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CHAPTER1
INTRODUCTION

Gabour Szeg6’s (1895-1985) most important work was in the
area of extremal problems and Toeplitz matrices. He proved a number of limit
theorems, now known as Szegé’s limit theorem, the strong Szegé’s limit
theorem [2] and Szego’s orthogonal polynomials.

In early twenties G. Szego studied in detail the distribution of
eigenvalues of the section of Toeplitz forms associated with a function defined
in [-7,x] .

The basic idea used by Szego is the so called equidistribution of
sequences introduced by H. Weyl.

Equidistribution of Sequence [13]

Let (u,) (k>1) be a sequence of real numbers contained in an
interval 1 of length [I|. For any subinterval J of I, of length |J| , let J(n)

denote the number of points among u,,u,,...,u, that lie in J. The sequence is
said to be equidistributed or uniformly distributed on I if for each J contained
inI,
limi(i) = H .
won |

(Intervals may be open or half-open.)

The following measure theoretic version can also found in [13].
Theorem

The sequence (u,) contained in [0,27) is uniformly distributed

on that interval if and only if

if(uk) 2

lim 42 . = [fdo
0

For every function f that is continuous and periodic with period 27 .



Toeplitz has studied the distribution of eigenvalues of an infinite
matrix (CU_ y) where the indicesv and x range from —w to «. The
asymptotic distribution of the eigenvalues of Toeplitz forms can be expressed in
the terminology of theory of equal distribution due to H. Weyl. The well known

Szego’s theorem throws light into the asymptotic distribution of eigenvalues of

truncations.

Szegd’s Theorem [12]
The Szegd’s theorem on Toeplitz matrices states that if
A,(4),,4,(4),,....,A ,(4), are the eigenvalues of the NxN truncations

(4), of the matrix 4= (a,._ j) , where
1 7 il
a = 5 [Tt

is the £ " Fourier coefficient of the multiplier fin L*(-7,7), and F is any

continuous function on R, then

Y (A (4),)

& R
lim 2 = _{F(f(x))dx )

The above theorem is well known for its applications to
trigonometric moment problems, stochastic process [12] and to problems in
edge detection [14].

The classical Szego’s theorem is based on Fourier system

{e,:neZ} where e,(x)=e"™. In this thesis we study similar results in the

context of Haar System.

1.1 Summary of the Thesis
The problem considered is the validity of conclusion of Szegé

under the following changes in the hypothesis.



) The Fourier basis is reordered
(i)  The Fourier system is replaced by other systems like Haar wavelet

system with various ordering.

The thesis is divided into five chapters including introductory
Chapter 1.

In Chapter II we look into the effect of change in the ordering of
the Fourier system on Szego’s classical observations of asymptotic distribution
of eigenvalues of finite Toeplitz forms. This is done by checking proofs and
Szego’s properties in the new set up. It is observed that there is no change in the
conclusion of Szegs. The first section deals with minimum property of Toeplitz
forms and its limits in the changed system. The second one deals with
asymptotic distribution of eigenvalues of finite Toeplitz forms in the new
system. This is an imitation of the method adopted by Szego in the original
case.

In Chapter III we consider the multiplication operators under

Haar system in L?(0,1). To be more precise the corner N x N truncations and
the associated asymptotic distribution of eigenvalues are analyzed, analogous to
Szego’s theorem classical version. This chapter is divided into two sections.
In section one, L?(0,]) with Haar system under lexicographic ordering is
considered. The main theorem of this chapter [3.1.3] says that the conclusion of
classical theorem does not remain valid in the changed setup. It is also observed
that when the same operator is considered with respect to another ordering, the
distribution of eigenvalues converges. In section two we consider spectral
approximations of multiplication operators under Haar system in L?(0,1). This
work is quite similar to the work of Kent E. Morrison.[17].

In chapter IV analogous to classical Szego’s theorem we define
Szego’s Type theorem for operators in L*(R,) and in L*(R) and checks its
validity for certain multiplication operators with respect to a chosen ordering of

the Haar basis. It is observed that for certain multiplication operators T, with



multiplier f =h,, 20, the distribution of eigenvalues converges but not to
the “Szego limit” and for multiplication operators 7, with f =h,,i20,;>0,
the distribution of eigenvalues exists and Szegs’s Type theorem is valid. This
can be considered the main result of this chapter. The theorem 4.11 provides a
partial L*(R) version of the above result.

In the fifth and final chapter, we discuss classes of orderings of
Haar System in L*(R,) andin L*(R) in which Szegs’s Type Theorem is valid
for certain multiplication operators. This chapter is divided into two sections. In
the first section, we give an ordering to Haar system in L*(R, ) and prove that
with respect to this ordering, Szegs’s Type Theorem holds for general class of

multiplication operators 7, with multiplier f e I*(R,), subject to some

conditions on f. This is given in 5.1.13, which is the main result of this
chapter. Finally in second section more general classes of orderings of Haar
system in L*(R,) and in L*(R) are identified in such a way that for certain

classes of multiplication operators the asymptotic distribution of eigenvalues
exists. Some illustrative examples are also given.

Apart from these five chapters a result on spectral approximation
and a proposal for future investigation to higher dimensional L’ (R") is given in
the appendix.

1.2 Basic Definitions and Theorems

Some basic definitions and theorems which are quoted in the

subsequent chapters are given here.
1.2.1 Toeplitz’s Forms [12]
Let f(x) be areal-valued function of class L and

&) ~ Yeem

its Fourier Series, where



Then the Hermitian form T, =Y c, u,u,,v,u=0,,...,n is called the
Toeplitz form associated with the function f(x) and the matrix (cu_ ”) is called

Toeplitz matrix. We have in this case

1.2.2. Equal distribution of numbers [12]

For each n we consider a set of n+1 real numbers

al("),az("),. ..,a..." and another set of the same kind b,("),bz("), ...,b

2™+l 2% n+l
We assume that for each v and n

a, "<k, |b"<k

where X is independent of v and n. We say that {aS")} and {bf") }, n—» o, are
equally distributed in the interval [- K, K] if the following holds. Let F(z) be

an arbitrary continuous function in the interval [- K, K] ; we have then

n+l

S1Fla,”)-Flp, ")
=0.

lim +=
> n+l

1.2.3 Multiplication Operator [17]
Suppose /< R is an interval and f:7 - C is a bounded
measurable function. Define the multiplication operator
T, :L*[1]> *[1] :g > fo, g L*[1].
Let {e,,e,, ... } be an orthonormal basis of L’ 7 ]. We definethe Nx N matrix

(T,)N =(a,.j), 1<i,j<N , where

a, = _[f(x) €; (x) e_:(x) dx .
The infinite matrix (T ,)= (ay) 0<i,j, represents the operator T,. T, is the

bounded linear operator and we use the operator norm



|7 = sue] 7,€)].

K=
Let P, denote the orthogonal projection of H onto the span {e,,e,, ..., }
and put T,y = P,T, P, . As it is done in [1], we freely consider T, as NxN
corner truncation of the matrix (Tf ) We can regard (Tf )N as a matrix

approximation of T, .

1.2.4 Hausdorff metric [15,17]
Let H(c) denote the set of compact subsets of C. Define the

Hausdorff metric # on H(C) by
W(M,N) = max|h* (M, N),h* (N, M)]
(The housdorft distance between M & N) where
h*(M,N)= supirelﬂm ~n|.

meM

1.2.5 Essential Range [6]
Let E be a measurable subset of R and f € L”(E). The set

ke R:m{te E:|f(r)-k| < &}>0forevery £ > 0}

is called the essential range of f and is denoted by R( f )

1.2.6 Haar Wavelet Theory [3,5]

Wavelets are mathematical functions that cut up data into
different frequency components and then study each component with a
resolution matched to its scale. They have advantages over traditional Fourier
methods in analyzing physical situations where the signal contains
discontinuities and sharp spikes. A comparison of Fourier transform and
Wavelet transform is given in [3].

The first mention of wavelet appeared in an appendix to the thesis
of A.Haar. The theory of wavelets lies in the boundaries between
(i)Mathematics (ii) Scientific Calculations (iii) Signal Processing (iv) Image



Processing. The main branch of mathematics leading to wavelets began with

Joseph Fourier who introduced Fourier Synthesis.
In 1910 Haar constructed an orthonormal basis for L?(0,1) now
known as Haar system which provides a local analysis.

For myneZ,let I,, be the closed interval

I ._.{L n+1}gR.

2"’ 2"
Such intervals are called dyadic intervals. The collection {I,,, :m,n e Z} of all
dyadic intervals has the nesting property: if the interiors of 7/, and /,, have
nonempty intersection, then either /,,, c1,, or /,, < I, ,. The Haar function

{h_ :mneZon R are defined as

,

omi2 L5x<n+1/2
2" 2"
hm"(X) - *—2,,,/2 n+1/2 Sx<n+1
2" 2"
0 otherwise
{

Each h,, is nonzero on /,, and {h_, :mmneZ} is an orthonormal set.
{n,,: mneZ} is complete in L*(R) ,s0 we have the identity

£=2{f hnp) by in I(R) .

mneZ

This expansion is local in the sense that if f =0 on h,,,then (f,h,,)=0.

mn *

Let

1 0<x<l1/2
h=hy, =4-1 12<x<1
0 otherwise

Then foreach m,n € Z
hm(x)=2% h(2"'x—n).

Hence all basis elements are obtained by certain translations and dilations of

one element. This is the characteristic structure of wavelet basis. That one



element is called the wavelet. Thus Haar system is regarded as a simplest
example of a wavelet basis. ‘A4’ is known as Haar Wavelet.

One of the properties of the Haar wavelet is that it has compact
support. It is the only known simple symmetrical wavelet with compact support.
Also the simplest wavelet basis suitable for edge detection problems is the Haar
basis [11,24]. Unfortunately Haar wavelet is not continuously differentiable

which somewhat limits its applications like problems in differential equation.

Let ¢ be the characteristic function of the unit interval [0,1]
and foreach jeZ, ¢ j(x) = ¢(x~j). Then the collection {¢j(x)} is an

orthonormal setin L*(R). Let ¥, be the closed linear span of 9 (x). Let

h,(x) = % h(2ix—j) i,jeZ.

For each i>0, let W, be the closed linear span of

{h,j(x)jeZ , iZO}. Then it is known that
R)=V,® {5% W,}.

Hence the collection {¢ ohy, JEZ P2 0} is an orthonormal

T
basis in L*(R). The analysis carried in I?(R) is using the above orthonormal
basis. In the case of L*(R,) and in L?(0,1), the restriction of these functions

are considered.

1.2.7 Weyl’s Theorem[8]
Let 4 and B be the Hermitian matrices. Then

AY(4)-4" (Bjs||A—B||

max
J
where 4 j (4) and A j (B) be the eigenvalues of 4 and B arranged in

decreasing order.



1.2.8 Iterated Limit Theorem [7]
Let (a,,) be the double sequence. Suppose that the single limits

y, = lim(a,,), z,=lim(a,,) exist forall m,ne N, and that the convergence

of one of these collections is uniform. Then both iterated limits and the double

limit exist and all three are equal.

We conclude this chapter by giving some of Kent E. Morrison’s
work on Szego’s Type theorem based on Walsh system. A brief sketch of
Morrison’s work [17] is as follows:

In his paper he considered how well the eigenvalues of the
matrices approximate the spectrum of the multiplication operator, which is the
essential range of the multiplier. The choice of the orthonormal basis strongly

affects the convergence. He considered the spectral convergence of

multiplication operators acting on the L? functions on an interval with respect

to Fourier basis, Legendre basis and Walsh basis in the following sense.
@ A,(f) > R(f) in H(C)
@ 4,(f) > ¢*(m) weakly.

Where
A, (f) - The set of eigenvalues of (T f )N
R(f) - Essential range of f
H(C) - The HausdorfYf space of C
2.9,
u,(f) - The measure on C suchthat 4, (f) = “AT where J, is the
Dirac delta measure concentrated at A
¢ *(m) - The measure defined in C such that

b
! IF [f(x)] & for any continuous

brm)[F] = —

function Fon C.



In the case of Legendre basis, Szego proved the following
theorem and another version of this is given in Morrison’s paper.
1.2.9 Theorem [12]

Let f be areal valued L* function on [-1, 1]. Then the sequence

of spectral measures 4, ( f ) converges weakly to the measure g defined by

ula,b) = %[45 (cos™ b)- ¢ (cos™ a)]

In the case of Walsh basis, Morrison proved the following theorem.
1.2.10 Theorem

k
Let f(x)=2c,y/,(x) with k& less than 27 where y, is the

i=0
Walsh functions for i 20 . Then
() u,(f) converges weakly to ¢ *(dx) .
(i) For n=2" and m sufficiently large, A, (f)= R(f) .
In this thesis, theorems 3.2.1 and 3.2.2 are analogous to the

above mentioned theorem, with Haar system as the underlined basis.

1.3  Notations that are frequently used
T, - Multiplication Operator with multiplier f.

(T) - The matrix of a bounded linear operator

on a Hilbert space with respect to a

chosen base.
(1), - The Nx N comer truncation of (T).
P, - Orthogonal projection of L* space to span of

first n basis elements .

T, - P,TP, ¢

10



CHAPTER I

CLASSICAL FOURIER THEOREY

Fourier system forms a basis for the Hilbert space L’ [—- 7r,7r] .
The classical Szego’s theorem [4,12] is based on Fourier System,
{e,:neZ}, wheree,(x)=e™. In this chapter we look into the effect of
change in the ordering of the Fourier System on Szego’s classical observations
of asymptotic distribution of eigenvalues of finite Toeplitz forms. This is done
by checking proofs and Szego’s propositions in the new set up. Since the

Fourier system is unconditional [19], any arbitrary ordering of the Fourier
system forms a basis for the Hilbert space L*[- 7, 7].

This chapter comprises of two sections of which the first one,
deals with extremum (minimum) property of the Toeplitz forms and its limits in
the changed system. Second one, deals with asymptotic distribution of
eigenvalues of finite Toeplitz forms in the new system and the validity of

Szego’s theorem.

2.1 Extremum properties of Toeplitz Forms (minimum)

In this section we define a system of orthogonal polynomials
with respect to arbitrary ordered Fourier system and the associated Toeplitz
forms and find its extremum properties as in the original work of Szego [12] .

Let the arbitrary ordered Fourier system be denoted by
{ei’"’, n=01,... s, =0} where ‘s’ is the permutation on N, the set of

Natural numbers.

