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Chapter 1 

Introduction 

1.1 Inventory System and its Motivation 

Inventory management of physical goods or other products or elements is an integral part of 

lo~istic systems common to all sectors of the economy, such as business, industry, agriculture 

and defense. In an economy that is perfectly predictable, inventory may be needed to take 

advantage of the economic features of a particular technology, or to syncronize human tasks, 

or to regulate the production process to meet the changing trends in demand. When uncertainty 

is present, inventories are used as a protection against risk of stockout. 

The existance of inventory in a system generally implies the existance of an organized 

complex system involving inflow, accumulation, and outflow of some commodities or goods 

or items or products. For example, in business the inflow of goods is generated through pro­

curement, purchase, or production. The outflow is generated through demand for tpe goods. 

Finally, the differer.ce between the rate of outflow and the rate of inflow generates an inventory 

for the goods. 

The regulation and control of inventory must proceed within the context of this organized 

system. Thus inventories, rather than being interpreted as idle resources, should be regarded as 

a very essential element, the study of which may provide insight into the aggregate operation 

of the system. The scientific analysis of inventory systems define the degree of interrelation-
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sh;p between inflow and outflow and identities econolllic control nll:thods for operating sllch 

systems. 

There arc several factors affecting the inventory. Tlll:y arc demand, life-times of items 

stored, damage due to external disaster, production rate, the time Iag between order and sup­

ply, availability of space in the store etc. If all the parameters are known beforehand, then 

the inventory is called deterministic. If some or all of these parameters are not known with 

certainty, then it is justifiable to consider them as random variables with some probability dis­

tribLlti0n and the resulting inventory is then called stochastic or probabilistic. System in which 

one commodity is held independent of other commodities are analyzed as single commodity 

ilwentory problems. Multi-commodity inventory problems deal with two or more commodities 

held together with some form of dependence. Inventory systems may again be classified as 

continuous review or periodic review. A continuous review policy is to check inventory lev~ 

continuously in time and a periodic review policy is to monitor the system at discrete, equally­

spaced instants of time. 

Efficient management of inventory system is done by finding out optimal values of the 

decision variables. The important decision variables in an inventory system are order level 

or maximum capacity of the inventory, re-ordering point, scheduling period and lot-size or 

order quantity. They are usaully represented by the letters B, s, t and q respectively. Different 

policies are obtained when different combinations of decision variables are selected. Existing 

prominent inventory policies are: (i) (s, B)-policy in which an order is placed for a quantity 

up to B whenever the inventory level falls to s or below. (ii) (s, q)-policy where the order is 

given for q quantity when the inventory level is in s or below. (iii) (t, B)-policy which places 

an order at scheduling periods of length t so as to bring back the inventory level up to Band 

(iv) (t, q)-policy that gives an order for q quantity at epochs oft interval length. 

The time elapsed between an order and the consequent replenishment is termed as lead 

time. If the replenishment is instantaneous, then lead time is zero and the system is then called 

an inventory system without lead time. Inventory models with positive lead time are complex 

to analyze; still more complex are the models where the lead times are taken to be random 

variables. 
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Shortage of inventory occur in systems with positive lead time, in systems with negative 

re-ordering points, or in multi-commodity inventory systems in which an order is placed only 

when the inventory levels of at least two commodities fall to or below their re-ordering points. 

There are different methods to face the stock out periods of the inventory. One of the methods 

is to consider the demands during the dry periods as lost sales. The other is partial or full 

backlogging of the demands during these period. 

In most of the analysis of inventory systems the decay and disaster factors are ignored. 

In several existing models, it is assumed that products have infinite shelf-life. But in several 

practical situations, a certain amount of decay or waste is experienced on the stocked items. 

For example this may arise in certain food products subjected to deterioration or radio-active 

materials wh{'re decay is present, or volatile fluids under evaporation. These deterioration of 

items in the inventory system occur due to one or many factors such as storage condition, 

weather condition including the nature of the particular product under study. Some items in the 

inventory system may deteriorate wheras other can be stored for an indefinite period without 

deterioration. The deterioration is usually a function of the total amount of inventory on hand. 

This is one of the crucial factor that affect the inventory system. 

1.2 Literature survey 

The mathematical analysis of inventory problem was started by Harris [30]. He proposed the 

famous EOQ formula that was popularized by Wilson. Pierre Masse [63] discussed the stochas­

tic behaviour of the inventory in the case of scheduling the use of stored water to minimize the 

cost of supplying electric energy. He obtained a satisfactory result regarding this problem. 

The first paper related to (s, S)-policy is by Arrow, Harris and Marchak [3].They showed that 
• 

the total expected cost incurred from the use of an (s, S)-policy satisfied a renewal equation. 

Dvorestzky, Kiefer and Wolfowitz [17] established sufficient conditions an (s, S)-policy for 

the single stage inventory problem to be optimal. Whitin [89] and Gani [21] have sumarized 

several results in storage systems. 

A systematic account of the (s, S) inventory policy is provided Arrow, Karlin and Scarf [4] 
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based on renewal theory. Hadley and Whitin [29] give several applications of different inven­

tory models. In a review article Veinott [87] provided a detailed account of the work carried 

out in inventory theory. Naddore [56] compared different inventory policies by discussing their 

cost analysis. Gross and Harris [27] considered the inventory system with state dependent lead 

times. In a later work [26] they dealt with the idea of dependence between replenishment times 

and the number of outstanding orders. Tijms [86] contains a detailed analysis of the inventory 

system under (8, S)-policy. 

Sivazlian [79] analyzed the continuous review (8, S) inventory system with arbitrarily dis­

tributed interarrival times and unit demands. He showed that the limiting distribution of the po­

sition inventory is uniform and independent of the interarrival time distribution. Richards [70] 

proved the same result for compound renewal demands. Later [71] he dealt with a continuous 

review (8, S) inventory system in which the demand for items in inventory is dependent on an 

external environment. Sahin [75] discussed continuous review (8, S) inventory with continuous 

state space and constant lead times. Srinivasan [81] extended Sivazlian's result to the case of ar­

bitarily distributed lead times. He derived explicit expressions for probability mass function of 

the stock level ~md extracted steady state results. This was further extended by Manoharan, Kr­

ishnamoorthy and Madhusoodanan [54] to the case of non-identically distributed inter-arrival 

times. Sahin [74] derived the binomial moments of the transient and stationary distributions 

of the nunlber of backlogs in a continuous review (8, S) inventory model with arbitrarily dis­

tributed lead time and compound renewal demand. Thangaraj and Ramanarayanan [85] deal 

with an inventory system with random lead time having two order levels. 

Kalpakam and Sapna [38] analyze an (8, S) ordering policy in which items are procured 

on an emergency basis during stock out period. Again they [39] dealt with the problem of 

controlling the replenishment rates in a lost sales inventory system with compound Poisson 

demands and two re-order levels with varying order quantities. Prasad [64] developed a new 

classification system that compare different inventory systems. Hill [31] analyzed a continuous 

review lost sales inventory model in which more than one order may be outstanding. Perry 

et al.[62] analyzed continuous review inventory systems with exponential random yield by 

the techniques of level crossing theory. Sapna [77] deals with (8, S) inventory system with 
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priority customers and arbitrary lead time distribution. Kalpakam and Sapna [40] discuss an 

environment dependent (s, S) inventory system with renewal demands and lost sales where the 

environment changes between available and unavailable periods according to a Markov chain. 

A lot of work related to perishable inventory system are reported. Still more work are 

going on in this direction because of its influencing nature in the inventory system. Ghare and 

Schrader [27.] introduced the concept of exponential decay in inventory problems. Nahmias 

and Wang [58] derive a heuristic lot size re-order policy for an inventory problem subject to 

exponential decay. Graves [25] apply the theory of impatient servers to some continuous review 

perishable inventory models. An exhustive review of the work done in perishable inventory 

until 1982 can be seen in Nahmias [57]. Kaspi and Perry [42,43] deal with inventory system 

with constant life times applicable to blood banks. 

Kalpakam and Arivarignan [34, 35] studied a continuous review inventory system having 

an exhibiting item subject to random failure (exponentially distributed life-times). They [36] 

extended the result to exhibit items having Erlangian life times under renewal demands. Again 

they [33] analyzed a perishable inventory model having exponential life-times for all the items. 

Manoharan and A.Krishnamoorthy [53] considered an inventory problem with all items sub­

ject to decay and having arbitrary interarrival time distribution. They derived the system state 

limiting probabilities. ,Srinivasan [83] investigated an inventory model of decaying items with 
" 

positive lead time under (s, S) policy. Incorporating adjustable re-order size he discussed a 

solution procedure for inventory model of decaying items. 

Liu [50] considered an inventory system with random life-times allowing backlogs, but 

having zero lead time. He obtained a closed form for the long run cost function and discussed 

its analytic properties. Raafat [66] provide a survey of decaying inventory models up to [1990]. 

Ravichandran [67] analyzed an (s, S) perishable inventory system with random replenishment 

time and Poisson demands. In that study, he assumed that the aging of the new stock be­

gins only after exhausting the existing stock and some analytical results were obtained. Using 

Matrix Analytic Method, Liu and Yang [51] analyzed an (s, S) inventory model with random 

shelf-time, exponential replenishing time and no restriction on the number ofbacklogged units. 

Arivarignan, Elango and Arumugam [2] considered a perishable inventory system at a service 
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facility, with arrival of customers fonning a Poisson process. Each customer requires a single 

item which is celivered through a service of random duration having exponential distribution. 

Several perfonnance measures were given. 

Since this thesis provides results on retrial inventory. inventory with postponed demands 

and inventory with service times we first give the motivation for considering such results. 

From Retrial Queues to Retrial Inventory 

Queueing system in which arriving customers who find all servers and waiting position (if 

any) occupied, may retry for service after a period of time, are called retrial queues or queues 

with repeated attempts. The most obvious example is provided by a person who desires to 

make a phone call. If the line is busy, then he can not queue up but tries again some time 

later. Thus, retrial queues are characterised by the following feature: a customer arriving when 

all servers accessible for him are busy, leaves the service area but after some random time 

repeats his demand. Retrial queues are a type of network with reservicing after blocking. 

Thus, this network contains two nodes: the main node where blocking is possible and a delay 

node for repeated attempts. As for other networks with blocking, the investigation of such 

systems presents great analytical difficulties. Nevertheless, the main feature of the theory of 

retrial queueing systems as an independent part of queueing theory are quite clearly drawn. In 

particular, the nature of results obtained, methods of analysis and areas of applications allow 

us to devide retrial queues into three large groups in a natural way: Single-channel system, 

multi-channel fully available systems and structually complex systems. The standard queueing 

models do not take into account the phenomenon of retrials and therefore can not'be applied 

in solving a number of practically important problems. Retrial queues have been introduced to 

solve this deficiency. 

On the other hand retrial in inventory occurs as follows: Customers arrive to an establish­

ment demanding an item. If the item is available the same is supplied (may be with negligible 

service time or with a positive (not necessarily random) service time). However, when at a 

demand epoch the item is out of stock, such customers need not be backlogged nor lost. An 
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alternative to these is the retrial by such customers. At random epochs of time such customers 

retries until either the demand is met or finally the customer decides not to approach that estab­

lishment (may be he is no more in need of the item or he procures it from elsewhere). 

Queues with Postponed Work and Inventory with Pooled Cus­

tomers 

Postponement ef work is a common phenomena. This may be to attend a more important job 

than the one being processed at present or for a break or due to lack of quorum (in case of 

bulk service) and so on. Postponement of service to customers take place in different ways 

depending on the nature of the input and service process. For example in the case of priority 

queues service tu customers of lower priority stands postponed when one of the higher priority 

calls on. In the case of preemptive service, customers of lower priority in service is pushed out 

the moment one with higher priority arrives. For further details on priority queues one may 

refer to, for example, Gross and Harris [28] laiswal [32], Takagi [84]. Queues with vacation 

to server also can be regarded as a queue where work stands postponed. For example in gated 

vacation, the server closes a gate behind the last customer in the system before the start of 

a service on return from vacation. For details refer to Takagi [84]. In the case of queues 

with general bulk service rule for example Neuts [60], the service of the next batch customers 

stands postponed until a minimum of' a' are available at a service completion epoch. In control 

policies such as N.T.D. a busy cycle stands only an accumulation ofN customers in the system, 

an elapse ofT time unit, the place or the work load accumulator to D, respectively. H~nce these 

control policies can also be regarded as postponement of service. 

On certain occations postponement of work reduces partly or some time completely cus­

tomer impatience, especially in the context of priority queues. There are several other means 

of reducing customer impatience. Of these the one introduced by Qi-Ming He and Neuts [65] 

deserves special mention. They devised a control machanism of a system consisting of two 

queues served by two different servers, by introducing transfer of customers in bulk from the 
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larger to the shorter queue. They established that even when the queues are not separately 

stable the combined system can be stable. By identifying a two dimensional Markov chain 

. with one component representing the sum of the number of customers in the two queues and 

the other, the dif,ference between queue 1 and queue 2, they analyzed the resulting system as a 

level independent QBD. Some earlier work involving transfer of customers (jockeying) could 

be found in [90, 92, 93]. 

In this thesis we introduce postponement of suppy of the items to a demand as described 

below. At a demand epoch if the item is out of stock then such customers are directed to a 

pool. Such customers are referred to as pooled customers / postponed work (demands). On 

replenishment customers from the pool are selected for providing the item according to some 

rules as described in chapters to follow. This is an alternative to backlogging of demands 

where at the time of arrival of a customer the system is found to be out of stock. Whereas in 

backlogged case such customers are provided the item immediately on replenishment, in the 

case postponed demand, this facility is not extended to the customers. In the latter the system 

management takes the decisions as to when the 'postponed customers 'be served. 

Inventory with Service Time 

In all works reported in inventory prior to 1993 it was assumed that the time required to serve 

the item to the customer is negligible. Berman, Kim and Shimshak [9] is the first attempt to 

introduce positive service time in inventory, where it was assumed that service time is deter­

ministic. Latter Berman and Kim [10, 11] extended this results to random service time. Some 

other work reported in inventory with service time are Berman and Sapna[12, 13] investigate 

inventory control at a service facility, which uses one item of inventory for service provided. 

Assuming Poisson arrival process, arbitrarily distributed service times and zero lead time they 

analyze the system with the restriction that waiting space is finite. Under a specific cost struc­

ture they derive the optimum ordering quantity that minimizes the long run expected cost rate. 

With all these still there are only a handful of papers that deals with inventory involving service 

time. In a few chapters to follow we consider inventory with random service times. 
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1.3 Outline of the Present Work 

This thesis is divided into seven chapters including this introductory chapter. Second chaper 

con~ains two models. In the first model we analyze an (8,8) production Inventory system with 

retrial of customers. Arrival of customers from out side the system form a Poisson process. 

When the inventory level reaches 8 due to the external demand or due to purchases made by 

orbital customers, the system is immediately converted to ON mode from the OFF mode i,e. 

production starts. The inter production times are exponentially distributed with parameter J-L. 

When inventory level reaches zero further arriving demands are sent to the orbit which has 

capacity M « 00). Customers, who find the orbit full and inventory level at zero are lost to the 

system. Service to the the orbital customers or external demands are provided if atIeast one item 

is in the iRventory. Demands arising from the orbital customers are exponentially distributed 

with parameter ,. The long run joint probability distribution of the number of customers in 

the orbit and the inventory level is obtained. Some measures of the system performance in 

the long run are derived and numerrical illustrations provided. In the model-II we extend 

these results to perishable inventory system assuming that the life-time of each item follows 

exponential distribution with parameter (). Also it is assumed that when inventory level is zero 

the arriving demands choose to enter the orbit with probability (3 and with probability (1 - (3) 

it is lost for ever. All assumptions of model -I hold in this case also. Here again the long run 

joint probability distribution of the number of customers in the orbit and the inventory level is 

obtained. Some measures of the system performance in the long run are derived and numerrical 

illustrations provided. 

Third chapter deals with an (8, S) production inventory with service times and retrial of un­

satisfied customers. Primary demands occur according to a Markovian Arrival Process (MAP). 

In this system, there is a buffer which has finite capacity equal to inventory level in the system 

at any given time. When the maximum buffer size is reached, further demands proceed to an 

orbit of infinite capacity. Initially the system is assumed to be in S and in OFF mode. When 

inventory level reaches 8 due to service provided to customers production starts, production 

follow l1e PH- distribution. The orbital customers try their luck to access the buffer for service 
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at a constant rate. Service times of customers are exponentially distributed. Using matrix ana­

lytic method, the steady state analysis of the system is performed. Some performance measures 

are obtained and a few numerical illustrations provided. Further we also discuss the particular 

case of the system where arrival form a MAP and production process follows exponential dis­

tribution. Based on these we list some system performance measures and finally provide some 

numerical illustrations. 

In the fourth chapter we consider an (8, S)-retrial inventory with service time in which pri­

mary demands occur according to a Batch Markovian Arrival Process (BMAP). The inventory 

is controlled by the (8, S) policy. Replenishment times are assumed to follow exponential dis­

tribution with parameter /3. In this system, there is a buffer which is of finite capacity equal 

to inventory level in the system at any given time, when the max4n,um buffer size is reached, 

furtht:r demands proceed to an orbit of infinite capacity. The orbital customers try their luck to 

access the buffer for service with constant retrial rate B. Service time of the customers are expo­

nemially distributed with parameter J.L. Using matrix analytic method the steady state analysis 

of the system is performed. Some performance measures are listed and provide a few numerical 

illustrations. 

Chapter five deals with an (8, S) inventory system with random service time. Primary de­

mands occur according to Poisson process with parameter A. In this system there is a finite 

buffer whose capacity varies according to the inventory level at any given time. When the max­

imum buffer size is reached, further demands join a pool of infinite capacity with probability 'Y 

and with probability (1 - 'Y) it is lost for ever. When inventory level is larger than the number 

of customers in the buffer, an external demand can enter the buffer for service.Two models 

are disr.ussed in that fhapter. In model-I, we assume that a pooled customer is transfered to the 

buffer for service at a service completion epoch with probability p if the inventory level exceeds 

s + 1 and also larger than the number of customers in the buffer. In model-II, we extend the 

model-I by including the assumption that when inventory level is atIeast one and no customer 

is in the buffer then also with probability one a pooled customer is picked up for service. It is 

assumed that initially the inventory level is S. When inventory level reaches to 8 due to service 

an order for replenishment is placed. The lead is exponentially distributed with parameter /3. 
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For both of the models; we obtain the steady state system size distribution, some performance 

measures are obtained and a few numerrical illustrations provided. 

In the sixth chapter we consider two models. In the /lrst modd wc analyze an (8,8) Inven­

tory system with postponed demands where arrivals of demands form a Poisson process. When 

inventory level reaches zero due to demands, further demands are sent to a pool which has 

capacity M « 00). Demands of the pooled customers will be met after replenishment against 

~he order placed. Further they are served only if the inventory level is atleast 8 + 1. The lead 

time is exponentially distributed.The joint probability distribution of the number of customers 

in t1e pool and the inventory level is obtained in both the transient and steady state cases. Some 

measures of the system performance in the steady state are derived and numerical illustrations 

are provided. In the second model, we extend our result to perishable inventory system as­

suming that the life-time of each item follows exponential distribution with parameter e. Also 

it is assumed that when inventory level is zero the arriving demands choose to enter the pool 

with probability f3 and with complementary (1 - (3) it is lost for ever. All other assumptions of 

m::>del-I hold in this case also. 

In the seventh chapter we analyze an (8, S) production inventory system with switching 

time. A lot of work is reported under the assumption that the switching time is negligible but 

this is not the case for several real life situation. Some production system may take significant 

time to start the production run. We assume the switching time to be exponentially distributed. 

Shortages are allowed and infinite backlog permitted. Identifying a two dimensional Markov 

chain, we investigate the optimal switching time for the system in steady state case. Waiting 

time distributIOn is derived. A suitable cost function is defined and analyzed. Some numerrical 

il!ustrations are provided. 



Chapter 2 

Inventory System with Retrial of 

Customers 

2.1 Introduction 

In this chapter we discuss an (s, S) production Inventory system with retrial of customers. Two 

models are discussed. In the first model we examine the case in which inventoried items have 

infinite shelf-life time and in the second model we assume that the items have random shelf-life 

time which is exponentially distributed with parameter e 
To start with we provide an overview of retrial queues as it is from it (retrial queue) that the 

concept of retrial in inventory emerged. Retrial Queues deal with the behaviour of queueing 

systems of customers who could not find a position at the service station at the arrival time. It 

has been investigated extensively (see the survey papers by Yang and Templeton[91J and Falin 

[18], the monograph by Falin and Templeton [19] and also the more recent state of art in retrial 

queues by Artalejo [5]). Retrials of failed components for service was introduce into reliability 

ofk-out-of-n system by Krishnamoorthy and Ushakumari [47]. Artaljo, Krishnamoorthy and 

Lopez herrero [6] is the first attempt to studying inventory control with positive lead time and 

"Tne results of Model-I of this chapter will appear in the Stochastic Modelling and Application. 
"The results of Model-I! of this chapter are appeared in Mathematical and Computational Models (Editors: 

O. Arulmozhi and R. Nadarajan); Allied Pub.; p : 89-98 ; 2003. 
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retrial of customers who could not get their demands satisfied during their earlier attempts to 

access the service station. 

