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ȧ
a

+ ζ2
ä
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ȧ
a

. . . . . . . . . 78
4.3 Critical points for case 3, with ζ = ζ0 . . . . . . . . . . . . 81
4.4 Critical points for case 1: with ζ = ζ0 . . . . . . . . . . . . 84
4.5 Critical points for case 2: with ζ = ζ0 + ζ1

ȧ
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ä
ȧ
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PREFACE

An important milestone in cosmology was the Hubble’s discovery of ex-
panding universe in 1929. Recent surprise in modern cosmology occurred
in the year 1998, when two teams - the Supernova Cosmology Project lead
by Saul Perlmutter and the High-Z Supernova Search Team lead by Brian
P. Schmidt and Adam G. Riess, based on their observations on Type I
a Supernovae, independently reported that the universe is undergoing an
accelerated expansion. For this remarkable discovery, they were awarded
with Nobel prize in the year 2011. For explaining this discovery, an ad-
ditional component called “Dark energy” has been introduced. But its
nature and evolution still remains a mystery.

The simplest and the most successful candidate for the dark energy
is the cosmological constant Λ, as in the standard model, known as the
ΛCDM. This model is successful in predicting the recent acceleration and
other cosmological parameters of the recent universe. However, the model
has two major flaws: (i) cosmological constant problem, which refers to
the huge discrepancy between the theoretical and observed value of the
density of the Λ and (ii) cosmic coincidence problem, which refers to the
inability of the model to explain the coincidence of the densities of the
dark energy and dark matter, irrespective of their different evolutionary
status, in the current epoch of the universe. This motivates the dynamical
dark energy models like Quintessence, K-essence, Tachyon field, Phantom
ghost field, Dilatonic dark energy, Chaplygin gas model, Holographic dark
energy model etc. Another method to explain the accelerating universe is
to modify the form of gravity. Such models are called alternative theories
of gravity and these include f(R) gravity, f(T ) gravity, Gauss-Bonnet
theory, Lovelock gravity, Horava-Lifshitz gravity, scalar-tensor theories,
brane world model etc. In spite of all these attempts the nature of dark
energy still continues to be a mystery.

At this juncture, attempts were started to explain the recent accelera-
tion without invoking any exotic components. It was suggested that bulk
viscous matter could be a potential candidate to realize the recent acceler-
ation of the universe, where one may not need an exotic cosmic component
or a modified gravity theory. An additional advantage of this approach
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is that it unifies dark energy and dark matter and thereby solving the
coincidence problem automatically.

In this thesis we studied the bulk viscous matter dominated model in
detail. First we analyze the background evolution of the model and then
performed a dynamical system analysis. We have found that the model
gives reasonable description of the universe if the viscosity of the dark
matter is a constant. We also studied the thermal evolution of the model
and have shown that the generalized second law of thermodynamics is
satisfied and the model describes a universe which evolves as an ordinary
macroscopic system. Due to slight problem in the prediction of age of the
universe, we have extended the model by incorporating a bare cosmological
constant as an additional component and have found that age has been
improved substantially. Below we give a brief account of the facts analyzed
in different chapters of the thesis.

Chapter 1 : This chapter gives a brief introduction to cosmology. It
starts from Einstein’s field equation and ends by giving a brief mo-
tivation to the bulk viscous model. The chapter briefly discuss the
discovery of accelerating universe, the component dark energy and
motivates the bulk viscous model of the universe.

Chapter 2 : This chapter describes our work on the the analysis of the
background evolution of the bulk viscous matter dominated universe.
We consider the total bulk viscosity coefficient, ζ, as proportional to
both the velocity and acceleration of the expansion of the universe
as,

ζ = ζ0 + ζ1
ȧ

a
+ ζ2

ä

ȧ
.

Following Eckart’s approach in accounting the viscosity, we found
two limiting conditions for the viscous coefficients (ζ0, ζ1, ζ2) cor-
responding to a universe having a Big-Bang at the origin, followed
by an early decelerated epoch and then making a smooth transition
into an accelerating epoch. We have constrained the model with the
Type Ia Supernovae data, hence evaluated the best estimated values
of the bulk viscous parameters and also the present Hubble parame-
ter corresponding to the two limiting conditions. We found that the
evolution of the cosmological parameters are the same for the two
limiting conditions. The transition into the late accelerating phase
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occurs around a red-shift of zT ∼ 0.49, which is in the concordance
range. The present value of the deceleration parameter and equa-
tion of state are found to be around, q0 ∼ −0.68 and ω0 ∼ −0.78
respectively. q0 is in the concordance range but ω0 is comparatively
high. However the end state of the model is a de Sitter epoch, with
equation of state ω = −1 and deceleration parameter q = −1, as in-
dicating by almost all the recent cosmological observations.The age
of the universe predicted by this model is relatively less than that
predicted from the oldest galactic globular clusters, however it is
within the concordance limit. We also made a statefinder analysis
and found that the model is distinguishably different from the stan-
dard ΛCDM model at present, but shows a de Sitter type behavior
in the far future of the evolution.

Chapter 3 : This chapter is devoted to the analysis of the thermody-
namics of the model. A preliminary analysis shows a violation of
local second law of thermodynamics during the early epoch when
z > 0.8 and is due to the behavior of total viscosity of the dark
matter. But is only a local phenomenon. On extending the analy-
sis to the generalized second law, we found that it is fully satisfied
throughout the evolution of the universe. For a thermodynamically
consistent system, the second derivative of the entropy must be neg-
ative at least in the long run of the evolution, i.e. S̈ < 0. In the case
of the present viscous model we found that this condition is obeyed
so that the model describes a universe which evolve like an ordinary
macroscopic system. However, when ζ = ζ0, both the local second
law and the generalized second law of thermodynamics are found to
be valid throughout the evolution of the universe and also obeys the
convexity condition (maximization of entropy).

Chapter 4 : In this chapter, we discussed the dynamical system analy-
sis of the model to understand its asymptotic behavior. Converse to
the earlier analysis, here we have included the radiation component
besides matter. It was found that the model predicts a conventional
evolution of the universe, i.e., a universe having an initial radiation
dominated phase followed by a decelerated matter dominated phase
and then finally evolving to an accelerated epoch, only when the
coefficient of bulk viscosity ζ = ζ0, a constant. We compute the evo-
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lutionary behavior of the cosmic parameters corresponding to this
case and also obtained the range of values for ζ0 of the matter to
represent a conventional universe.

Chapter 5 : There exists many models of dark energy in the literature
which are giving almost same background evolution for the universe.
To check the relative status of a model, Bayesian analysis has been
used. This chapter deals with the Bayesian analysis of the bulk
viscous matter dominated universe, where we contrast the model
with the standard ΛCDM model of the universe. We have shown
that, even though the viscous model gives a reasonable back ground
evolution of the universe, the Bayes factor of the model indicates
that it is not so superior over the ΛCDM model, but have a slight
advantage over it.

Chapter 6 : In this chapter, we extended the analysis given in the sec-
ond chapter by introducing an additional cosmic component, the
cosmological constant, Λ into the bulk viscous matter dominated
universe. This model, as many authors have interpreted, may be
called as ΛvCDM model, which is Λ viscous cold dark matter model.
We mainly studied the evolution of the cosmological parameters by
finding the limiting conditions on the viscous parameters. We also
consider two special cases for ζ (ζ = ζ0 and ζ = ζ1( ȧ

a
)). We then

obtain the evolution of the cosmological parameters and the age of
the universe subjected to the range of the viscous parameters. The
evolution of the entropy has also been studied and found that both
the generalized second law and entropy maximization condition are
satisfied.

Chapter 7 : In this chapter we summarized the overall work and presents
our conclusions. We have also presented the future scope of the work.
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1
Introduction

In this chapter we are giving necessary introduction to the cosmological

model and also discussing the discovery of the recent acceleration of the

universe. Following this, we describe the standard ΛCDM model, its suc-

cess and short comings and also motivates the bulk viscous model which is

the subject of the thesis.

Cosmology is the study of the origin, evolution and ultimate fate of

the entire universe, which has been lead by theoretical as well as observa-

tional advances. It deals with the large scale properties of the universe.

Even though the area had it’s uplift with the Newtonian theory of grav-

ity, the modern era of cosmology began with the introduction of General

theory of relativity by Albert Einstein in 1915. Earlier it was strongly

believed, even by Einstein, that the universe is static, steady and infi-

nite. On understanding that his own equations of gravity would lead to

a dynamical universe, Einstein modified the field equations by introduc-

ing Λ, the cosmological constant in order to get a solution corresponding

to a static universe. Five years later, using Einstein’s theory of general

relativity, Alexander Friedmann developed a model of expanding universe

which is having an origin at time t = 0, often called as the Big Bang.

About the same time, Georges Lematre also get the same conclusions.

The first observational evidence for an expanding universe was given by

1
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Edwin Hubble in the year 1929, in which he found that the galaxies are

receding from us with a velocity proportional to their distance. Following

this, Einstein withdraw the cosmological constant from his equation by

considering it as his “greatest blunder”. Later Robertson and Walker re-

discovered the Friedmann model of the universe and verified that Hubble’s

discovery was exactly in accordance with this model of the universe. This

ignited a plethora of research in the Friedmann model of the universe,

which was then called as the standard hot Big Bang model or Friedmann-

Lamatre-Robertson-Walker (FLRW) model of the universe. By combining

it with the thermodynamics, George Gamow predicted the presence of a

background radiation that would be left over from the early stage of the

universe and also argued that the light elements like H, He, Li etc. were

synthesized in the early universe. In 1965, Arno Penzias and Robert Wil-

son detect this Cosmic Microwave Background (CMB) radiation left over

from the birth of the universe, which provide a strong evidence for the

expanding model of the universe. Later observations on stars of varied

metallicity concluded that the abundances of the light elements were in

good agreement with the prediction from the FLRW model of the uni-

verse. All these were finally proved beyond doubt that our universe is an

expanding one.

Due to the attractive nature of gravity, it was expected that the ex-

pansion to be decelerating. So, the ultimate fate of the universe depends

mainly on two factors, the amount of curvature of the space of the universe

(which depends on the matter content of the universe) and the amount at

which the expansion is decelerating. Thus the major aim is to find these

two parameters, however to achieve it was a ‘Gedanken’ task. The first

challenge was to find suitable type of star which can be used as standard

candle to chart the distances to far away locations of the universe. The

Cepheid variables used by Hubble was not so visible over larger distances
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and also the luminosity of them is not so constant to read the history of

the universe in an accurate way. During last century, astronomers were

fortunate enough to find one such suitable candidate, Type Ia supernovae.

These objects are basically exploding white dwarf and because of the con-

stancy of mass, their luminosity is almost constant and more over they

are visible over huge distances. Searches were proposed to find out the

amount of deceleration of the universe by finding out the velocities and

distances of Type Ia supernovae.

In the year 1998, the Supernova Cosmology Project, lead by Saul

Perlmutter [1] and the High-Z Supernova Search Team lead by Brian P.

Schmidt and Adam G. Riess [2], based on their observations on Type Ia

Supernova, independently reported that the Universe is undergoing an ac-

celerated expansion and this extraordinary phenomenon began only in the

recent past of the universe, about five billion years ago. This discovery

is one of the most important development/milestone in recent cosmology

as it is a surprise against the then existed expectation that the expan-

sion would be decelerating. This discovery lead to the search of an exotic

form of matter called “Dark Energy”, which is considered to be the cos-

mic component responsible for the accelerated expansion of the universe.

However, the physical origin and the nature of dark energy still remains

a deep mystery. The immediate candidate for dark energy was the cos-

mological constant, Λ. The cosmological constant was then re-introduced

into the FLRW model to explain the late acceleration of the universe and

the model thus arised is known as the standard ΛCDM model. Though

ΛCDM is the most successful model in explaining the recent acceleration

of the universe, it has some serious flaws. So, rooms are open for some

new models that could explain the current acceleration and its associa-

tive properties of the universe. Many looked for some known properties

of matter, that could cause this acceleration without invoking the exotic
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dark energy. One such simple property is the bulk viscosity of matter and

our research work is based on this. Before detailing our work, we present

the basics of cosmology and an introduction to accelerating universe. We

briefly describe the standard ΛCDM model and have a quick look at some

other models which were proposed to explain the recent acceleration of

the universe.

1.1 Einstein’s Field equation

Einstein’s general theory of relativity reformulated gravity as the space-

time curvature. The dynamics of the gravitational field is described by

the Einstein’s field equation,

Gµν =
8πG

c4
Tµν , (1.1)

which relates the curvature of space-time to the matter content of the

universe which causes it. Here Gµν = Rµν − 1
2gµνR, is the Einstein tensor

representing the curvature of space-time, Rµν is the Ricci curvature tensor,

gµν is the metric tensor which specifies the space-time geometry, R is the

Ricci scalar, G is the Newton’s gravitational constant, c is the speed of

light and Tµν is the energy - momentum tensor of matter. The solutions to

this equation is primarily depending on the form of Tµν . In the case of the

universe with a uniform distribution with perfect fluid, a homogeneous

and isotropic distribution of matter was assumed, which implies Tµν =

Pgµν +(ρ+P )uµuν , where uµ is the four velocity of an observer comoving

with the fluid, ρ and P are the energy density and pressure of the matter,

respectively.
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1.2 FLRW metric of the Universe

Little was known about the distribution of matter in the universe and

hence Einstein’s theory of gravity was found to be too difficult to solve.

In order to proceed, early cosmologists used the idea called cosmologi-

cal principle. According to this principle, universe is homogeneous and

isotropic at large scales. This principle make easier to define a metric

that describes the spacetime of a matter filled universe. Such a metric, in

spherical co-ordinates using the sign convention (+,-,-,-) takes the form,

ds2 = c2dt2 − a(t)2

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

)
, (1.2)

where t is cosmic time, a(t) is the scale factor which is a function of

time, (r, θ, φ) are the comoving spacial co-ordinates, k is the curvature

parameter, a constant, which can be scaled in such a way that it takes only

the values 1,0 and -1. This metric was proposed by four scientist at various

times, Alexander Friedmann, Georges Lematre, Howard P. Robertson and

Arthur Geoffrey Walker and hence known as FLRW metric. Here k = 1

corresponds to positive curvature and such a universe is known as a closed

universe, k = 0 corresponds to zero curvature and it represents a flat

universe and k = −1 corresponds to constant negative curvature and it

represents an open universe. The evolution of the universe with different

k value are different.

1.3 Friedmann models

Using FLRW metric and assuming that that Universe is filled with per-

fect fluid, Alexander Friedmann solved Einstein’s field equation and thus

he obtained the equations which governs the evolution of an expanding
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universe, known as the Friedmann equations. These equations are,

ȧ2

a2
+

k

a2
=

8πG

3
ρ, (1.3)

2
ä

a
+
ȧ2

a2
+

k

a2
= −8πGP. (1.4)

Here overdot represents derivative with respect to the cosmic time t, ρ

represents the density of all the contents of the universe and P represents

the corresponding pressure. The above two equations can be combined to

form,
ä

a
= −4πG

3
(ρ+ 3P ) . (1.5)

From this equation, it is clear that if (ρ+ 3P ) > 0, ä < 0, implying a

decelerating expansion and if (ρ+ 3P ) < 0, ä > 0, implying an acceler-

ating expansion of the universe. For normal matter P = 0 (provided it

is an ideal fluid), so (ρ+ 3P ) > 0, and hence it produces a decelerating

expansion of the universe.

Friedmann model implies that the size of the universe tends to zero,

i.e. a → 0, at the beginning of the cosmic time at which the densities of

the cosmic constituents and curvature become infinity. This corresponds

to a space-time singularity in the beginning of the universe and is called

the ‘Big Bang’. For positive curvature corresponds to k = 1, the uni-

verse expands from zero size to a maximum and then contracts back to

the original conditions, hence the universe is said to be a closed one [3].

For k = 0, space is flat and infinite, and the universe expands forever

and for k = −1, space is negatively curved and infinite, and universe ex-

pands forever in much faster speed than flat universe. We could define

dimensionless density parameter Ω =
ρ(t)
ρc(t)

, where ρc = 3H2

8πG , is the critical

density, where H = ȧ
a is the Hubble parameter and it measures the rate of

expansion of the universe. From the equation (1.3). it is clear that when

Ω > 1 or ρ > ρc, then k = +1. If Ω = 1 i.e., ρ = ρc, then k = 0 and if
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Ω < 1 or ρ < ρc, then k = −1. Observations and considerations of early

inflationary scenario shows that the value of k is close to zero [4]. So we

assume k = 0, i.e., a flat universe in our further discussions.

From the Friedmann equations, we can obtain a relation,

d

da
(ρa3) = −3a2P. (1.6)

If we assume the barotropic equation of state P = ωρ, with constant

equation of state parameter ω, then the above relation leads to,

ρ ∝ a−3(1+ω),

H =
2

3(1 + ω)(t− t0)
,

a(t) ∝ (t− t0)
2

3(1+ω) ,

(1.7)

where t0 is the present time. For non-relativistic matter ω = 0 and for

radiation, ω = −1
3 . It can easily be seen that for matter, ρm ∝ a−3 ,

a(t) ∝ (t − t0)2/3 and for radiation, ρr ∝ a−4 and a(t) ∝ (t − t0)1/2. So

we see that radiation density is decreasing faster than the matter density

as time evolves. This difference is due to the additional decrease in the

energy density of radiation due to stretching of wavelength (redshift) as the

universe expands. Currently the radiation density is very small but if one

moves back in time, the radiation density would increase at a faster rate

than matter and a stage occurs where radiation density dominates over

matter. Thus we could divide the universe into two era, early radiation

dominated epoch and later matter dominated epoch. If ω = 1, then P = ρ

and ρ ∝ a−6. This is called a ‘stiff’ equation of state. In such a medium,

the speed of sound is the same as the speed of light.

Differentiating equation (1.3) and using equation (1.5), we get

ρ̇+ 3H(ρ+ P ) = 0 (1.8)
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This equation is known as conservation or continuity equation, which gives

the variation in density of any given cosmic components with time dur-

ing the expansion. One of the important observational parameter is the

current value of the Hubble parameter, H0. Theoretical considerations in-

dicate that it is in the range, 50− 100 kms−1Mpc−1. Recent observation

shows that its value is around 68 kms−1Mpc−1 [5].

The FLRW model was successful, (i) in explaining the expansion of

the universe, (ii) in predicting the abundance of light-element produced

during primordial nucleosynthesis, (iii) explaining the origin of the cosmic

microwave background radiation and (iv) also helps in understanding the

formation of galaxies and other cosmic structures. However, the model

breakdown at the origin of the universe and failed to predict the evolution

of the universe before Plank time. It also fails to explain the horizon size

of the present universe (horizon problem) and yet couldn’t find possible

solution to the question why the universe is close to being flat. But the

most important challenge is the one regarding the recent discovery on the

accelerated expansion of the current universe.

1.4 Accelerating Universe and Dark energy

As mentioned before, in hope of measuring the rate at which universe is

decelerating, two teams, the Supernova Cosmology Project and the High-

Z Supernova Search Team, observed the Type I a Supernovae, which are

exploding white dwarfs. Because of the constant mass of Type I a Super-

novae, their luminosity will be constant and large. So they can act as good

standard candles, which are visible over large distances. Observing their

redshift and flux at farther and farther distances, it is possible to read the

history of the universe and also will be able to predict the future of the

evolution of the universe. These teams measure the redshift and magni-
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tude of various Type I a Supernovae and, to their surprise, they found that

the expansion of the current universe is actually speeding up. They in-

dependently reported their conclusion of accelerating universe [1, 2, 6, 7].

For this remarkable discovery, they were awarded with the Nobel Prize in

the year 2011. This acceleration of the universe was further confirmed by

the observations on cosmic microwave background radiations (CMBR)[8],

large scale structure (LSS)[9], the Sloan Digital Sky Survey (SDSS)[10],

the Wilkinson Microwave Anisotropy Probe (WMAP)[11], Baryon Acous-

tic Oscillation (BAO)[12] etc.

The physical origin of the cosmic acceleration is still remains a deep

mystery. To cause such an acceleration, universe must contain some hith-

erto unknown components that could counteract the gravitational force.

Such type of exotic cosmic constituent, called “Dark energy”, has been

proposed, which is different from ordinary matter and radiation in the

sense that it is having a negative pressure, thereby counteracting the grav-

itational force. The nature and dynamics of dark energy is still not clearly

understood, however, there exists various models in the literature trying

to explain it. Before explaining various models, let us first look in detail

at the various evidences for accelerating universe.

1.4.1 Evidences for Accelerating Universe / Dark
energy

Many observations leads to the conclusion that the universe is accelerating

and hence dominated by dark energy in the later stage of the evolution

[13]. This section discusses some of the observational evidences that leads

to this conclusion.

1. Observations on Type I a Supernovae

Type Ia Supernovae are those formed when white dwarf exceed the

mass of the Chandrasekhar limit by the process of mass accretion
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form its binary companion. The spectrum of these supernovae are

characterized by absence of Hydrogen spectrum line and presence of

absorption line of singly ionized silicon. These are having a constant

absolute luminosity or magnitude independent of the redshift and so

distance to a SN Ia can be determined by measuring the apparent

magnitude, and hence they are treated as “standard candles”. The

relation between apparent magnitude m, absolute magnitude M and

the luminosity distance dL is given as,

m−M = 5Log10(
dL
Mpc

) + 25. (1.9)

Upto 1998, Perlmutter et.al.(Supernova Cosmology project (SCP)

team) observed 42 SN Ia in the redshift range z = 0.18 − 0.83 and

Riess et.al (High-z Supernova search team (HSST)) discovered 14

SN Ia in the range z = 0.16 − 0.62 and 34 low redshift SN Ia .

They observed that the high redshift supernovae was fainter than

expected, in addition to the statistical and systematic errors. They

obtained the luminosity distance and redshift relation of many high

redshift supernova and the results are given in Figure 1.1. Their

data clearly point towards a recent cosmic acceleration, with the

luminosity distance to the the high-z sample 10-15% larger than

expected for a low-mass density universe without dark energy, say

Λ.

From the Figure 1.1, it is clear that a matter dominated universe

without cosmological constant do not fit the observed data. The

observational data in the high redshift regime favor the luminosity

distance larger than the one predicted by the CDM model (Ω
(0)
m = 1

and Ω
(0)
Λ = 0). From the likelihood analysis of the SN Ia data

accumulated by the year 1998, Perlmutter et al.[1] found the present

density parameter of non-relativistic matter as Ω
(0)
m = 0.28+0.09

−0.08 in
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Figure 1.1: Hubble diagram (distance modulus vs redshift) from the Supernova
Cosmology Project team (SCP) and from High-Z Supernova Search team.

the flat universe with the cosmological constant.

2. Age of the universe

If one use the standard cosmology without dark energy/cosmological

constant, then the age of the universe is,

t0 =
2

3
H−1

0 . (1.10)

This is found to be in the range 8.2 Gyr < t0 < 10.2 Gyr. Compared

to the age of the oldest globular cluster, the above range is inconsis-

tent. The age of most of the globular clusters are found to be larger

than 11 Gyr and generally lie in the range 12.9± 2.9 Gyr[14]. This
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discrepancy can easily be eliminated, if one consider a flat universe

with cosmological constant or dark energy with equation of state

ωDE close to −1. In that case the age becomes,

t0 =
2H−1

0

3
√

ΩΛ
ln

(
1 +
√

ΩΛ√
Ωm

)
, (1.11)

satisfying the constraint Ωm+ΩΛ = 1. Under asymptotic conditions

we have H0t0 → ∞ as Ωm → 0 and H0t0 → 2/3 as Ωm → 1. It

is then seen that the age of the universe increases as Ωm decreases.