2.1.1 Definition
Let a(x) be a distribution function of the infinite type,

-r<x<rx and

11



s,

c —Z:’[e ""da(x), n=0,1,2 ...

be its Fourier-Stieltjes coefficients in the new system. Using the
orthogonalization procedure, we form a system of polynomials

6o(x) @,(x) #,(x), ... ,(x)... of the complex variable z which are

orthogonal on the unit circle Iz[ =1 with the weight d?:i)- .
V4

The system {@,(z)} is uniquely determined by the conditions
13 1 y A A
(l) 2_ I¢n (Z) On (Z) da(x) = 6nm
ﬂ. -

(i)  @,(z) is a polynomial in which coefficient of z* is real and positive.

Let
f(x) = ei"x n=0]1, ...
1 % isx -is
(fy ’fv>=§ Ie * e 'Xda(x)
- __1_ i —i(""—"ﬂ )‘d )
T or I € alx
= cs,—:,,
Define
15" = det(c,v_sv Yo =0
Co C__‘,l e C_sn_] C_s"
cs, cO cs, —8y_1 cs, -5,
Sp-1 Sp175 Co ¢ n-1"5n
c:,, cs,, -5 S, ~Spi cO

12



e Cg c,

c c
S1—301 5175

Sp-1"5n
§,

1 z" - oz z™

c
Sa-1 Sp-1751

where z=¢e" .

The coefficient of z* in @,(z) is denoted by the special notation

2.1.2 Definition

The Toeplitz forms [1, 25] with respect to the new system is

defined as
[— 1 2
T = oy Uy =7~ ﬂuo +uz’ +...4 u,,z"'l da(x) e (M
#,v=0--n ” -z

Then D, = det(csv_s”) is the determinant of the Toeplitz form. They are called
Toeplitz determinants associated witha(x) in the new system. Since (1) is

positive definite, we have D, >0 Vn.

The next theorem gives the extremum property (minimum) of the

Toeplitz forms, in the new system.

2.1.3 Theorem

The polynomial ﬁn_lén (z) minimizes the integral
2

% ﬂg(ZX da(x) , z=€* where g(z)=z" +a,z™' +...+a, is an arbitrary

13



polynomial generated by z%z%, ..,z in which coefficient of z °* =1. The

.. s D
minimum itself is £, = 5

n

n-1

Proof :

This follows by representing g(z) in the form
g(z) = vo(bo(z)"’vn(al(z)""--"'vn(an(z)
where v,,v,,...,v, are complex variables and v, is subjected to the condition

-1

v,,len =1. v, =12,,
I 1" 2
oy ﬂg(z) da(x) = — I|v0¢0(2)+ vl(i)l(z)+...+v,,¢,,(zl da(x)
b 2 2r
= |v0|2+...+ lv,,|22|v,,2
. D
2 k7= .o
" 5 (1)

When g{z) =k, "¢ (z), then

~

coefficient of z*in g(z) =k, 'k, = 1 and

ZL” lle(z) datx) = £, e

Hence from (1) and (2) , we get

o et date) = oL B .00 e

_ £ 2 = mini
= = minimum value.

n

P 2
Hence the polynomial k™', (z) minimizes the integral -21- 'ﬂg(z] da(x) .
4 -x

14



Now we find the limit of the minimum of the Toeplitz forms

under the side condition u, =1, which is given in the following limit theorem.

214 Theorem
Let a(x) be a distribution function of the infinite type. We

2

da(x) with the

. . A 17
consider the Toeplitz forms T, = oy ”uo +uzh +.tu,z™
/4
-7

side condition u, =1. Let /i, denote the minimum. Then
. A oA 17
lim 4, = 2t = G(w)= exp{; f log(w(x))dk}

where o(x) is the almost every where existing derivative of a(x).

Proof:
2
s 1 g 5 Sy
Tn=§:’[luo+ulz +.tu,z"| da(x) .

The minima 4, are non increasing as » increases. Hence lim 4, = 4 exists.
n—rw

2

da(x), u,=1

. .17
£, = min Py ”uo +uz" +... +u,z”
”-‘I

2

> min - ﬂuo +uz' vu,zt + . +u, 2% dalx), u, =1
2r y
= min(]:" )llo=l = #s,,
Taking limit we get,
i 2p =Glw(x))  [12,Chapter3] . (1)

In order to prove the reverse inequality, first we show that it is
always possible to find a large enough m such that
{0,1,2, ...,n}c {5981 cuSp )
There exist positive integers
a,=0,a,,...,a, suchthat Sq, = 0,8, =1,..55, =n.

1

Choose m Zmax{ao,al,,...,a,,}.

15



Then

Hence
{s%,sa‘ ,sa"} c {so,s,, ,sm}
ie. {0,1, .. ,n} C {50:5)50005,}
Let
1% :
T, = g:ﬂuo+u,z'+...+ u,z"| da(x)
Then

2

. N
Min T, =min > — I|uo+ulz‘+...+u,,z" da(x), u, =1
-

2

N
_>.m1n2— Uy +u,z" +...+u,z| da(x) u, =1
/4

-x

Taking limit, the above inequality reduces to

limy >lim4 |

ie. u=Glo(x))2 i ¢
From (1) and (2), we get

/i=Glo)= exp{g; :[log(w<x))d>c}

2.1.5 Theorem
Consider the Toeplitz form

2
T =— ||jug +uz" +...+u,z"| da(x), z=e€"
AR "

n

Let (4,), and(4,), ., denote the minimum of f’,, under the side condition

u, =1 and u, =1 respectively. Then

16



Proof
Weshow that (4,), ., = (4,), -
Then the theorem is evident from theorems 2.1.3 and 2.1.4.

Case :1 u, is the leading coefficient
2

T = 1 _ﬂuo +uz® + o+ uz™| dalx) , u, =1 e (D
2z -
17 2
= — _” Uz +u 2 4 +u | dalx), uy=1
27
p 2
- L ” 2% vu M+ tu, 27 +u| da(x) N 3
2r -
Therefore
u 2
min f’" = minzL ﬂz"’ +uz" M+ tu, Z0 b, da(x)
”—;r
Hence from theorem 2.1.3, we get
. D,
(B = 2> NG

n-l
where D, is the determinant of the Toeplitz form (2).

The Toeplitz forms (1) and (2) are same. Therefore their
determinants are also same. This can be proved in the following way.

Evaluation of 5,,

Let h(z)= z* +uz" + ... +u,. Then h(z) is an arbitrary

polynomial generated by 20, 2 gS S 2% 2% such  that
coefficient of z*™ =1.
The determinant of the Toeplitz from (1) is

c-"o c’n-l"‘n c"n-z_"'n " c"l"'-"n c_sn

Sn—=Sn-1 o Sp-2~5n-1 °r c-"l‘-"n-l c‘-"n-l

D, =
5,5 c-"n-x"-‘l 5,2-3%2 o c-—"x
c, <, ooy o Co Co

17




Interchanging the rows R, and R,_,, then the columns C; and

n—i?

C_. fori=0,1,2,... n/2 when niseven andfor i=0, 1, ... ,(n-l)/2

n~i

when n isodd and then taking transpose we get,

CO c—s, “ e C_“.n_l C_“.'l
cs, CO cs, ~Sp-1 cs, ~Sp
D" = =L,
Sp-1~50 cs,,_l -5 CO -1
cs,, cs, -8 S =S,y CO

Hence equation (3) reduces to

(ﬂ)_l =[)"

D,, D,
( ) =(4,).,
Taking limit, then from theorem 2.1.4 we get,
lim (2,), , = = G(w)

n—o n—»w
n-1

- exp{—zlﬂ_- | log(a)(x))dx}

Case 2: when u, is not the leading coefficient.

Let u, be the leading coefficient. Then divide the polynomial by

2", The rest of the proof can be carried out in the same way as in case 1.

Following are some observations obtained by comparing the

results in the standard Fourier System and in the new System.

18



216 Remarks
It is observed that

(i) In the standard Fourier system, minimum 7, under the side condition

u, =1 is equal to the minimum of the same Toeplitz form T,under the side

condition u, =1. But in the new system, min(f' ,,)

<1 1S equal to the minimum

of another Toeplitz form under the side condition u, =1.

(ii)  The trace of the matrix (Cv_ u ):,p=o of the Toeplitz Form

2

da(x)

n

1 L3
T =— \lu, +u,z' +. . .+u z"
0 1 n
2n
-

in the standard Fourier system is same as the trace of the matrix (cs i )’ of

v uls,s,=0

the Toeplitz form

2
T, =0 ﬂuo +uz +..+uz"| da(x)

-

in the arbitrary ordered Fourier System. That is, in any arbitrary ordering of the

Fourier basis the trace of the Toeplitz matrix remains the same.

2.2 Asymptotic distribution of eigenvalues

In this section the validity of Szegs’s Theorem is established.
We do this by checking various stages of the proof of Szegé in the new set up.
Toeplitz has studied the distribution of eigenvalues of an infinite matrix (c,_ u ),
where the indices v & x4 range from —o to « under the standard Fourier

system. A value A is called an eigenvalue of the matrix 7 if the matrix 7 -4 /

has no bounded inverse, / denote the unit matrix.

Now we recall the definition of equal distribution of numbers.

19



22.1 Definition [1.2.2]

For each n we consider a set of n+1 real numbers

a”,a,",. .. ,a,,” and another set of the same kind 5™ ,5,", ... b @ .

' ¥ n+l

We assume that for each v and »

a, "<k, |b"<k,

where K is independent of v and n. We say that{aS")} and {bf") }, n—»wo,
are equally distributed in the interval [- K, K] if the following holds. Let F(z)

be an arbitrary continuous function in the interval [— K. K ] ; we have then
n+l

2 1F(a,)-Fb,")
=0.

v=1

lim
n->0 n+l
Let f(x) be a real valued function of the class L and let
1 %
c, = —Ie ~ f(x)dx n=0,£1,£2....
" 2m

We consider the finite Toeplitz forms

Hv=1

fde ... (1)

— 1 y + b} Sn
_Zr—_'ﬂuo uzh+ .. .tu,z
The eigenvalues of 7,(f) are defined as the root of the

characteristic equation det(f" (f - ,1))= 0. Hence the eigenvalues of 7,(f) are

the eigenvalues of the matrix

C c c
0 -5 -5 -5,
csl cO 51—5, 55,
n
(4 5 _ =
voe v, u=0
C
Sn-1 Sp-1~51 Sp-2752 Sn-1=5n
L c:,, =S cs,, -3, cO i
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We denote them by B, 5,,...,B,., - Alsoif m < f(x) < M for all real x

then from (1) we have m < f’,, (f) < M. Also we have

m<fB, <M v=12, ...,n+l.

The main result of this chapter is the following theorem and it is

the well known Szego’s Theorem in the new arbitrary ordered Fourier System.

222 Theorem

Let f(x) be a real-valued function of the class L. We denote by
m and M the ‘essential’ lower and upper bound of f(x) respectively and
assume that m and M are finite. If F(8) is any continuous function defined

in the finite interval m < f < M we have

o FB)F(B)+ .+ F(B,) _

n-»o n+l

ol LGN €Y
T %

Proof

Using the definition of the equal distribution the above limit

relation can be expressed as follows. The sets{f,} and

{f (- T+ ﬂ)}, n— o are equally distributed.
n+2

It is well known that the limit relation will be proved for

all continuous functions F(¢) if it holds for certain special sets of

continuous functions F(t) = #* s =10,1,2,.... and F(t)=logt.

We show that the limit relation is true for F(¢)=log?. Then the
result follows for ¢* also [12, Chapter V]. This will yield the required result (2).
Let ﬁ,, be the determinant of the Toeplitz form (1), then

from theorem 2.1.5, we have
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tim [5, (NP

Therefore

lim log{D, /"
Substituting D_ =8 8 ,,... B

11_{2 log(ﬂ B B )%+1

fe. lim

n+l?

logf +logf ,+...+log B ..,

- exp{% ”jlog(f(x))dx}

exp{% ']log(ﬂx))dx}

Trog(£cx)ee

1
2n

we get

n—o

n+1

Hence the result (2) is true for F (ﬂ) = log #, which completes the proof.
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CHAPTER III

MULTIPLICATION OPERATORS AND

HAAR WAVELETS IN (0,1

In this chapter, we deal with  asymptotic distribution of
eigenvalues of multiplication operators under Haar wavelet basis in L?(0,1)

[1.2.6]. This chapter is divided into two sections. In section one, it is shown that
the conclusion of the classical Szego’s theorem on asymptotic distribution of
eigenvalues of finite sections of multiplication operators, does not remain valid
when the trigonometric basis is replaced by the Haar basis. It is also observed
that when the same operator is considered with respect to Haar system under a
different ordering, the distribution of eigenvalues converges.

In section two, we consider the spectral approximations of
multiplication operators under the Haar basis. This work is quite similar to the
work of Kent E. Morrison. [17]

3.1 Non existence of ‘Szegé limit’

First of all we recall the statement of Szegs’s Theorem

3.1.1 Szego’s Theorem [ Chapter I ]
The Szegd’s theorem on Toeplitz matrices states that if

A(4)y 4 ,(4)y ,--.s 4 y(4), are the eigenvalues of the NxN truncations

(4), of the matrix A=(ai_j), where
_ 17 -itx
a, = 5;_1 f(x)e ™ dx

is the k™ Fourier coefficient of the multiplier f in L*(- n,7), and F is any

continuous function on R, then
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ZF('Ik (A)N) n

A .1
fim e = - F(f(x))dx M

3.1.2 Lexicographic ordering of Haar basis [18]
The lexicographically ordered Haar basis can be represented as

a sequence (W, ¥ ,¥ys-..,¥,,...; of functions where

¥V (x)El
v, (x)=h,,(x)
_ 2% _£<x<@+ua
’ 2r T 2"

= 2% __(p-;}/2) <x < —(p;’-l)

= 0 otherwise

where n=2"+p, 0<p<2'(r20)

The main result in this section is given in the following theorem.

3.1.3 Theorem [18]
Let T, be the multiplication operator on 1*(0,1) with f = hy -

Then the asymptotic formula (1) is not satisfied when the trigonometric basis is

replaced by lexicographically ordered Haar basis.
Proof

Let (T;)= (a,.j) where
35 = [hod®) ) v, () &

=1 i=j=n=2"+p, 0<p<27izj=0]1

=-1i=j=n  2"<p<2’

=0 i#j#0,), i=j=0,1
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Therefore the matrix (T f) is given by

010 0
1 0 0 0
001 0 ..

