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CHAPTER I 

INTRODUCnON 

Gabour Szego's (1895-1985) most important work was in the 

area of extremal problems and Toeplitz matrices. He proved a number of limit 

theorems, now known as Szego's limit theorem, the strong Szego's limit 

theorem [2] and Szego's orthogonal polynomials. 

In early twenties G. Szego studied in detail the distribution of 

eigenvalues of the section of Toeplitz forms associated with a function defmed 

in [-n,n] . 

The basic idea used by Szego is the so called equidistribution of 

sequences introduced by H. Weyl. 

Equidistribution of Sequence [13] 

Let (u1 ) (k ~ 1) be a sequence of real numbers contained in an 

interval 1 of length Ill. For any subinterval J of 1 , of length IJI ' let J(n) 

denote the number of points among up u2 " •• ,un that lie in J. The sequence is 

said to be equidistributed or uniformly distributed on 1 if for each J contained 

in 1, 

(Intervals may be open or half-open.) 

The following measure theoretic version can also found in [13]. 

Theorem 

The sequence (u1 ) contained in [O,2n) is uniformly distributed 

on that interval if and only if 

tf(u1 ) 

lim..:;,.1=...:..1 __ 
n n 

21t 

= Jf dO' 
o 

For every function f that is continuous and periodic with period 2n . 



Toeplitz has studied the distribution of eigenvalues of an infmite 

matrix (C U-Jl ) where the indices v and J..l range from - 00 to 00. The 

asymptotic distribution of the eigenvalues ofToeplitz forms can be expressed in 

the terminology of theory of equal distribution due to H. Weyl. The well known 

Szego's theorem throws light into the asymptotic distribution of eigenvalues of 

truncations. 

Szegc3's Theorem [12] 

The Szeg<S's theorem on Toeplitz matrices states that if 

A. l(A)N ,A. 2(A)N , ... , A. AA)N are the eigenvalues of the N x N truncations 

(A)N of the matrix A = (a;_j) , where 

is the k th F ourier coefficient of the mUltiplier f in L«> (- 1t, 1t), and F is any 

continuous function on R, then 

(1) 

The above theorem is well known for its applications to 

trigonometric moment problems, stochastic process [12] and to problems in 

edge detection [14]. 

The classical Szego's theorem is based on Fourier system 

{ en : n E Z } where en (x) = elm. In this thesis we study similar results in the 

context ofHaar System. 

1.1 Summary of the Thesis 

The problem considered is the validity of conclusion of Szego 

under the following changes in the hypothesis. 
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(i) The Fourier basis is reordered 

(ii) The Fourier system is replaced by other systems like Haar wavelet 

system with various ordering. 

The thesis is divided into five chapters including introductory 

Chapter I. 

In Chapter 11 we look into the effect of change in the ordering of 

the Fourier system on Szego's classical observations of asymptotic distribution 

of eigenvalues of fmite Toeplitz forms. This is done by checking proofs and 

Szego's properties in the new set up. It is observed that there is no change in the 

conclusion of Szego. The first section deals with minimum property of Toeplitz 

forms and its limits in the changed system. The second one deals with 

asymptotic distribution of eigenvalues of finite Toeplitz forms in the new 

system. This is an imitation of the method adopted by Szego in the original 

case. 

In Chapter III we consider the multiplication operators under 

Haar system in L2 (0,1). To be more precise the corner NxN truncations and 

the associated asymptotic distribution of eigenvalues are analyzed, analogous to 

Szego's theorem classical version. This chapter is divided into two sections. 

In section one, L 2 (0,1) with Haar system under lexicographic ordering is 

considered. The main theorem of this chapter [3.1.3] says that the conclusion of 

classical theorem does not remain valid in the changed setup. It is also observed 

that when the same operator is considered with respect to another ordering, the 

distribution of eigenvalues converges. In section two we consider spectral 

approximations of multiplication operators under Haar system in L 2 (0,1). This 

work is quite similar to the work of Kent E. Morrison.[17]. 

In chapter IV analogous to classical Szego's theorem we defme 

Szego's Type theorem for operators in L2(RJ and in L2(R) and checks its 

validity for certain mUltiplication operators with respect to a chosen ordering of 

the Haar basis. It is observed that for certain multiplication operators Tf with 



multiplier f = hjo' i ~ 0, the distribution of eigenvalues converges but not to 

the "Szego limit" and for multiplication operators Tt with f = hij ,i ~ 0, j > 0 , 

the distribution of eigenvalues exists and Szego' s Type theorem is valid. This 

can be considered the main result of this chapter. The theorem 4.11 provides a 

partial L2 (R) version of the above result. 

In the fifth and fmal chapter, we discuss classes of orderings of 

Haar System inL2(RJ and in L2(R) in which Szego's Type Theorem is valid 

for certain multiplication operators. This chapter is divided into two sections. In 

the first section, we give an ordering to Haar system in L2(RJ and prove that 

with respect to this ordering, Szego's Type Theorem holds for general class of 

multiplication operators Tt with multiplier f E L2(RJ, subject to some 

conditions on f. This is given in 5.1.13, which is the main result of this 

chapter. Finally in second section more general classes of orderings of Haar 

system in L2 (RJ and in L2 (R) are identified in such a way that for certain 

classes of multiplication operators the asymptotic distribution of eigenvalues 

exists. Some illustrative examples are also given. 

Apart from these five chapters a result on spectral approximation 

and a proposal for future investigation to higher dimensional L2(R") is given in 

the appendix. 

1.2 Basic Definitions and Theorems 

Some basic defmitions and theorems which are quoted in the 

subsequent chapters are given here. 

1.2.1 Toeplitz's Forms [12] 

Let f(x) be a real-valued function of class L and 

-00 

its Fourier Series, where 

1 Ir . 

c
lI 
= - ff(x) e- /la dx, c_

1I 
= c

lI 
• 

21r -Ir 
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Then the Hermitian form Tn = ~::c o-p up Uo , v, jJ = 0 ,1 , .. ., n is called the 

Toeplitz form associated with the function j(x) and the matrix (co_p ) is called 

Toeplitz matrix. We have in this case 

1.2.2. Equal distribution of numbers [12] 

For each n we consider a set of n + 1 real numbers 

(n) (n) (n) d th f th kind b (n) b (n) b (n) 
at ,a2 , ••• ,an+t an ano er set 0 e same t, 2 , ••. , n+t • 

We assume that for each v and n 

lay (n)1 < K, Iby (n)1 < K 

where K is independent of v and n. We say that {a~n)} and {b~n) }, n ---+ 00 , are 

equally distributed in the interval [- K, K] if the following holds. Let F(t) be 

an arbitrary continuous function in the interval [- K, K] ; we have then 

I [F(ay (n))_ F(by (n) b 
lim y=t = o. 
n.-> n+l 

1.2.3 Multiplication Operator [17] 

Suppose / c R is an interval and j: / ---+ C lS a bounded 

measurable function. Define the multiplication operator 

Tf :L2[/]---+L2[/] :g---+jg, geL2[/]. 

Let {et ,e2, ... } be an orthonormal basis of L2 [/]. We defme the N x N matrix 

(Tf)N = (av)' 15:. i ,j 5:. N ,where 

av = fj(x) ej(x) e;(x) dx. 

The infmite matrix (Tf )= (av) 05:. i,j, represents the operator Tf . Tf is the 

bounded linear operator and we use the operator norm 



IITf 11 = f~RII Tf (~) 11· 

Let PN denote the orthogonal projection of H onto the span {e l ,e2 , ••• en } 

and put TfN =PNTfPN. As it is done in [1], we freely consider TfN as NxN 

corner truncation of the matrix (Tf)' We can regard (Tf t as a matrix 

approximation of Tf . 

1.2.4 Hausdorff metric [15,17] 

Let H(c) denote the set of compact subsets of C. Defme the 

Hausdorffmetric h on H(C) by 

h(M,N) = max[h·(M,N~h·(N,M)] 

(The housdorff distance between M & N) where 

hO(M,N)= supinflm -nl· 
meM neN 

1.2.5 Essential Range [6] 

Let E be a measurable subset of R andf e LCX>(E). The set 

{k eR: m { teE: If(t) - kl < 6} > 0 for every 6 > O} 

is called the essential range of f and is denoted by R(f). 

1.2.6 Haar Wavelet Theory [3,5] 

Wavelets are mathematical functions that cut up data into 

different frequency components and then study each component with a 

resolution matched to its scale. They have advantages over traditional Fourier 

methods in analyzing physical situations where the signal contains 

discontinuities and sharp spikes. A comparison of Fourier transform and 

Wavelet transform is given in [3]. 

The ftrst mention of wavelet appeared in an appendix to the thesis 

of A.Haar. The theory of wavelets lies in the boundaries between 

(i)Mathematics (ii) Scientillc Calculations (iii) Signal Processing (iv) Image 



Processing. The main branch of mathematics leading to wavelets began with 

Joseph Fourier who introduced Fourier Synthesis. 

In 1910 Haar constructed an orthonormal basis for L2(0,1) now 

known as Haar system which provides a local analysis. 

For m,n E Z, let I mn be the closed interval 

I = [..!!...- n+1] c R 
mn 2m' 2 m - • 

Such intervals are called dyadic intervals. The collection {I m n : m, n E Z} of all 

dyadic intervals has the nesting property: if the interiors of I m n and I p q have 

nonempty intersection, then either I m n C I p q or I p q c I m n' The Haar function 

{hmn : m,n E Z}on R are dermed as 

n n+1I2 
-~x<---
2m 2m 

= n+1/2 n+1 
---~x<--

2m 2m 

o otherwise 

Each hmn is nonzero on I mn and {hmn : m, n E Z} is an orthonormal set. 

{hmn : m,n E Z} is complete in L2(R) ,so we have the identity 

1 = 'L(/, hmn ) hmn in L2(R). 
m,neZ 

This expansion is local in the sense that if 1 = 0 on hmn , then (I, hmn ) = O. 

Let 

Then for each m, n E Z 

0~x<1I2 

1I2~x<1 

otherwise 

Hence all basis elements are obtained by certain translations and dilations of 

one element. This is the characteristic structure of wavelet basis. That one 
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element is called the wavelet. Thus Haar system is regarded as a simplest 

example of a wavelet basis. 'h' is known as Haar Wavelet. 

One of the properties of the Haar wavelet is that it has compact 

support. It is the only known simple symmetrical wavelet with compact support. 

Also the simplest wavelet basis suitable for edge detection problems is the Haar 

basis [11,24]. Unfortunately Haar wavelet is not continuously differentiable 

which somewhat limits its applications like problems in differential equation. 

Let tP be the characteristic function of the unit interval [0,1] 

andforeachjeZ, tPj(x)=tP(x-j). Then the collection {tPj(x)} isan 

orthonormal set in L 2 (R). Let Vo be the closed linear span of tP j (x). Let 

hij (x)=2M h(2ix-j) i,jeZ. 

For each i ~ 0, let W; be the closed linear span of 

~,Ax) jeZ, i~O}. Then it is known that 

L2(R) = Vo Ea {! W;}. 

Hence the collection {tP j' hi j' j e Z i ~ O} is an orthononnal 

basis in L2(R). The analysis carried in L2(R) is using the above orthonormal 

basis. In the case of L2(RJ and in L2(0,1), the restriction of these functions 

are considered. 

1.2.7 Weyl's Theorem[8] 

Let A and B be the Hermitian matrices. Then 

m~ll; (A)-l; (B~~IIA-BII 

where l ; (A) and l; (B) be the eigenvalues of A and B arranged in 

decreasing order. 



1.2.8 Iterated Limit Theorem [7] 

Let (amn ) be the double sequence. Suppose that the single limits 

Ym = lim(amJ, zn = lim(amJ exist for all m, nE N, and that the convergence 
n m 

of one of these collections is uniform. Then both iterated limits and the double 

limit exist and all three are equal. 

We conclude this chapter by giving some of Kent E. Morrison's 

work on Szego' s Type theorem based on Walsh system. A brief sketch of 

MOITison's work [17] is as follows: 

In his paper he considered how well the eigenvalues of the 

matrices approximate the spectrum of the multiplication operator, which is the 

essential range of the mUltiplier. The choice of the orthonormal basis strongly 

affects the convergence. He considered the spectral convergence of 

multiplication operators acting on the L2 functions on an interval with respect 

to Fourier basis, Legendre basis and Walsh basis in the following sense. 

(i) An(f) ~ R(f) in H(C) 

(ii) Pn{j) ~ ;*(m) weakly. 

Where 

An(f) 

R{j) 

H(C) 

;*(m) 

- The set of eigenvalues of (Tt t 
- Essential range of f 

- The Hausdorff space of C 

I c5.t 

- The measure on C such that Pn(f) = .teAn where c5.t is the 

Dirac delta measure concentrated at A. 

- The measure defmed in C such that 

n 

1 b 

; * (m)[F] = - JF(j(x)] dx for any continuous 
b-a 

Q 

function F on C. 
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In the case of Legendre basis, Szeg6 proved the following 

theorem and another version of this is given in Morrison's paper. 

1.2.9 Theorem [12] 

Let f be a real valued Ltr> function on [-1, 1]. Then the sequence 

of spectral measures Pn(f) converges weakly to the measure P defmed by 

p(a,b) = ![; (cos-1 b)-; (cos-1 a)] 
tr 

In the case of Walsh basis, Morrison proved the following theorem. 

1.2.10 Theorem 
k 

Let f(X)=~:Ci\Vi(X) with k less than 2M where \Vi is the 
i=O 

Walsh functions for i ~ 0 . Then 

(i) pJf) converges weakly to ;. (dx) 

(ii) For n = 2M and m sufficiently large, An{j) = R{j) . 

In this thesis, theorems 3.2.1 and 3.2.2 are analogous to the 

above mentioned theorem, with Haar system as the underlined basis. 

1.3 Notations that are frequently used 

(T) 

- Multiplication Operator with multiplier f. 

- The matrix of a bounded linear operator 

on a Hilbert space with respect to a 

chosen base. 

- The N x N corner truncation of (T). 

- Orthogonal projection of L2 space to span of 

ftrst n basis elements . 

• 
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CHAYfERII 

CLASSICAL FOURIER THEOREY 

F ourier system forms a basis for the Hilbert space L 2 
[- 1l', 1l'] • 

The classical Szego's theorem [4,12] is based on Fourier System, 

{ en : n E Z }, where en (x) = eim
• In this chapter we look into the effect of 

change in the ordering of the Fourier System on Szego's classical observations 

of asymptotic distribution of eigenvalues of fmite Toeplitz forms. This is done 

by checking proofs and Szego's propositions in the new set up. Since the 

Fourier system is unconditional [19], any arbitrary ordering of the Fourier 

system forms a basis for the Hilbert space L2 [- 1l', 1l' ] • 

This chapter comprises of two sections of which the ftrst one, 

deals with extremum (minimum) property of the Toeplitz forms and its limits in 

the changed system. Second one, deals with asymptotic distribution of 

eigenvalues of fmite Toeplitz forms in the new system and the validity of 

Szego's theorem. 

2.1 Extremum properties of Toeplitz Forms (minimum) 

In this section we defme a system of orthogonal polynomials 

with respect to arbitrary ordered Fourier system and the associated Toeplitz 

forms and fmd its extremum properties as in the original work ofSzego [12]. 

