This completes the proof .
ye

3.1.3 Lemma The following are equivalent for a fuzzy topological space X.

(a) X has a closure preserving «.-shading by fuzzy sets having finite support.
(b) X has an a-shading U= {U; : x X} by open fuzzy sets such that

(1) Ux)>a for each xeX.

(i) Ux<U, whenever Uy(x)> a and

(iii) U is point finite in X.

Proof

Let F={ F; : Ae A} be a closure preserving a-shading by fuzzy sets having finite
support. Now we define U= Inf{F,:Fi(x)>a} . Nowclearly U, (x) > a« and hence
U={U. : xeX} is an a-shading.

Now U,=1Inf{F;: Fi(y)>a} Now if possible let Uy(x) <a . Clearly Uy(x)> a
and hence Uy(x) <Ux(x) and hence (ii).
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Again we will prove that U is a point finite collection in X. If possible let for

any xeX, Uyx)> a for infinitely many Ue U . Thus we can choose an infinite
number of points {x,: AeA} of X such that Ux; (x)> « for each Ae A . Now since Fis
an a-shading we have an F;e Fsuch that F; (x1) > a for each Ae A This is a

contradiction since F is a fuzzy set with finite support.

Converse part follows from Lemma 3.1.2.

3.1.4 Lemma Let X be a fuzzy topological space with a point finite « -shading U =

{Uc . xe X } by open fuzzy sets with Uy (x) > a for every xe X and Ux < U, whenever

Uy(x) >a , then X has a countable pair wise disjoint « -shading {X, - neN } such that

each X, is discrete and \2 X; 1s fuzzy closed in X for eachne N .

Proof

Let U be a point finite a -shading of X by open fuzzy sets , we define
a-0rd (x, ) = Card{ Ue U: Ux)>a} and let X, be the collection of all fuzzy points
with @-Ord (x, {J) = n and values defined by X,(x)= Sup {U(x):Ue Uand U(x) >a}.This

is possible since Uis point finite. Clearly X, s are pair wise disjoint. Now we will prove
that K,,= v X is fuzzy closed for each n2/. For, if possible let K, have a cluster point ¢,

which does not belong to K, . Then every nbd of ¢, contains some point of K, . Now

Uqt) > a for at most finitely many U; € U . Now U, is the smallest of all such U'’s.
Consider the neighbourhood U, of #,,. Then U, contains some point of K, say si. Now
clearly U, is a nbd of s; and hence Us<U,. Now ¢, € X; for some k>n and s; € X, for
some p <n. Since t;, € X, it follows that U; (f) > a for i=12,...k. and U, < U; for

i=1,2, ...k where Uys)> aand U;< U, < U;. Thus U;(s) > afor i=12,....k Thuss; €
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X, for some £>n. This is a contradiction since X; are disjoint. Thus v X;is closed for
i=]

gach n2>1.

Now let n>1 and x € X,,. Now a-Ord (%, w=n. Therefore we can find x,x;, ....,x, €
X such that Un(x) > a for 1 =1, 2,..n. Let y, be a fuzzy point in Uy A X,, where n=

Uyy) . Clearly 7 >a . Now y, € Uy implies @ <n<e Uyy). Thus Uy(y) >a. Also Uy®})
>a. There fore U, <U,< Uy for i =1, 2,..n. Now a < U,(y) < Ux(y) . Thus U)(y) >a’

and ye X, implies that y = x; for some i .

Now consider the set of fuzzy singletons with support {x;: i =1,2..n}. Now
clearly U: A Xn < {p.,p2......Dn}, Where p; are fuzzy singletons with support x; . Now
since X is assumed to be fuzzy 7}, singletons are fuzzy closed and hence it follows that

X,’s are discrete for each n2>1.

3.1.5 Proposition If a fuzzy topological sp.ace X has a closure preserving a-shading by

fuzzy closed and a-compact sets, then X is a-metacompact.

Proof
From the characterization of a-metacompactness, it is enough if we prove that

every directed a-shading by open fuzzy sets of X has a closure preserving closed

refinement.

Let U be a directed a-shading of X by open fuzzy sets. Let € be any closure

preserving a-shading by closed a-compact fuzzy sets. Now {/is an a-shading of C for

any Ce €. Now since C is a-compact, it has a finite a-sub shading say {U,, U,,

Now C <U;v Uv....v U

< U for some Ue U since U is directed.
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Thus C < U for some Ue U Therefore € is an a-shading refinement of U This

completes the proof.

3.2 Fuzzy K- Scattered Spaces

Let X be a fuzzy topological space and Fe F. Then we define the K- derivative of
F of order 1, F” as the collection of all fuzzy points in X whose support set is given by
Supp F™'= {xeX : F(x)>0and 3 no fuzzy nbd geK with g(x)>0 and g<F}. Where K is
a collection of spaces such that we always assume that K is non empty and XeK implies
P < K. The value of x at F* is the same as that at F. That is '’ (x)= F(x) for all xe

SuppF™. Inductively we define F**" = (FE®)Y for each ordinal 4. If A. is a limit
ordinal F¥= A F¥

e
Now take ¢ (X) = Inf {1 : X =0} if it exists

= oo other wise.

3.2.1 Definition A fuzzy topological space X is said to be K-scattered if ¢ (X) =7 for
some ordinal 77. Or equivalently for every 0= Fe ' there exists a point xe F and a

fuzzy nbd N of X with N(x)>0 where N<F and Ne K.

3.2.2 Definition Let U be an a-shading of a fuzzy topological space X .We say that {J
is a-disjoint if UnV<a for all UVell and U V.

3.2.3 Definition An a-disjoint a-shading {L; . A<n} of a fuzzy topological space X is

called a fuzzy K-scattered partition if Ly(x) < N(x) for all xe X and for some NeK and

A L, is openin X for each A<7.
u

32.4 Lemma A K-scattered fuzzy topological space has a K-scattered partition
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Proof

Let X be a K-scattered fuzzy topological space. There fore by definition, we have
¢(X) = n for some ordinal 7. Let A<y and take ¥; = X***” Therefore clearly it
follows that each xe Y} has a fuzzy neighbourhood Ny in ¥, with Ny(x)>0 and N, € K.
Well order Y, by <, . Foreachx € ¥, , take L, = [IgtNx] \[v [Iyizt N, : y<ax ]. Clearly

each of Ly is open and L,<N; Vx and NyeK. Also since each Ly is fuzzy open, so is their

abitrary union. Thus v, {L; :xe Y,and A <g (X)} is open. Therefore it follows that
u

{Ly: x € Y,and A < ¢ (X) } is a K-scattered partition of X.

3.2.5 Definition Let 4 be a fuzzy set. Then a fuzzy pdint p€A is called an isolated point
if it has a fuzzy neighbourhood U such that Ufx)=0 for all xe A with x=p.

3.2.6 Definition A fuzzy topological space X is said to be scattered if each fuzzy subset
A of X has an isolated point in X.

3.2.7 Remark Clearly I-scattered and scattered spaces coincide. Where 1 is the class

consisting of all one point spaces and the empty space.

3.2.8 Remark The converse of the Lemma 3.2.4 is in general not true. This follows from

the next example.

3.2.9 Example Take X=R’ . Define a fuzzy topology T on R’ by declaring each point in
R with rational co-ordinates as fuzzy open singletons .(we denote it by 0*) together with
the sets of the form {z} w {Q*Ayu}, where ze yyand U is the usual crisp open set in R

Let A be any fuzzy subset of X. If 41 O* # 0, from the definition of O* it follows
that 4 has an isolated point. Now if A Q* = 0, then A< (Q*)’ . Then every fuzzy point
pe A is contained in {p} w {Q*}. This cannot contain any other point of 4, A4 < (Q*)’.
Hence (X, 7) ts 1-scattered.
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Now for every a-disjoint a-shading of X, any member of this shading cannot be

contained in some N e I. Thus X has no I-scattered partition even though it is I-scattered.

3.2.10 Definition [G;K;M] A fuzzy topological space X is said to be fuzzy regular if and -
only if for every fuzzy point p in X and for every open fuzzy set U containing p , there
exists an open fuzzy set W such that p<W<c/W<U.

The converse of the Lemma 3.2.4 1s true only when X is fuzzy regular.

3.2.11 Lemma A regular fuzzy topological space with a K-scattered partition is K-

scattered.

Proof

Let X be a fuzzy regular space with a K-scattered partition {L, :A<n}. Let F be
any fuzzy closed set in X. Let &= Min { A: Ly A F= 0}. And take some xe LynF . Now

clearly from the definition of the K-scattered partition, it follows that M Ly is an open

fuzzy set containing x. Since X is fuzzy regular , it is possible to find an open fuzzy set U

suchthat xe U<cl U <4V5 L, . Now Ls< N for some N € K. Thus for each closed

fuzzy set F there exists xe F such that xe F' < ¢/ UAF < LsAF < NaFe K. Thus X'is K-

scattered.

3.2.12 Proposition A fuzzy topological space X is hereditarily a-metacompact if and

only if every a-disjoint a-shading {Lj :A<7m} of X such that v, L, isopenin X for
i

each A<7 has a point finite expansion { Uy :A<n} of open fuzzy sets.(i.e., Ly< U for each

A<n.)
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Proof
Let X be hereditarily a-metacompact and let{ L, :A<p}be an a-disjoint a-shading

of X such that v, L, is open for each A<rp. We give the proof by the method of
H

induction. Now clearly the statement holds for 77 =1. Let 7 be a fixed ordinal. Assume
that the statement is true for all g<#. If 7 is not a limit ordinal, take 77 = ¢ +1 Now {L,:

§<¢}is an a-disjoint a-shading of M L, . Since v L, isopen, from hereditarily a-
uis uis

metacompactness and induction hypothesis it follows that{ L, :A< ¢} has a point finite
expansion{U; :A< ¢} by open fuzzy sets. Now put U, =X. Then clearly {U; :A<n} isa

point finite expansion of { L,:A<n} by open fuzzy sets.

Now if 7 is a limit ordinal, we define S5 = X.sL 4 for every A<n. Now clearly

{ 85 6<mn} is an a-shading of X by open fuzzy sets. Now since X is a-metacompact ,
there 1s an a-shading refinement { Us : <7} by open fuzzy sets such that Us < Ss for
each6<7. Now consider the collection { L ;A Us: A<8} . This is an a-disjoint a-shading
of Us of length 6<7 Hence from hereditarily a-metacompactness and induction

hypothesis it follows that { L ; A Us: A<6} has a point finite expansion { W, 5 : A<5}
such that W 4, s < Us for each A<8. Take W 3=V W i sfor each A<n. Now clearly {

W : A<m}is point finite expansion of { Ly :A<7} by open fuzzy sets.

Conversely to prove every open subspace of X is a-metacompact , let O be an
open subspace of X. Let U = {Us: A<n;}be an a-shading of O by open fuzzy sets. We
define { Lx:A<n} as follows. Supp(Lr)= {xeX: Upyx)> a}\ { xeX :Sup Uyx)> a } and

e
Li(x)= Uxx)for all xe X. Also take Ly, = [Sup{ U: U € U }]’. Now consider {Ly :A<s7}.

Also this is an a-disjoint a-shading of X such that v L, is open for each A<7 and hence
H

has a point finite expansion { W ; : A<} by open fuzzy sets such that W < U, for each
A<n. Now clearly W= { W, : A<n} is a point finite refinement of U by open fuzzy sets.

Hence O is a-metacompact.
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3.2.13 Definition A class of fuzzy topological spaces K is said to be finitely additive if
every space with a finite a-shading by closed fuzzy sets of K belongs to K.