When Ωm = 0.3 and ΩΛ = 0.7, t0 = 0.964H−1
0 = 13.1 Gyr for

h = 0.72. It is clearly evident that, the presence of dark energy is

inevitable for the age of the universe to be in range higher than t0 >

11 Gyr, as indicated by the present day cosmological observation.

3. Cosmic microwave Background (CMB)

Cosmic Microwave Background radiations are the primordial radi-

ation left over from the Big Bang which fill the entire universe.

These radiation are those which were strongly coupled with baryons

in the very early stage of the universe and were decoupled at an

epoch around z ' 1090. In 1963, Penzias and Wilson [15] first de-

tected these photons and was found to be almost uniform in distri-

bution with a temperature of about 2.7 K. The slight temperature

anisotropies of the CMB were first measured by the COBE satel-

lite in 1992[16]. The angular power spectrum of CMB temperature

anisotropies measured by Wilkinson Microwave Anisotropy Probe

(WMAP) [11, 17–19] implies that it is dominated by acoustic peaks

arising from gravity-driven sound waves in the photon-baryon fluid.

And then the positions of these acoustic peaks are shifted by cos-

mic expansion. Thus the positions and amplitudes of acoustic peaks

contain important cosmic information. The combination of CMB
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and supernova observations indicates that the universe is acceler-

ating and also the presence of an exotic energy about 70% of the

universe.

4. Baryon Acoustic Oscillations (BAO)

The baryons were strongly coupled with the photons before the re-

combination epoch. As a result of this early stage coupling there

arise density fluctuations in the visible baryonic sector of the uni-

verse and are called baryon acoustic oscillations. These sound waves

must have their effect in the baryonic perturbations which lead to

the large scale structure formation as well as in the CMB temper-

ature anisotropies. The length of this wave is given by the largest

distance the acoustic waves could travel in the primordial universe

before recombination, at which time it stopped. The Sloan Digital

Sky Survey (SDSS) [12] catalog gives us a picture of distribution

of galaxies upto z = 0.47 and also for a BAO signal. Both CMB

and BAO signals indicate that the sound horizon today is about 150

Mpc. The combined analysis of SNe+BAO+CMB constrains the

equation of state of the dark energy as −1.097 < ωDE < −0.858 at

95% confidence level [20].

5. Large Scale Structure (LSS)

Measurements of galaxy clustering can also be a probe of dark en-

ergy. The initial fluctuations in the energy density of the early uni-

verse grow through gravitational instability into the structure seen

today. The sizes, densities and distribution of the structures depends

on cosmological parameters, matter density and dark energy and also

on the physics of the galaxy formation and evolution. Thus measur-

ing these would constrains the cosmological parameters. Measure-

ment of LSS involves cross-correlations of the galaxy distribution
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with the shear field measured by lensing (so-called galaxy-galaxy

lensing) or with the cosmic microwave background. At present the

largest redshift surveys of galaxies at low redshift are the two Degree

Field Galaxy Redshift Survey (2dFGRS) [21] and the Sloan Digital

Sky Survey (SDSS)[12]. These provide the current map of large scale

structure in the universe.

1.4.2 Standard ΛCDM model

In order to understand the nature of the recent acceleration, there are

basically two approaches. The first one is to modify energy-momentum

tensor Tµν in the right hand side of the Einstein’s equation by including

suitable forms, which can produce a negative pressure to cause the re-

cent acceleration. The second approach is to modify the left hand side of

the Einstein’s equation, i.e., the geometry of the space-time and are thus

known as modified gravity models or alternative theories of gravity. Some

of the models belonging to first and second approach are briefly discussed

below. First, we will discuss the standard ΛCDM model, which can incor-

porate either in first class or in the second method. But we will consider

here it as the first approach. The Standard model is considering the cos-

mological constant, Λ, as the one responsible for the late acceleration of

the universe.

The simplest and the most successful candidate for dark energy is

the so-called cosmological constant Λ, which was introduced earlier by

Einstein to realize a static universe and was omitted due the discovery

of expanding universe. But it can also be used to account for the late

acceleration of the universe. Incorporating Λ in to the Einstein equation

leads to,

Rµν −
1

2
gµνR + Λgµν = 8πGTµν . (1.12)

In the above equation even though Λ appears in the left hand of Einstein’s
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equation, it is not a part of the geometry. The cosmological constant

actually arise as the vacuum energy. Since vacuum energy should not

have any preferred direction, the energy-momentum tensor of it contain

only the pressure term, i.e Tµν = pvacgµν = −ρvacgµν . As a result the total

energy momentum tensor is Tµν = Tmatter
µν − ρvacgµν = Tmatter

µν − Λgµν .

Correspondingly, the Friedmann equations becomes,

ȧ2

a2
+

k

a2
=

8πG

3
ρ+

Λ

3
(1.13)

ä

a
= −4πG

3
(ρ+ 3P ) +

Λ

3
. (1.14)

From these equations, it is clear that the cosmological constant Λ produces

acceleration and thereby counteracting the gravitational effect of normal

components of the universe. The equation of state of the cosmological

constant ω = −1, i.e., PΛ = −ρΛ = − Λ
8πG . Defining the dimensionless

density parameters as,

Ωm =
8πGρm

3H2
0

, ΩΛ =
Λ

3H2
0

, Ωk =
−k
H2

0a
2

(1.15)

for matter, cosmological constant and the curvature respectively, then the

first Friedmann equation(1.13) can be re-written as,

H2 = H2
0

(
Ωr0a

−4 + Ωm0a
−3 + Ωk0a

−2 + ΩΛ

)
, (1.16)

where the quantities with subscript ‘0’ refers to the values of the cor-

responding mass parameter in the present time and it is assumed that

ρm ∼ a−3, ρr ∼ a−4. For a flat universe, i.e. k = 0 and neglecting ra-

diation component since we are interested in the late evolution of the

universe, the scale factor evolves as,

a(t) =

(
Ωm

ΩΛ

)1/3 [
sinh

(
3

2

√
ΩΛH0t

)]2/3

. (1.17)
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It is now easy to see that this solution implies a prior decelerated epoch

followed by a late accelerated epoch as warranted by the observation. In

the asymptotic limit corresponding to the past, i.e. H0t << 1, the scale

factor reduces to a(t) ∼ (H0t)
2/3 which corresponds to a prior decelerated

epoch dominated by matter. On the other hand in the future asymptotic

limit, H0t >> 1, the scale factor takes the form, a(t) ∼ exp
(√

ΩΛH0t
)
,

and is corresponding to the end de-Sitter phase of the universe which

expands exponentially. Thus the model predicts the transition from the

deceleration to accelerating phase of the universe.

The model is also good in predicting the age of the universe. Putting

a = a0 = 1 in equation (1.17), we get the expression for the age as,

t0 =
2

3
√

ΩΛ
H−1

0 sinh−1

√
ΩΛ

Ωm
. (1.18)

By assuming Ωm+ΩΛ = 1 for flat universe, the age of the universe reduces

to,

t0 =
2

3
√

ΩΛ
H−1

0 ln

(
1 +
√

ΩΛ√
1− ΩΛ

)
. (1.19)

In constraining the age one need to know the observational constraints

on the mass density parameters. Using the latest observational data from

Planck 2015+Lensing+BAO+JLA+HST, the best fit values of Ωm =

0.3070 ± 0.0061 and H0 = 67.87 ± 0.46 kms−1Mpc−1 [22]. If one use

the most conventional values, ΩΛ ∼ 0.7, Ωm ∼ 0.3, H0 = 70 kms−1Mpc−1

then according to the above obtained formula the age of the present uni-

verse becomes around 13 Gyr, which is close the age deduced form the

oldest globular clusters. The above constraints on the mass parameters

implies that, that Λ contributes 70% of the energy of the universe and

matter contributes the remaining 30% which would be further divided

into dark matter (25%) and baryonic matter (5%).

The model is also reasonably successful in predicting all other cos-

mological parameters. The model by default accounting for a dark en-



Standard ΛCDM model 17

ergy with equation of state, ωΛ = −1. From the combined analysis of

SNe+CMB+BAO, the WMAP [19] has obtained the range for the equa-

tion of state of dark energy as, −1.097 < ωDE < −0.858 which in fact

supporting the ΛCDM value.

Another important parameter is the transition redshift, characterizing

the transit of the universe from the matter dominated decelerated epoch to

the late accelerating phase. The early observations of Permutter et al and

Riess et al. have shown that, the transition into the late accelerating epoch

occurred at around five billion years ago. From the scale factor derived

above one can extract the transition redshift by using the condition,

dȧ

da
= 0. (1.20)

Using equation (1.17) it can be easily shown that the transition redshift

zT is,

zT =

(
2ΩΛ

Ωm

)1/3

− 1 (1.21)

and is corresponding to a redshift of around, zT = 0.56.

The nature of expansion as whether it is decelerated or accelerated is

characterized by the deceleration parameter and is defined as,

q = −1− Ḣ

H2
. (1.22)

Using the expression for the Hubble parameter of the ΛCDM model, we

get,

q =
Ωma

−3 − 2ΩΛ

2(Ωma−3 + ΩΛ)
. (1.23)

For ΛCDM model, the present value of deceleration parameter is found to

be q0 = −0.5427 [22].

The model is also successful in predicting the structure formation

and matter distribution of the universe. In a ΛCDM universe, quasi-

equilibrium dark matter clumps or otherwise called “halos grow by the
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collapse and hierarchical aggregation to more massive systems [23]. At the

center of these dark halos, galaxies are formed by the cooling and conden-

sation of gas which fragments into stars once it becomes sufficiently dense.

As these halos aggregate, groups and clusters of galaxies are formed. They

are arranged in the cosmic web, the larger-scale pattern of filaments and

sheets which is a nonlinear gravitational sharpening of the pattern already

present in the Gaussian random field of initial fluctuations.

Shortcomings of the ΛCDM model

Even though this model explains the recent acceleration of the universe

and find close similarities with the observations, it suffers from two major

flaws- cosmological constant problem and coincidence problem.

1. Cosmological constant problem

This problem refers to the disagreement of theoretical and observa-

tional values of the cosmological constant. From the view of particle

physics, the cosmological constant appears as vacuum energy den-

sity [24–27] . So in order to find the value of the vacuum density,

we add up the zero-point energies of all normal modes of the quan-

tum fields and we assume the momentum at the Planck scale as the

cut-off scale and the value is estimated to be

ρvac ≈ 1074GeV4. (1.24)

Observationally, the cosmological constant is found to be

ρΛ =
Λm2

pl

8π
≈ 10−47GeV4. (1.25)

This is about 10121 orders of magnitude less than the predicted value.

What accounts for this lesser value of ρΛ is still unknown.
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2. Cosmic Coincidence problem

This problem refers to the coincidence of the densities of the two

dark sectors - dark energy and dark matter. The nature of both the

dark energy and dark matter are still unknown [28–30]. However

we assume dark energy as cosmological constant and dark matter

is modeled as a non-relativistic fluid [31]. So even though their

evolution are different, the ratio of their densities is found to be

closer to unity in the present time. In the standard model, the

dark energy density is assumed to be constant and the dark matter

density varies as inverse third power of the scale factor. In the very

early universe they differ by many orders. But why they coincide

now is still an unexplained fact.

Since the ΛCDM model has the above two major flaws, people started

looking for other candidate that could cause the universe to accelerate.

Some even consider dynamical approach to this Cosmological constant.

In such models, “cosmological constant” remains no longer a constant but

varies with time (may be with scale factor, the Hubble parameter, etc).

These methods are expected to solve the cosmological constant problem

and many other problems faced by constant Λ [32].

1.4.3 Alternative dark energy models

Due to the drawback of the ΛCDM model, there introduced varying dark

energy models, where both the density of the dark energy and the corre-

sponding equation of state are supposed to vary with the cosmic time.

These includes Quintessence, k-essence, Tachyon field, Phantom ghost

field, Dilatonic dark energy, Chaplygin gas model, Holographic dark en-

ergy model etc. Of these, a brief account on Quintessence, K-essence and

Chaplygin gas, which most dealt with in the recent literature are given

below.
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1. Quintessence

The word quintessence means the fifth element. It refers to the fifth

dynamical component, in addition to the previously known bary-

onic matter, leptons, photons and dark matter. The basic idea of

quintessence is that the dark energy is in the form of a time varying

canonical scalar field φ minimally coupled to gravity, which is slowly

rolling down toward its potential minimum V (φ) [28, 33, 34]. The

corresponding action integral is given as,

S =

∫
d4x
√
−g
[

1

16πG
R + Lφ

]
+ SM , (1.26)

where Lφ = −1
2g
µν∂µφ∂νφ − V (φ), R is the Ricci scalar and SM is

the matter action. The evolution of the scalar field is governed by

the equation of motion,

φ̈+ 3Hφ̇+ V ′(φ) = 0 (1.27)

where V ′(φ) = dV
dφ . The energy density and pressure of the scalar

field, respectively, are given as

ρQ =
1

2
φ̇2 + V (φ) PQ =

1

2
φ̇2 − V (φ) (1.28)

This makes the equation of state parameter,

ωQ =
1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ
(1.29)

This ranges in between −1 < ωQ < 1. However, we are interested

in the negative pressure region for causing the late acceleration of

the universe, i.e, −1 < ωQ < 0. If the scalar field evolves very

slowly then the kinetic energy term 1
2 φ̇

2 becomes much smaller than

the potential energy term V (φ), then ω is close to −1 and then the
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scalar field behaves just like the cosmological constant. In general

the evolution of ω depends on the quintessence potentials and the

initial conditions[35].

2. k-essence

In k-essence, it is the scalar field kinetic energy that drives the ac-

celeration of the universe [36]. The action for such models is char-

acterised as [37],

S =

∫
d4x
√
−g
[

1

16πG
R + P (φ,X)

]
+ Sm (1.30)

Here P (φ,X) (usually corresponds to a pressure density) is a func-

tion of φ, the scalar field and X, its kinetic energy which is X =

−1
2g
µν∂µφ∂νφ [37, 38]. The scalar field energy density can be ob-

tained as,

ρφ = 2X
∂P

∂X
− P. (1.31)

Hence the equation of state for the k-essence scalar field becomes,

ωφ =
Pφ
ρφ

= P

(
2X

∂P

∂X
− P

)−1

(1.32)

Note that the function P plays the role of the scalar field pressure

Pφ. Here the allowed range and possible singularities strongly de-

pend on the function P (X,φ). In literature, many forms for the

k-essence Lagrangian have been considered. However, for appli-

cations for dynamical systems, we can broadly classify into three:

P = XG(X/V (φ)), P (X,φ) = K(φ)p̂(X) and P = F (X) − V (φ).

However, String theory restricts the Lagrangian density P (φ,X) to

the second form K(φ)p̂(X).

3. Chaplygin gas model

This is a type of fluid dark energy model [39], in which the universe
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is assumed to be filled with perfect fluid, known as Chaplygin gas

having an unusual equation of state,

P = − A
ρα
, (1.33)

where A is a positive constant and α is a parameter. Initially, α = 1

was considered. Later other values of α was also considered. One

of the main peculiarity of this model is that it is a unified model

capable of accounting for both dark matter and dark energy. This

single fluid behaves as dark matter in the early epoch and as dark

energy in the later epoch. Using the conservation equation and the

pressure equation noted above, one can obtain expression for the

energy density as,

ρ(t) =

[
A+

B

a3(1+α)

] 1
1+α

, (1.34)

where B is an integration constant. From this equation, it is clear

that in the early epoch corresponding to a � 1 and the density

behaves as, ρ ∝ a−3, which is corresponding to the prior matter

dominated region with decelerated expansion. In the late epoch,

a� 1, the energy density evolves as ρ ∝ A1/1+α, which corresponds

to the de Sitter universe. The effective speed of the sound for the

Chaplygin gas is given as,

c2s =
dp

dρ
= −αω = α

[
1 +

B/A

a3(1+α)

]−1

(1.35)

where ω is the equation of state parameter of the Chaplygin gas. For

this model, the sound speed is small at the early epoch and increases

during the later epoch. This leads to the growth of inhomogeneities

in the later epoch. An upper bound for α is obtained in [40] as, | α |≤
10−5. The role of the pressure in this model is very crucial. During
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matter dominated region, for a successful structure formation, the

effect of pressure needs to be strongly suppressed. However, in late

time negative pressure is required. But it is difficult to satisfy these

two condition simultaneously in this model.

1.4.4 Modified gravity models

Yet another approach to explain the recent acceleration is to modify

geometry part of the Einstein equation, which inevitably leads to vari-

ous modified gravity theories. These include f(R) gravity, f(T ) gravity,

Gauss-Bonnet theory, Lovelock gravity, Horava-Lifshitz gravity, scalar-

tensor theories, brane world model, etc. Of these a brief introduction on

f(R), Gauss-Bonnet theory and f(T ) are given below.

1. f(R) gravity model

In this model, we replace the Ricci scalar R in the action integral

with a function of R, i.e. f(R) [41, 42]. So the action becomes,

S =
1

16πG

∫
d4x
√
−gf(R) + Sm(gµν ,Ψm) (1.36)

where Sm is a matter action with matter fields Ψm. The field equa-

tions can be derived from the above action using two methods or

approaches - metric formalism and Palatini formalism [20]. In the

metric formalism, the connections Γαβγ are defined in terms of the

metric gµν . So by varying the action (1.36) with respect to the

metric gµν we get the field equations as

F (R)Rµν(g)− 1

2
f(R)gµν −∇µ∇νF (R) + gµν�F (R) = 8πGTµν ,

(1.37)

where F (R) = ∂f/∂R, ∇µ is the covariant derivative and � =

gµν∇µ∇ν is the D’Alembert operator. The trace of this equation is
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given by,

3�F (R) + F (R)R− 2f(R) = 8πGT, (1.38)

where T = gµνTµν = −ρ + 3P . In the second approach, Palatini

formalism, Γαβγ and gµν are independent variables. In this approach,

varying equation (1.36) with respect to gµν gives,

F (R)Rµν(Γ)− 1

2
f(R)gµν = 8πGTµν , (1.39)

where Rµν(Γ) is the Ricci tensor corresponding to the connections

Γαβγ . The trace of this equation gives,

F (R)R− 2f(R) = 8πGT. (1.40)

The de Sitter point corresponds to �F (R) = 0, for both the metric

and the Palatini formalism and we get

F (R)R− 2f(R) = 0. (1.41)

These leads to a plethora of investigations to throw light on the

nature of the late acceleration of our universe.

2. Gauss-Bonnet (GB) theory

In this modified gravity theory, the gravitational action is modified

by adding an arbitrary function f(G), where G is the Gauss-Bonnet

invariant defined as G ∼ R2 − 4RabRab + RabcdRabcd [43]. This

modification can be explained by considering effective low-energy

actions in string theory. The action becomes,

S =

∫
d4x
√
−g
(

1

2k2
R + f(G)

)
. (1.42)

It is found that such modified GB gravity can describe late-time

acceleration of the universe [44]. For different functions of f , it is



Modified gravity models 25

found to be possible to describe the transition from deceleration to

acceleration or from non-phantom phase to phantom phase in the

late universe [45].

3. f(T ) gravity model

F(T) type of modified gravity is based on the teleparallel equivalent

of general relativity (TEGR) Lagrangian, where the torsion will be

responsible for the observed acceleration of the universe, and the

field equations will always be 2nd order equations. The action of

these models is given as [46, 47],

S =
1

16πG

∫
dx4ef(T ) + Sm (1.43)

where e = det(eiµ) =
√
−g and T is the torsion scalar and f(T ) is a

function of the torsion. eiµ is the vierbein field which is a dynamical

object in teleparallel gravity, which has the following orthonormal

property,

ei.ej = ηij , (1.44)

where ηij = diag(1,−1,−1,−1). The metric tensor is also obtained

from the dual vierbein, gµν = ηije
i
µ(x)ejν(x). The torsion scalar is

defined as [48]

T = Sµνρ T ρµν (1.45)

where Sµνρ = 1
2(Kµν

ρ +δµρT
θν
θ −δ

ν
ρT

θµ
θ ), Kµν

ρ = −1
2(Tµνρ −T νµρ −Tµνρ )

and T λµν = Γωλνµ − Γωλµν .

For a spatially flat FLRW metric the field equations reduces to,

12H2fT (T ) + f(T ) = 16πGρ

48H2ḢfTT (T )− (12H2 + 4Ḣ)fT (T )− f(T ) = 16πGp
(1.46)

for i = 0 and i = 1, respectively, where fT (T ) =
df(T )
dT and fTT (T ) =

d2f(T )
dT 2 . Here ρ and p are the total energy density and pressure of the
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matter content of the universe respectively and satisfies the usual

conservation equation (1.8). The equation of state parameter due to

torsion is defined as

ωT = −1 +
4Ḣ(2TfTT + fT − 1)

2TfT − f − T
. (1.47)

This model is good in predicting a varying equation of state for the

late accelerating universe.

1.4.5 Mystery of dark energy and possible rem-
edy

All the above attempts either propose an exotic cosmic component

for dark energy or modifying the Einstein’s theory of gravity. In

spite of these varied approaches, the nature and evolution of dark

energy still remains a mystery. Still further problem is that of dark

matter which also remains as mysterious as the dark energy. Even

tough Chaplygin gas model made an attempt to solve this double

edged problem of dark matter and dark energy, a clear way out

is still lacking. So searches were diverted to check whether it is

possible to account at least for the recent acceleration by invoking

already known simple properties of matter itself. Dissipative mod-

els of cosmology, in which one invoke the bulk viscous property of

the matter is promising in this direction. Like Chaplygin gas, this

unifies dark energy and dark matter thereby solving the coincidence

problem because there is no separate dark energy component. But

unlike Chaplygin gas here one doesn’t use any exotic fluid, instead

the late acceleration is caused by the viscosity of the matter sector.



2
Bulk Viscous Universe

This chapter gives an account of our work on bulk viscous matter dom-

inated model. We have extracted the values of the model parameters in-

volved using the observational data. Then evaluated the evolution of the

cosmological parameters. In addition to this, the state finder analysis of

the model is also done to distinguish it from the conventional dark energy

models, especially the standard ΛCDM model.

Misner (1968) [49] was probably the first to introduce viscosity in cos-

mological theory. Later Murphy, in the year 1973 [50], have found that

the bulk viscous pressure is capable of producing expansion in the uni-

verse. However it acquired much attention when viscosity has been used

to cause the the early inflation of the universe [51–55]. This idea was

later extended to explain the late acceleration of the universe [56–61, 78].

Of the fluid dissipative phenomena, bulk viscosity is the most favorable

one compatible with the symmetry requirements of the homogeneous and

isotropic Friedmann-Lemaitre-Robertson-Walker (FLRW) universe. But a

viable mechanism for the origin of bulk viscosity in the expanding universe

is still to be sorted out. From the theoretical point of view, bulk viscos-

ity can arise due to deviations from the local thermodynamic equilibrium

[62, 63]. In cosmology, bulk viscosity arises as an effective pressure to re-

store the system back to its thermal equilibrium, which was broken when

27
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the cosmological fluid expands (or contract) too fast. This bulk viscosity

pressure generated, ceases as soon as the fluid reaches the thermal equi-

librium [64, 65]. In [66, 67], the authors have considered an alternative

mechanism for the generation of bulk viscosity due to the decay of a dark

matter particle into relativistic products.