(T)=000—10

4 000 0 1

oo e avs von vee eee ees ver
N -

Now consider the following truncations (T P )N of (T f) when

) N=2", r=0,12,...

@ N=2"+42"" r=0,1,2,...
In both truncations the upper left 2x2 matrix is same and the eigenvalues
obtained from this matrix is 1 and —1. Hence in both cases the only eigenvalues
are 1 and -1. We compute the multiplicities of eigenvalues in each case. Let

N, and N_, denote the multiplicities of 1 and —1 respectively.

Evaluation of N, :

. 1
T, W ()=v,(x) if xe[o,g}
where T, = P,T,P, .

Hence the eigenvectors corresponding to the eigenvalue 1 are thoseyw,(x)

whose support lies in [0, -;—:| In this case we will have

[L,—j-+—l c O,l .
20 2 2
Thus multiplicity, namely the number of j s satisfying the above relation equals

2" for each i.
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r-1
Incase (@), N, = D, 27'+1 = 2" and

i=0
r-2
incase (i) N, =27 +2""+1 = 27,
i=0
Similarly we can calculate N_ by countingy, s whose support
lies in l:-;— ,l:l and which is given in case (i) and (ii) by
N,=2"

Therefore in (i) the eigenvalues 1 and —1 each have multiplicity % On the

other hand +1 has multiplicity E;—v- and -1 has multiplicity %’—for sections of

type (ii). Let F' be any continuous function on R then,

iF“J@L)_F@+Fen

lim 42
Nox» N 2

for type (1)

_2F()+F(-1)

3 for type (ii)

Hence the limit depends upon the truncation of the matrix and

therefore the Szegd’s theorem fails to hold in this case.

314 Remarks

Following are some observations obtained from the analysis of the limits.

(i) When N =2" + p, p=0or p=a fixed constant independent of 7, then

Y F@,(T,),) 1

= F\l)+ F{-
Alll—r»nw N = ()+2 ( 1) =6[F(h oo(x))i‘
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(ii) For those subsequences for which the growth rate of p is slower than 2 ',

then also

iF('z'k(Tf)N) _ F(1)+F(_ 1) 1

Jim 22— = OJF(h 00 () .

(iii) For any p fixed, the limit becomesA F (1)+(1 -A p)F(— 1), where
0<4, <1. The maximum value of 4 , is 2/3 and the minimum value of 4 , is
122.

It is a matter of curiosity to know the outcome when the
multiplier is f =y, fork>1. Let y , = A, . It is not surprising to see that

the conclusions are the same.

In this case the matrix (T )= (a ; j) is given by

4 A

a0y, ---Qk

(Tf) = ay Ay -Gy

Ay Ay o Qyy

Ay ks

O Axiak+2

where

somea, #0 i#j & 1<i, j<K,

K is the position of 4 ,, in the basis 3.1.2 and

a, =2%,-2%0 for i>K.
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In (T,) v » the upper left K x K corner entries remains the same

for all values of N > K . Therefore it will enough to consider the diagonal part,

while calculating the multiplicities of 2% ,—2% and 0. More explicitly the

contributions of the above K x K block will be zero in the limiting case.

Now we calculate the multiplicities of the eigenvalues. The

following propositions give the multiplicity of eigenvalues 2% , — 2% and 0.

3.1.5 Proposition
The multiplicity of eigenvalue 2% in (T f)N where

N=2"+p, p<2, r=0,1,... is

2""'-1 -1 if p< n2om
NZ% = 2’-m—1 +p -2 if nrm < p< (2n + 1)2’"""1
27" 1 if (2n +1)2r—m—1 < p< 2

Proof:

Let N % denote the multiplicity of the eigenvalue 2% . Then

TfN[V’i(x)] = Z%Wi(x) if xe[ ZL”’%]

where T,y =P,T,P,.
Hence the eigenvectors corresponding to 2% be those 4 ;s whose support

n (n+1/2)
2"’ 2m

lies in { ] . Then we will have

[L j_'l-lj| C[L(n+l/2)]
217 2 2m g )

o mm<j<n+IR i =m+l,m+2,...
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Thus multiplicity, namely the number of js which satisfies the

above inequality is equal to

[ r-1
22'_('"“) if p<n2™
i=m+1
r-1
Np={ 227 +p+1-n2"" if m2™ <p<(2n+12""

i=m+1

L > 2 if p=(@2n+1p
i=m+1
Therefore
2rm if p<n2™”
Nz% =42 4w p-n2" if M2 <p<(2n+1
2" —1 if (n+1R"™'<p<2’
3.1.6 Proposition

The multiplicity of eigenvalue - 2% in (Tf )N where
N=2"+p,p<2" ,r=0,1... is

27" 1 if p<(n+l™?
={p-n2"" if 2n+1IR"™ <p<(+IR"
27" —1  if (n+IR""<p<?’

N %

Proof:

Lety,(x)=h,. We calculate N_, by counting theh,s whose

support satisfies the condition

[L j+1} ; {(n+1/2)’n+1}

27 2 2" 2"

The rest of the proof of this proposition can be carried out in the same way as in

proposition 3.1.5.
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3.1.7 Proposition
The multiplicity of eigenvalue zero in (T, ), where
N=2"+p,p<2’, r=201.. is

( "1 2"”'-1)+p+1 if p<n2™”
Ny ={@"-1)2r" -1)+m2"™ if 2" <p<@+12"
@r-2J2"-1)+p  if (n+1R"<p<2

Proof:
Lety,(x)= h;. We calculate N, by counting the h;s whose
support
i.,"—ﬂ is disjoint from _n_,_n_+l and "—+1 <l1.
2! 2! 2"! 2"! 2!
The rest of the proof of this proposition can be carried out in the same way as in

proposition 3.1.5.

In table 3.1.8 the multiplicities of eigenvalues and the limit of
distribution of eigenvalues of various truncations obtained by assigning various

values for N are given.
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One can see that for different subsequences, their limits need not

be the same and hence Szego’s theorem fails in this case.

In the following theorem, we show that there is an ordering for
the Haar system such that the averages in the asymptotic formula (1) of various

sections of 7, converge.

3.1.9 Theorem (18]
Let H be the Haar system in L*(0,1) ordered as

k+1
00 Boo Mags eves Bopgs Bpits oo s B o) ,2"—+_kSI.Let (T, ) be the

matrix of the multiplication operator 7 in 2(0,1) with respect to this basis. If
A l(TJ,)N,,J. 2(T,)N, s N(T,)N are the eigenvalues of (T,)N, and F any

continuous function on R, then

S F@,T,))
lim £ ~ = F(1)

Now

Proof

Let N be a positive integer and let h,_,, be the N* basis

element. We show that N = O(m2 ) For positive integers nand k,, 0<n<m,

we have

k +1
<]
2~k

ologlk, +1)+k, <n 1)

Letn' = [[-’-’;—I:H, where [[ ]] denote the integral part of it. Then

!

n'SnT—lSn+1 N )|
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Let k, =n'+1 where n’' = [[nT_l:H

One can see that it satisfies the inequality (1). Hence we have
log(n'+2)+n'+1 < n

Therefore the total number of 4, , , for which support is contained in (0,1)

is at least equal to

n+l>——o

=k 22—'1

! 2
11 _ ofm?
N2; 5 -—O(m)

Also, the only eigenvalues of (T ; )N are +1 and —1.Let N, and N_, be the

multiplicities of the eigenvalues 1 and —1. We show that
L‘— —>0as N> ow,
N
It is clear that

N_, =Number of A,_, , such that its supportc [é ,l] &k <n where n<m.

1 k
Supportof h,_, , © [—2—,1:{ = = > %
o k28 >
Sk+l+logk2n

~k2n-logn-1 and k<n

Hence the number of such & s is at most equal to logn+1 foreach n.

M=

~ N, <

(logn+1)< m(logm +1).

]
—

n
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ie.
N_, =O(mlogm)

Hence
-&a OasN 5> .
N

This completes the proof.

3.2  Spectral Approximations of Multiplication Operators under

Haar Wavelet Basis

The spectral convergence of multiplication operators and their

eigenvalue distributions are important areas of research. Multiplication
operators on L’ spaces are not compact, and therefore the approximations with
finite matrices in Hilbert space cannot converge in norm topology on the space
of operators. The choice of orthogonal basis of the Hilbert space affects the
convergence. The spectral convergence of multiplication operators under
Fourier, Legendre and Walsh basis has been done in detail by Szegé [12] and
Kent E. Morrison[17]. In this section we consider the spectral convergence of it
under Haar wavelet basis. It is quite similar to the work of Kent E. Morrison.

Let H(C) denote the set of compact subsets of C.
Suppose/ C R is an interval and f be a bounded measurable function. Let 7,
be the multiplication operator with f as multiplier. Let H(C) denote the set of
compact subsets of C and s denote the Hausdorf metric [1.2.4] on H (C ) Let

A, be the set of eigenvalues of (Tf ) ,and consider A, as an element of H (©).

Let R( f ) be the essential range [1.2.5] of the multiplier f. R( f )is also an
element of H(C). One of the convergences we considered is the convergence of

A, to R(f) inH(C).
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Another convergence considered is the weak* convergence of

measures. Let §, denote the Dirac delta measure concentrated at x . Let

N

2.9,

Ly =-’—=l]—v—- where 1 =4, (Tf)

N

is the measure defined for each N . Define another measure 4z on C such that

for every continuous function F onR,

1

W)= [F(r

0

In this section we will discuss the spectral convergence in the
following sense.

@ Ay —>R(f) in H(C)
(ii) gy > p weakly.

ie., IFd,uN - IFd,u as N —» oo, where F is defined as above.

3.21 Theorem

Let T, be the multiplication operator on L*(0,]) with f = By, .
Then, with respect to the lexicographically ordered Haar system,
@ Ay~ Rlhy) in H(C)

(i) For N=2""" (r is any positive integer), u, — 4 weakly.

Proof
Recall that
. 1
1 if 0<x< >
v ,(x)=h oo(")= 1
-1 if —<x<l
2
To prove (i) :
From theorem 3.1.3, we have
Ay = {1"1 }

35



Now we show that R(h,) = {1,-1}
R(he) = {keR/m[x e R, |y (x)-k|<&]>0 V& >0 }

Lete be any number >0.
When k£ =1, we have

v, (x)-K=0 if xe[o,-;-)
=2 if xeB-J]

[0,%) c {x e R/jw,(x)-1< e}

~mx e Ry, (x)-1<e]2 m[o,ﬂ ==>0

1
2
~k=1eR(hy,)

Similarly when & =-1
i (x)+]=0 if xe [%1)
=2 if xe l:O,l)
2

[%,l) cfreRiy,(x)+]<é}

cmlxe Ry (x)+] < AE m[%,l] = % >0

s k=-1eR(hy)
when k=1t 1, choose 0<é&<|l—k|. Thenno x exists such that
w1 (x)— k| <|1 - &

Therefore

e Ry, (x)-k| <-4} =¢
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mlx e Ry, (x)-k < £]=0. Therefore k & R(hy, )

Hence forall N,
Ay = R(hy)={L-1}

Therefore
h (Ay,Rl)) = max{d(Ay, Rlo)hd (RlAo) Ay)]=0.

To prove (ii):
When N =2""', from theorem 3.1.3,
N,=2" and N, =2".

Hence

lim Ide = lim F(1)+F(4)+...+F(1,)
Nowo ¥ Now N

- F(1)+2F(— 1) - ;[F(hoo (x))dx

k
Now consider the finite sum f(x)= Za,.y/, withk =27 -1,
i=0

The functionsy,,y,,. .w,are Haar functions inL?(0,]) taken as in the

lexicographic ordering 3.1.2. Then we have the following theorem.

322 Theorem

Let 7, be the multiplication operator on L*(0,1) with

k
f=Yay,, k=2""-1.Then

@ Ay - R(f) in H(C)

(i) For N=2"' (r is any positive integer), u y = u weakly .
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Proof:

k
Given f = Za,y/,., k=2""—-1.Here y,=h_ o

i=0

Let (Tf )= (aij) where

= [76) v ) v, ) e

Consider a Nx N truncation (Tf )N where N =2"'. Then, from

(12, Chapter7] the eigenvalues of ( )N are f(x,)f(x,)...f(x,_,) where x,

is the mid-point of the mterval[ g ﬂl}

r+l? 2r+l

Let these eigenvalues be denoted by 4 ,(4),,4 ,(4),, ...,4 y(4), repeated

according to multiplicity.

k
Since f =Y @y, ,k=2"" =1, f(x,), f(x)... f(xy_,) takes only 2"

i=0

distinct values. Let it be denoted by 3, B, ... B,... - Its values are
. 1
f(xs)= ﬂl lf X el:o’ '2m_+l]

. 1 2
f(xs) = ﬂZ if xse[_z-ﬁ” 5;:1'}

_ . 2 3
f(xs) - ﬂS if Xs E[ 2m+l 4 2m+1]

m+l m+l
f(x ) = lf x: 6[2 2’22m+1 1}
. 2m+l __1
f(xs) = ﬂ2"+l if X 6[2’"—”,1:|.

To prove (i) :
Wehave A, = {ﬂl,ﬂz,...,ﬂ 2_+,}
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Hence it is enough to show that
R(F)=1B1s By B o }-

For any £ > 0 be given.

. k-1 k
|f(x)—ﬂk|=0 if xe[w,-zm]

#0 otherwise

[g%’%]c keR/f(x)-B|<e}

>0

2m+1 ’2m+1 = 2m+1

.'.m[xeR/If(x)_ﬂkl<8]Zm[k—1 k} 1

. B, € R(f), k=12, ..,2™"

When f(x)# B, foranyk, choose 0 < & < mkin{ B -4

Let x(0,1), then xe [? -—-li—:] for exactly one value of k . Therefore

m+l > 2m+l

b/ 176 4] <minl, -2] = ¢
ie, {x/lf(x)-l]<e}=¢
m[xeR/|f(x)_ll<8]=0

~AeR(f).Hence A, — R(f) in H(C)

Proof of (ii):
First we calculate the multiplicities of the eigenvalues 8, . In

general the eigenvalue f(x,) is B, , if the point x ; satisfies the condition

_ 2s+1
s T 2r+2

e[;;ll,sz] , k=12, ...,2"”'l &s=01.,N-1
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(k-1 ™! <25 +1<k2™™!

k-1D2""<s<k2™™"

Then, for each k£ , number of s satisfying the above inequality equals2"™ .