32,14 Lemma Let K be a finitely additive family of fuzzy topological spaces and
suppose that each X belongs to K has a countable a-shading {X,: n>/} and for each n>1"
there exists a point finite a-shading U,, of X such that X, \ Sup { U, \V }e K for each

finite VcU,. Then X has a closure preserving a-shading by closed fuzzy sets which

belongs to K.

Proof
Consider the collection W= Uy W, where Wi, are defined as follows. Take
W=U;
Wy={ W,y: Ue U; } where
Supp(Wou )= {xeX:U(x)>a}\ {xeX:Xi(x)>a} and
Wou(x)= Ulx) for allxeX .
Proceeding like this we get
Wori = {Wasru - U €Upey} where
SuppWn+10) = fxeX:U)>a}\ fxeX: [XivXo vXv ... vXn)(x)> a}

Now clearly W is an a-shading of X by open fuzzy sets and is also pont finite. For,
let xeX. Let &k be the smallest integer such that Xi(x) > a. Now clearly W(x)=0 for all
WeW,, for m=k+1, k+2,.... Also since U; are point finite , if follows that each of

W W, W, ... W, has at most finitely many members with membership values of x

greater than zero. Thus W is also point finite.
Now we know that if an a-shading. U of a fuzzy topological space X is interior

preserving then the collection F= {X'\ Sup {U : U(x)=0}: xeX}is a closure preserving a-

UeU
shading of X by closed fuzzy sets. Now consider the collection K = {K,: xeX } where

Ky =X\ Sup {W: W(x)=0} Now since W is point finite , it is interior preserving and
wely '
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hence K is a closure preserving a-shading of X by closed fuzzy sets. Take an xeX. Let

n.=Min{n :Xa(x)> a }. Now if ye K, then clearly n,<n,. Also K, < v [ Xo\ Sup {U :

nsnx UeUn

U(x)=0}] € K . Since K, is closed it follows that Kye K

3.2.15 Theorem Let K be a finitely additive class of fuzzy topological space. If X is a
hereditarily a-metacompact space with countable a-shading by closed and K-scattered

fuzzy sets , then X has a closure preserving a-shading by closed fuzzy sets which belong
to K.

Proof

Take a countable a-shading {X, :n=>/} of X by closed fuzzy sets where each Xj is
K-scattered. Let n>/. Then X, has a K-scattered partition say {L,1’ 0<A<n,}.Also take
Loz = X,". Now takeL,={L, 1’ 0sA<n,}. Clearly L, is an a-shading of X. Since L,isa
K-scattered partition of X, together with X,’, it is disjoint and hence has an open
expansion say U,={ U, .- 0sA<7n, }. Let V be any finite sub collection of U, Then from
the fact Lyis an a-shading of X and L,z < U1 for all 0<A<n, , it follows that
FV)= X\ v{U,\V}

< v{Lpiel, :U,eV, >0}

e K

Thus F,(V ) is contained in some member of K and F,(V ) e* It follows that
F{V) eK . Thus by Lemma 3.2.14, X has a closure preserving a-shading by members of -

K which are closed fuzzy sets.

Now we give a complete characterisation of spaces with closure preserving a-

shading by fuzzy sets with finite support.
3.2.16 Theorem The following are equivalent for a fuzzy topological Space X.

(a) X has a closure preserving a-shading by’ fuzzy sets with finite support.
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(b) X is hereditarily a-metacompact and has a o- closure preserving a-shading by fuzzy

sets with finite support.
(c) Xis hereditarily a-metacompact and weakly o-discrete.

(d) X has a countable a-shading by fuzzy 1-scattefed subsets and is hereditarily a-

metacompact.

Proof
(@) = (b)
If X has a closure preserving a-shading by fuzzy sets with finite support , then

every subspace of X also should have such a shading. Then from Proposition 3.1.5 it

follows that X is hereditarily a-metacompact.

() = (c)

This follows from Lemma 3.1.3 and Lemma 3.1.4.

) = ()

Given that X has a o -closure preserving a-shading by fuzzy sets with finite
support . Thus there is an a-shading {X,: neN} of X such that each of X, hasac-p a-
shading by fuzzy sets with finite support. Thus each of X, is weakly o-discrete. (by (a)
= (c)). Thus each of X, is the supremum of a countable number of discrete subsets {X, s
- nkeN}such that vig, Xy is closed in X; for each meN . Since a countable collection
of countable sets is countable, it follows that {X, s : nkeN} is a countable a-shading
which satisfies (c).
() = (d)

Consider the set {Y, : n>1} where ¥, = vis, Xi, for each n>/. Then clearly
{Y, : n21} is a countable closed a-shading of X. Now each X; is discrete and hence is
I-scattered. Also the union of two I-scattered spaces is also I-scattered. Therefore it
follows that each Y, is scattered.
d =)

Follows from Theorem 3.2.15.
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3.2.17 Lemma Let X be a fuzzy topological spaces and U={U; :A€A } be a point finite
a-shading by open fuzzy sets. Let B, = { xeX : a-Ord (x, U) <n} . Then { B, : n>0} is
an a-shading of X' by closed fuzzy sets. If n>0 and F is a closed fuzzy set with F<B, and
FAB,.;= 0, then F has a discrete a-shading by closed fuzzy sets where each member is

contained in some U e U.

Proof

For any x X with B,(x)=0 for some n, by the definition of B, it follows that there
is some A'c A with n+/ numbers such that U (x) >a for allAeA’ . Now since each U,
is fuzzy open , so is A{U; - A€A}. This is an open fuzzy nbd of x disjoint from B,.
Therefore it follows that /\ Bn is fuzzy open and so B, are closed fuzzy sets.

Also given that U is a point finite a-shading of X. Therefore there exists at most
finitely many U e U with U (x)>« for any xeX . Then clearly B,(x)>« for some n. Thus
{ B, n>0} is an a-shading of X

Take F as in the statement of the Lemma. Let (2be the set of all subsets of A
which have n elements and for each ye(2 define V, = A{U, : A€ y}. Now clearly V, AF
< U, for each 4 in y and the collection {V, AF : ye £2} is disjoint and hence a discrete a-

shading of X by closed fuzzy sets.

3.2.18 Corollary Let U ={U, : A <n }be a point finite a-shading of a fuzzy topological
spaces X by open fuzzy sets and X, = { xeX : a -Ord(x, U) <n}for each n21. Then {X,
:n21} is a countable a-shading of X by closed fuzzy sets and B,={ B(A;,A243...An) : A1 <
Ay < A;3....nm}is a discrete clopen a-shading of X, \ X,; for each n2/ where
B(A1A22s......... An) = Nign Ui (X \ X))
Proof

Take F= X,\ X,..; in Lemma 3.2.17 the corollary follows.
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3.2.19 Definition An a-disjoint a-shading {Li: A<n} of a fuzzy topological space is a K-

scattered partition if Lx(x) < N(x)for all xeX . and for some NeK and V{L,:u < n} is
fuzzy open in X for each A<u .

3.2.20 Theorem Let K be a finitely additive class of fuzzy topological spaces. If a

hereditarily a-metacompact space X is K-scattered then Player / has a winning strategy
in G'(DK,X).

Proof

Since X is fuzzy K-scattered, X has a fuzzy K-scattered partition. Say V= {V;:
A<n} Now from proposition 3.2.11, it follows that there exists a point finite fuzzy open
expansion U={U,: A<n} of V. Now since V is an a-shading of X it follows that U is also
an a-shading of X . Let X,and B,,n 21 l;e taken as in Corollary 3.2.18 . For each Fe
P take k(F) =Min{ k > 1 : FAX, #0} and B(F) = { B(A1 A2 A3 An)NF  B(A1 2223 ) €

Beand k = k(F)} and B(0)={0}. Now by Corollary 3.2.18 it follows that each member of
B(F) is fuzzy closed in X and B(F) is discrete in X.

We have B(/?.]/lz/l_;/lk) = /s\k U/u A (Xk \Xk.]). Thus B (/1]/12/13/74) < '\</k U/u <’
M Vi . Also since each B(F) is fuzzy closed and K is finitely additive

UB(F) = { B(A1 A2 A3, . Ak) A F : B(A1A243...4) € By, k=k(F) } . Also by Corollary
3.2.18, By is a discrete a-shading of Xi | X «, by closed fuzzy sets. Hence (Xk \ X 1) A
Fe DK ~F where k=k(F) .

Now we define a fuzzy stationery winning strategy S of Player / for
G (DK, X) as follows

$: K SDKAF , where S(F) = (Xeyp \ Xem1) A F

Consider the play (S(X), F, S(F)), F», ... .....) of G'(DK,X). We have clearly
S(Fn)<Fn and hence S is stationery. Now we want to prove S is winning, that is
Inf F,= 0. Now since {X, : n21} is an a-shading of X' and F;, A X, = 0 for all k=1,2,3...

It follows that it is enough to prove F, A X, = 0 for all » >0 . We will prove this by
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induction. Let F,, A X,, = 0 and assume that F,, A X;+; # 0 . Therefore by definition of
k(F,) we get k(F,)=n+1.
Now S(Fu) AFns; =((Xns1 \X w) AFy) A Fps)
=(Xpe1 \Xn)AFpay
=0
Now clearly X , A F,= 0 and F,.; < F, . Hence F, A X,+; = 0. Therefore it follows that

Fas1 A Xy+1= 0 . Thus the proof is complete by induction.

3.3 Countably a—compact Spaces and the Game G (DK, X)

We know that most of the properties of countably compact spaces in general
topology are discussed in terms of cluster points and accumulation points. So we define’
a-cluster points and e—accumulation points in fuzzy topological spaces in a language
which is closely related to shading families and in this framework we obtain a
characterisation for countable compactness in fuzzy topological spaces and later use this
to obtain some relations of countably a-compact spaces and the fuzzy topological
Game G (DK, X.).

3.3.1 Definition. Let a€[0,/]. An a-cluster point (resp. a*- cluster point ) of a set 4 in a

fuzzy topological space X is a fuzzy point x , Such that each fuzzy neighbourhood U of

x, with U (x) > a(tesp. U (x) 2 d) contains some fuzzy point of 4 with distinct

support.

3.3.2 Definition. A sequence ( x:”) of fuzzy points with distinct support in a fuzzy-
topological space X a-accumulates at x, (resp. @*-accumulates) at x, ifand only if
for every fuzzy neighbourhood U of x, with U(X)> a (resp. U(x ) =2 ) and for every

neN , there is an m 2 n such that x:'m< U and (As)accumulates at A in the crisp sense in

[0,1]
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3.3.3 Theorem . The following are equivalent in a fuzzy topological space.

(1) Xis countably a - compact.

(i) Every fuzzy subset of X with countably infinite support has at least one

a -cluster point

(i) Every sequence of fuzzy points in X with distinct support has an
a -accumulation point. '

Proof:
(1) = (i)

If possible let 4 be a fuzzy subset of X with countably infinite support and has no
a-cluster point. Then it follows that every fuzzy point _xiu in A has a fuzzy
neighbourhood U; with U; ( _xi ) > a which contains no other fuzzy point of 4 with
distinct support. Now Supp(4) clearly closed and X\ Swupp(4) isopen. Now
consider the collection Y x\supw v {Ui: i€ N }.This is clearly a countable a-shading

of X by open fuzzy sets which has no finite a-subshading.

(i) = (1)
Let ( _x:") be a sequence of fuzzy points in X with distinct support. Then there are

two possibilities.

(a) Cardinality of the support of the range set is countably infinite. Then by (ii) this

has atleast one a-cluster point say X, .Now every fuzzy nbd U of X, with Ux)>«
contains infinitely many points of the sequence other than X; . Clearly this X, is an « -
accumulation point of the sequence. For, For any ne N the set { xL= 1 <n<N}is
finite . Therefore it follows that for any neighbourhood U of X, with U(x)>a and for any

ne N, there is anm 2n such that y, < U and (4) accumulates at A .