In this chapter, we analyze matter dominated cosmological model with

bulk viscosity with the aim to understand the recent acceleration of the

universe. The non-relativistic matter is basically a pressureless fluid com-

prising both baryonic and dark matter components. If the bulk viscous

matter can produce the recent acceleration of the universe, then it would

leads to a unified description of both dark matter and dark energy sectors

thereby eliminating the unlikely introduction of any exotic fluid. The ad-

ditional advantage is that it automatically solves the coincidence problem

because there is no separate dark energy component. Since viscosity is ba-

sically a transport phenomenon, we took the bulk viscosity coefficient as

proportional to both the velocity (characterized by the parameter ζ1) and

acceleration (characterized by the parameter ζ2) of the expansion of the

universe, along with an additive constant (ζ0). Recently a similar model

was studied by Avelino et al. [68], but in constraining the parameters,

(ζ0, ζ1, ζ2) using the observational data the authors fixed either ζ1 or ζ2

as zero. So it is effectively a two parameter model, which consequently

obscured many of the generic properties of the model. In that reference

the authors have ruled out the possibility of predicting the conventional

evolution of the universe towards a stable late accelerating epoch. How-

ever, to get the actual generic behavior of the model, we think that one

should study it by evaluating all the parameters simultaneously, which

may lead to a more mature conclusion regarding the status of bulk vis-

cous dark matter taking the role of dark energy. In the present work we

aim to such an analysis in studying the evolution of all the cosmological
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parameters by simultaneously evaluating all the constant parameters on

which the total bulk viscosity depends on.

2.1 FLRW Universe dominated with bulk

viscous matter

We consider a spatially flat universe described by the Friedmann-Lemaitre-

Robertson-Walker (FLRW) metric,

ds2 = −dt2 + a(t)2(dr2 + r2dθ2 + r2 sin2 θdφ2), (2.1)

where (r, θ, φ) are the co-moving coordinates, t is the cosmic time and a(t)

is the scale factor of the universe dominated with bulk viscous matter,

which can produce an effective pressure [69, 70],

P ∗ = P − 3ζH, (2.2)

where P is the normal pressure, which is zero for non-relativistic matter

and ζ is the coefficient of bulk viscosity, which can be a function of Hubble

parameter and its derivatives in an expanding universe. We have not

considered the radiation component, as it is a reasonable simplification as

long as we are concerned with late time acceleration. The form of equation

(2.2) was originally proposed by Eckart in 1940 [71]. A similar theory

was also proposed by Landau and Lifshitz [72]. However, Eckart theory

suffer from pathologies. One of them is that in this theory, dissipative

perturbations propagate at infinite speed [73]. Another one is that the

equilibrium states in the theory are unstable [74, 75]. In 1979, Israel and

Stewart [76, 77] developed a more general theory which was causal and

stable and one can obtain the Eckart theory from it in the first order

limit, when the relaxation time goes to zero. So, in the limit of vanishing

relaxation time, the Eckart theory is a good approximation to the Israel-

Stewart theory.
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Even though Eckart theory have drawbacks, it is less complicated than

the Israel-Stewart theory. So it has been used widely by many authors to

characterize the bulk viscous fluid. For example in references [56, 78–80],

Eckart approach has been used in dealing with the accelerating universe

with the bulk viscous fluid. In this context, it is reasonable to point out

that Hiscock et.al.[81] have found that pathological Eckart theory and

also truncated Israel- Stewart theory (avoiding the non-linear terms) can

produce early inflation. However, as pointed out by the same authors, in

the truncated version of Israel-Stewart theory, the relaxation time stands

to be a constant which is in fact not logically correct in an expanding

universe. However, there exist some later studies [82, 83] which deals with

the importance of equation of state in such theories in order to explain the

acceleration. But, it should be checked whether these theories will produce

the late acceleration of the universe as observed today. One should also

note at this juncture that a more general formulation than Israel-Stewart

model was proposed by Pavon et al. [84] for irreversible process, especially

in dealing with thermodynamic equilibrium of dissipative fluid.

The Friedmann equations describing the evolution of flat universe dom-

inated with bulk viscous matter are,

H2 =
ρm
3
, (2.3)

2
ä

a
+

(
ȧ

a

)2

= −P ∗, (2.4)

where we have taken 8πG = 1, ρm is the matter density and overdot

represents the derivative with respect to cosmic time t. The conservation

equation is

ρ̇m + 3H(ρm + P ∗) = 0. (2.5)

From the Fluid mechanics, it is clear that the bulk viscosity coefficient,

ζ is related to the rate of compression or expansion of the fluid [85]. In the
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present model, the fluid is comoving with the expanding universe. So, the

velocity and acceleration of the fluid is the same as that of the expanding

universe, which are ȧ and ä, respectively. Since there is no conclusive

microscopic theory to calculate the transport coefficient, it is logical to

consider ζ to be depending on the velocity and acceleration, ȧ and ä. The

best way is to take a linear combination of the three terms: the first term

is a constant ζ0, the second term is proportional to the Hubble parameter,

which characterizes the dependence of the bulk viscosity on velocity, and

the third is proportional to ä
ȧ , characterizing the effect of acceleration on

the bulk viscosity [68, 86, 87] as,

ζ = ζ0 + ζ1
ȧ

a
+ ζ2

ä

ȧ
. (2.6)

Using the relation H = ȧ
a , ζ becomes,

ζ = ζ0 + ζ1H + ζ2(
Ḣ

H
+H). (2.7)

On taking this form of time dependent bulk viscosity, the equation of state

assumes the most general form [86, 88–90],

Peff = ωρ+ P0 + wHH + wH2H
2 + wdHḢ. (2.8)

By comparing equations (2.8), (2.2) and (2.7), we could identify, wH =

−3ζ0, wH2 = −3(ζ1 + ζ2) and wdH = −3ζ2.

From Friedmann equations, and from equations (2.2), (2.5) and (2.7),

we can obtain a first order differential equation for Hubble parameter by

replacing d
dt with d

d ln a through d
dt = H d

d ln a as,

dH

d ln a
−
(
ζ̃1 + ζ̃2 − 3

2− ζ̃2

)
H −

(
ζ̃0

2− ζ̃2

)
H0 = 0, (2.9)

where

ζ̃0 =
3ζ0

H0
, ζ̃1 = 3ζ1, ζ̃2 = 3ζ2, (2.10)
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are the dimensionless bulk viscous parameters and H0 is the present value

of the Hubble parameter. The above equation can be integrated to obtain

the Hubble parameter as,

H(a) = H0

[
a
ζ̃1+ζ̃2−3

2−ζ̃2

(
1 +

ζ̃0

ζ̃1 + ζ̃2 − 3

)
− ζ̃0

ζ̃1 + ζ̃2 − 3

]
. (2.11)

This equation shows that when ζ̃0, ζ̃1 and ζ̃2 are all zeros, the Hubble

parameter, H = H0a
− 3

2 which corresponds to the ordinary matter dom-

inated universe. When ζ̃1 = ζ̃2 = 0, the Hubble parameter reduces to

[59]

H(a) = H0

[
a−

3
2

(
1− ζ̃0

3

)
+
ζ̃0

3

]
. (2.12)

The asymptotic behavior of the Hubble parameter given by equation (2.11)

is as follows. As a → 0 the H → a−3/2 which corresponds to the prior

decelerated epoch, on the other hand as a → ∞ the H → ζ̃0
ζ̃1+ζ̃2−3

, a

constant, corresponding to a late accelerating epoch. This shows that

with suitable choice of the viscous parameters, it is possible to predict a

prior decelerated epoch and late accelerated epoch from the more general

Hubble parameter given in equation (2.11).

2.2 Behavior of scale factor

In this section we analyze the behavior of scale factor in the bulk viscous

matter dominated universe. Using the definition of Hubble parameter,

equation (2.11) becomes,

1

a

da

dt
= H0

[
a
ζ̃12−3

2−ζ̃2

(
1 +

ζ̃0

ζ̃12 − 3

)
− ζ̃0

ζ̃12 − 3

]
, (2.13)



Behavior of scale factor 33

where ζ̃12 = ζ̃1 + ζ̃2. Integrating the above equation to solve for the scale

factor we get,

a(t) =

[(
ζ̃0 + ζ̃12 − 3

ζ̃0

)
+

(
3− ζ̃12

ζ̃0

)
e

ζ̃0
2−ζ̃2

H0(t−t0)
] 2−ζ̃2

3−ζ̃12

, (2.14)

where t0 is the present cosmic time. Assuming, y = H0(t− t0) and taking

second derivative of the scale factor a (equation (2.14)) with respect to y,

we obtain

d2a

dy2
=
e
ζ̃0y

2−ζ̃2

2− ζ̃2

[
ζ̃0 + ζ̃12 − 3 + (2− ζ̃2)e

ζ̃0y

2−ζ̃2

]
 ζ̃0 + ζ̃12 − 3 + (3− ζ̃12)e

ζ̃0y

2−ζ̃2

ζ̃0


2(ζ̃1−2)+ζ̃2

3−ζ̃12

.

(2.15)

From the behavior of the scale factor and the Hubble parameter, it is pos-

sible to identify two limiting conditions on ζ̃0, ζ̃1 and ζ̃2 which corresponds

to a universe that would start with a Big-Bang followed by an early decel-

erated epoch, then making a transition into the accelerated epoch in the

later times. These two conditions are,

ζ̃0 > 0, ζ̃12 < 3, ζ̃2 < 2 (2.16)

ζ̃0 < 0, ζ̃12 > 3, ζ̃2 > 2. (2.17)

The first condition is to be simultaneously satisfied with ζ̃0 + ζ̃12 < 3

and the second condition with ζ̃0 + ζ̃12 > 3. Instead of these, if the first

condition, equation (2.16) is satisfied simultaneously with ζ̃0 + ζ̃12 > 3 or

the second condition, equation (2.17) with ζ̃0 + ζ̃12 < 3, then the universe

will undergo an eternally accelerated expansion, see the curve for ζ̃0+ζ̃12 =

3 in figures 2.3 and 2.4. We have obtained the best estimates of the bulk

viscous parameters (ζ̃0, ζ̃1, ζ̃2) corresponding to the cases, equations (2.16)
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and (2.17) separately, using the SCP “Union” SNe Ia data set, about

which we will discuss in section 2.3.

For both the cases of bulk viscous parameters, as given by equations

(2.16) and (2.17), the Hubble parameter given in equation (2.11) becomes

infinity as the scale factor a→ 0, which implies that the density becomes

infinity at the origin, indicating the presence of a Big-Bang at the origin.

The behavior of the scale factor as given in equation (2.14) are shown in

figures 2.1 and 2.2 for the two conditions of parameters respectively. As

(t− t0)→ 0, the scale factor in both the cases reduces to

a(t)→
[

1 +
3− ζ̃12

2− ζ̃2

H0(t− t0)

] 2−ζ̃2
3−ζ̃12

, (2.18)

which corresponds to an early decelerated expansion. In both the cases of

limiting conditions, as (t− t0)→∞, the scale factor tends to,

a(t)→ e
ζ̃0

2−ζ̃2
H0(t−t0)

. (2.19)

This corresponds to acceleration similar to the de Sitter phase which im-

plies that the bulk viscous dark matter behaves similar to the cosmological

constant as (t− t0)→∞, at least at the background level. An important

point to be noted is that the evolution of the scale factor is the same for

the best estimates of the bulk viscous coefficient from the two limiting

conditions, see figures 2.1 and 2.2.

The scale factor and red shift corresponding to the transition from

decelerated to accelerated expansion can be obtained as shown below.

From the Hubble parameter (equation (2.11)) the derivative of ȧ with

respect to a can be obtained as,

dȧ

da
= H0

[(
ζ̃1 − 1

2− ζ̃2

)(
ζ̃0 + ζ̃12 − 3

ζ̃12 − 3

)
a
ζ̃12−3

2−ζ̃2 − ζ̃0

ζ̃12 − 3

]
. (2.20)
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Figure 2.1: Behavior of the scale factor for the first set of limiting conditions
of parameters → ζ̃0 > 0, ζ̃0 + ζ̃12 < 3, ζ̃12 < 3, ζ̃2 < 2. Solid line corresponds
to the best fit parameters (ζ̃0, ζ̃1, ζ̃2) = (7.83,−5.13,−0.51). Dashed line corre-
sponds to parameter values (5,−4, 1) and the dotted line corresponds to values
(4,−2,−3). The parameter values are selected so that the transition to the
accelerated epoch happens in the past.
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Figure 2.2: Behavior of the scale factor for the second set of limiting con-
ditions of parameters → ζ̃0 < 0, ζ̃0 + ζ̃12 > 3, ζ̃12 > 3, ζ̃2 > 2. Solid line
corresponds to the best fit parameters (ζ̃0, ζ̃1, ζ̃2) = (−4.68, 4.67, 3.49). Dashed
line corresponds to parameter values (−6, 4, 6) and the dotted line corresponds
to values (−5, 6, 3). The parameter values are selected so that the transition to
the accelerated epoch happens in the past.
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Figure 2.3: Evolution of the second derivative of the scale factor with respect to
y = H0(t− t0) for the first limiting conditions of parameters, ζ̃0 > 0, ζ̃0 + ζ̃12 <
3, ζ̃12 < 3, ζ̃2 < 2. The curve corresponding to ζ̃0+ζ̃12 ≥ 3 represents a universe
which is eternally accelerating. If ζ̃0 + ζ̃1 > 1, the transition to the accelerating
epoch happens in the past. If ζ̃0 + ζ̃1 < 1 the transition will be in the future.
If ζ̃0 + ζ̃1 = 1, the transition occurs at present.
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Figure 2.4: Evolution of the second derivative of the scale factor with respect to
y = H0(t−t0) for the second limiting conditions of parameters, ζ̃0 < 0, ζ̃0+ζ̃12 >
3, ζ̃12 > 3, ζ̃2 > 2. The curve corresponding to ζ̃0+ζ̃12 ≤ 3 represents a universe
which is eternally accelerating. If ζ̃0 + ζ̃1 < 1, the transition to the accelerating
epoch happens in the past. If ζ̃0 + ζ̃1 > 1 the transition will be in the future.
If ζ̃0 + ζ̃1 = 1, the transition occurs at present.
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Equating this to zero, we obtain the transition scale factor aT ,

aT =

[
ζ̃0

(
2− ζ̃2

)(
ζ̃1 − 1

) (
ζ̃0 + ζ̃12 − 3

)] 2−ζ̃2
ζ̃12−3

(2.21)

and the corresponding transition red shift zT is,

zT =

[
ζ̃0

(
2− ζ̃2

)(
ζ̃1 − 1

) (
ζ̃0 + ζ̃12 − 3

)]− 2−ζ̃2
ζ̃12−3

− 1. (2.22)

From equations (2.21) and (2.22), it is clear that if ζ̃0 + ζ̃1 = 1, the

transition from decelerated phase to accelerated phase occurs at aT = 1

and zT = 0, which corresponds to the present time of the universe. For the

first case of limiting conditions of parameters with ζ̃0 > 0, the transition

would takes place in the past if ζ̃0 + ζ̃1 > 1 and in the future if ζ̃0 + ζ̃1 < 1.

For the second case of limiting conditions of parameters, that corresponds

to ζ̃0 < 0, the above conditions are reversed such that transition would

takes place in the future if ζ̃0 + ζ̃1 > 1 and in the past if ζ̃0 + ζ̃1 < 1. These

are shown in figures 2.3 and 2.4 respectively, where we have plotted d2a
dy2

(equation 2.15) with y.

2.3 Parameter estimation using Type Ia Su-

pernovae data

In this section we have obtained the best fit of the parameters, ζ̃0, ζ̃1, ζ̃2

and H0 using the type Ia Supernovae observations. The goodness-of-fit

of the model is obtained by the χ2-minimization. We did the statistical

analysis using the Supernova Cosmology Project (SCP) “Union” SNe Ia

data set [91], composed of 307 type Ia Supernovae from 13 independent

data sets.



38 Bulk Viscous Universe

In a flat universe, the luminosity distance dL is defined as

dL(z, ζ̃0, ζ̃1, ζ̃2, H0) = c(1 + z)

∫ z

0

dz′

H(z′, ζ̃0, ζ̃1, ζ̃2, H0)
, (2.23)

where H(z, ζ̃0, ζ̃1, ζ̃2, H0) is the Hubble parameter and c is the speed of

light. The theoretical distance moduli µt for the k-th Supernova with

redshift zk is given as,

µt(zk, ζ̃0, ζ̃1, ζ̃2, H0) = m−M

= 5 log10[
dL(zk, ζ̃0, ζ̃1, ζ̃2, H0)

Mpc
] + 25,

(2.24)

where, m and M are the apparent and absolute magnitudes of the SNe

respectively. Then we can construct χ2 function as,

χ2(ζ̃0, ζ̃1, ζ̃2, H0) ≡
n∑
k=1

[
µt(zk, ζ̃0, ζ̃1, ζ̃2, Ho)− µk

]2
σ2
k

(2.25)

where µk is the observational distance moduli for the k-th Supernova, σ2
k

is the variance of the measurement and n is the total number of data, here

n = 307. The χ2 function thus obtained is then minimized to obtain the

best estimate of the parameters, ζ̃0, ζ̃1, ζ̃2 and H0. From the behavior of

scale factor and other cosmological parameters, we found that there exists

two possible sets of conditions which describes a universe having a Big-

Bang at the origin, then entering an early stage of decelerated expansion

followed by acceleration. These two sets of conditions are mentioned in

section 2.2. We have used these two conditions separately in minimizing

the χ2 function. This leads to two sets of values for the best estimates of

the parameters ζ̃0, ζ̃1, ζ̃2 but H0 is same in both the cases. In addition to

H0, the other cosmological parameters, scale factor, deceleration parame-

ter, equation of state parameter, matter density and curvature scalar are

all showing identical behavior for both the sets of best fit of parameters.
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Model → Bulk viscous model
with ζ̃0 > 0, ζ̃0 + ζ̃12 <
3, ζ̃12 < 3, ζ̃2 < 2

Bulk viscous model
with ζ̃0 < 0, ζ̃0 + ζ̃12 >
3, ζ̃12 > 3, ζ̃2 > 2

ΛCDM

ζ̃0 7.83 -4.68 -

ζ̃1 −5.13+0.056
−0.060 4.67+0.04

−0.03 -

ζ̃2 −0.51+0.13
−0.14 3.49+0.089

−0.071 -
Ωm0 1 1 0.316
H0 70.49 70.49 70.03
χ2
min 310.54 310.54 311.93

χ2
d.o.f 1.02 1.02 1.02

Table 2.1: Best estimates of the bulk viscous parameters and H0 and
also χ2 minimum value for the two cases of the limiting conditions of the

viscous parameters. χ2
d.o.f =

χ2
min

n−m , where n = 307, the number of data and
m = 3, the number of parameters in the model. For the best estimation
we have used SCP “Union” 307 SNe Ia data sets. We have also shown
the best estimates of the corresponding parameters for the ΛCDM model
for comparison, where Ωm0 is the present mass density parameter. The
subscript d.o.f stands for degrees of freedom.

The values of the parameters are given in Table 2.1. In order to com-

pare the results of the present model, we have also estimated the values

for ΛCDM model using the same data set and the results are also shown

in Table 2.1. We find that the values of H0 and Goodness-of-fit χ2
d.o.f

for ΛCDM model are very close to those obtained from the present bulk

viscous model. The value of the present Hubble parameter, H0 for both

the cases of parameters are found to be 70.49 kms−1Mpc−1, which is in

close agreement with the corresponding WMAP value (H0 = 70.5 ± 1.3

kms−1Mpc−1) [93].

We have constructed the confidence interval plane for the bulk viscous

parameters (ζ̃1, ζ̃2) by keeping ζ̃0 as a constant equal to its best estimated

value obtained by minimizing the χ2 function. From figure 2.5, corre-

sponding to the first set of limiting conditions and figure 2.6, correspond-
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Figure 2.5: Confidence intervals for the parameters (ζ̃1, ζ̃2) for the first set of
limiting conditions, for the bulk viscous matter dominated universe using the
SCP “Union” data set composed of 307 data points. The best estimated values
of the parameters are ζ̃1 = −5.13+0.056

−0.06 and ζ̃2 = −0.51+0.13
−0.14 and are indicated

by the point. The confidence intervals shown corresponds to 68.3%, 95.4%,
99.73% and 99.99% of probabilities.
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Figure 2.6: Confidence intervals for the parameters (ζ̃1, ζ̃2) for the second set
of limiting conditions, for the bulk viscous matter dominated universe using
the SCP “Union” data set composed of 307 data points. The best estimated
values of the parameters are 4.67+0.04

−0.03 and 3.49+0.089
−0.071 and are indicated by the

point. The confidence intervals shown corresponds to 68.3%, 95.4%, 99.73%
and 99.99% of probabilities.



42 Bulk Viscous Universe

ing to the second set of limiting conditions, it is seen that the fitting of

the confidence intervals corresponding to 99.73% and 99.99% probabilities

are poor. But the confidence intervals corresponding to 68.3% and 95.4%

probabilities are showing a fairly good behavior.

For the first case of parameters with ζ̃0 > 0, it is found that ζ̃1 =

−5.13+0.056
−0.06 and ζ̃2 = −0.51+0.13

−0.14, for ζ̃0 = 7.83 with 68.3% probability.

In the second case with ζ̃0 < 0, the values of ζ̃1 and ζ̃2 are obtained as

4.67+0.04
−0.03 and 3.49+0.089

−0.071, respectively, for ζ̃0 = −4.68 with 68.3% proba-

bility.

2.4 Age of the bulk viscous universe

Age of the universe can be deduced from the scale factor equation (2.14)

by equating it to zero. The time elapsed since the Big-Bang is,

tB = t0 +

(
2− ζ̃2

H0ζ̃0

)
ln

(
1− ζ̃0

3− ζ̃12

)
. (2.26)

Hence, the age of the universe since Big-Bang is

Age ≡ t0 − tB = −
(

2− ζ̃2

H0ζ̃0

)
ln

(
1− ζ̃0

3− ζ̃12

)
. (2.27)

A plot of the age of the universe with H0 for the best estimates of

the bulk viscous parameters is shown in figure 2.7 (the evolution is the

same for the best estimates from the two limiting conditions). The age

of the universe corresponding to the best estimates of the present Hubble

parameter is found to be 10.90 Gyr and is marked in the plot. This value is

less compared to the age deduced from CMB anisotropy data [92] and also

that from the oldest globular clusters [14], which is around 12.9±2.9 Gyr.

For comparison, we have also extracted the value of the Hubble parameter

for the ΛCDM model using the same data set (see Table 2.1) from which
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Figure 2.7: Plot of the age of the universe in Gyr with H0 in units of
kms−1Mpc−1 for the best fit values of the bulk viscous parameters. The plots
are identical for the best estimated values of the parameters from both the lim-
iting conditions. The point located in the figure corresponds to an age 10.5 Gyr
for the best estimate value of H0, obtained as 70.49 kms−1Mpc−1. The shaded
region corresponds to the interval H0(55, 75) kms−1Mpc−1 and age (10, 15.8)
Gyr, which are the permitted intervals for H0 and age, derived using observa-
tions on Galactic globular clusters from the Hipparcos parallaxes [14].
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the age of the universe is found to be around 13.85 Gyr. So compared

to the age of the universe from globular clusters and the standard ΛCDM

model, the present model, where the bulk viscous matter replaces the dark

energy, predicts a relatively low age.

2.5 Evolution of cosmological parameters

2.5.1 Deceleration parameter

The results regarding the transition of the universe into the accelerated

epoch discussed in the previous section can be further verified by studying

the evolution of the deceleration parameter q, which is defined as,

q(a) = − äa
ȧ2

= − ä
a

1

H2
= −1− Ḣ

H2
. (2.28)

For the bulk viscous matter dominated universe, using the Friedmann

equations, one can obtain,

ä

a
= −1

6

[
ρm − 9H

(
ζ0 + ζ1H + ζ2

(
Ḣ

H
+H

))]
. (2.29)

Using the dimensionless bulk viscous parameters as defined in equation

(2.10) and using equations (2.3) and (2.29), the deceleration parameter

becomes,

q =
1

2

[
1−

(
H0

H
ζ̃0 + ζ̃1 +

ζ̃2

H

(
Ḣ

H
+H

))]
. (2.30)

Substituting equations (2.9) and (2.11), we can obtain the deceleration

parameter in terms of a, ζ̃0, ζ̃1 and ζ̃2 as,

q(a) =
1

2− ζ̃2

1− ζ̃1 −
ζ̃0

a
ζ̃12−3

2−ζ̃2

(
1 + ζ̃0

ζ̃12−3

)
− ζ̃0

ζ̃12−3

 . (2.31)
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Figure 2.8: Evolution of the deceleration parameter with red shift for the first
limiting conditions of viscous parameters, ζ̃0 > 0, ζ̃0 + ζ̃12 < 3, ζ̃12 < 3, ζ̃2 < 2.
q enters the negative region in the recent past if ζ̃0 + ζ̃1 > 1, at present if
ζ̃0 + ζ̃1 = 1 and in the future if ζ̃0 + ζ̃1 < 1. Evolution of q for the best estimated
values of the bulk viscous parameters is also shown. The redshift at which the
q enters the negative region for the best estimated values of the bulk viscous
parameters corresponds to zT = 0.49+0.075

−0.057.

