
Fluid Mechanics

A GEOMETRIC APPROACH TO FLUID DYNAMICS IN A

SPACE TIME MANIFOLD

Thesis submitted to

COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY

for the award of the degree of

DOCTOR OF PHILOSOPHY

under the Faculty of Science

by

Susan Mathew Panakkal
(Reg no. 3500)

Department of Mathematics

Cochin University of Science and Technology

Kochi - 682 022, Kerala, India

March 2019



A GEOMETRIC APPROACH TO FLUID DYNAMICS IN A

SPACE TIME MANIFOLD

Ph.D. thesis in the field of Fluid Mechanics

Author:

Susan Mathew Panakkal

Research Scholar, Department of Mathematics

Cochin University of Science and Technology

Kochi - 682 022, Kerala, India

Email: susanmathewpanakkal@gmail.com

Supervisor:

Dr. M. Jathavedan

Emeritus Professor

Department of Computer Applications

Cochin University of Science and Technology

Kochi - 682 022, Kerala, India.

Email: mjvedan@gmail.com

March 2019



Dr. M. Jathavedan

Emeritus Professor

Department of Computer Applications

Cochin University of Science and Technology

Kochi - 682 022, Kerala, India.

7th March, 2019

Certificate

Certified that the work presented in this thesis entitled “A GEOMETRIC

APPROACH TO FLUID DYNAMICS IN A SPACE TIME MANIFOLD”

is based on the authentic record of research carried out by Mrs. Susan

Mathew Panakkal under my guidance in the Department of Mathematics,

Cochin University of Science and Technology, Kochi- 682 022 and has not

been included in any other thesis submitted for the award of any degree.

Dr. M. Jathavedan

(Supervising Guide)

Phone : 9496448160. Email: mjvedan@gmail.com





Department of Mathematics

Cochin University of Science and Technology

Cochin - 682 022

Certificate

Certified that all the relevant corrections and modifications suggested by

the audience during the Pre-synopsis seminar and recommended by the

Doctoral Committee of the candidate has been incorporated in the thesis

entitled “A GEOMETRIC APPROACH TO FLUID DYNAMICS IN A

SPACE TIME MANIFOLD”.

Dr. M. Jathavedan

(Supervising Guide)

Emeritus Professor

Department of Computer Applications

Cochin University of Science & Technology

Cochin - 682 022

Cochin

7th March, 2019





7th March, 2019

Declaration

I, SUSAN MATHEW PANAKKAL, hereby declare that the work

presented in this thesis entitled “A GEOMETRIC APPROACH TO

FLUID DYNAMICS IN A SPACE TIME MANIFOLD ”is based on the

original research work carried out by me under the supervision and

guidance of Dr. M. Jathavedan, Emeritus Professor, Department of

Computer Applications, Cochin University of Science and Technology,

Kochi- 682 022 and has not been included in any other thesis submitted

previously for the award of any degree.

Susan Mathew Panakkal

Research Scholar (Reg. No. 3500)

Department of Mathematics

Cochin University of Science & Technology

Cochin-22

7th March, 2019





Acknowledgments

I place on record my gratitude to The Almighty God for giving me

mental and physical strength to surpass the hurdles and complete my

Ph.D. work.

I would like to express my heartfelt gratitude to my research

supervisor Dr.M. Jathavedan, for his never-ending patience, motivation,

enthusiasm, commitment and immense knowledge which was the source

of inspiration for my research work. I was fortunate enough to have

him as my guide.

I wish to express my gratitude to Dr. P.G. Romeo, Professor,

Department of Mathematics, CUSAT, for being my Doctoral Committee

member and improvising me with valuable suggestions, guidance and

support.

My sincere thanks to all the former heads and other faculty members

of Department of Mathematics, Dr. A. Vijayakumar, Dr. R. S.

Chakravarthy, Dr. M. N. N. Namboodiri, Dr. A. Krishnamoorthy, Dr.

B. Lakshmy, Dr. V.B. Kirankumar, Dr. A. A. Ambily , Dr. A. Noufal,

Dr. K .P Naveena Chandran, Dr. T. Prasad and Ms. Simi Thomas for

their guidance and support. I humbly acknowledge the moral support

and encouragement extended by Dr. K. V. Pramod and Dr. B. Kannan

and other faculty members of the Department of Computer

Applications. I also acknowledge the constant support extended by office

staff and librarians of the Department of Mathematics and Computer

Applications. I am grateful to the authorities of Cochin University of

Science and Technology for their valuable help and support through out

my research tenure.



I thank all my fellow research scholars Mrs. Elizabeth Reshma, Mrs.

P. R. Sreejamol, Mrs. Siji Michael, Dr. Binitha Benny, Mrs. Lejo

Manavalan, Mrs. V. A. Rasila, Mr. Rahul Rajan, Dr. R. Akhila, Mr.

Bintu Shyam, Mrs. Linu Pinto, Mr. K. A Ajan, Mr. P. U. Shajeeb,

Mr. Jaison Jacob, Mr. Prince Joseph, Dr. K. S. Savitha, Ms. Aparna

Pradeep, Mrs. T. Vinitha T., Ms. K. N. Savitha, Mrs. Pinky, Mrs. V.

Divya, Dr. Dhanya Shajin, Dr. S. Manjunath, Dr. Seethu Varghese,

Mr. Tijo James, Mrs. Anu Varghese, Dr. K. Pravas, Mrs. M. A.

Smisha, Mrs. Smitha Davis, Ms. Linet Roslin Antony, Mrs. Riya Jose,

Ms. Athira Babu, Mr C. S. Arun Kumar, Mrs. Lexy Alexander, Dr. K.

V. Didimos, Mr. Mathew Thomas, Mrs. Femy, Mrs. Anupriya, Mrs.

Anu Nuthan, Mrs. Sindhu S, Mr. Abdul Rouf, Mrs. Sindhurani, Mrs.

Anju S. Mattam, Mrs. Nisha, Mr. Naveen Tomy, Mr. Shyam Sunder,

Mr. Parameswaran, Mr. Tibin Thomas and all my friends and teachers

of the Department of Computer Applications, for their invaluable advice,

encouragements, support and co-operation.