Let the arbitrary ordered Fourier system be denoted by 

{ 
is.x 01 e ,n= " ... So = 0 } where's' is the permutation onN, the set of 

Natural numbers. 

2.1.1 Definition 

Let a{x) be a distribution function of the infmite type, 

-1l' $, X $,1l' and 

11 



be its Fourier-Stieltjes coefficients in the new system. Using the 

orthogonalization procedure, we form a system of polynomials 

~o {x ~ ~I {x ~ ~2 (x 1 ... ~ n (x) ... of the complex variable z which are 

orthogonal on the unit circle Izl = 1 with the weight da{x) . 
2tr 

The system {,p n (z)} is uniquely determined by the conditions 

(i) 

(ii) 

Let 

Define 

~n (z) is a polynomial in which coefficient of zSn is real and positive. 

= 

= 

is"x = e n = 0,1, ... 

1 "J -i(sv-sp}.rd ( ) =- e ax 
2tr -" 

det(csv _sv )~,.u=o 

Co c_S1 C_S._
1 

C -so 

CS1 Co 

CSn_1 cSn_I-SI Co CS._
1

- S• 

c Sn CSn - SI cs. -S._I Co 

12 



Co C-St 
CSt Co 

<On (X) = (A A)~ Dn_1Dn 

Cs._t Cs._t-St Co CS._t - S• 

1 zSt zs.-t zS. 

where z = eix . 

The coefficient of zS. m <On (z) is denoted by the special notation 

2.1.2 Definition 

The Toeplitz forms [1, 25] with respect to the new system is 

defmed as 

(1) 

Then Dn = det(csy_s~) is the determinant of the Toeplitz form. They are called 

Toeplitz determinants associated with a{x) in the new system. Since (1) is 

positive defmite, we have Dn > 0 tin. 

The next theorem gives the extremum property (minimum) of the 

Toeplitz forms, in the new system. 

2.1.3 Theorem 

The polynomial kn-1<On{z) mmlmlzes the integral 

If 2 

_1 ~g{z~ da{x) , z = eix where g{z) = zS. +a1zsa•t + ... +an is an arbitrary 
2" -If 



polynomial generated by ZO, zS\, ••• , ZS. in which coefficient of z s. =1. The 

. . . If' kA 

-2 Dn mmmlUm ltse IS n = -A - • 

D
n

_
1 

Proof: 

This follows by representing g{Z) in the fonn 

g{z) = vo~O{Z)+VI~I{Z)+--.+vn4)n{z) 

where vO' V)J'''' vn are complex variables and Vn is subjected to the condition 

... (1) 

tr 2 

_1 ~g{z) da{x) = 
2ft -tr 

. .. (2) 

Hence from (1) and (2), we get 
tr 2 A 

min _1 ~g{z) da{x) = kn-2 = ?n 
2ft -tr Dn_1 

Therefore when g{z) = kn-I~n{z), 
tr 2 tr 2 

_1 ng{z) da{x) = _1 nkn-I~n{z~ da{x) 
2ft JI 2ft JI ~ 

-tr -tr 

= kn -2 = minimum value. 

tr 2 

Hence the polynomial kn-I~n{z) minimizestheintegral-l- ng{z) da{x). 
2ft JI 

-tr 

14 



Now we fmd the limit of the minimum of the Toeplitz forms 

WIder the side condition Uo = 1 , which is given in the following limit theorem. 

2.14 Theorem 

Let a{x) be a distribution function of the infmite type. We 

Ir 2 

consider the Toeplitz fonns in =_1_ Jluo +UIZ
St + .... +unzs·1 da{x) with the 

2tr -If 

side condition Uo = 1 . Let Pn denote the minimum. Then 

lim Pn = P = G{w) = exp{_l IrJIOg{W(X))dx} 
n~ 2tr -Ir 

where w{x) is the almost every where existing derivative of a{x). 

Proof: 
A 1 Ir 2 

Tn =- Jluo +UIZ
St + .... +unzs·1 da{x) . 

2tr -Ir 
The minima Pn are non increasing as n increases. Hence lim Pn = P exists. 

n--."" 

- minlT) - f.J 
- \ s. 110=1 - Sn 

Taking limit we get, 

P ~ f.J = G{w(x)) [12, Chapter 3] 

In order to prove the reverse inequality, flrst we show that it is 

always possible to fmd a large enough m such that 

{ 0,1,2, .. .,n } c {so. SI' .. .,sm}' 

There exist positive integers 

such that Sa = 0, Sa = 1, ""sa = n . o 1 • 

(1) 



Then 

{tzo,al., ... ,an } c { 0, 1,2, .. .,m} 

Hence 

~ao ,sal'''' ,sa.} c {So,Sp ... ,Sm} 
ie. { 0, 1, ... , n } c {So,St",.,Sm} 

Let 

Then 

K 2 

. 1 n SI s_1 d ( \ ~mm-jluo+UIZ + ••• +UmZ ax" 
2" -1f 

Taking limit, the above inequality reduces to 

1· > l' A Imp n- lDlp m 
n-+oo m-+oo 

le. (2) 

From (1) and (2), we get 

.u = G{lO) = exp{-I jlOg(lO(X)}ttt} 
2" -1f 

2.1.5 Theorem 
Consider the Toeplitz fonn 

Let (.un )"0=1 and (.un )".=1 denote the minimum of Tn under the side condition 

Uo = 1 and Un = 1 respectively. Then 

lim (.uJ =1 = lim ~n = G{lO) 
n-+er.:l "" n ...... <IJ D 

n-I 

= exp{-I jlOg(lO(X)}ttt} 
2" -1f 
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Proof 

Then the theorem is evident from theorems 2.1.3 and 2.1.4. 

Case:l un is the leading coefficient 
n 2 

in = 2~ ~uo +UIZ
S1 + ... +unzs·1 da{x) , Uo = 1 

-n 
1C 2 

1 JI -so -(s.-SI) 1 d ( ) = - Uoz + U1z + ... + Un a x , 
21f -n 

Uo =1 

Therefore 
1C 2 

min in = min_1_ ~ zs. +UIZ
S.-S1 + ... +Un_lzS.-S.-l +unl da{x) 

21f -1C 

Hence from theorem 2.1.3, we get -
( " ) Do 
Jin 110=1 = 5 

0-1 

where Dn is the determinant of the Toeplitz fomi (2). 

(1) 

(2) 

(3) 

The Toeplitz forms (1) and (2) are same. Therefore their 

determinants are also same. This can be proved in the following way. 

Evaluation of Dn 

Let h{z) = zs. + UI Z
S
.-

S1 + ... + un. Then h{z) is an arbitrary 

polynomial generated by 

coefficient of zs. = 1 . 

The determinant of the Toeplitz from (1) is 

cSo C s._I-So C S._2-S• CS1 _S• c_s• 

C S'-S'_I Co C S._2-S._1 .. cS1 - S._1 C -S._I 

Dn = 

CS.-S1 C So_I-SI CS._2- S2 Co C_S1 

Cs. CSO_
1 CS"'_2 CS1 Co 

17 



Interchanging the rows R;, and Rn_;, then the columns C; and 

Cn_; for i=0,1,2, ... nl2 when n is even and for i= 0, 1, ... ,(n-l)/2 

when n is odd and then taking transpose we get, 

D = n 

C S._I-SO C S._I-SI Co C S._I-S. 

cs. C S.-SI •• •• cs. -S._I Co 

Hence equation (3) reduces to 

I:,. ) Dn Dn 
'Pn 110=1 = D = D 

n-l n-I 

= min (tn L=l = (Pn )".=1 

Taking limit, then from theorem 2.1.4 we get, 

= exp{_l jIOg(W(X»)dx} 
2tr -fr 

Case 2: when un is not the leading coefficient. 

Let Ut be the leading coefficient. Then divide the polynomial by 

zSt • The rest of the proof can be carried out in the same way as in case 1. 

Following are some observations obtained by comparing the 

results in the standard Fourier System and in the new System. 

lR 



2.16 Remarks 

It is observed that 

(i) In the standard F ourier system, minimum Tn under the side condition 

Uo = 1 is equal to the minimum of the same Toeplitz form Tn under the side 

condition Un = 1. But in the new system, min (fn )110=1 is equal to the minimum 

of another Toeplitz form under the side condition un = 1. 

(ii) The trace of the matrix (c.'-.u t..u=o of the Toeplitz Form 

tr 2 

Tn =_1_ ~uo +UIZ
I 

+ •• • +unznl da{x) 
2ft -tr 

in the standard Fourier system is same as the trace of the matrix (csv - sp t s =0 of 
v, p 

the Toeplitz form 

in the arbitrary ordered Fourier System. That is, in any arbitrary ordering of the 

Fourier basis the trace of the Toeplitz matrix remains the same. 

2.2 Asymptotic distribution of eigenvalues 

In this section the validity of Szego's Theorem is established. 

We do this by checking various stages of the proof of Szego in the new set up. 

Toeplitz has studied the distribution of eigenvalues of an infInite matrix (cv-.u)' 

where the indices v & IJ range from - 00 to 00 under the standard F ourier 

system. A value A.. is called an eigenvalue of the matrix T if the matrix T - A. I 

has no bounded inverse, I denote the unit matrix. 

Now we recall the defmition of equal distribution of numbers. 
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2.2.1 Definition [1.2.2] 

For each n we consider a set of n + 1 real numbers 

(n) (n) (n) d th fth k' d b (n) b (n) b (n) a\ ,a2 , ••• ,an+\ an ano er set 0 e same m \ '2 , ... , n+\ . 

We assume that for each v and n 

la
v 

(n}1 < K, Ib
v 

(n}1 < K, 

where K is independent of v and n. We say that {a~n)} and {b~n} }, n ~ 00, 

are equally distributed in the interval [-K,K] if the following holds. Let F(t) 

be an arbitrary continuous function in the interval [- K, K] ; we have then 

I [F{av (n})_ F{bv (n) h 
lim v=\ = O. 
n-+a:J n+l 

Let f(x) be a real valued function of the class L and let 

1 If . 

Cs = - Je-u,.x f(x)dx 
• 2tr 

-If 

n = O,±l,± 2 .... 

We consider the fmite Toeplitz forms 

n 

Tn(f) = LCsv-spU)lv 
p,v=\ 

1 If 2 

=- ~uo +U\Z3t + .. . +unzs·1 f(x)dx (1) 
2tr -If 

The eigenvalues of Tn(f) are defmed as the root of the 

characteristic equation det{Tn (f - A)) = 0 . Hence the eigenvalues of Tn (f) are 

the eigenvalues of the matrix 

Co c-St c-S2 C_S• 

CSt Co C St-S2 

(csv -sp )" = 
.,.~=O 

cS._t cS._t-St C S._2-S2 

cs. cS.-St C 3.-32 
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We denote them by P"P2, ... ,Pn+' . Also if m ~ f(x) ~ M for all real x 

then from (1) we have m ~ Tn{f) ~ M. Also we have 

m ~ Pv ~ M v = 1,2, ... , n + 1. 

The main result of this chapter is the following theorem and it is 

the well known Szego's Theorem in the new arbitrary ordered Fourier System. 

2.2.2 Theorem 

Let f{x) be a real-valued function of the class L. We denote by 

m and M the 'essential' lower and upper bound of f{x) respectively and 

assume that m and M are fmite. If F{p) is any continuous function defined 

in the fmite interval m ~ P ~ M we have 

lim F(P,)+F(PJ+ ... +F(Pn+J = 
n__ n+l 

1 1C 

- fF{f(x))ix 
21f -1C 

(2) 

Proof 

U sing the defmition of the equal distribution the above limit 

relation can be expressed as follows. The sets {PJ and 

{f( -H :~)}. n -H) are equally distributed. 

It is well known that the limit relation will be proved for 

all continuous functions F{t) if it holds for certain special sets of 

continuous functions F{t) = tS s = 0,1,2, .... and F{t) = logt. 

We show that the limit relation is true for F{t) = log t . Then the 

result follows for t S also [12, Chapter V]. This will yield the required result (2). 

Let Dn be the determinant of the Toeplitz form (1), then 

from theorem 2.1.5, we have 
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r Dn e~-I f1og(f(x»)d<} un-A - = 
n--+Oll D 21t -If n-I 

ie. tim [Dn (f)}Yn+1 = exp{_1 f1og(f(x»)d<} 
n--+oo 21t -If 

Therefore 

1 If 

= - Jlog(f(x))dx 
21t -If 

Substituting 1\ = P JP 2 , ••• P n+1' we get 

tim log(P JP 2 ... P n+1 )Yn+1 
n--+Oll 

1 If 

= 21t Jlog(f(x))tt 
-If 

ie. lim_1o....::;g..:....P-=I_+_lo....::;g..:....P-=2=-+_ .. _·+_lo.;:::,.g.:....P...:..:n.c.;...+J = 21 .... IfJlog(f(x))dx 
n--+Oll n + 1 ,. 

-If 

Hence the result (2) is true for F(P) = logp, which completes the proof . 

• 
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CHAPTER III 

MULTIPLICATION OPERATORS AND 

HAAR WAVELETS IN L2 (0,1) 

In this chapter, we deal with asymptotic distribution of 

eigenvalues of multiplication operators under Haar wavelet basis in L2 (0,1) 

[1.2.6]. This chapter is divided into two sections. In section one, it is shown that 

the conclusion of the classical Szego's theorem on asymptotic distribution of 

eigenvalues of fmite sections of multiplication operators, does not remain valid 

when the trigonometric basis is replaced by the Haar basis. It is also observed 

that when the same operator is considered with respect to Haar system under a 

different ordering, the distribution of eigenvalues converges. 

In section two, we consider the spectral approximations of 

multiplication operators under the Haar basis. This work is quite similar to the 

work of Kent E. Morrison. [17] 

3.1 Non existence of'Szego limit' 

First of all we recall the statement of Szego's Theorem 

3.1.1 Szego's Theorem [ Chapter I ] 

The Szegl)'s theorem on Toeplitz matrices states that if 

A. t(A)N,2 2(A)N , ... ,2 N(A)N are the eigenvalues of the NxN truncations 

(A)N of the matrix A = (ai-J, where 

is the eh Fourier coefficient of the multiplier f in Loo (-1r,1r), and F IS any 

continuous function on R, then 
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(1) 

3.1.2 Lexicographic ordering of Haar basis [18] 

The lexicographically ordered Haar basis can be represented as 

a sequence {'I'o, '1'1' '1'2"'" 'I' n" .. } of functions where 

'1'0 (x) = 1 

'I'n(x) = h ,p(x) 

= 2~ , _P ~ x < ",,;,:(p",--+_1 '_2....:....) 
2' 2' 

= -2~ (p + l' 2) ~ x < (p + 1) 
2' 2' 

= 0 otherwise 

where n=2' +p, 0~p<2r (r~O) 

The main result in this section is given in the following theorem. 

3.1.3 Theorem [18] 

Let Tf be the multiplication operator on L 2 (0,1) with f = hoo . 

Then the asymptotic formula (1) is not satisfied when the trigonometric basis is 

replaced by lexicographically ordered Haar basis. 

Proof 

Let (Tf) = (ay) where 
1 

aij = Jh oo(x) 'I'i(X) 'I'j(x) dx 

° 
= 1 i = j = n = 2' + p, 0 ~ p < 2,-I,i"* j = 0,1 

= -1 i = j = n, 2 r-I ~ p < 2' 

= 0 i "* j "* 0,1, i = j = 0, 1 
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Therefore the matrix (Tf) is given by 

o 1 0 0 

1 0 0 0 

o 0 1 0 

o 0 0 -1 0 

o 0 0 0 1 

Now consider the following truncations (Tf)N of (Tf) when 

(i) N = 2' , r = 0, 1, 2, .. . 