51

(b) If cardinality of range set is finite , then there should be some fuzzy point X;

with x:"= X for infinitely many ne N . Then clearly this X, is an a-accumulation

point.

(iii) = (1)

Let X be not countably a-compact . Let U={U,, U, U;......} be a countable a-
shading of X by open fuzzy sets which has no finite a- subshading. Therefore
{U,U,Us... Uy} cannot a-shade X for any finite k. Therefore corresponding to each
finite k£ we can find an ¥*€X such that U,(xj‘)> a for some j>k and U(x¥) < afor I Si <
k. Let U,(xj‘) = m where 7, €(a ,1]. Now the sequence (xj‘,,k Jhas no a-accumulation
point. For, if possible let x,be an a-accumulation point of (¥*,x ) Now since U is an a-
shading of X, we can find a minimum /eN such that Ufx) > a¢ and Ui(x) < « for all
1<i<l Now take n=I+1 and consider the neighbourhood U, of x. Then for any m > n
we have X", > U, .For corresponding to any m, we can find some U such that U; (x")> a
for some j>m.and U(x™) < a for IS i <m. Here m 2n = [+]. Therefore /<m and it

follows that Ufx™)<e. But 7,, €(a ,1]. Thus x",, < U, which is a contradiction. This

completes the proof.

3.3.4 Definition [M;B].A family {a; : se S} of fuzzy sets in a fuzzy topological space
(X,T) is said to be discrete if for each x in X, there exists an open fuzzy set g of X
with g(x) =1 such that a; < /-g holds for all but at most one s in S.

3.3.5 Theorem. If C is a closure preserving a-shading of a fuzzy topological space X by
fuzzy closed and countably a-compact sets and if K is a class of fis with C < K, then

Player I has a fuzzy stationary winning strategy in G (DK, X)

Proof
Corresponding to each fuzzy closed set F' in X, consider the collection{CAF: Ce

C} and let D (F) be the maximal disjoint sub-collection of this. This is possible since C is
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an a-shading of X. Clearly D(F) is closure preserving and disjoint and hence it is discrete.

into

Now define S: I —2» I nDK bi/ F —->VvD(F). We will show that S is a fuzzy
stationary winning strategy for Player I in G (DK.X) .

Let {F,: neN} be a decreasing (F;>F>>Fj;.... ) sequence with S(X) A F;= 0 and

[

SF) AFpe)y=0. If p.ossible letif Inf F, #0. Then there exists CoeC such that Cy has

non empty meet with each of F, . Now Cp n F, ¢D(F,) for each n > /. For, If
Con F, € D (F,) for some n,then
ConFn=(ConFp)A Fpi)
<[VDEF)] AFpsi
=S(Fn) A Fn+)

= 0. This is a contradiction . Therefore Cp A F,, ¢ D(F,) for each for everyn > 1 .

Fix some n 21 . D(F,) is maximal and disjoint. Also Cyp 2 F, ¢ D(F,). Therefore
we can take some C,eC such that C, A F, €D (F,) and (Co A Cp) A F,# 0. For eachn 2> 1,
take some x"eX such that [(Co A F,) A Ca] (') >a where ae(0,1]. Let
Min {Cofx),Fn(x),Cn(x) = AnNow  clearly we have[S(F,J](x”)>a. Also S(Fa)A Fpey=0.
Therefore F,.;(x")=0. Now consider tile sequence (x"»y) in Co. Now Cp is countably

a-compact. There fore it has an a-cluster point say x; in Cp.This follows from Theorem
333.

Now we have Inf F,(x) > a .For, if F,(x)< a for some n , then we can choose
nzl

some m>n with A,>Fn(x") . But F,,<F,. Therefore F(x")<F,(x"). Now A, < Fn(x", <
F,(x").There fore A, <F,(x").Thisis a contradiction.

Now claim Sup,;C,(x)=0. For, let Ca(x)>0 for some n. Now Con F, € D(F)
and Fn+](x)> a.Then (Cn/\Fn/\FnH)(x)'< (S(Fn) A Fn+l)(x)

= (. Therefore C,(x) =0. This is a contradiction.



33

Since C is closure preserving , we have c/{x"y, : n21 }(x) > a. Also ¢l {x", :
n2l} < cl Sup, -C, = Sup ;C, . There fore Sup ;C, x)> a, where a €(0,1]. This is a

contradiction to Sup .- C, & = 0. This completes the proof.

From Theorem 3.3.5 and Theorem 2.3.4 , next corollary follows clearly.

3.3.6 Corollary If a fuzzy topological space X has a o —closure preserving a—shading by
a~compact closed fuzzy sets , then player I has a winning strategy in G (DC,X)
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Chapter -1V
FUZZY P-SPACES AND THE GAME G(X)

The concept of P-spaces was introduced by K.Morita and as a generalization of |
this in this chapter we define fuzzy P-spaces (P.-spaces) and some results regarding them
are obtained. Again a characterization of P,-spaces in terms of a particular type of fuzzy

topological game G,(X) is also obtained.
4.1 Fuzzy P-Spaces

4.1.1 Definition A collection {U;: i =1,2,3,...... .} of fuzzy subsets of a set X is called an
increasing family if U; < U;s; forevery i = 1,2,3,

4.1.2Definition A fuzzy topological space X is said to be a P, space if for every
increasing family U ={ Ufa,a,,....a;): ana,,....a; € A, i=1,2,3.. }of open fuzzy sets in
X, there exists a precise refinement F ={ F(a,a,,.....a;): ajay,....a; € A, i=1,2,3..} by
closed fuzzy sets satisfying the condition that if U is an a-_shading of X, then F is also an

a-shading of X where a € [0,1).

4.1.3Theorem A fuzzy topological space X is a P,-space if and only if there exists a

crisp function p: U G" — F such that

(1) If(G,G2,Gs......... ) e G" , neN then p(G.,G2,Gs......... ) < Sup{Gy.1 <k <n}

i If {G,GpGsooonnennn } is an a-shading of X, then so is {p(G1), p(G1,G2),
p(GLGLGy), ........ }.Where G represent the family of all open fuzzy subsets of
X

Some Results mentioned in this Chapter are accepted for publication in the paper titled Fuzzy P-Spaces in the

Journal Discourse(s) No.3 Vol. 1(2000)
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Proof '

Let X be a P,-space. Let (G,,G5,Gs......... ) € G" and take a;= G in the
definition of Py-spaces and define Ufa,,ay, .....a,) =U(G1,G,,Gs...Gy) = Sup {G;. 1 <k <
n}.Then clearly U(G,, G, Gs...Gy) < U(G;,G5G;...Gyer). Then from the definition of Py-
spaces the remaining follows.

Conversely let U= {U(a,,a,,.....a): ai€A, i =1,2,3.....} be an increasing-
family of open fuzzy sets in X. Now corresponding to each Ufa,,azas, ... ..a) in U, we

define
Fa,a,, ....a))=p(Ufa,,), Ulaa;) Ulaazas),.... Ulaazas,......ay) )
<Sup {Ua,ay,....a) : 1 <1<n}
= Ulay,ay, .....ay) since U is increasing,.
Now if U is an a-shading of X, for every xe X, there exists a U(a,,aza;, ... ...ay) such that
Ulanazas, ... ...ay(x)>a . Now clearly by definition, we have F(a,asas,.....aJ(x) > a
and hence {F(a,aza;, ... ... a): aie 4, i=1,2,3,.... }is an a-shading of X. Hence X is a Py,-

space.

From the definition of P,-Spaces and Theorem 4.1.3 next theorem follows

clearly.

4.1.4 Theorem A fuzzy topological space X is a Py-space if and only if there is a crisp
function defined from the family of all increasing finite sequences of open fuzzy sets G to
the collection of all closed fuzzy sets I¥ with p(G,G»Gs...Gy) < G, where
(G1,G5,Gs...Gy) € G" and if G, < Gy for each neN and if { G;,G»G;...G, }is an a-
shading then so is {p(G)), p(G1,G2), p(G1,G,,Gy), ....... .

4.1.5 Theorem A fuzzy topological space Xis a Pq-space if and only if there exists a

crisp function p: U ( ) " F such that
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()  Foreach (FoFy, .......F) e (F)™, n>0
pFo L. .. F) AnInfi Fi=10
(i)  Foreach (FoFy,.........) € (F) ® with Inf 5, F, =0,
the collection {p(Fo,F1, ......... Fn) : n 2 0}is an a-shading of X.
Proof
Let (F,......... F,) e (F)"Then F,, F, vF, F/°vF,vF;, .. isan increasing

family of open sets . Take Ua)= F, . Ulaja)=F, v F;, .. Uana,... .a)) = F; v F)v
....... v F, . Now since X is a P, -space, there exists a collection {F(a,),F(asaz) .....}such
...... ,a;) foreachi =1,2,3,...

Now define p(Fy, ... ... ... Fy)=0 if Inf,Fi#0

that F(a,,az ......
= F(a,;a,, .......a,) otherwise

Clearly p has properties (i) and (ii)

Conversely let (G;,G,, ... ... ......G,) € G". Then F=G,  F~=G,, ... F=G, are
all closed and hence there exists a function p' : ( "> Fsuch that
pPEFL .. . F)ANInfie Fi = 0.
Take p(G1,G,, ..o oo o ... Gp) =p'(Fy, ... ... .. Fy) in Theorem 4.1.3, then
§G1,Ga oo Go) AlInfrn Fy = 0
Therefore  p(G1,Gay ..o ..Go) < (Inficn F)
= Supiz Fi
= Sup;<» G; and hence p satisfies (i) and (ii) of

Theorem 4.3.1 and hence X is a P,-space.

4.1.6 Theorem If a fuzzy topological space X has a o-closure preserving fuzzy closed a-.

shading by countably a-compact sets, then X is a P, - Space.
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Proof
Let F = U{F,: n € N }be an a-shading of X such that each F, is closure
preserving and countably a-compact. Let {Ufa,,ay, ... ... ap).a €A, i=123..}bean:

increasing sequence of open fuzzy sets.No-w corresponding to each Ufa,ay,.......a, Ywe
define F(a,,ay, .......an ) =Sup {F:F< U(a,a,,......a,), Fe Y F; }. Since Y Fi is closure

preserving it follows that F(a,a,,......a, ) is fuzzy closed and Faa,,....... a, <
Uaas, ... ....an ) for each n>1. '

Again let {Ufasay,.......a; ) 1= 1,2,3..}be an a-shading of X. Let xe X, Now
since F is an a-shading of X, there exists an Fy € F such that Fo(x)>a.Let F e F for
some k. Since Fy is countably a-compact, and Ufay,a,,...) s are increasing we can find
out somej € N suchthatj >kand Fp < Ufaa,, ... ,.a).

Now F(ay,az... @). (9) = _ Uﬁ‘fzp {F(x): Fe u Fi}2Fx)> a
<U(al,22,....aj). i=

Thus { F(asaz,... ,.a) ai € A,i=123...} is also an « -shading of X. This completes
the proof.

4. 2 A Characterisation of P,-spaces using the Game G,(X)

In this section we describe a game associated with P,-spaces. Here
G, (X) denote the following infinite positional fuzzy topological game. Let G and F
denote the collection of all open (resp. closed) fuzzy subsets of a fuzzy topological space
X There are two players Player I and Player II. Players alternatively choose fuzzy subsets
of X so that each player knows X and first k elements when he is choosing the (k+/)™

element.