Hence multiplicity of
B=2",k=12,...,2™" .

ie, N, =2""k=12,...,2™

F(3)+F(4,)+...+F(4,)
N

- im [Faj, = Jim

o 2 FB)F ) +F(p,)

Noo 2r+l

F(B)+F(B,)+ ... +F(B,..)

2m+l

1

= [F(f(x))dx
0
Hence
lim p1 (F)= p(F) .
ie, 4y, - u weaklywhenN =2""', r=0,1,2,....
3.2.3 Remarks:

It follows immediately from 3.1.3 that in the above proposition

Y F,(T,),)

when N #2"*' | for certain sequences of truncations, },im A=l
—®

will not exists at all.
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CHAPTER IV
HAAR SYSTEM IN [*(R,)
AND SZEG(’S TYPE THEOREMS

In this chapter analogous to classical Szego’s theorem we define,
Szego’s type theorem for operators in L?(R, ) and check its validity for certain
multiplication operators. Since the trigonometric basis is not available in
I*(R,) or in I*(R), we consider Szegd’s type theorems with respect to a chosen

ordering of the Haar basis in these spaces.

4.1 Definition: Szegd’s Type Theorem|21]

Let fbe a real function inL*(R, ), and let T,be the

multiplication operator defined on I*(R,) (respectively L*(R)). With respect
to a given orthonormal basis, let {A,(T,)N,,l 2(T,)N,...,,l N(TI)N} be the

eigenvalues (repeated according to multiplicity) of the associated corner

truncations (T I )N. Then T, is said to satisfy Szego’s type theorem if

o Fla(r,), )+ Fla, (), )+..+Fla (r,),)
N N

= lim— j Flf(x)] &

~tim L F(7(c)ae
(respectively )

where F is any continuous functionon R.

To carry out further analysis, we consider the following ordered

Haar System in L*(R,) .
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4.2 An ordering of the Haar wavelet basis for L*(R,)

Recall that {¢j (x), h; (x) i,jeZ, U{O}} is the Haar system for
I*(R,) where
j ] i+1/2
hy(X)=ZA, —é’;Sx(JT
j+ i1/2S J+1

VAT PR 3|

2 2
=0 otherwise

9 (x)= ¢ (x - j) where¢ is the characteristic function of [ 0,1 ].

Consider the following ordering,
{h 00 N 02 h 1o’h 01’¢ v--wh ro h r—l,l""’h 0r""}‘

Let us denote this ordered basis by {y ,:k=1,2,...}

43 Positionof A, and ¢ , ; in this ordering

i+)
To determine the position of each y, , we write the above

basis in the triangular form
hOO b4 ¢0

th’hOl’¢1
h20’h11’h02’¢2

h’JO’th’hIZ’hOS’¢3

hi+ j,09 hi+ j-1,1% hi+ j=2,2 hl,i+ j-1s hO,i+ jo ¢i+ j
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(i+jxi2+j+3)+j+1 and the

Then 4 ,; occupies the k ® position where £ =

(i+j+1)i+j+4)
; .

position of ¢, ; is

Hence the ordered basis is given by {c//,, :k=0,1,2, } where

" k=(i+in+j+3)+j+1

Ve = hij 2
=4, if k=(z+]+1Xz+]+4)
2
4.4 Proposition
The m" basic element is & ,; where j=m—{1+n—(f2i3—)} ,
—3+,/ + ( —15
i=n—jandn=ﬂ [928m Iﬂ.lf‘j=n+l then the m” basis

element is¢g ,, where [[ ]] denotes the integral part of it.
Proof

From the above ordering, there exists unique iand jsuch that
the m” basic elementis h ,, org, ;.

Case: 1 Assume m" basis elementis & ,,

+1.

Then the position of 4, in the above ordering is (l *J Xl; J* 3) +j

Hence we determine the values of iand j for which

(i+in+j+3)+j+1=m
2
ie i+ ) +3(+7)+2(j +1-m)=0

_3+(\/9_8(j+1—m7) (1)

ie. i+j=
2
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From this equation we find out the values of i and jusing the

following conditions.

1. i+j 20

2. i+ j cannot be a fraction
3. Jj20

Now considering the first condition,

9-8(j+1-m)20
j+1<2+m
8
J<m
when j=m, i+ j isnegative which is not true by condition one.
Sj=01 .. ,m-1

The second condition is satisfied only when 9—8(j +1- m) is a perfect square.

This is possible only when
j=m—|i1+n—(n+—3—)-:|, i=n-—-j
2
where n is some positive integer.
Then from equation (1)
i+j=n v 2

Next we find the value of n using the third condition.

m—[1+£(£2ji)}20

Since j=20

ie,n* +3n-2(m-1)<0

o[y

where [[ ]] denote the integral part.



We prove that n=n’.

Let a,,a, be the roots of the equation n* +3n—2(m—1)=0. Then

—3+,/9+8@m——15

2

a, =

-3-9+8m-1
Q, = >

Therefore
n+3n-2m-1)= (n-a,)Yn-a,)

Since (n'—a,)>0, and n’' <a,, we have
(W -a)n' -a,)<0
s.n=n" and from equation ( 2) we get
i=n—-j if j<n.
Hence the m” basis element is & ,, where

j=m—|i1+-’1(nz;3):| &i=n—-j (if j<n)where

(i)

Case: 2
When j exceeds n, i becomes negative and no 4 ; oceur in the

above basis other than ¢ , which correspondsto j =n+1 (and only n+1). This

is quite clear from the triangular form. It is also evident from the above

calculations that the value of m 1s(L+—1§n—+4—) when j =n+1. This is nothing

but the position of ¢ , in the above arrangement.

The main result in this chapter is the following theorem, which
gives the asymptotic distribution of eigenvalues of certain multiplication
operator with respect to the ordering 4.2. It is an improved version of the

corresponding result in [21, pp 120-122]
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4.5 Theorem

Let T, be is the multiplication operator on L*(R,) with f =h,,
and {Z.,(T, )N,Az(Tf )N, s Ay (Tf )N} be the eigenvalues of (Tf )N with respect to

the basis 4.2, then for any continuous function Fon R,

Y F@,(T,),)
lim 42! ~ = F(1)

Nowx

Proof:

Let (T,) = (a,.j) , Where

ay = (T, WDy ()

[ by, (), ()

= 0 wheni#jand i,j>2

The matrix (T f) is given by

A

.........

Let N be a positive integer and let the N* basis element be #

=(m+nXm+n+3)+n or(m+n+1Xm+n+4)

2

+1 . Let

or ¢,.,. Then N

m+n=s ,then N =O(s?) in both cases.
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Consider the N”stage truncation (T P )N of T,whereNis as
above. In (T P )N , the multiplicity contributed by the upper left 2x2 matrix is

same for all values of N > 2. Since we consider only the limits of averages, it is
enough to consider the multiplicity of eigenvalues in the diagonal part of the
truncated matrix after neglecting the above 2x 2 matrix. The eigenvalues are 1,
-1 and 0. Let N;, N_;, N, denote the multiplicities of the eigenvalues 1, -1 and 0

respectively. We show that

ﬁ-»o,ﬂ—m as N> o,
N N

Estimation of N _,:

TjN(Wt(x))z -y, (x) where Ty = PyT, Py

<y, =h; such that its support c[% ,1} &i+j<s

o|L Il jleisj<s
27 2 2

&27'<j<2' -1 &i+j<s . (D

Since 2" < j we have,
27 4igi+ j<s=2" <5

ie, i-1<log,s =>i<log,s+1 N V)

From equation (1) the number of j s corresponding to each i is 2.

log 5+1
.. Total number of & ;s < > 2" <(logs +1)s

i=l
That is, N_ <s(logs+1)
Therefore we have N_, = O{slogs).
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Hence

}{iﬂ-}%‘- =0 (since N =0(s?).

Now we show that %——)0 as N> ow.

This can be seen as follows.
Ty ,)=00G) v, = h; whose support is disjoint from [0, 1 ]& i+j<s
() Yy =9.,,& i+j<s

Considering (i), we get

T,(h)=0e 51721& i+j<s

&2 <j<s—i 3)

ie, 2+igi+ j=2 <i+tj<s=i<log,s

From equation (3), the number of j corresponding to each i is equal to
s+1- (2’ + i). Therefore the number of j s corresponding to each i is at

most equal to s —2.

Hence considering (i) and (ii)

and therefore %—-Has N > wo,
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4.6 Remarks

(i)  For each x, let §, denote the Dirac delta measure concentrated at x.

6, +0, +...+6,

For simplicity put /1,.=/1,.(Tf)~. Let u, = ¥

be the

measure defined for each N and let x4 =4,. Then the above theorem implies

that for all continuous functions F on R,

IFd,uN - IFd,u
0 0
ie, 4, > 4 weaklyas N > .

M
(ii) Since F(0)= }{{nw % IF (hy(x)Hdx, we can interpret the above result as
0

‘failure’ of Szegé’s Type Theorem in general. Of course, one should admit that

this type of interpretation is not fair, since the asymptotic limit exists.

(iii) When we consider 7, where f =h,, (« any positive integer) with

respect to the same basis 4.2, then also the above remarks holds.

Now we consider the case of all multiplication operators 7,
where f=h, (v#0). Then it is surprising to see that,T, satisfies Szego’s

Type Theorems. This result is given in the following theorem.

4.7 Theorem

Let T, be the multiplication operator on I*(R,) with

flx)=h,(x) (v20).Let 4 1(Tf)N,ﬁ. 2(T,)N, o 3 N(Tf)N be the eigenvalues
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of the truncated matrix (T P )N with respect to the basis 4.2, then for any

continuous function F on R, the following asymptotic formula holds.

2R
lim == N = }{Enw i ;,[F(h'" (x))x

Nowx

Proof:

In the ordering 4.2, the position of 4 _, is K where

=(u+vXu+v+3)+v+1.

Let (T f) = (a,.j) where

Q
1

i = [ @)y, (x) e
0
=0, when i#jand i or j>K

2%,—2%,0 when i=j.

Let N be apositive integer and let the N“ basis element be

m+an;'1+n+3)_’_n_’_l or N=(m+n+1§m+n+4).

Put m+n=s. Then in both cases N=0(s2).

h,,ord,.,.ThenN = (

Consider the truncations (Tf) = (a,.j), 1<i,j<N of (Tf)

N
where N is as above. Since the upper left K x K block is same for all values

of N, as in previous case, it is enough to consider the diagonal block (T f )N for

each N> K. Therefore eigenvalues of (T P )N are 2%,—2% and 0.
Now we estimate the multiplicity of these eigenvalues.
slogs

2
The proof is as follows.

Claim : NZ% <
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T, (v, (2) = 2%, (2) a{ /}

2v’

This is possible only when w, (x)= h; (x). In this case we will have,

454

j2v2™ and (v+%)2"" > j+1

From inequality (1)

i-u

=j+ 2j+l=i>u

Leti=u+k forsome k=12, ...,s-u. (since i+ j<s)

From (1) we get

21,‘ < 2~j+k > v < zik
Also we have
1
j:kl SH—u§=>j.<_ (v+l)2" -1
2 2 2
Hence from (2) & (3), w2 <jsv2t 424 -1,

Therefore the number of js is at most equal to 2*~' for each i.
But i+j2u+k+v2" andalso i+j<s.

Lu+k+v2E<s=>v2F <

That is, 2% <5 = k <log,(s).

(D

03

€)

Therefore the total number of 4 ,; s which satisfies(1) is at most equal to k25,

oN < k2t < ——s(logzs)
2 2
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Similarly we can also estimate N 4 and which is given by

N < s(log, s)
_2% - 2

N2% N

= and 2%
N

>0 as N > . (since N =0s?))

= y—“——)l as N oo,
N

Therefore
N
Y FA,(T,),)
lim =L = F(0)
Now® N

M

= lim — [F(h, (<)l

Moo M
Szegd Limits in L*(R)

We consider the Hilbert space L*(R) together with the following
ordered Haar system in it.

4.8 An ordering of the Haar wavelet basis for L*(R)[20]

The Haar system {¢ j(x),h ; j(x), i=0L2,...and jeZ } form an orthonormal
basis for L*(R). A particular ordering of the basis is given by

o058 0B 10sh 018 18 oboy o -
Letus denote this by {w, :k=0,12,...}.

4.9 Position of ; and ¢

i+

in this ordering

To determine the position of each A, and ¢, ,, we write the

+j

above basis in the triangular form as,
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hos b
th 4 hO] ’¢1 ’ ¢—1 ’ hO,-l
h20 ’ hll > h02 ’¢2 ’¢—2 ’ hl,—] > hO,—Z

h.iosh

it j-1,19 hi+ j-2,2 **" hl,i+ j-12 hO,i+ j* ¢i+ J? ¢—(i+j) e hO,-(i+j)

i+7,0°

4.10 Proposition

In the above ordering @, s are as follows

—y

o, =9, if k=(+j) +3(+j)+1

o=y If k=(i+jF +3(+j)+2

—y

o, =h, i k=(i+j)2+2(i+j)+j

—y

@, =h,_, if k=(+j)+3(+j)+j+2

Proof :

Case: 1 When o, = ¢,

In the above triangular form, ¢, lies in (i+j+2)" position of (i+j+1)"
row.
k=243 4+ L+ + )i+ j+1+(+j+2)
=2[(i+jxi+2j+l)_l]+2(i+j)+3

=(i+ ) +3(+j)+1
Case: 2 When o, = ¢_,

Its position is (i + j+3) in (i + j+1)" row.
Sk=(+ ) +33+ j)+2.
Case:3 When o, =h ,;

In the above triangular form, 4, lies in (j+1)” position of (i + j+1)* row.
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k=224 L () + 1)+ +1
=@+ ) +26+ )+
Case: 4 When o, =h ,_,
Itlies in (i + j +1)* row in (i + 2/ +3) position.

k=224 o+ + )G+ )+ (+2+3)

=i+ +3(+j)+j+2

In the next theorem we observe the behavior of the distribution

of eigenvalues for certain multiplication operators in L*(R) with respect to the

above ordering. Also it is the L*(R) version of theorem 4.5.

4.11 Theorem
Let T, be the multiplication operator on L*(R) with f=h

and consider (T P )N with respect to the above basis. Then for any continuous

function F on R,

fim ;F(lk(Tf)N) _ F(O)+F(1)

N0 N 2

where A, (T J )N , k=12,...N are the eigenvalues of (T P )N .

Proof

The method used here is essentially as in theorem 4.5. The only

change is in the multiplicity of eigenvalue 0.