(ii) N =2' +2,-1, r=0,1,2, .. . 

In both truncations the upper left 2 x 2 matrix is same and the eigenvalues 

obtained from this matrix is 1 and -1. Hence in both cases the only eigenvalues 

are 1 and -1. We compute the multiplicities of eigenvalues in each case. Let 

NI and N _I denote the multiplicities of 1 and -1 respectively. 

Evaluation olNI : 

where T f N = PNTfPN . 

Hence the eigenvectors corresponding to the eigenvalue 1 are those 'If k (x) 

whose support lies in [ 0, ~] . In this case we will have 

[1./ + 1] C [o,.!.]. 
2' 2' 2 

Thus multiplicity, namely the number of j s satisfying the above relation equals 

2 i-I for each i. 



r-I 

In case (i), NI = L 21-1 + 1 = 2 r
-
1 and 

;=0 

r-2 

in case (H) NI = L2;-1 + 2r
-
1 + 1 = 2r. 

;=0 

Similarly we can calculate N _I by counting 'Ilk s whose support 

lies in [i,l] and which is given in case (i) and (H) by 

N 
Therefore in (i) the eigenvalues 1 and -1 each have multiplicity -. On the 

2 

other hand + 1 has multiplicity 2N and -1 has multiplicity N for sections of 
3 3 

type (H). Let F be any continuous function on R then, 

= 2F(I)+ F(-I) 
3 

for type (i) 

for type ( H) 

Hence the limit depends upon the truncation of the matrix and 

therefore the Szego' s theorem fails to hold in this case. 

3.1.4 Remarks 

Following are some observations obtained from the analysis of the limits. 

(i) When N = 2r + p, p = 0 or p = a ftxed constant independent ofr, then 

2tl 



(ii) For those subsequences for which the growth rate of p is slower than 2 r, 

then also 

N 

LF(Ak(Tft) 
lim k=1 = F(I)+ F(-I) = SI F(h o o (x))ix . 
N~ N 2 o 

(Hi) For any p fixed, the limit becomes A pF(I) + (I - A p )F( -I), where 

o ~ A p ~ I. The maximum value of A p is 2/3 and the minimum value of A p is 

112. 

It is a matter of curiosity to know the outcome when the 

multiplier is f = 'I' k for k > 1 . Let 'I' k = h m n' It is not surprising to see that 

the conclusions are the same. 

In this case the matrix (Tr)= (a Ij) is given by 

o 

o 
where 

K is the position of h m n in the basis 3.1.2 and 

a i i = 2 ~ , - 2 ~ ,0 for i ~ K . 
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In {T f)N' the upper left K x K corner entries remains the same 

for all values of N ~ K . Therefore it will enough to consider the diagonal part, 

while calculating the multiplicities of 2~ ,-2~ and O. More explicitly the 

contributions of the above K x K block will be zero in the limiting case. 

Now we calculate the multiplicities of the eigenvalues. The 

following propositions give the multiplicity of eigenvalues 2~, - 2~ and O. 

3.1.5 Proposition 

The multiplicity ofeigenvalue 2~ in {T f)N where 

N 2r + p < 2r
, = p, r = 0,1,... is 

Proof: 

{

2r_m_1 -1 if 

N .u = 2r
-

m
-

1 + p - n2 r
-

m if 
21'2 

2r
-

m -1 if 

p < n2r
-

m 

n2r-m ~ p < {2n + l)2r-m-1 

{2n + 1 )2r-m-1 ~ p < 2r 

Let N .. / denote the multiplicity of the eigenvalue 2 ~ . Then 
2/2 

'f [n {n+1I2)J 1 XE - -'---~ 

2m
' 2m 

Hence the eigenvectors corresponding to 2 ~ be those h i j s whose support 

lies in [~, {n + 1I2)J . Then we will have 
2m 2m 

[ 
j j +IJ 
21'2' 

c [ ~ {n+1I2)J . 
2m

' 2m 

<=> n2 i-m ~ j < {2n + 1)2 i-m-l, i = m + 1, m + 2, ... 

2R 



Thus multiplicity, namely the number of j s which satisfies the 

above inequality is equal to 

Therefore 

r-l 
Ii-<m+l) if p < n2 r

-
m 

I=m+l 

r-l 

N ~21-m-1 +p+l-n2r-m 
2~ = £.. 

I=m+l 

r I2 i
-
m

-
1 

i=m+l 

{

2r_m_1 -1 if 

N ./ = 2r-m-1 + p - n2r-m if 
212 

2r
-

m -1 if 

if p ~ (2n + l)2r-m-1 

p < n2r-m 

n2r-m ~ p < (2n + l)2r-m-1 

(2n + l)2r-m-1 ~ p < 2r 

3.1.6 Proposition 

The multiplicity of eigenvalue - 2 ~ ID (Tt) N where 

N = 2 r + p, p < 2 r ,r = 0,1,... IS 

{

2r_m_1 -1 if p < (2n + l)2r-m-1 

N = P - n2r-m if (2n + l)2r-m-1 ~ p < (n + 1)2r-m 
-2~ 

2r-m -1 if (n + l)2r-m ~ p < 2r 

Proof: 

Let '1'1 (x) = hy. We calculate N -2~ by counting the hy s whose 

support satisfies the condition 

[L j+l] [(n+1/2) ~]. 
2" 2' ~ 2m '2m 

The rest of the proof of this proposition can be carried out in the same way as in 

proposition 3.1.5. 

29 



3.1.7 Proposition 

The multiplicity of eigenvalue zero in {Tr)N where 

N=2'+p,p<2', r = 0,1, ... IS 

{

(2 m -IX2,-m -1)+ p + 1 if p < n2,-m 

No = (2m -IX2,-m -1)+n2,-m if n2,-m sp<{n+l)2,-m 

(2m - 2X2,-m -1)+ p if (n + 1)2,-m ~ p < 2' 

Proof: 

Let Y'';{x) = hij. We calculate No by counting the hij s whose 

support 

[ 
j j + 1] . d· .. fr [n n + 1] d j + 1 1 -, ,-,- IS Is l omt om -,-- an -,- ~ . 
2' 2' ~ 2m 2m 2' 

The rest of the proof of this proposition can be carried out in the same way as in 

proposition 3.1.5. 

In table 3.1.8 the multiplicities of eigenvalues and the limit of 

distribution of eigenvalues of various truncations obtained by assigning various 

values for N are given. 
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One can see that for different subsequences, their limits need not 

be the same and hence Szego's theorem fails in this case. 

In the following theorem, we show that there is an ordering for 

the Haar system such that the averages in the asymptotic formula (I) of various 

sections of Tf converge. 

3.1.9 Theorem [18] 

Let H be the Haar system in L2 (0,1) ordered as 

{tp 0' h 00' h 10' ••• , h nO' h n-I,I' ••• ,h n-k,k' ••• }, ~:} $1. Let (Tf ) be the 

matrix of the mUltiplication operator Tf inL2 (0,1) with respect to this basis. If 

A I{Tf )N' 2 2{Tf )N' ... ,2 ATf)N are the eigenvalues of (Tf)N' and F any 

continuous function on R, then 

Proof 

Let N be a positive integer and let h m-k,k be the Nth basis 

element. We show thatN = O{m 2
). For positive integers nand kn , 0$ n $ m, 

we have 

kn +1 <I 
2n-l" -

<=>log(kn +I)+kn $n 

Letn' = [[ n ~ I J). where [[ 11 denote the integral part ofit. Then 

n-I 
n' $ -- $ n'+1 

2 

(1) 

(2) 



Let k. = n' + 1 where n' =[[ n~ 1]] 
One can see that it satisfies the inequality (1). Hence we have 

log(n' + 2)+n' + 1 ~ n 

Therefore the total number of h n-k k for which support is contained in (0,1) 
'" . 

is at least equal to 

n-l 
n'+I>--

2 

n -1 
~kD~-

2 

", n-l 0( ) :.N~L-= m
2 

n=O 2 

Also, the only eigenvalues of (T, t are + 1 and -1. Let NI and N _I be the 

multiplicities of the eigenvalues 1 and -1. We show that 

N 
--=L~O as N ~OO. 
N 

It is clear that 

N_l = Number of hn-k,k such that its supportc [~ ,1]&k < n where n ~ m. 

Support of hn-k,k c [~ ,1] <=> 2~k ~ Yz 

<=> k + 1 + log k ~ n 

:. k ~ n -log n -1 and k < n 

Hence the number of such k s is at most equal to log n + 1 for each n. 

", 

:.N_1 ~L(logn+l)~m(1ogm+l). 
n=l 



le. 

Hence 

This completes the proof. 

N_t = O(mlogm) 

N 
----=L -+ 0 as N -+ 00 • 
N 

3.2 Spectral Approximations of Multiplication Operators under 

Haar Wavelet Basis 

The spectral convergence of multiplication operators and their 

eigenvalue distributions are important areas of research. Multiplication 

operators on L 2 spaces are not compact, and therefore the approximations with 

fmite matrices in Hilbert space cannot converge in nonn topology on the space 

of operators. The choice of orthogonal basis of the Hilbert space affects the 

convergence. The spectral convergence of multiplication operators under 

Fourier, Legendre and Walsh basis has been done in detail by Szego [12] and 

Kent E. Morrison[17]. In this section we consider the spectral convergence of it 

under Haar wavelet basis. It is quite similar to the work of Kent E. Morrison. 

Let H(C) denote the set of compact subsets of C. 

Suppose I c R is an interval and f be a bounded measurable function. Let Tf 

be the multiplication operator with f as multiplier. Let H(C) denote the set of 

compact subsets ofe and h denote the Hausdorfmetric [1.2.4] on H(C). Let 

AN be the set ofeigenvalues of (Tf tand consider AN as an element ofH(C). 

Let R(f) be the essential range [1.2.5] of the multiplier f. R(f)is also an 

element ofH(C). One of the convergences we considered is the convergence of 

AN to R(f) inH(C). 
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Another convergence considered is the weak· convergence of 

measures. Let Ox denote the Dirac delta measure concentrated atx. Let 

N 

LO~ 
fiN = ;=I

N 
where A. ;= A. ; (Tf)N 

is the measure defmed for each N. Defme another measure fi on C such that 

for every continuous function F on R , 

In this section we will discuss the spectral convergence in the 
following sense. 
(i) AN --.R(f) in H(C) 

(ii) fiN --. fi weakly. 

I.e., IFdfiN --. IFdfi as N --.00, where F is defmed as above. 

3.2.1 Theorem 

Let Tf be the multiplication operator on L2(O,I) with f = hoo • 

Then, with respect to the lexicographically ordered Haar system, 

(i) AN --'R(hoo ) in H(C) 

(ii) For N = 2T
+

1 (r is any positive integer), fiN --. fi weakly. 

Proof 

Recall that 

1
1 if 

'I' I(x)=h oo(x) = 
-1 if 

To prove (i) : 

From theorem 3.1.3, we have 

1 
O$x<-

2 
1 
-$ x < 1 
2 

AN = {1,-1} 



Now we show that R(hoo ) = {I, -1 } 

R(hoo) = {kERlm[xER, IVlI(X)-kl<&]> 0 \7'&>0 } 

Let & be any number >0. 

When k = 1 , we have 

IVlI(X)-kl=O if XE[O,~) 

= 2 if x E [~ ,1) 

:. [O,~) C {x E RIIVlI(X)-11 < &} 

:. m[x E RIIVlI(x)-11 < &]~ m[ 0, ~J = ~ > 0 

:. k = 1 E R(hoo ) 

Similarly when k =-1 

IVlI (x) + 11 = 0 if x E [~ ,1) 

= 2 if x E [ 0, ~) 

:. [~ ,1) C {x E RIIVlI(x)+11 < &} 

:. m[x E RIIVlI(X)+ 11 < &]~ m[~ ,IJ = ~ > 0 
:. k = -1 E R(hoo ) 

when k '* ± 1 , choose 0 < & < /1 - kl. Then no x exists such that 

Therefore 



Hence for all N , 

Therefore 

To prove (ii): 

When N = 2r+1 , from theorem 3.1.3, 

NI = 2r and N -I = 2 r 
• 

Hence 

k 

Now consider the fmite sum f(x) = La;'I'1 withk=2m+I-1. 
;=0 

The functions '1'0' 'I'\" . 'Ilk are Haar functions in L 2 (0,1) taken as in the 

lexicographic ordering 3.1.2. Then we have the following theorem. 

3.2.2 Theorem 

Let Tf be the multiplication operator on L 2 (0,1) with 

k 

f = Lal'l';, k = 2m+1 -1. Then 
;=0 

(i) AN -+ R(f) in H(C) 

(ii) For N = 2r+1 (r is any positive integer), PN -+ P weakly. 

:n 



Proof: 

k 

Given f = La;V'; , k = 2m+1 -1 . Here 'Ilk = hm,2-_I. 
;=0 

I 

ay = ff{x) V';{x) V'j{x)cn 
o 

Consider a N x N truncation (Tf) N where N = 21'+1 . Then, from 

[12, Chapter7] the eigenvalues of (Tf)N are f{xo~f{XI~ ... ,f{XN_J where Xs 

. th ·d . fth· l[ s S + 1J IS e ml -pomt 0 e mterva -I '-I . 21'+ 21'+ 

Let these eigenvalues be denoted by A I{A)N,A 2{A)N' ... ,A AA)N repeated 

according to multiplicity. 

k 

Since f= La;V'; ,k = 2m+1 -1, f{xo~f{xl~ ... ,f{xN-J takes only 2m+1 
;=0 

distinct values. Let it be denoted by PI ,P2' ... P2-.1 • Its values are 

if 

if [ 1 2 J XE --s 2m+I' 2m+1 

if [ 2 3 J XE --s 2m+I' 2m+1 

if 

if 

To prove (i) : 

We have AN = {fJI'P2' .. "P 2 ... 1} 



Hence it is enough to show that 

R(f) = {PPP2"'''P 2-+1}' 
For any E > 0 be given. 

If(x)- ptl = 0 if x E [~:~, 2:+1 ] 

'* 0 otherwise 

:. [~:~, 2:+1 ] C {x E Rllf(x)- ptl < E } 

k = 1,2, .. ., 2m
+

1 

When f(x) '* Pt for any k, choose 0 < E < mtinlpt - AI 

Let x E (0,11 then x E [~:~ , 2:+1 ] for exactly one value ofk . Therefore 

~ I If(x)- A I < mtinlPt - A I $= f/J 

ie, {x1If(x)-AI<E}=f/J 

:. m[x E Rllf(x)-A I < E]= 0 

:. A ~ R(f). Hence AN ..... R(f) in H(C) 

Proof of (ii): 

First we calculate the multiplicities of the eigenvalues Pt . In 

general the eigenvalue f(xs ) is Pt, if the point x s satisfies the condition 

2s+1 [k-1 k ] m+1 
Xs = --2 E -I '-I ' k=1,2, ... ,2 &s=0,1, .. .,N-1 2r+ 2m+ 2m+ 
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(k -1)2,-m < s < k2,-m 

Then, for each k , number of s satisfying the above inequality equals 2,-m . 