In terms of red shift, the above equation becomes,

q(z) =
1

2− ζ̃2

1− ζ̃1 −
ζ̃0

(1 + z)
− ζ̃12−3

2−ζ̃2

(
1 + ζ̃0

ζ̃12−3

)
− ζ̃0

ζ̃12−3

 . (2.32)

The variation of q with z for the two sets of limiting conditions of the

viscous parameters are shown in figures 2.8 and 2.9. The evolution corre-

sponding to the best estimates from both limiting conditions are identical

as it is clear from the figures. When all the bulk viscous parameters are

zero, the deceleration parameter q = 1/2, which corresponds to a deceler-

ating epoch of the universe.

The present value of the deceleration parameter corresponds to z = 0

or a = a0 = 1 is,

q0 = q(a = 1) =
1− (ζ̃0 + ζ̃1)

2− ζ̃2

. (2.33)
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Figure 2.9: Evolution of the deceleration parameter with red shift for the second
limiting conditions of viscous parameters, ζ̃0 < 0, ζ̃0 + ζ̃12 > 3, ζ̃12 > 3, ζ̃2 > 2.
q enters the negative region in the recent past if ζ̃0 + ζ̃1 < 1, at present if
ζ̃0 + ζ̃1 = 1 and in the future if ζ̃0 + ζ̃1 > 1. Evolution of q for the best estimated
values of the bulk viscous parameters is also shown. The redshift at which the
q enters the negative region for the best estimated values of the bulk viscous
parameters corresponds to zT = 0.49+0.064

−0.066.

This equation shows that for ζ̃0+ζ̃1 = 1, the deceleration parameter q = 0.

This implies that the transition into the accelerating phase would occur

at the present time and is true for both the cases of the parameters.

For the first case of limiting conditions of the parameters (2.16) with

ζ̃0 > 0 and ζ̃2 < 2, the current deceleration parameter q0 < 0 if ζ̃0+ ζ̃1 > 1,

implying that the present universe is in the accelerating epoch and it en-

tered this epoch at an early stage. But q0 > 0 if ζ̃0 + ζ̃1 < 1, implying that

the present universe is decelerating and it will be entering the accelerating

phase at a future time, see figure 2.8 which shows the behavior of q with

z. For the best estimate of the bulk viscous parameters, the behavior of q

(figure 2.8) shows that the universe transit from decelerated to accelerated

epoch at a recent past. The best estimate of the bulk viscous parameters

corresponding to the first limiting case, equation 2.16 were extracted using

the Supernova data and are (ζ̃0 = 7.83, ζ̃1 = −5.13, ζ̃2 = −0.51) (see Table
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2.1), which indicate that ζ̃0 + ζ̃1 > 1. So the model predicts a universe

which is accelerating at present and has entered this phase of accelerating

expansion at a recent past.

For the second case of limiting conditions of the viscous parameters

(2.17) with ζ̃0 < 0 and ζ̃2 > 2, the current deceleration parameter q0 > 0

if ζ̃0 + ζ̃1 > 1, implies that the present universe is in the decelerating

epoch and it will be entering the accelerating phase at a future time,

see figure 2.9 which shows the behavior of q with z. But q0 < 0 if ζ̃0 +

ζ̃1 < 1, implying that the present universe is accelerating and it entered

this phase at an early time. From the behavior of q (figure 2.9) for the

best estimate of the bulk viscous parameters corresponding to the second

limiting condition, equation 2.17, it is clear that the transition of the

universe from the decelerated to accelerated epoch was in the recent past.

The best estimate of the bulk viscous parameters in this case are (ζ̃0 =

−4.68, ζ̃1 = 4.67, ζ̃2 = 3.49) (see Table 2.1), which indicate that ζ̃0+ζ̃1 < 1.

So, for this case also, the model predicts a universe which is accelerating

at present and has entered this phase of accelerating expansion at a recent

past.

These results confirm the earlier conclusion with respect to the be-

havior of d2a/dy2. For the best estimated values of the bulk viscous pa-

rameters, the present value of the deceleration parameter is found to be

about −0.68± 0.06 and −0.68+0.066
−0.050 corresponding to the first and second

limiting conditions respectively (see equation (2.33)). This is comparable

with the observational results on the present value of q, which is around

−0.64± 0.03 [92, 93]. The transition red shift, at which q enters the neg-

ative value region, corresponding to an accelerating epoch, is found to be

zT = 0.49+0.075
−0.057 for the first case of limiting conditions of the bulk viscous

parameters and zT = 0.49+0.064
−0.066 for the second case of limiting conditions

of the bulk viscous parameters (see equation (2.22) and figures 2.8 and
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2.9). An analysis of the ΛCDM model with combined SNe+CMB data

gives the transition red shift range as zT = 0.45− 0.73 [94]. So the tran-

sition red shift predicted by the present model is agreeing with the lower

limit of the corresponding ΛCDM range.

2.5.2 Equation of state

An accelerated expansion of the universe is possible only if the effective

equation of state parameter, ω < −1/3, or equivalently, 3ω + 1 < 0. The

equation of state can be obtained using [95],

ω = −1− 1

3

d lnh2

dx
= −1− 2

3

Ḣ

H2
, (2.34)

where x = ln a and h = H
H0

. Using equation (2.11) we get the equation of

state as,

ω = −1− 2

3(2− ζ̃2)

[
ζ̃1 + ζ̃2 − 3 +

ζ̃0

h

]
. (2.35)

The present value of the equation of state parameter ω0, can be obtained

by taking h = 1. The condition for acceleration of the present universe

can then be represented as,

3ω0 + 1 = −2

(
ζ̃0 + ζ̃1 − 1

2− ζ̃2

)
< 0. (2.36)

For the first case of parameters with ζ̃0 > 0, ζ̃2 < 2, this condition is

satisfied if ζ̃0 + ζ̃1 > 1 and for the second case with ζ̃0 < 0, ζ̃2 > 2, this

will be satisfied if ζ̃0 + ζ̃1 < 1. These conditions are compatible with that

arrived in the analysis of deceleration parameter in section 2.5.1.

The evolution of the equation of state parameter with red shift for both

the sets of the best fit values of the bulk viscous parameters are found to

be identical and is shown in figure 2.10. It is clear from the figure that as

z → −1 (a→∞), ω → −1 in the future which corresponds to the de Sitter
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Figure 2.10: Evolution of the equation of state parameter with red shift for the
best estimates of the bulk viscous parameters. It is found that the evolution of
ω are identical for the best estimates from both the limiting conditions.

universe and also coincides with that of the future behavior of the ΛCDM

model [96], and also resembles the behavior of some scalar field models [13].

Since it is not crossing the phantom divide ω ≤ −1, the model is free from

big rip singularity or little rip [97]. The present value of the equation of

state parameter is around ω0 ∼ −0.78+0.03
−0.045 and ω0 ∼ −0.78+0.037

−0.043 for the

best estimate of viscosity parameters corresponding to the first and sec-

ond limiting conditions, respectively. This value is comparatively higher

than that predicted by the joint analysis of WMAP+BAO+H0+SNe data,

which is around −0.93 [11, 98].

2.5.3 Matter density

From the Friedmann equation (2.3) and the Hubble parameter, equation

(2.11) we obtain the mass density parameter Ωm as,

Ωm(a) =

[
a
ζ̃12−3

2−ζ̃2

(
1 +

ζ̃0

ζ̃12 − 3

)
− ζ̃0

ζ̃12 − 3

]2

, (2.37)

where, Ωm = ρm
ρcrit

and ρcrit = 3H2
0 is the critical density. If ζ̃0 = ζ̃1 = ζ̃2 =
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Figure 2.11: Evolution of the mass density parameter with scale factor for
the best estimated values of the bulk viscous parameters. It is found that the
variation of the mass density coincides for the best estimated values from the
two limiting conditions.

0, the mass density parameter reduces to Ωm ∼ a−3, which corresponds

to the matter dominated universe with null bulk viscosity. The evolution

of the mass density parameter for the best estimated values corresponding

to the two limiting conditions are shown in figure 2.11 and it is clear that

their evolutions are coinciding with each other. As a → 0, the matter

density diverges. Figure 2.11 also indicating the same, which is a clear

indication of the existence of the Big-Bang at the origin of the universe.

2.5.4 The curvature scalar

The curvature scalar is the parameter used to confirm the presence of

singularities in the model. For a flat universe, the curvature scalar is

defined as,

R = 6

[
ä

a
+H2

]
. (2.38)



Statefinder analysis 51

0.0 0.5 1.0 1.5 2.0
-10

-5

0

5

10

15

a

R
�H

02

Figure 2.12: Evolution of the curvature scalar with scale factor for the best
estimate parameters. It is found that the evolution of the curvature scalar are
identical for the best estimated values from the two limiting conditions.

Using equations (2.9), (6.7), (2.11) and (2.29), we obtain the curvature

scalar as,

R(a) =
6H2

0

(2− ζ̃2)(ζ̃12 − 3)2
[2ζ̃2

0 (2− ζ̃2) + (ζ̃0 + ζ̃12 − 3)

a
ζ̃12−3

2−ζ̃2 [(ζ̃1 − ζ̃2 + 1)(ζ̃0 + ζ̃12 − 3)a
ζ̃12−3

2−ζ̃2 − ζ̃0(ζ̃1 − 3ζ̃2 + 5)]].

(2.39)

From the above equation it is clear that as a→ 0, R→∞. The evolution

of the curvature scalar for both the cases of best fit of the parameters

coincides with each other as shown in figure 2.12. The behavior of R

shows that the curvature scalar diverges as a → 0. This indicates the

existence of Big-Bang at the origin of the universe.

2.6 Statefinder analysis

In this section, we present our analysis on comparing the present model

with other standard models of dark energy. We have used the statefinder

parameter diagnostic introduced by Sahni et al [99]. The statefinder is
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a geometrical diagnostic tool which allows us to characterize the prop-

erties of dark energy in a model-independent manner. The statefinder

parameters {r, s} are defined as,

r =

...
a

aH3
, s =

r − 1

3
(
q − 1

2

) . (2.40)

In terms of h = H
H0

, r and s can be written as

r =
1

2h2

d2h2

dx2
+

3

2h2

dh2

dx
+ 1 (2.41)

s = −
1

2h2
d2h2

dx2 + 3
2h2

dh2

dx
3

2h2
dh2

dx + 9
2

. (2.42)

Using the expression for h from equation (2.11), these parameters become,

r =
(ζ̃0 + ζ̃12 − 3)(ζ̃12 − 3)

h2(2− ζ̃2)2
a
ζ̃12−3

2−ζ̃2 [2h+
ζ̃0

ζ̃12 − 3
]+

3(ζ̃0 + ζ̃12 − 3)

h(2− ζ̃2)
a
ζ̃12−3

2−ζ̃2 +1,

(2.43)

s =

(ζ̃0+ζ̃12−3)(ζ̃12−3)

h2(2−ζ̃2)2
a
ζ̃12−3

2−ζ̃2 [2h+ ζ̃0
ζ̃12−3

] +
3(ζ̃0+ζ̃12−3)

h(2−ζ̃2)
a
ζ̃12−3

2−ζ̃2

3(ζ̃0+ζ̃12−3)

h(2−ζ̃2)
a
ζ̃12−3

2−ζ̃2 + 9
2

. (2.44)

The above equations show that in the limit a → ∞, the statefinder pa-

rameters {r, s} → {1, 0}, a value corresponding to the ΛCDM model of

the universe. So the present model resembles the ΛCDM model in the

future. The {r, s} plane trajectory of the model is shown in figure 2.13.

The trajectories are coinciding with each other for the best estimates from

both the sets of the limiting conditions of the parameters. The trajectory

in the {r, s} plane are lying in the region r > 1, s < 0, a feature similar

to the generalized Chaplygin gas model of dark energy [100]. The present

model can also be discriminated from the Holographic dark energy model

with event horizon as the I.R. cut off, in which the r − s evolution starts

from a region r ∼ 1, s ∼ 2/3 and end on the ΛCDM point [101]. The
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Figure 2.13: The evolution of the model in the r-s plane for the best estimates
of the parameters. The curves are coinciding with each other for the best
estimated values of the parameters from both the limiting conditions.
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present position of the universe dominated by the bulk viscous matter is

noted in the plot and it corresponds to {r0, s0} = {1.25,−0.07}. This

means that the present model is distinguishably different from the ΛCDM

model.

Appendix

Here we briefly analyze the effect of the model on the integrated Sachs

- Wolfe (ISW) effect and has not gone into the details, hence added as

appendix.

ISW effect

Viscous dark matter will, in general, resist to the density perturbations.

Consequently it will dilute the gravitational potential at the perturbed

regions. This will subsequently affect the CMB radiation and leads to

ISW effect [102].

The ISW Effect is the change in the energy of a CMB photon as it

passes through the evolving gravitational potential wells. It is obtained as(
∆T

T

)
ISW

= 2

∫ η0

ηr

Φ′[(η0 − η)n̂, η]dη, (2.45)

where n̂ is the photon trajectory and η0 is the conformal time today and

ηr is the conformal time at recombination, Φ is the gravitational potential

and prime represents derivative with respect to the conformal time.

So the first step towards the calculation of the ISW Effect is to obtain

the evolution of gravitational potential in an expanding universe. This can

be obtained from Einstein’s equation by taking care of the perturbations.

Viscous dark matter may cause a fast decay of gravitational potential

which modifies the CMB spectrum.
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In Fourier space, the gravitational potential takes the form [103]

Φ =
3

2

Ωmo

a
(
H0

k
)2δ(k, η), (2.46)

where density perturbation, δ(k, η) = G(η)δ(k, 0). G(η) is the growth

factor which is related to the Hubble parameter as,

G(η) ∝ H(η)

H0

∫ ∞
z(η)

dz′(1 + z′)(
H0

H(z′)
)3. (2.47)

In matter dominated universe, G ∝ a, so Φ remains a constant, hence

no ISW effect.

In our model, by considering the bulk viscous coefficient ζ = ζ0 +

ζ1
ȧ
a + ζ2

ä
ȧ , the Hubble parameter evolves as equation (2.11). By using

this relation, the integral in the growth factor becomes hypergeometric

function. For simplification, let us consider the case when a is large, then

H ∝ a
ζ̃1+ζ̃2−3

2−ζ̃2 . Then the growth factor becomes,

G ∝ (1 + z)
ζ̃1+ζ̃2−3

2−ζ̃2

(2− ζ̃2)z
−3ζ̃1+ζ̃2+5

2−ζ̃2

−3ζ̃1 − ζ̃2 + 5

 . (2.48)

So, potential becomes Φ ∝ z8.34(1 + z)4.45 (by using extracted parameter

values). From the last scattering surface, which corresponds to z = 1091,

to the present epoch z = 0, the potential will be rarefied. This causes

ISW effect. However, only with an exact calculations and by obtaining

the correlation function, one can get the total ISW effect and its effect on

the structure formation.





3
Thermodynamics of bulk

viscous matter dominated
universe

This chapter deals with the thermodynamical analysis of the bulk viscous

model by peeking into the entropy evolution. Here we have also considered

two special cases for ζ, ζ = ζ0 + ζ1
ȧ
a and ζ = ζ0.

Dissipative process like viscosity will generate entropy in the system.

In this chapter we presents a detailed analysis on the thermal evolution

of the bulk viscous model. It mainly consist of the status of the local

and generalized second laws of thermodynamics. Following this we also

study the status of the convexity condition to check whether the thermal

evolution leads to state of maximum entropy, indicating a stable thermal

evolution.

3.1 Local second law of thermodynamics

In the FLRW space-time, the law of generation of the local entropy due

to viscosity is given as [69, 70, 104],

T∇νsν = ζ(∇νuν)2 = 9H2ζ, (3.1)

57
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Figure 3.1: Evolution of the total dimensionless bulk viscous parameter with
the red shift for the best estimated values corresponding to the two limiting
conditions. ζ̃ is positive for z ≤ 0.8.

where T is the temperature and ∇νsν is the rate of generation of entropy

in unit volume. The local second law of thermodynamics will be satisfied

if,

T∇νsν ≥ 0, (3.2)

which implies that, the viscosity of matter must satisfies the condition,

ζ ≥ 0. (3.3)

Using equations (2.9) and (2.11), the total dimensionless bulk viscous

parameter (equation (2.6)), can be obtained as

ζ̃(a) =
1

2− ζ̃2

[
2ζ̃0 +

(
2ζ̃1 − ζ̃2

) H
H0

]
, (3.4)

where ζ̃ = 3ζ
H0

, the total dimensionless bulk viscous parameter. We have

studied the evolution of ζ̃ using the best estimated values for both cases of

parameters and found that the evolution of the total bulk viscous param-

eter are coinciding for both the cases as shown in figure 3.2. It also shows

that the total bulk viscous coefficient is evolving continuously from the

negative value region to a positive region. When z ≤ 0.8, the total bulk
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viscous parameter becomes positive. This means that the rate of entropy

production is negative in the early epoch and positive in the later epoch.

Hence the local second law is violated in the early epoch and is obeyed

in the later epoch. This seems to be a drawback of the present model.

However, it can be considered only as a theoretical possibility [105]. This

drawback will be rectified when one consider the entropy evolution of the

whole system, which include both the local entropy and also the entropy

of the boundary, the horizon of the universe.

But when ζ = ζ0, such that ζ1 = 0 and ζ2 = 0 then it can be easily seen

that ζ always remains positive through out the evolution of the universe

(since ζ0 > 0, see section 3.3) and hence satisfying the local second law of

thermodynamics.

3.2 Entropy and Generalized second law of

thermodynamics

In an absolute way the status of the second law of thermodynamics should

be considered along with the accounting of the entropy generation from the

horizon. In that circumstances, the second law becomes the generalized

second law of thermodynamics, which state that the total entropy of the

fluid components of the universe plus that of the horizon should never

decrease [106–109]. In the present model this means the rate of entropy

change of the bulk viscous matter and that of the horizon must be greater

than zero i.e.,
d

dt
(Sm + Sh) ≥ 0, (3.5)

where, Sm is the entropy of the matter and Sh is that of the horizon. For

a flat FLRW universe, the apparent horizon radius is given as [130]

rA =
1

H
. (3.6)
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The entropy associated to the apparent horizon is [111],

Sh = 2πA = 8π2r2
A (3.7)

where A = 4πr2
A is the area of the apparent horizon and we have assumed

8πG = 1. Using the first Friedmann equation and equations (2.2), (2.5),

(2.7) and (3.6), we obtain the time derivative of rA as,

ṙA =
1

2
r3
AH

[
−H(ζ̃0H0 + ζ̃1H + ζ̃2(

Ḣ

H
+H)) + ρm

]
. (3.8)

The temperature of the apparent horizon can be defined as [112]

Th =
1

2πrA

(
1− ṙA

2HrA

)
. (3.9)

Using equations (3.7), (3.8) and (3.9), we arrive

ThṠh = 4πr3
AH

[
ρm −H(ζ̃0H0 + ζ̃1H + ζ̃2(

Ḣ

H
+H))

][
1− ṙA

2HrA

]
.

(3.10)

The change in entropy of the viscous matter inside the apparent horizon

can be obtained using the Gibbs equation,

TmdSm = d(ρmV ) + P ∗dV (3.11)

where Tm is the temperature of the bulk viscous matter, V = 4
3πr

3
A is the

volume enclosed by the apparent horizon and P ∗ is given by the equation

(2.2). Using equations (2.2) and (2.7), the Gibbs equation becomes

TmdSm = V dρm + (ρm −H(ζ̃0H0 + ζ̃1H + ζ̃2(
Ḣ

H
+H)))dV. (3.12)

Under equilibrium conditions, the temperature Tm of the viscous matter

and that of the horizon Th are equal, Tm = Th. Then the Gibbs equation
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(3.12) becomes

ThṠm = 4πr3
AH

[
H(ζ̃0H0 + ζ̃1H + ζ̃2(

Ḣ

H
+H)− ρm)

]
+4πr2

AṙA

[
ρm −H(ζ̃0H0 + ζ̃1H + ζ̃2(

Ḣ

H
+H))

]
.

(3.13)

Adding equations (3.10) and (3.13), we get

Th(Ṡh + Ṡm) =
A

4
Hr3

A[ρm −H(ζ̃0H0 + ζ̃1H + ζ̃2(
Ḣ

H
+H))]2. (3.14)

A, the area of the apparent horizon, H, the Hubble parameter and the

radius rA are always positive, therefore, Ṡh + Ṡm ≥ 0 for a given temper-

ature. This means that the generalized second law (GSL) is always valid.

Hence the decrease in the entropy of the viscous matter is compensated

by the increase in the entropy of the horizon. Even though the violation

of the local second law of thermodynamics seems to be a draw back of

this model, the validity of the Generalized second law for the entire causal

region of the universe may safeguard the model.

Now we will check the status of the convexity condition or maximiza-

tion condition of entropy. For a feasible thermodynamic system, the en-

tropy must always increase. But for a stable evolution towards a state

of stable thermodynamic equilibrium, the entropy evolution must satisfies

[113],

S̈ < 0 at least in the long run or last stage of the evolution. (3.15)

This is known as the convexity condition or condition of maximization of

entropy, which implies an upper bound to the growth of entropy at least in

the last stage of the evolution of the universe. The over dots in the above

equation implies the derivative with respect to any suitable variable.

Following the expression for the Hubble parameterH (equation (2.11)),

we can obtain the derivative of total entropy with respect to the time t,
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Figure 3.2: Evolution of the first derivative of entropy with the scale factor for
the best estimated values corresponding to the two limiting conditions.

Ṡ = Ṡh + Ṡm as

Ṡ =
16π2a

ζ̃1+ζ̃2+6

ζ̃2−2
(
ζ̃1 + ζ̃2 − 3

)3 (
ζ̃0 + ζ̃1 + ζ̃2 − 3

)2

H0

(
ζ̃2 − 2

)2
(
a

3

ζ̃2−2
(
ζ̃0 + ζ̃1 + ζ̃2 − 3

)
− a

ζ̃1+ζ̃2
ζ̃2−2 ζ̃0

)3
. (3.16)

Using the estimated values of ζ̃0, ζ̃1 and ζ̃2 from the Table 2.1, we plotted

Ṡ with the scale factor a, and is shown (same for both sets of values) in

figure 3.2. It shows that the entropy always increases as Ṡ > 0. This is

desirable. Using the first derivative of entropy (equation (3.16)), we can

calculate the second derivative of entropy S̈ as,

S̈ =
16π2a

6

ζ̃2−2 (ζ̃12 − 3)3(ζ̃0 + ζ̃12 − 3)2(2ζ̃0a
ζ̃12
ζ̃2−2 + (ζ̃0 + ζ̃12 − 3)a

3

ζ̃2−2 )

(ζ̃2 − 2)3((ζ̃0 + ζ̃12 − 3)a
3

ζ̃2−2 − ζ̃0a
ζ̃12
ζ̃2−2 )3

,

(3.17)

where ζ̃12 = ζ̃1 + ζ̃2. The result has been plotted in figure 3.3, and we see

that S̈ < 0, at the last stage of the evolution. Here S̈ is approaching zero

from below. which is implying that the growth of entropy is bounded and

the system is approaching a stage of maximum finite entropy. Form this
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Figure 3.3: Evolution of the second derivative of entropy with the scale factor
for the best estimated values corresponding to the two limiting conditions.

it can be concluded that the model predicts a universe which behaves as

an ordinary macroscopic system[114].