We say that a sequence (G, Fy, ... ... Gn,Fp) is a play for G, (X) if for

each n >/, we have
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0] Gne G is a choice of Player L.
(i) Fpe FandF,<Sup {Gy: 1<k <n} is a choice of Player II.

Player I wins the play (G, Fy,... ... Gy, Fn) if {G, : ne N} is an a-shading of X
and{F, : ne N} is not. And Player Il wins if { F,, : ne N} or both { G, : ne N} and
{ Fn: ne N} are a-shadings of X.

A strategy for Player I is a crisp function S: {0} ; F' - G and
that of Player II is ¢ C_o)] G" - F such that t (G,G ... ... Gn) < Sup { Gi: I<i < n}for

each(G,,G,,.....Gn) € G"and n21.

Now clearly for each pair of strategies (s ,7) there exists a unique
Play(G,, £y, ... ... Gn F,) of G4 (X) defined as follows.

Take G; = s(0) , F; =4G;), G2=s(F)), F2=1G,G;) and so on.

A strategy s (resp.f) is winning for Player I (resp. Player II) if he
wins every play of G4 (X) using it.

From Theorem 4.1.6 and definition of G, (X) , we get the

following game theoretic characterization of P,-spaces.

4.2.1 Theorem A fuzzy topological space . is a Po-space if and only if Player II has a
winning strategy in G (X).



59

4.3 Remarks

Just like the applications of P-spaces in general topology, Pa-spaces help the study
of covering properties in fuzzy topological spaces. In fact the results regarding the
product of o.-metacompact spaces is discussed in Chapter VI and there it is shown that
the product of two a—metacompact spaces need not be a—metacompact and if we impose
some conditions on one of these spaces, we can make the product a—metacompact and

this is done in terms of P,-spaces.
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CHAPTER -V
GAMES IN PRODUCT SPACES

In this chapter we study topological games in product fuzzy topological
spaces. For two classes of fuzzy topological spaces K; and K; we define K; x K, as the
set of all product spaces X x Y such that Xe K; ,Y € K, and all closed subsets of them.
Here we explore the possibility of having a winning strategy for Player I in
G’ (D1, xK3), X xY) if he has the same in G' ( K; ,X) and G'( K2 ,Y) . Here we make

use of concepts like fuzzy rectangles, fuzzy D-products etc.

5.1 Preliminaries

5.1.1 Definition [WON;] Let {X};e; be a family of fuzzy topological spaces. Let

X= H X, be the usual Cartesian product and let P; be the projection from X on to X; for

iel
each iel. The set X with fuzzy topology having the family F ={ P (B): BeT,, icl } as a

sub base is called the product fuzzy topological space.

5.1.2 Definition Let XxY be a fuzzy product space. A fuzzy subset of the form
R=RxR" where R and R are projection of R in to X and Y respectively is called a

fuzzy rectangle in XxY.

5.1.3 Definition Let X be a fuzzy topological space. A fuzzy subset U of X is called a
co-zero fuzzy set if there is an F-continuous function C:X:—[0, 1] such that C 10)=1-U.
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5.2 Fuzzy Games in Product Spaces

5.2.1 Definition A product fuzzy topological space XxY is called a fuzzy D-product if for
any disjoint pair {£,F} of a closed fuzzy rectangle £ -and a closed fuzzy set F in XxY ,
there exists a o-discrete collection R of closed fuzzy rectangles such that F < Sup.

{R:ReR }< (Xx )\ E

5.2.2 Theorem Let X and Y be two fuzzy topological spaces such that ¥ is a-compact
and player I has a fuzzy winning strategy in G (C, X) then player I has a fuzzy winning

strategy in G~ (C, XxY) where C is the class of all a-compact spaces.
Proof

Let P be the projection map from XxY on to X. Now since Y is a-compact, it
follows that P (x) is a-compact for each x€.X. Since P is F-continuous, it follows that P
is an a-perfect map. Also since C is an a-perfect class, from Theorem 2.4.7 it follows

that player I has a fuzzy wining strategy in G* (C, XxY).

Now from the fact that the class of all fuzzy C —scattered spaces (S C)
forms an a- perfect class and an argument similar to that in proof of Theorem 5.2.2 it

follows that

5.2.3Theorem Let X and Y be two fuzzy topological spaces such that ¥ is a-compact and

player I has a fuzzy winning strategy in G (S C, X), then player I has a fuzzy winning
strategy in G~ (S C, XxY).

5.2.4 Theorem: Let XxY be a fuzzy D-product. If player I has fuzzy winning strategies

in G (K, X) and G (K;, X) then he has a fuzzy winning strategy in
G (D(Ky, xK2), X xY).
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Proof

For convenience we use the following notations.
No={0,3,6,9, ...}, M ={1,4,7, ...} N,={2,5, 8, ...} sothat Ny U N UN, = w L {0}.
T=(ki, ka, ..., kn)e " n2l and 2T =k + ky + ... + k,. Foreach T= (ky, ks, ..., k») with
kn @& No, take T* = (ky, ky, ..., k) if kn, ka1, ..., kis1 € N1 (€ N2) and ki ¢ Ni(g N,) for
some i<n. if k,, kn.1, ..., k1 € N1 (€ N2) put T* =(0).

Now by Theorem 2.3.3, it is enough.if we construct a fuzzy winning strategy ¢ for
G (L, XxY) where L = F[D(K, xK2)]. Take E; = #Xx}) = $i(X) x S2(¥) where S; and S,
are fuzzy stationery winning strategies for player I in G (K, X) and G (K, X)
receptively. Take Ag = {0}. R(0) ={XxY } and o = R(0) =XxY. Player II chooses some
Fie ™ with FyAE =0.

Assume that we have already constructed an admissible sequence (Ey, Fy, ..., En, Fin)
inG (L, XxY) such that E; = «(F, F3, ..., Fi1) for each i < m and that there exists a
discrete collection {R(a): a = (a1, o, ..., anr1) € Atax} Of closed fuzzy rectangles for
each Tew", n>0 with ZT < m-1 and &k > 1 satisfying
(1) a® a € Ataer implies ac At
(2) For each ae Ar, R(a) AFzr+1 <Sup{R (a® @) : a® a € Az, k2 1 }<R(a)

(3) For each a® a € Arex where T'= (k, k, ..., k)ew' n>0,k=>1.
(1) Si(R(@)) AR(aDa) =0 ifk,, k€ Ny UN,

@  S2R@") AR(@@a)" =0 ifky, k € Now N,

i) Si(R(@*)) AR(@Da) =0 ifk, € Naand k € Nop © N

(iv) S2:R@)")AR@da)"'=0 ifk, e Njandke Nou N,
where a* = a/i € A+ ifae A, T*e .

If 7=0 consider &, =0 € N.
Take T= (k;, ks, ..., kn))ew”, n 20, with ZT=m. Now T =T_® £, and hence

LT=m-k, < m-1. Therefore R(7) is constructed.
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For each ac At take E(a) = SiR(@))x S2(R(a)") if k, € Ny
E(a) = SiR(@))x $2(R(@*)") AR(a)" if k, € N,

E(@) = Si(R(@*)) AR(a") x $;(R(a)) if k, € N,

Then E(a)e K, xK; and take

Ewn = 1(Fo, F1, ..., F)

Sup E(a)AF,
= a€Ar

Teuw"
nzo

ZT=m

and clearly E,,+1 €L since {R(a): ac A1} is discrete in XxY. Now player II choose an

Fu1 € I with Fuy < Fp and Fey A Epe=0.

Again take some T € Upo @" with £ T=m and aeAt. Since R(q) is a fuzzy
D-product and E(a) is a closed fuzzy rectangle in R(a) with E(a) A F,.+; = O there exists a
o-discrete collection {R(a®a): aeB(a, k), k=1} of closed fuzzy rectangles in R(a).

Now, R(a) A Fipe1 < sup R(a®a) < R(a)\E(a).

aeB(a,k)
k>1

Now from the fact that £(a) and R(a@a) are disjoint fuzzy rectangles in XxY, we may
assume that for each aeB(aq, k).

E(a) A R(a®a) =0 and E(a)" A R(a®a)" =0 implies keNy -

E(a)' A R(@®a) =0 and E(a)" A R(a®q)" #0 implies ke N,

E(a) A R(a®a) #0 and E(a)’ A R(a®a)" =0 implies ke N,.

Define Atex = { a®al aeB(a, k), ae At} for each £ >1. Now clearly {R(b): be
Ate } 1s discrete in XxY and (1)-(3) are satisfied.

Now we will prove that ¢ is the required winning strategy by showing that

infl' F.=0. For, if possible let in)fl' Eun(x,y) = n for some (x, y)e XxY and ne(0, 1]. Then
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by (2) it follows that we can choose some (%1, 42,...)e®” and (@i, @,...) such that
an= (a1, ..., an)e A; where T, = (ki, k, ..., k») and R(a,) (x, y) = 7 for each n 21 for
each n>1. Then R(a,)' (x) = n and R(a,)" () 2 n for each n 21.

1'r'12fl' R(a,) (x) 2 nand 1'1'12f1' R(an)" ) 2 n. (a)

Now assume that (ki, k2, ...) contains an infinite sequence (ki) ki), ...)
consisting of all nos in Np U N;. Let T(d)=a(0)=0 and T()) =T, = (kiay,- .., ki) and
a(f) = aip = (aiqy,. .., aip) for each j21. Now claim Si(R(a(/)))A R(a(j+1))'=0 fof each
J20. Forif kiye1 € No 0 My, T(i+1) =T(H)D kiy+1 follows from kigy+1 = kig+1y and hence
a(j+1) = a(j) ® aiym € Arg+1). Now claim follows from (3)(i). Similar argument holds for

k,'(,'+1) € N2 also.

Now from the claim above and (2) it follows that (S1(X), R(a(1)), S(R(a(1)"),
R(a(2)), S(R(a(1))) ....) is a play of G*(K), X) and hence in)fl‘ R(a(j))=0. This is a

contradiction to (a). Now a similar argument holds good for the case of (4, 42, ...)
contains an infinite sequence (kiq), kic2), -.) consisting of all natural numbers %, belonging

to No w N, also. This completes the proof.
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Chapter VI
APPPLICATIONS OF FUZZY TOPOLOGICAL GAMES

In this chapter we discuss some applications of fuzzy topological games in
covering properties and dimension theory. We mainly fbcus our attention on a-para
(meta) compact spaces and shading dimension. Every product space discussed will have a
winning strategy in some particular kind of fuzzy topological game. Also a fuzzy version
of countable sum theorem for covering dimension in terms of fuzzy topological games is

obtained.

6.1.Games and Product in a-para (meta) Compact Spaces

First we obtain a characterisation of fuzzy regular o.-paracompact spaces ,

which will be useful in proving the main theorems in this section.

6.1.1 Theorem For a fuzzy regular space X, the following are equivalent

@) X is a-paracompact.

(i)  Every a-shading of X by open fuzzy sets has a o-locally finite a-shading
refinement by open fuzzy sets.

(i)  Every a-shading refinement of X by open fuzzy sets has a locally finite @-shading
refinement.

(iv)  Every a-shading of X by open ﬁJzzy' sets has a locally finite a-shading refinement
by closed fuzzy sets.

Proof

(i) = (i)
Follows from the fact that every locally finite a-shading is o-locally finite.

(i1) = (i)
Let U be an a-shading of X by open fuzzy sets. Let V be the o~ locally finite a-

shading refinement of U by open fuzzy sets. Therefore V = :_31 Vi where each V;, ={Vis:

Be A} is locally finite. Now take W;= Sup V. Now W ={ Wi :i = 1,2,3..... }is clearly an

ve,
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a-shading of X. Take A1 =Wy and 4, =W\ U W;fori=1,2,3, ... Now {4,:i=1,2,

...} is a locally finite a-shading refinement of W. Then by Theorem 1.2.7 it follows that

{AiAVig: i=1,2, ..., BeA}is alocally finite a-shading refinement of ¥ and hence of
U.