Hence mUltiplicity of 
Pk = 2,-m , k = 1,2, ... ,2"'+1 . 

. N 2'-'" k 1 2 2m+1 I.e., Pt = , ="..., 

1 

= JF(f(x))dx 
o 

Hence 

i.e., JJN ~ JJ weakly whenN = 2,+1, r = 0,1,2, .... 

3.2.3 Remarks: 

It follows immediately from 3.1.3 that in the above proposition 
N 

LF(lk(Tft) 
when N '* 2'+1 , for certain sequences of truncations, lim ~k=....;;..I ___ _ 

N-+oo N 
will not exists at all. 

• 
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CHAPfERIV 

HAAR SYSTEM IN L2 {R+} 

AND SZEGO'S TYPE THEOREMS 

In this chapter analogous to classical Szego' s theorem we defme, 

Szego's type theorem for operators in L2{RJ and check its validity for certain 

multiplication operators. Since the trigonometric basis is not available in 

L2{RJ or inL2{R}, we consider Szego's type theorems with respect to a chosen 

ordering of the Haar basis in these spaces. 

4.1 Definition: SzegO's Type Theorem[21] 

Let fhe a real function inLcrJ{RJ, and let Tf he the 

multiplication operator defmed on L2{RJ (respectively L2{R}). With respect 

to a given orthonormal basis, let {A I (Tf ) N ,A. 2 (Tf ) N' ... ,A. ATf ) N} be the 

eigenvalues (repeated according to multiplicity) of the associated corner 

truncations (Tf ) N· Then Tf is said to satisfY Szego' s type theorem if 

where F is any continuous function on R . 

= lim _1 ru F{f{x}} dx 
u--2M !u 

(respectively) 

To carry out further analysis, we consider the following ordered 

Haar System in L2{RJ . 
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4.2 An ordering of the Haar wavelet basis for L2 (R+ ) 

Recall that {; j {x 1 hij {x 1 i, j e Z + U {o} } is the Haar system for 

L2{R+) where 

=-2J{, j+ 112 ~x< j+1 
2' 2' 

= 0 otherwise 

; j (x) = ; (x - j) where; is the characteristic function of [ 0, I ] . 

Consider the following ordering, 

Let us denote this ordered basis by {VI k: k = 1,2, ... } 

4.3 Position of hi j and ; i+ j in this ordering 

To determine the position of each VI k ,we write the above 

basis in the triangular form 

h i+ j,O' h i+ j-I,I ,hi+ j-2,2 ••• ~.i+ j-I ,hO,i+ j' ;i+ j 
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, th k th ' , h k (i + j Xi + j + 3) '1 d th Then h .. occupIes e poSItion were = + } + an e 
I) 2 

.. f , , (i + j + 1 Xi + j + 4) 
posloon 0 i+ j IS 2 . 

Hence the ordered basis is given by {'If k : k = 0, 1 ,2",,} where 

4.4 Proposition 

'lfk = h ij l
'f k (i + j Xi + j + 3) , 1 = +J+ 

= fjJ i+j if 

2 

k= (i+ j+1Xi+ j+4) 
2 

The mth basic element is h/
j 

where j=m-{I+n(n2+3)} , 

i = n- j and n =[[ -3 + !J9;8(m -l)~] . If j = n+ 1 then the m" basis 

element is fjJ n' where [[ ]] denotes the integral part of it. 

Proof 

From the above ordering, there exists unique i and j such that 

the mth basic element is h ij orfjJi+j' 

Case: J Assume mth basis element is h ij 

Th th ' , f h 'th bd' , (i + j Xi + j + 3) . 1 en e posItIon 0 i j m e a ove or ermg IS + } + , 
2 

Hence we determine the values of i and j for which 

ie (i + j Y + 3(i + j) + 2(j + 1 - m) = 0 

ie, 
, . - 3 + (J9 -S(j + 1- m )) 
I + } = ----''-'----'----.:....!. 

2 
(1) 
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From this equation we find out the values of i and j using the 

following conditions. 

1. i+j~O 

2. i + j cannot be a fraction 

3. j~O 

Now considering the first condition, 

9 - 8(j + 1- m) ~ 0 

. 1 9 
J+ <g+m 

j5.m 

when j = m, i + j is negative which is not true by condition one. 

:. j = 0,1, .. .,m-I 

The second condition is satisfied only when 9 - 8(j + 1 - m) is a perfect square. 

This is possible only when 

j=m_[I+ n(n
2
+3)} i=n-j 

where n is some positive integer. 

Then from equation (1 ) 

i+ j=n 

Next we fmd the value of n using the third condition. 

Since j ~ 0 

ie,n2 +3n-2(m-I)::S;0 

Let n.=[[ -3+~9;s(m-l)~] 
where [[ ]] denote the integral part. 

(2) 



We prove that n = n'. 

Let a l ,a2 be the roots of the equation n2 +3n-2(m-l)=0. Then 

Therefore 

Since (n' - a 2 ) > 0, and n':S ai' we have 

:. n = n' and from equation (2) we get 

i=n-j if j:Sn. 

Hence the mM basis element is h /} where 

. [1 n(n+3)] &. . j=m- + 2 l=n-j 

Case: 2 

(if j:S n ) where 

When j exceeds n, i becomes negative and no h ;} occur in the 

above basis other than; n which corresponds to j = n + 1 (and only n + 1). This 

is quite clear from the triangular form. It is also evident from the above 

calculations that the value of m is (n + 1 Xn + 4) when j = n + 1. This is nothing 
2 

but the position of ; n in the above arrangement. 

The main result in this chapter is the following theorem, which 

gIves the asymptotic distribution of eigenvalues of certain multiplication 

operator with respect to the ordering 4.2. It is an improved version of the 

corresponding result in [21, pp 120-122] 



4.STheorem 

Let Tf be is the mUltiplication operator on L2 (R+) with f = hoo 

and {A, (Tf ) N ' A.2 (Tf ) N ' ••• , A. N (Tf ) N} be the eigenvalues of (Tf ) N with respect to 

the basis 4.2, then for any continuous function F on R , 

Proof: 

Let (Tf) = (ay) , where 

1 

= J hoo(x}V'/(x)V'j(x)dx 
o 

= 0 when i * j and i, j > 2 

The matrix (Tf) is given by 

= 

o 1 0 ... ... .. .. 

1 0 0 0 ... 

o 0 0 ... ... .., 

1 

-1 

Let N be a positive integer and let the N Ih basis element be h m n 

; Tb N - (m + n Xm + n + 3) 1 or m+n • en - 2 + n + 
(m+n+ lXm+n+4) L or . et 

2 

m + n = s , then N = O(S2) in both cases. 
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Consider the Nth stage truncation (Tf)N of Tf whereN is as 

above. In (Tf) N' the multiplicity contributed by the upper left 2 x 2 matrix is 

same for all values of N ~ 2. Since we consider only the limits of averages, it is 

enough to consider the multiplicity of eigenvalues in the diagonal part of the 

truncated matrix after neglecting the above 2 x 2 matrix. The eigenvalues are 1, 

-1 and O. LetNpN_1, No denote the multiplicities of the eigenvalues 1, -1 and 0 

respectively. We show that 

N_I ~O No ~O as N ~OO. 
N 'N 

Estimation of N -I : 

(:) filA: = hlj such that its support c [~ ,IJ & i + j:S; s 

[ j j + 
1 J [ 1 IJ &. . (:) -. ,-.- C -, 1+ J:S;s 

21 21 2 

(1) 

Since 2i
-
1 :s; j we have, 

2i-l + i:S; i + j :s; s ~ 2i-l < s 

ie, i-l:S; log2 s ~ i:S; log2 s + 1 (2) 

From equation (1) the number of j s corresponding to each i is 2 i
-

l
. 

I~I 
:. Total number of h ii s :s; L2i-l :s; (logs + 1}y 

i=1 

That is, 

Therefore we have N_I = o(slogs). 
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Hence 

N 
Now we show that _0 ---+ 0 as N ---+ 00. 

N 

This can be seen as follows. 

T.IN (V'.J = 0 <=> (i) V' k = hi) whose support is disjoint from [0, 1] & i + j ~ s 

Considering (i), we get 

ie, 2; + i ~ i + j ~ 2; < i + j < s ~ i < log2 s 

From equation (3), the number of j corresponding to each i is equal to 

s + 1- (2' + i). Therefore the number of j s corresponding to each i is at 

most equal to s - 2 . 

Hence considering (i) and (ii) 

N 0 ~ (s - 2) log s + S 

:.Iim No =0 
N-+<o N 

and therefore 
N 
_1 ---+ 1 as N ---+ 00 • 
N 

4R 

(3) 



4.6 Remarks 

(i) For each x, let 8;x denote the Dirac delta measure concentrated at x. 

I, ) 8 ~ + 8;.,. + ... + 8 A. 
For simplicity put A j= A j\Tf N' Let J.lN = N 

N 
be the 

measure defmed for each N and let J.I = 81 , Then the above theorem implies 

that for all continuous functions F on R, 

(ii) 

ie, J.I N -+ J.I weakly as N -+ 00 • 

M 

Since F(O)= lim _1 fF(hoo(x)):Ix, we can interpret the above result as 
M---M o 

'failure' of Szego's Type Theorem in general. Of course, one should admit that 

this type of interpretation is not fair, since the asymptotic limit exists. 

(iii) When we consider Tf where f = hllo (u any positive integer) with 

respect to the same basis 4.2, then also the above remarks holds. 

Now we consider the case of all multiplication operators Tf 

where f = hw (v * 0). Then it is surprising to see that, Tf satisfies Szego's 

Type Theorems. This result is given in the following theorem. 

4.7 Theorem 

Let Tf be the multiplication operator on L2 (R+ ) with 

f{x) = hw (x) (v * 0 ). Let A 1 (Tf ) N ,A 2 (Tf ) N' ••• ,A ATf ) N be the eigenvalues 
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of the truncated matrix (Tf)N with respect to the basis 4.2, then for any 

continuous function F on R, the following asymptotic formula holds. 

Proof: 

In the ordering 4.2, the position of h uv is K where 

Let 

K = (u+vXu+v+3) +v+l. 
2 

where 

"" 
ay = f huv(x)'I',(x)'I'j(x)dt 

o 

= 0, when i * j and i or j > K 

= 2~ ,-2~ ,0 when i = j. 

Let N be a positive integer and let the Nth basis element be 

(m+nXm+n+3) N = (m+n+lXm+n+4). 
h /IIn ortPmH" Then N = 2 + n + 1 or 2 

Put m + n = s. Then in both cases N = O(s 2). 

where N is as above. Since the upper left K x K block is same for all values 

ofN, as in previous case, it is enough to consider the diagonal block (Tf)N for 

each N ~ K. Therefore eigenvalues of (Tf)N are 2~ ,-2~ and O. 

Now we estimate the multiplicity of these eigenvalues. 

'. < slogs Claim. N./ _--
2/2 2 

The proofis as follows. 
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T/(\If,(X))=2"'\If,(x) ." X e [; •• ·:~l 
This is possible only when 'If k (x) = hij (x). In this case we will have, 

[ 
j j + 1] [V v+ ~] 21'21 c~' 211 

(1) 

From inequality (1) 

j ~ v2i-1I and (v+ ~)2i-1I ~ j+l 

2 i - 1I 
=>j+-~j+l =>i>u 

2 

Let i = u + k for some k = 1, 2, ... , s - u. (since i + j !(. s ) 

From (1) we get 

(2) 

Also we have 

v+! () j+l 2. 1 k 
-- ::5,';-- => J!(' v+- 2 -1 
2~k 211 2 

(3) 

Hence from (2) & (3), 

Therefore the number of j s is at most equal to 2 k-I for each i . 

But i + j ~ u + k + V2k and also i + j!(. s. 

That is, 

Therefore the total number of h ij s which satisfies(1) is at most equal to k2 k
-

l
• 

s(log2 s) 
:. N

2
"h ::5,'; k2 k

-
l

::5,'; 2 

~1 



Similarly we can also estimate N ./ and which is given by 
_2/2 

N < s{10g2 s) 
-2~ - 2 

N~ N~ o() 
:::) _2_2 and _-2_ ~ 0 as N ~ 00 • (since N = S2) 

N N 

:::) NO~1asN~00. 
N 

Therefore 

N 

LF(lk(Tft) 
lim k=1 = F{O) 
N-+«J N 

1 M 
= lim - fF{h

llW 
(x )}ix . 

M-+oo M o 

Szego Limits in L2{R) 

We consider the Hilbert space L2{R) together with the following 

ordered Haar system in it. 

4.8 An ordering of the Haar wavelet basis for L 2 (R) [20] 

The Haarsystem {; j{x1h ij{x1i = 0,1,2, ... andjeZ} fonnan orthononnal 

basis for L2 (R) . A particular ordering of the basis is given by 

Let us denote this by {lOk: k = 0,1,2, ... }. 

4.9 Position of h!j and ;i+ j in this ordering 

To detennine the position of each h!j and ;i+j' we write the 

above basis in the triangular fonn as, 



h i+ j.o' h i+ j-I.I ,hi+ }-2.2 ••• ~.i+ j-I ,hO•i+ j' ;i+}'; -(i+ j) '" hO.-(i+ j) 

4.10 Proposition 

In the above ordering (j)1; s are as follows 

(j)1; = ;i+j if k = (i + j Y + 3(i + j) + 1 

(j)1; = ;-(i+j) if k = (i + j Y + 3(i + j) + 2 

(j)1; = hif if k = (i + j Y + 2(i + j) + j 

(j)1; = h l ._) if k = (i + j Y + 3(i + j) + j + 2 

Proof: 

In the above triangular fonn, ;1+ j lies in (i + j + 2 t position of (i + j + 1 t 
row. 

:.k=2[2+3+ ... +(i+j)]+i+j+l+(i+j+2) 

= 2[ (i + j Xi ~ j + 1) -1 ] + 2(; + j) + 3 

= (i + j Y + 3(i + j) + 1 

Its position is (i + j + 3) in (i + j + It row. 

:. k = (i + j Y + 3(i + j) + 2 . 

Case: 3 When (j)1; = h ij 

In the above triangular fonn, h ij lies in {j + It position of (i + j + It row. 



:.k=2[2+ ... +(i+ j)]+(i+ j+l)+ j+l 

= (i + j Y + 2(i + j) + j 

Case: 4 When mle = h ;._ j 

It lies in (i + j + 1)'" row in (i + 2 j + 3) position. 

:.k=2[2+ ... +(i+ j)]+(i+ j+l)+(i+2j+3) 

= (i + j Y + 3(i + j) + j + 2 

In the next theorem we observe the behavior of the distribution 

ofeigenvalues for certain multiplication operators in L2(R) with respect to the 

above ordering. Also it is the L2(R) version of theorem 4.5. 

4.11 Theorem 

Let Tj be the multiplication operator on L2(R) with! = h 00 

and consider (Tj)N with respect to the above basis. Then for any continuous 

function F on R , 

N 

lim ~F(AIe{Tj )N) = F(O)+F(I) 
N__ N 2 

where A.1e (Tj )N ' k = 1,2, ... N are the eigenvalues of (Tj)N . 

Proof 

The method used here is essentially as in theorem 4.5. The only 

change is in the multiplicity of eigenvalue O. 