Work so far reported in inventory with retrials is very liltk. Except the one mentioned 

above ( Artaljo, Krishnamoorthy and Lopez herrero [6 D, no work in this direction has come 

to our notice. In this chapter we investigate retrial of unSl1ccess ful customers in accessing the 

service station in an (s, S) production inventory system both for the case of perishable and 

non-perishable inventoried items. 

This chapter is organized as follows: In section 2.2 some assumptions are made for the 

models. Model-I is discussed in section 2.3. This section contains four subsections. Steady 

state analysis of the model is studied in the subsection 2.3.l. In subsection 2.3.2 we list some 

system perfonnance measures and based on that measures a cost function is developed and 

some numericals are provided in the subsections 2.3.3 and 2.3.4 respectively. In section 2.4 we 

discuss the model-H. This section contain five subsections. We discuss the model in subsection 

2.4.1. In subsection 2.4.2. we studied the system in steady state case for perishable inventory 

system. System characteristics measure is given in 2.4.3. A cost function is discussed in the 

subsection 2.4.4 and finally, we provided illustrative numerical examples in subsection 2.4.5. 

2.2 Assumptions 

1. Initially the inventory level is S. 

2. Arrival of demands form a Poisson process with parameter A. 

3. Inter arrival times of items from the production process are exponentially distributed with 

parameter J-L. 

4. Production starts when the level depletes to s due to external demands or demands from 

retrial customers. 

5. When the inventory level is zero, incoming customers go to orbit (subject to the maxi­

mum capacity) and try their luck after some time with inter-retrial times of each orbital 
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customer exponentially distributed with parameter ,. 

6. Orbit has finite capacity M. 

2.3 Model-I 

In this model the inventory system starts with S units of the item on stock and production 

unit is in OFF mode. When the inventory level reaches s, due to demands from primary or 

orbital customers, the system is immediately switched on to ON mode ie. production starts. 

The time required to produce one unit of the item is exponentially distributed with parameter 

J.L. When inventory level reaches zero, the incoming customers join an orbit of finite capacity 

M (provided it is not full) and try their luck after some time. Thus customers who encounter 

the system when inventory level is zero and orbit full are lost. Demands arrive according to 

a Poisson process with rate A. Each orbital customer try to access the service counter such 

that the inter retrial times follow exponential distribution with parameter k, when there are 

k customers in the orbit. If atleast one unit of the item is available the demand will be met 

immediately; otherwise the customer return to the orbit. The production will remain in ON 

mode until the inventory level reaches to S. Let 

I(t), t ~ 0, be the inventory level at time t. 

N(t), t ~ 0, be the number of customers in the orbit at time t. 

Define 

{
I if the system is in ON mode 

X(t) = 
o if the system is in OFF mode 

To get Gontinuous time Markov process, we consider {( I (t), X (t), N (t) ), t ~ O} whose state 

space is E = El U E2 where, 

El = {(i, 0, N) : i = s + 1, s + 2, ... , S; N = 0,1, ... ,M} 

E2 ={(i,1,N) :i=0,1,2, .. · ,S-l;N=O,l, .. · ,M} 



2.3 Model-I 

The infinitisemal generator of the process is given by 

A=(a(i)j,k: l,m,n))j(i,j,k),(l,m,n) E Ewhere 

a(i,j,k: l,m,n) = 

if i = s + 2, ... , S; j = 0, k = 0 

l = i - 1j m = j, n = k 

ifi = s + 1jj = 0, k = 0,1,··· , M 

l = i - 1j m = 1; n = k 

if i = 1, 2, . . . , S - 1 j j = 1 j k = 0, 1, . .. , M 

l = i-I; m = j, n = k 

ifi = 1,2,··· , S - 1j j = 1, k = 1,2,· .. , M 

l = i - 1j m = jj n = k - 1 

ifi = Ojj = 1, k = 0,1,··· , M-I 

l=ijm=jjn=k+1 

ifi=O,l, .. · ,S-2;j=1,k=0,1, .. ·,M 

l = i + 1; m = j; n = k 

ifi=S-ljj=l,k=O,l, .. · ,M 

l = i + 1; m = 0; n = k 

ifi=O,l, .. · ,S-ljj=l,k=O,l, .. ·,M 

l=ijm=jjn=k 

- (A + J.L + k,) if i = 0, 1, . .. , S - 1 j j = 1, k = 1, ... , M 

l=ijrn=jjn=k 

ifi=s+l, .. · ,Sjj=O,k=l, ... ,M 

l = ij m = 1j n = k 

ifi = s + 1; j = 0, k = 1,2,· .. , M 

l = i - 1j m = 1; n = k - 1 
\ 

if i = s + 2, ... , Sj j = 0, k = 1,2, ... , M 

l = i - 1j m = j; n = k - 1 

15 
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Write Ail = (a(i,j,k;l,m,n)) 

Then the infinitesimal generator A can be convinicntly expressed as a pertitioned matrix 

A = ((Ail)) where Ail is an (M + 1) x (M + 1) matrix which is given by, 

Al ifi = s + 2", . ,S; l = i-I and production off or 

i = 1,2" .. ,S - 1; I =i - 1 and production on or 

i = s + 1; l = i-I and production off 

A2 ifi = 0,1"" ,S - 2; l = i + 1 and production on or 

Ail = i = S -1;l = i + 1 and production on 

A3 ifi = s + 1"" ,S; l = i and production off 

A4 ifi = 1,2"" ,S - 1; l = i and production on 

As if i = 0; l = i and production on 

0 otherwise 

with 

M >. M, 0 0 0 0 

M-I .0 >. (M-l){ 0 0 0 

M-2 0 0 >. 0 0 0 

AI= 

2 0 0 0 >. 2, 0 

1 0 0 0 0 A , 
0 0 0 0 0 0 A 

16 
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M J1 0 0 0 

M-I 0 J1 0 0 

A2 = ... 

1 0 0 J1 0 

0 0 0 0 J1 

M -().. + M,) 0 

M-I 0 -().. + (M - Ih) 

A3 = ... 

1 

o 

M 

o 
o 

-().. +J1 + M,) 

o 
o 

0 

o 
o 

o 
o 

-().. +,) 0 

o -).. 

17 

0 0 

M-I 0 -().. + J1 + (M - 1h) 0 0 

A4 = .. , 

1 0 0 -()..+J1+,) 0 

0 0 0 0 -().. + J1) 

M -J1 0 0 0 0 0 

M-I ).. -().. + J1) 0 0 0 0 

M-2 0 ).. -().. + J1) 0 0 0 

As = ... 

2 0 0 0 -().. + /L) 0 0 

1 0 0 0 ).. -().. + J1) 0 

0 0 0 0 0 ).. -().. + J1) 

Thus we can write A in the partitioned fonn as 
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(B,O) A3 Al 0 0 0 () () 0 0 0 0 

(B - 1,0) 0 A3 Al 0 0 0 () 0 0 0 0 

B-2 0 0 A3 0 0 0 0 0 0 0 0 

(8+1,0) 0 0 0 A3 0 0 Al 0 0 0 0 

(B-1,1) A2 0 0 0 A4 0 0 0 0 0 0 

.4= 
(8+1,1) 0 0 0 0 0 A4 Al 0 0 0 0 

(8,1) 0 0 0 0 0 A2 A4 Al 0 0 0 

(8 - 1,1) 0 0 0 0 0 0 A2 A4 0 0 0 

2 0 0 0 0 0 0 0 0 A4 Al 0 

1 0 0 0 0 0 0 0 0 A2 A4 Al 

0 0 0 0 0 0 0 0 0 0 A2 As 

2.3.1 Steady State Analysis 

It can be seen from the structure of matrix A that the state space E is irreducible. Let the 

limiting distribution be denoted by n(i,j,k): 

n(i,j,k) = limt ..... ooPr[(I(t),X(t),N(t)) = (i,j,k)]' (i,j,k) E E 

Write n - (n(S,O) ... n(s+l,O) n(S-I,I) n(S-2,1) ... n(O,I)) - " , , " 

and n(K) = (n(K,M), n(K,M-l), ... , n(K,l), n(K,O)) 

forK=(B,O),··· ,(8+1,0),(8-1,1)"" ,(0,1) 

The limiting distribution exists and satisfies the following relations: 

nA = 0 and 2:= n{i,j,k) = 1 
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The first equation of the above yields the following set ofrelations:-

rr(S,O) A3 * rr(S-I,I) A2 = 0 

rr(i+I,O)A I + rr(i,O)A3 = 0 if: i = s + 1,··· , S - 1 

rrU+I,I) Al + rr(i,l) A4 + rr(i-I,I) A2 = 0 if: i = s + 1, ... , s - 2 

rr(i+l,I) Al + rr(HI,O) Al + rr(i,l) A4 + rr(i-I,I) A2 = 0 if: i = s 

rr(HI,I) Al + rr(i,l) A4 + rr(i-I,I) A2 = 0 if: i = 1,2, ... , s - 1 

rr(I,I) Al + rr(O,I) A5 = 0 

19 

The solution of the above equaticns (except the last one) can be conviniently expressed as:­

rr(S-i,O) = rr(S,O) f3(S-i,O) and 

where 

and 

rr(S-i,l) = rr(S,O) f3(S-i,l) 

I ifi = 0 

f3(S-i,O) = AIAJ'I if i = 1 

(-l)i(AIAJ'I)i ifi = 2,3,··· , S - s - 1 

-A3A2'1 

( _l)i+l(3(S_l,l) (A4A2'I) 

(_1)i- If3(S_I,I)(A4A2'I) + (_l)if3(S_I,I)(AIA2'I) 

ifi = 1 

ifi = 2 

ifi = 3 
(3(S-i,l) = 

-f3(S-i+l)(A4A2'I) - f3(S-H2) (AIA2'I) ifi = 4,5,··· , S - S 

-f3s(A4A2'I) - f3s+l(AIA2'I) - (-1)S-S+I(A 1AJ'I)S-s+I(AIA2'I) ifi = S - s + 1 

if i = S - s + 2, .... S 

and to compute rr(S,O) , we use the relations 

which yield, respectively, 
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2.3.2 System Characteristics 

Mean Inventory Level 

Let a1 denote the average inventory level in the long run. Then we have 

al = ",8 i ",M rr(i,O,k) + ",8-1 i ",.~f rr(i,l,k) 
wt=s+l wk=O w,=l wk=O 

Switching rate 

Suppose a2 is the mean switching rate. Then 

a2 = ).. ",M rr(s+I,O,k) + ",!If k'Yrr(s+l,O,k) wk=O wk=l I 

Expected Number of orbital Customers 

The expected number of orbital customers a3 is given by 

a3 = ",M k(",S-l rr(i,l,k) + ",S rr(i,O,k)) 
wk=l Wt=O w,=s+l 

The average number of customer's lost 

The average number a4 of customers lost is, 

Expected Waiting Time 

Denote by W k the waiting time of the kth customer in the orbit, k = 1,2, ... ,M. We evaluate 

E(Wk ) conditional on the system state. Figure 2.1 provides thc transition diagram for comput­

ing E(Wk) Thus E(Wk) = 2:;;:'0 E(Wkl System state at (0, k)).P(system in state (0, k)) 

h E(UT IS (0 k)) - [(k-y)2+2kw+2k-)'A] fi k - 1 2 M were vv k ystem state at, - (A+J.t)(A+k-y)2 or - , ,"', 

Now the average waiting time is 
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Figure 2.1: 

2.3.3 Cost Function 

Define 

Cl =Inventory holding cost per unit per unit time 

C2 =Switching Cost for production 

C3 =Loss due to customers lost to the system 

So the total expected cost of the system is 

2.3.4 Numerical Illustration 

21 

By giving values to the underlying parameters we provide some numerical illustrations: Take 

S = 5, s = 2, M = 2,). = 0.3, J.L = 0.2, 'Y = 0.1, Cl = 1, C2 = 10, C3 = 2 
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Table 2 I' · . 
Average Inventory held - '0.879339266 
Expected Switching rate 0.103558591 
Expected Number of orbital Customers 1.327324771 
Expected Number of Lost customers 0.106622418 
Expected Total cost of the system 1.140799882 

Table 2 2' · . 
M-Values Expected Waiting Time Expected total cost 
M=l 0.503827566 1.332502691 
M=2 0.84547260 1.140799882 
M=3 1.081066550 0.939071560 
M=4 1.329813020 0.811073726 

Table 23' · . 
8-Varying Expected Waiting Time Expected total cost 

8=1 0.853879500 1.020885630 
8=2 0.845457526 1.140799882 
8=3 0.837596164 1.169143032 

8-Varying Expected Waiting Time Expected total cost 
8=5 0.845457526 1.140799882 
8=6 0.832381751 1.203457311 

8=7 0.7222560995 1.25459858 

8=8 0.715776549 1.26158201 
8=9 0.710764684 1.29799481 
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Then we get the measures as described in Tablc 2.1. In Table 2.2 the expected total cost is 

computed by varying over M and in Table 2.3 we vary over sand S keeping other parameter 

values fixed. Steady state probabilities for M = 2 are given in appendix-I 

As expected, we see (from Table 2.2) that with M increasing, the expected waiting time of 

customers in orbit also increase. However expected total cost decreses with increase in value 

of M, as loss due to customers not admitted to orbit, for want of space, decreases. With S 

increasing, the expected waiting time of orbital customers decresed (Table 2.3 ). However the 

expected total cost increases due to increase in the expected inventory held. 

2.4 Model-II 

In this model we extended the result of model-I to an (s, S) production inventory system where 

items produced have random life-times which is exponentially distributed with parameter e. 
Also it is assumed that when inventory level is zero the arriving demands choose to enter the 

orbit with probability {3 and with probability (1 - (3) it is lost for ever. All assumptions of 

model-I hold in this case also. 

2.4.1 Model and Analysis 

Let 

I(t), t ~ 0, be the inventory level at time t. 

N(t), t ~ 0, be the number of customers in the orbit at time t. 

Define 

{
I if the system is in ON mode 

X{t) = ° if the system is in OFF mode 

To get continuous time Markov chain, we consider {(I(t), X(t), N(t)), t ~ o} whose state 

space is E = El U E2 where, 

El = {(i, 0, N) : i = s + 1, s + 2" .. ,S; N = 0, 1" .. ,M} 
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E2 ={(i,1,N) :i=O,1,2,3, .. · ,S-l;N=O,l,··· ,M} 

The infinitisemal generator A of the process has entries given by, 

A = (a(i,j, k : l, rn, n))j (i,j, k), (l, rn, n) E E, where 

a((i,j,k: l;m,n)) = 

)..f3 

-)..f3 

iB 

-()..f3 + J.L) 

-(A + iB) 

-(A+J.L+iB) 

-(A + iB + k')') 

ifi = 1,2,···,S -l;j = 1,k = O,l,···,M 

I = i-I; m = j, n = k or 

ifi=s+2,··· ,S;j=O,k=O,l,···,M 

I = i-I; m = j, n = k or 

if i = s + 1; j = 0, k = 0,1, ... , M 

I = i-I; m = 1,11. = k or 

if i = 0; j = 1, k = 0,1, ... , M-I; I = 0; m = j, n = k + 1 

ifi = O;j = 1,k = O,l,···,M -1;1 =i;m =j;n = k 

ifi=O,l,··· ,S-2;j=1,k=0,1,···,M 

I = i + 1; m = j; n = k or 

ifi = S - 1; j = 1, k = 0,1,··· , M; 1= i + 1; m = 0; n = k 

ifi = O;j = 1, k = M; 1= i;m = j;n = k 

ifi = 1,2,··· , S - l;j = 1, k = 1,2,··· , M 

I = i-I; m = j; n = k - 1 or 

ifi = s + 2,··· ,S;j = 0, k = 1,'" ,M 

I = i-I; m = j; n = k - 1 or 

if i = s + 1; j = 0, k = 1, ... , M; I = i-I; m = 1; 11. = k - 1 

if i = 1,2, ... ,S - 1; j = 1, k = 0,1,2, ... , M 

I = i-I; m = j; n = k or 

if i = s + 2, ... ,S; j = 0, k = 1, ... , M . 

I = i-I; m = j; n = k or 

if i = s + 1; j = 0, k = 1, . .. , M; I = i-I; m = 1; n = k 

ifi = O;j = 1,k = O,l,···,M -1;1 = i;m =j;n = k 

ifi = s + 1,," , S;j = 0, k = 0; 1= i; m = j; n = k 

ifi = 1",' , S - l;j = 1, k = 0; 1= i; m = j; n = k 

ifi = s + 1",' , S;j = 0, k = 1"" , M; 1= i; m = j; n = k 

-(A + J.L+ iB + k')') ifi=l,··· ,S-l;j=l,k=l,··· ,M;l=i;m=j;n=k 
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Define Ail = (a(i,j,J.:;l,1n,n)) 

Then the infinitesimal generator A can be convinicntly expressed as a partitioned matrix 

A = ((Ail)) where Ail is a (M + 1) x (M + 1) matrix is given by 

A ifi = 0,1,··· ,S - 1; l = i + 1 and the production on 

Ai ifi = s + 1,··· ,S; l = i-I and the production off 

Bi if i = s + 1, ... ,S; l = i and the production off or 

Ail = Ci if i = 1,2, ... ,S - 1; l = i and the production on 

D if i = 0; l = i and the production on 

Di ifi = 1,· .. ,S - 1; l = i-I and the production on 

0 otherwise 

with 

M f." 0 0 0 0 0 

M-I 0 f." 0 0 0 0 

M-2 0 0 f." 0 0 0 

A= 

2 0 0 0 f." 0 0 

1 0 0 0 0 f." 0 

0 0 0 0 0 0 f." 

M (-\ + iO) M, 0 0 0 

M-I 0 (-\ + iO) (M-I)! 0 0 

M-2 0 0 (-\ + iO) 0 0 
Ai= 

1 0 0 0 (-\ + iO) , 
0 0 0 0 0 (-\ + iO) 

i = s + 1, ... ,S; l = i-I and production is off 

25 
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M 

M-I 

B; = ... 
1 

0 

M 

o 

M 

M-I 

M-2 

D= ... 

2 

1 

0 

26 

-(;\ + iD + M/,) 0 0 0 

0 - (;\ + iO + (M - I h) 0 0 

0 0 -(;\ + iB + 1') 0 

0 0 0 -(;\ + iB) 

- (;\ + J-L + iB + M 1') 0 

o - (;\ + J-L + iB + (M - 1 h) 
o 
o 

o o -(;\+J-L+iB) 

-J-L 0 0 0 0 0 

;\{3 -(;\{3 + J-L) 0 0 0 0 

0 ;\{3 -(;\{3 + J-L) 0 0 0 

0 0 0 -(;\{3 + J-L) 0 0 

0 0 0 ;\{3 -(;\{3 + J-L) 0 

0 0 0 0 ;\{3 -(;\{3 + J-L) 
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M (>. + iB) M, 0 0 0 0 

M-I 0 (>. + iB) (M-I), 0 0 0 

M-2 0 0 (>.+iB) 0 0 0 

Di= ... 