Let
(T P ) = (aij ) where

(aij)= Ih oo(x)wi(x)mj(x)dx
Consider the N stage truncation (T, ) of (T,) where the N*

basis element is & ,,,, 8 ... @ _miny OF h,_,. Then for all values of N, from
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the above proposition N = 0(s2) where s=m+n . As in theorem 4.5, the
only eigenvalues are 1,-1 and 0.

To prove the theorem it is enough to show that

—1 50 and ivNi—-)l/Z as N>
Claim: N_, < s(logs +1)

TfN(wk)=_wk oy =h,

ifits support is contained in B , 1] and i+j<s

<:>L.>_l and J—HSI
2" 2 2'
&2 j<2 -1 6}
and i+j<s

adding i/ we get,

27 i< j+i<2 ~1+i
That is,
27 4i<s =27 <s=>i<logs+1
From equation (1), the number of j s corresponding to each i is 2.

Therefore

N, < %2"" <(logs +1)s.

i=l

- hm 0(s log s)
N

Now we show that

N, = S(S2+ 1) +2s +Ofslogs).

This can be seen as follows.
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Ty(@,)=0e (o, =h, ifits support is disjoint from (0,1) and i+ j<s.
(i) @, =h,_; where i+ j<s.
(ii) w, =¢,;, wherei+j<s
(iv) @, =¢_,,;, where i+j<s .
Considering (i), then

T,(h)=0c [zf—,lzi—l] is disjoint from [0, 1] and i+ j<s.

oLl itj<s

o j22,j<s—i )

Adding i we get,

2'+igi+jss

2'<s=>i<log,s
From equation (2), the number of j corresponding to each i is at most equal to
s~2. Hence number of 4, satisfying condition (i) is less than or equal to
(s-2)logs = O(slogs).
From the position of 4 ,_,in the ordering 4.9, it is clear that the number of
h,_. satisfying condition (ii) = s+(s=1)+ ... +2+1

=]
s(s + 1)
2
Similarly the number of ¢ , ;s and ¢, s satisfying condition (iii) and (iv)

respectively is equal to s.
Adding all these we get

N, = s(s2+ ), +25+O(slogss).
Therefore,

—N—°—)1/2 as N>,
N
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:%—)1/2 as Noow.

Hence

2FAE).) poy.r

N N 2

We conclude this chapter with the following remarks.

4.12 Remarks

For each x, let §, denote the Dirac delta measure concentrated

5&‘*5&‘*" o

at x. For simplicity put 4 =4 ,.(Tf )N . Let u, = N 2 be the

O, +96

measure defined for each N and lety = L . Then the above theorem

implies that IFd,u N> IFd,u for all continuous functions F on R.

ie, uy —> u weaklyas N > o, ¢
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CHAPTER V
GENERAL ORDERINGS OF

HAAR SYSTEM IN I*(R,) AND IN? (R)

In this chapter we discuss some classes of orderings of Haar
system in L*(R,) and in L*(R) in which Szegs’s Type Theorem is valid for

certain multiplication operators. This Chapter is divided into two sections.

In the first section we have given an ordering different from
42 to Haar System in L?(R,) and we consider Szegd’s type theorems for
Multiplication operators  with respect to this new ordered Haar system. Then it
is interesting to see that the Szego’s Type theorems hold in this case. We also

prove that Szeg5’s Type Theorems holds for general class of multiplication

operators 7, with multiplier f € L’ (R+) subject to some conditions on f .
Finally in the second section more general classes of orderings

of Haar System inZ*(R,) and in L*(R) are identified in such a way that for

certain classes of multiplication operators the asymptotic distribution of
eigenvalues exists. Some illustrative examples are also considered other than the

previous once.

5.1 Szegd’s Type Theorems
In this section we consider an ordering of the Haar system and
with respect to this new ordered system, Szego’s type theorems for a class of

multiplication operators are analyzed.
511 An ordering of the Haar wavelet basis for L*(R, )

Recall that {¢ j(x),h y(x), i,jeZ, vuio} } forms an orthonormal
basis for (R, ) whereg (x)=¢ (x~r), whereg is the characteristic function
in [0,1] and A, is the Haar function defined by
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h,,p(x)=2% Epr—Sx<L}/2

2
=_2% p+1/25x<p+1
2f 2"

=0 otherwise.

where r & p are non negative integers.

Now consider an ordering of the Haar system which is given by

the filling arrangement

{¢0’h00’h01’¢1’h'|0 "“’¢r’hr0 ""}'
Let this be denoted by {y, 1k =1,2,...}.

5.1.2 Position of 4; & ¢,,; in the above mentioned ordering
We can easily determine the position of each 4, &g, by
arranging the basis in the triangular form as given below.
¢0’ hOO’ hOl
¢1’ h‘lO’ h'll’ h'lZ’ h'l3’ h02’ h03
Grrs Brroseesh oy s s By s By

¢ re hr,O’ '"’hr,Z”‘—l ""’h02” nes ’h02’“—l

¢r+_y ,hf+s,0 ARAE 1 hr+s,2”"l—l ERARS ] hr,2"" L RARE ] hr+s,2”‘"l—1 LRAR] ’h0,2'" LARAS h0,2’"”—1

5.1.3 Proposition

In the above ordering, they, s are as follows

vi=o, if  k=r(2 +1)+1
=h,_, p<2™ if k=r2" +1)+p+2

=h_, p22" seN, if k=(r+2s)2" +1)+p-s+2
Proof:

Casel: When p<2™

Then in the above ordering 4 ,, lies in the (r+1)” row in

(p+2)* position.
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Therefore position of h,, =22°+32'+ ... +(r+12"" +p+1+r+l
= r(2’ +1)+p+2
Case2: When p22"° s=1,2,...
Then A , lies in (r+s+1)” rowand in (s2’” +p+ 2) ™ position.
Therefore

Positionof h,, = 22°+32' +...+(r+s+127" +52"™ + p+2+r+s

(r+2sX s +1)+p—s+2
Positionof ¢, = r(2’ + 1)+1
Now we analyze the behavior of certain multiplication operators

with respect to the above ordering of the Haar system.

5.1.4 Theorem [20]
Let 7, be the multiplication operator on I*(R,) with

f=h,, n<2™. Let (Tf) be the matrix of 7, with respect to the above
basis and let I(Tf )N A 2(Tf )N yeensd N(Tf )N be the eigenvalues (repeated

according to multiplicity) of the truncated matrix ( ) then the following

asymptotic formula holds:

N

YFALT))

1 A=t = —_—
Jim H— lim IFLf(x)]
where F is any continuous functionon R .
Proof
Let

(a,, j) where

p—

Ny

e
I

b (x)y, (x)y (x) e

ij

Q
|l
°c—-,8

=0 wheni#j and i,j>K,

where K is the position of #_, inthe above basis

mn
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and wheni = j

Let N be a positive integer and let the N” basis element be

h,, where p<2™', h_, where p>2"*seN or ¢, Then
N=r(2"+1)+p+2, N=(r+25)2™ +1)+p-s+2 or N=r(2 +1)+1.
Therefore in all cases N = 0(r2’) . Consider the truncation (T P )N of (T f)

where N is as above. The multiplicities contributed by the upper left K x K
block is same for all values of N > K. Therefore it is enough to consider the
multiplicity of eigenvalues in the diagonal part of the truncated matrix after
neglecting the K x K block as before. Then the eigenvalues considered are
2% 2%

Let NZ% ,N_Z% , N, denote the multiplicities of the eigenvalues

2% ,-—2% ,0 of (T P )N respectively. First we calculate these multiplicities.
N % can be calculated as follows.
Casel: N™ basis element is @,

By ordering S5.1.2, it lies in the (r+1)"' row and
N=r(2’+1)+1.

n+ 1
TfN['//k(x)]":Z%'//k(x) if xe[2—n’"_’2—'"éj|

where T,y = P,T,P, and P, is the orthogonal projection of L}(R,) to
span  {p W Wy ) -
Hence the eigenvectors corresponding to 2% are those w,(x)

n n+ ¥

whose support lies in | —,
ppo [2,. o

}. For any value of k, ¢, (x) is not an

eigenvector of 2 % and

61



;o n+
. h,(x) is an eigenvector <« L,J—H | =, % :
¥ 21 21 2m 2m

o nm2"<j<@2neltmn
Thus multiplicity, namely the number of j s satisfying the above relation equals

2 for each 7.

r-1
_ i~(m+1) _ Ar-m-1 _
Hence, N, =227 =2 1

i=m+1

Case2: N" basis element is h,,, p<2™!

It is the (p+2)" element of (»+1)" row in the ordering and

N= r(2’ + l) + p + 2. Hence as before we can calculate N P and it is given by

27— if p<n2™"
Nz% ={ 27"+ p—n2"" if n2™<p<(2n+1p™!
2 -1 if @n+1)2"™"'<p<2™

Case 3: N" basis element ish,,, p22",s=1,2, . ..
Then in the ordering 5.1.2, h,, lies in (r+s+1)" row and

N=(r+2s)2™ +1)+ p-s+2.

- < i~(m+1) _ Ares-m _
Ny =27 =2 1.

i=m+1

Similarly we can calculate N % and N, by counting the y,s

Y /2 n+l

whose support lies in [ TEREY } and whose support lies outside

{n n+l:l respectively. These results are summarized in table 5.1.5.

ra

N o N o
Now N, ,N . are O( ’) and therefore 22 30 and 2250
%7 % N N

as N > . Hence -]-VN—" —>1 as N — o, which completes the proof.
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AqEL ST

s—d+¢+ =S s-7+d+
.._.._+.—.+LN |A~ + ENVE .IA— t i XMN + kv 1= w-s+iC | Rl 4 ..,.+LN < d A— + .,:INXQN + kv
N+=|E|LNA—I.=v+ :;NVQ
(1+ uT)u—(1+ ) 1= u-l 1=u | 5w Y1+4) [T+ {1+ )
THu—, Y1-u)+ w1 +u)>d
(1+ . Qu—(1+ . | wtu-d 1= uiC | 5 d1+40) [T+ +(1+ T
T-u— . Y1-u)- w1+ 4T)
(1+uu—(1+.¢ | 1=t | dtut|  >d5 .o THd+(1+ .4
dtg+u—, T-(1+ Pu—(1+ | 1=l | 1- 1wl wi4>d |T+d +(1+ T4
U= (1L —(1+ D | 1=l 1l e d1+40)>d P+ 2y
°'N ® -Z %N d jo anjep N jo anjeA
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Now we consider the multiplication operators under the same

basis with more general multipliers by taking the linear combinations of y,s

Then also the conclusion is same. This is given in the next theorem.

5.1.6 Theorem [20]
Let T, be the multiplication operator on L*(R,) with

f =Za,,l//,, . a,s are real. With respect to the ordered basis 5.1.1, let

k=1

A ,(T, )N,}L 2(Tf )N, v s A N(T, )N be the eigenvalues (repeated according to
multiplicity) of the associated truncated matrix (T, )N. Then the following

asymptotic formula holds for any continuous function F onR .

fim S = fim - [P/ 0]

Proof

First we show that the theorem is true for the operators T, with

multiplier f =Za,,y/,,,n = (m+1X2’""l +1) where y,,v,,.. ., are taken
k=1
as in the ordering 5.1.1. From this case we deduce the result for operators 7,

where =) o,

k=l

Let (T,) be matrix of transformation of the operator 7. The
behavior of (T f) is same as in the above case. Here the upper left K x K block
is nonzero, where K =b(2” +1)+ 1,b=2""-1 and the remaining nonzero
elements exists only in the main diagonal. Consider the N ™ truncation (T , )N

where N = 0(r2’ ) Sincey, (x)=h there exist (m+2)2™" +1 diagonal

0,2'”—] L]

elements in (T ” )N. The only eigenvalues considered are the diagonal elements.

Let these values be 3., 5,,..., ﬂ(mm.,] . For finding the multiplicities of these



eigenvalues, we arrange them as §, =0, S where ¢ = k2™ +ec, 0<k<m+1
and 0<c<2™' . Let N , denote the maximum multiplicity of #, . The values of
N, for different values of g and for all possible values of N are given in table

5.1.8. Here also N . is of 0(2’) . Therefore

-2 50 as Now,
N

This completes the proof in the first case.

Now if f= Za,‘y/,‘, n#(m+1)2™" +1) , without loss of
k=1

generality we may assume that by taking coefficients «,s to be zero for

sufficiently many values of %, this will affect only add to possibly an increase
in the multiplicity in the eigenvalue zero. Hence the result.
5.1.7 Remarks

We  calculate the eigenvalues f,s using the following

computations .