I acknowledge the support extended by the University Grants

Commission, Mahatma Gandhi University and the Department of

Collegiate Education, Kerala, for granting me fellowship under the FDP

programme, without which I would not have been able to complete my

research work.

I am grateful to the Management, Director, Dr. Sr. Vinitha,

Principal, Dr. Sajimol Augustine, Head of the Department, Smt.

Teresa Felitia, my colleagues in the Department of Mathematics, office

staff, all other faculty members and students of St. Teresa’s College,

Ernakulam for extending their support, co-operation and prayers

throuhout my research.

I am always indebted to my parents and grandparents who have

taken all pains to mould me and help me grow. They guided me



morally, spiritually and intellectually. Their prayers protect and guide

me through all my endeavours. I am grateful to the love, care and

support extended by my parents in-law for all these years. I thank all

my relatives for their prayers and well wishes. Words do not suffice to

acknowledge my husband, Joseph for standing by my side and my lovely

daughters, Elizabeth and Rachel for being my pillars of strength.

Susan Mathew Panakkal





“To God be all Glory”.





A GEOMETRIC APPROACH TO

FLUID DYNAMICS IN A SPACE TIME

MANIFOLD.





Contents

List of Notations iii

1 Introduction 1

1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Euler and Navier-Stokes’ Flows in R3 . . . . . . . 6

1.1.2 Vector Fields and Flows . . . . . . . . . . . . . . 8

1.1.3 Differential Forms . . . . . . . . . . . . . . . . . . 11

1.1.4 Lie Derivative . . . . . . . . . . . . . . . . . . . . 11

1.1.5 Invariants in Fluid Dynamics . . . . . . . . . . . 13

1.1.6 Local Invariants in R3 . . . . . . . . . . . . . . . 13

1.1.7 Integral Invariants . . . . . . . . . . . . . . . . . 16

1.1.8 Geometric Algebra . . . . . . . . . . . . . . . . . 21

2 Local and Integral Invariants in a Space Time Manifold 27

2.1 Local Invariants in R4 . . . . . . . . . . . . . . . . . . . 28

2.2 Integral Invariants in R4 . . . . . . . . . . . . . . . . . . 32

2.2.1 Integral Invariance Associated with the One-Form

of Velocity . . . . . . . . . . . . . . . . . . . . . . 32

2.2.2 Integral Invariance Associated with the Two-Form

of Vorticity . . . . . . . . . . . . . . . . . . . . . 35

2.2.3 Vorticity Stress Tensor Analogous to Magnetic

Stress Tensor . . . . . . . . . . . . . . . . . . . . 38

i



2.2.4 Maxwell’s Equations in Fluid Dynamics . . . . . 42

2.2.5 Integral Invariance Associated with the

Three-Form of Helicity . . . . . . . . . . . . . . . 45

2.2.6 Integral Invariance Associated with the Four-Form

of Parity . . . . . . . . . . . . . . . . . . . . . . 55

3 Integral Invariants for Non-barotropic flows 61

3.1 Non-barotropic Flows in R3 . . . . . . . . . . . . . . . . 61

3.1.1 One-Form of Generalized Velocity . . . . . . . . . 64

3.1.2 Two-Form of Generalized Vorticity . . . . . . . . 66

3.1.3 Three-Form of Generalized Helicity . . . . . . . . 68

3.1.4 Four-form of Generalized Parity . . . . . . . . . . 73

4 A Geometric Algebraic Approach to Fluid Dynamics 77

4.1 Geometric Algebra in Fluid Dynamics . . . . . . . . . . 77

4.1.1 Bivector Associated with Vorticity . . . . . . . . 78

4.1.2 Fluid Dynamic Stress-Energy Tensor . . . . . . . 80

4.1.3 Multivector Associated with Helicity . . . . . . . 81

4.1.4 Multivector Associated with Parity . . . . . . . . 82

5 Conclusion and Scope For Further Research 85

Bibliography 91

Publications 99



List of Notations

v velocity vector in three dimensional space

p pressure

ρ mass density

ϕ potential for the body forces

ν kinematic viscosity

ε Bernoulli function

w voticity vector in three dimensions

M manifold

αk k-form

Dk k-dimensional chain

Ck k-dimensional cycle

ψt flow map

Lξυ Lie derivative of v with respect to ξ

Rn Euclidean n dimensional space

V velocity four vector (f, v)

iii



φ f + ε

ξ flow field

σ velocity one form in R4

σ̃ generalized velocity one form in R4

v̂ velocity one form in R3

ω vorticity two form in R4

ω̃ generalized vorticity two form inR4

L ∂tv +∇ε
dx line element

dV volume element

ds surface element

S specific entropy

Π fluid maxwell matrix tensor

F vorticity matrix tensor

T fluid dynamic stress energy matrix tensor

W matrix tensor associated with vorticity

h helicity density

η helicity three form in R4

η̃ generalized helicity three form in R4
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Chapter 1

Introduction

Laws of conservation and the invariance of physical quantities are

fundamental in analyzing and interpreting fluid flows. Every fluid

mechanical system is assumed to obey the laws of : (a) conservation of

mass, (b) conservation of energy and (c) conservation of momentum.

Equation of continuity expresses the law of conservation of mass, while

the Euler’s equation represents the conservation of momentum for ideal

fluids and the Navier-Stokes’ equation for the case of viscous fluids.

The first law of thermodynamics represents the law of conservation of

energy. Helicity, which is interpreted as a measure of knottedness of

vortex lines is another invariant of Euler’s equations.

Mathematical frameworks for representing dynamical systems

include vector calculus, differential forms, dyadics, spinors, tensors,

quaternions, and geometric/Clifford algebras. Vector notation is the

most commonly used tool to describe physical systems, but it is

restricted to the three dimensional space. In higher dimensions

advanced analytical tools like that of differential forms, geometric

algebra, tensors and spinors play a significant role in complex fields of

special relativity, quantum mechanics and string theory. Differential

1
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forms provide visualization and geometrical insight into dynamical

systems and also balance the notion of concreteness and mathematical

abstractness. Differential forms are not to be considered as a

replacement for vector calculus, but can aid in extracting additional

information.