2 0 0 0 (A + i8) 2, 0 

1 0 0 0 0 (A + iB) , 
0 0 0 0 0 0 (A + i8) 

i = 1" .. , S - 1; l = i - 1 and production is on 

So we can write the partitioned matrix as follows: 

(S,O) Bs As 0 0 0 0 0 0 0 0 

(S - 1,0) 0 BS-1 0 0 0 0 0 0 0 0 

(8+1,0) 0 0 Bs+1 0 0 AsH 0 0 0 0 

(S~l,l) A 0 0 CS- 1 0 0 0 0 0 0 

.4= (8+1,1) 0 0 0 0 CsH DsH 0 0 0 0 

(8,1) B 0 0 0 A Cs Ds 0 0 0 

(8 - 1,1) 0 0 0 0 0 A Cs- 1 0 0 0 

2 0 0 0 0 0 0 0 C2 D2 0 

1 0 0 B 0 0 0 0 A Cl D1 

0 0 0 0 B 0 0 0 0 A D 

2.4.2 Steady State Analysis 

It can be seen from the structure of matrix A that the state space E is irreducible. Let the lim-

iting distribution be denoted by rr(i,j,k): 
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rr(i,j,k) = limt-+oo Pr[I(t), X(t), N(t) = (i,j, k)] (i,j, k) E E 

write rr = (rr(S,O) ... rr(s+!,O) rr(S-l,l) n(S-2,1) ... rr(O,l)) 
" , , " 

and rr(K) = (rr(K,M), rr(K,M-I), ... , rr(J<,l), rr(K,O)) 

for K = (S, 0), .. · , (8 + 1,0), (S - 1,1),,, . , (0, 1) 

The limiting distribution exists and satisfies the following relations: 

rrA = 0 and "S "~rr(i,j,O) + "S-l "kf rr(i,j,l) = 1 
w~=s+l wJ=o w~=O wr=o 

The first of the above relations yields the following set of equations:-

n(Hl,l) Di+! + rr(i,l) D = 0 for i = 0 

n(Hl,l) Di+! + rr(i,l)ci + rr(i-l,l) A = 0 for i = 1, ... ,8 - 1 and for i = 8 + 1, ... , S - 2 

n(Hl,O) Ai+! + rr(Hl,l) Di+! + rr(i,l)ci + rr(i-l,l) A = 0 for i = 8 

n(Hl,O) Ai+! + rr(i,O) Bi = 0 for i = 8 + 1, ... , S - 1 

n(5,O) Bs +rr(S-l,l) A = 0 

The solution of the above equations (except the last one) can be conviniently expressed as:-

where 

and 

rr(S-i,O) = rr(S,O) /3S-i,O and 

rr(S-i,l) = rr(S,O) /3S-i,l 

[ 

I ifi = 0 

/3S-i,O= -AsBs~l ifi=l 

-/3s-i+!,oAs-i+!Bs~l ifi = 2,3"" , S - 8 - 1 
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-BsA-1 

-/3S-1,1 Cs_1A-1 

{3S-i,l = -/3S-i+2,l D S-i+2 A - 1 - /3S-i+1,ICS - i+1A-1 

To compute rr(S,O) , we use the relations 

rr(l,l) D1 + rr(O,l) D = 0 and L: rr(K)eM+l = 1 

which yidd, respectively, 

IIlS,O)({31,lD1 + /30,lD) = 0 and 

rr(S,O) (I ",S 4. ",S-l (3. ) - 1 + .L.Ji=s+1 fJ"O + .L.Ji=O ',1 -

2.4.3 System Characteristics 

Mean Inventory Level 

ifi = 1 

ifi = 2 

. if i = 3, ... ,S - 8 

if i = S - 8 + 2, ... , S 

Let III denote the average inventory level in the long run. Then we have 

S M S-l M 

0:1 = L i L rr(i,O,k) + L i L rr(i,l,k) 

i=s+l k=O i=l k=O 

Switching rate 

Suppose 112 is the mean switching rate. Then we have 

M M M 
0:2 = ). L rr(s+1,O,k) + L k,rr(s+l,O,k) + (8 + 1)8 L rr(s+1,O,k) 

k=O k=l k=O 

29 
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Expected Number of orbital Customers 

The expected number a3 of orbital customers is given by 

M 8-1 !vI.') 

a3 = :L k:L rr(i,l,k) + :L k :L rr(i,O,k) 

k=1 i=O 10=1 i=s+l 

The average number of customer's lost to the system 

The average number a4 of customers lost is 

M-I 

a4 = ).rr(O,l,M) + (1 - /3)), :L rr(D,I,k) 

k=D 

Mean Number of Perished items 

The mean number of items that perish in the system is 

8 M 8-1 M 

a5 = :L iB:L rr(i,D,k) + :L iB :L rr(i,l,k) 

i=s+l k=O i=1 k=() 

The probability that an external demand will be satisfied immediately on it's arrival 

The probability that an external demand will be satisfied immediately on arrival is 

8 M 8-1 M 

a6 = :L :L rr(i,O,k) + :L:L rr(i,l,k) 

i=s+l k=O i=1 k=O 

The rate that an external demand enters the orbit 

The rate that an external demand enters the orbit is 

M-I 

a7 = ).(3 :L rr(O,l,k) 

k=O 
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2.4.4 Cost Function 

Define 

L =Set up cost of production system. 

Cl =holding cost per unit per unit time 

C2 =Switching Cost for production 

C3 =Cost due to decay of items 

C4=Loss to the system due to customers not joining the system 

So, the total expected cost of the system is 

1.4.5 Numerical Illustration 

31 

Since analytical expressions are impossible to arrive at we provide some numerical illustrations 

by giving values to the underlying parameters. Take 

L = 3, S = 5, s = 2, .M = 3, A = 0.3, I-L = 0.2, I' = 0.2, 

f3 = 0.6, e = 0.1, Cl = 1, C2 = 10, C3 = 2, C4 = 3 

Thus we get the measures as described in the following table and the long run system state 

probaoilities corresponding to the above parameters is given in the Apendix-II. 
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Table 2 4' .. 
al =Average Inventory held in the system 0.379025 
a2 =Expected Switching rate of the syslen1 - --- 0.000733156 

------
a3 =Expected Nwnber of orbital Customers 1.81155 
a4 =Expected Nwnber of Lost customers 0.1233402 
as =Average perish items in the system 0.0379025 
a6 =Probability that an external demand will be satisfied 0.280116 
a7 =Probability that the arrival demand will enter the orbit 0.431609 
Expected Total cost of the system 4.218538 

Appendix-I 

11(5,0,2) 0.001474239 rr(3,l,2) 0.012899591 

11(5,0,1) 0.002777491 rr(3,l,l) 0.016664942 
-- ---

11(5,0,0) 0.006854095 rr(3,l,O) 0.025702856 

rr(4,O,2) 0.000884543 rr(2,l,2) 0.039620173 

11(4,0,1) 0.002820237 rr(2,l,l) 0.03797676 

11(4,0,0) 0.007779924 rr(2,l,O) 0.046057937 

rr(3,O,2) 0.000530726 11(1,1,2) 0.11852513 

11(3,0,1) 0.004850539 rr(1,l,l) 0.071944262 

11(3,0,0) 0.0087200004 11(1,1,0) 0.053899355 

11(4,1,2) 0.0036855977 rr(0,1,2) 0.355408063 

11(4,1,1 0.005554981 rr(O,l,l) 0.118413949 

11(4,1,0) 0.010281142 11(0,1.0) 0.046672954 
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Appendix-II 
-- --------- - -- - ----

rr(5,O,3) 0.000024924 rr(:3,1,3) 0.001308551 
-

rr(5,O,2) 0.000111757 n(3,l,2) 0.002179281 

rr(5,O,I) 0.000130351 rr(3,I,I) 0.003584683 

rr(5,O,O) 0.000384401 n(:!,I,O) 0.006919222 

rr(4,O,3) 0.000015338 n(2,I,3) 0.008549204 

rr(4,O,2) 0.000054234 rr(2,I,2) 0.011378816 

rr(4,O,I) 0.000140703 n(2,1,1) 0.014971675 

rr(4,O,O) 0.000476559 rr(2,I,O) 0.021643543 

rr(3,O,3) 0.000008947 n(I,I,3) 0.051617252 

rr(3,O,2) 0.000047167 n(1,I,2) 0.051951493 
r--------

rr(3,O,I) 0.000150232 rr(l,l,l) 0.051714957 

rr(3,O,O) 0.000602888 rr(1,I,O) 0.049451038 

rr(4,I,3) 0.000174473 n(O,I,3) 0.288330006 

rr(4,I,2) 0.000335273 rr(O,I,2) 0.20566344 

rr(4,l,I) 0.000651758 rr(O,I,I) 0.146672935 

rr(4,I,O) 0.001537607 rr(O,I,O) 0.079272805 



Chapter 3 

Retrial in PH-Distribution Production 

Inventory System with MAP Arrivals 

3.1 Introduction 

In this chapter we consider an (s, S) production inventory with service time and retrial of 

customers who could not find a berth in the buffer during previous arrivals. Primary arrivals of 

demands (customers who arrive for the first time) follow a Markovian Arrival Process (MAP). 

Demands enter the buffer of capacity equal to the number of items held in the inventory at 

that instant of time. When buffer is full (equal to the number of inventoried items) further 

demands proceed to an orbit of infinite capacity. The orbital customers try their luck after 

some random length of time, exponentially distributed with parameter e. These customers 

keep on trying until they succeed in finding a berth at the buffer. Service times of custqmers are 

exponentially distributed with parameter 11. We assume that initially the inventory level is S 

and the production mode is OFF. Inventory level decreases by one unit by providing service to 

each customer in the buffer. When inventory level reaches s production starts i,e. system mode 

is converted from OFF mode to ON mode. Production follows PH-distribution. Production 

·Some results given this chapter appeared in the proceedings of the International Conference on Modem 
Mathematical Methods of Analysis and Optimization of Telecommunication Networks; September 23-25 '2003; 
Gomel; Belarus; p: 148-156. 
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process is continued until the inventory level reaches 8. 

A brief description of retrial queues was provided in 1.2 and 2.1. So we straight pass on to 

retrial inventory. Artalejo, Krishnamoorthy and Lopez-Herrero [6] is the first investigation on 

(s, S) inventory policies with positive lead time and retrial of orbital customers (linear retrial 

rate) who could not get the item during their earlier attempts. They assumed that the service 

time for providing the items to the customers is negligible. Several system performance mea­

sures were computed. No further work is reported until the present work is taken up. 

Berrnan and Kim [10, 11] was the first effort to analyze the non-deterministic inventory 

model for service facilities. They analyzed the system in which customers arrive at a service 

facility according to a Poisson process with service times exponentially distributed where each 

.::ustomer demands exactly one unit of the item in the inventory; both zero lead time and positive 

lead-time cases were discussed. Berman and Sapna [12, l3] studied inventory control at a 

service facility, which uses one item if inventory for service provided. Assuming Poisson 

arrival process, arbitrarily distributed service times and zero lead time they analyzed the system 

with the restriction that, waiting space is finite. Under specific cost structure they derived the 

optimum ordering"quantity that minimizes the long run expected cost rate. 

This chapter is organized as follows: In section 3.2 we describe the mathematical model 

and study the stability condition. In section 3.3, we list some system performance measures. 

In section 3.4, we discuss the the particular case when production is exponentially distributed. 

Steady state analysis is done and stability condition discussed. System performance measures 

are derived in section 3.5 and based on these we provide numerical examples in section 3.6. 

3.2 Model and Analysis 

We consider a production inventory system in which initially there are S items and the pro­

duction process is in OFF mode. Demands from outside occur according to Markovian Arrival 

Process (MAP). The demands are served singly with service times exponentially distributed 

with parameter j.£. There is a buffer in which customers stay before getting service. The capac­

ity of this buffer is restricted to the number of items held in the inventory at any given instant. 
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Then this varies from 0 to S. When inventory level reaches to s due to service provided to the 

customers in the buffer, production starts i,e., system is switched to ON mode. Production pro­

cess follows PH- distribution. Production continues until inventory level reaches S. Customers 

who find no place in the buffer go to an orbit of infinite capacity and try their luck to enter the 

buffer at a constant rate (J. 

The MAP, a special class of tractable Markov renewal process, is a rich class of point 

processes that includes many well known processes and Markov modulated Po is son process. 

One of the most significant feature of MAP is the underlying Markovian structure and fits 

ideally in the context of matrix analytic solutions to stochastic models. The continuous time 

MAP is described as follows: 

Let the underlying Markov chain (on a finite set be irreducible) and let Q* = (qij) be the 

generator of the Markov chain which is exponentially distributed with parameter.Ai 2: -qii, 

one of the following two events could occur: with probability Pij(l) the transition corresponds 

to an arrival of 1 customer and the underlying Markov chain is in state j with 1 :s; i, j :s; m; 

with probability Pij(O) the transition corresponds to no arrival and the state of the Markov chain 

moves to j, j i= i. Note that the Markov chain can go from state i to state i only through an 

arrival. Define matrices Dk = (dij(k)) for k = 0,1 such that d·ii(O) = -.Ai, 1 ~ i,j ~ m; 

dij(O) = .AiPij(O) for j i= i, 1 ~ i,j :s; m; and dij(l) = .AiPij(l). By assuming Do to be 

a non-singular matrix, the interarrival times will be finite with probability one and the arrival 

process does not terminate. Hence, we see that Do is a stable matrix. The generator Q* is then 

given by 

Q* = Do + Dl 

Thus, Do governing the transitions corresponding to no arrival and Dl governing' those corre­

sponding to one arrival. For use in sequel, let 

Ii denote identity matrix of order i, 

® stands for Kronecker product of two matrices, 

A' means transpose of matrix A, 
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e denotes column vector of 1 's of appropriate order. 

Let, N1(t), I(t), N2(t), X(t), J1(1,) and J"2(1,) <-kllole, rcspcclively, the number of customers 

in orbit, the number of items held in the inventory, the number of customers in the buffer, the 

status of the production mechanism (i.e., OFF mode or ON mode), phases of the arrival process 

and phase of the production process at time t. 

Then {(N1(t),I(t), N2 (t) , X(t), J1(t), J2 (t))} is a continous time Markov chain with state 

space given by 

n ={(i,j, k, 1, r, l); i ~ 0,0'.5: j '.5: S - 1,0 '.5: k :S j, 1 '.5: r '.5: m, 1 '.5:l '.5: n} 

U {(i,j,k,O,r); i ~ 0,8+ 1'.5: j:S S,O:S k:S j, 1'.5: r:S m} 

The level i, i ~ 0, is defined as the set of states given by, 

i ={(i, j, k, 1, r, l) : 0 '.5: j '.5: S - 1,0 :S k '.5: j, 1 :S r '.5: m, 1 :S l :S n} 

U{(i,j,k,O,r): 8+ 1:Sj '.5: S,O:S k :Sj,l '.5: r '.5: m} 

1'hese are arranged in the lexicographic order. 

Define; the following auxiluary matrices for use in sequel 

Dl ®In 

(Do ® In + Im ® S) - J.kImn 

D1 ®In 

(3.1) 

(Do ® In + Im ® S) - J.kImn 
(i+l)rnnx (i+ 1 )mn 

; 1 :S i '.5: 8 (3.2) 
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Do o 
Do ®In + Im ®S 

Do - ILl", 

Do -p.Im o 
(Do ® In + Im ® S) - /llmn 

;s+1~i~S-1 

(3.3) 

where Aii is a (i + 1)2mn x (i + 1)2mn matrix. 

Do Dl 0 0 

0 Do - J.L1m D1 0 

Ass = 
0 0 Do - J.L1rn D1 

(3.4) 

D1 

Do - J.L1m 
(S+l)mx (S+1)m 

Ai,i-l = [0] 0J.L1mn ;l~i~s (3.5) 

Ii (i+1)xi 

0 0 0 0 

0 0 0 0 

Im 0 J.L{3 0 0 

As+1,8 = J.LImn 0 0 0 (3.6) 

0 0 0 Im 0 J.L{3 

0 0 0 rdmn ((s+2)rrm+{s+2)m) x (s+l)rrm 
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0 0 0 0 

0 0 0 0 

fLlm 0 0 0 

Ai ,i-l = 0 fLlmn 0 0 ;s+2~i~S-1 

0 0 0 fLlm 0 

0 0 0 0 fLlmn 
((i+l)mn+(i+l)m)x(imll+im) 

(3.7) 

0 0 0 0 0 

AS,S-1 = 
fLlm 0 0 0 0 

(3.8) 
0 0 fLlm ... 0 0 

0 0 0 ... fLlm 0 (S+l)mx (Smn+Sm) 

(3.9) 

0 lm 0 S°{3 

A8,8+1 = 
0 0 lm0S°{3 

0 lm 0 S°{3 0 0 
((s+l)mn) x ((s+2)mn+(8+2)m) 

(3.10) 

0 

lm 0 S°{3 

0 

Ai ,Hl = lm0S°{3 ;s+1~i~S-2 

0 0 0 

lm0S°(3 0 0 

(3.11 ) 



3.2 Model and Analysis 40 

where Ai ,H1 is of order ((i + l)rnn + (i + 1)111,) ;,< ((i + 2)mn + (i + 2)rn) 

0 0 

Im®So 0 

As- 1,s = 
0 0 

0 Im®So 
(3.12) 

Im ® Sa 0 
(Smn+Sm) x(S+1)m 

Aaa ...101 

...11(' ...111 ...112 

...121 ...122 ...123 

Bo= 
As,s-1 Ass As,s+l 

(3.13) 

As- l,s-l As-l,s 

As,s-1 Ass 

Do ® In + Im ® S - ()Imn D1 ®In 

o Do ® In + Im ® S - tdmn - ()Imn 

; 1 ~ i ~ s (3.14) 

(3.15) 
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Do -OIm o 
Do ®In + I". ®S -Olrnn 

Du - ILl", - 01", 

-P,/mn - OImn. 

Do - Jilm 0 

Do ® In + Im ® S 

; s + 1 :s i :s S - 1 (3.16) 

Do - Olm Dl 

Do - J.Llm - elm Dl 

Ass = (3.17) 

Aoo AOl 

AlO A-ll Al2 

Al = (3.18) 

AS- l ,s-2 As-"s-, As-l,s 

AS,S-l Ass 

(3.20) 

where ai+1 is a column vectors of all zeros accept last entry which is 1. 

o 0 

Dl 0 ; s + 1 ~ i ~ S - 1 (3.21) 

o Dl ® In 
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Ao = 

n.c;s 

Coo = is a zero matrix of order mn x mn 

- [0 Cii = 0 

o 
o 

((HI )mn+(i+l )m) x ((i+l )mn+(i+1)m) 

Css = [~ Ii] ® elm 
o (S+I)x(S+I) 

C~s 
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(3.22) 

(3.23) 

(3.24) 

(3.25) 

; 8+1 :::; i :::; 8-1 

(3.26) 

(3.27) 

(3.28) 
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Themarkov chain {(Nl (t),I(t),N2 (t),X(t),.h(f),J2 (1,)), t E R+} has the generator Q in 

where the entries in Q are given by (3.1) to (3.28). 

Let A = Ao + Al + A2 and 

1r denote the steady-state probability vector of A, i.e, 

1rA = 0, 7l'e = 1 

The vector 7l' can be partitioned as 

7l' = (1r(0), 7l'(1) ... 7l'(s) ... 7l'(5)) 

7l'(i)=7l'(i,j,1) ;O~i~s,O~j~i, 

7l'(i) = 7l'(i,j, k) ; s + 1 ~ i ~ 5 - 1, 0 ~ j ~ i, k = 0,1 

7l'(5) = 7l'(5, j, 0) ; 0 ~ j ~ 5 

We have the following result on system stability 

Lemma 3.2.1. The system is stable if 

8-1 i-I 8 i-I 

CEL7l'(i,j,l)Bemn + L L7l'(i,j,O)Bem ) > 
i=1 j=O i=8+1 j=O 

8-1 8 

(L 7l'(i, i, l)(D l em 0 en) + L 7l'(i, i, O)(D1em)) 
i=O i=8+1 
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Proof From the well-known result [Neuts [61] theorem 1.7.1] on the positive recurrence of Q, 

which states that 

and by exploiting the structure of the matrices An and A2 , the stated result follows. 0 

Theorem 3.2.2. When the stability condition holds the steady state probability vector x ofQ 

which satisfies xQ = 0, xe = 1 exists. 

The steady state probability vector 

x = (x(O), x(l), x(2), ... ) 

where components are given by 

x(i) = X(O)Ri, i ~ 0 

where R is the minimal non-negative solution of the matrix quadratic equation 

The vector x(O) can be calculated using the equation 

together with the normalizing condition 

Proof Follows immediately from the well-known result on matrix-geometric methods (see 

Neuts [61D. 0 

For calculating the rate matrix R we use Logarithmic Reduction Algorithm. 
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3.3 System Performance Measures 

We partition the steady state probability vector x = (x(O), :r(1), ,1;(2), ... )as 

x(i) = (y(i,j)) i ~ 0,0::; j ::; S 

wherey( i, j) = (z( i, j, k, l)) with, 1 = 1 for 0 ::; j ::; s 

1 = 0, 1 for s + 1 ::; j ::; S - 1 

1= 0 for j = .) 

O::;/,;::;j 

Some of the system perfonnance measures are given below: 

45 

1. The probability mass function of number of customer in orbit: The probability that there 

are i customers in the orbit is given by 

Pi = x{i)e = x(O)Rie; i ~ 0 

2. The rate at which the orbiting customers try to enter the buffer is given by 

o~ = 0(1 - x(O)e) 

3. The rate at which the orbiting customers successfully enter the buffer is given by 
'. 

(); = 06 

where 
00 8-1 j-1 S j-1 

6= l)(L:=Lz(i,j,k,l)emn } + { L LZ(i,j,k,O)em }] 

i=1 j=1 k=O j=8+1 k=O 

4. Probability that an orbiting customer fail to enter the buffer is, 

(); = 1 - 6 



3.4 Exponentia11y Distributed Pmduction Pmcess 46 

5. Expected Inventory level: 

Expected inventory level is given by 

00 S-1 j S j 

E. = L [{Lj L z(i,j, k, l)}e"", + { L j L z(i,j, k, O)}em ] 

i=O j=1 k=O j=.,-t 1 k =0 

6. Expected number of customers in the orbit 

00 

Eor = L ix(i) = x(O)R(I - Rt2e 
i=O 

7. Expected number of customers in the buffer is, 

00 S-1 j S j 

EB = L [LLkz(i,j.K,l)emn + L Lkz(i,j,k,O)em ] 

i=O j=1 k=1 j=s+1 k=l 

8. The fraction of retrials that are successful 

F = The rate of retrials that are successful = Bi 
The overeall rate Bi 

9. The factorial moments of the orbit size is, 

3.4 Exponentially Distributed Production Process 

Let Nl (t), I(t), N2(t), X(t) and J(t) denote, respectively, the number of customers in orbit, 

the number of items held in the inventory, the number of customers in the buffer, the status of 

the production mechanism (ie., in OFF mode or ON mode) and phase of the arrival process at 

time t. Then {(NI (t),I(t) , N2(t), X(t), J(t))} is a continuous time Markov chain with state 
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space given by 

n = {(i, j, k, 1, r') : i ;::: 0, ° ::; j ::; 8 - 1,0 ::; I.: ::; ], 1 ::; 'f' :s: m} 

U {(i,j,k,O,1') : 'i;::: O,s + 1:S:]::; 8,0::; k::; j, 1::; 1'::; m} 

The level i, i ;::: 0, is defined as the set of states given by 

i= {(i,j,k, 1,1') : 0::; j::; 8 -1,0::; le::; j, 1::; 1'::; m} 

U {(i,j,k,O,T) : S + 1::;] ::; 8,0::; k::; j, 1::; T::; m} 

nese states are arranged in the lexicographic order. 