(i) T/N(V’i(x))=ﬂq('/’i(x)) c"/’i(x)=htj(x) where T, y=PJT,P,, Py is

the orthogonal projection.
J i+l g-1 _q
< [21" 2i :I g[zmﬂ ’2m+1]’
where g =k2™" +¢,k<2,0<c 2™,
(ii) TfN('/’i(x)) = ﬁq ('/’i(x)) o '/’i(x)=hij(x)
. . m+k _ k-1 m+k k-1
- [, J+1]g[2 +(c=1p*" 2™* 42 ]

7’ 21 2m+1 4 2m+1

whereq =k 2™ +¢, 2<k<m+1, 0<c 2™,

@) Ty, (x)=0@) v,(x)=¢(x) Vv iz2™

®) v, (x)=h,x) e [—J—J—ﬂ] z[o.2m]
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IAqEL 8IS

THs—d +(1+,,,7 5T +4) ¢sst.u=d (1= s-w-s1aT) 2 Wl 59> 0
CHs—d+(1+,.,7)sT+4) t<st,rd (1= cru-sea®)C O+ ulE=b
THd +{1+ T B0 1+(1+ Q4 w0 >d (1~ ¢u-i0)oC g
T+ —d +(1+,,.7 5T +4) I55,,22d (1= e sT T 52> 0
THs—d +(1+,.,7fsT+4) 1<s‘,.t2d (1- umsed) O+ Ll =b
T+d +(1+ g4 10 1+(1+ Q4 vl >d (1= wt)C g

cHs—d+(1+,.g)st+4) | —-TI=5%.03d | S
eHd+(1+ g | > 451 uTh 1= wiC
1= 1u-lCP Ll S2>0 ‘T>Y
c+d +(1+ oy >ds _,..1-b) d+ _,.4bP-7) O+ Luly=b
T+d +(1+ 74 J0 1+(1+ T} u Q1= B)>d 1= ueil “*g
WwCS950 ‘1+uUsys0
N Joampep d jo anfep Aodnmy |9+ Lul¥=b <’ onjeausdig
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(‘pruo)) 3qeL 8'1'S

N+z|m+¢+ me.qm+xv (1+w)s s, tzd A_l T.Ztmv..m vl >2>0
4s-d+(1+ .0 T+ | (1+w)<s*,22d (1= ucsesD)ul O+ uY1+u)=b
T+ +(1+ Q) 10 1+(1+ Y wl>d (1=t i)ul g
N+ul&+¢+ s xnm+.~v wss,r<d A~l N-sLtNV_éN vl >2>0
c+s—d+(1+,,,7fST+4) w<se,,zzd (1= vreesrsD) -l O+ uli =b
z +&+A_+ LNY 10 _+¢+ LNY wg>d AT NLINV 1l <bg
e+s=d+(1+,,7 5T +4) pss,,02d (1= susaT)sC wlS2>0
N+QIQ+A~+ ..tNx.w.N.Tkv v < h.ntNNQ Aﬁl TE«?(Nv«N 2+ TENW"W
T+ +(1+ g4 10 1+(1+ 4 wC>d (1= s-u-i0)s2 “*g
c+s—d+(1+ .7 sT+4) ¢ss5,.c=d (1= pousss )T wl>2>0
T+ s—d+(1+ ., YST+4) g<s‘,,z2d (1= coucsnil) T O+ v =b
c+d+(1+ Q4 10 1+(1+ ,7) wg>d (1= rud)e ‘g
HuCS250 T+tusyso
N JO anjeA d jo onjep Ao dunn o+ ,ul¥=b *’g oneausdiy

67



Next we consider the asymptotic distribution of eigenvalues of multiplication
operators on L*(R,) with multiplier /=) a,y, Zlakr <o in I*(R,).
=1

2
Given f=iakw,‘, ilak| <w and a,s are real and
k=1 k=1

f, = Zakwh . Assume that the sequence (f,) converge uniformly to f on
k=1

R. Thatis, for every &> 0, there exists a positive integer N (depending only

on ¢ )such that Vn> N implies

<& Vx (1)

Let (T ,) and (T,n ) be the matrix of transformations of 7, and (T I3 ) and

WAlT o AolT ) ol ) b T, ), o200, )y 2l )

be the eigenvalues of (T ) ) , and (T A )N respectively. For simplicity we denote

these eigenvalues by {4 ,4 ,,4 ,,...,4 ,} and {l 1,0, . (")}
respectively.

If f, — f uniformly on R, then the operators T, T,, T,N
and T, ~where T, =P P, and T,  =P,T, P, as before, has the

following property.

5.1.9 Proposition
If f,—> funiformly onR, then |7, -7, | > 0 and
| Ty <Tpn | > 0 forall N.
Proof
First we prove that T, ——7, uniformly (in the operator norm).

Consider



R e (A G R H Y G

|, -1, -
= (1 - N e

| f.e- 16

<sw|(f, - NN

<sup | (£, - )" [le(x) ax
Therefore Equation (1) becomes

“Tf_ —Tf" 2 < osupl(f, - f 12

Since | £, = f || = O , the result follows.

Now

u T, ~Tyy H =| AT, B, -PT,P, |
<ie 7. -1 5|7, -7/

Hence the result.

Since f, and f are real, the matrices (Tf" )N and (Tf )N are self

adjoint. Let 4 ,“>1,72> .24, and 4,24,2...24, be the

eigenvalues of these matrices arranged in non increasing order. Then using
Weyl’s perturbation theorem [1.2.7], we can relate these eigenvalues. It is given

in the following proposition.

5.1.10 Proposition
Let 4,224,224, and A,24,2...24be

the eigenvalues, arranged in non increasing order of the matrices (Tf" )N and
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(Tf ) . respectively, then, (,1 k(") )——"—-)l , uniformly for all values of

k=12,...,N.

Proof :

The matrices (T P )N

and (T P )N are self adjoint and therefore
using Weyl’s perturbation theorem [1.2.7] we have
max |22, | | T -To)s k=12, .. .N

Hence the result follows from the proposition 5.1.9.

Since T,y and T,y are self adjoint, using the upper semi

continuity and lower semi continuity [16] of the eigenvalues, we have the

following remarks.

5.1.11 Remarks
(i) Let

A=Af)=0,"4,9,..,4 9}

B = AN(f) = {'1 pA pds el N}
Then the HausdorfT distance between 4 and B tends to zeroas n = o©.
That is

h(A N(fn)’A N(fn)) - 0.

The proof is as follows:
Since f, > f uniformly, 7, , =T,y uniformly as n > .
Therefore using upper semi continuity [16, page 70],
max {dis (/1 o B)}—> 0 asnow.
Also lower semi continuity holds at 4 ; [16]. Therefore
dis (4

j,A)—> 0 as n—owo
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where 4 ; € B . Since (T 7 )N are self adjoint, the lower semi continuity

holds at every eigenvalue A , of B [16, Chapter 2]. Therefore

r?g {dzs( J,A)}—>0 as n—ow®

Hence the Hausdorf distance between 4 and B

h(4 , B)= max {‘:?% is (1 . B), may {ais (4, ,A)}} 50 .

(i) Since f, = f uniformly on R, T,, —>T,, uniformly, and
therefore we have ( T, )—) tr (T f) uniformly where ‘tr’ denote the trace

of the matrix.

The main result of this section is given in the following
theorems and it gives the asymptotic distribution of eigenvalues of the

multiplication operators T, .

5.1.12 Theorem

Let T, be the multiplication operator with f = Zak 7

k=1

Z|ak|2<oo, @,s are real. Assume that f, > funiformly on R

where f, =Za,‘l//,‘, and let {1,4,,4,,...,4,} be the eigenvalues of

k=1
(Tf )N repeated according to multiplicity, then the following asymptotic
formula holds for any continuous function F on R.
N
2F@,)
: k=1
fm == Jm oy IFLf<x>1
Proof

Consider the double sequence {a N’,,} in N and n , where

T



_FA"™)+FQA,N)+ ... +FA ")

ay , N N,n=12,...

and {/1‘("), 42(")’ - ,{N(")} be the eigenvalues of (Tf" )N

We show that the limit (double limit) [7, 10] of the double sequence {a N,,,}
exists as N,n — o and it is equal to F(0)

Let {Y 1\7} ,N=12,... denote the row sequences of {a Nom }, where

FA™+FQA, ")+ ... +F(4 ,")

Y," =
N N

and y, denote its limit as n— .

Let {Z :’ } , n=12,... denote the column sequences of {a N_"} ,where

v - FG N+FA, N+ ... +F@ ")
n I )
and z, denote its limit N —> .
Now we prove the following results,
(i) Forevery N and »n the limits y, and z, exists.
(ii) The collection of row sequences {¥, : N =1,2,.. } converges uniformly.
Then the theorem follows immediately from Iterated limit
theorem [1.2.8].
To prove (i)
Using proposition 5.1.9, for each value of £ =1,2,...,

lim4,”= 4, (Uniformly in ).
Since F is continuous,
Fa,”)>FA,) k=12,...
Therefore for all values of N,

LF(A ") iF(ﬂk) N=l2 .
k=1 N k=1 N ’ >
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Now by theorem 5.1.6, Szegé’s limit exists for Tf" s foreach n=1,2,...
and hence z, exists for each n.
To prove (ii)

Let £ > 0 be given. Consider,

laNn—le =

s-}%—ilF(A ) - F(4,) @

From proposition 5.1.11, there exists N such that
Fla,”)-F@a,}<e  Vn2F.& Vi
Therefore Equation (1) reduces to
lay, —yy|<e V n2N,N=1.2,...

which completes the proof.

Next we have taken the weaker condition, where the sequences

f, =Y. &y, convergesuniformlyto f =) oW, Z|ar,J2 <o
k=1 k=1
(a,s are real), on compact subsets £ of R and the basis is taken as in 5.1.1.
Let F,=f-f, = Zaky/k. Now we choosea,s such that

k=n+1

IF,, (x) is uniformly bounded. Under these  conditions, the asymptotic
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distribution of eigenvalues of T,converges and Szego’s Type Theorem is

valid. This is given in the following theorem.

5.1.13 Theorem

Let 7, be the multiplication operator with f = Zaky/,,’
k=1
Zlaklz <o, a,s are real. Assume that f, — f uniformly on compact

subsets Eof R where f, = 2%% .Choose a,s such that |F,|=|f, - 1] is

k=1

uniformly bounded. Let {/1 pA A 3 sl N}be the eigenvalues of (T P )N

repeated according to multiplicity, then the following asymptotic formula
holds.

iF(M) "
- 1
lim £2—— = lim = 0IF[f(x)]

where F' is any continuous functionon R.

Proof

The proof follows immediately from the theorem 5.1.12 if we
establish the following results.
(1) T, »T, pointwise.

(ii) T, ,—T,, uniformly forall N

Proofof (i)
Since |F, (x) =

f, - f] is uniformly bounded, we have |F,(x}<8 Vx
and since £, (x)converges uniformly to f in the set E ,
|F,(x) >0 VxeE .
Now we show that 7, =0 (7, — T, ) point wise.

Consider I, -T, =T, ,=T, . Then,
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7] = s {7 @)

17.@)]*= N F6)e6)| s

Then for any 0 < N, <o we have,

"TF.(f)uz =I

N
0

F)EW)] ds + [ FL(ER)]

z

F, (x]2 @) ax ... (1)

0

- E@)| @i+ |

Let >0 begiven. Since £(x)eI*(R,), N, canbe chosen such that

© 2 €
N{lﬁ(x]dx <2ﬂ2 .

Now

-]

J

No

F()E)] e = (o)l
< B & CIEE<B)

< p? j]g(x)|dx<§ V n . Q)

Let E= [0, N o] be the compact set.

Since F, — 0 uniformly on E, we have for every ¢ > 0 there exists N, such

that

F,(x) < % VnxN, &V xek

Nﬁ F"(x]2|5(x)[2abc<§ Vn2 N, ... Q)

0

Then using equations (2) and (3), equation (1) reduces to
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. 2
ﬂF,,(x) |§(x)2 <£.L Vn2N,.
5 2 2

Hence T, —0. ie. T, - T, pointwiseon R.

Proof of (ii):

Since 7, —0 point wise on R and P, is compact,
T, Py > T P, uniformly onR.
Now consider,

|

N _Tm“=||PNTf.PN —PNT,PN“

iy

n

="P~(TJ, "TJ)PNH

<[Py “(Tf. —TI)PN"

s| @, P -T,p)|>0.
which completes the proof of (ii) and hence the theorem.
5.1.14 Remarks

(i) Foreach x, let 5, denote the Dirac delta measure concentrated at x.

5, +0, +...+6,
N * be the measure defined for each N and let

4 = & ,. Then the above theorems 5.1.12 and 5.1.13 implies that for all

Let u, =

continuous functions F on R.
IdeN - de,u
0

ie, My —> u weakly .
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(i)  Theorem 5.1.12 follows from 5.1.13.

(iii) The coefficients a s in the theorem 5.1.13 can be chosen as follows.

a, s% k=1,2,3,..., then |F,(x) is uniformly bounded.

The proof is as follows.

f=ia,,w,,, where y, =h_ or ¢ ,.From the ordering 5.1.1, k= 0(r2’).
k=1

Then, for xeR,

17(x) Sg]akw,,(x) W

Case:1  When r isfixedand p varies
Then supports of 4, is disjoint for each i and j. Then f (x) contains
only one term foragiven xe R . Hence (1) reduces to

l f (x) < Ia,,l,l/,, (x) , where x belongs to the support of y ,
2%
= la,( “hrp(xI < T

which is finite, where k£ = 0(r2’) .

Case:2 when r varies,

then (1) reduces to

© @O %
2
RO e

Since k> r2"

© 2%

Ifx) < Y=—=<p forall x

r=1 r2

Therefore,

ZakV’k <

k=n+1

|F, (x) = <p forall x .

O
a,y,
k=

Hence |F, (x) is uniformly bounded on R.
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5.2 Generalization of orderings of Haar System

In this section we identify different classes of orderings of Haar
system in L*(R,) and in I*(R) so that for certain multiplication operators the
asymptotic distribution of eigenvalues converges to a fixed limit and Szego’s
type theorem is valid. Also we have given examples for orderings other than the
orderings mentioned earlier. Throughout H = {¢ ; (x) h; (x)i,jeZ, u {0}} will
denote the Haar system in L*(R,) .

First of all we have the simple result.

5.2.1 Proposition

Let {y , keN} be an ordering of the Haar System where

Szego’s Type Theorem holds for an operator T. Then with respect an ordering
obtained by changing the positions of a finite number of elements, the Szego’s

theorem will remain valid for the same operator T.

Now we construct a class of orderings of Haar system for the
case of multiplication operators T, in L (R,,) with f = hy, so that asymptotic

distribution of eigenvalues converges. This result is given in the following

theorem.

5.2.2 Theorem
Let (T, ), =0,4,(T,), =1, and 1,(T; ) =-1be the distinct

eigenvalues of (T ) )N where f=h,. Let M, be the eigenspace associated

withA (T,)

N

, J=1,2,3 and H,= HNM,. For a sequence (J,) of positive
integers, let4,,4,... , B,,B,,... be partitions of H, and Hr\MjC

respectively such that |4,|=nj, and |B,|=j,. Consider an ordering of it
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whose entries are arranged as{B,,4,,B,,4,,...}. Then this is a basis for
L*(R,) for which

Y F,r,),)

fm & P 1))

Nowo

where F is any continuous function on R.

Proof :
. N,
To prove the theorem it is enough to show that 7’ —1 as

N > , where N, is the multiplicity of eigenvalue A j(T P )N of (T P )N.

Let N be a positive integer. Then for some » dependingon N ,

n-1

N=Y(k+1)j,)+K, K<j,+K, whereK, <nj,

k=1
Then
n-1
N,=Y ki, +K, where K, is defined as above.
k=1
n-1 1+ Il-lKl
. Z b +K, Z ki k
= lim—L = lim —* = lim £ =1
nso N nswo 2 . n—wo n-1
(k+1)j, +K Y i +K
4| E—
2
k=1
Therefore
lim N _ 0, k=j.
Noow N

Hence the result.
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5.2.3 Remarks:

i = 0)- i - o

Hence, Szego’s type Theorem is valid in this case.

() When A ,(T,), =4 ,(T,) =1, then the asymptotic distribution of
eigenvalues converges to F(1) and when 1 j(T P )N = A 3(T ) )N = -1, then it

converges to F(-1) .