(ii1) =(iv)

Let U be an a-shading of X by open fuzzy sets. For any x €X, take some U, €U
with Ux(x)> a. Now since X is fuzzy regular, it is poséible to find a fuzzy open nbd V; of
X such that Vi(x)> @ and xeVy <V_<U;. Now by (iii) we have {V;: xeX} has a locally'
finite a-shading refinement {4,: eI’} (say). Then by Theorem 1.3.3 {4 : rel} isalso
locally finite. Now for each reT, if 4, <V, then 4,<V,<U for some U eU. Hence { 4, :

reI’} is the required a-shading refinement by closed fuzzy sets.

(iv) = (i).

Let U be an a-shading of X by open fuzzy sets and ¥ be a locally finite a-shading
refinement of U by closed fuzzy sets. For'each xeX, let W; be an open fuzzy set such
that Wi(x) =1 and V; = 1\ W, holds for all but almost finitely many /. This is possible
since V is locally finite where V; € V. Now clearly W= {W;: xeX} is an a-shading of X
and let A be a locally finite a-shading refinement of W by closed fuzzy sets. Now we
take V* = X\ Sup {A: AeA ,_‘A/\V= 03}. Clearly each V* is fuzzy open and contains V.
Consider V* = { I'*: VeV}. Now V* is a locally finite a-shading of X. For let xe X, now
we can find an open fuzzy set U such that U(x) =1 and 4, < 1-U holds for all but at most
finitely many 7. (since A4 is locally finite). i.e.,, A; A U # 0 for almost finitely many i.
Now if U A V* 20 for some V*eV* then V* A4;#0forsomei=1,2,3,..., n Bythe
definition of ¥’ it follows that 4; A ¥V =0 for some i = 1, 2, ..., n. Now if 4 is a
refinement of {W,: xeX} and each W, meet only finitely many VeV implies that 4;
meets only finitely many members of Vand hence we have U A V* = 0 for all but finitely

many ¥ e V*. And hence V*is locally finite.
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Now for every VeV take UeU such that V<U and consider { U A V* : VeV}.
This is clearly an a-shading refinement of U by open fuzzy sets which is locally finite.

Hence X is a-paracompact.

6.1.2Theorem If Player I has a fuzzy winning strategy in G (DC, X) and X is a-
paracompact, then X xY is a-paracompact for every a-paracompact space . Where DC
denote the class of all fuzzy topological spaces which have a finite fuzzy closed a-
shading by members of C, where C is the collection of all a-compact spaces.
Proof

Let S be a fuzzy stationery winnipg strategy for player I in G'(DC, X). Let G
be any a-shading of X x ¥ by open fuzzy sets. Then from the characterization of a-para
compactness in theorem 6.1.1 it suffices to prove that G has o-locally finite refinement
by open fuzzy sets. Takes Uy ={0}, Ao = {0} and R(0) = H(0) = X xY, we shall construct
a collection U, of fuzzy co-zero rectangles and a collection {(R(a), H(a))|a =(ai, aa,

seay

a,)€A,} of pairs of closed rectangles R(a) and open rectangle H(a) for each n>1.
satisfying the following conditions

@ U, is locally finite in X xY

(i)  Each UxVin U, is contained in some GeG.

(i) {H(a): acAdn} is locally finite in XxY for each a€ 4, and n>1.

(iv) a. € Any,wherea.=(a,,a,,....a )

(v)  R(a)<R(a)A H(a)

vi)  S(R(a)) AR(a)=0

(vii)  R(@\Sup Upn <Sup{R(@® a)la® a €4n}.

Where * and ™ represents projections on X and Y axes respectively.

The construction of U, are similar to that of Yajima [Y,] in crisp case and hence

we omit it.
Now take U = ulU,,. From (i) and (ii) we get that U is a o-locally finite
ne

collection of co-zero rectangles and UxVe U is contained in some GeG.



68

Now from (v) and (vi) we get if (a,) is a sequence such that a, € 4, and (a,).€4,.1

for each n>1 where ap = ¢, then sup R(a,)'=0. For ( S(X), R(a1), SRR(@)),..., S(R(an)"),

n21

R(ay), ... ) isaplay of G (DC, X) and player I wins this play and hence sup R(a, ) =0.

nxl

Now it is enough if we prove that U is an @-shading of XxY. If possible let U be
not an a-shading of XxY. Therefore U(x, y)<a for every UcU. Then by (vii) we can
find an infinite sequence (ay, @z, ...) such that a, = (a1, a2, ..., @) and (x, y) €R(a,) V

n21. Now clearly R(a,)' (x)>0 and hence sup R(a,)' #0. This is a contradiction and hence

n21

the proof is complete.

Using the notion of the P,-spaces discussed in Chapter IV, we obtain an analogue

of theorem 6.1.2 for a-metacompact spaces as follows .

6.1.3Theorem Let X be a fuzzy regular a-metacompact Ps-space and Player I has a
winning strategy in G (DC.X) , then X x Y is a-metacompact for every a-metacompact
space Y. Where DC denote the class of all fis which have a discrete fuzzy closed a-

shading by members of C,where C is the collection of all @-compact spaces.

Proof

a® {=(a; az...., a, §), alk= (aj, a;... ..., ax) and a.=a/n-1.Also" and represents

the projections on X and Y respectively.

Given that Player I has a fuzzy winning strategy in G'(DC.X). Therefore by
Theorem 2.2.8 it follows that Player I has a stationary winning strategy and let this be s.
Let p be a function defined as in Theorem 4.1.5.We will prove that every a-shading G of
X x Y by open fuzzy sets has a point finite a-shading refinement by open fuzzy

rectangles.
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Let Up={0}, Ao ={0} and R(0) = H(0) = XxY. For each n>/ | we shall construct a
collection U, of open fuzzy rectangles and a collection {{R(a),H(a)}: a = (a.ay, ... ....a»)
€An} of pairs consisting of fuzzy closed x open rectangle R(a) and open rectangle H(a)
satisfying the following conditions
For each n >/

(i) U, is a point finite collection in XxV

(ii)  For every UxVeU,, thereis a GeG such that UxV < G
() { H(a): ae An} is point finite in XxY.

(iv) Sup {U:Ue Un} < Sup {H(a): a€A n.1}

v) a_ €An,

(vi)  R(a)<R(a)and R(a) <H(a) <H(a)

(vii) S(R(a)') AnR@) =0

(vii)  R@) \ Sup{U: Ue Upn1} <Sup { R(a+ &); {a+ E)e A n+1 }
(ix) pR@1i1), ......... R(a/n-1), R(a)") n H(a)"=0

Assume that for each i <'n, the collections U; and {R(a), H(a) ; ae A;} have been
constructed.

Now for any ae 4, , let {C, : yel{a) } be a discrete collection of a-compact sets.
whose supremum is S(R(a)!) . From the fact that X is fuzzy regular a-metacompact it
follows that there exists point finite collections {W, : yel{a)} and {O,: yel(a)} of
open fuzzy sets such that C, < W, <cl W, <O, < H(a) "\ Sup { Cp: fel{a) p=y} for each
yel(a). Now Y is a-metacompact and R(a)"” is open in ¥: Now R(a)” is a-metacompact
(Since a-metacompact is hereditary with respect to open subsets) and hence for each
yel(a), there exists a collection Uy = {Us ;xVs: j = 1,2,3....msand Se€A(y)}such that
(i) Cy<Us= Sup Us;<W;s for eachded(y).

ismé
(i) Each Us; xV5 is contained in some G € G.
(i) { Vs: 6€4(7)}is point finite a-shading of R(a)” .
Set Uns1= { U, :yel(a)and aeA,} and
Ani1 = {a®S: SeA(y),yel(a), acA,}o {a+0:aed,}
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Take any a+¢& €4,+;. Then observe that a [i €4, for all i<n.

If & =6 for some Sed(y) and yel(a), put Ra®8) =[ (cl Wy\Vs) AR(@)] xVs and

H(@a®8) =0,\p (R@a/1)",......R@a/n)' ,R(a+6)) xVs
If £=06,putR(a+t6 )=R@)\ Sup WyxR(a)" and
rel'(a) .
H(@+6)=H(@) \p(R@ll),.....R@/n) ,R@+6)) xH(a)"

Then clearly Uns1 and {R(a),H(a) : a€ An1} satisfies conditions (i) --- (ix)

Now take U = Y U.. Now it can be shown that U is an a-shading of X and we

will prove that U is also point finite. Also by (ii) U is a collection of open fuzzy
rectangles in XxY and any UxVe U is contained in some Ge G.

Similar to the proof of claim in Theorem 6.1.2 , we get if {a,} is a sequence such
that a, €4, and (a,). = a,., for each n>/,where ay = 0, then Inf,>; H(a,)' = 0 ----- Q)]
Again we claim that /nf,> (SupH,)= 0.Where H, = {H(a) : a €A4,}. For if possible let
there be an z, such that Inf,>; (SupH,)( z9)>n = for somen >0. Take A,(zg) = { ae A,
H(a) (z9) 2 n}.By (iii) we get An(zg) is finite and by (v) and (vi), ae An(zg) = a.€ A,
i(zg). Then by Konings’ Lemma [ Lemma 2.8 of [Y,] ] there exists ( B/, B2 Bs,...... )
such that a, €( B;, fo..... Bn) €An(zg) for each n>l. Then H(a,)(zg) 2 1 for each n>1.
Hence Inf,>; H(a,)(z¢) = 7. This is a contradiction to our claim.

Let z € XxY then by claim above we can ﬁnq an m 2/ such that Sup H,,(z) = 0.
Now from (v) and (vi) it follows that Sup H,.; < Sup H, for each n=2/. Since
Sup H, (z)=0 for each n > m, from (iv) we get that Sup U, (z)=0 whenever n > m. Hence

it follows from (i) that U is point finite in XxY . This completes the proof.
From Theorems 4.1.6,3.3.6, and 6.1.3 next corollary follows easily.
6.1.4 Corollory If X is a fuzzy regular a-metacompact space with a o-closure

preserving a-shading by a-compact sets, then XxY is a-metacompact for every a-

metacompact space Y.
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6.2 Games and Shading Dimension

6.2.1 Notation Through out this section by shading we mean 0-shading and assume that

every shading is essential.

6.2.2 Definition Let X be a non empty set and U ={U;: Ae A}be a non empty family of
fuzzy subsets of X. Then the order of U is the largest integer » such that there exists a

subset M of A having n+/ elements such that /nf U;> 0. And if there is no such integer,
AeM

order isoo. If the collection is void, its order is defined to be —/.

6.2.3 Definition The shading dimension of a fuzzy topological space X (Shad X) is the
least integer # such that every finite open shading of X has an open shading refinement

of order not exceeding n. If there is no such integer, the shading dimension is said to be

.

6.2.4 Definition A shading U ={U, a €A} is_essential if for every S e A,

Us> \Sup { Uz a €A}
azf

6.2.5 Theorem If X is a fuzzy topological space, then the following are equivalent

(i) Shad X <n

(i1) For every finite open shading {U,, U,, U;..U;} of X, there is an open shading {V,
Vo, Vi ... Vi}of order not exceeding # such that Vi< Ui for each1=1,2,3... k.

(iii) If { U), U, Us.U,+2} is an open shading of X, there is an open shading {V), V,
Vi..... Va+2} such that Vi< Ui and InfV, =0 .