Define the following auxiliary matrices for use in sequel. 

ADD = Do - fJIm (3.29) 

Do - fJIm Dl 

Do - (J.L + fJ)Im Dl 

Aij = 1 ::; i ::; S 

(i+l)mx(i+l)m 
(3.30) 
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Do 0 Dl 

Do - fJ1m 0 Dl 

Do - j.L1m 0 Dl 

Do - ((3 + Il)Im 0 

Ass 

Dl 

Dl 

o 
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Do - (j.L + fJ)Im 

; s + 1 ~ i ~ S -1 (3.31) 

(3.32) 

Do - j.L1m 
(S+l)mx(S+1)m 

(i+l)2mx(i+1 



3.4 Exponentia11y Distributed Production Process 

Wi=[~] ,1~'i~S 
(i+1)xi 

..4i ,i-1 = Wi 0 J.Llm' 1 ~ i ~ 5 

A.H .• ~ (w.H ® [:]) ® ~Im 
..4i ,i-1 = (Wi 0 12) 0 J.Llm' S + 2 ~ i ~ S - 1 

..48,8-1 = (W8 0 [1 0]) 0 J.Llrn 

Vi = [li+1 OJ(i+1)X(H2), ° ~ i ~ S - 1 

..4i ,H1 = Vi 0 {3lm, ° ~ i ~ 5 - 1 

- [0 0] A,i+1 = (Vi 0 ° 1 ) 0 {3lm, 5 + 1 ~ i ~ S - 2 

AS - i .S ~ (VS-i ® [~]) ® {JIm 

..400 ..40l 

..410 ..4ll ..412 

Bo= 
..421 ..422 ..423 

..48 - 1,S-2 ..4 S - 1,S-1 ..4S - 1,s 

..4S ,S-l ..4 SS 
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(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

(3.41 ) 

(3.42) 

(3.43) 

The matrix Al is obtained from Bo by replacing the matrices ..4ii , 1 ~ i ~ S, by Aii . where 

(3.44) 
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fo: 1 ~ i :S s and for i = S and for the remaining i values, except for i = 0, 

~ ~10 81,,1) 

o ° 

Ao = 

Bss 

where 

Boo = Dl 

Bii = (ai+1 . a~+1) 0 D 1; 1 :S i :S s and for i = S 

50 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

where, ai+l is a column vector of zeros except last entry which is 1 and is of order (i + 1) x 1. 

- [0 
Bii = ° 0] 0 D1; S + 1 :S i :S S - 1 

12 
2(i+l)x2(i+1) 

(3.49) 

(3.50) 

C~s 

where 

C~o is a zero matrix of order m x m (3.51) 
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Cii = [~ Ii] ® elm ; 1 :.s; i ::.~ s and also t<>r i = S (3.52) 

o (i+1) X (i+1) 

Cii = [~ ~ I~il ® elm; S + 1 :.s; i ::; S - 1 (3.53) 

o 0 0 
2(i+1)x2(i+1) 

The Markov chain {(NI(t),I(t),N2(t),X(t),.J(t))} has the generator Q in partitioned 

fonn given by 

Bo Ao 0 0 0 

A2 Al Ao 0 0 

Q= 0 A2 Al Ao 0 

0 0 A2 Al Ao 

where the entries in Q are given by (3.29) to (3.53) 

Let A = Ao + Al + A2, and 7f denote the steady-state probability vector of A i,e 

7fA = O,7fe = 1 

The vector 7f can be partitioned as 7f = (7f( 0), 7f (1), ... , 7f (s ), ... , 7f( S)) where the vectors 

11"( i) are again partitioned as 

7f(i) = (7f(i, j, 1)); 0 ::; i ::; s, 0 ::; j ::; i 

7f(i) = (7f(i,j, k)); s + 1 ::; i ::; S - 1,0 ::; j ::; i, k = 0,1 

7f(S) = (7f(8,j,0));0::; j::; S 

We have the following result on system stability. 
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Lemma 3.4.1. The system is stable if 

I(D1 + 8]m)e1ll < 0 

where 1 is given by 
8-1 .') 

1= ['L 7r(i,i,l) + 'L 7r(i,i,O)] 
i=O 

Proof From the well-known result [Neuts [61] theorem 1.7.1] on the positive recurrence of Q, 

which states that 

and by exploiting the structure of the matrices Aa and A2 , the stated result follows 0 

If stability holds, by using theorem 3.2.2 and Logarithmic Reduction Algorithm (see La­

touche and Ramaswamy [49]) we can calculate the rate matrix R. 

3.5 System Performance Measures 

Steady state probability vector 

X= (x(0),x(1),x(2), ... ) isagainpartitionasx(i) = (y(i,j)) i ~ 0,0 ~j ~ Sand 

y(i,j) = (z(i,j, k, l)) where l = 1 for 0 ~ j ~ s 

l = 0, 1 for s + 1 ~ j ~ S - 1 

l = 0 for j = S 

and 0 ~ k ~ j 

1. The probability mass function of number of customers in orbit :-

The probability that there are i customers in the orbit is given by 

~ = x(i)e = x(O)Rie i ~ 0 
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2. The rate at which the orbiting customers try to enter the buffer is given by 

8i = 8(1 - x(O)e) 

3. The rate at which the orbiting customers successfully enter the buffer is given by 

e; = eJ 

where, 
00 S-l j-1 S j-1 

c5=L[{LLz(i,j,k,1)}e+{ L LZ(i,j,k,O)}e] 
i=l j=l k=O j=s+l k=O 

4. Probability that an orbit customer fail to enter the buffer is, 

5. Expected inventory level in the system:- Expected inventory level in the system ',;; given 

by 

where, e. = [eo, e1, . .. ,es ,' .. ,es]' and 

ei = [i, i, ... , ihx(H1)m for 0::; i ::; s and for i = S 

ei = [i, i, ... , ihx2(i+l)m for s + 1 ::; i ::; S - 1 

6. Expected number of customers in the orbit l. 
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7. Expected number of customers in the buffer is, 

00 8-1 j S J 

EB = L [{ L L kz(i,j, k, 1)}e + { L 2.: kz(i,j, k, 0) }e] 
i=O j=l k=l j,c8+1 k,col 

3.6 Numerical Illustration 

We provide an example based on our system performance measures. In Table 3.1, fixing the 

other parameter values involved in the system we vary over service time J.L whereas in Table 3.2 

and Table 3.3 we vary over production time f3 and retrial rate O. For different values of these 

parameter J.L f3 and e corresponding values of the system measures are provided. 

Take 

[-0.21 00 1 Do= 
0.0 -0.20 

[010 0.11 1 D1 = 
0.20 -0.0 

and 
'TrAoe 

p=--
'TrAoe 
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Table 3.1: Fixed e = 0.5, (3 = 1.0, s = 3, S = 8 

--I J.£ = 1.0 J.£ = 1.5 J.£ = 2.0 /1, = 2.5 J.£ = 3.0 J.£ = 3.5 J.£ = 1.() 

P 0.05392 0.03201 0.02648 0.02428 0.02313 0.02244 0.02198 
-

°i 0.00056759 0.00028509 0.0002149 0.00018591 0.00017062 0.00016114 0.000015473 
O' 2 0.00036846 0.00018988 0.00014353 0.00012413 0.00011378 0.00010742 0.00010318 
E. 5.740475 5.740343 5.740291 5.740262 5.740242 5.740231 5.740221 

-:;::--

Ear 0.0014946 0.0007251 0.0005433 0.0004692 0.00043001 0.000406 0.00039003 
E8 0.259579 0.15948 0.115063 0.089992 0.073890 0.062676 0.054416 

Table 3.2: Fixed J.£ = 1.0, (3 = 1.0, s = 3, S = 8 
e = 1.0 e = 1.5 e = 2.0 e = 2.5 e = 3.0 e = 3.5 e = 4.0 

P 0.11081 0.14687 0.1684 0.18216 0.19161 0.19847 0.20366 
O' 1 0.00080955 0.0010533 0.00129664 0.00154004 0.00178492 0.00202942 0.00227404 
O2 0.00039515 0.0004165 0.00043519 0.00045225 0.00046841 0.00048392 0.00049897 

E. 5.740419 5.740382 5.740357 5.740341 5.740328 5.74032 5.740316 

Ear 0.001064 0.000922 0.00085 0.000809 0.0007809 0.0007608 0.0007458-

E8 0.259654 0.259692 0.259715 0.259730 0.259741 0.259749 0.259755 
- . 

Table 3.3: Fixed J.£ = 1.0, e = 0.5, s = 3, S = 8 
(3 = 1.0 (3 = 1.5 (3 = 2.0 (3 = 2.5 (3 = 3.0 (3 = 3.5 (3 = 4.0 

P 0.05392 0.03693 0.03248 0.03064 0.02969 0.02911 0.02872 

°i 0.00056759 0.00029618 0.00022808 0.00020027 0.00018549 0.00017634 0.00017029 

O2 0.00036846 0.00020237 0.00015736 0.00013805 0.00012762 0.00012110 0.00011668 

E. 5.740475 5.84053 5.884952 5.910028 5.926137 5.937356 5.945621 

Ear 0.001494 0.000752 0.000576 0.000505 0.000467 0.000444 0.000429 
--

E8 0.259579 0.259735 0.259793 0.259822 0.259839 0.259851 0.259859 



Chapter 4 

Retrial Inventory with BMAP and Service 

Time 

4.1 Introduction 

In this chapter we consider an (8, B)-retrial inventory with service time where primary arrivals 

of demands follow a batch Markovian arrival process (BMAP). Demands enter the buffer of ca­

pacity equal to the number of items held in the inventory at that time. When buffer is full (equal 

to the number of inventoried items), further demands proceed to an orbit of infinite capacity. 

The orbital customers will try their luck after some random time, exponentially distributed with 

parameter e. These customers keep on trying until they succeed in finding a berth at the buffer. 

Service times of customers are i.i.d. exponential random variables with parameter J.L. Inventory 

level decreases by one unit for providing service to a customer in the buffer. When inventory 

level reaches 8 an order for replenishment is given. Lead time is exponentially distributed with 

parameter f3. 
Retrial queues deal with the behaviour of queueing systems of customers who could not 

find a position at the service station at the arrival time. It has been investigated extensively 

(See the survey papers by Yang and Templeton [91] and Falin [18], the monograph by Falin 

and Templeton [19]) and also the more recent state of art in re-trial queues by Arta1ejo [5]. 
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Artalejo, Krishnamoorthy and Lopez-Herrero [6] is the first investigation on inventory policies 

with positive lead time and retrial of orbital customers (linear retrial rate) who could not get 

service during their earlier attempts to access the service station. 

Bennan, Kim and Shimark [9] in which they assumed that both the demand and the service 

rate are deterministic and constant and as such, queues can form only during stock out pe­

riod.They determined optimal order quantity that minimize the total cost per unit time. Berman 

and Kirn [10, 11] analyzed an inventory system in which customers arrive at a service facility 

according to a Poisson process with service times exponentially distributed where each cus­

tomer demands exactly one item in the inventory; both zero lead time and positive lead time 

cases were discussed. Berman and Sapna [13, 12] studied inventory control at a service facility, 

which uses one item of inventory for service provided.Assuming Poisson arrival process, arbi­

trarily distributed service times and zero lead time they analyzed the system with the restriction 

that the waiting space is finite. Under a specific cost structure they devised the optimum order­

ing quantity that minimizes the long run expected cost rate. 

This chapter is organized as follows: In section 4.2 we discuss the model and provide the 

briefdiscription ofBMAP. Steady state analysis of the model is studied in the section 4.3. we 

list some system performance measures in section 4.4 and for particular case ofBMAP (when 

arrival of demands form Poisson process) we Provide numerical results in the sections 4.5 

4.2 Model and Analysis 

We consider an inventory system with service time in which demands occur according to a 

Batch Markovian Arrival Process (BMAP). The demands are served singly with service times 

exponentially distributed with parameter J1.. There is a buffer in which demands can stay before 

getting service. The capacity of the buffer is restricted to the number of items held in the 

inventory at any given instant; Thus this varies from 0 to S. Customers who find no place 

in the buffer go to an orbit of infinite capacity. The inventory is controlled by (s, S)-policy. 

Replenishment time is exponentially distributed with parameter ,a.The customers in orbit retry 

for service with constant re-trial rate e. If the inventory level is greater than the number of 
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customers in the buffer then both retrials ClIstollll:rS and primary clIstomers can get into the 

buffer on arrival. Its overflow lead to customers being directed to the orbit. 

The BMAP in the continuous time can be described as follows:-

Let the underlying MC be irreducible and let Q* be its generator. After a sojourn in a state i 

which is exponentially distributed with parameter '\' 1 ::; i ::; rn, two things can occur 

1. It can go to state j: 1 ::; j ::; rn the transition corresponds to the arrival of a batch of size 

k ~ 1 with probability Pij (k) 

2. It can go to state j: 1 ::; j ::; rn, j =1= i and the transition corresponds to no arrival with 

probability Pij (0) 

We have 
00 m 

L LPij(k) + L Pij(O) = 1, 1::; i ::; rn 
k=l j=l j=l,#i 

For k ~ 0 define the matrices Dk = (dij (k)) such that 

dij (0) = AiPij (0) j =1= i, 1 ::; i, j ::; rn 

dii(O) = -Ai and dij ( k) = AiP'ij (k) 

By assuming Do to be non-singular matrix, the inter arrival times will be finite and the 

arrival process doesn't terminate. The generator is 

Thus, the BMAP is governed by the matrices {Dd with Do governing the transition corre­

sponding to no arrival and Dk governing those corresponding to arrivals of a group of size k, 

k ~ 1. 

In this chapter we assume that Di = 0 for i > K so that the maximum possible batch size 

inK. , 
For the use in the sequel let 



4.3 The Steady State Analysis of the Model at an Arbitrmy Time Epoch 

Ii denote identity matrix of order i 

® stands for Kronecker product of two matrices 

A' means transpose of matrix A 

e denotes column vector of 1 's of appropriate order. 
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4.3 The Steady State Analysis of the Model at an Arbitrary 

Time Epoch, 

Let NI(t), I(t), N2 (t) and J(t) denote respectively, the number of customers in orbit, the 

nwnber of items held in the inventory, the number of customers in the buffer including the one 

getting service and the phase of the arrival process at time t. Now {NI (t), I(t), N2(t), J(t)} is 

a continuous time Markov chain with state space given by 

0= {(i,j,k,l) : i'20,O~j~S, O~k~j,l~l~m} 

Let 6 denote the set of states given by 

0= {(r,j,k,l) : O~r~K,O~j~S,O~k~j,l~l~m} 

and 

i = {(iK + r,j, k, l) : 1 ~ r ~ K, 0 ~ j ~ S, 0 ~ k ~ j, 1 ~ l ~ m}, i '2 1 

The above set of states are arranged in lexicographic order. Define the following matrices 
for later use, 
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H= 

8 8+1 Q - 1 Q (J + I 

0 Iioo J/t1Q 

NlO jIu J/IQ~ I 

H21 H22 

H •• 
8+ 1 H.+1.8 H8+1. 8+1 

Q-1 

Q iIQ. Q-l iIQ Q 

Q+1 HQ+l. Q HQ+1. Q+1 

S-l 
S 

where 

8-1 S 

H.s 

HS.S-l HsS 
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(4.1) 

(4.2) 

(4.3) 

iI - [ 0 1 0 is zero matrix of order m x im 1:S i :S S (4.4) i.i-1 - Ii ® elm 

Hi,i+Q = [IH1 ® {3Im 01 0 is zero matrix of order (i + l)m x Qm O:S i :S s. (4.5) 
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Where 

Di - I D· , 

(4.6) 

(i+1)mx(i+l)m 

Note that Di = 0 when i ? K + 1 

(4.7) 

Fao = 0 

0 0 0 0 

0 1 0 0 ®~Im = [~ 0] Fii = ®I·dm (4.8) 
0 0 1 0 I 

, (i+l)x(i+l) 

0 0 0 1 
(i+1)x(i+l) 

where 1:::; i :::; S 

Hoo HOQ 

HlO Hll H1,Q+1 

H21 H22 

H= Hss (4.9) 

HQQ-l HQQ 

HSS-l Hss 
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where 

where 

8+1:;-£::;8 

0 

0 [~ 0] ® fJlm = 
1 0 0 

(i+l)x(i+l) 

0 0 
(i+l)x(i+l) 

o 

L= 

Lss 

®fJlm Lii = [0 
o 

Ii] 
;; (i+l)x(i+l) 

BOj = 

Boo 
Dj 

Bll 
Dj 

B ii 
Dj 

Bss 
Dj 

®Im 
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(4.10) 

(4.11 ) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 
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where 

Di-t-j 

Di+,i-1 
(4.16) 

(H1)mxm 

where e{i+1) is a column vector of (i + 1) entries with the (i + 1 )th entry 1 all other entries are 

O's. 

Here also note that if k ~ K + 1, Dk = O. 

iI BOl B02 

L H B01 

AlO = 0 L H 

B OK - 1 BOK 

B OK- 2 B OK- 1 

B OK- 3 B OK- 2 

................................. 

0 0 0 L H 

0 0 0 0 

BOK 0 0 0 

B OK- 1 BOK 0 0 
ADD = 

B OK- 2 B OK- 1 BOK 0 

0 

0 

0 

0 

B01 B02 B O:3. •• Bo/( -1 BOK 

0 0 0 L 

0 0 0 0 

A2 = 0 0 0 0 

............... 

0 0 0 ... 0 

(4.17) 

( 4.l8) 

(4.19) 
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H BO! B02 BOh -2 BOl( -1 

L H BOl BOl( -3 BOK - 2 

A1= 0 L H BOJ( -4 BOK - 3 (4.20) 

................................. 

0 0 0 L H 

BOK 0 0 0 

BOK- 1 BOK 0 0 

Aa = BOK- 2 BOK- l BOK 0 (4.21) 

.............................. 

BOK 

The Markov chain (N1(t), I(t), N2 (t), J(t)) has the generator Q in the partitioned fonn 

AlO Aaa 

A2 A1 Aa 

Q= A2 Al Ao (4.22) 

The generator A = Aa + A1 + A2 is given by 

H+BoK BO! B02 BOK- 2 BOK- 1 + L 

L+ BOK- 1 H+BoK BOl BOK- 3 BOK- 2 

A= BOK- 2 L + BOK- 1 H+BoK BOJ( -4 BOK- 3 (4.23) 

B01 B02 B03 ... L + BOK- 1 H+BoK 

Lemma 4.3.1. The steady-state probability vector 7r satisfying 

7r A = 0, 7re = 1 
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is given by 

1r = l~ (r.' 1/) '/IJ ) 

where the vector w is the steady-state probability vector 0/ 

K 

M= H +L+ LBOj 
j=l 

HO~ 

HlO Hu 

H21 H22 

= 

e' is a column vector with K entries all equal to 1 where 

Do - ({3 + 8)Im DJ + 8Im D2 

Do - ({3 + 8 + J.L)/m DJ + Olm 

Do - ({3 + 8 + J.L)/m 

HOQ 

fIss 

sumf=IDi+j 

E~~1 Di+j-I 

Ef=J DHj-2 

(4.24) 

(4.25) 

Ef=J Dj+! + 81m 

Do - ({3 + J.L)Im + Ef=J Dj 
(4.26) 

Hii-dor 1 ~ i ~ Sand Hi,HQ/or 0 ~ i ~ s are as defined in (4.4) and (4.5) 

Proof Noting that A is a circulant matrix, we see that the vector 1r is of the form 1r = t (e' ® w) 
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where the vector w is the steady-state probability vector of the generator M given by 

f( 

M=H+L+ LEOj 
j=l 

Partitioning the vector w as w = (wo, Wl, ... W s) 
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(4.27) 

where Wo = wgo, Wi = (wjO, W:,l, ... wji), 1 ~ i ~ S, the following result on stability condition 

is obtained. D 

Lemma 4.3.2. The system is stable if 

(4.28) 

Proof From the result on the positive recurrence of Q which states that 

and exploiting the strucPlre of matrices Ao, A2, 1r. 

Let x, partitioned as x = (x(O), x(l), x(2) ... ), denote the steady state probability vector of Q. 

Then x satisfies 

xQ = Oxe = 1 

D 

Theorem 4.3.3. When the stability condition holds good, the steady state probability vector x 

is given by 

x(i) = x(1)Ri - 1, i ~ 1 

where the matrix R is the minimal non-negative solution of matrix quadratic equation: 
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and the vector x(O) and x(i) are obtained by solving 

X(O)AlO + x(i)A2 = 0 

subject to the normalizing condition 

x(O)e + x(i)(I - R)-le = 1 

Proof Follows from well known results. o 

Computation of the matrix R. 

To compute R first we compute G matrix. The special structure of the matrix A2 implies that 

the matrix G will have the following structure. 