3.3 Entropy evolution for some special cases

of viscosity

Here we study the evolution of entropy for the special cases mentioned

below:

Case 1 - ζ = ζ0 + ζ1
ȧ
a with ζ̃2 = 0 where viscosity is not depending on

the acceleration.

Case 2 - ζ = ζ0 with ζ̃1 = ζ̃2 = 0, where viscosity is a constant.

For this the first step is to extract the values of the viscosity parameters

subjected to the above conditions by the χ2 minimization technique using

the same data set of supernova used in the chapter 2. The extracted values

are tabulated in the Table 3.1. For Case - 2, we see that the value of ζ0 is

positive and hence the total viscous coefficient always remains a positive

constant through out the evolution of the universe, hence, the local second

law of thermodynamics is valid throughout.
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Cases ζ = ζ0 + ζ1
ȧ
a

ζ = ζ0

ζ̃0 6.26 1.92

ζ̃1 -3.91 0

ζ̃2 0 0
Ωm0 1 1
H0 70.49 69.61
χ2
min 310.54 315.07

χ2
d.o.f 1.02 1.03

Table 3.1: Best estimates of the bulk viscous parameters and H0 and
also χ2 minimum value corresponding to the above different cases of ζ.

χ2
d.o.f =

χ2
min

n−m , where n = 307, the number of data and m is the number
of parameters in the model. The subscript d.o.f stands for degrees of
freedom. For the best estimation we have used SCP “Union” 307 SNe Ia
data sets. Ωm0 is the present mass density parameter.

For Case - 1, the first and second derivatives of the total entropy are

obtained (using equations (3.16) and (3.17)) as,

Ṡ = −4π2a
3
2
+ζ̃1(ζ̃1 − 3)3(ζ̃0 + ζ̃1 − 3)2

H0(a3/2ζ̃0 − a
ζ̃1
2 (ζ̃0 + ζ̃1 − 3))3

, (3.18)

S̈ = −2π2aζ̃1(ζ̃1 − 3)3(ζ̃0 + ζ̃1 − 3)2(2a
3
2 ζ̃0 + a

ζ̃1
2 (ζ̃0 + ζ̃1 − 3))

(a
ζ̃1
2 (ζ̃0 + ζ̃1 − 3)− a 3

2 ζ̃0)3
. (3.19)

The plot of Ṡ and S̈ for the best estimated values of ζ’s corresponding

to this case are shown in the figures 3.4 and 3.5, respectively. The fig-

ures indicates that both the generalized second law and the maximization

conditions are satisfied in this case.

For Case 2 - we have obtained the expression for Ṡ and S̈ by following

the same procedure and are,

Ṡ =
108π2a

3
2

(
ζ̃0 − 3

)2

H0

((
a

3
2 − 1

)
ζ̃0 + 3

)3
, (3.20)
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Figure 3.4: Evolution of the first derivative of entropy with the scale factor for
the best estimated values corresponding to the case ζ = ζ0 + ζ1

ȧ
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Figure 3.5: Evolution of the second derivative of entropy with the scale factor
for the best estimated values corresponding to the case ζ = ζ0 + ζ1
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Figure 3.6: Evolution of the first derivative of entropy with the scale factor for
the best estimated values corresponding to the case ζ = ζ0.

S̈ = −
54π2

(
ζ̃0 − 3

)
2
((

1 + 2a
3
2

)
ζ̃0 − 3

)
((

a
3
2 − 1

)
ζ̃0 + 3

)3
. (3.21)

The evolution of Ṡ and S̈ for the best estimated values of ζ̃0 are shown in

the figures 3.6 and 3.7, respectively.

We see that both the conditions, Ṡ > 0 and S̈ < 0 are satisfied,

implying the validity of generalized second law and entropy maximization

as in the previous case.

The entropy evolution behavior shows that the bulk viscous model

predicts a stable thermal evolution for the universe. The validity of the

maximization condition implies that, the universe evolves to an asymptot-

ically stable thermal state at which the entropy is bounded. But with this

alone is not sufficient to get the full potential of the model as a viable one

to explain the late evolution of the current universe. Further we would

like to study the dynamical system behavior of the model to see whether

it gives a compatible evolutionary status.
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Figure 3.7: Evolution of the second derivative of entropy with the scale factor
for the best estimated values corresponding to the case ζ = ζ0.

Appendix

Generalized second law with event horizon as boundary

In this chapter, we have found out that the total ζ is negative when z > 0.8

for ζ = ζ0 + ζ1
ȧ
a + ζ2

ä
ȧ , thereby violating local second law in the early

universe. But when ζ = ζ0, ζ always remains positive through out the

evolution of the universe (since ζ0 > 0) and hence satisfying the local

second law of thermodynamics.

However, if one consider the Generalized second law (GSL) which in-

cludes the total entropy of the universe plus that of the horizon, it is

found that total entropy is always on the increase for total ζ, if apparent

horizon is considered as the boundary. On taking account of the valid-

ity of GSL, it can be reasonably argued that in the early universe where

ζ becomes negative, the total pressure becomes positive and the viscous

matter will act as an ordinary non-relativistic matter causing decelerated

expansion. There are conventional dark energy models which act as the

non-relativistic matter in the early phases causing decelerated expansion

[115–118]. There are also works [105, 119–121], showing that the entropy

change can become negative depending on the equation of state of mat-
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ter. In the current literature, there are publications dealing the problems

with negative viscous coefficients [105]. In this reference the authors has

point out that the positivity of ζ in conventional cosmology is based upon

the requirement that the change of entropy in a non-equilibrium system

is positive, and they argues that the possibility of allowing for negative

values of ζ is not so unreasonable in view of the general bizarre properties

of the dark energy fluid, as far as temperature is positive. Apart from this

our model also satisfies GSL with total ζ.

Now we will consider event horizon as the boundary for analyzing the

validity of GSL for ζ = ζ0. The radius of the event horizon is given as,

RE = a

∫ ∞
a

da

Ha2
, (3.22)

where a is the scale factor andH is the Hubble parameter given as equation

(2.12),

H(a) = H0

[
a−

3
2

(
1− ζ̃0

3

)
+
ζ̃0

3

]
. (3.23)

H0 is the present value of the Hubble parameter. The radius of the event

horizon then obtained as,

RE =
a

H0
(4.16 + 2.65 arctan[0.58− 1.4

√
a]− 1.53 log[0.97 + 1.18

√
a]

+0.76 log[0.94− 1.14
√
a+ 1.38a]).

(3.24)

The entropy associated with the event horizon is

SE =
A

4
. (3.25)

A = 4πRE
2 is the area of the horizon. So entropy becomes

SE = πRE
2. (3.26)

The temperature of the event horizon can be defined as TE = 1
2πRE

. Using

these we get[122],

TEṠE = ṘE = HRE − 1. (3.27)
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The entropy of matter can be obtained using the Gibbs’ relation,

TmdSm =d(ρmV ) + PdV

=(ρm + P )dV + V dρm,
(3.28)

where Tm is the temperature of the bulk viscous matter, V = 4
3πR

3
E is the

volume enclosed by the event horizon. Using the expression for pressure

P = −3Hζ0 = HH0ζ̃0 (ζ̃0 = 3ζ
H0

is the dimensionless viscous parameter),

the conservation equation and the relation ṘE = HRE − 1 , we get

TmṠm = 4πR2
E(HH0ζ̃0 − 3H2). (3.29)

Under equilibrium conditions, the temperature Tm of the viscous mat-

ter and that of the horizon TE are equal, Tm = TE = T . Adding equations

(3.27) and (3.29), we get,

T (ṠE + Ṡm) = 4πR2
E(HH0ζ̃0 − 3H2) +HRE − 1. (3.30)

For GSL to be valid, T (ṠE + Ṡm) > 0. We have check the validity by

numerically plotting Eq. (3.30) with respect to a and is shown in the

figure 3.8.

The plot shows that the GSL is violated when we take event horizon as

the boundary. So, in our model GSL is satisfied at the apparent horizon

but violated at the event horizon. At this juncture, one may note that a

more novel GSL was proposed by Bousso et.al [123] regardless of whether

an event horizon is present. However, the validity of this new GSL is to

checked for our model

There are many works in literature in tune with our result regarding

the validity of GSL. In references [124, 126], the authors have shown that

in general, for an accelerating universe, GSL of thermodynamics holds

only in the case where the enveloping surface is the apparent horizon, but

not in the case of the event horizon. There are also many other dark
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Figure 3.8: Plot of T (ṠE + Ṡm) with the scale factor a when event horizon is
considered as the boundary.

energy models which shows the same behavior. Some models are viscous

model [125, 127], interacting dark energy model with dark matter [122],

Holographic Ricci dark energy model [128, 129], DGP model [130], brane

world model [131]. In all these references, it is found that the event horizon

in an accelerating universe is not a boundary from the thermodynamical

point of view. In lieu of these, apparent horizon can be considered as the

proper thermodynamic boundary.



4
Dynamical system analysis of

bulk viscous matter
dominated universe

This chapter discuss the asymptotic behavior of the bulk viscous model

through phase space analysis in order to check whether the model predicts

all the conventional phases of the universe.

The present chapter is devoted to the dynamical system analysis anal-

ysis of the model. A phase space analysis of a cosmological model would

indicate the different stages of the universe like (a) a radiation dominated

phase, followed by (b) a matter dominated phase, and (c) an accelerated

expanding phase, corresponding to the existence of different critical points.

So doing a phase space analysis would clearly indicate whether the model

predicts the realistic picture regarding the evolution of our universe.

It is difficult to solve exactly the cosmological field equations with more

than one cosmic components. Under such condition one often make use

of the dynamical system tools to extract the asymptotic properties of the

model. For this we write down the cosmological equations as a system

of autonomous differential equations and then investigate the equivalent

phase space of the model. The critical points of these equations can be

71
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correlated with the solutions of the cosmological field equations and its sta-

bility can be determined by examining the system obtained by linearizing

about the critical point i.e., from the eigen values of the corresponding

Jacobian matrix. The first step is to select suitable dynamic variables for

the phase space analysis.

4.1 Phase space analysis of bulk viscous mat-

ter dominated universe

Here we consider the flat universe with a single component, the bulk vis-

cous matter for carrying out the phase-space analysis. We consider u and

v as the dimensionless phase space variables which are defined as follows,

u = Ωm =
ρm

3H2
, (4.1)

v =
1

H0

H + 1
. (4.2)

These phase space coordinates are varying in the range 0 ≤ u ≤ 1 and

0 ≤ v ≤ 1. Below we describe the dynamical analysis for different cases

by which the viscosity is being accounted.

Case 1: with ζ = ζ0 + ζ1
ȧ
a

+ ζ2
ä
ȧ

Using Friedmann equations, conservation equation for matter and equa-

tion (3.4), we can obtain the autonomous equations satisfied by u and v

as

u′ =
(1− u)

(
2ζ̃0 (1− v) +

(
2ζ̃1 − ζ̃2

)
v
)

v
(
2− ζ̃2

) = f(u, v) (4.3)

v′ =
(1− v)

(
ζ̃0 (1− v) +

(
ζ̃1 + ζ̃2 − 3

)
v
)

2− ζ̃2

= g(u, v) (4.4)
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where the prime denote the derivative with respect to ln a. Using equa-

tions (2.31) and (2.35), the deceleration parameter and equation of state

parameter, we need them for further use, can be written in terms of v as

q =
1

2− ζ̃2

(
1− ζ̃1 − ζ̃0

1− v
v

)
, (4.5)

ω =
1

3(2− ζ̃2)

(
ζ̃2 − 2ζ̃1 − 2ζ̃0

1− v
v

)
. (4.6)

The critical points (uc, vc) of the above autonomous equations (4.3) and

(4.4) can be obtained by equating u′ = 0 and v′ = 0. The stability of the

dynamic system in the neighborhood of the critical point can be checked as

follows. Linearize the system by considering small perturbations around

the critical point u → uc + δu, v → vc + δv, which satisfy the following

matrix equation, [
δu′

δv′

]
=

(∂f∂u)0

(
∂f
∂v

)
0(

∂g
∂u

)
0

(
∂g
∂v

)
0

[δu
δv

]
(4.7)

where the suffix 0 denotes the value evaluated at the critical point (uc, vc).

The Jacobian matrix (2× 2 matrix in the right hand side of the equation

(4.7)) for the autonomous equations (4.3) and (4.4) is(−2ζ̃0(v−1)+(ζ̃2−2ζ̃1)v

(ζ̃2−2)v

)
0

(
2ζ̃0(u−1)

(ζ̃2−2)v2

)
0

0
(
−2ζ̃0(v−1)+(ζ̃1+ζ̃2−3)(2v−1)

ζ̃2−2

)
0

 (4.8)

If the eigen values of the Jacobian matrix are all negative, then the critical

point is stable otherwise the critical point is generally unstable. If all the

eigen values are positive then the critical point is an unstable node and if

there are both positive and negative eigen values, then the critical point

is a saddle point.

For autonomous equations (4.3) and (4.4), there are two critical points

(uc, vc) :
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1. (uc, vc) = (1, 1)

Here u = 1 implies a viscous matter dominated universe and v = 1

corresponds either to H0 = 0 or H → ∞. Since H0 cannot be

zero, this corresponds to the initial singular state characterized with

H → ∞. The Jacobian matrix corresponding to this critical point

can be obtained by putting u = 1 and v = 1 in equation (4.8). The

eigen values of the Jacobian matrix are

λ1 =
2ζ̃1 − ζ̃2

ζ̃2 − 2
, λ2 =

ζ̃1 + ζ̃2 − 3

ζ̃2 − 2
. (4.9)

Substituting the values of ζ̃0, ζ̃1 and ζ̃2 from Table 2.1, we get

λ1 = 3.88 and λ2 = 3.44 for the first condition (i,e., ζ̃0 > 0) and

λ1 = 3.915 and λ2 = 3.457 for the second condition (i,e., ζ̃0 < 0),

which are almost the same except for the slight difference in the

decimal places. Since both the eigen values are positive, the critical

point is unstable and is a past attractor. The values of equation

of state parameter ω and deceleration parameter q (using equations

(4.6) and (4.5)) are found to be around 1.3 and 2.4 respectively, for

the two cases. This shows that in the early stage of the evolution of

the universe, bulk viscous matter will behave almost like a stiff fluid

and since ω > 1, it may possibly violates the causality [139].

2. (uc, vc) = (1, ζ̃0
ζ̃0−(ζ̃1+ζ̃2−3)

) = (1, 0.475)

This also corresponds to a matter dominated universe with H0

H =

1.105. The eigen values corresponding to this point are

λ1 = − ζ̃1 + ζ̃2 − 3

ζ̃2 − 2
, λ2 = −3. (4.10)

Using the values of bulk viscous parameters from Table 2.1, we

obtain λ1 ∼ −3.45 for the two conditions (i.e., for ζ̃0 < 0 and ζ̃0 > 0).

Since the two eigen values are negative, this critical point is a stable
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(uc, vc) λ1 λ2 Stability ω q
(1, 1) 3.9 3.4 Unstable,

Past at-
tractor

1.3 2.4

(1, 0.475) -3.45 -3 Stable,
future
attractor

-1 -1

Table 4.1: Critical points for case 1, with ζ = ζ0 + ζ1
ȧ
a

+ ζ2
ä
ȧ

node and a future attractor. It is found that ω ∼ −1 and q ∼ −1

and it corresponds to de Sitter phase.

The phase space plot for this case is shown in the figure 4.1. From the

figure, it is clear that the critical point (1,1) is an unstable past attractor

as trajectories emerge from this point. These emerging trajectories finally

converges to the critical point (1,0.475), which is the future attractor. So

the phase plot analysis of this case suggest a universe which begins from

an initial singular state and ends on a de Sitter type universe. This is

almost similar to the picture given by the ΛCDM model, in which the

universe evolves from an initial singularity to a de Sitter phase through a

matter dominated epoch. However, in the initial singular phase, ω > 1,

thereby having causality problem [139]. So this case cannot be considered

as physical. The critical points, their stability and the values of ω and q

are summarized in the Table 4.1.

Case 2: with ζ = ζ0 + ζ1
ȧ
a

Using the Friedmann equations and conservation equation for matter we

get the autonomous equation for this case as,

u′ = (1− u)

(
ζ̃0

v
+ ζ̃1 − ζ̃0

)
,

v′ =
1

2
(1− v)

(
ζ̃0 +

(
ζ̃1 − ζ̃0 − 3

)
v
)
.

(4.11)
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Figure 4.1: The figure shows the phase space structure in the u − v plane
corresponding to the Case 1 (ζ = ζ0 +ζ1

ȧ
a +ζ2

ä
ȧ). The critical point (1,1) in the

upper right corner of the plot is a past attractor and the point (1,0.475), below
the first critical point, is a future attractor. The direction of the trajectories is
shown by the arrow head.
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In this case also there are two critical points (uc, vc) = (1, 1) and (1, ζ̃0
ζ̃0−ζ̃1+3

).

There properties are discussed below:

1. (uc, vc) = (1, 1)

This is a matter dominated solution representing the initial singular

state, since v = 1 implies H →∞. The critical point is same as that

in case 1. The eigen values of the corresponding Jacobian matrix are,

λ1 =
3− ζ̃1

2
= 3.455, λ2 = −ζ̃1 = 3.91. (4.12)

Since the eigen values are all positive, the critical point is an unstable

node or can be called as the past attractor. Thus it is a source

point of any orbit in the phase space. Using the values of bulk

viscous parameters from Table 3.1, we get ω = 1.3 and q = 2.45

from equations (4.6) and (4.5), respectively. From these values it is

clear that the point represent a decelerated phase of the universe.

However, this may violate the causality condition since ω > 1.

2. (uc, vc) = (1, ζ̃0
ζ̃0−ζ̃1+3

) = (1, 0.475)

The eigen values of the corresponding Jacobian matrix are,

λ1 =
ζ̃1 − 3

2
= −3.455, λ2 = −3, (4.13)

using the value of ζ̃1 from Table 3.1. Since the eigen values are

negative, this solution is a stable node and a future attractor. So

all trajectories in the phase space tends to meet at this point. The

equation of state parameter ω and the deceleration parameter q are

both found to be -1, thereby representing a de Sitter epoch.

The phase plot of this case is shown in figure 4.2. The phase space trajec-

tories starts from the critical point (1,1) and ends in the point (1,0.475) in

the u-v phase plane. The behavior is same as that in the first case. The

results are summarized in Table 4.2.
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Figure 4.2: The figure shows the phase space structure in the u − v plane
corresponding to the Case 2 (ζ = ζ0 + ζ1

ȧ
a). The critical point (1,1) in the

upper right corner of the plot is a past attractor and the point (1,0.475), below
the first critical point, is a future attractor. The direction of the trajectories is
shown by the arrow head.

(uc, vc) λ1 λ2 Stability ω q
(1, 1) 3.45 3.9 Unstable,

Past at-
tractor

1.3 2.4

(1, 0.475) -3.45 -3 Stable,
future
attractor

-1 -1

Table 4.2: Critical points for case 2, with ζ = ζ0 + ζ1
ȧ
a
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Case 3: with ζ = ζ0

In this case, the autonomous equation reduces to,

u′ = (1− u)

(
ζ̃0

v
− ζ̃0

)
v′ =

1

2
(1− v)

(
ζ̃0 −

(
ζ̃0 + 3

)
v
)
.

(4.14)

There exists two critical points:

1. (uc, vc) = (u, 1)

Here we see that the u coordinate is variable, which can assume any

values ranging from 0 to 1, while v coordinate is a constant having

value 1. As a result the critical point will not be an isolated point

(see figure 4.3). It represents an initial state of the universe since

H → ∞. The eigen values of the corresponding Jacobian matrix

are,

λ1 =
3

2
= 1.5, λ2 = 0. (4.15)

Since these values are positive, it is unstable. The value of equation

of state parameter and the deceleration parameter are ω = 0 and

q = 0.5. From these values it is clear that it represents a matter

dominated decelerated phase of the universe. Unlike the other two

cases, where the values of ω corresponds to a stiff fluid, here in this

case the value of ω indicates the non-relativistic dark matter causing

a usual decelerated phase.

2. (uc, vc) = (1, ζ̃0
ζ̃0+3

) = (1, 0.39)

This corresponds to a matter dominated universe with H0

H = 1.564,

representing the future phase of the universe. The eigen values are,

λ1 = −3

2
= −1.5, λ2 = −3. (4.16)
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Figure 4.3: The figure shows the phase space structure in the u − v plane
corresponding to the Case 3 (ζ = ζ0). The direction of the trajectories is shown
by the arrow head.

The point is stable since both the eigen values are negative. The

values of the equation of state parameter and the deceleration pa-

rameter are ω ∼ −1 and q ∼ −1, which corresponds to a de Sitter

phase.

The phase plot diagram is shown in figure 4.3. From the figure it is clear

that the phase space trajectories originate from the non-isolated critical

point (or rather a critical line), which is a past attractor (representing the

matter dominated decelerated epoch of the universe). These trajectories

finally converge to the stable critical point (1,0.39), representing the de

Sitter phase. This is similar to the behavior of the ΛCDM model. The

results of the phase space analysis of the model are summarized in Table

4.3.



Phase space analysis of the bulk viscous model including
radiation 81

(uc, vc) λ1 λ2 Stability ω q
(u, 1) 1.5 0 Unstable, Past attrac-

tor
0 0.5

(1, 0.39) -1.5 -3 Stable, future attrac-
tor

-1 -1

Table 4.3: Critical points for case 3, with ζ = ζ0

4.2 Phase space analysis of the bulk viscous

model including radiation

The realistic picture of the universe have an early radiation dominated

phase followed by matter dominated epoch and a late accelerated epoch.

In order to know whether the bulk viscous model predicts a prior radia-

tion dominated phase, we study the phase space structure of the model

by including radiation as an additional cosmic component. For such a

universe, the Friedmann equations becomes,

H2 =
ρm + ρr

3
, (4.17)

2Ḣ + 3H2 = HH0ζ̃ −
ρr
3
. (4.18)

The conservation equation for matter is given by

ρ̇m + 3H
(
ρm −HH0ζ̃

)
= 0, (4.19)

and that for radiation it is,

ρ̇r + 4Hρr = 0. (4.20)

Equation 4.18 can be modified using the radiation density parameter Ωr =
ρr

3H2 , then the derivative of H with respect to time t becomes

Ḣ =
1

2

(
HH0ζ̃ − 3H2 − ΩrH

2
)

(4.21)
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Substituting this in equation (2.7), the total dimensionless bulk viscous

parameter ζ̃ takes the form,

ζ̃ =
1

2− ζ̃2

[
2ζ̃0 +

(
2ζ̃1 − ζ̃2 − ζ̃2Ωr

) H
H0

]
, (4.22)

which will reduces to equation (3.4) for Ωr = 0. The expression for decel-

eration parameter q and equation of state parameter ω can be obtained

by substituting equations (4.21) and (4.22) in equations (2.28) and (2.34)

as

q =
1

2− ζ̃2

(
1− ζ̃1 + Ωr − ζ̃0(

H0

H
)

)
, (4.23)

ω =
1

3(2− ζ̃2)

(
2Ωr − 2ζ̃1 + ζ̃2 − 2ζ̃0(

H0

H
)

)
, (4.24)

which reduces to equations (2.31) and (2.35) for Ωr = 0. In the radia-

tion dominated case (i.e., when Ωr → 1, then H0

H → 0), the deceleration

parameter and the equation of state reduces to,

q ∼ 2− ζ̃1

2− ζ̃2

, (4.25)

ω ∼ 2− 2ζ̃1 + ζ̃2

3(2− ζ̃2)
. (4.26)

When radiation is the dominant component of the universe, there would

be no acceleration in expansion such that q > 0 and ω > −1
3 . These

conditions constrains the bulk viscous parameters as ζ̃1 < 2 and ζ̃2 < 2. In

the extreme limit corresponding to the radiation dominated phase, q = 1

and ω = 1
3 and is corresponding to ζ̃1 = ζ̃2.