1<isn

Proof
(1) = (1)

Let Shad X < n. Therefore the shading {U,, U, U;.U;} has an open shading
refinement say W with order not exceeding n. Now if We W, there is some i such that
W<U,and suppose that each W is associated with one of the U containing it and take V; =

Sup { W:W<U,}.Clearly each V; is open and V; <U; for every i. Since order of W is not
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exceeding n, it follows that for any xeX, W(x)>0 for at most #+/ members of W and
each We W is associated with a unique U;. Therefore it follows that V(x)>0 for at most

n+1 members of {¥;} and hence {V;} is a shading of X with order not exceeding n.
(i1) = (iii) 1s clear

(ii)= (ii)

Let U= {U,, U, U;.U} be a finite open shading of X.Assume £ > n+1,
We define a collection {G;: / <i < n+2} as follows
Gi=U, for 1< n+/land
Gne2 = Sup U;

n+2<i<k
Clearly each G; is open and { G; } is a shading of X. Then by (iii) there is an open
shading {H), H; H;....Hn+2} suchthat H; < U;and [nf H;=0. Now take Wi= U;if I <

1<ign+2

n+1 and W; = U; AHu+21f i >n+1.Then clearly W= {W,, W, W;.W,} is an open shading
of X with the property that W; < U; and Inf W;= 0.Now if there exists a subset B of

1<i<n+2

{1,2,....k}with n+2 elements such that /nf W,# 0, we will renumber the family W to
i€eB

give a family P={P, P, P;.Py} such that Inf Pi# 0 . By proceeding in a manner

1<isn+2
similar to the construction above, we can obtain an open shading W'= {W',, W),

W'5..W'} such that W' < Pyand Inf W' = 0By repeating this process for a finite

i<isn+2
number of times, we will end up with an open shading {V,, V>, V;..Vi} of X with order

not exceeding # and V; <U.
(if)= (i) is obvious.

6.2.6 Theorem If A is a closed fuzzy subset of a fuzzy topological space X, then
Shad A < Shad X.
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Proof

Let Shad X < n . Now it is enough to prove that Shad A <n. Forlet U = {U,, U,,
Us.. Ui} be a finite open shading of 4. Then clearly fér each i, U; =A AV, for some V;
open in X. Then it follows clequy that {V), V>, Vs..Vi, 1\4} is an open shading of X . Now
since Shad X < n, this collection has an open shading refinement W with order not

exceeding n. Now consider {WAA: We W}. This is an open refinement of U with order

not exceeding # and hence Shad X < n.

6.2.7 Definition [HU] A fuzzy topological space (X,7) is normal if for every closed
fuzzy set k and open fuzzy set b such that k< b, there exists a fuzzy set a such that

k<inta <cla <b.

6.2.8 Definition An open shading U ={U,. a €A} is said to be shrinkable if there exists

an open shading V' ={V,. a €A} suchthatc/V,< U for every @ €A. Then V is called a
shrinking of U.

6.2.9 Definition Two families {A;: A €A} and {B,: A EAK} of fuzzy subsets of a set X' is

similar if for each yc A, Inf A,and )nf B, are both zero or both non zero.
Aey Aey

6.2.10 Proposition A fuzzy topological space X is normal if and only if every point
finite shading of X by open fuzzy sets is shrinkable.
Proof

Suppose that X is fuzzy normal. Let U ={U,: a €A} be a point finite shading of X
by open fuzzy sets. For convenience take A = {/,2,3,...}. Construct V' ={V,. a €A} by

transfinite induction as follows.

Put F; =1\ SupU, . Now clearly F; < Uy . Then by normality [Theorem 1.12 of

a>1
[M;B1] ], there exists an open set V; such that F; < V; and ¢/ V), < U;. Let U be
constructed for each < a and let Fq = 1 \ [Sup Vﬁ v SupU, |. Now clearly F, is

B<a 7>a

closed and F,< U, Also by normality there exists an open fuzzy subset V, with F; <V,
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<cl Vg < Ug Now V= { Vs a €A} is the required shrinking provided that it is a
shading of X. For, let xeX, since U is a shading and point finite, it follows that U(x)>0
for at most finitely many UeU. Say Ui, Uiy, ... ... ... Uin. Take k= Max{k,, k;........ kn}.
Now clearly xgU, for any y >k .And hence if xgUjp for any <k, then clearly xg V,
for any y > k. Therefore xe I, <V, . Hence xe V, Thus in any case V3 (x)>0 for some
B €A. Hence{ V,: ae A} is the required shrinking.

Conversely let 4 and B be two closed subsets of X such that 4 < /\ B. Then clearly
{I\A, I\ B} is a point finite open shading of X. For any shrinking {U,V} of {/\ 4, I\ B}

we have the open fuzzy sets /\ c/4 and /\ c¢/B containing B and A respectively. Hence X
is fuzzy normal. [ By theorem 1.12 of [ M;B1] ]

6.2.11 Proposition Let X be a fuzzy normal space and {G,. a €A} a family of locally
finite collection of open fuzzy sets in X and {F4. @ €A} be a collection of closed fuzzy
sets of X such that F; < G, for each a. Then there is an open collection {H, a €A}
similar to {Fq @ €A} and Fo < Hy< G, foreach a .
Proof

Well order A and construct the set F' as follows . Take all finite intersections from
{Fa a €A} which does not meet F. Take F as the supremum of all these and from
normality it follows that there exists an open fuzzy set Hy such that F, < H, < ¢l H,
<(I\F)An Gy . Now { ¢l Hy, F\,F,... 1} is similar to {Fa. a €A} . Continuing trans-

finitely we get a collection {H4. a €4} which has the required property.

6.2.12 Proposition (A characterisation for shading dimension for fuzzy normal spaces)
The following are equivalent for a fuzzy normal space.

(i) Shad X <n
(i)  Every finite open shading of X can be refined by a finite closed fuzzy shading of

order not exceeding n+/.

(i)  Every finite open shading {G1,Go,........ Gy} of X can be refined by a finite
closed fuzzy shading {H,Ha,........ H, }of order not exceeding n+/ such that
H; < G;for eachi.
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Proof follows from theorem 6.2.6 and Proposition 6.2.10 above.

6.2.13 Lemma If £ is a closed fuzzy subset of a fuzzy normal space X with Shad E <n ,
then for each finite open shading {U;: i <k} of X, there exists a finite shading V ={V;: i
<k } of open fuzzy sets and an open set G containing £ such that

() Vi < Uifor each i <k.

(i) Ord(x,V)<n+lforeach xeclG

Proof

From the characterisation in Proposition 6.2.12, clearly there exists a a closed
collection F ={F;: i <k } which is a shading of £ and F; < U; AE for each i with order
Ord (x,F) <n+1 for each xeX. Now proceeding in a similar manner as in theorem 7.14
of Engeling [E] in the crisp case , there exists a finite open collection of fuzzy sets W
={W;: i <k } suchthat ;< U, < W, for each i <k and Ord (x, W) <n+1 for each xe X.
Take an open set G in X such that £ < G < ¢/ G < SupW,( This is possible by

i<k
normality). Put V; = W; v (Ui\ ¢/ G}. Then V ={V;: i <k } and G has the required

properties.

6.2.14 Notation Shad, denote the family of all fuzzy topological spaces with shading

dimension <n.
6.2.15 Remark By Theorem 6.2.6 , it follows that X e Shad, = I < Shad, .

6.2.16 Main Theorem Let X be a fuzzy normal space and Player I has a winning
strategy in G ( Shad,, ,X) , then Shad X <n.
Proof

Let {U:j <k } be a shading of X by open fuzzy sets and S be a fuzzy stationary
winning strategy for Player I in G'( Shad, ,X).
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For each i construct an open shading U; ={U,;: j <k } of X and open fuzzy sets G;

with the following properties for each i > /.

(l) cl lj,j < lj,‘.]__,‘ < U, _] = 1,2,3, ..... k )
(i1) Ord(x, Uj) < n+1 for each xe ¢/ G;
(lll) S(]\ G,‘.])V G,‘.] < G,‘

Take Up; = Uj for each j < k and Gy = 0. Let G, and U; are constructed for each
i<m. Let £ =5S(1\ G,). Them clearly 1\ G,, is closed and hence Shad E < n. Then by .
lemma 6.2.13 we have an open shading Um+1 = { U+~ j <k }of X and an open set
G>E with U1y < Uy, for eachj < kand Ord(x, Un+1) < n+1 for each xe ¢/ G. Also
Un+1y<cl Un+i,; < Un,}, since X is fuzzy normal. Let G+ = G v Gy. Then Upyey and
G+ satisfy (1) --- (iii).

Now take F; = InfclU, ; for each j < k. Take an xe& X, now since each U; is a

izl
finite shading of X, we can choose j(x)< k such that xe U, ;) for infinitely many 7 . But

by (i) we have xe Inf U, ) = Fy(x). Thus the collection F= {F}: j <k } is a shading of X

i2]
by closed fuzzy sets such that F, < U, foreachj <k.Now {G;: i 21} isa shading of
X . Take some i 2>/ such that xe G;y. Now by (ii) we have Ord(x, F) < Ord (x, Uip) <
n+1 . Therefore it follows from Proposition 6.2.12 that Shad X < n.
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APPENDIX- I

L - FUZZY METACOMPACTNESS

Mao-Kang [MA] introduced a reasonable notion for paracompactnes in fuzzy
topology and systematically studied paracompactness for the case [0,/]. Later Jiu-Lan
[JI] continued the investigation in the L-fuzzy topological spaces(L-fts) using a-Q-
covers and quasi-coincidence relation. In chapter I, we have already discussed
metacompactness in [0,/] fuzzy topological spaces and obtained a characterization for the
same.In this section we define point finite collections and metacompactness in L-fis.
Besides getting a characterization for metacompactness in weakly induced L-fis that
involves the concepts of well-monotone and directed a-Q-covers, it is also seen that

metacompactness obtained is a good L-extension of ordinary metacompactness and it is

hereditary with respect to closed subsets.

For basic notions and definitions we follow Ying-Ming and Mao-Kang [Y;M]
.We let g denote the quasi coincidence relation. Also y denote the characteristic function
and P«(L") is the collection of all L-fuzzy points in the L-fts ( L% 6 ). A molecule in a
lattice L is a join irreducible element in L and the set of all molecules of L is denoted by

M(L).Also we denote Ay = {x€ X : A(x) o} and A = {x€ X : A(x)<a }.

A.1.1 Definition [Y;M] Let ( L*,6) be an L-fts . A fuzzy point xis quasi coincident
with Ae LY (and write x,<4 ) if xa¢A’ . Also 4 qLiasi coincides with B at x ( AgB at
x)if A(x)$ B'(x). We say 4 quasi coincident with B and write AgB if AgB at x for some
xeX. Further A— gB means A not quasi coincides with B. We say Ued is a quasi
coincident nbd of x, (Q-nbd) if x,<U. The family of all O-nbds of x, is denoted by Qs
(xg) or Ofxy).

Some Results mentioned in Appendix I are included in a paper titled Metacompactness in L-Fuzzy Context to

appear in the Journal of Fuzzy Mathematics, Vol. 8 No.3 (2000).
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A.1.2 Definition [Y;M ] Let ( L",6) be an L-fts , Ae L* . @ cL" is called a Q-cover of 4
if for every xeSupp(A4) , there exists U € @ such that x4<U . @ is a O-cover of ( L*,8
) if @ isa Q-coverof /. If aeM(L), then Cedis an a-Q-nbd of A, if Ce Q(xy) for

every x,< A . @ is called an a-Q cover of 4 if for every x,< A4, there exists U € @ such

that x,<U.