1 2 K 

1 G1 

2 
G= (4.29) 

K 

where each Gi is a square matrix of order (S+1~(S+2) m . Now G satisfies the matrix quadratic 

equation: 

Using the above form of G this equation gives 
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and 
K -i 

2: BO,j-HKGjGg + LGi _ 1 + lIG i + 2: BlJjG'i+j = 0, 2~i~K. 
j=l j=1 

which gives 
K -I 

Gl = (-Htl[BOgGlGK + L BOjGj+1 + L] 
j=l 

and for 2 :s i ~ K, 

i K~ 

Gi = (-Htl[L BO,j-HgGjGg + LGi - l + L BOjGHj] 
j=l j=l 

Now we can use Block Gauss Seidel iterative method to evaluate Gl , ... GK and hence G. The 

accuracy checks can be done using Gie = 1, 1 ~ i ~ K. 

After this R can be evaluated using the formula 

4.4 System Performance Measures 

1. Expected inventory level 

S g 00 K 

El = Li[Lx(O,j) + LL(xI,j)]ei 
i=l j=o 1=1 j=l 

where ei is a column vector of (S+1)?+2) m entries of which the entries in positions 

i(i;l)m + 1, i(i;l)m + 2, ... , (i+l)ii+2) m are Is'and rest zeros. 

2. Expected number of customers in the buffer conditional on the inventory level and then 

remove the conditioning, is given by 

00 K 

E2 = x(O, O)e(b) + L L[x(i,j)e(b)] 
i=O j=l 
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wheree(b) = a'0b' with a = ({O},{O,1},{O,1,2}, ... ,{O,1,2, ... ,S}) andb = 

(1, ... ,1hxm 

3. Expected number of customers in the orbit: 

00 J( 

E3 = L2)'iJ( + j)x(i,j)c 
i=O j=1 

4. Blocking probability (Probability that a customer (primary/orbital) finds the buffer at its 

permitted maximum). This will be conditional probability (conditioned on the inventory 

level): 
00 K 

x(O, O)e(c) + L L x(i, j)e(c) 
i=O j=1 

where e(c) is the column vector with l's in the positions 1, ... , m; 2m + 1, ... ,3m; 

5 1 6 · 1 (S l)(S 2) 1 (S+1)(S+2) m + , ... , m'"2 + + m - m + , ... , 2 m. 

5. Probability of encountering the system with inventory level zero. 

00 J( 

x(O,O)e(d) + LLx(i,j)e(d) 
i=O j=1 

where e( d) is the column vector with first m entries 1 s' and the rest zeros. 

4.5 Numerical illustration 

We provide an example based on our system performance measure in the particular case (Ar­

rival of demands follow Poisson process). In Table 4.1, fixing the other parameter values 

involved in the system we vary over service time J.L whereas in Table 4.2 and Table 4.3 we vary 

over replenishment rate (3 and retrial rate () respectively. For different values of these parameter 

f.1" (3 and () corresponding values of the system measures are provided. 
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Table 4.1: Fixed'\ = 0.5,8 = 0.7, /3 = 0.6, s = 2, S = 5 
/-L = 0.5 /-L = 0.6 /-L=0.7 /-L = 0.8 /-L = 0.9 /-L = 1.0 

El 3.49621 3.48527 3.46317 3.42747 3.37993 3.32369 

E2 2.04322 1.8643 1.70886 1.57053 1.44644 1.33507 
-

E3 1.71564 1.14123 0.839337 0.664212 0.556632 0.488157 

Table 4.2: Fixed'\ = 0.5,8 = 0.7, /-L = 0.7, s = 2, S = 5 
/3 = 0.6 /3 = 0.7 /3 = 0.8 /3 = 0.9 /3 = 1.0 /3 = 1.1 

El 3.46317 3.31458 3.32762 3.36807 3.41198 3.45337 
E2 1.70886 1.4018 1.30959 1.27057 1.25161 1.24187 

E3 0.839337 0.67463 0.585385 0.527918 0.488025 0.458975 

Table 4.3: Fixed'\ = 0.5,/3 = 0.6, /-L = 0.7, s = 2, S = 5 
8 = 0.4 8 = 0.5 8 = 0.6 8 = 0.7 8 = 0.8 8 = 0.9 

El 3.36839 3.40749 3.4385 3.46317 3.48285 3.49865 
E2 1.62447 1.66106 1.68846 1.70886 1.72398 1.73511 

E3 1.02356 0.952938 I 0.891877 0.839337 0.794146 0.73511 



Chapter 5 

Inventory System with Postponed 

Demands and Service Facilities 

5.1 Introduction 

In most of the inventory models it is assumed that the inventory deplete at a rate equal to 

demand rate (service time negligible). However, it becomes unrealistic for the service facilities 

where tr.e stocked item is delivered to the customers after some service is performed. In this 

chapter we consider an (8, S) inventory system with service facilities. Arrival of demands form 

a Poisson process with parameter A(> 0) to a buffer of finite capacity equal to the inventory 

level at any given time t. When the maximum buffer size is reached, further demands join a 

pool of infinite capacity with probability 'Y and with probability (1 - 'Y) it is lost for ever. In 

this chapter we consider two models. In the first model, pooled customers are taken to the 

buffer with probability p at a service completion epoch if the inventory level is atleast 8 + 1 

and provided the number of customers in the buffer is less than the number of items held in the 

inventory. 

In the second model we assume that when inventory level is atleast one and no customer is 

• Some results of this chapter was presented in the Annual Conference of Kerala Mathematical Association, 
Payyanur Colleg\!, Kannur, Kerala; 8-10 January'2004. 
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in the buffer then with probability one a customer is picked up from the pool for service. The 

other assumptions of model-I remain valid for model-I! as well. The service time is assumed to 

be exponentially distributed with parameter J.L in both models. It is also assumed that initially 

the inventory level is S. When inventory level reaches s an order for replenishment is placed. 

Lead time is exponentially distributed with parameter (3. 

First we have a brief review ofthe research reported in inventory with service. Berman,Kim 

and Shimshak[9] consider an inventory system with service in which they assume that both 

the demand and the sen-ice rates are deterministic and constant ap.d as such queues can form 

only during stock out period. They determine optimal order quantity that minimize the total 

cost per unit time. Later Berman and Kim[IO, 11] analyze the non-deterministic inventory 

model for service facilities. They analyze the system in which customers arrive at a service 

facility according to Poisson process where service times are exponentially distributed and 

each customer demands exactly one unit of the item in the inventory; both zero and positive 

lead time cases are discussed. Berman and Sapna[12, 13] investigate inventory control at a 

service facility, which uses one item of inventory for servicp. provided. Assuming Poisson 

arrival process, arbitrarily distributed service times and zero lead time they analyze the system 

with the restriction that waiting space is finite. Under a specific cost structure they derive the 

optimum ordering quantity that minimizes the long run expected cost rate. 

The notations used in this chapter in the sequel are explained below:-

I{t)= Inventory level at time t; this takes values {D, 1, ... ,S} 

B{t)= Number of customers in the buffer at time t 

N{t)= Number of customers in the pool at time t 

AI. Transpose of a matrix A 

e= The column vector of I 's of appropriate order. 

We have ((N(t), I(t), B(t)), t ~ D} is a continous time Markov chain with state space 



5.2 Model-I 73 

given by 

n = {(i,j, k)j i ~ 0,0::; j ::; 8,0::; k ::; j} (5.1) 

These states are arranged in the lexicographic order. 

This chapter is organized as follows: Model-I is discussed in section 5.2. This section contains 

three subsection. In subsection 5.2.1 we descripe the model-I. we list some system performance 

measures and based on that some numerial examples are provided in the subsections 5.2.2 and 

5.2.3. In section 5.3, we discuss the model-H. This section also contain three subsections. 

We discuss the model in subsection 5.3.1. System performance measure is given in 5.3.2 and 

finally, we provided illustrative numerical examples in section 5.3.3. 

5.2 Model-I 

5.2.1 Model Discription 

In the present model, when inventory level is larger than the number of customers in the buffer, 

an external demand can enter the buffer for service. A pooled customer is transfered to the 

buffer for service at a service completion epoch with probability p, if the inventory level ex­

ceeds s and is also larger than the number of customers in the buffer. For convenience we define 

the follo'.ving matrices for use in sequel 

Ao,Q 

Bo = 

where 

Aoo = -A,,( - (J 

AS- 1,s-1 

AS,S-1 Ass 

(5.2) 

(5.3) 
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where 

- [-).. - fj 
All = 

° 
-).. - /3 ).. 

-).. - /3 - f.L 
f or2 ::; i ::; s 

fors + 1 ::; i ::; S 

AI,o = [:] 

- [0] Ai,i-1 = f.L 
Ii 

(i+1) xi 

for2 ::; i ::; S 

Ao,Q = [/3,0, .. · ,0] 

Ai,HQ = [Ii+1, 0, 0, ... ,0]/3 forI::; i ::; s 

Ao,Q 

As- 1,s-1 

..4S,S-l Ass 
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(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 
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Ai ,i-1 = [~.l (JL(1 - p)) fors + 1 ::; i ::; S 
~ (i+l) xi 

(5.13) 

Coo 

OlD C~1 

021 6;2 (5.14) 

OSS-1 C~S 

where 

Coo = 0 (5.15) 

Oiiare matrices of all elements with zeros fors + 1 ::; i ::; S (5.16) 

Ci,i-1are matrices of all elements with zeros f or1 ::; i ::; s (5.17) 

o 
PJL 

PJL 

Boo 

Ao= 

PJL 

o 
(i+l)xi 

Boo = ).,{ 

for s+1::;i::;S 

where ai+l is a column vector of zeros except last entry which is 1 and 

Bii is the (i + 1) x (i + 1) matrix. 

(5.18) 

(5.19) 

(5.20) 

(5.21) 
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The Markov chain {( N (t), I (t), B (t)), t 2: O} has the generator Q in partitioned form given by 

Bo Ao 0 0 0 

A2 A1 Ao 0 0 

Q = 0 A2 A1 Ao 0 

o 0 A2 A1 Ao 

where, the entries in Q are given by (5.2) to (5.22). 

Let A = Ao + A1 + A2 and 7r denote the steady-state probability vector of A, Le, 

7r A = 0, 7re = 1 

The vector 7r can be partitioned as 

7r(i) = (7r(i, 0), 7r(i, 1),··· ,7r(i, i)); i = 0,1,·· . ,S 

Then the 7r'S can be calculated as 

where 

7r(S - i) = 7r(S){3s-i 

7r(S - i) = 7r(S)f3S-i 

if i = 1,2, ... ,S 

ifi = 0 

~S-i = [ 
[-~S-i~v4S-i~1,S-i - !S-iAS-i,S-i](As-i,s-i + BS-i,s-i + CS_i,S_i)-1 

-Ass(As,s + Bs,s + CS,S)-1 

7r(i) = -[3.+1(.4.+1 . + 6.+1 .)(A- . + B· . + 6· .)-1 ifi = Q - 1 Q - 2 ... S + 1 , ',' t.,' tit 1.,1. "," " , 

ifi=1,2,···,s 

ifi = 0 
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We have the following result on system stability 

Lemma 5.2.1. The system is stable if 

S i-I A S 

L L1l"(i,j) >(--.1) L1l"(i,i) 
i=s+2 j=1 PJ.t i=O 

Proof From the well-known result [Neuts [61] theorem 1.7.1] on the positive recurrence of Q, 

which states that 

and by exploiting the structure of the matrices Ao and A2, the stated result follows. 0 

If stability holds, by using theorem 3.2.2 and Logarithmic Reduction Algorithm (see La­

touche and Ramaswamy [1999]) we can ::a1culate the rate matrix R. 

5.2.2 System Performance Measures 

We write the steady state probability vector x = (x(O), x(l), x(2), . .. ) where 

x{i) = (y(i,j, k)); i ~ 0,05: j 5: S,O 5: k 5: j 

Some of the system performance measures are given below: 

1. The probability mass function of number of customer in the pool: The probability that 

there are i customers in the pool is given by 

I{ = x(i)e = x(O)Rie; i ~ 0 

2. Expected Inventory level in the system: Expected inventory level in the system is given 

by 
00 S j 

al = L [{LjLY(i,j,k)}]e 
i=O j=1 k=O 
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3. Expected number of customers in the buffer is, 

00 S j 

a2 = L [LLky(i,j.I.:)]r: 
i=O j=l k=l 

4. Expected number of customers in the pool 

00 

a3 = L ix(i)e = x(O)R(I - R)-2e 
i=O 

5. Average Customers lost to the system is, 

00 S 

a4 = A(l- /,) L [ L y(i,j, k)]e 
i=O j=k=O 

6. Expected rate at which customer enter the pool is, 

00 S 

a5 = A/, L [ L y(i,j,k)]e 
i=O j=k=O 

7. The Average rate at which the pool customers enter the buffer is given by 

00 S j 

a6=pJ.LL[L Ly(i,j,k)]e 
i=l j=s+l k=l 

5.2.3 Numerical illustration 

Fixed S = 5,8 = 2,Q = 3,A = 0.5, J.L = 0.7,/3 = 0.6,p = 0.6,/, = 0.6 

We provide a numerical illustration based on performance measures. 
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Table 5 l' 
,X = 0.2 ,X =0.3 ,X'=' 0.4-- ----

,X = 0.5 ,X = 0.6 
al 3.64122 3.~4974 3.27038 3.1189 3.00847 
a2 0.362165 0.593453 0.85437 1.14709 1.47747 
a3 0.0427584 0.176074 0.551752 1.71793 9.46571 
a4 0.00222627 0.00937859 0.0246719 0.050412 0.0882317 
a5 0.003394 0.0140679 0.0370079 0.075618 0.132348 
a6 0.103909 0.143281 0.175928 0.203971 0.229517 

Table 5 2' .. 
IL = 0.6 IL = 0.7 IL = 0.8 IL = 0.9 IL = 1.0 

al 3.15381 3.1189 3.10037 3.09042 3.0852 
a2 1.44111 1.14709 0.945552 0.800566 0.692144 

a3 3.87896 1.71793 1.07129 0.778464 0.617492 

a4 0.0634834 0.050412 0.0419241 0.0361165 0.0319699 

a5 0.0952251 0.075618 0.0628862 0.0541748 0.0479548 

a6 0.125296 0.146179 0.167062 0.207452 0.208827 

Table 5 3' .. 
(3 = 0.4 (3 = 0.5 (3 = 0.6 (3 = 0.7 (3 = 0.8 

al 2.7194 2.95409 3.1189 3.24018 3.33281 

a2 1.10445 1.12528 1.14709 1.16721 1.18511 

a3 6.50534 2.68521 1.17793 1.29464 1.06335 

a4 0.0695216 0.0576941 0.050412 0.0456062 0.042261 

a5 0.104282 0.0865412 0.075618 0.0684092 0.0633917 

a6 0.178756 0.193112 0.203971 0.212473 0.219313 
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.. ---- -' -- - - - . __ ._-----

p = 0.4 p = 0.5 ]J = (J.G ]J = 0.7 p = 0.8 ------ ._- - --- - -- ----
al 3.13578 3.12578 3.1189 3.11374 3.06936 
a2 1.17199 1.1566 1.14709 1.14089 1.00008 
a3 4.22862 2.41191 1.17793 1.35453 0.680104 
a4 0.050528 0.0504136 0.050412 0.0504763 0.0466839 
as 0.0757921 0.0756203 0.075618 0.0757144 0.0466839 
a6 0.138115 0.171072 0.203971 0.236803 0.250033 

Table 55' .. 
, = 0.4 , = 0.5 , = 0.6 , = 0.7 , = 0.8 

al 3.14825 3.13416 3.1189 3.10209 3.08329 
a2 1.05942 1.10032 1.14709 1.20083 1.26299 
a3 0.653433 1.05776 1.17793 2.90313 5.41881 
a4 0.067264 0.0593129 0.050412 0.0403486 0.0288498 
as 0.0448427 0.0593129 0.075618 0.0941467 0.115399 
a6 0.196428 0.199945 0.203971 0.2086 0.213959 

In Table 5.1 to 5.5,we provide measures of the system performance by fixing the parame­

ter's values involved in the system. we vary over the parameters A, J1, /3, p and ,. For different 

values of these parameters corresponding values of the system performance measures are pro­

vided. 

5.3 Model-11 

5.3.1 Model Discription 

In this model we assume that if there is atleast one unit in the inventory and no customer in the 

buffer, then with probability one, service to the head of the line in the pool customer will start. 

The.rest of the assumptions are similar to model-I. In the present model, system will be affected 

through the matrix Al and A2 in the infinitesimal generator Q of model-I. For the convenience, 
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we are redefining the entries of matrix Al and A2• The entries or the matrix Al can bc written 

as:-

- [-A - (J - /1. 
Au = 

o 
1\ 1 

-A,,( - (3 - p, 

-A - p, - (3 A 

-A - (3 - p, 
Jor2 ~ i ~ S 

-A - p, A 

-A - p, A 
Jars + 1 ~ i ~ S 

whereas other entries are identical to that of the entries of matrix Al in model-I. 

The entries of the matrix A2 for the present model can be writen as:-

(\,i-l = 

pp, 

PJ.L 

pp, 

o 

JOTS + 1 ~ i ~ S 

(i+l) xi 

Oi,i-l = [p, 1 i = 1 
o (i+l) xi 

Oi,i-l = [J.L 0 1 J07'2 ~ i ~ s 
o 0 (i+l)xi 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

(5.27) 
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The other entries are identical to that of the entries of matrix A2 in model-I. 

we have the following condition for stability 

Lemma 5.3.1. The system is stable if 

S S i-I S 

Z=7r(i,O)J.t+ z= Z=7r(i,j)PJ.t>A,Z=7r(i,i) 
i=1 i=8+1 j=1 i=O 

82 

Proof From the well-known result [Neuts [61] theorem 1.7.1] on the positive recurrence of Q, 

which states that 

and by exploiting the structure of the matrices AD and A2 , the stated result follows. 0 

Theorem 3.2.2 is applicable for the present model when the stability condition holds. For 

calculating the rate matrix R, Logarithmic Reduction Algorithm (Latouche and Ramaswami 

[49]) can be used. Note that the vector 7r of the generator A can be calculated in the same 

fashion as calculated in model-I. 

5.3.2 System Performance Measures 

We write the ith component of the steady state probability vector x = (x(O), x(l), x(2), . .. ) 

x(i) = (z(i,j,k))j i?O,O~j~S,O~k~j 

Some of the system performance measures are given below: 

1. The probability mass function of number of customers in the pool: The probability that 

there are i customers in the pool is given by 
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2. Expected Inventory level in the system: Expected inventory level is given by 

00 S j 

(31 = L [{Lj L z(i,j, k)}] e 
i=O j=l k=O 

3. Expected number of customers in the buffer is 

00 S j 

(32 = L [LLkz(i,j.k)]e 
i=O j=l k=l 

4. Expected number of customers in the pool 

00 

{33 = L ix(i)e = x(O)R(I - R)-2e 
i=O 

5. Average Number of Customers lost to the system is 

00 S 

(34=>.(1-'Y)L[ L Z(i,j,k)]e 
i=O j=k=O 

6. Expected rate that a customer will enter the pool is, 

00 8 

(35= >''YL [ L Z(i,j,k)]e 
i=O j=k=O 

7. The Average rate at which the pooled customers enter the buffer is given by 

00 8 j 008 

(36 = PIL L[ L LZ(i,j, k)]e + IL L[L z(i,j, O)]e 
i=l j=s+l k=l i=l j=l 

5.3.3 Numerical Illustration 

We provide a numerical illustration based on performance measure. 
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Table 5 6' _. ------ - -- -
A = 0.3 A = 0.4 A = 0.5 A = 0.6 A = 0.7 

/31 3.47192 3.30217 3.15116 -3.023-65 2.92394 
/32 0.574263 0.801166 1.03429 1.27722 1.41279 
/33 0.0743328 0.235863 0.628411 1.69963 2.47404 
/34 0.00884 0.0224701 0.0443471 0.0753339 0.107078 
/35 0.01326 0.0337052 0.0665206 0.113001 0.160617 
/36 0.553833 0.501887 0.452489 0.405742 0.376486 

Table 5 7' .. 
J.L = 0.5 J.L = 0.6 J.L = 0.7 J.L = 0.8 J.L = 0.9 

/31 3.22136 3.1774 3.15116 3.1367 3.12871 
/32 1.70973 1.28765 1.03429 0.859483 0.732528 

/33 5.26143 1.22989 0.628411 0.396087 0.280761 
/34 0.0752161 0.0552871 0.0443471 0.0372473 0.0323662 

. /35 0.112824 0.0829306 0.0665206 0.0558709 0.0485493 

/36 0.278375 0.365966 0.452489 0.54048 0.62965 

Table 58' .. 
/3 = 0.4 /3 = 0.5 /3 = 0.6 /3 = 0.7 /3 = 0.8 

/31 2.74395 2.986 3.15116 3.27066 3.36096 

/32 0.913272 0.983043 1.03429 1.07372 1.10513 
/33 1.06962 0.768233 0.62841 0.551497 0.504454 

/34 0.0589525 0.0498858 0.0443471 0.0407051 0.0381752 

/35 0.0884288 0.0748287 0.0665206 0.0610576 0.0572628 

/36 0.408505 0.43567 0.452489 0.463708 0.471619 
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Table 5 9' .. 
p = 0.4 p = 0.5 1) = 0.6 fJ = 0.7 p = 0.8 -------- "-"-'--"'- -

(31 3.14934 3.15008 3.15116 :\.15152 3.15182 
(32 0.998271 l.01151 1.0235 1.03429 1.04396 
(33 0.727222 0.691369 0.658411 0.601111 0.576402 
(34 0.0430501 0.0437241 0.0443471 0.0449207 0.0454472 
(35 0.0645752 0.0655862 0.0665206 0.067381 0.0681708 
(36 0.392067 0.421981 0.452489 0.483497 0.514921 

Table 5 10' ,= 0.4 ,= 0.5 ,= 0.6 ,= 0.7 ,= 0.8 
(31 3.17546 3.16416 3.15116 3.1364 3.1197 

(32 0.999049 1.01605 1.03429 1.05395 1.07535 
(33 0.309636 0.448205 0.628411 0.866194 1.18667 
(34 0.0621832 0.0535514 0.0443471 0.0344916 0.023895 
(35 0.0414555 0.0535514 0.0665206 0.0804803 0.0955801 
(36 0.460935 0.456892 0.452489 0.447675 0.442377 

In tables 5.6 to 5.1 0, we provide measures of the system performance by fixing the param­

eter values involved in the system. We vary over the parameters A, 1.1" (3, P and ,. For different 

values of these parameters corresponding values of the system measures are provided. 