The above theorem gives three classes of orderings for

multiplication operator 7, where f = h,, so that asymptotic distribution of

eigenvalues of (T P )N converges to F (Z ; (T P )N ), where A4 j(T f)

N

=1-1,0.

Now we give an example for the case when A j(T P )N =0.

5.2.4 Example
Let f = h,, . Therefore support of f = [0,1]. Recall that

H= {§,(x)h,(x)i,j e Z, {0} Let M, ={h,(x)¢,(x)/its support = [0,1]}.
For a positive integer ¢, let j, =2"", and let 4,,4,,,,... be a partition of
M, suchthat [4,|=(n~t+1)2"" +1, n=t,t+],.... . Define
A =100 esBshirosBsgse Py}
ISV SU SEY SN SO SR I TS
Let B,,B,,,,... be a partition of H "M, such that |B,|=(¢+1)2""and for any
h »h

"’zn-ul_l, "_1’ 2n-t b AR

n>t define B, = {h,,o,...,h } Then

n—1+1,2" |
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H=1{4,B,,A,,B,,,A,,..} isa basis for [*(R,) , for which Szegs’s

1+l 2
Type Theorem is valid.
Let us denote this basis by {y, : k =1,2,—-}. Here also we have

calculated the position of 4, and ¢, in the above ordering and it is given in the

following proposition.

5.2.5 Proposition

In the above example i, s are as follows.

Yi=0 i if k=12,..t
v =h, if k=2-r, r=0,1,...,2-1,
v.=9, if k=r27+1)+1,  r=ne+l,.

wi=h_ &p<2 if k=rQ27+1)}+p+2, r=tr+l,...
wi=h, &p227" if k=(r+2s)2 +1)
+p-s+2, s=1,2,...
Proof

We arrange the above basis elements as

¢o ’¢1’¢ 29°° "¢ ...’ht-x,O’ hr—2,0""’hl,0 ’ho,o ’ ¢r ( A )

and the remaining basis elements are arranged in the triangular form
hl,O’ hl,l ’h t-1,1 ""hl,l ’ho,l ’ ¢ t+l (Br ’ Ar )

ht+l,0’ hr+l,l ’h t+1,2 ""’h0,2 ’h0,3’ ¢ t+2 ( Br+l , At+1 )

¢ r’hr,O se ey hr (27-I+l_1) ’ h (r-1),202"" hr—l,(Z"""—l)’""’ h0,2"’ gevey hO,(zr-lﬂ_]) ’ ¢ r+l (Br ’Ar)

s o0

From the arrangement it is clear that

v =@, if k=12,..t¢
v . =h, ifk=2t-rr=0\..,t-1

Now we find the position of ¢ | forr =¢,¢+1,... .

¢, liesinthe (r—1+1)" row.
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Therefore position of
¢ =2t+r—t+1+(+22° +(t+3R" +...+(r+1)27""

=2+r—t+1+r2"" -t
=2 +1)+1, r=tr41,..

Now we find the position of 4 .
Case l: when p<2™' and r=tt+],...
Then &, liesin the (r—1+1)™ row in the above ordering of basis.

Therefore position of 4,
= 2+r—t+l+p+1+(t+2R°+(t+3R"+ ... +(r+1)2"
= r(2"' +1)+p+ 2
Case2: when p2>2""",s=12,..&r=0,1,2,...
Then A , lies (r—t+s+1)" row and the position of A  in this row is

52" + p+2 . Therefore the position of 4 ,

=2+ (4220 + (1432 +. (P +s IR 4 p+ 24P~ +s
=(r+ 2sx2"’” + l)+ p—-s+2
5.2.6 Remarks
In the above example for ¢ =0,1,... , we get a collection of
orderings for which Szego s Type Theorem is valid. In particular when ¢ =0

B

the ordering reduces to the ordering in 5.1.1, where j, =27, =27

|Anl=(”+1)2"+1’ such that, A={¢ 0},

VTR NN ORI SRR TR DR PO JU S

B, = {hohyyseh, .} andthe ordering takenis {4,B,, 4,,B,,4,,...} .

5.2.7 Theorem
Let 4, (Tf )N =0, 4, (Tf )N =l and 4, (Tf )~= -1 be the eigenvalues

of (Tf)Nwhere f=hy. Let M, M,,and M_, be the subsets of H such
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that M, =1{h,.¢, /itssupport z 0,1]}, M, = {h’ fsupport ot hy [0’ ﬂ} ond

M = {hy. /supportof h; < [%,l}} . For a sequence of positive integers (1 i ),

let A4,,4,,.., B,B,,.., C,C,,...be pattitions of M, M and M,
respectively such that |4,| = a,j,, |B,|=4a,j, and |C,|=a,j, where a,,a,,a,
are constants. Consider an ordering of H whose entries are arranged as
A,B,,C,,4,,B,,C,,. .. . Then, this is a basis for L*(R,) for which

S F,),)

lim £ =7,F(0)+ 7,F )+ 7,F(-1)

Nowx

where y +7 ,+7,=1and F isany continuous function on R.

Proof
From theorem 5.1.4 (when m ,n=0), M, M, and M_ are

the eigenspaces of the eigenvalues 0,1,-1 respectively. Therefore to prove the

theorem it is enough to show that

. _i_
}zl_r.nw]v =Y

where N 1, is the multiplicity of eigenvalue 4, of (T P )N .

Let N be a positive integer. Then for some n,

n-1
N=Z(a1+a2+a3)jk+K, Ks(a1+a2+a3)j,I

k=1

and then

n-1

N, =Z(ajjk)+Kj’ K;<a,j,, j=12,3.

k=1
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n-1
al) j, |+K
N‘J = J(é k) !
Nowo N n-l

dia+a,+a,)j, +K
k=1

KJ'
aj + n-1
PIWA

k=1

= im Kk U
(a, +a, +a3)+7_1—

PN/

k=1
Therefore

Z F("k (Tf )N )
tim = O 47, F )+ 1,F(-)

where y +y ,+y,=1.
5.2.8 Remarks:
@) For each x, let 6, denote the Dirac delta measure concentrated at
x. For simplicity letd (T,) =4, whered (T,) =1, -1, o. Let

4y = 6, +6, +...+8,
v N

L=y, 0ty ,0,+ty ;6 ,where y ; is defined as above. Then the above

be the measure defined for each N and let

theorems implies that IFd,u N f Fdu for all continuous functions F
0

on R.

Now we identify a class of orderings for the case of
multiplication operators with multiplier f having compact support. This is

given in the following theorem.
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5.2.9 Theorem

Let T, be the multiplication operator with f = Za,‘l//‘t where
k=l

v, (x)= hy (x), or ¢,(x) and assume that the support of f = [O, 2'] for a non-
negative integer . Let M, = {h,.j (x),¢i(x) / whose support ¢ [O, 2'] } For a
sequence of positive integers (j, ), let 4,,4, ,..., B,,B,,...be partitions of M,
and H M, such that |4,|=nj,and |B,|=j,. Then H ={4,,B,,4,,B, ,...}

is a basis for L*(R, ) and for which

i FA)+FA)+...+F(A,) _ lim%t{[F[f(x)]dx

N-w® N Moo

where Fis any continuous function on Rand {4,4,,...4,}are the
eigenvalues of (Tf )N.
Proof :

From theorem 5.1.5,

T (x)=0 @0 v,(x)=¢(x) Vi 22" where T,y = P,T,P,

)] Wi(x)=hij(x)®[§];i’j2—-tlj|¢ [O’ 2‘]

Therefore M, is the eigenspace corresponding to the eigenvalue zero and the

rest of the proof is similar to the proof of the theorem 5.2.2 .

5.2.10 Corollary :
The above theorem indicates that there are variety of orderings

for which Szego’s Type Theorem is valid. For example let H, f and M, be

defined as in the above theorem and j, =2"*, where ¢ is a fixed non-negative

h By i}

"_l’znu EARA ] 0,2.“”-1

integer. Define 4, = {h,.,zm seeo P s

B, =, hgreah s} 8 ,€ A, if n22' such that

|4, = (n+1)2" if n<2'-1
=(n+12™ +1 if n22'-1
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IB,| =2 +1 if n<2
=2 if n22
respectively. Then the ordering {B,, 4,,B,,4,,...} isabasis for I*(R,) for

which Szego’s Type Theorem is true.

For curiosity we have found the position of A, (x) and ¢ ; (x) in the

above ordering and it is given in the following proposition.

5.2.11. Proposition:
The ordered Haar basis can be represented as a sequence
{t//,t k= 1,2,..} where
é, if  k=r2™ +1)+1
v =3h,,p<2™ if k=r(2’“ +1)+p+2
h,.p > if k= (r+2sX2”'” +1)+p—s+2 ,s=12, ...

Proof :

The proof is obvious by arranging the basis elements in the

triangular form as given below.
¢0 ’ h0,0 ’ hO,l ’ h0,2 g ho’z'”_] (BO ’ AO )
¢] ] hl,O 3 e hl,zuz_l ’ ho’2l+l LRARS ] ho’z s h0,2"z—l (B] ’ A] )

¢r.] ’ hr_l,() LA ] h’_l’2r+1_l ’ h’_2‘2r+l—l LA ] h’_2,2r+l —12°*" h h (Br-] » Ar-] )

3 T8 gret-t s eees Fhy qrer

¢[ ’ hr,() 9y h’ 2r¢t+l -1° hr—l 27+l LRSS ] hr—l 2r+l+1_l LIAAS ] ho e A d ho 2l+l+1 4 (B A’ )

r?

Then ¢, liesinthe (»+1)” row. Therefore,
Position of ¢ , = 2.2' +3.2" +...+(r+12""" +r+1

= (27 +1)+1
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Now we find the position of A,

Casel: When p<2™'*!
Then h,, liesin the (r+1)" row in the above ordering of the basis.
Position of h, = 2.2' +32" +...+(r+12""" +r+1+ p+1
= r(2"" + l)+ p+2
Case 2: When p22""" s=12,...

If p22™",s=12,... , then h lies (r+s+l) ® row and the

position of &, in this row is s2"""* + p+2. Therefore Position of 4,

=22 432" 4+ (s +IR7TTT 42 L pr 24+t +s
= (r+2sx2"’"" +l)+p—s+2

5.2.12 Remarks :
In the above ordering when ¢ = 0, then the ordering reduces to

the ordering 5.1.1 for which j, =2", |4, =(n+12"+1,V n20

and |B,|=2" V n>1where B, ={p o, h oo} » 4y = {h01,¢1} ,
YR SR SN S TRV SRR, JUP DU I O
B, wosParses P | ¥ m21.

5.2.13 Haar System in L*(R_)

Now we transform the problem in L*(R_) to that of L?(R,) with
out changing the spectra as well as eigenvalues of truncations as follows.

For felI*(R.),f is defined as f(t)= f(-1), V teR,
Then f e I? (R,), and vice versa. Let T be the multiplication operator in
I*(R.) . Define T € I*(R, ) such that T (7 )=7‘U) Therefore T and T have

the same spectrum.

~olT)y]=olT),] .
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Hence results considered for L*(R,) can be easily carried over to the context

of I*(R.).

Now we consider the case of multiplication operators in the case
in L*(R). The following theorem gives a class of orderings in L*(R) for which
Szego’s Type Theorem holds.

5.2.14 Theorem :

Let {y/k : k =1,2,...}, {7) i k=1,2,...} be any ordered Haar
system in L*(R,) and in L*(R_) respectively for which Szegs’s Type Theorem
is valid for certain multiplication operators. Then with respect to the ordering
{y/l W 2seeesW ps 151 250005l o, } in LZ(R), Szego’s Type Theorem is valid

for certain multiplication operators .
Proof:

I*!(R)= I*(R,) ® I*(R.).
Let g € L*(R),
g=gvs gy, =202, .8 €l’R),g¢e L’R),
where y, .y, are the characteristic function of L*(R,) and I*(R)

respectively. Let 7, be the multiplication operator in L (R) with multiplier
f € [*(R). Therefore
f=f®f, fie !R), Lel’R).
T, g/
T,(g) = f=(/1®1 )5 ®8.)=rfig,+ /.8,

(Tf, esz)(glegz)z(Th @sz)g
=T, =T, &T,..

v, W 25esW mofl 7] 35eesl o is the Haar System in L*(R) and

P, be the orthogonal projection onto first N elements. Let these N elements
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be {y/l Wy ymemm- sWa 5T 157 2= 7 ,,2} such that n, +n, = N, any positive

P,=P, ®P, , P, €I’(R,), P, € [}(R) .
Consideran N x N comer truncations of T, which is given by

(Tf)N =PNTfPN =(P"1 ®P"z)(Tfl @sz)(P"l ®P"z)

=(1)"1Tf1P"1) @ (P"szzR'z)
Let {4, 4ys Ay} 48128 1o-aB o fand {75,007, f be
the eigenvalues of (T P )N , (T L )N and (T 7, )N respectively. Since Szego’s Type

Theorem is valid for the spaces L*(R, ) and for L*(R_) with respect to the basis
{y/,‘ k= 1,2,...}, and {r) L k= 1,2,...} respectively, we have

lim F(B)+..+F(B n])=F(0)= llmLIF[f(x)}ix o (1)
n—»o n, Mo M 0
0
lim F(71)+...+F(}'nz)=F(0) =lim-1— IF[f(x)}ix L ©
il n, M—MM_M
Now consider
i PO+ A FA) _ lim[F(ﬂl)+-.-+F(ﬁ n) , F)+. 4 F( n,)}
Now N N—wx N N

[F(ﬂ1)+---+F(ﬂ ,.,)] [F(71)+---+F(7 M)J

I n n,
= lim +
N ("1 +n2] (nl +n2)
n n,
(- n +n,=N)
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fim| £, FO, | FO) Le| -2y D2
Noo n,+n, n +n, Noolp +n, n +n,

= F(0)
Therefore from equations (1) and (2) we get,

lim F(A)+...+F(4y,)
N

N

= F(0)

- | o] frtehase Jrteas

- | 5] Jre]|

which completes the proof .

For example we give below an ordering of the Haar System for the

space L*(R) in which case Szegs’s Type Theorem holds for certain

multiplication operators.