For doing the phase space analysis, we are defining the phase space

co-ordinates as
u = Ωm =

ρm
3H2

,

y = Ωr =
ρr

3H2
,

v =
1

H0

H + 1
.

(4.27)
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Contrary to the previous discussion, here we take ζ = ζ0 as Case 1,ζ =

ζ0 + ζ1
ȧ
a as Case 2 and ζ = ζ0 + ζ1

ȧ
a + ζ2

ä
ȧ as Case 3.

Case 1: with ζ = ζ0

Using equations (4.19), (4.20) and (4.21), the autonomous equations sat-

isfied by the phase space co-ordinates becomes,

u′ = ζ̃0(1− u)(
1− v
v

) + uy,

y′ =
y

v

(
ζ̃0(v − 1) + v(y − 1)

)
,

v′ =
(1− v)

2

(
ζ̃0(1− v)− v(y + 3)

)
.

(4.28)

The Jacobian matrix for this can be obtained from equation (4.37) by

setting ζ̃1 = ζ̃2 = 0. The critical points are,

1. (uc, yc, vc) = (0, 1, 1)

This corresponds to the radiation dominated phase of the universe.

The eigen values of the corresponding Jacobian matrix are,

λ1 = 1, λ2 = 1, λ3 = 2. (4.29)

All the eigen values are positive, indicating an unstable node (past

attractor). The equation of state parameter and the deceleration pa-

rameter corresponding to this critical point can be obtained by sub-

stituting the values of uc, yc and vc in equations (4.24) and (4.23),

respectively, and are found to be ω = 1
3 and q = 1. These val-

ues confirms that the point is the radiation dominated phase of the

universe.

2. (uc, yc, vc) = (u, 0, 1)

The eigen values of the corresponding Jacobian matrix are,

λ1 = −1, λ2 = 0, λ3 =
3

2
. (4.30)
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(uc, yc, vc) λ1 λ2 λ3 Stability ω q
(0, 1, 1) 1 1 2 Unstable node 1

3
1

(u, 0, 1) -1 0 3
2

Saddle 0 1
2

(1, 0, ζ̃0
ζ̃0+3)

) -4 -3 −3
2

Stable node -1 -1

Table 4.4: Critical points for case 1: with ζ = ζ0

These values shows that the point is a saddle point. The equation of

state parameter and deceleration parameter are found to be, ω = 0

and q = 1
2 respectively from equations (4.24) and (4.23), indicating

that the universe is matter dominated without accelerating, hence

uc ∼ 1.

3. (uc, yc, vc) = (1, 0, ζ̃0
ζ̃0+3

)

The eigen values of the corresponding Jacobian matrix are,

λ1 = −4, λ2 = −3, λ3 = −3

2
. (4.31)

The critical point is a stable node, since all the eigen values are

negative. From equations (4.24) and (4.23), the equation of state

parameter, ω = −1 and deceleration parameter q = −1, independent

of the value of ζ̃0. This represent a de Sitter type phase.

Thus this case predicts a universe beginning with a radiation dominated

phase (past attractor) and then transit to a decelerated matter dominated

phase (saddle point) and then finally evolving to a de Sitter type universe

(stable future attractor). Thus it has a close resemblance with the con-

ventional evolution of the universe. The results are summarized in Table

4.4
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Case 2: with ζ = ζ0 + ζ1
ȧ
a

In this case the autonomous equations are,

u′ =
ζ̃0(1− u)

v
+ (1− u)(ζ̃1 − ζ̃0) + uy,

y′ = y

(
ζ̃0(v − 1)

v
+ y − 1− ζ̃1

)
,

v′ =
1

2− ζ̃2

(1− v)
(
ζ̃0(1− v) + (ζ̃1 − 3− y)v

)
.

(4.32)

The Jacobian matrix for this autonomous system is given by equation

(4.37) provided ζ̃2 = 0. The critical points are,

1. (uc, yc, vc) = (−ζ̃1, ζ̃1 + 1, 1)

The eigen values of the corresponding Jacobian matrix are,

λ1 = ζ̃1 + 1, λ2 = 1, λ3 = 2. (4.33)

The point will be unstable node if ζ̃1 > −1, otherwise it will be a

saddle point. The equation of state parameter, ω = 1
3 and deceler-

ation parameter q = 1, independent of ζ̃0 and ζ̃1. Hence if ζ̃1 = 0,

the point will indicate an exact radiation dominated universe.

2. (uc, yc, vc) = (1, 0, 1)

This corresponds to a matter dominated initial stage of the universe.

The eigen values of the corresponding Jacobian matrix are,

λ1 = −(ζ̃1 + 1), λ2 = −ζ̃1, λ3 =
3− ζ̃1

2
. (4.34)

The point will be unstable node if ζ̃1 < −1, a stable one if ζ̃1 > 3 and

a saddle point otherwise. For this point, the equation of state, ω =

− ζ̃13 and the deceleration parameter q = 1−ζ̃1
2 . If ζ̃1 < −1, then the

values of ω and q will not represent a conventional matter dominated

universe. So only if ζ̃1 = 0, this will represent a conventional matter

dominated universe without acceleration.
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3. (uc, yc, vc) = (1, 0, ζ̃0
ζ̃0−(ζ̃1−3)

)

The eigen values are,

λ1 = −4, λ2 = −3, λ3 =
1

2
(ζ̃1 − 3). (4.35)

The point will be a stable one if ζ̃1 < 3, otherwise it will be a saddle

point. The equation of state parameter, ω = −1 and deceleration

parameter q = −1, independent of the values of viscous parameters,

representing a de Sitter type universe. So If ζ̃1 = 0, the point will

be represent a stable future attractor with same values of ω and q.

In order to represent a realistic picture, the first critical point must be

a unstable (past attractor) radiation dominated phase, the second must

be a matter dominated phase without acceleration (saddle point) and the

third must corresponds to the stable accelerated phase of the universe. In

order to satisfy this, ζ̃1 should be equal to zero. The results of the analysis

is given in Table 4.5

Case 3: with ζ = ζ0 + ζ1
ȧ
a

+ ζ2
ä
ȧ

In this case the phase space variables satisfy the autonomous equations,

u′ =
1

v(2− ζ̃2)
(2ζ̃0(1− u)(1− v)+

v((u− y − 1)ζ̃2 + 2(1− u)ζ̃1 + 2yu)),

y′ =
1

v(2− ζ̃2)
2y
(
ζ̃0(v − 1) + (y − 1− ζ̃1 + ζ̃2)v

)
,

v′ =
1

2− ζ̃2

(1− v)
(
ζ̃0(1− v) + (ζ̃1 + ζ̃2 − 3− y)v

)
.

(4.36)
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The Jacobian matrix, which we need to calculate the eigen values, for

these set of autonomous equation is obtained as,
M11

(
ζ̃2−2u

ζ̃2−2

)
0

(
2ζ̃0(1−u)

(ζ̃2−2)v2

)
0

0 M22

(
−2ζ̃0y

(ζ̃2−2)v2

)
0

0
(

(1−v)v

ζ̃2−2

)
0

M33

 (4.37)

whereM11 =
(

2ζ̃0(1−v)+(2ζ̃1−ζ̃2−2y)v

(ζ̃2−2)v

)
0
, M22 =

(
2(ζ̃0−ζ̃0v+(1+ζ̃1−ζ̃2−2y)v)

(ζ̃2−2)v

)
0

and M33 =
(

2ζ̃0(1−v)+(ζ̃1+ζ̃2−3−y)(2v−1)

ζ̃2−2

)
0
.

The critical points (uc, yc, vc) of these equations are

1. (uc, yc, vc) = (ζ̃2 − ζ̃1, 1− (ζ̃2 − ζ̃1), 1)

For this solution to represent the realistic phase (for example, matter

dominated or radiation dominated) of the universe, the bulk viscous

parameters should satisfy the condition, 0 ≤ ζ̃2 − ζ̃1 ≤ 1. The eigen

values of the corresponding Jacobin matrix are,

λ1 =
−2(ζ̃1 − ζ̃2 + 1)

ζ̃2 − 2
, λ2 = 1, λ3 = 2. (4.38)

The point will be unstable if ζ̃2 − 2 < 0 and a saddle point other-

wise. The equation of state parameter and deceleration parameter

corresponding to this critical point are, ω = 1
3 and q = 1.

2. (uc, yc, vc) = (1, 0, 1)

This point corresponds to a matter dominated phase of the universe.

The eigen values of the corresponding jacobian matrix are,

λ1 =
2(ζ̃1 − ζ̃2 + 1)

ζ̃2 − 2
, λ2 =

2ζ̃1 − ζ̃2

ζ̃2 − 2
, λ3 =

ζ̃1 + ζ̃2 − 3

ζ̃2 − 2
. (4.39)

This critical point will be unstable if (i) ζ̃2 > 2, ζ̃1 > 1, ζ̃1− ζ̃2 > −1

or if (ii) ζ̃2 < 2, ζ̃1 < 1, ζ̃1−ζ̃2 < −1. The equation of state parameter
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and the deceleration parameter corresponding to this critical point

are, ω = 2ζ̃1−ζ̃2
3(ζ̃2−2)

and q = ζ̃1−1

ζ̃2−2
.

3. (uc, yc, vc) = (1, 0, ζ̃0
ζ̃0−(ζ̃1+ζ̃2−3)

)

This also represents a matter dominated universe with H0

H =
3−(ζ̃1+ζ̃2)

ζ̃0
.

The eigen values of the Jacobian matrix are,

λ1 = −4, λ2 = −3, λ3 = − ζ̃1 + ζ̃2 − 3

ζ̃2 − 2
. (4.40)

The relation H0

H =
3−(ζ̃1+ζ̃2)

ζ̃0
> 0 holds if ζ̃0 > 0 and ζ̃1 + ζ̃2 < 3

or if ζ̃0 < 0 and ζ̃1 + ζ̃2 > 3. Applying this condition to the eigen

value λ3 we find that this critical point will be stable (or future

attractor) if (i) ζ̃2 < 2 for ζ̃0 > 0 or if (ii) ζ̃2 > 2 for ζ̃0 < 0. It is

a saddle point otherwise. The equation of state parameter, ω = −1

and deceleration parameter q = −1 implies a de sitter like universe.

The above critical points would represent the realistic evolution of the

universe, if, successively, the first critical point is a radiation dominated

one, the second one is a matter dominated phase without acceleration and

the last one be a matter dominated phase with acceleration. For this,

first of all the values of the viscous coefficients must be such that ζ̃1 ∼ ζ̃2.

Under this conditions the critical points becomes

1. (uc, yc, vc) = (0, 1, 1), corresponding to radiation dominated phase

with ω = 1
3 and q = 1

2. (uc, yc, vc) = (1, 0, 1), corresponding to matter dominated phase with

ω = ζ̃2
3(ζ̃2−2)

and q = ζ̃2−1

ζ̃2−2

3. (uc, yc, vc) = (1, 0, ζ̃0
ζ̃0−(2ζ̃2−3)

), corresponding to accelerating phase

with ω = −1 and q = −1.
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Then by analyzing the eigen values, it is found that the first critical point

will be a past attractor if ζ̃2 < 2. Under this condition, the second criti-

cal point, corresponding to the matter dominated phase, will be a saddle

point. The third critical point, corresponding to the accelerated phase,

will be a stable one if ζ̃2 <
3
2 . However, under this condition, there is a

chance for ω and q to become negative in the case of matter dominated

phase corresponding to second set of critical points. This doesn’t rep-

resent a conventional matter dominated phase of the universe. For this

critical point to represent a matter dominated phase without acceleration,

it requires ω = 0 and q = 1
2 . This is possible only if ζ̃1 ' ζ̃2 = 0. Due to

this conditions, the nature of the first and the last critical points will not

be affected. i.e., the first critical point will be a radiation dominated past

attractor, the second one will be an unaccelerated matter dominated sad-

dle point and the third will be a stable node corresponding to a de Sitter

phase. Thus it predicts a universe starting from a radiation dominated era

and then entering a decelerated matter dominated phase and then finally

evolving to the de Sitter universe.Thus we see that unless ζ̃1 = ζ̃2 = 0, the

model doesn’t predict a prior radiation dominated phase and a decelerated

matter dominated phase of the universe. The results are summarized in

Table 4.6

4.3 Estimate of the bulk viscosity ζ = ζ0 of

the cosmic fluid

From the above analysis we have concluded that bulk viscous models will

predict all the conventional phases of the universe when viscous coefficient

ζ = ζ0, a constant. In the previous chapter we have also seen that for

a universe with such a constant bulk viscosity there arise no problem

regarding the validation of local second law of thermodynamics and also
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with the entropy maximization condition. The model nicely predicts the

evolution of universe with prior decelerated epoch and a late accelerated

epoch, evolving towards a state of thermal equilibrium. In this light it is

important to know the magnitude of the viscous coefficient ζ0.

We have extracted the value of the dimensional viscous parameter

ζ̃0 by constraining the model with the Supernovae observational data,

as ζ̃0 = 1.92 corresponding to the present day Hubble parameter value,

H0 = 69.61. In conventional notation this estimation can be expressed as,

ζ̃0 =
24πG

c2
ζ0

H0
= 1.92 (4.41)

which implies a value in standard unit as,

ζ0 ∼ 7× 107Pa. s. (4.42)

This value is in agreement with the value obtained by Velten and Schwarz

[133] and by Brevik [134] Many have also attempted recently to obtain

the value of this coefficient [135].

Wang and Meng in reference [136] have studied a bulk viscous model of

the late accelerating universe and by using the Hubble parameter data for

various redshift, obtained a some what less value for the constant viscosity

as ζ0 ∼ 105Pa. s. But owing to the comparatively large uncertainties in

the observation of the Hubble parameter, this can only be taken as a lower

limit to the value of ζ0. Brevik et al. have analyzed a same model and

found a value around ζ0 ∼ 106[137].

In reference [59], the authors have studied the background evolution

and also the evolution of cosmological parameters for the bulk viscous

model with constant bulk viscosity. It also predicts an age of universe

of around 14.95 Gyr, which is in agreement with the constraint from the

oldest globular clusters. In this work the authors are also supporting a

value around ζ ∼ 107. Having considered all these we suggest for the
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universe a constant viscosity within the range,

5× 105Pa. s. < ζ0 < 7× 107Pa. s. (4.43)

However in [138], the authors have suggested the ζ0 in the range 104Pa. s. <

ζ0 < 107Pa. s., which is in almost agreement with ours. In fact 107 is high

value for the viscosity compared to any ordinary macroscopic system. For

instance this range is many orders of magnitude higher than the viscosity

of ordinary water at atmospheric pressure and room temperature. But

universe, such a vast system, the viscosity associated with the dark mat-

ter is not so comparable with an ordinary macroscopic system.

Appendix

Statefinder parameter diagnostic for ζ = ζ0 (comparison with

ΛCDM model)

For comparison we have make use of the statefinder parameter diagnostic

introduced by Sahni et al [132]. The statefinder parameters {r, s} are

defined as,

r =

...
a

aH3
, s =

r − 1

3
(
q − 1

2

) . (4.44)

In terms of h = H
H0

, r and s can be written as

r =
1

2h2

d2h2

dx2
+

3

2h2

dh2

dx
+ 1, (4.45)

s = −
1

2h2
d2h2

dx2 + 3
2h2

dh2

dx
3

2h2
dh2

dx + 9
2

. (4.46)
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Figure 4.4: The evolution of the model in the r-s plane for the best estimates
of the parameter ζ̃0

Using the expression for h from equation (3.23) for ζ = ζ0, these parame-

ters become,

r =
3(ζ̃0 − 3)

4h2
a−

3
2 (
ζ̃0

3
− 2h) +

3(ζ̃0 − 3)

2h
a−

3
2 + 1, (4.47)

s = −
3(ζ̃0−3)

4h2 a−
3
2 ( ζ̃03 − 2h) +

3(ζ̃0−3)
2h a−

3
2

3(ζ̃0−3)
2h a−

3
2 + 9

2

. (4.48)

The {r, s} plane trajectory of the model with ζ = ζ0 is shown in figure

4.4.

The plot lie in the region r < 1, s > 0, which is the general behavior

of any quintessence model.



5
Bayesian analysis of bulk

viscous matter dominated
universe

In this chapter we perform the Bayesian analysis of the model in order

to obtain the strength of the model in predicting the given Supernova data

when compared with the ΛCDM model.

5.1 Bayesian model comparison

Various models have been proposed to interpret the cosmological observa-

tional data which eventually add to our understanding of the evolution of

the universe. So there exist, in fact many models explaining the expected

evolution of the universe. Contrasting these models among themselves to

select the better ones is essential for understanding the true evolution of

the universe. Bayesian statistical approach[140–142] is an effective tool

to compare the new models with the standard ΛCDM model and also

among themselves. The basic approach of this method is originated from

the theory of random variables. In general, the relative merit of a random

variable can be obtained by calculating the basic probability of it among

the ensemble of values obtained theoretically or through repeated obser-

95
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vations. But in cosmology repeated observations are virtually impossible.

Here, what one can often do is to form hypothesis or a theory. For making

the decision regarding the viability of such a proposed theory one have to

assign certain probability to it in contrast to other theories existing for the

same purpose. It is in this stage the Bayesian theory help us, so as to as-

sign probability for a certain hypothesis by considering the observational

data already available to us. Due to the acquisition of more data, one

can in fact adjust the plausibility of the hypothesis using Bayesian theo-

rem. This method have been adopted by many in the past, for instance,

Jaffe [143] and Hobson et al. [144] have analysed the relative merits of

certain cosmological models. Also John and Narlikar[140] have compared

a simple cosmological model with scale factor a(t) ∝ t with standard and

inflationary models of the universe. In many models one does not have a

prior knowledge about the model parameters for assigning the correspond-

ing probability and in such cases one often starts with a flat prior for the

parameter.

According to Bayes’s theorem[145], the posterior probability p(Hi|D, I)

of a hypothesis Hi, given the data D and assuming any other background

information I to be true, is given as,

p(Hi|D, I) =
p(Hi|I)p(D|Hi, I)

p(D|I)
, (5.1)

where p(Hi|I) is the prior probability, i.e., the probability of Hi given I

is true and p(D|Hi, I) is the likelihood for the hypothesis Hi, which is the

probability for obtaining the data D provided the hypothesis Hi and I are

true. The factor p(D|I) helps in normalization.

In Bayesian model comparison, we take the ratios between the posterior

probabilities for different models. Let Mi and Mj be the two models which

we need to compare, then using Bayes theorem the ratio between their
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posterior probability Oij can be written as,

Oij =
p(Mi|D, I)

p(Mj |D, I)
=
p(Mi|I)p(D|Mi, I)

p(Mj |I)p(D|Mj , I)
. (5.2)

Since p(D|Mi, I) for the data D is the likelihood for the model Mi, we

re-notate it with L(Mi), then the equation (5.2) becomes,

Oij =
p(Mi|I)L(Mi)

p(Mj |I)L(Mj)
. (5.3)

If the background information I does not give any preference to a model

over any other, then the prior probabilities becomes equal, so that,

Oij =
L(Mi)

L(Mj)
≡ Bij (5.4)

where Bij is called the Bayes factor and is thus the ratio of the likelihood of

the two models. This factor helps to compare two models with reference

to their power in predicting the given data, hence it can be taken as a

summary of the evidence provided by the data in favor of one model over

the other [146]. Bij less than unity indicates that there is no evidence

against the model Mj when compared with the model Mi i.e., Mj is more

strongly supported by the data than Mi. If 1 < Bij < 3, then the model

Mi is not worth more than a bare mention. If 3 < Bij < 20, the strength

of evidence of the model Mi is positive. If 20 < Bij < 150, the evidence

is strong and if Bij > 150, it is very strong [141].

For a model having one or more free parameters such as α, β,...etc, it’s

likelihood L(Mi) can be evaluated as

L(Mi) =

∫
dα

∫
dβ....p(α, β, ...|Mi)Li(α, β, ...), (5.5)

where p(α, β, ...|Mi) is the prior probability for the set of parameter values

α, β, ... for the model Mi to be true and Li(α, β, ...) is the likelihood for



98 Bayesian analysis of bulk viscous matter dominated universe

the combination of the parameters in the model and is usually taken as

[141],

Li(α, β, ...) = exp[−χ2
i (α, β, ...)/2] (5.6)

where χ2
i (α, β, ...) is the conventional χ2-function. If we assume that the

model Mi has two parameters α and β having flat prior probabilities

in some range, [α, α + ∆α] and [β, β + ∆β], respectively, then the flat

prior probabilities p(α|Mi) and P (β|Mi) can obtained as follows. Plot

exp[−χ2
i (α, β, ...)/2] with α varying around it’s value around the one cor-

responding to the χ2
min by taking β as a constant equal to its value corre-

sponding to the χ2
min. The width of this Gaussian curve can be taken as

∆α. The flat prior probability can then be, P (α,Mi) = 1/∆α. A similar

procedure can be adopted to evaluate the prior probability P (β,Mi). The

marginal likelihood of the parameter α can be obtained as,

Li(α) =
1

∆β

∫ β+∆β

β

dβ exp[−χ2(α, β)/2]. (5.7)

Marginal likelihood of the parameter β can be calculated by adopting the

same procedure. This can be extended with the number of parameters.

For instance, if we have three parameters, α, β, γ, then the marginal like-

lihood of a parameter, say, α, can be evaluated as,

Li(α) =
1

∆γ

1

∆β

∫ γ+∆γ

γ

dγ

∫ β+∆β

β

dβ exp[−χ2(α, β, γ)/2]. (5.8)

The physical meaning of this marginalized likelihood is that they are the

probability of the data given the model type and the parameter, not as-

suming any particular values for other model parameters. They may find

significant use in Bayesian model comparison during a future analysis of

the data, by acting as prior probabilities for the respective parameters.

Likelihood of the model is then given as,

L(Mi) =
1

∆α

∫ α+∆α

α

dαLi(α). (5.9)
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5.2 Bayesian analysis of bulk viscous mod-

els

A fairly detailed description of the method of Bayesian analysis was given

in the previous section. In this section we are going into the Bayesian

analysis of the different bulk viscous models. For this we consider the

following cases for the bulk viscous coefficient separately,

1. ζ = ζ0 + ζ1
ȧ
a + ζ2

ä
ȧ ,

where viscosity is depending on both the velocity and acceleration

of the expansion of the universe.

2. ζ = ζ0 + ζ1
ȧ
a ,

where viscosity is depending only on velocity of the expansion of the

universe apart from a constant additive part ζ0. This is equivalent

to ζ = ζ0 + ζ1ρ
s, with s = 1/2.

3. ζ = ζ0,

where viscosity is pure a constant

4. ζ = ζ1
ȧ
a .

where viscosity only has the velocity dependent term and is equiva-

lent to ζ = ζ1ρ
s, with s = 1/2.

5. ζ = ζ0 + ζ2
ä
ȧ

where viscosity is depending on acceleration apart from an additive

constant.