Let 
(Tj ) = (ay) where 

00 

{a;J= Jh oo(x) m; (x)mAx)dx 
-00 

Consider the Nth stage truncation (Tj)N of (Tj) where the Nth 

basis element is h mn' t/J m+n' t/J -(mu) or h m.-n' Then for all values of N, from 



the above proposition N = 0(S2) where s = m + n. As in theorem 4.5, the 

only eigenvalues are 1,-1 and O. 

To prove the theorem it is enough to show that 

N_I -+ 0 and No -+ 112 as N -+ 00 

N N 
Claim: N -I S s(log S + 1) 

if its support is contained in [~ , 1 J and i + j S s 

[
j j + IJ [1 J ~ 2"21 c 2",1 and i+ j S s 

j 1 j+l 
~-. ~- and -.-SI 

2' 2 2' 

and i+ jSs 

adding i we get, 

2i-l +iSj+i<2' -1+i 
That is, 

2 i-l + i S s ~ 2 i-l < S ~ i Slog s + 1 

From equation (1), the number of j s corresponding to each i is 2/-1
• 

Therefore 

Now we show that 

N_I S ~2i-l < (logs + 1)s. 
1=1 

No = s(s + 1) + 2s + o(slogs). 
2 

This can be seen as follows. 

(1) 



TjN(wt ) = 0 (:) (i)lVt = hij ifits support is disjoint from (0,1) and i + j ~ s. 

(ii) lVt = h;,_j where i + j ~ s. 

(iii) lVt = fJi+j where i + j '5, s 

(iv) lVt = fJ-(i+j) where i + j '5, s . 

Considering (i), then 

Adding i we get, 

2i+i~i+j'5,s 

21 < s ~ i < 10g2 s 

... (2) 

From equation (2), the number of j corresponding to each i is at most equal to 

s - 2. Hence number of h i j satisfying condition (i) is less than or equal to 

(s - 2)10gs = O(S logs). 

From the position of h i,-j in the ordering 4.9, it is clear that the number of 

h i,- j satisfying condition (ii) = s+(s-I)+ .. , +2+1 

= s(s+l) 

2 
Similarly the number of fJ i+j S and fJ-(i+j) s satisfying condition (iii) and (iv) 

respectively is equal to s. 

Adding all these we get 

Therefore, 

No = s(s+l) +2s+o(slogs). 
2 

N 
_0 ~1/2 as N ~oo. 
N 



N 
~_I ~1/2 as N ~oo. 

N 

Hence 

We conclude this chapter with the following remarks. 

4.12 Remarks 

For each x, let 8x denote the Dirac delta measure concentrated 

/') 8At+8~+ ... 8A. 
at x. For simplicity put A. ;= A. ;\Tf N . Let IJN = N N be the 

8 +8 
measure defmed for each N and let IJ = 0 I. Then the above theorem 

2 
<Xl <Xl 

implies that JFdlJN ~ JFdlJ for all continuous functions F on R. 
-<Xl -<Xl 

ie, IJN ~ IJ weakly as N ~ 00. • 

~7 



CHAPTER V 

GENERAL ORDERINGS OF 

HAAR SYSTEM IN L2 (R+) AND IN L2 (R) 

In this chapter we discuss some classes of orderings of Haar 

system in L2{RJ and in L2{R) in which Szeg6's Type Theorem is valid for 

certain multiplication operators. This Chapter is divided into two sections. 

In the ftrst section we have given an ordering different from 

4.2 to Haar System in L2{RJ and we consider Szeg6's type theorems for 

Multiplication operators with respect to this new ordered Haar system. Then it 

is interesting to see that the Szeg6' s Type theorems hold in this case. We also 

prove that Szeg6's Type Theorems holds for general class of multiplication 

operators Tf with multiplier f E L2 (R+) subject to some conditions on f . 

Finally in the second section more general classes of orderings 

of Haar System inL2{RJ and inL2{R) are identifted in such a way that for 

certain classes of multiplication operators the asymptotic distribution of 

eigenvalues exists. Some illustrative examples are also considered other than the 

previous once. 

5.1 Szego's Type Theorems 

In this section we consider an ordering of the Haar system and 

with respect to this new ordered system, Szeg6's type theorems for a class of 

multiplication operators are analyzed. 

5.1.1 An ordering of the Haar wavelet basis for L 2 (R+ ) 

Recall that {; ix1h ij{x1 i,j E Z+ U {o}} forms an orthonormal 

basis for L2 (R+) where; ,(x) = t/J (x - r), where t/J is the characteristic function 

in [0,1] and h, p is the Haar function dermed by 



P p+1/2 
- ~ x < -=------
2r 2' 

h (x) = 2~ ',p 

= -2~ p+1I2 sx<_p_+_1 
2r 2' 

= 0 otherwise. 

where r & p are non negative integers. 

Now consider an ordering of the Haar system which is given by 

the filling arrangement 

Let this be denoted by {'I' k : k = 1, 2, ... }. 

5.1.2 Position of hij & tPi+ j in the above mentioned ordering 

We can easily determine the position of each hij & tPi+ j by 

arranging the basis in the triangular form as given below. 

tPo, hoo , hol 

tP,-p h,-I,O, .. ·,h,_i2'_I'''· ,h02'-1 , ••• ,h02'_1 , , , 

tPr+s,hr+s 0 , ••• ,h 2'+$1'1_1' ••• ,h 2'+$' ••• ,h 2,+s+I_I' ••• ,ho 2'+$ , ••• ,ho 2'1'$+1_1 ,r+ss r, r+s, • • 

5.1.3 Proposition 

In the above ordering, the 'I' k S are as follows 

'l'k =rp, 

= h rp' p < 2'+1 

h P >_2r+9 N = rp' SE , 

Proof: 

Case 1: When p < 2'+1 

if 

if 

if 

k =r(2' +1)+1 

k = r(2' +1)+ p+2 

k = (r+2s)(2'+s +1)+ p-s+2 

Then in the above ordering h rp lies in the (r + It row in 

(p + 2 t position. 
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Therefore position of h rp = 2.20 + 3.21 + ... + {r + 1)2'-1 + P + 1 + r + 1 

=r(2' +1)+p+2 

C 2 Whe > 2'+$ -1 2 ase: n p _ , s - , , ... 

Then h rp lies in {r + s + 1 y" row and in (s2 rH + P + 2) tit position. 

Therefore 

Positionof h rp = 2.20 +3.21 + ... +{r+s+l)2,+s-1 +s2'+$ + p+2+r+s 

= (r+2sX2'+s +1)+ p-s+2 

Position of ;, = r(2' + 1)+ 1 

Now we analyze the behavior of certain multiplication operators 

with respect to the above ordering of the Haar system. 

5.1.4 Theorem [20] 

Let Tf be the multiplication operator on L2 (RJ with 

f = h mn' n < 2m+1. Let (Tf) be the matrix of Tf with respect to the above 

basisandletA 1(Tf )N,A 2(Tf t,···,A ATft betheeigenvalues (repeated 

according to multiplicity) of the truncated matrix (Tf)N then the following 

asymptotic formula holds: 

where F is any continuous function on R . 

Proof 

Let 

'" 
a jj = J hmn{x)V'/{xhll)X)dr 

o 

= 0 when i '* j and i, j > K , 

where K is the position of hm n in the above basis 
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and wheni= j 

2~ 

-2~ 
o 

Let N be a positive integer and let the Nth basis element be 

h h p<2T+l, 
Tp were hrp where p ~ 2 f

+
5 

SE N or ;T .Then 

N=r(2T+I)+p+2, N=(r+2s)(2 T+s+I)+p-s+2 or N=r(2T+I)+1. 

Therefore in all cases N = O~2T) . Consider the truncation (Tf)N of (Tf) 

where N is as above. The multiplicities contributed by the upper left K x K 

block is same for all values of N ~ K . Therefore it is enough to consider the 

multiplicity of eigenvalues in the diagonal part of the truncated matrix after 

neglecting the K x K block as before. Then the eigenvalues considered are 

2~,-2~,0 . 

Let N ai, N ai, No denote the multiplicities of the eigenvalues 
21'1 _21'z 

2~ ,-2~ ,0 of (Tf)N respectively. First we calculate these multiplicities. 

N a/ can be calculated as follows. 
21'1 

Casel: Nth basis element is ;T 
By ordering 5.1.2, it lies in the (r + It row and 

N = r(2T + 1)+ I. 

where Tf N = PNTfPN and PN is the orthogonal projection of L2 (R+ ) to 

span {'I'i' '1'2' ••. ,'I' N} • 

Hence the eigenvectors corresponding to 2 ~ are those 'I' k (x) 

whose support lies in [2: ' n :~l For any value of k, ". (x) is not an 

eigenvector of2 ~ and 
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[
j j +1] [n n+~] . hu{x} is an eigenvector ~ 2"21 c 2m' 2m . 

~ n2i-m $ j < (2n + l)2;-(m+l) • 

Thus multiplicity, namely the number of j s satisfying the above relation equals 

2;-(m+l) for each i. 

r-I 

Hence, N
2
"'h = L2i-(m+l) =2r-m-1_1 

l=m+1 

ease2: Nth basis element is hrp, p<2 r
+

J 

It is the (p + 2 t element of (r + 1 t row in the ordering and 

N = r(2r + 1) + p + 2 . Hence as before we can calculate N 2"'h and it is given by 

{ 

2r-m-1 -1 

N 2r-m-1 2r-m ./ = +p-n 
2/2 

2r- m -1 

if p < n2 r
-

m 

if n2r-m ~ p < {2n + l)2r-m-1 

if (2n + 1)2r-m-1 ~ p < 2r+1 

C 3· Nth b . I . h > 2r+s -1 2 ase . aslS e ement IS rp, P _ , s - , ,... 

Then in the ordering 5.1.2, hrp lies in (r + s + 1 t row and 

N={r+2sX2 r
+S +1)+ p-s+2. 

r+s 
N2"'h = L 2i-(m+l) = 2r

+S-
m -1. 

l=m+1 

Similarly we can calculate N .v and No by counting the '1/1: s 
_2/2 

whose support lies in [n + ~ , n + 1] and whose support lies outside 
2'" 2'" 

[~, n + 1] respectively. These results are summarized in table 5.1.5. 
2/11 2'" 

N N 
2"'h 0 d -2"'h 0 --~ an --~ 
N N 

as N ~ 00. Hence No ~ 1 as N ~ 00 , which completes the proof. 
N 
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Now we consider the multiplication operators under the same 

basis with more general multipliers by taking the linear combinations of '1/ tS 

Then also the conclusion is same. This is given in the next theorem. 

5.1.6 Theorem [20] 

Let T, be the multiplication operator on L2 (R+) with 

n 

f = Lat'l/t . ats are real. With respect to the ordered basis 5.1.1, let 
t=1 

..t I(T')N,A 2(T')N' ... ,A AT,t be the eigenvalues (repeated according to 

mUltiplicity) of the associated truncated matrix(T, t. Then the following 

asymptotic fonnula holds for any continuous function F on R . 

Proof 

First we show that the theorem is true for the operators T, with 

multiplier f= I,at'l/t,n = (m+lX2m+1 +1} where '1/1,'1/2". ,'1/" are taken 
t,,1 

as in the ordering 5.1.1. From this case we deduce the result for operators T, 

n 

where f = L,at'l/t, 
t=1 

Let (T,) be matrix of transfonnation of the operator T,. The 

behavior of (T, ) is same as in the above case. Here the upper left K x K block 

is nonzero, where K = b(2b + 1}+ 1,b = 2"'+1 -1 and the remaining nonzero 

elements exists only in the main diagonal. Consider the N th truncation (T')N 

whereN=O~2T). Since'l/t(x)=h02".1_1' there exist (m +2)2"'+1 +1 diagonal 

elements in (T')N. The only eigenvalues considered are the diagonal elements. 

Let these values be Po, PI , ... , P(m+2P".1 . For finding the multiplicities of these 



eigenvalues, we arrange them as Po = 0, Pq where q = k2"'+1 + c, 0 S k S m + 1 

and 0 < c S 2"'+1. Let Nq denote the maximum multiplicity ofPq • The values of 

N q for different values of q and for all possible values of N are given in table 

5.1.8. Here alsoNq is of 0(2'). Therefore 

Nq - -. 0 as N-.oo. 
N 

This completes the proof in the fIrst case. 

Now if f = Iak'l'k. n;e: (m + IX2"'+1 + I) , without loss of 
k=1 

generality we may assume that by taking coefficients a k s to be zero for 

sufficiently many values of k , this will affect only add to possibly an increase 

in the multiplicity in the eigenvalue zero. Hence the result. 

5.1.7 Remarks 

We calculate the eigenvalues Pq s usmg the following 

computations. 

( i) T, A'I';{x)) = Pq {'I'; (x)) ~ '1'; (x) = hJj{x) where T, N = PNT,PN, PN is 

the orthogonal projection. 

[
j j+l] [q-I q] 
21'21 !;; 2",+1' 2"'+1 ' 

where q = k2"'+1 + c,k < 2,0 < c S 2"'+1 . 

whereq = k 2"'+1 + c, 2 S k S m + I, 0 < c S 2"'+1 . 



~
 

~
 

E
ig

en
va

lu
e 
P q

, 
q 

=
 k

2"
'+

1 
+

 C
 

o ~
 k

 ~
 m

 +
 I,

 
0 
~
 c

 ~
 2

"'+
1 

P q
, 

q 
=

 k
2"

'+
1 

+
c
 

k 
<

 2
, 

0 
<

 c
 ~
 2

"'+
1 

P q
, 

q 
=

 22
"'+

1 
+

c
 

0
<

 c
 ~
 2

"'+
1 

P q
, 

q 
=

 3
2"

'+
1 

+
 C

 

O
<

c 
~
 2

"'+
1 

M
ul

tip
lic

ity
 

V
al

ue
 o

f 
p 

V
al

ue
 o

f 
N

 
I 

2,
-"

,-1
 -

I 
P

 <
 (q

 -
1)

2,
-"

,-
1 

r(
2

' 
+

1)
+

1 
or

 r
(2

' 
+

1)
+

 p
+

2
 

(2
 -

q 
)2

,-"
,-1

 +
 P

 
(q

 -
1)

2,
-"

,-1
 ~
 P

 <
 

r(
2

' 
+

1)
+

 p
+

2
 

q2
,-"

,-1
 -

I
 

2'
-'"

 -
I 

q2
,-"

,-1
 -

I 
~
 P

 <
 2

N
I 

r(
2

' 
+

1)
+

 p
+

2
 

I 

2'
H

-'"
 -

I 
P

 ~
 2

N
·,

s 
=

 1,
2

,-
-

(r
+

2s
X

2r
+

s 
+

1)
+

 p
-s

+
2

 

2(
2,

-"
,-2

 -
I)

 
p 

<
 2

N
I 

r(
2

' 
+

1)
+

1 
or

 
r(

2
' 

+
1)

+
 p

+
2

 

2(
2'

H
-"

,-1
 -

I)
 

p 
~
 2

'H
,S

 >
 I

 
(r

+
2s

X
2r

+
s 

+
1)

+
 p

-s
+

2
 

2(
2'

H
-"

,-2
 -

I)
 

P
 ~
 2

'H
,S

 ~
 I

 
(r

+
2

sX
2

'H
 +

1)
+

 p
-s

+
2

 

22
(2

,-"
,-3

 -
I)

 
p 

<
 2

N
I 

r(
2

' 
+

 1
)+

 I 
or

 
r(

2
' 

+
 1

)+
 p

 +
 2

 
22

 (2
'H

-"
,-2

 -
I)

 
P

 ~
 2

'H
,S

 >
 2

 
(r

+
2s

X
2'

H
 +

1)
+

 p
-s

+
2

 

22
(2

,u
-"

,-
3 

-I
) 

p 
~
 2

'H
,S

 ~
 2

 
(r

 +
 2

s X
2'

H
 +

 1
)+

 P
 -

s 
+

 2
 

~
- S.
1.