Table Analysis 
We evaluated certain system performance measures based on model-I. Where we assumed 

that the pooled customer will be picked up to buffer at a service completion epoch only if 

inventory level is atleast s + 1. In model-I! we relax this particular restriction and consider that 

the customer from the pool will be picked up with probability one even when inventory level is 

atleast one and no customer is present in the buffer. So it is expected that in the latter case the 

expected number of pooled customers get reduced whereas the customer entering rate from the 

pool to buffer will be increased. And as an overall affect inventory level will be decreased in 

model-I!. Com!laring the results in tables for model-I and model-II we notice that they are in 

agreement with our expectation. 



Chapter 6 

(s, S) Inventory System with Postponed 

Demands 

6.1 Introduction 

In this chapter we discuss an (8, S) inventory system with postponed demands. Two models 

are discussed. In the first model we examine the case in which life time of the inventoried 

items is infinite and in the second model the inventoried items have random shelf-life which 

is exponentially distributed with parameter fJ(fJ > 0) under the same assumptions except that 

when inventory level is zero, external demand has choice to join tlu: pool with probability {3 or 

lea'le the system with probability (1 - (J). 

Many researchers have considered (8, S) inventory system and examine the system charac­

teristics. Gross and Harris [26] analyzed a continuous review (8) S) inventory model with state 

dependent lead-time. Srinivasan [75] analyzed an (8, S) inventory system with random lead 

time and unit demand. Sahin [74] discuss an (8, S) inventory model under compound renewal 

demand and random lead time. Beckman and Srinivasan [7] consider an inventory system with 

·The results of Model-I of this chapter will appear in the Journal of Stochastic Analysis and Application, 
Vo1.22, No.3, 2004. 

·The results of Model-II of this chapter was presented in the Annual Conference of Indian Society for Proba­
bility and Statistics at Nagarjuna University, Andhrapradesh; 18-20 December'2003. 
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Poisson demands and exponential lead time. Ramanarayan and Jacob [69] analyze an (s, S) 

inventory system with random lead time and bulk demalld. All (:i,8) inventory system with 

random life-time and positive lead time is discussed in Kalpakam and Sapna [37]. 

On the other hand extensive work has already been done by many researchers in the field 

of perishable inventory systems by assuming a constant rate of deterioration and also constant 

demand. Goel and Giri [24] study an inventory model by considering demands as a function 

ofsellir,g price and three parameter Weibull rate of deterioration. Nahmias [57] is an excellent 

reference for literature on perishable inventories. Raafat [66] presented a complete survey of 

literlture for the deteriorating inventory models up to [1990]. 

Notations 

The following notations are used in this chapter 

I(t) = Inventory level at time t 

N(t) =Number of customers in the pool at time t 

{(I(t),N(t)).):= {(i,j) 10:::; i:::; S;O:::; j:::; M} 

r(o:) =Laplace Transform of f(.) 

El = {O 1 2 ... S} , " , 
ri'_ = {O 1 2 ... M} 
l:I2 '" , 

E = El X E2 

eM+! = (1,1,· . " l)T: an (M + 1) -component column vector of 1 's 

This chapter is organized as follows: Model-I is discussed in section 6.2. This section contains 

five subsections. Some assumptions are made to study the model in 6.2.1. Model analysis both 

for transient and steady state cases are discussed in subsection 6.2.2. In subsection 6.2.3 we list 

some system performance measures and based on that measures a cost function is developed 

and some numericals are provided in the subsections 6.2.4 and 6.2.5 respectively. In section 6.3 

we discuss the model-H. This section contain four subsections. In subsection 6.3.1 we study 

the system in steady state case for perishable inventory system. System characteristics measure 
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is given in 6.3.2. A cost function is discussed in the subsection 6.3.3 and finally, we provided 

illustrative numerical cxamples in subsection 6.3.4. 

6.2 Model I 

In the first model we examine an (8, S) inventory system with Postponed demands. We assume 

that customers arrive to the system according to a Poisson process with rate A(> 0). When 

inventory level depletes to 8 either due to a demand or service to a pooled customer, an or­

der for replenish.-nent is placed. The lead time is exponentially distributed with parameter ,. 

When inventory level reaches zero, incoming customers are sent to a pool of capacity M. Any 

demand that takes place when the pool is full and inventory level zero, is assumed to be lost. 

After replenishment, as long as the inventory level is greater than 8, the pooled customers are 

sdected according to an exponentially distributed time lag, with rate depending on the number 

in the pool.The difference between the problem under discussion and classical (8, S) inventory 

models with lead time is that pooled customers will have to wait even when inventory level is 

positive whearas in the latter backlogs are cleared, partially or fully depending on availability, 

on replenishment of inventory, in the former this need not take place. In both cases lead time 

plays a crucial rule. 

6.2.1 Assumptions 

1. Initially the inventory level is S, i,e. 1(0) = S 

2. Inter amval time of demands are exponentially distributed with parameter A 

3. Lead time is exponentially distributed with parameter, 

4. Demands that arrive when the inventory level is 0, is sent to a pool of capacity M. Beyond 

M the demap.d is lost provided inventory level is also zero 

5. When the inventory level l(t) > 8, demands from both pooled customers and external 

customers can be met, but when l(t) ~ 8 only external demands will be met and pooled 
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customers have to wait until the next replenishment. 

6.2.2 Model and Analysis 

The maximum inventory level is fixed at S. The inter-arrival time between two successive 

demands is assumed to be exponentially distributed with parameter A. Each demand is for ex­

ectly one unit of the item. When inventory level J(t) depletes due to demands and reaches the 

re-order level s, an order for replenishment is placed. Lead time is exponentially distributed 

with parameter,. When level is zero, demands that take place are sent to a pool, which has a 

finite capacity M. When inventory level ~ s + 1 both external and pooled customer's demands 

are met. The infinitisemal generator A = (a( i, j; k, l)), (i, j), (k, l) E E, of the process can be 

obtained using the following arguments:-

a. The arrival of a demand makes a transition from 

(i,j) ~ (k = i-I, l = j) ifl::; i ::; Sand 

(i,j) ~ (k = i, l = j + 1) ifi = 0, 0::; j ::; M-I 

b. When a pooled customer is picked up, it leaves the pool size and also the inventory level less 

by one i,e. the transition 

(i,j) ~ (k =i -l,l = j -1) ifs + 1::; i::; S 

c. Transition from (i, j) to (i + Q, l = j) if i ::; s and has rate,. 

Hence we get 
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a(i,j; k, l) = 

Define 

if k = i-I; i = s + 1, ... ,S 

j = 0,1,2, ... ,M; 1= j 

JJ.L if k = i - 1; 'i = s + 1, ... ,S 

l = j - 1; j = 1,2, ... , M 

-(>.+jJ.L) ifk=i;i=8+1, ... ,S 

l =j;j = 0,1, ... ,M 

if k = i = ° 
l = j + l;j = 0, 1, ... , M-I 

, if k = i + Q; i = 0,1, ... , s 

l = j;j = 0,1, ... , M 

-(>' + ,) if k = i; i = 0,1, ... , s 

l = j;j = 0, 1, ... , M 

if k = i-I; i = 0, 1, ... , s 

l=j;j=O,l, ... ,M 

Aik = (a(i,j),(k, l)))j,iEE2,i, kEEl 

The infinitesimal generator A can be conveniently express as a partitioned matrix 

A = ((Aik)) 

where Aik is a (M + 1) x (M + 1) matrix which is given by, 

Al if k = i-I; i = s + 1, ... , S 

A2 if k = i; i = s + 1, ... ,S 

A3 if k = i;i = ° 
Aik = A4 if k = i + Q; i = 0, 1, ... , S 

A5 if k = i; i = 1,2, ... ,s 

A6 if k = i - 1; i = 1,2, ... ,s 

° otherwise 

90 
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with 

M >. MJ-L 0 0 0 0 

M-I 0 >. (M - I)J-L 0 0 0 

M-2 0 0 >. 0 0 0 

Al = ... 

2 0 0 0 >. 2f1, 0 

1 0 0 0 0 >. /-1, 

0 0 0 0 0 0 >. 

for k = i-I; i = s + 1, . . . ,S. 

M -(>' + MJ-L) 0 0 0 0 

M-I 0 -(>' + (M - 1)J-L) 0 0 0 

A2 = 
2 0 0 -(>' + 2J-L) 0 0 

1 0 0 0 -(>' + J-L) 0 

0 0 0 0 0 ->. 

for k = i; i = s + 1"" ,S 

M -, 0 0 () 0 0 

M-I >. -(>.+,) 0 0 0 0 

M-2 0 >. -(>' +,) 0 0 0 

A3 = ... 
2 0 0 0 -(>' +,) 0 0 

1 0 . 0 0 >. -(>.+,) 0 

0 0 0 0 0 >. -(>' +,) 

for k = i; i = 0 
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M , 0 0 0 0 0 

M-I 0 , 0 0 0 0 

M-2 0 0 , 0 0 0 

A4 = ... .. . .. . .. . 
2 0 0 0 , 0 0 

1 0 0 0 0 , 0 

0 0 0 0 0 0 , 
for k = i + Qj i = 0, 1, . " ,S 

M -(>'+,) 0 0 0 0 

M-I 0 -(>' + ,) 0 0 0 

M-2 0 0 
As = 

-(>' +,) 0 0 

1 0 0 0 -(>.+,) 0 

0 0 0 0 () -(>'+,) 

for k = ij i = 1,2, ... ,S 

M >. 0 0 0 0 0 

M-I 0 >. 0 0 0 0 

M-2 0 0 >. 0 0 0 

A6 = .. . ... .. . .. . 
2 0 0 0 >. 0 0 

1 0 0 0 0 >. 0 

0 0 0 0 0 0 >. 

for k = i - Ij i = 1,2" .. ,S 

SO we can write the partitioned matrix as follows: 
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8 A2 Al 0 0 0 () () 0 0 

8-1 0 A2 0 0 0 0 0 0 0 

Q+1 0 0 A2 Al 0 0 0 0 0 

Q 0 0 0 A2 0 0 0 0 0 

,4= 
&+1 0 0 0 0 A2 Al 0 0 0 

S A4 0 0 0 0 As 0 0 0 

2 0 0 0 0 0 0 A5 A6 0 

1 0 0 A4 0 0 0 0 As A6 
0 0 0 0 A4 0 0 0 0 A3 

Transient Analysis: 

Define 

rp((i, j), (k, l), t) = Pr[I(t) = k, N(t) = lI1(0) = i, N(O) = j], (i, j), (k, l) E E 

Let, rpi,k(t) denote a matrix whose (j, l)th element is <fJW, j), (k, l), t) and 

lP(t) denotes a block partitioned matrix with the sub-matrix rpi,k (t) at (i, k )th position. 

The Kolmogorov differential equation satisfied by <fJ( (i, j), (k, l), t) in matrix form is 

q>'(t) = q>(t)A 

The solution of the above equation is given by 

Now, 



6.2 Model I 

where 

iI>~ = (1)tk(a)) and 1>:,k(a) = (1)*((i,j), (k, l), a))j,IEE2 

with 1>*( (i, j), (k, l), a) = fooo e-at1>( (i, j), (k, l), t)dt 

The matrix (a! - A) has the fonn 

p= (cd - A) = 

S Ds -Bs 0 0 0 

S-l 0 DS-l 0 0 0 

Q 0 0 DQ 0 0 

5+1 0 0 0 Ds+l -Bs+l 

5 -Hs 0 0 0 Ds 

1 0 0 0 0 0 

0 0 0 -Ho 0 0 

where 

0 

0 

0 

0 

0 

DI 

0 

[ a[ - A, if i = s + 1, ... , S 

Di = a! - A5 if i = 1,2, ... , s 

a! -A3 ifi = 0 

B; ~ [ AI 
if i = s + 1, ... , S 

A6 if i = 1, 2, ... , S 

Hi =A4 if i = 0, 1, . .. , s 

To compute p-l = (a! - Atl we proceed as described below:-

Consider the lower triangular matrix 
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0 

0 

0 

0 

0 

-Bl 

Do 
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8 Us,s 0 0 0 0 0 

8-1 Us-l,s US-l,S-l 0 0 0 0 

Q UQ,s UQ,S-J Uq,(J () () 0 

Q= 
s Us,s Us,S-l Us,Q Us,s 0 0 

1 Ul,s Ul,S-l Ul,Q Ul,s Ul,l 0 

0 Uo,s UO,S-l UO,Q Uo,s UO,l Uo,o 

with Ui,i = 1; i = 0,1, ... ,8 

And an almost lower triangular Matrix, 

8 0 -Bs 0 0 0 0 

Q 0 0 -BQ 0 0 0 

R= 
s 0 0 0 -Bs 0 0 

1 0 0 0 0 -Bl 0 

0 Ra,s Ra,S-l Ra,Q Ro,s Ro,l Ro,o 

such that PQ = R 
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The (i,jYh sub-matrix of PQ, denoted by [PQ]i)S given by, 

DiUi,j - B;lJi-1,j 

-BiUj,j 

DiUi,j - BiUi- 1,j 

DoUo,j 

DoUo,j - HoUQ,j 

if i 0 - 1,2, . " , S;.i = i 

if i = 1, 2, ... , S; j = i-I 

ifi = 1,2, ... , S - l;j = i + 1 

if j = 0, 1, ... , Q - 1 

if j = Q, Q + 1, ... , S 

By equating sub-matrix of PQ to the corresponding element of R, we get 

96 

[ 
Bi+\ DH1 if i = 0, 1, ... , S - 1; j = i + 1 

Bif.\DH1UHl,j - Bif.\HHIUHQ+1,j ifi = 0, 1, ... , S -l;j = 1,2, ... , S 

ifj = 0 

Ra,j = DoUo,j ifj = 1,2, ... ,Q-1 [

Do 

DoUo,j - HoUQ,j if j = Cd + 1, Q + 2, ... ) S 

Determinent and Inverse of Matrix R 

The detR is given by 

det{Ra,s)det{ -Bs)det{ -BS - 1) .•• det{ -B2)det( -B1) 

For evaluating R-1, we know 

R-1 = adjR 
detR 

(6.1) 
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By using 6.1 we get 

8 

8-1 

R-1 D_ B-1 R-1 D_ B-1 
""O,8~L{),8-1 8 o,8~L{),8-2 8-1 

o 

B -1 
- 8 

o 

The equation PQ = R implies, 

o 

o 

p-1 = tildeQR- 1 

By using Q and R-1 in 6.2, we can easily evaluate 

p-1 = (aI - At1 = <J?~ 

Steady Stde Analysis 

\. 

R-1 R B-1 R-1 
0,8 0,0 1 0,8 

o 

B -1 
- 1 

o 

o 

97 

(6.2) 

(6.3) 

It can be seen from the structure of matrix A that the state space E is irreducible. Let the 

limiting distribution be denoted by rr(i,i): 

rr(i,i) = limt-+oo Pr[I(t), N(t) = (i,j)] ,(i,j) E E 

write rr = (rr(8) , rr(8-1), ... ,rr(1), rr(O)) and 

rr(K) = (rr(K,M) , rr(K,M-1), ... ,rr(K,1), rr(K,O)) for K = 0,1, ... ,8 

These limits exists and satisfy the following equations: 

rrA = 0 and 2': rr(i,j) = 1 

The first equation of the above yields the following set of equations, 

rr(i+1)A6 + n(i)A3 = 0 if: i = 0 

(6.4) 
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rr(Hl) Aa + rr(i) A5 = 0 if: i = 1,2, ... , s - 1 

rr(i+l) Al + rr(i) A5 = 0 if: i = s 

rr(i+l) Al + rr(i) A2 = 0 if: i = s + 1, ... , Q - 1 

rr(i+l)A1 + rr(i)A2 + rr(i-Q)A4 = 0 if: i = Q, ... , S - 1 

rr(S) A2 + rr(s) A4 = 0 

The solution of the above equations (except the last one) can be conviniently expressed as 

where 

1 

A A-I 
- 3 6 

rr(i) = rr(O),6i i = 0,1, ... ,S 

( -1 )i-l,61 (A5A61 )i-l 

(-1)s,61 (A5A61 )S-1(A5Al1) 

To compute rr(O) , we can use the following equations 

rr(S) A2 + rr(s) A4 = 0 and 2: rr(I<)eM+l = 1 

which yield, respectively, 

rr(O)(,6sA2 + ,6sA4) = 0 and rr(O) (1 + 2: ,6i)eM+l = 1 

6.2.3 System Characteristics 

Mean Inventory Level 

ifi = 0 

ifi = 1 

if i = 2,3, ... , s 

ifi = s + 1 

ifi = Q + 1,," ,S 

Let L denote the average inventory level in the steady state. Then we have 

S M 
L = L i L rr(i,j) 

i=1 j=O 
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Mean Re-order Rate 

In the system the re-order is given when either external demand take place or demand from 

pooled customer is met, resulting in the level reaching s. 

Let a1 denote the mean order rate. Then we have:-

M M 
a1 = A Lrr(S+l,j) + Ljp,rr(S+l,j) 

j=O j=l 

Expected Number of Pooled Customers 

Let a2 be the expected number of pooled customers. Then we have, 

M S 

a2 = L j L rr(i,j) 

j=l i=O 

Expected Waiting Time: 

Denote by Wj the waiting time of the lh customer in the pool; j = 1,2,· .. , M. We evaluate 

E(Wj) conditional on the system state. Figure 6.1 provides the transition diagram for comput­

ing E(Wj) Thus E(Wj) = 2:f=o{E(Wj l system state at (O,j))}{P(system state at (O,j))) 

where, E(Wjlsystem state at (O,j)) = [>'!'Y +~+~+ j/l(~~'Y)l for k = 1,2,··· , M 

Now the average waiting time 

Gr8627 
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A .....A.- A A 
A+y (0,1) A+Y (0,2) A+y (0,3) "-+1 (0.4) (O,M) 

Y Y Y Y l A+y A+Y A+y A+y 
~ 
A:+1l 

(Q.4) 

(Q.M) 

11 -L 
A+J,L 1..+411 

Figure 6.1: 

The average number of customers lost 

Let, i}4 be the average number of customers lost to the system. Then i}4 is given by, 

6.2.4 Cost Function 

Define 

Cl =Inventory holcting cost per unit per unit time 

C2 =Replenishment Cost 

C3 = Waiting cost of customers in the pool 
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C4 =Loss due to customers not admitted to pool for want of inventory and space in the pool 
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So expected total cost rate of the system can be defined as:-

6.2.5 Numerical Illustration 

By giving values to the underlying parameters we provide some numerical illustrations. Take 

S = 5, s = 2, M = 3, ,\ = 0.3, IL = 0.2, 'Y = 0.6, Q = 3, Cl = 5, C2 = 2, C3 = 3, C4 = 2 

Then we get the measures as described in Table-6.1 

Table 6 l' .. 
Mean Inventory of the system 3.488123232 
Mean Replenishment rate of the system 0.103558591 
Mean lost customers of the system 0.000313942 
Customer's waiting cost in the pool 0.204927851 
Expected Total cost of the system 18.26315574 

In the Table-6.2 and Table-6.3 we vary over M keeping the other parameter fixed at the 

values given in the above table. Calculated steady state probabilities for M = 3 are given in 

the Appendix-I 

Table 6 2' .. 
M-value Expected Waiting Time 
M=l 0.029392763 
M=2 0.035886864 
M=3 0.041290403 
M=4 0.041298622 
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Table 6 3' .. 
M-value Cl = 3 andC3 = 5 Cl = 5 and C3 = 3 
M=1 12.05731445 19.82870805 
M=2 10.97402285 17.89590807 

----
M=3 11.96676498 18.26315574 
M=4 11.9613483 18.33277972 

6.3 Model-11 

In several existing models, it is assumed that products have infinite shelf-time. But in a number 

of practical situations, a certain amount of decay or waste is experienced on the stocked items. 