A.1.3 Definition [Y;M] Let (L*,5) be an L-fts. A= {A,:teT}cL* xie M(LY). Ais

called locally finite at x, if there exists Ue Q(x;) and a finite subset 7 of 7 such that
teT\ Ty = A= qU . And A is *-locally finite at x; if te T\ Tp = YAt~ qU, where At

={ xeX : A,(x)¢ 0 }. A is called locally finite (resp.*-locally finite ) for short | if A is

locally finite (resp. *-locally finite) at every molecule x; of L*.

A.1.4 Definition [Y;M] Let ( L*,6 ) be an L-fts. Ae I* |, aeM(L). A is called a-
paracompact (resp.a*-paracompact) if for every open a-Q-cover @ of 4, there exists an
open refinement ¥ of @ such that ¥is locally finite ( resp. *-locally finite )in 4 and ¥is
also an a-Q-cover of 4. 4 is called paracompact ( resp.*-paracompact ) if 4 is a a-
paracompact (resp.a*-paracompact) for every aeM(L). (L*6)is paracompact ( resp.*-
paracompact) if [ is paracompact (resp.*-paracompact). Where a collection A refines B

(A<B) ifforeveryAe A, 3 Be Bsuchthat4 <B.
Now we define point finite families and metacompactness.

A.1.5 Definition Let ( L, 6)bean Lfis. A= {A,: teT} c L*, x,e M(L"). A s called

point finite at x; if x; <A, for at most finitely many r€7. And A is *-point finite at
x, if there exists at most finitely many fe 7 such that x; < YAtg  where Afg)={ xeX :

A{x)40 }.A is called point finite (resp. *-point finite ) for short , if A4 is point finite

(resp. *-point finite) at every molecule x; of Il
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A.1.6 Definition Let ( L*,5) be an L-fts. Ae L | aeM(L). A is called a-metacompact
(resp. a*-metacompact) if every open a-QO-cover of 4 has a point finite ( resp. *-point-
finite ) open refinement which is also an a-Q-cover of 4 . A4 is called metacompact
( resp.*-metacompact ) if 4 is a-metacompact ( resp. a*-metacompact )for every

aeM(l). And ( L*,6 ) is metacompact ( resp.*-metacompact ) if [/ is metacompact

( resp.*-metacompact ).

A.1.7 Remark Clearly we have *-point finite = point finite and hence
a*-metacompact = a -metacompact and

*-metacompact => metacompact

A.1.8 Proposition Every locally finite (resp. *-point finite ) family is point finite (resp.

*-point finite)
Proof of Proposition A.1.8 follows immediately from the definitions.

Remark From the Proposition A.1.8 it follows that paracompact (resp.*-para compact)

= metacompact (resp.*-metacompact)

A.1.9 Definition [Y;M] Let ( L*,6 ) be an L-fts. A = {4, : teT } < L is a closure

preserving collection if for every subfamily Agof A, c/[vAgl=vVv cl A,.

A.1.10 Proposition A point finite closure ;.)reserving closed collection is always locally
finite.
Proof
Let {4, : teT } be a point finite closure preserving closed collection and let
xz€ M(L*). There fore x; < A, for te Ty say an at most finite subset of T.
Now take V = cl {v A, :1e Ty}
=v {cl 4 : t¢ Ty } since the collection is closure preserving.

=v { Ai: te Ty} since each 4, is closed.
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Take U =V’

(v{Ai:teTo})
N AL te To}

Now if te N7y , xa—q Arand hence x; q A for every teT \ T). Therefore it follows that
x1q (v {4::teTp}). Thatisx; qU.------—-—(1)
Now since x3— q A, it follows that x; <4/ Again by (1) we have x; U’ Combining these

two we get A 2 x4 U" That is 4" & U and hence 4i— g U. This completes the proof.

A.1.11 Remark

@) A collection U={U : UeU} is locally finite implies that so is {c/ U : UeU}. But
this does not hold for point finite families.

(i) Similar to the Proposition A.1.10 it can be shown that a *-point finite closure

preserving collection is always *-locally finite.

A.1.12 Proposition Let ( L*.5) be an L-fts. -ae M(),A4 eL¥, Be& Then

(1) If 4 is a-metacompact thensois 4 AB

(ii) If 4 is metacompact thensois 4 A B

Proof

(1) Let U be an a-O-cover of 4 A B . Let V be the cover U U{B'}. Now Vis_
an a-Q-cover of 4. For, Let x, < 4. Now if x, < B, x, € M( V(4 A B)) then there exists

Ue U such that x,< U Where if Ac L, then 4 = {pel . Jaedstp<a} If xo 4 B,

then x, < B’ € V. Thus Vis an a-Q-cover of A.

Since A4 is a-metacompact, it has a point finite refinement W such that W is an
a-Q-cover of A. Now clearly W' = {We W: W < U for some UeU} is point finite in
A A B . Now we will show that W’ is an a-Q -cover of 4 A B.

Let x, < AA B< A. Then there exists We W such that x,< W. Now since x,< B , we
have B >x, £W". And hence W< B’ Since W refines V = U U{B'}, there exists a Ue U
such that W < U. There fore x,< We W' . Thus W' is an open a-Q-cover of 4 A B. And

hence 4 A B is a-metacompact.

(ii) can be deduced easily from (i)
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A.1.13 Remark A result similar to that of Proposition A.1.12 can be obtained for a*-

metacompact and *-metacompact spaces also.
From the proposition A.1.12 and remark A.1.13 it follows clearly that

A.1.14 Theorem a-metacompactness , a*-metacompactness, a-metacompactness and

*-metacompactness are all closed hereditary.

A.1.15 Definition [Y;M] Let ( L*,6) be an L-fts. Then by [&] we denote the family of
support sets of all crisp subsets in 6. (X, [d]) is a topology and it is the background space.

( L*,6) is weakly induced if each Ued is a lower semi continuous function from the

background space (X, [d])to L.

A.1.16 Definition [Y;M] For a property P of ordinary topological space, a property P* of
L-fts is called a good L-extension of P, if for every ordinary topological space (X,7) ,
(X,T) has the property P if and only if (X, w'L(T)) has property P*. In particular when L =
[0,1] we say P* is a good extension of P. Where w;(7) is the family of all lower semi

continuous functions from (X,7) to L.

A.1.17 Theorem Let ( LY 8 ) be a weakly induced L-fis. Then the following conditions
are equivalent.

@) ( L*,8) is metacompact.

(i1) There exists aeM(L) such that ( L*, &) is a-metacompact.

(i) (X, [d]) is metacompact

Proof

()= (i1) clear

(i))=(iii) Let Uc/8] be an open cover of X. Then clearly {xu: Ue U } is an open a-Q-

cover of /. Then by (ii) it has a point finite refinement which is also an a-Q-cover of [ say
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V. Take Viay= {xe X : V(x)4& a'}. Consider the collection W= { V(s): Ve V}. Then by the
weakly induced property of (L*,5), Wis an open cover of (X, [o]). |

Now we will prove that W is a point finite open refinement of U. Now for any
VeV, there is a Ue U such that V< yu. Let xeW for some We W. That is xe V) for
some Ve V. Thatis V(x) £ a. So yu(x)= 0 and hence xeU and W < U. So Wis a
refinement of U.

Again if possible let xe W for infinitely many We W. That is xe {xeX: V(x)¢a.'}
for infinitely many Ve V. There fore it follo;vs that V(x) 4a.and hence x,¢ V" for infinitely
many VeV. That is x,< V for infinitely many Ve V. This is a contradiction since V is

point finite. Hence (i1)=>(iii).

(iii) = (i) Let UcS be an a-Q cover of 1. where @ € M(L). Since ( L*,8) is weakly
induced {Uo: UeU}is an open cover of X and there exists a refinement ¥ of this which
is also point finite cover of X. For every VeV , let Uy be such that V& Uyqay. Let W=

{xwA Uy: VeV and Vc Uy ey} . Now clearly W is an open refinement of U.

Now we will prove that W is point finite. Let xz& M(L*). Then since V is point
finite it follows clearly that xeV;, Vs, ... ... ... V,for somene Nand V; e Vfori =12, .. .n
Now we will show that x;<y 1 A Uy; for at most finitely many i. For, if possible let
x; <yv A Uy for infinitely many V' € V. Then x,<yr or x; < Uy for infinitely many V €
V. In both cases xeV for infinitely many ¥ € V. This is a contradiction and hence W is

point finite. Thus (iii) = (i). This completes the proof.

A.1.18 Theorem Let ( L*,5) be a weakly induced L.-fts. Then the following conditions
are equivalent.

1) (L% 5)is *-metacompact.

(i) There exists aeM(L) such that ( L*,5) is a*-metacompact.

(iii) (X, [9]) is metacompact
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Proof

()= (ii) clear

(i)=(iii) Let Uc [5] be an open cover of X. Then clearly {xu: Ue U } is an open a-Q--
cover of /and it has a *-point finite refinement ¥ which is also an a-QO-cover of /. We
take W= { Vg Ve V}. Now clearly W is a refinement of U and a cover of X. Since

(L*,8) is weakly induced, W [8] . Now it is enough if we prove that Wis a point finite

collection.

We want to prove that for any xe X, xe Vi, for at most finitely many 7. By (ii)
we have xo < ¥ v for at most finitely many 7 and hence we have a & ¥ vig'(x) for at
most finitely many /. Now we know that V4V () and hence ¥ vi & X vnfa). Therefore
a' £ V,-(o)(x)ﬁt: X vi (@)(x) for at most finitely many 7. That is ¥ 1 )(x) & @' and thus

X vi (a)(x)# 0 and hence it follows that xe Vi) for at most finitely many 7.

(iii) =>(i) Let aeM(L) and Uc S be an open a-Q-cover of /. Now { Uyy : Ue U } is an
open cover of X, since ( L* 5) is weakly induced. Given that (X, [4]) is metacompact and

hence there exists an open point finite refinement V of { Uy, : Ue U } which is a cover
of X. For every Ve Vlet Uy €U be such that V < UV‘(af) and take W={yy A Uy: Ve V
}. Clearly Wis an open a-Q -cover of [ which is *-point finite.

For let x;€ M(L%). If possible let x; <Y (¥ vA U 1) for infinitely many VeV.

Thatis x; <y vA Y uve forinfinitely many VeV

And hence x; <y v or x3 <Y U vy for infinitely many Ve V. In both cases x € V for

infinitely many V' eV. This is a contradiction that ¥ is point finite and hence W is *-point

finite.

A.1.19 Theorem If ( L*,8) is a weakly induced L-fis, then the following are equivalent

(i)  (L* &) is metacompact.
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(i)  For every aeM(L) , every well monotone open a-Q-cover of / has a point finite
open refinement which is also an a-Q-cover of 1.

(i)  There exists an aeM (L) such that every well monotone open a-Q-cover of / has
a point finite open refinement which is also an a-Q-cover of 1.

Proof

()= (ii) = (iii) is obvious

(iii)=>(i) It is enough if we prove that (X, []) is metacompact. By a characterization of

[DE], it is enough to prove that every well monotone open cover of (X, [4]) has a point

finite open refinement.

Let {U,: teT} be a well monotone open cover of (X, [d]) . Then clearly {xu: -
teT} is an open well monotone a-Q-cover of / . So it has a point finite refinement say
A={A, teT}. Let B={ Ayy : teT }. Now clearly Bc [8] since( L* &) is weakly.
induced. Now we show that B is the required point finite refinement .