8 
T

ab
le

 



~
 

--
.I 

E
ig

en
va

lu
e 
P q

, 
q 

=
 k

2"
'+

1 
+

 C
 

O:
S;

 k
 :s

; m
 +

 1,
 

O:
S; 

c 
:s;

 2
",+

1 

P q
, 

q 
=

 4
2"

,+
1 

+
c 

0
<

 c
 :s

; 2
"'+

1 

P q
, 

q 
=

 5
2"

,+
1 

+
c 

0
<

 c:
S

; 
2"

,+1
 

P q
, 

q 
=

 m
2"

,+
1 

+
c 

0
<

 c:
S

; 
2"

,+1
 

P q
, 

q 
=

 (m
+l

}2
"'+

1 
+

c 

0
<

 c:
S

; 
2"

'+1
 

~
 

M
ul

ti
pl

ic
it

y 
V

al
ue

 o
f 

p 
V

al
ue

 o
f 

N
 

23
(2

r -
m -

4 
-1

) 
p 

<
 2

r+
1 

r(
2r

 +
1)

+
1 

o
r 

r(
2r

 +
1)

+
 p

+
2

 

23 
(2

r+
s-"

'-3
 -

1
) 

p 
~
 2

rH
 ,s

 >
 3

 
(r

+
2s

X
2r

+
s 

+
1)

+
 p

-s
+

2
 

23 
(2

rH
-"

'-4
 -

1
) 

p 
~
 2

 rH
 ,s

 :s
; 3

 
(r

+
2s

X
2r

+
s 

+
1)

+
 p

-s
+

2
 

2
4 (

2
r -"

,-
S

 -1
) 

p 
<

 2
r+

1 
r(

2r
 +

1)
+

1 
or

 
r(

2r
 +

1)
+

 p
+

2
 

24
(2

rH
-m

-4
 -1

) 
p 
~
 2

rH
 ,s

 >
 4

 
(r

+
2s

X
2

rH
 +

1)
+

 p
-s

+
2

 

2
4 (2

rH
-m

-s 
-1

) 
p 
~
 2

 rH
 ,s

 :s
; 4

 
(r

+
2s

X
2r

+
s 

+
1)

+
 p

-s
+

2
 

2"
,=

1 (
2

r -"
,-

2
 -1

) 
p 

<
 2

r+
1 

r(
2r

 +
1)

+
1 

or
 

r(
2r

 +
1)

+
 p

+
2

 
2 m

-I
 (2

 r+
s-I

II-
1 

-1
) 

p 
~
 2

rH
 ,s

 >
 m

 
(r

+
2s

X
2r

+
s 

+
1)

+
 p

-s
+

2
 

2"
,-1

 (2
rH

-m
-2

 -
1

) 
p
~
2
r
H
,
s
:
S
;
m
 

(r
+

2s
X

2
rH

 +
1)

+
 p

-s
+

2
 

2"
'(2

r -
",

-2
 -1

) 
p 

<
 2

r+
1 

r(
2r

 +
1)

+
1 

or
 

r(
2r

 +
1)

+
 p

+
2

 

2'
" 

(2
rH

-",
-1

 -
1

) 
p 
~ 

2 
rH

 , 
S 

>
 (m

 +
 1

) 
(r

+
2s

X
2r

+
s 

+
1)

+
 p

-s
+

2
 

2'
" (

2rH
-m

-2 
-1

) 
p 
~ 

2r
+

s,s
 :s

; (
m

 +
 1

) 
(r

+
2s

X
2r

+
s 

+
1)

+
 p

-s
+

2
 

-
-
-
-

~
 

S.
1.

8 
T

ab
le

 (C
on

td
.)

 



Next we consider the asymptotic distribution of eigenvalues of multiplication 

co 

operators on L2{RJ with multiplier 1= Iak'l'k, IIak l2 
< co in L2{RJ. 

k=1 

co co 2 

Given 1= I ak'l'k , Ilakl < co and a k s are real and 
k=1 k=1 

n 

!" = I a k 'I' k, • Assume that the sequence {/J converge uniformly to I on 
k=1 

R . That is, for every & > 0, there exists a positive integer N (depending only 

on & ) such that 'V n ~ N implies 

\In(x)- I(x)\ < & 'Vx (1) 

Let (Tf) and (Tf .) be the matrix of transformations of Tf and (Tf • ) and 

\A1(Tf )N,A 2(Tf )N' ... ,AATf)N}, \A 1 (Tf • )N ,A 2 (Tf • )N, .. ·,AN(Tf • )N} 

be the eigenvalues of (Tf)N and (Tf.)N respectively. For simplicity we denote 

{ } d J ~ (n) 1 (n) 1 (n) } 
these eigenvalues by A I,A 2,A 3' ••• ,A N an t'L 1 ,/I. 2 , ••• ,/1. N 

respectively. 

If In ~ I uniformly on R , then the operators Tf , Tf., Tf N 

and Tf•N where Tf N = PNTfPN and Tf • N = PNTf • PN as before, has the 

following property. 

5. 1.9 Proposition 

If In ~ I uniformly on R, then 11 TfD -Tf 11 ~ 0 and 

11 TfD N - Tf N 11 ~ 0 for all N . 

Proof 

First we prove that 

Consider 

Tf • --4 Tf uniformly (in the operator norm). 



= sup {II (Tf • - Tf )(~) r: "~II = 1 } (1) 

co 2 

= JI(ln-/)(x)II~(xt£u 
o 

co 2 

:s SUp 1 (In - I) 12 ~~(x) dx 
o 

Therefore Equation (1) becomes 

IITf• - Tfl12 ~ suP!(ln - It 

Since 11 In - I 11 ~ 0 , the result follows. 

Now 

11 TfD N - Tf N 11 = 11 PNTf• PN - PNTfPN 11 

:s 11 PN ~211 Tf • - Tf 1I:s 11 Tf • - Tf 11 

Hence the result. 

Since In and I are real, the matrices (TfJN and (Tf)N are self 

adjoint. Let A. 1 (n) ~ A. 2 (n) ~ ... ~ A. N (n) and A. 1 ~ A. 2 ~ ••• ~ A. N be the 

eigenvalues of these matrices arranged in non increasing order. Then using 

Weyl's perturbation theorem [1.2.7], we can relate these eigenvalues. It is given 

in the following proposition. 

5.1.10 Proposition 

Let A. 1 (n) ~ A. 2 (n) ~ ... ~ A. N (n) and A. 1 ~ A. 2 ~ ••• ~ A. N be 

the eigenvalues, arranged in non increasing order of the matrices (Tf.)N and 

69 



k = 1, 2, ... ,N . 

Proof: 

The matrices (Tfo)N and (Tf)N are self adjoint and therefore 

using Weyl's perturbation theorem [1.2.7] we have 

m~IA/n)-Ak I ~ IITfoN-TfNII, k=I,2, ... ,N 

Hence the result follows from the proposition 5.1.9. 

Since Tfo N and Tf N are self adjoint, usmg the upper semi 

continuity and lower semi continuity [16] of the eigenvalues, we have the 

following remarks. 

5.1.11 Remarks 

(i) Let 

Then the Hausdorff distance between A and B tends to zero as n -+ 00 • 

That is 

The proof is as follows: 

Since In -+ I uniformly, T f oN -+ Tf N uniformly as n -+ 00 • 

Therefore using upper semi continuity [16, page 70] , 

~~ ~iS (A /n) , B)} -+ 0 as n -+ 00 • 

Also lower semi continuity holds at A j [16]. Therefore 

dis (A j , A) -+ 0 as n -+ 00 
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where A. j E B . Since (Tf.)N are self adjoint, the lower semi continuity 

holds at every eigenvalue A. j of B [16, Chapter 2]. Therefore 

max {dis (A. j , A)} ~ 0 as n ~ 00 
AjEB 

Hence the Hausdorf distance between A and B 

(ii) Since In ~ I uniformly on R , T f.N ~ Tf N uniformly, and 

therefore we have tr (Tf.)~ tr (Tf) uniformly where 'tr' denote the trace 

of the matrix. 

The main result of this section is given in the following 

theorems and it gives the asymptotic distribution of eigenvalues of the 

multiplication operators Tf . 

5.1.12 Theorem 

'" 
Let Tf be the multiplication operator with 1= IatV't, 

t=l 

~::Ia t 12 < 00 , at s are real. Assume that In ~ I uniformly on R 

n 

where In = IatV't, and let {A. l'A. 2'A. w .. ,A. N} be the eigenvalues of 
t=l 

(Tf t repeated according to multiplicity. then the following asymptotic 

formula holds for any continuous function F on R . 

N 

IF(A. t ) M 

lim t=l = lim _1 fF[r(x)] 
N .... ", N M-+a:> M o 

Proof 

Consider the double sequence {aN, n} in N and n • where 
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and {A, {n} ,22 (n), ... ,A)n)} be the eigenvalues of {TfJN . 

We show that the limit (double limit) [7, 10] of the double sequence {aN,J 

exists as N, n -+ 00 and it is equal to F( 0 ) 

Let {r;} ,N = 1,2,... denote the row sequences of {aN ,n}' where 

r n = F(2 /n» + F(2 /n» + ... + F(2 /n» 
N N 

and Y N denote its limit as n -+ 00 • 

Let {z:} , n = 1, 2, . .. denote the column sequences of {aN, n} ,where 

Z N = F(2 l(n»+F(2 /n» + ... +F(2 N(n» 
n N ' 

and Z n denote its limit N -+ 00 • 

Now we prove the following results, 

(i) For every N and n the limits YN and Zn exists. 

(H) The collection of row sequences {rN : N = 1, 2, ... } converges uniformly. 

Then the theorem follows immediately from Iterated limit 

theorem [1.2.8]. 

To prove (i) 

Using proposition 5.1.9, for each value of k = 1, 2, ... , 

lim 2 k (n) = 2 k (Uniformly in n). 
n~ 

Since F is continuous, 

F(2 /n))-+F(2 k) k=I,2, .... 

Therefore for all values of N, 

N F(2 (n» N F(2 ) L k -+ L k = Y N as n -+ 00 , N = 1,2, ... 
k=1 N k=1 N 
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Now by theorem 5.1.6, Szego's limit exists for TI • s for each n = 1,2, ... 

and hence Z n exists for each n. 

To prove (ii) 

Let & > 0 be given. Consider, 

k=1 k=1 

N N 

$ J... flF(l k (n) ) - F(l k ~ 
N k=1 

(1) 

From proposition 5.1.11, there exists N such that 

IF(l /n) )-F(l k~< & 'V n ~ N ,& 'V k 

Therefore Equation (1) reduces to 

la N n - Y NI < & 'V n ~ N , N = 1,2, ... 

which completes the proof. 

Next we have taken the weaker condition, where the sequences 

n 00 2 

In = Lak'l'k, converges uniformly to 1= Lak'l'k, Llakl < 00 
k=1 k=1 

(ak s are real), on compact subsets E of R and the basis is taken as in 5.1.1. 

00 

Let Fn = I - In = Lak'l'k' Now we chooseak s such that 
k=n+1 

IFn (x ~ is uniformly bounded. Under these conditions, the asymptotic 
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distribution of eigenvalues of Tf converges and Szego' s Type Theorem is 

valid. This is given in the following theorem. 

5.1.13 Theorem 

ac 

Let Tf be the multiplication operator with I = 'Lak'l'k, 
k=1 

~:la k 12 < 00 , a k s are real. Assume that In ~ I uniformly on compact 

n 

subsets Eof R wherein = 'Lak'l'k . Choose aks such that IFnl = I/n - I1 is 
k=1 

uniformly bounded. Let {A I,A 2,A 3' ••• ,A N }be the eigenvalues of (Tf)N 

repeated according to multiplicity, then the following asymptotic formula 

holds. 

where F is any continuous function on R . 

Proof 

The proof follows immediately from the theorem 5.1.12 if we 

establish the following results. 

(i) pointwise. 

(ii) Tfw N ~ Tf N uniformly for all N 

Proolol (i) 

Since IFn {x ~ = I/n - I1 is uniformly bounded, we have IFn {x ~ ~ P 'Vx 

and since In {x ) converges uniformly to I in the set E , 

Now we show that TFN ~ 0 (Tfw ~ Tf ) point wise. 

Consider Tfw - Tf = Tf w-f = TF w' Then, 
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ao 2 

11 TF• (~)112 = ] Fn(X)~(X)1 dx 
o 

Then for any 0 < NO < 00 we have, 

N 2 ao 2 

~TF.(~)112 = JIFn(x)~(X)1 dx + JIFn(x)~(x)1 dx 
o No 

N 2 ao 2 

= JIFn(x)II~(x)12dx + J IFn(X) 1~(X)12dx ... (1) 
o ~ 

Let & > 0 be given. Since ~(X)E L2(RJ, No can be chosen such that 

Now 

ao 2 ao 2 

JIFn(x)~(X)1 dx = ] Fn(x~ I~(xt dx 
No No 

ao 2 

< Jp 21~(X)1 dx (": I Fn(x) < P ) 
No 

.. . (2) 

Let E = [0, No] be the compact set. 

Since Fn -+ 0 unifonnly on E, we have for every & > 0 there exists NI such 

that 

N 2 

:. ~ Fn(x) I ~(X)12 dx < & 'Vn ~ NI 
o 2 

. .. (3) 

Then using equations (2) and (3), equation (1) reduces to 

7t; 



Hence TFN -+ o. ie. Tf• -+ Tf point wise on R . 

Proof of (iiJ: 

Since TF -+ 0 point wIse on R and 
N 

P N IS compact, 

Now consider, 

:s IlpN 111I(Tf • - Tf )PN 11 

:s11 (Tf.PN -TfPN)II-+o. 

which completes the proof of (ii) and hence the theorem. 

S.L14 Remarks 

(i) For each x, let Ox denote the Dirac delta measure concentrated at x. 

o~ +o~ + .. . +0..1. 
Let Ji N = N be the measure dermed for each N and let 

N 

Ji = 0 o. Then the above theorems 5.1.12 and 5.1.13 implies that for all 

continuous functions F on R . 

ie, Ji N -+ Ji weakly . 
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(ii) Theorem 5.1.12 follows from 5.1.13. 

(iii) The coefficients a k s in the theorem 5.1.13 can be chosen as follows. 

1 
ak ~ - k = 1 , 2,3, ... , then IF" (x ~ is uniformly bounded. 

k 

The proof is as follows. 