For example, this arises in certain food products subjected to deterioration or radio active ma­

terials where decay is present or volatile fluid under evaporation. These deterioration occur 

due to one or many factor viz. storage condition, weather condition including the nature of the 

particular product under study. The deterioration is usually a function of the total amount of 

inventory on hand. Hence the need to study inventory system with deterioration arises.ln this 

model, we extended the result of model-I to a perishable (8, S) inventory system.We assume 

that the life-time of each item has exponential distribution with rate ()(> 0). Also it is assumed 

that when inventory level is zero the arriving demands choose to enter the pool with probability 

(3 and with probability (1 - f3) it is lost for ever. All assumptions of model -I hold in this case 

also. 

6.3.1 Model and Analysis 

It can be verified that {(I (t), N (t) ), t ;::: O} is a Markov process on the state space E. 

The infinitisemal generator of the process 
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A = (a(i, jj k, l)), (i, j), (k, l) E E, can be epressed as;-

a((i,j), (k,l)) = 

Define 

jp 

i() 

if k = i-I; i ::-= s + 1, ... , S 

j = 0,1,2, ... , M; l = j 
if k = i-I; i = s + 1, ... , S 

l = j -1;j = 1,2, ... , M 

if k = i-I; i = 1,2, ... , S 

l=j;j=O,I, ... ,M 

-(A+iB+jp) ifk=iji=s+I, ... ,S 

A{3 

l=j;j=O,I, ... ,M 

if k = i = ° 
l= j + l;j = 0,1, ... , M-I 

if k = i + Q; i = 0,1, ... , s 

l=j;j=O,I, ... ,M 

-(A + , + iB) if k = i; i = 0,1, ... , s 

I = j; j = 0, 1, ... ,. M 

if k = i-I; i = 0,1, ... , s 

I =j;j = O,I, ... ,M 

Aik = (a(i,j), (k, 1)))j,IEE2,i, kEEl 

The infinitesimal generator A can be conveniently express as a partitioned matrix 

A = ((Ai,k)) 

where Ai,k is a (M + 1) x (M + 1) matrix which is given by, 
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A if k = i; i = 0 

B if k = i + Q; i = 0, 1, ... ,s 

Ai,k = 
Ai if k = i-I; i = s + 1 ... , S 

Bi if k = i; i = s + 1 ... , S 

Ci if k = i; i = 1,2, ... , S 

Di if k = i-I; i = 1,2, ... , S 

with 

M -, 0 0 0 0 0 

M-I )..(3 -().(3 + ,) 0 0 0 0 

M-2 0 )..(3 -()..(3 + ,) 0 0 0 

A= 

2 0 0 0 - ().,8 + ,) 0 0 

1 0 0 0 ).(3 -()..(3 + ,) 0 

0 0 0 0 0 )..(3 -().(3 + ,) 

M , 0 0 0 0 0 

M-I 0 , 0 0 0 0 

M-2 0 0 , 0 0 0 

B= ... ... .. . 
2 0 0 0 , 0 0 

I 0 0 0 0 , 0 

0 0 0 0 0 0 , 
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M (-\ + iB) MJ-L 0 0 0 0 

M-I 0 (-\ + iB) (M - I)/L 0 0 0 

M-2 0 0 (-\ + i(}) 0 0 0 

Ai = ... 
2 0 0 0 (-\+i(}) 2J-L 0 

I 0 0 0 0 (-\ + i(}) /L 

0 0 0 0 0 0 (-\ + i(}) 

M -(-\ + i() + M /L) 0 0 0 

M-I 0 -(-\ + i() + (M - 1)/L) 0 0 

Bi = ... 
I 0 0 -(-\ + i() + J-L) 0 

0 0 0 0 -(-\ + i() 

M -(-\+i(}+,) 0 0 0 

M-I 0 -(-\ + iB +,) 0 0 

Ci = ... 
I 0 0 -('\+iB+,) 0 

0 0 0 0 -(,\ + i() +,) 

M (-\ + i(}) 0 0 0 0 O. 

M-I 0 (,\ + iB) 0 0 0 0 

M-2 0 0 (-\ + iB) 0 0 0 

Di= ... 

2 0 0 0 ('\+i(}) 0 0 

I 0 0 0 0 (,\+iB) 0 

0 0 0 0 0 0 (,\ + i(}) 
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So, we can write the partitioned matrix as follows; 

8 Bs As 0 0 () () 0 0 0 0 

8-1 0 BS-I 0 0 0 0 0 0 0 0 

Q+1 0 0 BQ+! AQ+l 0 0 0 0 0 0 

Q 0 0 0 BQ 0 0 0 0 0 0 

..1= 8+1 0 0 0 0 Bs+l As+l 0 0 0 0 

8 B 0 0 0 0 Bs Ds 0 0 0 

8-1 0 B 0 0 0 0 Cs- I 0 0 0 

2 0 0 0 0 0 0 0 C2 D2 0 

1 0 0 B 0 0 0 0 0 Cl Dl 

0 0 0 0 B 0 0 0 0 0 A 

Steady State Analysis 

It can be seen from the structure of matrix A that the state space E is irreducible. Let the lim-

iting distribution be denoted by n(i,j): 

rr(i,j) = pm Pr[I(t), N(t) = (i,j), 1 
-+00 

(i,j) E E 

write rr = (rr(S) , rr(S-I) I ••• ,rr(l) I rr fO)) and 

rr(K) = (rr(K,M), rr(K,M-I) I' •• I rr(K,l) I rr(K,O)) for K = 0,1, ... ,8 

The limiting distribution exists, satisfies the following equations: 

rrA = 0 and 2: rr(i,j) = 1 

The first equation of the above yields the following set of equations. We can write these equa-

tions in general, 
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rr(H1) AH1 + n(i) Bi + n(i-Q) B = 0 : i = Q, ... , S' - I 

rr(h1) AH1 + n(i) Bi = 0 : i = s + 1, ... , Q - 1 

rr(H1) AH1 + n(i)ci = 0 : t = .'i 
rr(i+l) Di+l + n(i)ci = 0 : i = 1, ... , s - 1 

rr(i+1) Di+l + n(i) A = 0 : i = 0 

rr(S) Bs + n(s) B = 0 
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The solution of the above equations (except the last one) can be conviniently expressed as:­

rr(i) = n(O),Bi i = 0,1, ... , S 

where 

I 

-ADl1 

( _1)iADl1C1D21",CiDi~\ 

-,Bi-1Ci-1Ai1 

ifi = 0 

ifi = 1 

if i = 2,3, ... , s 

ifi = s + 1 

-,Bi-1Bi-1Ai1 if i = s + 2, ... , Q 

-,Bi-1Bi-1Ai1 -- ,Bi_(Q+l)BAi1 ifi = Q + 1, ... , S 

To compute n(O) , we can use the following equations 

rr(S) Bs + n(s) B = 0 and n(O) 2: n(K)eM+l = 1 

which yield, respectively, 

rr(O) (,BsBs + ,BsB) = 0 and n(O) (I + 2: ,Bi)eM+l = 1 

6.3.2 System Characteristics 

Mean Inventory Level 

Let J-L1 denote the average inventory level in the steady state. Then we have:-

S M 
J-L1 = L i L n(i,j) 

i=l j=O 



6.3 Model-II 

Mean Re-order Rate 

Suppose /12 is the mean re-order rate. Then we have:-

M M M 

/12 = >. L n(s+l,j) + Lj/111(s+l,j) + (8 + 1)0 L n(s+l,j) 

j=O j=1 j=O 

Mean Number of Perished Items 

The mean number of perished items /13 is 

S M 

/13 = L i8 L n(i,j) 

i=1 j=O 

Mean Number of Pool Customers 

The expected number of pool customers /14 is, 

M S 

/14 = L j L n(i,j) 

j=1 i=O 

The average number of customer's lost 

The average number of customer's lost /15is, 

M-I 

/15 = >.n(O,M) + (1 - 13)>' ~ I1(O,j) 

j=O 
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The probability that the external demands will be satisfied after immediately it's arrival 

The probability that the external demands will be satisfied after immediately it's arrival is 

S M 
I:I:n(i,j) 

i=1 j=O 
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The probability that the external demand that's it's arrival cnll'!" thc pool 

The probability that the external demand that's it's arrival enter the pool is 

M-I 

)..{3 L rr(O,j) 

6.3.3 Cost Function 

Define 

Cl =Inventory holding cost of the system 

C2 =Cost of rc.-order of the system 

C3 =Cost of items perished in the system 

C4 =Cost of customers lost to the system 

So, the total expected cost of the system is 

6.3.4 Numerical Illustration 

j=O 

109 

By giving value to the underlying parameters we provide some numerical illustrations. Take 

S = 6,8 = 2,M = 3,).. = 0.3,/-L = 0.2" = 0.6,Q = 3 

() = 0.1, {3 = 0.6, Cl = 1, C2 = 2, C3 = 3, C4 = 2 

Then we get the measures as described in belowing table and steady state probabilities for the 

above parameter is given in appendix -II 
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----

Mean Inventory of the system 3.20423 
._--- - - -- - -

Mean re-order rate of the system 0.185128 
-~ 

Mean perished item of the system 0.320423 
-" -- --

Mean lost custeomers to the system 0.006399 
--

Mean pool customers in the system 0.397455 

Probability that the external demand will be satisfied just after it's arrival 0.947962 

Probability that the arrival demands enter the pool 0.03086 

Total expected cost of the system 4.54855318 

Appendix-I 

n(O,O) 0.011233746 n(3,O) 0.287025356 

n(O,I) 0.004941649 n(3,l) 0.024413569 

n(O,2) 0.001957046 n(3,2) 0.005919092 

n(O,3) 0.001046476 n(3,3) 0.001223153 

n(1,O) 0.033701238 n(4,O) 0.250002555 

n(1,I) 0.003591201 rr(4,l) 0.02184004 
----

n(I,2) 0.000929488 rr(4,2) 0.006744105 
--

n(I,3) 0.000135905 rr(4,3) 0.001576509 

n(2,O) 0.101103716 rr(5,O) 0.184403905 

n(2,1) 0.010773603 rr(5,l) 0.012930029 

n(2,2) 0.002788466 n(5,2) 0.017339342 

n(2,3) 0.000407717 rr(5,3) 0.013971134 
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Appendix-II 

n(O,3) 0.000857867 n(3,1) 0.011927793 

n(O,2) 0.002705345 n(3,O) 0.267052524 

n(O,l) 0.010569641 rr(4,3) 0.000436204 

rr(O,O) 0.037906091 rr(4,2) 0.001981623 

n(l,3) 0.000069396 rr(4,l) 0.01250042 

rr(l,2) 0.000519085 rr(4,O) .225330124 

n(l,l) 0.003553056 rr(5,3) 0.00006543 
--

rr(l,O) 0.07391689 rr(5,2) 0.000646654 

n(2,3) 0.000138791 n(5,l) 0.005812371 

n(2,2) 0.001038174 n(5,O) 0.13911527 

n(2,l) 0.007106122 n(6,3) 0.000055516 

n(2,O) 0.14783378 n(6,2) 0.000479138 

n(3,3) 0.000254452 n(G,I) 0.003876532 

n(3,2) 0.001648864 n(G,D) 0.042604115 



Chapter 7 

Production Inventory Model with 

Switching Time 

7.1 Introduction 

Very little investigation on production inventory in stochastic set-up had been made in the past. 

The analysis becomes highly complex when the items are of random life-time and the lead 

time are positive. Altiok[l] analyzed a production inventory system with compound Poisson 

demand and phase-type distribution for processing time. Berge et. al[8] deal with produc­

tion inventory system with unreliable meachines , thus incorporating reliability into production 

inventory. They obtain s<ine performance measures of the system. Sharafali[78] considered 

a production inventory operating under the (8, S) policy wherc demands arrive according to 

a Poisson process and production times are exponentially distributed. He assumed that the 

machine is subject to failure and repair time has general distribution. He analyzed the prob­

lem by looking at the underlying semi-regenerative process. Ching[88] considered optimal 

(8, S)policies with delivery time gurantees for production planning in manufacturing system 

with early set-up. They assumed that the inter-arrival time of the demand and the processing 

"The results of this chapter will appear in the proceedings of V International Symposium on Optimization and 
Statistics at Aligarh Muslim University, Uttarpradesh; 28-30th December'2002. 
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time for one unit of product are exponentially distributed and a set up time is required for the 

machine. Raju [68] considered N-policy for production inventory system and assumed that the 

machines are highly reliable and no break down take place during production process. 

In this chapter we consider a production inventory system in which demand form a Poisson 

process and the production times have exponential distribution. The policy is (s, S) of type. 

When the inventory level reaches s from S production is switched on; the switching time is 

exponentially distributed with parameter a. During the switching time no demand is processed. 

This chapter is organized as follows: In section 7.2 we describe the mathematical model. 

Limit distribution and waiting time distribution are discussed in section 7.3 and 7.4. In section 

7.5 we evalute the. expected cycle length. In section 7.6, we list some system performance 

measures. Steady state cost analysis is done in section 7.7. Based on the system performance 

measures we provide illustrative examples and sensitivity analysis in section 7.8. In this chapter 

following notations are used:-

A =Demand rate 

J.L = Production rate 

a =Switching time parameter 

H(t) =Inventory level at time t 

7.2 Model .. nd Analysis 

The initial inventory level is S. Demands arrive as a Poisson process with rate A. When the 

inventory level depletes to s the machine is switched on for the next production run. We assume 

that a certain amount of time which is exponentially distributed with parameter a is required 

for the production starts. Demands that arise during the switching time are not entertained. 

Shortage is allowed and infinite backlogs are permitted. The system remains in active (ON 

mode) until the inventory level reaches level S. The inventory level H(t) at time t takes values 

in th~ set A = { ... - N, -N + 1,··· ,0,··· , s,'" , S}. To get a two dimensional Markov 

process we incorporate the process {X (t), t 2: O} into {H (t), t 2: O} process where, X (t) is 
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define by, 

X(t) = { 1 if the system is in ON mode 

o if the system is in OFF mode 

Now ((H(t), X(t)), t :2: O} is a two dimensional Markov chain dl;fined on the state space 

E = El U E2 where, 

El = {(i,O) : i = s, s + 1,· .. , S} 

E2 = {(i, 1) : i = -N,··· , s,··· , S - I} 

114 

It is to noted that {( H (t), X (t)), t :2: O} is a pure death process during the transition from the 

state (S, 0) through the states (S -1, 0), (S - 2,0), ... , (s, 0) i,e. when the production process 

is in off mode. When the system reaches (s, 1) from (s, 0) with switching time a the process is 

turns out to be a birth-death process till it reaches (S, 0). Let us assumed that H(O) = S, sothat 

X (0) = O. Consider the transition probabilities:-

p(S,O),(i,j)(t) = P{(H(t),X(t)) = (i,j)I((H(O),X(O)) = (S,O)} 

From now on we can write P(i,j)(t) for p(S,O),(i,j) (t). 

The Kolmogorov forward differential equations satisfied by P(i,j)(t) are given below:-

p~S,O)(t) = -,\p(s,o)(t) + J.LP(S-l,l)(t) 

P~i'O)&) = -'\P(i,O)(t) + '\P(Hl,O)(t) : s ~ i ~ S - 1 

P~s,l)(t) = -(,\ + J.L)P(s,l)(t) + aP(s,o)(t) + '\P(s+l,l)(t) + J.LP(s-l,l)(t) 

P~S-l,l)(t) = -(,\ + J.L)P(S-l,l)(t) + J.LP(S-2,1)(t) 

P~i,l)(t) = -(,\ + J.L)P(i,l)(t) + '\P(Hl,l)(t) + f.LP(i-l,l)(t) : s + 1 ~ i ~ S - 2 

P~i,l)(t) = -(,\ + J.L)P(i,l)(t) + '\P(Hl,l)(t) + J.LP(i-l,l)(t) : -00 ~ i ~ s - 1 
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7.3 Limit Distribution 

The steady state probabilities for (i, j) E E of the system size arc obtained by taking the limits 

as t ---+ 00 on both sides of the above equations and solving them recursively. Note that under 

steady state conditions limt->oo P(i,j) (t) = 0 

Thus we can write %,0) = pq(S-l,l) 

and for j = 1 we can write 

q(S-2,l) = (1 + ~)q(S-l,l) 
q(S-3,l) = (1 + ~ + ~ )q(S-l,l) 

q(S-4,l) = (1 + ~ + ~ + ~)q(S-l,l) 
b ger,eral we can write 

JOTS < i < S where p = I!:. - - ), 

for i = 2,3" .. ,S - S - 1, j = 1 

When the system is in on mode and infinite backlogs are permitted then the system may visit the 

state· .. ,-1,0" .. ,S,' .. ,S. To evaluate the system probabilities we consider the truncation 

of the system at state -N. After truncation we get the relations; 
_ ( _p2+.-N) 

q[-N,lj - p~+'+l(P-l) q(S-l,l) 

By impkmenting t!le truncation result, we can write:-

.. - ( e-p2+·-s ) . 1 2 . 1 
q(-t,J) - p,+8+1(p_l) q(S-l,l) : Z = , ,'" ,) = 

- (P_p2+ S -s) .. _ 1 2 . - 1 d 
q(s-i,j) - p'+l(p-l) q(S-l,l) . Z - , ,"', S,) - an 

( P_p2+.-s p_p2+s-S ~) 
q(s,l) = (pLl) + p(pLl) + ),(Hp) q(S-l,l) 

w~ere q(S-l,l) can be be obtained by using the normalizing condition 2:i 2:j %,j) = 1 
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7.4 Waiting Time Distribution 

Let T be the random variable denoting the waiting time of a customer to recieve the item. Then 

the distribution function FT(') of T is given by 

FT(t) = [ ~~:,' q(;,l) + I;:=.+l %,0) 

I:~=o q( -n,l) J; 11',11+1 (u)du 

ift < 0 

ift = 0 

ift > 0 

where "Ip.,n denotes the gamma density with parameter J.L and n. The expression for t = 0 is 

obvious. For t > 0 we have two cases X = 0 and X = 1. In our system infinite backlogs 

are permitted. Suppose there are n backlogs at a demand epoch. Then if X = 1 (that is, the 

production process is in ON mode) the waiting time is the production time of n + 1 units. On 

the other hand if X = 0 (that is, the production process is of£), and the number of backlogs is 

n, the production starts only after receiving N - (n + 1) more orders and the demand of the 

arrival under consideration is met at the moment the (n + 1)8t unit is produced, where N is the 

truncation stClte. Then the expected time E(T) for infinite backlogs is given by, 

~ n+1 
E(T) = L)-)Q(-n,l) 

n=O J.L 

7.5 Expected Cycle Length 

Let us define, 

E(Lo) = Expected length of off mode in a cycle 

E(L1) = Expected length of on mode in a cycle 

E(TL) = Expected total cycle length of the system 

(7.1) 



7.5 Expected Cycle Length 

Expected length of off mode 

We have 

Therefore 
S-s 1 

E(Lo) = (-.x- + ;) 

Expected length of ON mode 

Let T(~~l~) = Time to reach (S, 0) startng from (s, 0) for the first time and 

T(~~i)l,l) = Time to reach (i + 1,1) startng from (i, 1) now, 

E(TN,i)l,l)) = EL,R E(TN,i)l,l)1 Transition left or right)P(Transition left or right) 

/L A [l E(T(i,l)) E(T(i+1,1))] = ~ + (M/L) (M/L) + (i-1,1) + (i,1) 

Now 
5-1 

E[Ld = E(T8~iO) = L E(T(\~i)l'l)) 
i=8 

Using the equation (7.3) and putting the recursive relation in equation (7.4) we get, 

5-8-1 i . 1 . 