The best estimated values of the parameters (ζ̃0, ζ̃1, ζ̃2) corresponding

to the cases 1, 2 and 3 are already extracted in the Tables 2.1 and 3.1 and

that for the cases 4 and 5 are extracted using the same set of data and

are given in the Table 5.1. The data used is the SCP “Union” Type Ia
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Parameters Bulk viscous models
ζ = ζ1

ȧ
a

ζ = ζ0 + ζ2
ä
ȧ

ζ̃0 – 1.275

ζ̃1 1.683 –

ζ̃2 – 1.593
H0 69.21 70.50
χ2
min 319.31 310.54
χ2
d.o.f 1.04 1.02

Table 5.1: Best estimates of the bulk viscous parameters, H0 and also χ2

minimum value corresponding to the cases 4 and 5 of ζ. χ2
d.o.f =

χ2
min

n−m ,
where n = 307, the number of data and m is the number of parameters
in the model. The subscript d.o.f stands for degrees of freedom. For the
best estimation we have used SCP “Union” 307 SNe Ia data sets.

Supernova data [91] composed of 307 data points from 13 independent

data sets and the method used is χ2 minimization technique (same as that

described in chapter 2). In comparison with the parameters extracted in

Table 1 of reference [68], where the authors include non-viscous baryonic

matter also, our parameter values are slightly different. For instance, in

case 5, with ζ = ζ0 +ζ2
ä
ȧ , the value of ζ̃0 and ζ̃2 are 1.275 and 1.593 respec-

tively in our model. While in their case it is 1.59 and 0.05 respectively.

In spite of this, there is no change in the general conclusion, that the full

viscous model doesn’t predicts a conventional evolution of the universe

(except, when ζ = ζ0, a constant). The χ2 function is constructed using

equation (2.25). After obtaining the χ2, we evaluate the marginal likeli-

hood, using equation (5.8), and likelihood, using equation (5.9), for all the

five cases of the model. We kept ΛCDM model as the reference model in

order to compare the bulk viscous models and calculate the Bayes factor

using equation (5.4). The marginal likelihood of the parameters ζ̃ corre-

sponding to the five cases of bulk viscous models are shown in figures 5.1,
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5.2, 5.3, 5.4 and 5.5, respectively.
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Figure 5.1: Marginal Likelihood of the parameters ζ̃0, ζ̃1 and ζ̃2 corresponding
to the case 1, when ζ = ζ0 + ζ1

ȧ
a + ζ2

ä
ȧ .

We consider three different priors for the parameters ζ̃0, ζ̃1, ζ̃2. The

prior probability is chosen by considering the width of the Gaussian curve

by varying the corresponding parameter and fixing all others. However

due to largeness of the data, there may occur slight discrepancy with the

Gaussian curve. Hence we consider three ranges of width in the Gaus-

sian curve, there by obtained three prior values of a parameter. In the

present study we find the likelihood range corresponding to three values

of exp(−χ2(ζ0, ζ2, ζ3)/2). For prior I, corresponds to the range of ζ̃’s for

likelihood of about 1× 10−70, prior II corresponds to the range of ζ̃’s for

likelihood of about 1× 10−80 and prior III corresponds to the range of ζ̃’s

for likelihood of about 1×10−90. Following this we obtained the marginal
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Figure 5.2: Marginal Likelihood of the parameters ζ̃0 and ζ̃1 corresponding to
the case 2, when ζ = ζ0 + ζ1

ȧ
a .
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Figure 5.3: Marginal Likelihood of the parameter ζ̃0 corresponding to the case
3, when ζ = ζ0, a constant.

likelihood of the respective parameters and the respective plots are shown

in the figures. The final likelihood of the viscous model was obtained by

the procedure discussed previously.

The above procedure was then done for the standard ΛCDM model by

considering Ωm and ΩΛ as the parameters. In this calculation we took the

same three prior ranges for obtaining the marginal likelihood and then the

likelihood of the ΛCDM model was obtained.

The likelihood of the viscous model and the standard ΛCDM model are

then compared to obtain the Bayes factor for the three different priors.

The results are shown in Table 5.2. Usually, the prior probabilities for
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Figure 5.4: Marginal Likelihood of the parameter ζ̃1 corresponding to the case
4, when ζ = ζ1

ȧ
a , a constant.
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Figure 5.5: Marginal Likelihood of the parameters ζ̃0 and ζ̃2 corresponding to
the case 5, when ζ = ζ0 + ζ2

ä
ȧ .

the parameters in a model are chosen as the posteriors obtained in the

previous measurement/analysis in the same model and this fact is pivotal

to the implementation of Bayesian model comparison. But in the first

attempt of analyzing a data, it is evident that the parameter’s prior we

choose crucially affects the result. Such a situation appears in the present

case of Bayesian comparison of bulk viscous models. We have used flat

prior probabilities for well-known parameters such as matter density, dark

energy density, etc., in standard cosmology, but for the parameters in bulk

viscous models, the ranges for the flat priors are guessed from the data

itself and this is strongly subjective.
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Cases Bulk viscous models Bayes factor BiΛ = L(Mi)
L(MΛ)

Mi Prior I Prior II Prior III

1 ζ0 + ζ1
ȧ
a

+ ζ2
ä
ȧ

0.743 1.372 1.043
2 ζ0 + ζ1

ȧ
a

1.86 2.63 3.63
3 ζ0 0.27 0.32 0.42
4 ζ1

ȧ
a

0.05 0.042 0.052
5 ζ0 + ζ2

ä
ȧ

1.65 1.91 1.77

Table 5.2: Bayes factors with respect to ΛCDM model corresponding to
three different priors

It can be seen from the Table 5.2 that for the first two cases the

Bayes factor depends on the prior, while for the remaining three case such

strong dependence on the priors are not evident. For case 2, i.e., when

ζ = ζ0 + ζ1
ȧ
a , there is an increase in Bayes factor with prior and it exceeds

3, giving more evidence for its increasing strength. The important thing

to be noted here is about the value of the Bayes factor for the respective

model. For the cases ζ = ζ0 and ζ = ζ1
ȧ
a , the factor is much less than

one. While for other cases the values are above one. As per the standard

classification, it can be mentioned that, the models for which the Bayes

factor is in between 1 and 3, can have only a very feeble advantage over the

standard ΛCDM model, however is not worth more than a bare mention.

The SNe Ia data that we have used contains the magnitude of su-

pernovae in the red-shift range 0.015 < z < 1.55. The data predicts a

transition from an early decelerated epoch to the late acceleration at a

redshift of around z ∼ 0.5. Among the full data set, the low redshift

data within the range 0.015 < z < 0.5 is often used for deducing the cur-

rent value of the Hubble parameter. The high redshift data, which were

obtained with small interference with the background and with high ac-

curacy, are considered to be the best part of the data [147]. For a critical
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Viscous models ζ̃0 ζ̃1 ζ̃2 H0 χ2
min χ2

d.o.f

ζ0 + ζ1
ȧ
a

+ ζ2
ä
ȧ

7.36 -4.73 -1.25 67.41 166.88 1.135
ζ0 + ζ1

ȧ
a

4.53 -2.53 – 67.41 166.88 1.13
ζ0 1.17 – – 63.06 167.01 1.12
ζ1
ȧ
a

– 0.787 – 61.43 167.09 1.12
ζ0 + ζ2

ä
ȧ

1.28 – 1.43 67.41 166.88 1.13

Table 5.3: Best estimates of the bulk viscous parameters, H0 and also χ2

minimum value corresponding to the different cases of ζ for high redshift.

χ2
d.o.f =

χ2
min

n−m , where n = 150, the number of data and m is the number
of parameters in the model. The subscript d.o.f stands for degrees of
freedom.

Sl. No. Bulk viscous models Bayes factor BiΛ = L(Mi)
L(MΛ)

Mi Prior I Prior II

1 ζ0 + ζ1
ȧ
a

+ ζ2
ä
ȧ

0.79 0.06
2 ζ0 + ζ1

ȧ
a

1.044 1.4
3 ζ0 1.17 1.48
4 ζ1

ȧ
a

1.13 1.42
5 ζ0 + ζ2

ä
ȧ

0.733 0.2685

Table 5.4: Bayes factors with respect to ΛCDM model corresponding to
two different priors for high redshift.

analysis we have repeated our computation using the high redshift part of

the data, corresponding to the red shift range, 0.5 < z < 1.55. For this

range, we have extracted the values of the parameters, ζ̃’s corresponding

to the above 5 cases using the χ2 minimization technique. The results are

tabulated in Table 5.3.

The Bayes factor of the bulk viscous models corresponding to the five

cases for high redshift data are tabulated in the Table 5.4. Here prior I

corresponds to the range of ζ̃’s for likelihood of about 1× 10−38 and prior

II corresponds to the range of ζ̃’s for likelihood of about 1 × 10−45. The
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models corresponding to the cases 1 and 5, where the viscous coefficient

depends on the acceleration of the expansion, have Bayes factor less than

one for both the priors. As a result these two cases are not worth of any

mention against the standard model. This indicates that the dependence

of viscosity on the acceleration is not so sensitive. Riess et. al. have

found that the magnitude of acceleration is small, since the distance of

the high redshift supernovae were on average only 10%−15% farther than

expected in a universe with mass density parameter Ωm ∼ 0.3. Such a

small acceleration would not have any observable effect on the transport

coefficients like that of viscosity. For cases 2, 3 and 4, the Bayes factors

are larger than one and it increases slightly with prior. Among these, the

third case is of constant viscosity, while for second and fourth cases, the

viscous coefficient depends on the velocity of expansion of the universe. As

seen from the Table 5.4, the Bayes factors for the cases 2, 3 and 4 are all in

the range 1 < Bij < 3 and it seems quite difficult to discriminate between

them. All these three cases are thus qualified to have bare mention against

the ΛCDM model.



6
Bulk viscous matter with

cosmological constant

In this chapter we analyze the viscous model of the universe by including

cosmological constant as an additional cosmic component.

In the preceding chapters we have seen that the bulk viscosity asso-

ciated with matter can generate the recent acceleration of the universe.

The model can predict the conventional evolution, including the radiation

dominated epoch, when viscosity coefficient is a constant. However this

model too have some problems, among which the prominent one is re-

garding the prediction of the age of the universe. Meantime the presence

of a non-zero cosmological constant cannot be ruled out in verge of the

current observational data. Hence it is worth to explore this model in the

presence of cosmological constant. In this chapter we consider a universe

with cosmological constant having viscous matter ( denoted as ΛvCDM

model) [148].

6.1 ΛvCDM model

We consider a spatially flat universe which follows FLRW metric (equation

(2.1)). We assume that universe consists of viscous matter (both dark and

107
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baryonic) and a cosmological constant, which act as the conventional dark

energy. We neglect the radiation component since we are dealing with the

late time evolution of the universe at which the effect of radiation compo-

nent is negligibly small. Here also we consider the simplest mechanism for

the bulk viscous pressure in accordance with the Eckart formalism [69, 71]

and is given by equation (2.2), where we assumes the normal pressure P

as zero for the whole matter component of the universe (both dark and

baryonic) as it is non-relativistic and ζ is the coefficient of bulk viscosity.

So the effective pressure is due to the bulk viscosity alone. The coeffi-

cient ζ is basically a transport coefficient, hence it would depend on the

dynamics of the cosmic fluid. As in the previous chapters we assume

ζ = ζ0 + ζ1
ȧ

a
+ ζ2

ä

ȧ
. (6.1)

The Friedmann equations governing the bulk viscous universe with

cosmological constant are given as,

H2 =
ρm + ρΛ

3
, (6.2)

2
ä

a
+

(
ȧ

a

)2

= ρΛ − P ∗. (6.3)

where we have taken 8πG = 1. ρm and ρΛ = Λ
8πG are the densities of

matter and cosmological constant Λ respectively and overdot represents

the derivative with respect to cosmic time t. We consider separate con-

servation equations for matter and dark energy due to the absence of any

interaction as the density of cosmological constant is constant through out

and the equations are as given below,

ρ̇m + 3H(ρm + P ∗) = 0. (6.4)

ρ̇Λ = 0. (6.5)
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This otherwise implies that the equation of state of Λ satisfies ωΛ = −1.

Using the Friedmann equations (6.2) and (6.3) and also (2.7) and (2.2),

we get the differential equation for the Hubble parameter as,

Ḣ =
1

2− ζ̃2

(
ζ̃0HH0 + (ζ̃1 + ζ̃2 − 3)H2 + 3H2

0ΩΛ

)
, (6.6)

where ζ̃0, ζ̃1, ζ̃2 are the previously defined dimensionless parameters,

ζ̃0 =
3ζ0

H0
, ζ̃1 = 3ζ1, ζ̃2 = 3ζ2. (6.7)

H0 is the present value of the Hubble parameter and ΩΛ is the present

density parameter of dark energy. Integrating equation (6.6) we can get

the expression for the Hubble parameter as,

H = H0


(
y + ζ̃0

) (
y − 2(ζ̃123)− ζ̃0

)
e

t′y
2−ζ̃2 −

(
y − ζ̃0

) (
y + 2(ζ̃123) + ζ̃0

)
2
(
ζ̃123

)(
e

t′y
2−ζ̃2

(
2(ζ̃123 − y) + ζ̃0

)
−
(
y + 2(ζ̃123) + ζ̃0

))
 ,

(6.8)

where ζ̃123 = ζ̃1 + ζ̃2−3, t′ = H0(t−t0), y =

√
ζ̃2
0 − 12ΩΛζ̃123 and t0 is the

present cosmic time. As t−t0 →∞, H → H0

[
y+ζ̃0
2ζ̃123

]
, a constant provided

ζ̃2 < 2. When t−t0 is small, H evolves as H0

[
2(2−ζ̃2)+H0(t−t0)(ζ̃0+6ΩΛ+y)

2(2−ζ̃2)+H0(t−t0)(y−2ζ̃123−ζ̃0)

]
.

Using the definition of the Hubble parameter, we obtained the scale

factor from equation (6.8) as,

a = e
H0(t−t0)(y−ζ̃0)

2ζ̃123

[
y + 2ζ̃123 + ζ̃0 + e

H0(t−t0)y

2−ζ̃2 (y − 2ζ̃123 − ζ̃0)

2y

] ζ̃2−2

ζ̃123

. (6.9)

In the absence of cosmological constant, ΩΛ = 0, the scale factor reduces

to

a(t) =

[
(
ζ̃0 + ζ̃12 − 3

ζ̃0

) + (
3− ζ̃12

ζ̃0

)e
ζ̃0

2−ζ̃2
H0(t−t0)

] 2−ζ̃2
3−ζ̃12

, (6.10)
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which is the expression obtained in chapter 2. When t − t0 is small, the

scale factor evolves as,

a ∼
[

1 +
H0(t− t0)(y − ζ̃0)

2ζ̃123

][
1 +

H0(t− t0)

2− ζ̃2

(y − 2ζ̃123 − ζ̃0)

] ζ̃2−2

ζ̃123

.

(6.11)

On the other hand when t − t0 is very large, scale factor increases expo-

nentially.

The equation of state parameter ω and the deceleration parameter q

can be obtained using the relations (2.34) and (2.28), respectively. Using

the expression (6.6) and (6.8), we get the expressions for ω and q as,

ω = −1 +
2y2
(
ζ̃0 + ζ̃123 + 3ΩΛ

)
3
(
ζ̃2 − 2

)(
Sinh

[
t′y

2(2−ζ̃2)

] (
ζ̃0 + 6ΩΛ

)
+ Cosh

[
t′y

2(2−ζ̃2)

]
y

)2
,

(6.12)

q = −1 +
y2
(
ζ̃0 + ζ̃123 + 3ΩΛ

)
(
ζ̃2 − 2

)(
Sinh

[
t′y

2(2−ζ̃2)

] (
ζ̃0 + 6ΩΛ

)
+ Cosh

[
t′y

2(2−ζ̃2)

]
y

)2
.

(6.13)

The present value of ω and q can be obtained by putting t = t0 and

respectively are,

ω0 =
2ζ̃0 + 2ζ̃1 − ζ̃2 + 6ΩΛ

3(ζ̃2 − 2)
, (6.14)

q0 =
ζ̃0 + ζ̃1 − 1 + 3ΩΛ

ζ̃2 − 2
. (6.15)

The present universe will be accelerating only if 3ω0+1 < 0 and q0 < 0. For

the universe to be in quintessence region so as to avoid big rip, it should

satisfy the relation q0 > −1. Following these, in order to guarantee a

conventional evolution of the the universe, such that a universe to begin

from the Big Bang and then entering in to decelerated epoch and then
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making a transition to the accelerated epoch in the past, we obtained the

necessary conditions to be satisfied by the ζ̃’s as,

1. ζ̃0 > 0, ζ̃2 < 2, ζ̃0 + ζ̃1 > 1− 3ΩΛ0, ζ̃1 + ζ̃2 < 3, ζ̃0 + ζ̃1 + ζ̃2 <

3− 3ΩΛ0

2. ζ̃0 < 0, ζ̃2 > 2, ζ̃0 + ζ̃1 < 1− 3ΩΛ0, ζ̃1 + ζ̃2 > 3, ζ̃0 + ζ̃1 + ζ̃2 >

3− 3ΩΛ0

If we neglect the cosmological constant i.e., ΩΛ0 = 0, then these would

reduce to the conditions obtained in the chapter 2 (equations (2.16) &

(2.17)) as expected.

6.2 The case with constant bulk viscosity

Let us consider the case when bulk viscous coefficient is a constant, i.e.,

when ζ = ζ0 and ζ1 = ζ2 = 0. The expression for Hubble parameter then

becomes,

H = H0
ỹ − ζ0 − 6ΩΛ + e

1
2
H0(t−t0)ỹ (ỹ + ζ0 + 6ΩΛ)

ỹ + ζ0 − 6 + e
1
2
H0(t−t0)ỹ (ỹ − ζ0 + 6)

, (6.16)

where ỹ =

√
ζ̃2
0 + 36ΩΛ. This can be obtained by putting ζ1 = ζ2 = 0 in

the expression for Hubble parameter for the general ζ, equation (6.8). Sim-

ilarly the scale factor for constant viscosity can be obtained from equation

(6.9) as,

a = e
1
6
H0(t−t0)(ζ̃0−ỹ)

((
ỹ + ζ̃0 − 6

)
+ e

H0(t−t0)ỹ

2

(
ỹ − ζ̃0 + 6

)
2ỹ

) 2
3

. (6.17)

The corresponding equation of state and the deceleration parameter (for

constant viscosity) becomes,

ω =

(
−1−

(
ζ̃0 − 3 + 3ΩΛ

)
ỹ2

3
(
ỹCosh

[
1
4t
′ỹ
]

+
(
ζ̃0 + 6ΩΛ

)
Sinh

[
1
4t
′ỹ
])2

)
, (6.18)
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q =

(
−1−

(
ζ̃0 − 3 + 3ΩΛ

)
y2

2
(
ỹCosh

[
1
4t
′ỹ
]

+
(
ζ̃0 + 6ΩΛ

)
Sinh

[
1
4t
′ỹ
])2

)
. (6.19)

As mentioned before, for an accelerating universe, the present value

of equation of state ω0 < −1
3 and the present value of the deceleration

parameter q0 < 0. To avoid big rip, the equation of state parameter

ω0 > −1, above the phantom limit. These conditions help us to constrain

the value of ζ̃0 as,

1− 3ΩΛ < ζ̃0 < 3(1− ΩΛ). (6.20)

From observation ΩΛ is constrained in the range 0.65 − 0.75. This con-

strains the ζ̃0 in between −1.25 < ζ̃0 < 1.05.

6.2.1 Age of the universe

Age of the universe in this case can be obtained by equating a = 1 in the

equation (6.17) and is found to be,

Age ≡
(

2

H0ỹ

)
Log

[
1− 2ỹ

6 + ỹ − ζ̃0

]
. (6.21)

The plot of age of the universe for different values of (ζ̃0,ΩΛ) subjected

to the constraint (6.20) are shown in the figure (6.1). The age plot shows

reasonably good agreement for (ζ0,ΩΛ) = (−0.5, 0.7) but the agreement

with respect (ζ0,ΩΛ) = (0.1, 0.68) is slightly less and for the third choice it

is not in nice agreement. But corresponding to the best agreement pair the

viscosity is negative. Whether is physically feasible or not may evident

from the further considerations of the entropy evolution and dynamical

system behavior

6.2.2 Thermodynamics

We now check the validity of the Generalized second law and maximiza-

tion of entropy condition in this case. Assuming apparent horizon as
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Figure 6.1: The figure shows the variation of age with H0 for different values
of (ζ̃0,ΩΛ). Black line corresponds to (ζ̃0,ΩΛ) = (0.1, 0.68). The orange line
and blue line corresponds to (ζ̃0,ΩΛ) = (0.2, 0.7) and (−0.5, 0.7) respectively.

the boundary of the universe and obtaining the horizon entropy using

the Bekenstein relation (equation (3.7)) and matter entropy using the

Gibbs equation (equation (3.28)), we calculated the expression for the

first derivative and second derivative of the total entropy with respect to

time. The relation obtained are as follows:

Ṡ =
64π2et

′ỹb2ỹ4
(
ỹ − 6 + ζ̃0 + e

1
2
t′ỹ(ỹ + 6− ζ̃0)

)
H0

(
ỹ − ζ̃0 − 6ΩΛ + e

1
2
t′ỹ(6ΩΛ + ỹ + ζ̃0)

)5
, (6.22)

S̈ = −
384π2b2ỹ5e

3
2
t′ỹ(bỹ + 2(1 + ΩΛ)ỹCosh[1

2t
′ỹ] + 2dSinh[1

2t
′ỹ])

((−1 + e
1
2
t′ỹ)ζ̃0 − 6ΩΛ + ỹ + e

1
2
t′ỹ(6ΩΛ + ỹ))6

, (6.23)

where b = ζ̃0 + 3ΩΛ0 − 3, d = ζ̃0 + 12ΩΛ − ζ̃0ΩΛ and t′ = H0(t− t0). The

evolution of Ṡ and S̈ with respect to the scale factor for different values

of ΩΛ and ζ̃0 subjected to the constrain (6.20) are plotted and are shown

in figures (6.2) and (6.3) respectively. From the figures, it is clear that

GSL and maximization of entropy condition are valid for this model.
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Figure 6.2: Evolution of the first derivative of entropy with the scale factor for
different values of (ζ̃0,ΩΛ) subjected to the constrain (6.20).
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Figure 6.3: Evolution of the second derivative of entropy with the scale factor
for different values of (ζ̃0,ΩΛ) subjected to the constrain (6.20).



Phase space analysis 115

(uc, vc) Eigen value (λ1, λ2)
(u, 1)

(
3
2
, 0
)(

−
ζ̃0
(
ζ̃0+
√
ζ̃2
0+36ΩΛ

)
18ΩΛ

,
ζ̃0−6ΩΛ−

√
ζ̃2
0+36ΩΛ

6+2ζ̃0−6ΩΛ

) −3, 3

−1+
ζ̃0√

ζ̃20+36ΩΛ


(
ζ̃0
(
−ζ̃0+
√
ζ̃2
0+36ΩΛ

)
18ΩΛ

,
ζ̃0−6ΩΛ+

√
ζ̃2
0+36ΩΛ

6+2ζ̃0−6ΩΛ

) −3, 3

−1− ζ̃0√
ζ̃20+36ΩΛ


Table 6.1: Critical values and the corresponding eigen values for the bulk
viscous model with Λ for ζ = ζ0

6.2.3 Phase space analysis

We also studied the asymptotic behavior of the model. We chose u and v

as the phase space variables, which are defined as

u = Ωm =
ρm

3H2
,

v =
1

H0

H + 1
,

(6.24)

The variables varies in the range 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1 respectively.

Using the conservation equation and differential equation for Hubble pa-

rameter, we can obtained the autonomous equations for u and v as,

u′ =
(1− v)

v2
(v(1− u)ζ̃0 − 3ΩΛu(1− v)),

v′ =
(1− v)

2v

(
3ΩΛ(1− v)2 + ζ̃0v(1− v)− 3v2

)
.