Differential forms have extensively been used in the field of

electromagnetism over the years. One of the early literature in the

treatment of differential forms in the theory of electromagnetism can be

seen in the work of Flanders (1963). Two contrasting interpretations of

the electric field are, as a force on a test charge or as a change in energy

experienced by the test charge as it moves through the electric field.

The former concept is usually represented in the vector form, while the

latter is better represented through the calculus of exterior forms. Both

the interpretations do not contradict each other but are complementary

in describing fundamental physical properties of a system. The

application of differential forms can also be seen in network theory,

transformation optics and in the theory of inverse scattering, while

discrete differential forms are used in numerical analysis based on finite

element methods (Warnick and Russer, 2014).

In non-relativistic classical mechanics time is treated as a universal

quantity uniform throughout space and assumes that space is

Euclidean. Poincare introduced the innovative concept of the four

dimensional space time and defined four-vectors like the four-position,

four-velocity, and four-force. The beginning of the twentieth century

saw the development of the concepts of Poincare’s four dimensional

vector space, Minkowski’s matrix calculus and space time geometry and

Sommerfeld’s four-vector algebra, which paved the way for four

dimensional physics. Later on Drobot and Rybarski (1958) introduced

and defined four-vectors in a Euclidean four dimensional space and
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developed a new variational principle for barotropic flows. George

Mathew and M. J. Vedan (1988, 1989, 1991) introduced four-vectors

and extended this variational principle to non-barotropic flows and they

derived the conservation laws using Noether’s theorems. The same

four-vector fields were used by Geetha S., Thomas Joseph and M. J.

Vedan (1995) to derive the law of conservation of potential vorticity as

an application of Noether’s second theorem. Geetha S. and M. J. Vedan

(1994) extended this to the study of stability of flows using Arnold’s

method.

Differential forms and geometric algebra play a major role in

merging the physical, mathematical and geometrical ideas of fluid

mechanics. The concept of differential forms originated in the work of

Grassmann. Differential forms establish a direct connection to

geometrical images and provide additional physical insight into field

theories in classical physics.

A modern geometrical analysis of fluid dynamics using the theory of

differential forms in a four dimensional manifold can be seen in Fecko

(2013). Fecko introduced the concept of absolute and relative integral

invariance into the realms of fluid dynamics, but the studies were

restricted to ideal barotropic flows. Analysis of the theory of integral

invariants in the field of mechanics can also be found in Arnold (1989),

Gantmacher (1975) and Lam (2014).

The concept of invariance of flows over manifolds has been described

using the notion of Lie derivatives of differential forms. Subin and Vedan

(2004) have investigated the invariant topological properties of flows in

the four dimensional Euclidean space time manifold using differential

forms. An in-depth analysis of the dynamics of fluid flows in higher

dimensions using topological methods can be seen in the works of Arnold

and Khesin (1999).
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The theory of integral invariants was first formally introduced by

Poincare and later conceptually developed by Cartan (1922). For an

integral invariant, the chains considered for integration need not be a

collection of equal time points. In this sense, Cartan’s concept of

integral invariance is broader than Poincare’s concept (Kiehn, 1975).

Studies pertaining to four dimensional classical flows using the language

of differential forms can also be seen in the works of Scofield and Huq

(2010, 2014), Kiehn (1975, 2001), Gumral (2016) and Shashikanth

(2012).

Almost all classical fluid dynamical theories deal with ideal

barotropic flows. A flow is said to be non-barotropic when the pressure

does not depend on density alone but also on another quantity such as

the specific entropy or in certain cases the chemical composition

(Akgun et.al, 2013). In the studies of radiative envelopes of massive

stars, interiors of degenerate stars, plasma physics and atmospheric

dynamics, flow is considered to be non-barotropic. Hence fluid models

must be extended to include non-barotropic flows, where plasma flows,

realistic magnetohydrodynamics and propagation of shock waves are

taken into consideration.

We consider non-barotropic flows for which p = p(ρ, S), where p is

the pressure, ρ is the mass density and S is the specific entropy. Kelvin’s

circulation theorem, Helmholtz’ vorticity theorems and the conservation

laws for helicity and potential vorticity hold for barotropic ideal flows

but not for non-barotropic flows.

Eckart in 1960 introduced a new quantity
∮
τS · dl, called the

thermodynamic circulation, where τ is the thermasy, defined as the

time integral of the temperature T (Eckart 1960, Schutz and Sorkin

1977). This scalar field was introduced by Helmholtz and subsequently

used in relativistic thermodynamics and classical continuum
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thermodynamics. The relation τ =
∫ t

0
kTdt was formulated by D.Van

Dantzig also (Preston, 2016). Eckart established the generalization of

Kelvin’s circulation theorem by showing that

D

Dt

∮
C

(v − τ∇S) · dl = 0,

where C is a closed curve moving with the fluid. Based on the work

of Eckart, Mobbs (1981) defined non-barotropic flows for which ∇τ ×
∇S 6= 0. Mobbs obtained the generalizations of the Helmholtz’ vorticity

theorems by considering tubes of generalized vorticity (w− (∇τ ×∇S))

and established the invariance of the generalized helicity and generalized

potential vorticity for three dimensional flows. The conservation laws for

non-barotropic flows using variational principles of hydromechanics have

been established by George Mathew and M. J. Vedan (1991). For three

dimensional non-barotropic gases, non-local conservation laws for fluid

helicity and cross helicity, using Clebsch variables were derived by Webb

et.al (2014) and the conservation for the cross helicity for non-barotropic

magneto hydrodynamic flows is shown by Yahalom (2017). In our work

we have extended the study of non-barotropic flows to a four dimensional

space time manifold using the calculus of differential forms.

Apart from the calculus of exterior forms, we have tried to explore

fluid dynamical concepts using the language of geometric algebra also.