Cl) 

f = Iak'l'k, where 'l'k = hrp or ~ ,. From the ordering 5.1.1, k = o{r2'). 
k=1 

Then, for x E R, 

Cl) 

If{x~ ~ Ilak'l'k{x~ (1) 
k=1 

Case: 1 When r is fIXed and p varies 

Then supports of hi} is disjoint for each i and j. Then f{x) contains 

only one term for a given x ER. Hence (1) reduces to 

If{x ~ < la k 'I' k (x ~ ,where x belongs to the support of 'I' k 

which is fmite, where k = o{r2') 
Case: 2 when r varies, 

then (1) reduces to 

Since k > r2' 

Cl) 2~ 
If{x~ < I-, <P for all x 

,=1 r2 

Therefore, 

Cl) Cl) 

IF,,{x~ = Iak'l'k < Iak'l'k <P for all x . 
k=,,+1 k=1 

Hence IF" {x ~ is uniformly bounded on R. 
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5.2 Generalization of orderings of Haar System 

In this section we identify different classes of orderings of Haar 

system in L 2 (R+) and in L 2 (R) so that for certain multiplication operators the 

asymptotic distribution of eigenvalues converges to a fixed limit and Szego' s 

type theorem is valid. Also we have given examples for orderings other than the 

orderings mentioned earlier. Throughout H = {;j{x1hij{x1i,j e Z+ u {oH will 

denote the Haar system in L2{RJ . 

First of all we have the simple result. 

5.2.1 Proposition 

Let {'I/ t: keN} be an ordering of the Haar System where 

Szego's Type Theorem holds for an operator T. Then with respect an ordering 

obtained by changing the positions of a flnite number of elements, the Szego' s 

theorem will remain valid for the same operator T. 

Now we construct a class of orderings of Haar system for the 

case of multiplication operators Tf in L2 (R+) with f = hoo so that asymptotic 

distribution of eigenvalues converges. This result is given in the following 

theorem. 

5.2.2 Theorem 

Let A I{Tf )N = 0, A 2{Tf )N = 1, and A 3{Tf )N = -1 be the distinct 

eigenvalues of (Tf)N where f = hoo ' Let M j be the eigenspace associated 

with A }Tf) N ' j = 1, 2 ,3 and H j = H n M l' For a sequence (j J of positive 

integers, let AI ,A2 ••• , BI ,B2 , • • • be partitions of H j and H n M j C 

respectively such that IAn I = n j n and IB n I = j n' Consider an ordering of it 
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whose entries are arranged as {BI , Al ,B2 ,A2 , ' " }, Then this IS a basis for 

L2 (R+) for which 

where F is any continuous function on R, 

Proof: 

N 
To prove the theorem it is enough to show that -' --+ 1 as 

N 

N --+ 00 ,where N j is the multiplicity of eigenvalue A. iT')N of (T')N' 

Let N be a positive integer. Then for some n depending on N , 

n-I 

N=L((k+l)jk)+K, K5.jn+ K I whereKI <njn 
k=1 

Then 

n-I 

N j = Lkjk +KI where KI is defmed as above, 
k=1 

1 KI +--
n-I 

Lkjk 
k=1 1 = 

n-I 

Ljk+ K 

1+ k=1 
n-I 

Lkjk 
k=1 

Therefore 

I, Nk - 0 
lffi -- , 

N-+«> N 

Hence the result. 
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5.2.3 Remarks: 

Hence, Szego's type Theorem is valid in this case. 

(ii) When l iTf)N =l 2{Tf )N =1, then the asymptotic distribution of 

eigenvalues converges to F{I) and when l iTf)N = l 3{Tf )N = -I, then it 

converges to F{ - 1) . 

The above theorem gives three classes of orderings for 

multiplication operator Tf where f = hoo' so that asymptotic distribution of 

eigenvalues of (Tf)N converges to F{l)Tf)N)' where l iTf)N = 1, -1 , 0 . 

Now we give an example for the case when l iTf)N = O. 

5.2.4 Example 

Let f = hoo . Therefore support of f = [0,1]. Recall that 

H= {;j {x1 hij {x1i,j E Z+ u {oH. Let Mo = {hij {x1;j {x)lits support a: [0,1]}. 

For a positive integer 1, let j n = 2 n-I, and let A" Al+w" be a partition of 

Mo such that IAnl = {n - 1 + 1)2n-1 + 1, n = 1, 1 + 1, .... . Derme 

A = {;O';I"'" ;,-1 , ht-l,o' h,_2,o, ... , hoo ,;, } 

Let R" RI+1'''' be a partition of H (l Mo C such that IR,I = {I + 1 )2n-1 and for any 
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H = {A,B I , A I' B 1+1' A 1+1' ••• } IS a basis for L2(RJ ' for which Szego's 

Type Theorem is valid. 

Let us denote this basis by {'I' k : k = 1,2,- -}. Here also we have 

calculated the position of hij and 'j in the above ordering and it is given in the 

following proposition. 

5.2.5 Proposition 

In the above example 'I' k S are as follows. 

'I' k= , k-I if k = 1,2, .. . ,1 

'I' k= h rO if k = 2/-r, r = 0,1, ... ,1 -1, 

'I' k= , r if k = r(2r
-

1 + 1)+ 1 , r = 1,1 + 1, .. . 

'I' k= h rp &p < 2r
- I +1 if k = r(2r

-
1 + 1)+ p + 2 , r=/,/+l, .. . 

'I' k= h rp &p ~ 2r- I +1 if k = (r + 2s X2 r
-
IH + 1) 

+p-s+2, s = 1,2, ... 

Proof 

We arrange the above basis elements as 

(A ) 

and the remaining basis elements are arranged in the triangular form 

h"o, h,,1 , h t-I,I , •• , hl,1 , ho,1 , , 1+1 (B, , A, ) 

hl+l,o' h,+I,1 , h t+I,2 , •• ., hO,2 , hO,3' , 1+2 

From the arrangement it is clear that 

'I' k= , k-I if k = 1,2, ... ,1 

'I' k = h rO if k = 21 - r, r = 0,1, .. ., 1 -1 

Now we fmd the position of , r for r = 1,1 + 1, .... 

, r lies in the (r - 1 + l)th row. 
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Therefore position of 

f/J r=2t+r-t+l+{t+2)2° +{t+3)21 + ... +{r+l)2r-1+1 

= 2t + r - t + 1 + r2r-1 
- t 

=r(2r-1 +1)+1, r=t,t+l, ... 

Now we fmd the position of h rp. 

Case 1: when p < 2r-1+1 and r = t,t + 1, ... 

Then h rp lies in the (r - t + 1) th row in the above ordering of basis. 

Therefore position of h rp 

= 2t+r-t+l+ p+l+{t+2)2° +{t+3)21 + ... +(r+l)2r-I+1 

= r(2r-1 +1)+ p+2 

Case 2: when p ~ 2r=I+S , s = 1,2, ... & r = 0,1,2, ... 

Then h rp lies {r - t + s + It row and the position of h rp in this row is 

s2r
-

l
+

s + p + 2 . Therefore the position of h rp 

= 2t + {t + 2)2 0 + {t + 3)21 + ... + {r + s + 1)2 r-I+s-I + p + 2 + r - t + S 

= (r + 2s X2 r-I+S + 1)+ p - S + 2 

5.2.6 Remarks 

In the above example for t = 0,1, ... , we get a collection of 

orderings for which Szego s Type Theorem is valid. In particular when t = 0 

the ordering reduces to the ordering in 5.1.1, where jn = 2n, IBnl = r 

IAnl = {n + l)2n + 1, such that, 

5.2.7 Theorem 

Let A, (Tf ) N =0 , A2 (Tf ) N = 1 and A3 (Tf ) N = -1 be the eigenvalues 

of (Tf) N where f = hoo • Let Mo M 1 , and M _I be the subsets of H such 

R2 



that Mo = {k,.;, / its support <;t [o.lll. M 1 = { h,. / SUpport of h, c [ o. ~ ]} and 

M_I = { h, / support of h, c G .1 ]} . Fora sequence of positive integers (;.). 

let ApA2"'" BI,B2, .. ., Cp C2 , ... be partitions of Mo,MI and M_I 

respectively such that IAtl = aljt, IBtl = a2jt and ICtl = a3jt where al,a2 ,a3 

are constants. Consider an ordering of H whose entries are arranged as 

AI,BpCpA2,B2,C2" ... Then, this is a basis for L2(RJ for which 

where r 1+ r 2+ r 3= 1 and F is any continuous function on R. 

Proof 

From theorem 5.1.4 (when m ,n = 0), Mo,MI and M_I are 

the eigenspaces of the eigenvalues 0,1,-1 respectively. Therefore to prove the 

theorem it is enough to show that 

NA. 
lim--J = r. 
N-+«J N J 

where N A.
J 

is the multiplicity of eigenvalue A.j of (Tf )N' 

Let N be a positive integer. Then for some n, 

11-1 

N = ~)al +a2 +aJjt +K, 
t=1 

and then 

11-1 

NA.J = L(ajjt)+Kj , K j ~ajjll , j=I,2,3. 
t=1 



Therefore 

S.2.8 Remarks: 

N 
1. AJ 
lffi--= 

N__ N n-I 

~)al +a2 +a3 )jk +K 
k=1 

(i) For each x, let a:;: denote the Dirac delta measure concentrated at 

x. For simplicity letA. iT')N = A. j where A. iT')N =1, -1, O. Let 

aj +aj + .. . +aA P N = "1 "2 N be the measure dermed for each N and let 
N 

P = r 1 a 0+ r 2 a 1+ r 3 a -I ,where r j is dermed as above. Then the above 

"" 
theorems implies that IFdPN --+ r Fdp for all continuous functions F 

o 

on R. 

Now we identify a class of orderings for the case of 

multiplication operators with multiplier f having compact support. This is 

given in the following theorem. 
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5.2.9 Theorem 

n 

Let Tf be the multiplication operator with ! = La t 'l't where 
t=1 

'l't (x) = hij (x 1 or ;; (x) and assume that the support of ! = [0, 2'] for a non­

negative integer t . Let Mo = ~ij (x 1; i (x) / whose support <X [0, 2'] }. For a 

sequence of positive integers Un)' let A1,A2 , ... , BI'B2, ... be partitions of Mo 

and H nMo C such that IAnl = n jnand IBnl = jn' Then H = {AI'BI'A2,B2 , ... } 

is a basis for £2 (RJ and for which 

lim F(A I)+F(A 2)+···+F(A N) = lim _1 MfF[r(x)]dx 
N-+oo N M-+oo M o 

where F is any continuous function on R and {A" A2, . .. , AN }are the 

eigenvalues of (Tf)N' 

Proof: 

From theorem 5.1.5, 

TfN('I',(x))=O<=>(i) 'I'/(x)=;;(x) 'Vi ~2t where TfN =PNTfPN 

(ii) '1'; (x) = h;j (x) <=> [1; J 2~ 1] <X [0, 2'] 

Therefore Mo is the eigenspace corresponding to the eigenvalue zero and the 

rest of the proof is similar to the proof of the theorem 5.2.2 . 

5.1.10 Corollary: 

The above theorem indicates that there are variety of orderings 

for which Szego's Type Theorem is valid. For example let H,! and Mo be 

defmed as in the above theorem and j n = 2 n+l , where t is a ftxed non-negative 

IAnl = (n+l)r+l if n<2'-1 

= (n + l)r+l + 1 if n ~ 2' -1 



=2,,+1 

if n < 2' 

if n ~ 2' 

respectively. Then the ordering {Bo,Ao,B1,Aw "} is a basis for L2(RJ for 

which Szeg6's Type Theorem is true. 

For curiosity we have found the position of hij (x) and ;j (x) in the 

above ordering and it is given in the following proposition. 

S.2.11. Proposition: 

The ordered Haar basis can be represented as a sequence 

{'I' k : k = 1,2, .• } where 

1
; , 
h < 2

,+1+1 
'I' k= Fp,P 

h Fp , P ~ 2r+1+1 

Proof 

if 

if 

if 

k = r(2'+I + 1)+ 1 

k=r(2'+I +1)+ p+2 

k=(r+2sX2r+l+s+l)+p-s+2 ,s=I,2, ... 

The proof is obvious by arranging the basis elements in the 

triangular form as given below. 

Then ; r lies in the (r + It row. Therefore, 

Position of ; r = 2.2' + 3.21+1 + ... + (r + 1)2'+1-1 + r + 1 



Now we fmd the position of hrp 

Case 1: When p < 2'+1+1 

Then hrp lies in the {r + It row in the above ordering of the basis. 

Position of hrp = 2.2' + 3.2'+1 + ... + {r + 1)2,+1-1 + r + 1 + P + 1 

Case 2: When p ~ 2'+I+3,S = 1,2, ... 

If p ~ 2'+I+S,S = 1,2,... , then hrp lies (r +s + 1) th row and the 

position of hrp in this row is S2,+IH + P + 2. Therefore Position of hrp 

= 2.2' +3.2'+1 + ... +{r+s+l)2'+I+s-1 +s2'+I+S + p+2+r+l+s 

= (r+2sX2'+I+s +1)+ p-s+2 

5.2.12 Remarks: 

In the above ordering when 1 = 0 , then the ordering reduces to 

the ordering 5.1.1 for which jn = 2n , 

and IBnl=2n 't/ n~lwhere Bo ={; 0' h oo} , Aa = {h 01,; I} , 

5.2.13 Haar System in L2{RJ 

Now we transform the problem inL2{RJ to that of L2{RJ with 

out changing the spectra as well as eigenvalues of truncations as follows. 

For / e L2{RJ,7 is defmed as 7(/) = /(-/), 't/ 1 e R+ 

Then 7 e L2{RJ, and vice versa. Let T be the multiplication operator in 

L2{RJ. Defme T e L2{R+ ) such that TV)= n:t\ Therefore T and T have 

the same spectrum. 
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Hence results considered for L2(RJ can be easily carried over to the context 

Now we consider the case of mUltiplication operators in the case 

inL2(R). The following theorem gives a class of orderings in L2(R) for which 

Szego's Type Theorem holds. 

5.2.14 Theorem: 

Let {'I'k: k = 1,2, ... }, {11 k: k = 1,2, ... } be any ordered Haar 

system in L2(RJ and inL2(RJ respectively for which Szego's Type Theorem 

is valid for certain multiplication operators. Then with respect to the ordering 

{viI ,'I' 2""''1' nl,11I,112,···,111/z ... } in L2(R), Szego's Type Theorem is valid 

for certain multiplication operators . 

Proof: 

L2(R) = L2(RJ E9 L2(RJ • 

Let g E L2(R), 

:. g = g'l'R E9 g'l'R = gl E9 g2 ,gl E L2(RJ , g2 E L2(RJ, 
+ -

where 'l'R , 'l'R are the characteristic function of L2 (RJ and L2 (RJ 
+ -

respectively. Let Tf be the multiplication operator in L2(R) with multiplier 

1 E L2(R). Therefore 

1 = it E9 12 , it E L2(RJ, 12 E L2(RJ . 

Tf : g~/g 

Tf(g) = Ig= (It E9 12XgI E9 g2)= itgl + 12g2 

= (Tfl E9Tf J (gl E9g2 ) = (Tfl E9Tf2 )g 
=> Tf = Tf 1 E9 Tf 2 • 

{viI ,'I' 2""''1' nl,11 1,11 2,· .. ,11 n2 ... } is the Haar System in L2(R) and 

PN be the orthogonal projection onto first N elements. Let these N elements 



be WI' If/ 2 ,- - - - -, If/ nl ,,, I'" 2,- -,,, n
2

} such that nl + n2 = N , any positive 

integer. 