(6.25)

There are three critical points for the above autonomous equations and we

have evaluated the corresponding eigen values, they are listed in the Table

6.1. In order to represent a universe with unstable matter dominated

phase and a stable, physically feasible accelerated phase we see that ζ̃0

must be positive subjected to the constrain (6.20). In determining the

age corresponding to this model we have noted that, the best fit have



116 Bulk viscous matter with cosmological constant

arised both with negative value of ζ0 and also with positive value (the

black line in the age plot) of ζ0. But the asymptotic analysis presented

here, however supports only a positive value for ζ0. Earlier in the analysis

without cosmological constant also we conclude that, the case with ζ = ζ0

is preferred over other cases. Thus even though the age prediction has

been changed slightly, the present model is also predicting a conventional

evolution of the universe with constant viscosity as in the case of the model

without cosmological constant.

6.3 The case with ζ = ζ1H

Let us consider another special case, ζ = ζ1H, where viscosity depends

only on the velocity component of the expansion of the universe such that

ζ0 = ζ2 = 0 in equation (2.7). The expression for the Hubble Parameter

and the scale factor can be obtained from equations (6.8) and (6.9) by

putting ζ0 = ζ2 = 0 and are as

H =
−
(√

3H0ΩΛ(6− 2ζ̃1 − 2
√

3η + 2e
√

3ηt′(3− ζ̃1 +
√

3η))
)

η
(

6− 2ζ̃1 − 2
√

3η − 2e
√

3ηt′
(
3− ζ̃1 +

√
3η
)) , (6.26)

where η =
√

(3− ζ̃1)ΩΛ and t′ = H0(t− t0).

a = 12
1

ζ̃1−3 e−
√

3ΩΛt
′

η

(
ζ̃1 − 3 +

√
3η + e

√
3ηt′(3− ζ̃1 +

√
3η)

η

) 2

3−ζ̃1

. (6.27)

From the expression of Hubble parameter and the scale factor, we see that

ζ̃1 < 3 must be satisfied for an expanding universe. Combining the above

two equations it is easy to obtain the Hubble parameter in terms of the

scale factor a. And it is,

H = H0

√[
aζ̃1−3(ζ̃1 − 3 + 3ΩΛ)− 3ΩΛ

ζ̃1 − 3

]
. (6.28)
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Model ζ̃1 H0 ΩΛ Ωm χ2
min χ2

d.o.f

ζ = ζ1
ȧ
a

-0.0975 70 0.75 0.25 312.23 1.02

Table 6.2: Best estimates of the bulk viscous parameter ζ̃1, H0, ΩΛ,

Ωm = 1−ΩΛ and also χ2 minimum value for ζ = ζ1
ȧ
a
χ2
d.o.f =

χ2
min

n−m , where
n = 307, the number of data and m is the number of parameters in the
model. The subscript d.o.f stands for degrees of freedom. For the best
estimation we have used SCP “Union” 307 SNe Ia data sets.

The explicit form of H in terms of a, makes it easier for parameter ex-

traction and hence to compare with bulk viscous model without Λ.

To extract the value of ζ̃1, we use the Type Ia Supernova data. The

method used is the χ2 minimization technique, which is described in chap-

ter 2. Using the expression for H from equation (6.28), we construct the

χ2 function. In order to make comparison with bulk viscous model with-

out Λ easier, we use the same data set which is the SCP “Union” Type

Ia Supernova data [91] composed of 307 data points from 13 independent

data sets. We extract the values of ΩΛ0 and H0 along with ζ̃1. The values

are given in the Table 6.2.

6.3.1 Equation of state parameter and Deceleration
parameter

The equation of state parameter ω and the deceleration parameter q, for

this model are obtained using the expression for the Hubble parameter

(equation (6.28)) and are given as,

ω =
9a3ΩΛ − aζ̃1 ζ̃1(ζ̃1 − 3 + 3ΩΛ)

−9a3ΩΛ + 3aζ̃1(ζ̃1 − 3 + 3ΩΛ)
, (6.29)

q = −1− aζ̃1(−3 + ζ̃1)(ζ̃1 − 3 + 3ΩΛ)

−6a3ΩΛ + 2aζ̃1(ζ̃1 − 3 + 3ΩΛ)
. (6.30)
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Figure 6.4: Plot of the equation of state with the redshift for the best estimated
values of ζ̃1 and ΩΛ.

The plot of ω and q for the best estimated values of ζ̃1 and ΩΛ are shown

in the figures 6.4 and 6.5 respectively. The equation of state is zero in

the recent past but slightly above zero in the extreme past of the universe.

It decreases to the negative values and finally saturated at ω = −1 corre-

sponding to a de Sitter epoch in the extreme future. The evolution of the

deceleration parameter starts from around q ∼ 0.5 in the past, which cor-

responds to decelerated epoch and decreasing as the universe expands. It

saturates at q = −1 corresponding the future de Sitter phase. The present

value of ω and q can be obtained by putting a=1 in the expressions given

by equation (6.29) and (6.30), respectively and are obtained as,

ω0 = − ζ̃1

3
− ΩΛ, (6.31)

q0 =
1

2
(1− ζ̃1 − 3ΩΛ). (6.32)

Using the best estimated values of ζ̃1 and ΩΛ, we get ω0 = −0.7175 and

q0 = −0.57625, which is near to concordance value obtained by WMAP

observation.



Age of the universe 119

-1 1 2 3 4 5
z

-1.5

-1.0

-0.5

0.5

1.0
q

Figure 6.5: Plot of the deceleration parameter with the redshift for the best
estimated values of ζ̃1 and ΩΛ.

6.3.2 Age of the universe

The age of the universe in this model can be obtained by equating the

scale factor (equation (6.27)) to one and is found to be

Age ≡

Log

[
3−ζ̃1−

√
3
√

(3−ζ̃1)ΩΛ

3−ζ̃1+
√

3
√

(3−ζ̃1)ΩΛ

]
√

3p
√
−
(
−3 + ζ̃1

)
ΩΛ

. (6.33)

Using the best estimated values for ζ̃1 and ΩΛ, the age is found to 13.38Gyr

and is matching with the concordance value of the age of the universe

obtained from the oldest globular observations. In this way the model

is promising in predicting the age. But the problem with this model is

the negativity of the viscous coefficient ζ1 which causes the violation of

the local second law. However in the previous section we have seen that

the model with constant viscosity is predicting the age in a reasonable

way and also that model is satisfying conditions on entropy evolution, i.e.

local second law, generalized second law and the maximization condition

of entropy. Hence we are not going into the details of the present case.





7
Conclusions and Future scope

This chapter concludes the entire work and also describes the future scope.

In the preceding chapters we have discussed the bulk viscous matter dom-

inated universe, which infact dose two things regarding the late evolution

of the universe. First, it explain the late acceleration of the universe with-

out invoking to any exotic dark energy form. Second, it unifies both the

dark matter and dark energy. These two things are of utmost importance

in the recent times.

Many attempts have been made to understand the nature and evolu-

tion of the dark energy which supposed to causes the recent acceleration

of the universe. In spite of large volume of work existed in the recent

literature, there arised no conclusive consensus regarding either the na-

ture or evolution of dark energy. Therefore attempts have been initiated

to explain the late acceleration without advocating for any exotic form

of matter. Bulk viscosity associated with the matter sector is seems to a

potential candidate to achieve this goal.

In the present thesis we have studied the the bulk viscous matter dom-

inated universe in detail and the study shows that, there is considerable

scope in this model. We have also studied the effect of the a cosmological

constant in this model. The results of our entire work has been concluded

below. We present first a chapter wise summary followed by an overall

conclusion. Future scope of the model has also been pointed out.

121
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7.1 Conclusions

Recent acceleration in the expansion of universe has been conventionally

explained by proposing an exotic form of energy called dark energy. The

best choice for the dark energy is cosmological constant which leads to the

most successful model of the late universe, the standard ΛCDM model of

the universe. But the model failed to predict the extremely low value of

the dark energy density and also the mysterious coincidence between the

densities of dark energy and dark matter. This lead to the emergence of

various varying density dark energy models. In spite of these, the mystery

of dark energy as an exotic component has been continued without having

any reasonable solution. This ultimately compelled the scientific commu-

nity to search for possible explanations for the recent acceleration without

invoking any exotic component, but by using simple physical phenomenon.

Bulk viscous matter is one of the best alternative in this direction. In the

present thesis, we presents our studies on the bulk viscous matter domi-

nated universe in the context of the late acceleration of the universe. We

give the required introduction and motivation in the introductory chapter.

In chapter 2, we have carried out the study of the background evo-

lution of a flat FLRW universe dominated with bulk viscous matter. We

assumed that the viscosity has dependence on velocity and acceleration

of the expansion of the universe, hence adopted the most general form,

ζ = ζ0 + ζ1
ȧ
a + ζ2

ä
ȧ . We have solved the Friedmann equations for the

Hubble parameter and the scale factor, which leads to a two set of con-

ditions on the viscosity coefficients, in order to predict the conventional

evolution of the universe as, (ζ̃0 > 0, ζ̃0 + ζ̃12 < 3, ζ̃12 < 3, ζ̃2 < 2) and

(ζ̃0 < 0, ζ̃0 + ζ̃12 > 3, ζ̃12 > 3, ζ̃2 > 2).

In constraining the parameters we have used SCP “Union” Type Ia

Supernova data set. Following the method of χ2 minimization, we have

computed χ2
d.o.f , the minimum values of χ2 function per degrees of free-
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dom for both cases of limiting conditions of the bulk viscous parameters

and is found to be very near to one, indicating a reasonable goodness-

of-fit. We have evaluated the best fit values of the three dimensionless

viscous parameters, ζ̃0, ζ̃1 and ζ̃2 simultaneously for both cases of limiting

conditions of the parameters and are shown in Table 2.1.

For both cases of the best estimate of the viscous parameters, the evo-

lution of the cosmological parameters: the scale factor, deceleration pa-

rameter, the equation of state parameter, matter density, curvature scalar

are all found to be identical. So these two sets of best estimated val-

ues for the parameters cannot be distinguished by using the conventional

cosmological parameters.

This model automatically solves the coincidence problem because the

bulk viscous matter simultaneously represents dark matter and dark en-

ergy sectors.

From the evolution of scale factor, it is found that, for the first limiting

conditions of bulk viscous parameters, the transition into the accelerating

epoch would be in the recent past if ζ̃0 + ζ̃1 > 1. On the other hand if

ζ̃0 + ζ̃1 < 1, the transition takes place in the future and if, ζ̃0 + ζ̃1 = 1,

the transition takes place at the present time. For the second limiting

conditions of parameters, the above conditions are getting reversed such

that when ζ̃0 + ζ̃1 > 1, the transition will takes place in the future, when

ζ̃0 + ζ̃1 < 1, the transition would occur in the recent past and when

ζ̃0 + ζ̃1 = 1, the transition takes place at the present time.

We have also obtained the age of the universe and is found to be

around 10.90 Gyr for the best estimates of the parameters. Compared to

the age predicted from oldest galactic globular clusters (12.9 ± 2.9 Gyr),

the present value is relatively less, but it is within the limit of the predicted

age.

It is found that for the best estimates of the model parameters, the
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universe entered the accelerating phase in the recent past at a red shift

zT = 0.49+0.075
−0.057 for the first limiting conditions and zT = 0.49+0.064

−0.066 for

the second limiting conditions. This is found to be agreeing only with the

lower limit of the corresponding ΛCDM range, zT = 0.45− 0.73 [94]. The

present value of the deceleration parameter is found to be about−0.68+0.06
−0.06

and −0.68+0.066
−0.05 for the two cases respectively and is comparable with the

observational results which is around −0.64± 0.03.

We have analyzed the equation of state parameter for the best esti-

mates of the bulk viscous parameters only. The equation of state param-

eter ω → −1 as z → −1, which means that the bulk viscous matter domi-

nated universe behaves like the de Sitter universe in future. It is also clear

that the equation of state parameter of this model doesn’t cross the phan-

tom divide and thereby free from big rip singularity. The present value

of the equation of state parameter is around −0.78+0.03
−0.045 and −0.78+0.037

−0.043

for the best fit of viscosity parameters corresponding to the two limit-

ing conditions respectively. This value is comparatively higher than that

predicted by the joint analysis of WMAP+BAO+H0+SNe data, which is

around -0.93 [11, 98].

From the expression for matter density, it is clear that it diverges as

the scale factor tends to zero, which indicates the existence of Big-Bang

at the origin. This is further confirmed by obtaining the curvature scalar

which also becomes infinity at the origin.

Since the model predicts the late acceleration of the universe as like

the standard ΛCDM model, we have analyzed the model using statefinder

parameters to distinguish it from other standard dark energy models es-

pecially from ΛCDM model. The evolution of the present model in the

{r, s} plane is shown in figure 4.4 and it shows that the evolution of the

{r,s} parameter is in such a way that r > 1, s < 0, a feature similar to the

Chaplygin gas model. The present position of the bulk viscous model in
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the r-s plane corresponds to {r0, s0} = {1.25,−0.07}. Hence the model is

distinguishably different from the ΛCDM model.

In next chapter, chapter 3, we analyse the thermodynamical evolu-

tion of the model. The evolution of the total bulk viscous parameter is

studied corresponding to both the limiting conditions as given by equa-

tions (2.16) and (2.17) and are also found to be identical. In the initial

epoch of the expansion, the total bulk viscosity is found to be negative

and hence violating the local second law of thermodynamics. But it be-

come positive from z ≤ 0.8, from there onwards the local second law is

satisfied. However we found that the generalized second law is satisfied

throughout the evolution of the universe, which safeguard the second law

in the model. We also checked the entropy maximization condition for the

model and found that the entropy of the universe is bounded and hence

the universe behaves as an ordinary macroscopic system in this model.

In addition to the general form for bulk viscous coefficient ζ = ζ0 +

ζ1
ȧ
a + ζ2

ä
ȧ , we considered two special cases: (1) ζ = ζ0 + ζ1

ȧ
a , where the

viscous coefficient doesn’t depends on acceleration and (2) ζ = ζ0, where

the viscous coefficient is a constant. We first extracted the values of the

viscous parameters using the same data and technique as we used for the

general form. The results are tabulated in Table 3.1. GSL and entropy

maximization condition are also found to be valid for these two cases.

However, local second law is found to be valid only for the case ζ = ζ0.

In the chapter 4, we have done the phase space analysis of the model

corresponding to the three cases of the bulk viscosity coefficient:

(i) ζ = ζ0,

(ii) ζ = ζ0 + ζ1
ȧ
a ,

(iii) ζ = ζ0 + ζ1
ȧ
a + ζ2

ä
ȧ .

First we have considered a single component universe, containing bulk
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viscous matter alone. By formulating the suitable dynamical equations,

the possible critical points have been enumerated and then their stability

analyses were performed. The phase space plot for each cases are con-

structed. It is found that, for all the three cases, there exists a prior

decelerated epoch, which is an unstable node and a late stable accelerat-

ing epoch, similar to the de Sitter phase. For case (iii) the equation of

state, ω becomes greater than one for the initial state, which may cause

violation of causality [139]. The same situation was found for case (ii)

(i.e., for ζ = ζ0 + ζ1
ȧ
a) also. But for the first case (i), ζ = ζ0, no such

causality violation arise. This makes case (i) favorable over the other two.

We repeat the above analysis for a two component universe consist-

ing of radiation and bulk viscous matter. Our main aim here is to check

whether the present model successfully predicts a prior conventional ra-

diation dominance. It is found that the model corresponding to case (i),

at which ζ = ζ0, predicts an early radiation dominated phase, represented

by a past attractor fixed point. The model then successfully account for a

transit into a decelerated matter dominated phase (saddle point) and then

finally evolving to a de Sitter type universe (stable future attractor) which

expands exponentially . However the other two cases, with ζ = ζ0 + ζ1
ȧ
a

and ζ = ζ0 + ζ1
ȧ
a + ζ2

ä
ȧ , failed to predicts a prior radiation dominated

phase and conventional decelerated matter dominated phase of the uni-

verse. Which again increases one’s confidence in case (i) as a viable model

of the universe.

By considering the case (i) ζ = ζ0, a model with constant bulk vis-

cosity, as a prominent model of the late universe, which can successfully

accommodate an early radiation phase, we then tried to extract out the

constant viscous coefficient of our universe. Using the latest supernovae

type Ia we computed a value for the constant viscosity around ζ0 ∼ 7×107

Pa. s. There are other references which supports our prediction in this
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regard. However, there exist some references which predicts values from

105Pa.s. onwards. In this light we finally concluded to proposes a range

for the constant viscosity for our universe as 5× 105 ≤ ζ0 ≤ 7× 107 Pa. s.

From the previous chapter we have seen that, the thermodynamics con-

siderations also strongly supports a universe with constant viscosity. All

these are printing towards a positive situation that it is possible to un-

derstand the recent acceleration of the universe without invoking to any

exotic form or matter/energy.

In chapter 5 we devoted our analysis in contrasting the bulk viscous

model of the universe with the standard ΛCDM model using the method

of Bayesian analysis. Through Bayesian analysis one is able to find, to

what extend a model under consideration is superior over some other or

say some previous standard model. Here we made a detailed analysis by

considering five separate cases of bulk viscous models:

(1) ζ = ζ0 + ζ1
ȧ
a + ζ2

ä
ȧ ,

(2) ζ = ζ0 + ζ1
ȧ
a ,

(3) ζ = ζ0,

(4) ζ = ζ1
ȧ
a ,

(5) ζ = ζ0 + ζ2
ä
ȧ .

The respective parameters were evaluated using the “Union” data of Su-

pernovae Type Ia. then we have obtained the likelihood for all the five

models. The likelihood for the ΛCDM model is also obtained for the same

data set. We have then obtained the Bayes factor for all the five cases,

see Table 5.2. The primary results indicate that the model corresponding

to case 2, i.e., ζ = ζ0 + ζ1
ȧ
a have a Bayes factor just above 3, and thus

have slight advantage over the ΛCDM model compared with other cases.

However the results from the analysis of thermodynamics and dynamical

system behavior shows that this model is not so promising. For the model

corresponding to cases 1 and 5 , the Bayes factor is just above one and
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can just have a bare mention, in contrast to the standard model. The

model corresponding to case 3, with constant viscosity, also seems to fail

in standing against the standard model in this primary analysis.

Among the supernovae data for a wide range of redshifts, those corre-

sponding to high redshifts, say z > 0.5 were obtained with less background

interference compared to the lower redshift region. Since Bayes method

is relying on the probabilities, the accuracy of the data is a matter of

great concern. Hence we restrict to supernovae data with relatively high

redshifts, z > 0.5 for pursuing the Bayesian analysis to get more feasible

results. The results consequent to this have a marked deviation from the

previous one. The Bayes factor for the constant bulk viscosity ζ = ζ0 (case

3) and models corresponding to cases 2 and 4 also are having a slight ad-

vantage over other cases when compared with the standard ΛCDM model.

Since Bayes factors of the cases 2, 3 and 4, are all in the range 1 < Bij < 3,

it is difficult to discriminate among themselves. However in chapter 4, we

have found out that only the case 3 will have asymptotically stable end

de Sitter phase and also accounting for an early radiation phase. Taking

account of this, it can be concluded that, among the cases 2, 3 and 4,

which are having almost same Bayes factor, the case 3 can be preferred

over the other cases.

Chapter 6 is dealing with the bulk viscous model with an additional

cosmic component, the cosmological constant Λ. As there can exist a

non-zero cosmological constant in the present universe, it is worth check-

ing it’s effects on a bulk viscous matter universe. Since we have some

slight issues with the prediction of age in the pure bulk viscous matter

dominated universe, the inclusion of cosmological constant may help us in

solving this issue at least to some extend. We have solved the resulting

Friedmann equation for the Hubble parameter and studied the evolution

of other prominent cosmological parameters. It was found that the age of
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the resulting universe has been increased substantially as expected, thus

solves the age issue to certain extend. We also found that the model with

constant viscosity and cosmological constant is thermodynamically viable

as it is satisfying both the generalized second law and the entropy maxi-

mization condition. Regarding the phase-space evolution of this model, we

have found that, the model predicts an unstable prior decelerated epoch

followed by an accelerated epoch for positive definite value for the viscous

coefficient ζ0. In addition we have also considered the case ζ = ζ1
ȧ
a with Λ,

evaluated the value of ζ̃1 and obtained the evolution of the cosmological

parameters. We have obtained the age of the universe for this case and is

found to be in the range of age from the oldest globular cluster.

To summarize the main results, following the drawbacks of the stan-

dard ΛCDM model we consider bulk viscous matter dominated model

as an alternative to explain the recent acceleration of the universe. We

assume a flat universe with a single component, the bulk viscous mat-

ter and used the most general form for the bulk viscous coefficient as,

ζ = ζ0 + ζ1
ȧ
a + ζ2

ä
ȧ . It was found that the model can successfully predicts

the transition into late acceleration phase and gives the expected back

ground evolution of the universe. In particular the model with constant

viscosity, ζ0 can account for the evolution of the universe right form the

radiation dominated epoch up to the last de Sitter epoch. However the

model predicts a relatively less age for the present universe and a high

value for the current equation of state parameter. Even though the ther-

mal evolution of the model has got a problem with the local second law

in the case of the full viscosity coefficient, the model corresponding to

ζ = ζ0 is again free from such inconsistencies. We compared the model

with the standard ΛCDM model using Bayesian probability analysis and

found that the model with constant viscosity can be qualified to make a

relatively good mention against the standard model. Since cosmological
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constant is a possible component of the universe, we have also checked the

status of bulk viscous model with cosmological constant and found that

the age has been substantially increased.

7.1.1 Future scope

The relevance of the present model is that, it can explain the late ac-

celeration of the universe without having the conventional exotic dark

energy. Here we are using one of the natural effect that can arise in the

matter sector of the universe, the bulk viscosity to cause the late accel-

eration. Especially the model with constant bulk viscosity in the range

5 × 105 ≤ ζ0 ≤ 7 × 107 is seems to explain the conventional evolution

of our universe First of all it needs to sharpen values of the parameters

Contrasting the model with the latest data on Supernova observation and

other data from Plank collaborator and CMB is essential, particularly

to extract the value of the viscous coefficient ζ0 can be the prime future

agenda of this model.

An important effect with which the model is to be contrasted with is

the Integrated Sachs-Wolfe effect(ISW). The ISW Effect is refers to the

change in the energy of a CMB photon as it passes through the evolving

gravitational potential wells [102]. For large time, the behavior of a, the

scale factor tends to that of the ΛCDM model for which the gravitational

potential, φ ∼ 1 + z. So compared to the time of decoupling (z ∼ 1090),

the potential will be diluted at later times which consequentially causes

the ISW effect. We have presented a brief argument regarding the ISW

effect in the present model in the Appendix section included in Chapter

2. But more detailed analysis is needed in this effect to get a mature

conclusion.

Another important area which need an extensive investigation is on

the effect of the bulk viscous model in the structure formation. Even
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though the standard ΛCDM model fits fairly well with the corresponding

observational data, there exist problems, like missing satellites [149], the

cusp-core problem [150] etc. Thus a perturbative study of the density

contrast in the viscous model is essential to know whether the model leads

to the formation of large scale structures and thereby solves the problem

faced by the standard model. In addition to the general relativistic case,

the work may be extended to Newtonian and Neo-Newtonian approaches

as well.

The viscous theory we used in the present work is the Eckart approach.

As pointed out in the thesis, the theory is only a first order approach to

the causal theory. So using full causal and relativistic theory like Israel-

Stewart model or with it’s truncated version one can throw more light into

the further feasibility of the viscous universe model in predicting the late

time acceleration of the universe. Please refer some of the latest works in

this regard[151, 152].

Yet another interesting scope is to study the effects of viscosity in one of

the important process took place in the early stage of the universe, the pri-

mordial nucleosynthesis. The primordial nucleosynthesis model predicts

the primordial abundances of the light elements, except some relatively

small issues with Lithium. One may include the viscosity effect in such

calculations to see whether it give some positive output towards such kind

of issues.
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