52.15 An ordering of the Haar wavelet basis in L*(R)

The ordered Haar wavelet basis for L*(R) is given by the
filling arrangement 1 o, iy , Aoy By s 1 s Fyg 5 eos By ) ,...f. This can
be written in the triangular form as

¢ 0° h00’ hOll’ hO,—l
B Bos Bushig Py By By s B Shy s By
Brs hagseeir By s Bigneees BigsBoareees iy s @ois By yseees By o

¢|- ’ hrO ERREE) hr,2'”-l ’ hr—12’ 3o eoy h0,2”'-l ’ ¢—r s hr,_l 3o oy hr,—(Z”‘-l)’ [ hO,-(Z”l—l)
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Let us denote this basis by {w, : k € N}. Then from the above triangular form
the y, s are as follows.

(0, if  k=rQ2 +1)+1

if k=r(2”‘+1)+p+1,

L ,p22" 1seN, if k=Qr+3s)2 +1)+r+s+p+l
' if k=Qr+2R" +r+l

if k=@r+22 +r+p+l},

r+l
h, ,p<2™ -1

rp? p < 2r+1 __1
{h oopd p > 2r+s+l -1

if k=Q@r+4s+2)2"" +r+s+p+l1

where @, (x)and h, are defined as before.

Now we consider the case of multiplication operators in L*(R)

under the above ordering. In the next theorem we observe the behavior of the

distribution of eigenvalues for certain multiplication operators in L*(R).

5.2.16 Theorem

Let (T,), bethe N stage truncations of the operator T, in
I*(R) with the multiplier f(x)=hy(x) and let {i,4,,...,4,} be the
eigenvalues of (T P )N repeated according to multiplicity, F any continuous
function on R then

lim F(Al)+.1.\.[+ Fy) _ o)

Proof

Wehave I*(R)=L*(R,)®L*(R.).

For simplicity let T, =T.

. T,=Tel}(R)=>T=T,&T,

whereT; € L*(R,)and T, € L*(R_)  such that
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T, :y — fy where yeI*(R,)
T, :n—> fn where ne*(R.)

From theorem 5.1.5, we have the theorem for operator 7, in
I*(R,) and similarly for the operator T, inL*(R_).

Let N, , N, and N,, be the multiplicities of the eigenvalue
zero of (T), ,(T),, (T ) v Tespectively. We show that the sum of
N,, and N,, is less thanN,. Then the muitiplicity of the eigenvalue zero
increases and hence the theorem follows for the operator T, = T in L* (R).
Claim: N, +N, <N, .

The proof is as follows.

Let £, E, and E, be the eigenspaces of the eigenvalue zero

of the matrices  (T), ,(T;) Vs (1) v respectively.

E={ge ’R): T(g)= 0]

E = {gl ELz(R+): Tl(gl)= 0}

E,= {gz ELZ(R-)5 Tz(gz)= 0} .
Let f, € E, then,

T(f,)=(T, ®TL,)f,
=T,(£)®T(f)=0

Hence E, c E and similarly we have E, c E, which completes the proof..

Finally we generalize the theorem 5.2.7 and it is given in the

following theorem.

5.2.17 Theorem
LetA (T, ), =0,4,(T;), =1, and A,(T,), =-1 be the

eigenalues of (T P )N where f=h,, . Let M, M,,and M, be the subsets
of H defined by
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M, = {hy, @, /its support [0,1]}’ M, = {hy. /support of h; [O,ﬂ} and

={h,.j/supportofhy c[%,ljl} . Let 4,,4,,.., B,,B,,.., C,C,,... be

partitions of M, , M, and M_ respectively such that |4,|=gq, AN

B,| = a,7,? & ICi| = a,j,) where a,a,,a;, are constants and
(j,f‘)) , (j,fz)), (j,f”) be any sequences of positive integers such that

- :(2) )
Z]k Z]

lim4=t— lim—— exists and

W/ 350
k=1 k=1
30

hm——- exists or diverges.

21(2)

Consider an ordering of H whose entries are arranged as
{AI,BI,C,,AZ,BZ,C2 ,...}.Then with respect to this ordering, for all continuous
functions F on R the limit

SF,),)

hm k=l 7 exists.

Proof :
Let N be any positive integer. Then for some »n ,

n-1 n-1 n-1
N=a12j,f‘)+a22j,f2)+a32j,f”+l{,
k=1 k=1 k=1
where K =K, +K, + K, where K, <a,j) K, <a,j, @) , K, <aj()

Consider the N truncation of (T f) where N is as above. Let N, be the

multiplicity of 4 (T,), , j=123.
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n-1
N, = alzjl(:l) +K,

k=1

n-1
N,=a,) jP+K, and
k=l

n-1
N, =a32j,(,3) +K;.
k=]

Hence
N
ZF('q’k (Tf )N )
N N -
lim k=1 =11m IF(0)+ 2F(1)+N3F( 1) . (1)
N-yo N N-»o N
/3
Case:1 when lim* exists.
" Z j(2)
k
k=1
Then
n-1 )
_ aj(sz(’))“j
},im TJ = },lm n-1 k:—-ll -1 - Q)
alzjk(]) +a, ij(z) + a}zjk(s) +K
k=1 k=1 k=1
where j=1,2,3
In the statement of the theorem, it is given that
i i /3
lim&l—, lim%l—  and lim*—exists ... (3
P i i
k=] k=1 k=1

n-1 .

Dividing equation (2) by Z j,,(’) and using condition (3), we can easily
k=1

show that

N,
lim —~ exists for each j=1,2,3
Noo N
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Hence the limit in equation (1) exists.

39
Case:2 When limE— (diverges.

Y@
P
n—1 (2)
a, (Z Jx ) +K,
k=1

b N2 = 0, V.o, .0 - @
- . (1 . .
ath +ath +ath +K
k=1 k=1 k=1
30 Wk
Since lim £ diverges, wehave  lim£! — o,

") "N 0
Zh é!k

k=1

n-1

Therefore dividing equation (4) by Z J ,(2) , we get
k=1

lim—A—[-z——>0
N—)ooN

For j= 1,3, asincase 1, we can easily prove that

. N, )
lim —L exists.
N

N-ow

Therefore the limit in equation (1) exists in this case also.

We conclude this chapter with the following remarks.

5.2.18 Remarks:
(i) When (j,?))=(j,fz))=(jf))=(j,) then the above theorem reduces to
theorem 5.2.7.

(ii) An outline of a proposal for further investigation has been given in the

appendix of the thesis. This is based on the theory of modified Haar functions in
L (R" )® C(» Where C, is 2" - dimensional Clifford algebra.
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APPENDIX

Here we have given a result on spectral approximation of certain

multiplication operators in L*(R,) with respect to Haar basis and a proposal for

future investigation to higher dimensional L*(R").

A .1 A Result on Spectral Approximation
First we discuss some definitions and results which are used in

this appendix.

A.1.1 Filtration [4]
A filtration for Hilbert Space H is a sequence F = {H,,H,,..}

of finite dimensional subspaces of H such that H, c H

n+l

and U H, is dense
in H.

A.1.2 Degree of a Bounded Linear Operator [4]
Let F={H,6} be afiltration of H and P, be the orthogonal

projection onto H,. The degree of an operator A e B(H) is defined by
deg(4) = suprank(P,A- AP,).
n2l

A.1.3 Arvesons Class [4]
Let M denote the class of all 4 in B(H) such that

A= i A, where 4, € B(H) and deg(4, )< o such that norm of 4
i

|4] = inf Z [+ deg(4,)"2] |4, <

Then M is called Arvesons Class.
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A.1.4 Arvesons Criteria for an Operator to belong M (Arvesons Class) [4]

Let{fe, :neZ} be a bilateral orthonormal basis for a Hilbert
space H and let {H, A :n=12,.} be the filtration H, =[e_,,e_,,, ,...,e,,]. Let
(a,j) be the matrix of an operator 4 e B(H) relative to{e,}, and for every
keZ, let

dl: =supa,.; ;| -
leZ

Then A4 will belong to Arvesons class M whenever the series Zlkr/zdJt
¥

converges.

A.1.5 Band Operator [23]
Wecall AeL(H) aband operator with respectto H if

suptr(P,A— AP,)< ®

Here we consider,

A - Multiplication operator T,

H - The Hilbert space L*(R,)

{e, :ne Z} - The Haar system {y, :n=1,2,...}ordered as in 5.1.1
H, - ovav,}

P, - Orthogonal projection onto {y,,¥,,...,¥, }

In this section, using the above criteria we show that the certain
multiplication operators in L*(R,) belongs to Arvesons class with respect to

the Haar basis and it is given in the following theorem.
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A.1.6 Theorem

Let {w,:n=12,.} be the ordered Haar basis in 5.1.1 and T, be the

multiplication operator on L*(R,) with f=) v, ,a, 52%. Then T,
k=1

belongs to the Arvesons Class.

Proof:
Let

(T,)= (a,.j) where a; = a]ﬁ//,. (x)//j ().

d, =sup

ieZ,

Aok i

= ‘s‘:]zpl (T v, (x)» Vi (x ) ’

JICICINEr

=Ssup
ieZ,

j/ ”y
- suplo, | [re, () 2% Trom, (e
1€ /Zi /2’

(if support of A (x) < in the support of 4, (x) or ¢ ,(x))
e

}

i+k

ap{o. o

ieZ,

If (a,,)=(y22,,) or a, < 122,, then,

2%2 -2(i+k)

3

dk = Sup{o’ |2—2(i+k)

i€Z,
2%

Since T, is symmetric d_, =d, . Then
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Y |K%d, = 2 Vid, +42d, +..

R
SI9UG
< 2[[1—+£+...]<oo rRemM

Hence the theorem follows from A .4.
We conclude this section of the appendix with the following

remarks.

A.1.7 Remarks:

(i)  Since 7, belongs to Arvesons class we have the following estimate of

commutator 2-norms

(1)

where Hilbert — Schmidt norm of operator B is ||B|, = (trace(B* B))"*.

Therefore T, is a band operator.

(i)  As aconsequence of Arvesons Theorem [4, Theorem3.8 ] o, (T f) can be

fully recovered by the eigenvalues of the truncations (T P ).. .

A.2 A Proposal for Future Investigation

We give an outline of a proposal for further investigation. This is

based on the theory of modified Haar functions in LZ( " )® C(») » Where C, is

2" -dimensional Clifford algebra.
The construction of the modified Haar functions can be found in

the article “The Cauchy singular integral operator and CllffOl‘d«Wﬁ%&

by Lars Andersson, Bjorn Jawerth, and Marius Mitrea [5, Chapterl 5]. G t\

& 8643
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First we give the definition of Clifford algebras over R. Fix a

non-negative integer n and let eg,e,,...,e, be the standard basis in

n

Rn+1 (OI' Cn+1 ).

A.2.1 Clifford Algebra [5]
The 2"- dimensional Clifford algebra R, (or C,) is the

algebra over R (or C respectively) freely generated by e¢,,e,,...,e, subject to
the relations:

1. e, is the multiplicative identity

| 0, if j#k
2. for 1<j,k<n, eje, +e,e, =-28 ¢, ={—2eo, if j=k

In particular the Clifford algebras R()s Ry, and Ry, are the real

numbers, complex numbers, and quaternions, respectively. We embed R™' in

Ry lor Ciy)by
xeR™, x=(xy,x,, ..., x,) Y x,e; € Ry = Cy,
j=0
The image of R™' under this embedding is called the set of Clifford numbers
in R(") ( or C(") ) .

For Ag{l B n}, A={i1<i2<,. <0y } , we set
e,=e e ...e .Wealsowrite ¢, =1. Then {eA}A(;{L2 ’’’’’ .} 18 a basis for
R(") and C(") . Hence

x€R, :>x=ZerA .
We shall write x,e, = x,, and refer to x, as the scalar part of x,

i.e., x, =t Rex. The above basis is orthonormal with respect to the inner product
(x’ y ) = Z x A y A

where x, y € R,y and the Euclidian norm is defined as
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4=zt

With this norm R,y and C(,) become normed algebras.

Now consider the Clifford algebra L’ (R" )@ C(, » the Clifford

algebra version of L? (R ") . In this space modified Haar system behaves like an
(bi) orthogonal set of functions with respect to the form

(fis o) = [ANG)S, (x)x RN C))

where f, f, are C(,) valued functions, T - the graph of a Lipschitz function

g:R" >R and N(x) is the Clifford number defined by (1, -Vg(x)).
Therefore, Re N(x)=1 and |[N(x)}~1.

A.2.2 Modified Haar system in [*(R")®C,,

Let F denote the collection of all dyadic cubes of R" .
v, +1
2k

Each dyadic cube has 2" subcubes.
2" ; . 1 )
0"} = {Q’ < Fllg")=1(0). @' Q}

where /(Q) is the side length of Q.

Q=Q,,V={xeR":—2V%.<_x,s i=1,2,...,n} for keZ,veR".

Let F, = {Q e F;1(Q)= ZL"} Let |0] denote the volume of Q . Define
m(Q)=|o" [N ()
0

where N(x) is defined as above. Then Rem(Q)=1 and |m(Q) ~1.

For QeF and i=1, 2,...,2" -1, define the C(,)- valued functions

{fro.},, and {B%.} by
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v=]

Broi= 2%IQI'”2M(Q,t’>{l’""(>'3.=1 Q”)- (Z Zy ) ~m{Q' ] 2 }

and

Bros=2" |Q|_“2{i"'n(§3_,Q")— [Z'] zg)— m(@™' )" 2y }M(Q,i)

v=l

%

where M(Q, )= Hi-'m( Ug" )'l emlg™)’ }1] .

The next two results shows that g s behave much like an
orthonormal basis for L’ (R" )(,,) .

A.2.3 Corollary [5]
For each f e L*(R" )(,,),

F=X0Af s BLY 5B

QeF j=1
and
21
f= ZZﬂ&(f ’ ﬂé,) b3
QeF j=1
A.2.4 Theorem [5]

IffeLz(R")(n) then

I ~ 23K 42),

2 2

2"}

- ZZKﬂé"f)z

QeF i=l

A.2.5 Modified Haar System in L*(R")

From the above basis, an orthonormal basis for > (R") can be
derived by taking £=R", then g(x)=0. Therefore, N(x)=(1,0,0,...,0).
Then the above B s reduces to

- \K (1
P a0
v=]

h :2%
¢ i+1
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The family {h’Q } o, forms an orthonormal basis for L (R”) with

respect to the standard inner product

(fohs)e = [AE) (0, xeR" (- N(x)=(10,...,0) )

This is the modified Haar system in Z*(R") . In this case for f e I*(R"),
r-) o
APIPNCALIL

QeF, i=l

Thus one can formulate the problems investigated in this thesis

in the above set up and carry out investigations. ¢
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