William Clifford introduced geometric algebra during the second half of

19th century by combining the algebraic ideas of Hamilton and

Grassmann. Geometric algebra was structured by combining the outer

and inner product of elements of a linear space into a new product

called the geometric product. The inclusion of geometrical concepts

into abstract Clifford algebra has enriched geometric algebra and has

made it evolve into a powerful mathematical theory. Detailed
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description of the subject of geometric algebra can be seen in the works

of Hestenes (1966, 1999), Doran, A. Lasenby and J. Lasenby (2003) and

Bromborsky (2010). Geometric algebra provides a compact and

intuitive description in the fields of classical mechanics, quantum

mechanics, relativity and electromagnetic theory. Geometric algebra is

also being successfully applied as a computational tool in robotics and

computer graphics. As geometric algebra combines the properties of

both the inner and the outer product, additional information can be

extracted while executing the geometric product. We find that certain

properties and results pertaining to the field of fluid dynamics follow

from the geometric properties encoded in the geometric product.

Geometric algebra has been successfully applied to a variety of fields

in classical mechanics, but the applications of geometric algebra in the

field of fluid dynamics have been restricted to specialized problems like

that of fluid flows with variable viscosity in quaternionic settings, elliptic

boundary value problems and visualization of vector fields in the study

of gas dynamics and combustion. A geometric algebraic approach to

fluid dynamics to derive Kelvin’s circulation theorems and Helmholtz’

vorticity theorems can be seen in the work of Cibura and Hildenbrand

(2008).

1.1 Preliminaries

1.1.1 Euler and Navier-Stokes’ Flows in R3

Let v = (v1, v2, v3) be a divergence free velocity field in R3. The dynamics

of an ideal incompressible flow with constant density is described by the

Euler equation,

∂tv + (v · ∇)v = −∇p
ρ
−∇ϕ (1.1)
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and that of viscous incompressible fluids are described by the Navier-

Stokes’ equation,

∂tv + (v · ∇)v = −∇p
ρ
−∇ϕ+ ν∇2v, (1.2)

where p is the pressure, ρ is the mass density, ϕ is the potential for the

volume force field and ν is the kinematic viscosity (Batchelor, 1967).

The identity (v · ∇)v = ∇v
2

2
− v × (∇× v) is used to convert the above

equations into the form

∂tv − v × (∇× v) = −∇ε (1.3)

and

∂tv − v × (∇× v) = −∇ε+ ν∇2v (1.4)

respectively, where ε = v2

2
+ p

ρ
+ ϕ is the Bernoulli function.

In terms of the divergence free vorticity field w = ∇ × v, the vorticity

equation for the inviscid incompressible flow is given by

∂tw −∇× (v × w) = 0 (1.5)

and for viscous flow

∂tw −∇× (v × w) = ν∇2w (1.6)

Taking the dot product of (1.3) and (1.4) with the velocity, we get

∂t(
v2

2
) + v · ∇ε = 0.

and

∂t(
v2

2
) + v · ∇ε = v · ν∇2v
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It follows that,

∂t(ε) + v · ∇ε = 0, (1.7)

for ideal flows if,
p

ρ
and ϕ do not depend on time. In such cases, the

Bernoulli function is a conserved quantity along the trajectories of v

(Gumral, 2016).

1.1.2 Vector Fields and Flows

A fundamental object in a dynamical system is a manifold. A manifoldM

is an n-dimensional space that is locally isomorphic to an n-dimensional

Euclidean space Rn. The evolution of a fluid is described by a family of

maps ψt. Here ψt is defined as a parametric map ψ : I × R → I, such

that ψ(x, t) = ψt(x), where I is a domain of fluid. Given such a flow map

ψt, we can find a velocity field v given by

ψ̇t(x) =
∂ψ

∂t
(x, t) = v(ψt(x), t)

To each vector field v, we can find a flow ψt having v as its velocity field.

The integral curve of the system of differential equations
dxj
dt

= vj is

called the flow generated by the vector field v.

Let C be a smooth curve on M . The flow map ψt : M → M, carries

a fluid particle at a position x at time t = 0 to the position ψt(x) at

time t > 0. Each point of x of the curve C has a tangent vector of the

form ψ̇t(x) = v|x = vi(x)
∂

∂xi
(Kambe, 2004) (here and throughout the

thesis Einstein’s summation convention is used). The vector space of all

tangent vectors to all possible curves passing through a given point x

is the tangent space to M at x, denoted as TMx. The collection of all

tangent spaces at all points of M is the tangent bundle TM.
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Definition 1 (Exterior Forms). An exterior form αk of degree k is a
function of k vectors in Rn which is k-linear and antisymmetric. That is

αk : Rn ×Rn × · · · ×Rn → R

satisfies

αk(ax1 + by1, x2, · · ·xk) = aαk(x1, x2 · · · , xk) + bαk(y1, x2 · · · , xk)

and
αk(xi1 , xi2 · · · , xik) = (−1)ναk(x1, · · · , xk),

where

ν =

{
0 if the permutation i1, i2, · · · ik is even

1 if the permutation i1, i2, · · · ik is odd.

The set of all k-forms is a vector space under addition and scalar

multiplication defined by

(αk1 + αk2)v = αk1(v) + αk2(v)

(λαk)v = λαk(v),

where v = {v1, v2, · · · , vk}, vi ∈ Rn.

Definition 2 (Exterior multiplication or wedge product). Exterior
multiplication of a k-form αk with an l-form αl on Rn is defined to be
an exterior (k + l)-form such that

αk ∧ αl(x1, · · · xk+l) =
∑

(−1)nαk(xi1 , · · · , xik)αl(xj1 , · · · , xjl),

where i1 < · · · < ik and j1 < · · · , < jl is a permutation of the numbers
(1, 2, · · · , k + l) and n = 0 if permutation is even and n = 1 otherwise.

The exterior multiplication satisfies the properties of being
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skew-symmetric, associative and distributive as follows:

αk ∧ αl = (−1)klαl ∧ αk

(αk ∧ αl) ∧ αm = αk ∧ (αl ∧ αm)

(aαk1 + bαk2) ∧ αl = aαk1 ∧ αl + bαk2 ∧ αl.

Definition 3 (Interior product). If αk is a k-form and v be a vector
field, then the interior product of v with αk is defined as

(ivα
k)(v1, v2, · · · vk−1) = αk(v, v1, · · · , vk−1),

for every set of vectors v1, · · · , vk−1. For basis elements, the interior
product is given by

i∂xl (dxj1∧· · ·∧dxjk) =


(−1)m−1dxj1 ∧ · · · ∧ dxjm−1 ∧ dxxm+1 ∧ · · · ∧ dxjk

if l = jm
0 if l 6= jm for all m.