Consider an N x N corner truncations of Tf which is given by 

= (Pn 1 Tf I Pn I ) e (Pn 2 Tf 1 Pn 2 ) 

Let {,i, , A2 , ... , AN} , {PI , P 2'··" P n J and {y I' Y 2 , .. ., Y n J be 

the eigenvalues of (Tf)N' (Tf l)N and (Tf 2)N respectively. Since Szego's Type 

Theorem is valid for the spaces L2 (R+) and for L2 (R_) with respect to the basis 

{If/k: k = 1,2, ... }, and {" k: k = 1,2, ... } respectively, we have 

lim F(PI)+· .. +F(P n) = F(O) = lim_l MJF[j(X)}ix 
nl-+cx> n M-+<c M 

I 0 

(1) 

lim F(YI)+···+F(y n) = F(O) = lim _1 IF[j(x)}ix 
nz-+<c n2 M-+<c M -M 

. . . (2) 

Now consider 

lim F(,i,)+ ... +F(AN ) = lim[F(PI)+ ... +F(P n) + F(YI)+···+F(y n1)] 
N-+cx> N N-+<c N N 



=F(O) 

Therefore from equations (1) and (2) we get, 

lim F(A,)+ ... +F(AN ) = F(O) 
N-+a> N 

= 1~[ 2~ [IF(r(X))dH }(r(X)1i<]] 

which completes the proof. 

For example we give below an ordering of the Haar System for the 

space L2(R) in which case Szeg6's Type Theorem holds for certain 

multiplication operators. 

5 2.15 An ordering of the Haar wavelet basis in L2 (R) 

The ordered Haar wavelet basis for L2(R) is given by the 

filling arrangement ~ 0 , hoo , hen' ho,_1 ,; I, , •• ., h,o , ... , hO,_(2' -I) , ••• J. This can 

be written in the triangular form as 

; 0' hoo, hall' ho,_1 
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Let us denote this basis by {wt : keN}. Then from the above triangular fonn 

the f// t s are as follows. 

fP, if k = r(2,+1 + 1)+ 1 

hrp , p < 2'+1 -1 if k = r(2,+1 + 1)+ p + 1, 

hrp p ~2r+s+1 -lseN , , if k=(2r+3s)(2TH +1)+r+s+ p+l 
wt = 

if k = {3r + 2)2' + r + 1 fP-, 

h '._P' P < 2'+1-1 if k = (3r + 2)2' + r + p + 1, 

h '._P' 
P ~ 2,+s+I_1 if k = (3r + 4s + 2)2'+s + r + s + p + 1 

where fP, (x) and hrp are defmed as before. 

Now we consider the case of multiplication operators in L2{R) 

under the above ordering. In the next theorem we observe the behavior of the 

distribution of eigenvalues for certain multiplication operators in L 2 (R) . 

5.2.16 Theorem 

Let (Tt) N be the Nth stage truncations of the operator Tt in 

L2{R) with the multiplier f{x) = hoo{x) and let {,i"A.2, ... ,A.N } be the 

eigenvalues of (Tt)N repeated according to multiplicity, F any continuous 

function on R then 

lim F(A,)+ ... +F(A.N ) = F(O) 
N-+oo N 

Proof 

For simplicity let Tt = T . 

:. Tt = TeL2{R)=>T=~ EBT2 

where ~ e L2{RJand T2 e L2{RJ such that 
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~ : '1/ -+ /'1/ where '1/ E L2(RJ 
T2 : 11 -+ /11 where 11 E L2 (R_) 

From theorem 5.1.5, we have the theorem for operator ~ in 

L2 (R+ ) and similarly for the operator T2 in L2 (R_) . 

Let No , NIO and N 20 be the multiplicities of the eigenvalue 

zero of (T) N ,(~) N ' (T2) N respectively. We show that the sum of 

N 10 and N 20 is less than No. Then the multiplicity of the eigenvalue zero 

increases and hence the theorem follows for the operator Tf = T in L 2 (R) . 

Claim: NIO + N 20 ~ No . 

The proof is as follows. 

Let E ,E\ and E2 be the eigenspaces of the eigenvalue zero 

of the matrices (T)N '(~)N' (T2)N respectively. 

E = {g E L2(R): T(g)= O} 
E\ = {g\ E L2(RJ: ~(gJ= O} 

E2 = {g2 E L2(RJ: T2(g2)= O} 
Let 1; E E\ then, 

T{j;)= (~ e T2)1; 
= ~(j;)eT2{j;)= 0 

Hence E\ c E and similarly we have E2 c E, which completes the proof .. 

Finally we generalize the theorem 5.2.7 and it is given in the 

following theorem. 

S.2.17 Theorem 

LetA\(Tft =O,A 2(Tf t =1, and A 3(Tf t =-1 be the 

eigenalues of (Tf t where / = hoo . Let Mo M \ ,and M _\ be the subsets 

of H defmed by 
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Mo = {h,.;, I its support eX [o.lll. M. = { h, I support of h, c [ O. ~ ]} and 

M~. ={hUISUpportOfhU C[~.I]} . Let A •• A, •..• B •• B, •..• C •• C, •... be 

partitions of Mo, MI and M_I respectively such that IAkl = aljk (I), 

IB I ' (2) & IC I ' (3) k = a2l k k = a3l k where are constants and 

(;!I)) , (;!2)), (;!3)) be any sequences of positive integers such that 

n 

Lj!3) 

lim k:1 exists or diverges, 
n Lj!2) 

k=1 

Consider an ordering of H whose entries are arranged as 

{A"B"C"A2,B2,C2 ",,}. Then with respect to this ordering, for all continuous 

functions F on R the limit 

Proof: 

Let N be any positive integer. Then for some n , 

n-I n-I n-I 
N - a "l,(I) + a "l,(2) + a "l·(3) + K 

- I~ k 2~ k 3~ k , 
k=1 k=1 k=1 

where K = K, + K2 + K3 where K, S alj!l) , K2 S a2j!2) , K3 S a3j!3) 

Consider the Nth truncation of (Tf) where N is as above. Let N j be the 

multiplicity of A. iTf t ' j = 1,2,3 . 



Hence 

N 

LF(Ak(Tft) 
lim ..::..k=...:.I ___ _ 

N-+«J N 

Then 

N 
1· J un-
N-+«J N 

where j = 1 , 2 , 3 

n-I 

N ~ .(I) K 
1 =ol£..Jh + 1 

k~1 

n-I 

N ~ .(2) K 
2 =02£..Jh + 2 

k=1 

and 

= 1im NIF(O)+ N2F(I)+ N3 F(-I) 
N-+«J N 

In the statement of the theorem, it is given that 

... (1) 

.. " (2) 

" .. (3) 

n-I 

Dividing equation (2) by Ljk 0} and using condition (3), we can easily 

show that 

k=1 

N. 
I" J un-
N-+«J N 

exists for each j = 1 , 2 , 3 
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Hence the limit in equation (1) exists. 

Since 

lim N2 = 
N __ N 

n-I 

Therefore dividing equation (4) by Ljk (2) , we get 
k=1 

1· N2 0 Inl-~ 
N-+oo N 

For j = 1,3, as in case 1, we can easily prove that 

N 
lim -' exists. 
N-+oo N 

Therefore the limit in equation (1) exists in this case also. 

We conclude this chapter with the following remarks. 

5.2.18 Remarks: 

... (4) 

(i) When U!I) ) = (A2) ) = (AI) ) = (j k) then the above theorem reduces to 

theorem 5.2.7. 

(ii) An outline of a proposal for further investigation has been given in the 

appendix of the thesis. This is based on the theory of modified Haar functions in 

L2 (Rn }~ C(n) where C(n) is 2n 
- dimensional Clifford algebra. 
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APPENDIX 

Here we have given a result on spectral approximation of certain 

multiplication operators in L2 (R+) with respect to Haar basis and a proposal for 

future investigation to higher dimensional L2(Rn). 

A .1 A Result on Spectral Approximation 

First we discuss some defmitions and results which are used in 

this appendix. 

ALl Filtration [4] 

A filtration for Hithert Space H is a sequence F = {HI' H 2 , ••• } 

of fmite dimensional subspaces of H such that H n c H n+1 and U H n is dense 
n 

in H. 

A 1.2 Degree of a Bounded Linear Operator [4] 

Let F = {H n } he a filtration of H and Pn he the orthogonal 

projection onto H n. The degree of an operator A E B(H) is defined by 

deg(A)= suprank(PnA - APn). 
n~1 

Al.3 Arvesons Class [4] 

Let M denote the class of all A m B(H) such that 

co 

A = L A,t where A,t E B(H) and deg(A,t) < 00 such that norm of A 
I 

IIAII = inf f [1 + deg(A,t Y'2] IIA,t II < 00 
,t=1 

Then M is called Arvesons Class. 



A.IA Arvesons Criteria for an Operator to belong M (Arvesons Class) [4] 

Let {en : n e Z} be a bilateral orthononnal basis for a Hilbert 

space H and let {Hn :n=I,2, ... } be the filtration Hn = [e_n,e_n+I'···,enl· Let 

(ay) be the matrix of an operator A e B{H) relative to {en}, and for every 

k E Z, let 

dk = suplai+k,i\ . 
feZ 

Then A will belong to Arvesons class M whenever the series IIkl1l2 d k 
k 

converges. 

A.1.5 Band Operator [23] 

We call A e L{H) a band operator with respect to H if 

suptr{PnA - APn) < ao 
n 

Here we consider, 

A - Multiplication operator Tt 

H - The Hilbert space L2{RJ 

{en: ne Z} - The Haar system {"'n : n = 1,2, ... }ordered as in 5.1.1 

In this section, using the above criteria we show that the certain 

multiplication operators in L2 (R+) belongs to Arvesons class with respect to 

the Haar basis and it is given in the following theorem. 
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J\.1.6 lnheoreD! 

Let {f/ln: n = 1,2, ... } be the ordered Haar basis in 5.1.1 and Tf be the 

• IX) 1 
multiplication operator on L2{RJ WIth f= Lakf/lk, ,ak :$---u. Then Tf 

k=1 2 

belongs to the Arvesons Class. 

Proof: 

Let 

IX) 

(Tf )= (ay) where ay = Iff/li{X),tj{X}Jx. 
o 

IX) 

=sup If{x)f/li{X)f/li+k{X) dx 
ieZ. 0 

(if support of hy{x)c in the support of h"'n{x) or tP ",{x)) 

= ~~: { 0, la i+k I ' \2 ~ a i+k \} 

If (ak )=(X2k) or ak :s; Xu then, 

dk = ~~{o, Ir2
(i+k)l, 12~r2(i+k)l} 

2~ 2~ 1 
< 22k < 22k < 2k 

Since Tf is symmetric d -k = d k. Then 



Hence the theorem follows from A.4. 

We conclude this section of the appendix with the following 

remarks. 

A1.7 Remarks: 

(i) Since 1/ belongs to Alvesons class we have the following estimate of 

commutator 2-norms 

(1) 

where Hilbert - Schmidt norm of operator B is IIBII2 = (trace{B * B ))1/2 . 

Therefore Tf is a band operator. 

(H) As a consequence of Arvesons Theorem [4, Theorem3.8] ue{Tf ) can be 

fully recovered by the eigenvalues of the truncations {Tf t . 

A.2 A Proposal for Future Investigation 

We give an outline of a proposal for further investigation. This is 

based on the theory of modified Haar functions in L2 (Rn )® C(n) , where C(n) is 

2n -dimensional Clifford algebra. 

The construction of the modified Haar functions can be found in 

the article "The Cauchy singular integral operator and Cliffor~~~~. \. 
:,'." ,1-:_ .. , 

by Lars Andersson, Bjom Jawerth, and Marius Mitrea [5, Chapter15]. ';~.\ 

G 8C4-.3 
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First we give the defmition of Clifford algebras over R. Fix a 

non-negative integer n and let eo,ew •• ,en be the standard basis in 

Rn+1 (or Cn+I). 

A2.1 Clifford Algebra [5] 

The 2n_ dimensional Clifford algebra ~n) (or C(n)) is the 

algebra over R (or C respectively) freely generated by eo' el , ••. , en subject to 

the relations: 

1. eo is the multiplicative identity 

if j*k 

if j=k 

In particular the Clifford algebras ~o),R(1)' and R(2) are the real 

numbers, complex numbers, and quaternions, respectively. We embed Rn+1 in 

R(n) (or C(n)) by 

n 

xeRn+l,x=(xo,xl , ..• , xJ~ Lxjej e~n) cC(n) 
j=O 

The image of Rn
+

1 under this embedding is called the set of Clifford numbers 

in R(n) (or C(n) ) . 

For AC{1,2, ... ,n},A={i l <i 2<, ... <ik }, we set 

R(n) and C(n) • Hence 

We shall write xoeo = x o, and refer to Xo as the scalar part of x, 

i.e., Xo =: Re x . The above basis is orthonormal with respect to the inner product 

where x, y e R(n) and the Euclidian norm is defmed as 

100 



With this nonn Rt.,,) and C(,,) become nonned algebras. 

Now consider the Clifford algebra L2{R" )®C(,,) , the Clifford 

algebra version of L2{R"). In this space modified Haar system behaves like an 

(hi) orthogonal set of functions with respect to the fonn 

(1) 

where f...J2 are C(,,) valued functions, :E - the graph of a Lipschitz function 

g: R" -+ R and N{x) is the Clifford number defmed by (1, -Vg{x)). 

Therefore, Re N{x) = 1 and IN{x ~ - 1 . 

Let F denote the collection of all dyadic cubes of R" . 

Q = Q •. , = {x E R" : ;: ,; x, ,; v ~~ 1 
i = 1, 2, ... ,n} for k E Z, V ER". 

Each dyadic cube has 2n subcubes. 

{oi }~:l = {Qi 
E FI{Qi)= ~ I{Q1 Qi c Q} 

where I{Q) is the side length of Q. 

Let FI; = {Q E F;/{Q) = 2\ }. Let IQj denote the volume of Q . Defme 

m{Q) = IQj-l IN{x)ix 
Q 

where N{x) is defmed as above. Then Re m{Q) = 1 and Im{Q ~ - 1 . 

For Q E F and i = 1, 2, ... ,2" -1, define the C(,,) - valued functions 

{PLQ,;} . and {PRQ,;} by 
Q.' Q.I 
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and 

The next two results shows that p s behave much like an 

orthonormal basis for L2 (R" All)' 
A2.3 Corollary [5] 

For each f E L2(R" All)' 
2"-1 

f= II(f , P~.i) };P~.i 
QeF jel 

and 

2"-1 

f= IIp~.i(f , P~.i)}; 
QeF j=1 

A2A Theorem [5] 

If f E L2(R" All) then 

A2.5 Modified Haar System in L2(R") 

From the above basis, an orthonormal basis for L2(R") can be 

derived by taking L = R", then g{x) = 0. Therefore, N{x) = (I, 0,0, ... ,0). 

Then the above P s reduces to 
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The family ~b} . fonns an orthononnal basis for L2 (Rn) with 
Q,I 

respect to the standard inner product 

(f.,/2)R" = If.(x)/2(X)ix, xeRn (-: N(x) = (1,0, .. , ,0) ) 
R" 

This is the modified Haar system in L2(Rn) • In this case for 1 e L2(Rn) , 

2"-1 

1= L L (/,hb)hQ 
QeF. ;=1 

Thus one can fonnulate the problems investigated in this thesis 

in the above set up and carry out investigations. • 
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