E[Ld = '" ['" .xJ~ + .x' E(T(~+l,l))] 
~ f;;{ p} /1' (s,l) 

Evaluation of E(T(~,t)l,l)) 
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(7.2) 

(7.3) 

(7.4) 

(7.5) 

For evaluating of E(T(~,i)l,l)) let us consider the truncation occurred at the (-N, 1) state. So 

by using equation (7.3) 

E(T(-N+1,l)) = 1 
(-N,l) /L 

E(T(-N+2,l)) = 1(1 + 1) 
(-N+1,l) /L P 
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E(T(-N+3,1}) = 1(1 + ! + 1) (-N+2,1) IJ. p pI 

Recursively we have 

E(T(~i}I,I}) = ~(~~=6S(~)") if N ~ 00 then 

(7.6) 

So putting the value of (7.6) in (7.5) we get 

thus 

7.6 System Performance Measures 

Mean Inventory Level of the system 

Let E[l] be expected inventory level in the steady state. Then E[l] can be defined as:-

8 8-1 

E[l] = L iq(i,o} + L iq(i,l) 

i=s i=1 
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Average Backlogs in the System 

Let EIB] be the expected backlogs in the system in the steady state. J~[Blcan be defined as:-

Expected Number of Items Produced in a Cycle 

Let E[P] the expected number of items produced over a cycle. Then E[P] can be obtained as:­

E[P] = p,x (Expected cycle length when system is in on mode) 

E[P] = >,(p:l)2P-S(P,P1+S - )...p2+s + sp,ps - Sp,ps _ f.1p1+S - sp,p1+S + Sp,p1+S + )...p2+S) 

The average number of customer's lost to the system 

Demands that arise during the switching time are not entertained and hence lost. Let E[N] the 

expected number of customers lost to the system. Then 

E[N]=~ 
a 

Evaluation of q(S-l,l) : 

Q(S-l,l) can be obtained using the normalizing condition 

l:i l:j %,j) = 1 we have 

[{ «s-S)(1+s-S)+s( -s+S»p }+{ (p-p2+.-S lf-l-. }+{ (p_p2+., -S)p-l.,(p.'_p) }+{ p_p2+.,-S + p_p2+.-s + 
2 (p-1) (p_1)2 (pL1) p(pL1) 

~} + {p(s+S(-1+P)-aP+P(-1+p'-S )}]Q = 1 
>'(1+p) (_1+p)2 (S-l,l) 

which gives, 
_ [{ «s-S)(1+s-S)+s(-s+S»P}+{ (p_p2+ 8-S)p-l-. }+{ (p_p2+8-S)p-l-.(p'_p) }+{P_p2+·-s + 

Q(S-l,l) - 2 (p-1)2 (p_l)2 (p2-1) 

p_p2+B-S +~} + {p(s+S(-1+P)-sp+p(-1+p,-S)}]_l 
p(pL1) >'(1+p) (_1+p)2 
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7.7 Steady State Cost Analysis of the System 

Let us considered costs under steady state as given below:­

J( =The initial set-up cost of the system 

Cl =Inventory holding cost per unit per unit time 

C2 =Backlog cost per unit per unit time 

C3 =Production cost per unit per un~~ time 

C4 =Switching time per unit per unit time 

C5 =Cost of customers lost to the system 

So, the total expected cost of the system is 
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E(TC( )) = J( + CIE[!] + C2E[B] + C3E[P] + ~ + C5E[N] 
a E(TL) (7.7) 

Due to large number of parameters involve in the cost function, it is not possible to prove that 

the above cost function is convex. By the by, for proving the convex nature of the function we 

adopt a numerrical search procedure. For the particular value of the parameters our calculation 

of E(TC(a)) revealed a convex structure and we evaluated the optimal value of a*. Cost rate 

analysis of the optimal values by varying parameters value is presented in the tables. 

7.8 Numerical Illustration 

The results we obtain in steady state case may be illustrated through the following numerical 

example:-

By giving values to the underlying parameters we illustrate the convexity of the cost function 

E(TC(a)) in Table 7.1. The optimal switching time parameter is shown by indicating*.Using 

this optimal a value we can easily evaluate optimal switching time of the system as E[ST] = 

-±.. Cost rate analysis is given in Table 7.2 and Table 7.3. Take 
Q 

S = 30, s = 9,)' = 1.0, f-£ = 1.3, p = 1.3, J( = 55, Cl = 15, C2 = 9, C3 = 6, 

C4 = 10, C5 = 5. Then we get the measures as described in table 7.1 

From Table 7.1 the optimal a value is 39. So the expected optimal switching time is 0.0256. 
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Table 7 l' .. 
a-values Cost function a-values 

----~ 

Cost function 
30 607.764 40 607.743 
31 607.759 

-~---- -- -- ----
41 W7.743 

-
32 607.752 42 607.744 
33 607.750 43 607.744 
34 607.747 44 607.745 

-
35 607.746 45 607.747 
36 607.744 46 607.748 
37 607.743 47 607.750 
38 607.743 48 607.752 
39 607.742 49 607.754 

Cost rate Analysis 

Table 7 2' .. 
J.L-Values p-value Expected total cost 

1.3 1.3 607.742 
1.4 1.4 504.786 

---

1.5 1.5 443.876 
1.6 1.6 403.971 
1.7 1.7 376.064 
1.8 1.8 355.654 .-
1.9 1.9 340.240 

In Table 7.2 and Table 7.3 we varied over certain parameters associated with the system. 

In Table 7.2 we vary over the values of the parameter J.L and compute the corresponding cost 

rate we obseve that J.L has the significant influence in the system behaviours. In Table 7.3 we 

varied over the cost parameter involve in the system i,e. Cl (holding cost),C2 (backlog cost), C3 

(production cost) and C4 (switching cost). Among these parameter the table shows that the cost 

function is highly sensitive with respect to C3 • So we come to the conclusion that production 

rate and production cost parameters drastically affect the system running cost. 
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Table 7.3: 

Cl-Varying C2-Varying C3-Varying C4-Varying 
Cl-Value Cost C2-Value Cost C3-Value Cost C4-Value Cost 

15 607.742 09 607.742 06 607.742 10 607.742 
16 607.742 10 607.751 07 698.742 11 607.767 
17 607.742 11 607.760 08 789.742 12 607.792 
18 607.743 12 607.769 09 880.742 13 607.817 
19 607.743 13 607.778 10 971.742 14 607.842 
20 607.744 14 607.787 11 1062.75 15 607.876 
21 607.744 15 607.796 12 1153.75 16 607.892 
22 607.744 16 607.805 13 1244.76 17 607.917 
23 607.745 17 607.814 14 1335.76 18 607.942 
24 607.745 18 607.823 15 1426.76 19 607.967 
25 607.746 19 607.832 16 1517.77 20 607.992 
26 607.747 20 607.841 17 1608.78 21 608.017 



Conclusion 

In this thesis we have presented several inventory models of utility. Of these inventory with 

retrial of unsatisfied demands and inventory with postponed work are quite recently introduced 

concepts, the latter being introduced for the first time. Inventory with service time is relatively 

new with a handful of research work reported. The difficulty encountered in inventory with 

service, unlike the queueing process, is that even the simplest case needs a 2-dimensional 

process for its description. Only in certain specific cases we can introduce generating function 

to s'Jlve for the system state distribution. However numerical procedures can be developed for 

solving these problem. 

Retrial inventory, unlike retrial queues, also poses the same problem as discribed above. 

Further when an orbital customer makes a successful attempt to access the server in an in­

ventory system with negligible service time, diagonal transitions result thereby violating the 

definition of a QBDP (assuming the process to be Markov). This is also the case with inventory 

with postponed demands (and negligible service time). 

In this thesis we attempted to provide performance measures of all the models discussed. 

However, in most cases restricted the numerrical illustrations to the case in which the underly­

ing distributions are exponential. 

The work reported in this thesis could be extended in different directions. One among these 

is the introduction of arbitrarily distributed service time. It is also possible to have interarrival 

times of customers assumed to follow an arbitrary distribution. The interarrival time of orbital 

customers can also be assigned an arbitrary distribution provided we follow certain assumptions 

as given in Gomez Corral [23] in the case of retrial queues. All these and more are proposed in 

our future investigations. 

123 



Bibliography 

[1] Altoik T. (1989), (R, r) production inventory system, Operations Research, 37,2, 266-

276. 

[2] G.Arivarignan,C.Elango and N.Arnmugam(2002), A continuous Review Perishable In­

ventory Control System at Service Facilities; Advance in Stochastic modeling, Notable 

Publications, Inc.New Jersey, 29-40, Editors J.R.Artalejo and A.Krishnamoorthy. 

[3] Arrow K. 1., Harris T. and Marschak 1. (1951), Optimal Inventory Policy, Econometrica, 

19,3, 250-272. 

[4] ArrowK.,1. Karlin S. and ScrafH. (1958), Studies in Applied Probability and Manage­

ment Science, Standford University Press, Standford. 

[5] Artalejo 1. R. (1999), Accessible Bibliography of Retrial Quques, Corn. Mod., 30,3, 1-6. 

[6] J.R. Artalejo; A. Krishnamoorthy and Lopez Herrero (2003), Numerical analysis of (8, S) 

inven!ory systems with repeated attempts, Submitted to Annals of Operations Research, 

[7] Beckmann,M. 1. and Srinivasan S. K.(1987), An (8, S) inventory system with Poisson 

demands and exponential lead time, O. R. Spectrum, 9,4, 213-217. 

[8] Berg M., Posner M. 1. M.and Zhao H. (1994), Production inventory system with unreliable 

machines, Operations Research, 42,1, 111-118. 

[9] O.Berman, E.H.Kim and D.G Shimshak (1993), Deterministic approximation for inven­

tory management at service facilities, IIE Transaction, 25, 98-104. 

124 



BIBLIOGRAPHY 125 

[10] O.Bennan and E.Kim (1999), Stochastic Inventory policies for inventory management of 

service facilities, Stochastic models, 15, 695-718. 

[11] O.Bennan and E.Kim(1999), Stochastic inventory management at service facilities with 

non-instantaneous order replenishment, Working Paper, Joseph L.Rotman School of man­

agement, University of Toronto. 

[12] O.Bennan and K.P.Sapna(2000), Inventory management at service facilities for system 

with arbitrarily Distributed Service Times, Stochastic Models, 16(384),343-360. 

[13] O.Bennan and K.P.Sapna(1999), Inventory management at service facilities with posi­

tive lead time, Working paper, Joseph L.Rotman School of management, University of 

Toronto. 

[14] Carl R. Schultz (1990), On the optimality of the (s, 8) policy, Naval Research Logistics, 

37, 715-723. 

[15] Cinlar E. (1975), Introduction to Stochastic process, Prentice Hall, Inc, Englewood Cliffs, 

New Jersey. 

[16] R. Dekker, R. M. Hill and M. 1. Kleijn (1997), On the (8 - 1, 8) lo~t sales inventory 

model with priority demand classes, Report 9743/A, Erasmus University Rotterdam. 

[17] Dvoretzky, A., Keifer, j. and Wolfowitz, J. (1952), The inventory problem I, I1, 

Econometrika, 20, 187-222. 

[18] Falin G. (1990), A survey of Retrial Queues, Queueing System, 7, 127-168. 

[19] Falin G.and 1.G.C. Templeton (1997), Retrial Queues, Chapman and Hall. 

[20] Feller W. (1965), An introduction to Probability theory and its applications, Vol I and I1, 

John Wiley and Sons Inc., New York. 

[21] Gani 1. (1957), Problems in the probability theory of storage system, Journal of Royal 

Statistical Society, B., 19, 181-200. 



BIBLIOGRAPHY 126 

[22] Ghare, P.M. and Schrader, G. F. (1963), A model for all exponentially decaying inventory, 

Journal ofIndustrial Engineering, 14,238-243. 

[23] Gomez Corral A. (1999), Stochastic Analysis of a single server retrial queue with general 

retrial times, Naval Research Logistics, 46,561-581. 

[24] Goyal S. K.and Giri B. C. (2001), Recent trends in modcling of deteriorating inventory, 

European Journal of Operations Research, 134, 1-6. 

[25] Graves S. C. (1982), The application of queueing theory to continuous perishable inven­

tOly systems, Management Science, 28,400-406. 

[26] Gross, D. and Harris C. M. (1973), Continuous review (3, S) inventory models with state 

dependent lead times, Management Science, 19,567-574. 

[27] Gross, D. and Harris C. M. (1971), On one for one ordering inventory policies with state 

dependent lead times, Operations Research, 19, 735-760. 

[28] Gross, D. and Harris C. M. (2002), Fundamentals of queueing theory, Third Edition, 

Wiley Interscience John Wiley and Sons. 

[29] Hadley G. and Whitin T. M. (1963), Analysis of Inventory Systems, Princeton Hall Inc, 

Englewood Cliffs, New Jersey. 

[30] Harris F. (1915), Operations and Costs, Factory Management Series, A. W. Shah Co., 

Chicago. 

[31] Hill R. M. (1994), Continuous review lost sales inventory models where two orders may 

be outstanding, International Journal of Production Economics, 35, 313-319. 

[32] Jaiswal N. (1968), Priority Queues, Academic Press. 

[33] S. Kalpakam and G. Arivarignan (1998), A continuous review perishable inventory mod­

els, Statistics, 19,3, 389-398. 



BIBLIOGRAPHY 127 

[34] S. Kalpakam and G. Arivarignan (1985a), Analysis of an exhibit inventory system, 

Stochastic Analysis and Applications, 3,4, 447-466. 

[35] S. Kalpakam and G. Arivarignan (1985b), A continuous review inventory system with ar­

bitrary inter arrival times between demands and an exhibit item subject to random failure, 

Opsearch, 22, 153-168. 

[36] S. Kalpakam and G. Arivarignan (1989), On exhibit inventory system with Erlangian life­

times under renewal demand, Ann. Inst. Stat. Math., 41,3,601-616. 

[37] Kalpakam and Sapna K. P. (1994), Continuous review (5, S) inventory system with ran­

dom life-times and positive lead times, Operations Research Letters, 16, 115-119. 

[38] Kalpakam and Sapna K. P. (1993a), A modified (5, S) inventory system with Lost sales 

and emergency orders, Opsearch, 30,4, 321-336. 

[39] Kalpakam and Sapna K. P. (1993b), A contorl policy of an inventory system with com­

pound poisson demand, Stochastic Analysis and Application, 11,4,459-482. 

[40] Kalpakam and Sapna K. P. (1997), A lost sales inventory systems with supply uncertainty, 

Computers and Mathematics with Applications, 33, 3,81-93. 

[41] Karlin S. and Taylor H.M(1975), First course in stochastic process, second edition, Aca­

demic press,NeyYork. 

[42] Kaspi H. and Perry D. (1983), Inventory systems of perishable commodities, Advances 

in Applied Probability, 5, 674-685. 

[43] Kaspi H. and Perry D. (1984), Inventory systems of perishable commodities with renewal 

input and Poisson output, Advances in Applied Probability, 6, 402-421. 

[44] A.Krishnamoorthy and Mohammad Ekramol Islam (2003), (8, S)Inventory System with 

Postponed Demands, To appear;Joumal of Stochastic Analysis and Application. 



BIBLIOGRAPHY 128 

[45] Krishnamoorthy V. Narayanan and M. Islam(2003), Retrial Production Inventory with 

MAP and Service Time, Proceedings of the International Conference 'Modem Math­

ematical Methods of Analysis and Optimization or ldccommunication Networks, 23-

25'September, Gomel,Belarus, p.148-156. 

[46] A.Krishnamoorthy and N. Raju (1997), N-policy for a production inventory system with 

random life-times, Ricerca Operativa, 31,97 37-45. 

l47] A.Krishnamoorthy and P. V. Ushakumari (1999), Reliability of a k-out-of-n system with 

repair and retrial offailed units, Top 7,2, 293-304. 

[48] A.Krishnamoorthy and Varghese T. V. (1995), Inventory with disaster, Optimization 35, 

85-93. 

[49] G.Latouche and V.Ramaswami(1999), Introduction to Matrix Analytic Methods m 

Stochasti(; Modeling, SIAM. 

[50] Liu L. (1990), (8, S) continuous review models for inventory with random life times, 

Operations Research Letters, 9,3, 161-167. 

[51] Liu L.and Yang T. (1999), An (8, S) random life time inventory model with a positive 

lead time, European Journal of Operations Research, 113, 52-63. 

[52] T.P. Madhusoodanan and M. J. Jacob (1991, An (s,S)Invcntory System with Random 

Replenishment, International Journal of Management and System, 7,3, Sep-Dec, 219-

232. 

[53] Manoharan M.and A.Krishnamoorthy (1989), Markov renewal theoretic analysis of a 

perishable inventory system, Journal of Management Sciences, 10,2,47-57. 

[54] Manoharan M., A.Krishnamoorthy and Madhusoodanan (1987), On the (s, S)Inventory 

policy with indepencient non-identically distributed inter arrival demand times and ran­

dom lead times, Cahier du C.E.R.O., 29, 239-248. 



BIBLIOGRAPHY 129 

[55] Moinzadeh K. (1999), An improveed ordering policy for continuous review inventory 

systems with arbitrary inter-demand time distribution, I rE Transaction, 33, 111-118. 

[56] Naddore E.(1966), Inventory System, John Wiley and Sons,NewYork. 

[57] Nahmias S. (1982), Perishable inventory theory; a review, Opsearch, 30, 680-708. 

[58] Nahmias S. and Wang S. S. (1979), A heuristic lot size reorder point model for decaying 

inventories, Management Science, 25, 90-97. 

[59] Neut:; M.F(1995), Matrix-Geometric Solutions in Stochastic Models-An Algorithmic Ap­

proach, Dover Publications( ori~inally published by Johns Hopkins University Press, 

1981). 

[60] Neuts M.F(1967), A general class of bulk queues with Poisson input, Ann. Math. Stat. 38 

759-770. 

[61] Neuts M.F(1995), Structured Stochastic Matrices ofM/G/1 Type and their Applications, 

Dekker, New York. 

[62] Perry, D. Posner, M. 1. M. and Gerchak, Y. (1995), Continuous review inventory models 

with exponential random yield, Opsearch, 32, 2, 105-118. 

[63] Pierre Masse (1946), Les reserver et al regulation de i avenier dans la vie economique, 

2-Vols, Herrnan and Cie, Parris. 

[64] Prasad S. (1994), Classification of inventory models and systems, International Journal of 

Production Economics, 34, 2,209-222. 

[65] Qi-Ming He and Neuts M. F. (2002), Two MIMll queues with tranfers of customers, 

Queueing Systems, 42, 377-400. 

[66] Raafat F. (1991), Survey of literature on continuously deteriorating inventory models, 

Journal of Operational Research Society, 42, 27-37. 



BIBLIOGRAPHY 130 

[67] Rabichandran N. (1995), Stochastic analysis of a continuous review perishable inventory 

system with positive lead time and Poisson demand, European Journal of Operations Re­

search, 133,444-457. 

[68] Raju N. (1997), Contributions to stochastic models and there analysis with special ref­

erences to some inventory model, Ph. D. thesis, Department of Statistics, University of 

Calicut, 

[69] Ramanarayana R. and Jacob M. 1. (1987), General analysis of (8, S) inventory systems 

with random lead times and bulk demands, Cahicr's du C. E. R. 0.,29,3-4,249-254. 

[70] Richards F. R. (1975), Comments on the distribution of inventory positions in a Continu­

ous review (8, S) inventory systems, Operations Research, 23, 366-371. 

[71] Richards F. R. (1978), A Continuous review (8, S) inventOlY system in a random environ­

ment, Journal of Applied Probability, 15,654-659. 

[72] Richard Bellman (1960), Introduction to Matrix Analysis, Second Edition, Tata McGraw­

Hill, New Delhi. 

[73] Ross S. M. (1970), Applied probability models with optimization and application, Haden­

day, San Francisco. 

[74] Sahin I. (1983), On the continuous review (8, S) inventory model under compound re­

newal demand random lead times, Journal of Applied Probability, 20,213-219. 

[75] Sahin I. (1979), On the stationary analysis of continuous review (8, S) inventory system 

with constant lead times, Operations Research, 27, 719-729. 

[76] Santhi S. (1999), Stochastic perishable inventory system; Operating Characteristics and 

Optimization, Operations Research Letters, Ph. D. Thesis lIT, Madras, Chennai. 

[77] Sapna K.P. (1966), A continuous review (8, S) inventory system with priority customers 

and arbitrarily distributed lead times, Stochastic Models (edtors; Krishnamoorth et al., 

213-224. 



BIBLIOGRAPHY 131 

[78] Sharafali M. (1984), On a continuous review production inventory problem, Operations 

Research Letters, 3, 199-204. 

L79] Sivazlian B. D. (1974), A continuous review (s, S) inventory system with arbitrary inter 

arrival distribution between unit demands, Operations Research, 22, 65-71. 

[80] Sivazlian B. D. and L. E. Stanfel (1975), Analysis of systems in Operations Research, 

Prentice Hall. 

[81] Srinivasan S. K. (1979), General analysis of (s, S) inventory systems with random lead 

times and unit demands, Journal of Math. Phy. Sci., 13,2, 107-129. 

[82] Srinivasan S. K. (1988), Analysis of (8, S) inventory systems with general lead time de­

mand distribution and adjustable re-order size, Optimization, 19, 557-576. 

[83] Srinivasan S. K. (1989), Analysis of (s, S) inventory systems with decaying items, Engi­

nt~ering costs and production economics, 15,433-439. 

[84] Takagi H (1991), Queueing Analysis: a fundation of performance evaluation, Vo!. 1: 

Vacation and priority systems, EIsevier Science, New York. 

[85] Thangaraj V. and Ramanarayanan R. (1983), An opcrating policy in inventory systems 

with random lead times and unit demands, Math. Operations fors ch U. Statist. Ser. Optim, 

14111-124. 

[86] Tijms H. (1972), Analysis of (8, S) inventory models, Mathematical center Tracts 10, 

Amsterdam. 

[87] Veinott A. F. Jr. (1966), The status of Mathematical Inventory Theory, Management Sci­

ence, 12,745-777. 

[83] Wai Ki Ching (1998), A production model with delivery time guarantees for manufactur­

ing systems with early set-up, Computers and Engng, 35,2, 121-124. 



BIBLIOGRAPHY 132 

[89] Whitin T. M. (1953), Theory of Inventory Management, Princeton University Press, 

Princeton. 

[90] S. H. Xu and Y. Q. Zhao (\ 996), Dynamic rolling andjockcying controls in a two station 

queueing systems, Advance in Applied Probability, 28,1201-1226. 

[91] T. Yang and J.G.C. Templeton (1987), A survey of retrial Qucues, QUESTA 2,3,201-233. 

[92] Y. Zhao and W. K. Grassman(1990), The shortest queue model with jockeying, Naval 

Research Logistics, 37, 773-783. 

[93] Y. Zhao and W. K. Grassman(1995), Queueing analysis of a jockeying model, Operations 

Research, 43, 520-529. 


	Title
	Certificate
	Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Conclusion
	Bibliography