In local coordinates a k-form at a point on the manifold is spanned

by

dxI = dxi1 ∧ · · · ∧ dxik ,

where I ranges over all strictly increasing i′s such that 1 ≤ i1 < i2 · · · <
ik ≤ n.

An exterior k-form on M is expressed as

αk = fI(x)dxI ,

where fI ’s are real valued functions. The exterior operator d takes k-

forms to (k + 1)-forms.

Definition 4 (Exterior Derivative). The exterior derivative of a k-form
αk = fI(x)dxI is the (k + 1)-form

dαk = ∂xjfIdxj ∧ dxI .
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Exterior differentiation has the following properties:

1. d(aαk + bαl) = adαk + bdαl,

2. d(αk ∧ αl) = dαk ∧ αl + (−1k)αk ∧ dαl,

3. d(dαk) = d2(αk) = 0.

1.1.3 Differential Forms

A differential k-form αk at a point x of the manifold M is an exterior

k-form on the tangent space TMx to M at x. 0-forms are smooth real

valued functions on M . If (x1, · · · , xn) is the local coordinate system,

then the tangent space TMx has a basis {∂x1 , ∂x2 , · · · , ∂xn}. The dual

space of the tangent space TMx, termed as the cotangent space T ∗Mx has

the dual basis {dx1, dx2, · · · , dxn}. The space of all 1-forms (covectors) at

a point x is the cotangent space and a 1-form has the general expression

α1 = f1(x)dx1 + f2(x)dx2 + · · ·+ fn(x)dxn,

where the coefficient function fi’s are smooth.

Let y = yi∂xi and z = zi∂xi be vectors in TMx. An inner product on

TMx is given by

〈y, z〉 = gijyizj,

where gij is the metric tensor. If the metric tensor gij is the unit matrix

such that gij = δij, (δij is the Kronecker delta) then the metric tensor is

said Euclidean. To a vector a = ai∂xi we can associate a covector or a

1-form α1 through the Euclidean metric tensor.

1.1.4 Lie Derivative

The Lie derivative measures the infinitesimal change of physical objects

expressed as functions ,vector fields, tensors or differential forms when
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acted upon by the flow. The Lie derivative of a scalar function f with

respect to a flow induced by the vector field v is the directional derivative

df(v). The Lie derivative of a vector field w with respect to another vector

field v is the Lie bracket of v and w expressed as

Lvw = [v, w].

If v = v1∂x1 + · · · + vn∂xn be a vector field on the manifold M and

w = w1∂x1 + · · ·+ wn∂xn , then

Lvw = (vi∂xiwj − wi∂xivj)∂xj .

The Lie derivative of a differential form αk with respect to a vector field

v is given by the Cartan’s formula

Lvαk = divα
k + ivdα

k.

The Lie derivative satisfies the following properties.

Lvdαk = dLvαk

Lvivαk = ivLvαk

ivdf = Lvf

Lv(αk ∧ βk) = (Lvαk) ∧ βk + α ∧ Lvβk

Chain: In practice, often we encounter the contours of integration,

consisting of several pieces transversed in either direction more than once.

The analogous concept in higher manifolds is called a chain.

Stokes’ Theorem: For a continuously differentiable k-form αk on a

manifold M , Stokes’ theorem states that∫
D(k+1)

dαk =

∫
∂D(k+1)

αk,
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where Dk+1 is a (k+ 1)-dimensional chain in M with boundary ∂D(k+1).

Hodge Star Operator: Hodge star operator, denoted by ∗, defined on

an n-dimensional manifold equipped with an Euclidean metric, is a linear

map from k-forms to n− k forms given by,

∗(dxi1 ∧ dxi2 · · · ∧ dxik) = (−1)νdxik+1
∧ dxik+1

· · · ∧ dxin ,

where ν = 0 if {i1, i2, · · · , in} is an even permutation of {1, 2, · · · , n} and

ν = 1 otherwise and ik+1 < · · · < in.

1.1.5 Invariants in Fluid Dynamics

Laws of conservation and the invariance of physical quantities are

fundamental in analyzing and interpreting fluid dynamical theories.

Physical quantities are treated as geometric objects like scalars, vectors,

differential forms or as tensors. Differential geometry based on Cartan’s

calculus of differential forms is considered to be the natural language of

field theory in higher dimensions and is often used by mathematicians

and physicists to study and analyze invariant properties of physical

quantities along the motion of a fluid. Here we review the theory of

invariance of physical quantities expressed as differential forms.

1.1.6 Local Invariants in R3

Tur and Yanovsky (1993) have proposed a general geometric method of

derivation of invariants in hydrodynamic dissipation less media and

defined four types of local invariants in the three dimensional space R3.

The invariants thus defined using the language of exterior forms, are

universal and independent of the type of hydrodynamic models

considered. According to Tur and Yanovsky, in a three dimensional

space, exterior forms of degree p ≤ 3 (p = 0, 1, 2, 3) lead to the existence
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of four types of local invariants: Lagrangian invariants associated with

0-forms, S-invariants associated with one-forms, frozenness invariants

associated with two-forms, and density invariants associated with

three-forms. A point in R3 is taken as (x, y, z) or equivalently

(x1, x2, x3).

The differential k-form αk is said to be an invariant if it satisfies the

condition

∂tα
k + Lvαk = 0, (1.8)

where v is the flow field and Lvαk is the Lie derivative of the differential

form αk with respect to the flow v.

1. Lagrangian invariants: 0-forms or scalar functions of the form α0 =

a(t, x, y, z) satisfying condition (1.8) result in the equation

∂ta+ vk∂xka = 0. (1.9)

or in vector form,

∂ta+ (v · ∇)a = 0. (1.10)

Such functions are called Lagrangian invariants. The physical

meaning of Lagrangian invariants reduces to their advection by

the flow.

2. S-invariants: Condition (1.8) applied to one-forms α1 = a1dx +

a2dy + a3dz, results in

(∂tai + vk∂xkai + ak∂xivk)dxi = 0, (1.11)

which in vector form gives

∂ta+ (v · ∇)a+ (a · ∇)v + a× (∇× v) = 0, (1.12)

where a = (a1, a2, a3).
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a1dx + a2dy + a3dz = 0 defines a plane orthogonal to the vector

field a at each position (x, y, z) and the invariant one-form defines

a local field of planes frozen into the flow medium. Invariant one-

forms determine S-invariants. Here the surfaces orthogonal to the

vector field a is thus said to be frozen into the flow.