If possible let for any xeX , xe B for infinitely many Be B. That is
Afx) 4 a' for infinitely many te7 . Thus x, < A4, for infinitely many 7e7. This is a

contradiction to that A is point finite. Also U; D Ayq) . For, let , xe Ayq) for some teT.
Now since{A, : teT }refines {yxu.: tT} it follows that a’ng,(x) <X urand this implies

X u(x) #0.Thus xe U, and hence B is a refinement of {U,: teT}also .This completes the

proof.

A.1.20 Lemma Let ( L% 6 ) be a weakly induced L-fts and aeM(L). Then if every
directed open a-Q-cover of / has a closure preserving closed refinement which is also an

a-Q-cover of 1 then( L* &) is metacompact.

Proof

By the characterization of metacompactness [DE] , it is enough to prove that
every directed open cover of (X, [d]) has a closure preserving closed refinement.

Let U= {U,: teT} be a directed open cover of X. Then {xu:: teT} is clearly a

directed open a-Q-cover of / and hence it has a closure preserving closed refinement say
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A = {4, : teT }which is also an a-Q-cover of / . Now consider B = { 4, o) : teT }. This
is the required collection where for any L-Fuzzy set A, Ajq = {xeX : A(x)<a} . Now

since ( L*,§) is a weakly induced , we have B < § . Now since {4, : reT }refines{xu -

teT}, it follows that if xe 4, (o7 we have ¥ ux)=>Aux)4 . Thus } u(x) = 0. Therefore
xe U and 41 Ut

Now we will prove that B is closure preserving . For always we have v ¢/ Ay <
¢l vAjy for any sub collection Ayof B. For convenience take A9 = { A (o) : t€To}where
To < T. We will show that {c/[VAqe ] : teTo 3 v{cl [Aqey) i teTy }. Let xe ¢l [VAqa ]
. Then ¢l [VA;]J(x)< @' That is xu > ¢l [VA)] = v cl [4] since {4, : teT }is closure
preserving. Therefore @' > v ¢l [A](x). This implies xe v{ ¢l [Aqeq] : teTo }.This

completes the proof.

A.1.21 Lemma Let ( L*,§ ) be a weakly induced metacompact L-fts and aeM(L). Then
every directed open a-Q-cover of / has a closure preserving closed refinement which is
also an open a-Q-cover of / .
Proof

Let @ be a directed open a-Q-cover of /. Now U = {Uy) : ae®} is a directed
open cover of (X, [d]). Since(X, [4]) is metacompact , it follows that U has a closure
preserving closed refinement say ¥. Now consider {y v : VeV}. This is the required

closure preserving closed refinement of @ which is also an open a-Q-cover of / .
A.1.22 Lemma Let ( L* &) be an L-fts and aeM(L). Then the following are equivalent.

(i) Every directed open a-Q-cover of [ has a closure preserving closed refinement which

is also an open a-Q-cover of / .

(ii) For every a-Q-cover Uof [, U” has a closure preserving closed refinement which is
also an open a-Q-cover of / . Where U” is the collection of all unions of finite

sub collections from U.
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Proof

(i) = (i) Clearly U” is directed and hence has a closure preserving closed

refinement.

(i) = (i) Let U be directed open a-QO-cover of /. Now since U is directed, U” is
a refinement of U . Then by (ii) U” has a closure preserving closed refinement say ¥V
which is an a-Q-cover of / . Now F< U< U. Hence it follows that V is the required

closure preserving closed refinement of U.

Combining Theorem A.1.19, Lemmas A.1.20, A.1.21, and A.1.22 we get the

following characterization of metacompactness in a weakly induced L-fts.

A.1.23 Theorem Let ( L5 ) be a weakly induced L-fts . Then the following are

equivalent

(i) (L*,8) is metacompact.

(ii) There exists aeM(L) such that ( L*,5) a-metacompact.

(1) (X, [8]) 1s metacompact

(iv) For every aeM(L) , every well monotone open a-(J-cover of / has a point
finite open refinement which is also an a-Q-cover of /.

(v) There exists an aeM (L) such that every well monotone open a-QO-cover of /
has a point finite open refinement which is also an a-Q-cover of /.

(vi) For every aeM(L) , every directed open a-Q-cover of / has a closure
preserving closed refinement which is also an a-Q-cover of /.

(vii) There exists an aeM (L) such that every directed open a-Q-cover of / has a
closure preserving closed refinement which is also an a-Q-cover of /.

(viii) For every aeM(L) , every open a-Q-cover U of 1, U™ has a closure
preserving closed refinement which is also an a-Q-cover of /.

(ix) There exists an aeM (L) such that for every open a-Q-cover U of 1, U” has

a closure preserving closed refinement which is also an a-Q-cover of /.
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APPENDIX - 11
L-FUZZY COVERING DIMENSION

In this section a characterisation of covering dimension in L-fts which is

good in the sense of Ying-Ming and Mao-Kang [Y;M] is obtained.

A.2.1Definition The order of a fuzzy point x, in a family U = {U, : acA4} is the number
of elements of & which are quasi coincident with x,. We denote it by Ord (x, ,U).

Order of the collection &/ is the supremum of all Ord (x, ,U) with x, running over

MLY).

A.2.2 Definition Let (L*,0) be an L-fis, Ac'L* . Then a-dim 4 is the least integer » such
that every finite open a-Q-cover of A has an open a-Q-cover refinement of order not

exceeding #n. And dim 4 =n if a-dim A= # for every ae M(L). dim(Z*,8) = n if dim/= n.

A.2.3 Remark dim(Z*,8) = -/ if and only if X is void and dim(ZX,8) = n if it is true that
dim(L~,8) < n and dim(L~,8) < n-1 is not true. Also dim(L*,8) = o if it is not true for any
integer » that dim(LX,8) < n.

A.2.4 Theorem Let (L*,8) be an L-f1s. Then the following are equivalent

() dim(L*,6) <n

(ii) For every ae M(L) , every finite a-Q-cover {Uy,Uh,.....Ux} of 1 by open fuzzy
subsets , there is an open a-Q-cover{V1,V>,.....Vi} of order not exceeding n such
that Vi<U; fori =1,2,3,...k.

(iii) If{ Uy, U, . ....Uns2} is an open a-Q-cover of /, then there exists an open a-Q-

cover {V,Va,....Vasa} 1 suchthat Vi<U; and InfV, <a. Where ae M(L).

i
1<isn+2
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Proof
(1) = (i)

Let dim(L~,8) < n, aeM(L) and U={Uy,Us,.....Us} be a finite opena-QJ-cover of
1. Now U has a refinement say W with order not exceeding n. Now if We W, there exists
some i such that W<Uj and suppose that each W is associated with a unique U; containing
it and take V; = Sup { W:W<U,}.Clearly each U; is open and V;<Uj; for some i. Now since

order of Wis not exceeding n , it follows that for each x, € M(L™) quasi coincides with

atmost n+/ members of Wand each We W s associated with a unique U. And hence x,

quasi coincides with atmost #n+/ members of {V;}. Hence {V;}.is an a-Q-cover of / with

order not exceeding n.
(1)= (iii) and (ii) = (1) are obvious

(iit) = (ii)
Let U={U,,U:,.....U} be a finite open an a-0-cover of /. Assume that £ > n+/.
Define the collection {G;: /<i <n+2} as follows.

G = U, ifi <n+1 and Gus+2 =SupU, . Now clearly {G;: /<i <n+2} is an open an @-Q-

n+2<i<k
cover of / and by hypothesis of (iii) there is an open an a-Q-cover {H,H, _ H,:3}. such

that H;<G,and InfH, <.

1<isn+2
Now take W, = U; ifi <n+1 and W; = U;A Hps; ifi > n+1 . Then clearly the collection
W ={W\,W,,.... Wy} is an open an a-Q-cover of / with the property that W, <U,

and InfW, <. Now if there exists a subset B of {/,2,3,.....k} with n+2 elements such

1<isn+2

that, /nfW, > a we will renumber the family W to give a family P={P,,P,.....P\}

ieB

such that/nfP, > @ .Now proceeding in a manner similar to the construction above we

1<i<n+2

obtain an an a-Q-cover W '={W’|,W",.... W%} by open fuzzy sets with W;< P; and
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InfW' < a Now again if € is a subset of {/,2,...k} with n+2 elements such that

1<isn+2

InfP, > a then InfW', > a . By repeating this process for a finite number of times we will
ieP ieP

end up with an open a-Q-cover {Vi,V,,.....Vi} of I with order not exceeding » and

Vi<U,. This completes the proof.

A.2.5 Theorem In a weakly induced L-fts the following are equivalent
i) dimZX&)<n
(i) There exists an aeM(L)such that a-dim(L*,8) < n
(i)  dim(X[d]) <n
Proof
()= (ii) clear
(i)= (ii1)
Let U ={U,,U,....Uk} < [é] be a finite open cover of X. Then
{yruv: U e U} is an open a-O-cover of 1. Then by a-dim(L*,8) < n it follows that
{xuv: U e U} has an open refinement V of order not exceeding ». Now consider
W= (Viy: Ve V}where V)= {xeX: V(x)£ o'}. Now by the weakly induced.
property , W is an open cover of X .Now we will prove that W has order not

exceeding .

For, if possible let order of W be greater than »#. Therefore there exists an
x €X which belongs to at least #+ 2 members of W. »
ie, xe {xeX: V(x)& o }or at least n+2 members of V
ie, V(x)& o for at least n+2 members of V

or x,< Vfor at least n+2 members of V. This is a contradiction to order of V is not

exceeding » .
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(ii)= (1)

Let U c [d] be an open a-Q-cover of / whereaéM(L).Since (L%,8) is weakly
induced, it follows that {Uy,): U e U is an open cover of X and it has an open
refinement of order not exceeding » say V. For every Ve V, let Uy be such that

V<U,, . Consider W={xvAUyr: Ve V, V< Uy, }- This is an open refinement

of ¥ with order not exceeding n. If possible let order of W be greater than n.
Therefore there exists an x, € M (LX) which quasi coincides with at least n+2

members of W.

ie, xq £ (XV A Uy for at least n+2 members of W
ie, Xq 4; Xv‘ v Uy’ for at least n+2 members of W

ie, xo <yv or x4 < Uy for at least n+2 members of V

In both cases xeV for at most n+2 members of WV and this is a contradiction. This

completes the proof.

A.2.6 Remark The L-Fuzzy covering dimension defined i1s a good L-extension of

ordinary covering dimension.

A.2.7 Main Theorem In a weakly induced L-fts the following are equivalent

(i)  dimLX8)<n

(i1) For every ae M(L) , every finite a-Q-cover of / by open fuzzy sets has a-
precise open refinement of order not exceeding »

(i)  There exists an ae M(L) such that every finite a-Q-cover of / by open fuzzy
sets has a precise open refinement of order not exceeding

(iv) If{U,,U,,.....Us2} is an open a-Q-cover of /, then there exists an open a-Q-

cover {V1,Va,.....Vara} 1 such that Vi<U; and InfV, <a. Where ae M(L).

1<isn+2

(v)  There exists an ae M(L) such that a-dim(L*,8) <n
(vi) dim(X,[d]) <n
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Proof

Equivalence of (i) ,(v) and (vi) follows from theorem A.2.5. All other implications

except (iii) = (i) follows from theorem A.2.4.

(i) = (i)

By theorem A.2.5 it is enough to prove that dim(X,[5]) < n .Let U < [8] be
a finite open cover of X. Then {yu : Ue U} is a finite open a-Q-cover of / and it has a
precise open refinement of order not exceeding n. Letitbe V ={V,, V> Vi}. Let W=

Vieay: 1 =1,2,3,.......}). By weakly induced property, Wis an open cover of X. Also it is

easy to show that order of Wis not exceeding 7 and hence dim (X[d]) <n .
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