3. Frozen-in invariants associated with two-forms : A two-form can be

represented as α2 = A1dy ∧ dz+A2dz ∧ dx+A3dx∧ dy. Condition

(1.8) of invariance leads to the equation

(∂tAi + vm∂xmAi + Ai∂xmvm + εijkÃm∂xmvi)dxj ∧ dxk = 0, (1.13)

where εijk is the permutation tensor or the Levi- Civita symbol of

three dimensions and Ãm = (−1)m+1Am. The above equation in

vector form (1.13) becomes

∂tA+ (v · ∇)A+ A(∇ · v)− (A · ∇)v = 0, (1.14)

where A = (A1, A2, A3). Such two-forms define frozen-in invariants.

4. Density invariants: For a three-form α3 = a(t, x, y, z)dx ∧ dy ∧ dz
(1.8) yields the equation,

(∂ta+ ∂xi(avi))dx ∧ dy ∧ dz = 0 (1.15)

and in vector form this becomes,

∂ta+∇ · (av) = 0. (1.16)

Physically such forms are associated with the non-destructibility of

mass, hence the name density invariant.
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1.1.7 Integral Invariants

It was Poincare who characterized the theory of integral invariants. An

integral invariant is used to denote an integral that, when taken over

an arbitrary set of simultaneous (i.e., ones that correspond to the same

value of t) points, does not change value when one displaces the points

of that set along the corresponding trajectories up to another arbitrary

instant t′ (Cartan, 1922). The physical quantity under the integral sign

in an integral invariant is expressed as an exterior form. In this thesis we

discuss the basic Poincare integral invariants and Cartan’s generalization

to an extended phase space.

It should be noted that interpretation of the problem may be

reversed; i.e., rather than being given the vector field and searching for

those invariant objects, it is possible to solve for those vector fields that

leave an object invariant. This procedure is the basis of Cartans

analysis of Hamiltonian dynamics; Cartan assumes that the closed

integral of action is an absolute invariant of some vector field v in state

space, and solves for this vector field. The vector field turns out to be

unique, and its components are given by Hamilton’s equations (Kiehn,

1975).

Absolute and Relative Integral Invariance

Consider an n-dimensional manifold M on which a velocity vector field

v is defined. The structure (M,ψt) is called a phase space where ψt is

the flow generated by v. Let αk be a k-form defined on M and Dk be

a k-dimensional surface or a k-chain on M . Due to the flow ψt, the k-

dimensional surfaces flow with a velocity v and as a result Dk is mapped
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to ψt(D
k). For any k-chain Dk, if∫

Dk

αk =

∫
ψt(Dk)

αk,

then αk is said to be an integral invariant with respect to the field v. The

condition for integral invariance is given by∫
Dk

Lvαk = 0, (1.17)

where Lvαk is the Lie derivative of the differential form α with respect

to the flow induced by v. For the statement (1.17) to be true, Lvαk must

vanish, i.e., Lvαk = 0 for every k-dimensional chain Dk (Fecko, 2013).

Vanishing of the Lie derivative implies that the corresponding physical

quantity remains invariant along the integral curves of the vector field

that constitutes the flow. This leads to the consideration of two types of

integral invariants: absolute and relative invariants.

Definition 5. A k-form αk on a phase space is called an absolute integral
invariant of the phase flow ψt if∫

ψt(Dk)

αk =

∫
Dk

αk

for every k-dimensional region or a k-chain.

Definition 6. A k-form αk on a phase space is called a relative integral
invariant of the phase flow ψt if∮

ψt(Ck)

αk =

∮
Ck

αk

for every closed k-dimensional region (a region without boundary, also
called a k-cycle).

A chain is called a cycle when its boundary is zero. i.e, a chain Ck is
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a cycle if ∂Ck = 0. k-cycles form a sub class of k-chains. If the integral∮
Ck Lvαk = 0 in equation (1.17) is to be satisfied over each cycle, then

it is enough that Lvαk be exact (de Rham theorem). i.e, Lvαk = dβ̄ for

some form β̄, where the integration is taken over a cycle Ck.

Thus,
∫
Dk α

k is an absolute integral invariant if Lvα = 0, for every chain

Dk and
∮
Ck α

k is a relative integral invariant if Lvα = dβ̄, for every cycle

Ck in M .

If αk provides a relative integral invariant, by Cartan’s formula

Lvα
k

= ivdα
k + divα

k, it holds that

ivdα
k = dβ,

where β = β̄−ivα
k. Then v, αk, and β generate a series of relative integral

invariants∮
Ck

αk,

∮
Ck

αk ∧ dαk, · · ·
∮
Ck

α ∧ (dα)k, k = 0, 1, 2 · · · (1.18)

where Ck’s are cycles of appropriate dimensions (Fecko, 2013).

Proposition 1. αk is a relative integral invariant of a flow ψt of a phase
space if and only if its exterior differential dαk is an absolute integral
invariant of ψt.

Proof. Let a k-form αk on M be a relative integral invariant of the flow
ψt. Let Ck be a k-dimensional chain on M. Then,∫

Ck+1

dαk =

∫
∂Ck+1

αk =

∫
ψt(∂Ck+1)

αk =

∫
∂ψt(Ck+1)

αk =

∫
ψt(Ck+1)

dαk
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Also, Lvαk = dβ̄ ⇒ Lvdαk = 0. i.e.,∮
Ck

αk is a relative integral invariant⇔
∫
Dk+1

dαk is an absolute invariant,

(1.19)

where Ck = ∂Dk+1. If dαk = ω, it follows that,∫
Dk

ω,

∫
Dk

ω ∧ ω, · · ·
∫
Dk

ω ∧ ωk, k = 0, 1, 2 · · · (1.20)

is a series of absolute integral invariants, where Dk’s are chains of

appropriate dimensions.

Absolute and Relative Integral Invariants in R4

We consider Cartan’s generalization of integral invariance of objects in

the extended phase space.

Consider the Euclidean space-time manifold M = R4 ∼= T×R3, where

T ∼= R is the time and R3 is the Euclidean space. Let ξ = ∂t+v, where v

has time dependent components, be a flow field defined on the manifold

R4. A fluid motion is usually represented by a diffeomorphism φt, the

flow induced by ξ. Then (R4, φt) is termed as the extended phase space.

Any general k-form σk on R4 can be represented in the form σk =

α̂k + dt ∧ β̂k−1 where α̂k is a k-form and β̂ is a (k − 1)-form and both

are possibly time dependent spatial forms (α̂k and β̂k−1 need not be pull

backs of forms from R3 onto T × R3 as described in Poincare’s theory).

The conditions for integral invariance in the extended phase space are∮
Ck

σk is a relative invariant ⇔ L∂tα̂k + ivd̂α̂
k = d̂β̂k−1 ⇔ iξdσk = 0,

(1.21)
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where Ck is a cycle and∫
Dk

σk is an absolute invariant ⇔ L∂tα̂k + L̂vα̂
k = 0⇔ iξdσ

k = 0,

(1.22)

where Dk is an arbitrary chain in R4 and σk = α̂k − dt ∧ ivα̂
k and

L̂v = ivd̂+ d̂iv is the spatial Lie derivative (Fecko, 2013).

Let Ck
0 and Ck

1 be k-cycles such that the integral curves of the

vector field ξ = ∂t + v, connects points on a k-cycle Ck
0 to points lying

on Ck
1 . The family of these integral curves form a (k + 1) dimensional

surface (a tubular structure), with cycles Ck
0 and Ck

1 as boundaries.

These cycles may contain points lying on coordinates of different time

[12]. Figure 1.1:

Cycles Ck
0 and Ck

1 do not lie on

hyperplanes of constant time in

R4 in general.

Figure 1.2:

Cycles Ck
0 and Ck

1 lie on

hyperplanes of constant time in

R4(special case).

(Figures taken from Fecko,

2013)

Let P (t) be a three dimensional hypersurface in R4 for a fixed t. From

the relation P (t) = ψt(P (0)), we can consider geometric objects

(chains) co-moving along with the fluid. For relativistic flows objects

lying on a fixed time hypersurface P (t1) need not necessarily lie on

fixed time hypersurface P (t2). By generalizing the concept of integral
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invariants from phase space to extended phase space, we are able to

consider chains lying at different time coordinates instead of chains

lying on hypersurfaces of fixed time, irrespective of the type of flow.

1.1.8 Geometric Algebra

Geometric algebra combines the languages of vector algebra, complex

algebra and matrix algebra to form a unified framework. A detailed

study of geometric algebra and its applications in classical mechanics

can be seen in the works of Hestenes (1999) and Doran et.al (2003). In

mathematical literature geometric algebra is referred to as Clifford

algebra. In chapter 4 of this thesis we have preferred to use the

terminology of geometric algebra as given in Doran et.al (2003).

Let V be a finite dimensional vector space over R. V together with

a geometric product is called a geometric algebra. For a,b ∈ V , the

geometric product is defined as

ab = a · b+ a ∧ b,

where a · b is the inner product and a ∧ b is termed as outer product

(exterior product). Thus the geometric product is the sum of a scalar

product and an outer product and hence are termed as multivectors.

Thus the elements of a geometric algebra G are multivectors. The outer

product of two vectors a and b (a ∧ b) is defined to be a bivector and

is taken as the signed area of a parallelogram with a and b as its sides.

The outer product of three vectors a ∧ b ∧ c (trivector) is taken as an

oriented volume of a parallelepiped with the three vectors forming its

sides. The outer product of n vectors is visualized to be an n dimensional

parallelogram with a magnitude and an orientation associated to it.

The outer product of k vectors is called a blade of grade-k. Scalars

are grade-0 blades, linear combination of vectors are grade-1 blades,
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linear combination of bivectors are grade-2 blades and so on. For an n

dimensional vector space, grade-n blades are called pseudoscalars and

grade-(n-1) blades are called pseudovectors. Multivectors are a linear

combination of blades of different grades. The sum and products of

multivectors are unique, so that G is algebraically closed.

If A,B, · · · , C are used to denote multivectors, then the geometric

product of multivectors satisfies the property of being associative and

distributive over addition. Thus the the sum and the geometric product

of multivectors satisfies the following axioms:

Addition is commutative : A+B = B + A.

Addition and multiplication are associative:

A+ (B + C) = (A+B) + C,

A(BC) = (AB)C.

Multiplication is distributive over addition

A(B + C) = AB + AC,

(A+B)C = AC +BC.

Unique additive and multiplicative identities (0 and 1 respectively) exists

such that:

A+ 0 = A and 1A = A.

There exists a unique additive inverse (−A) for every multivector A such

that:

A+ (−A) = 0.

The space of multivectors form a vector space over R. Multivectors are

classified into different grades. Geometric algebra of a finite dimensional

vector space is an associative algebra.
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The introduction of geometric algebra into classical mechanics was

done by D. Hestenes through his work ‘Space Time Algebra′ in 1966.

Thereon through a series of papers Hestenes advocated the applications

of geometric algebra in wide range of fields of quantum mechanics,

electrodynamics, relativistic physics, Lie group theory, projective and

conformal geometry.

Space Time Algebra

Space time algebra (STA) is the geometric algebra of space time. Space

time algebra is commonly referred by physicists as the geometric algebra

of the Minkowski space time, where as the geometric algebra G(4, 0)

or G4 of the Euclidean four dimensional space R4 and the geometric

algebra G(1, 3) of Minkowski space time R1,3 are found to be algebraically

isomorphic (Sobczyk, 2017). Here we consider the geometric algebra of

the Euclidean space time manifold.

Let {e0, e1, e2, e3} be a set of orthonormal vectors tangent to a point

lying in the Euclidean space time manifold. eo is taken to be a time like

vector and e1, e2, e3 are space like vectors. The ei’s satisfy the relations

e2
i = 1, ei · ej = δij, where i and j take values from 0 to 3. The six

bivectors ei ∧ ej satisfy (ei ∧ ej)2 = −1 and they generate rotations in a

plane. The four trivectors satisfy eiejek = εijklIel, where I is a grade-4

pseudoscalar defined as I = e0e1e2e3 and can be considered as the unit

four dimensional oriented volume element. The trivector or otherwise

termed as a pseudovector can be considered as a three dimensional unit

volume. Thus the set {ei} generates a basis consisting of 16 terms (1

scalar, 4 vectors, 6 bivectors, 4 trivectors and 1 pseudoscalar) for the

geometric algebra G4 of the four dimensional Euclidean space R4.
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A general element A of G4 can be expressed as

A = AS + AV + AB + AT + AP ,

where AS denotes the scalar part, AV denotes the vector part, AB denotes

the bivector part, AT denotes the trivector part and AP denotes the

pseudoscalar part of the multivector A.

Ã denotes the reversion of A in which the order of the vector products

in A is reversed. Therefore, Ã = AS+AV−AB−AT+AP (Hestenes,2016).

SUMMARY OF THE THESIS

In this thesis we have discussed the properties of fluid dynamical objects

in a Euclidean space time manifold using the languages of differential

forms and geometric algebra.

In the introductory chapter we have discussed the preliminary theories

required for the thesis. A brief survey on the available literature based

on related works is also discussed. A brief synopsis of the work done

follows.

In chapter 2 we discuss the theory of integral invariants using the

notion of Lie derivatives of differential forms in the frame work of

classical fluid flows governed by Euler and Navier-Stokes’ equations in

the Euclidean space time manifold. Integral invariance of physical

objects of incompressible ideal flows are analyzed using the concepts of

relative and absolute invariance of forms in a four dimensional

Euclidean space time manifold. Corresponding to exterior forms of

degrees k = 0, 1, 2, 3 and 4, we obtain five types of local invariants. The

expressions for the rate of change of circulation, vorticity flux, helicity

and parity in the case of three and four dimensional ideal and

Navier-Stokes’ flows are also obtained. Fluid Maxwell’s equations are
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obtained not by analogy but as mathematical consequences derived

from the properties and operations of the differential forms. Analogous

equations for the Poynting theorem and Lorentz force in

electromagnetic theory are also derived in fluid dynamics. Analogous to

the electromagnetic stress-energy tensor a fluid dynamic stress-energy

tensor is also obtained.

In chapter 3 we consider non-barotropic flows in a Euclidean four

dimensional space time manifold. Integral invariants of non-barotropic

perfect and viscous flows are studied using the concepts of relative and

absolute invariance of forms. The four dimensional expressions for the

rate of change of the generalized circulation, generalized vorticity flux,

generalized helicity and generalized parity in the case of ideal and viscous

non-barotropic flows are thereby obtained.

In chapter 4 we try to apply the geometric algebraic methods to four

dimensional flows in the Euclidean space time manifold. We find that

certain properties and results pertaining to the field of fluid dynamics

follow from the geometric properties encoded in the geometric product.

On applying the geometric product to physical objects we are able to

extract additional information and quantities which may need further

investigation. The fluid dynamic stress-energy tensor and the Poynting

theorem is re-derived using the language of geometric algebra.

In chapter 5, we conclude the thesis, compiling the results obtained

in the previous chapters.
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Chapter 2

Local and Integral Invariants
in a Space Time Manifold

Based on Grassman’s geometric algebraic concept of exterior

multiplication, Cartan developed the theory of exterior differential

systems. The theory of integral invariants was first formally introduced

by Poincare and later conceptually developed by Cartan (1922). Cartan

considered the invariance of objects in the extended phase space (where

time is added to the ordinary space coordinates). For an integral

invariant, the integration chain need not be a collection of equal time

points; in this sense, Cartan’s concept of integral invariance is broader

than Poincare’s concept, which was confined to equal time point sets

(Kiehn, 1975). Moving from Poincare’s version of integral invariance to

Cartan’s version, one is able to consider time-dependent situations

rather than the time-independent ones (Fecko, 2013). Apart from

mechanics, integral invariants are applied in the fields of differential

equations, image and geometry processing, shape matching etc.

In this chapter we discuss the theory of integral invariants of

differential forms in the frame work of classical fluid flows governed by

Euler and Navier-Stokes’ equations in the Euclidean space time

27
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manifold. Integral invariance of fluid dynamical objects are analyzed

using the concepts of relative and absolute invariance of forms.

In the next section we extend the conditions of local invariance of

differential forms as derived by Tur and Yanovsky to the four dimensional

Euclidean space time manifold.

2.1 Local Invariants in R4

We consider the Euclidean space time R4 ∼= T ×R3, where T ∼= R is the

time and R3 is the Euclidean space. A point in space-time is

represented by a set of coordinates (t, x, y, z) or equivalently

(x0, x1, x2, x3). We extend the definitions of the four types of local

invariants in a three dimensional space as discussed in section (1.1.6) to

a four dimensional space. As in section (1.1.6) we are able to define five

types of local invariants in a four dimensional space time manifold

instead of four in the three dimensional space. Here corresponding to

the exterior forms of degree k ≤ 4 (k = 0, 1, 2, 3, 4) there exists five

types of local invariants.

The differential k-form αk is said to be an invariant if it satisfies the

condition

Lςαk = 0, (2.1)

where ς = v0∂x0 + v1∂x1 + v2∂x2 + v3∂x3 or ς = vi∂xi is the flow field

(i = 0, 1, 2, 3).

1. Invariants associated with 0-forms: 0-forms or scalar functions of

the form α0 = a(x0, x1, x2, x3) satisfying (2.1) result in the equation

vi∂xia = 0. (2.2)
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For the case where the flow field is of the form ξ = ∂t + v1∂x1 +

v2∂x2 + v3∂x3 or ξ = ∂t + v. (v0 = 1, x0 = t), the above equation

takes the form,

∂ta+ vk∂xka = 0, (2.3)

(k = 1, 2, 3) or in vector form,

∂ta+ (v · ∇)a = 0, (2.4)

which is the standard form of a Lagrangian invariant

(v = (v1, v2, v3)). The specific entropy S and the Ertel’s invariant

$ = w·∇S
ρ

for a compressible adiabatic fluid are Lagrangian

invariants. The magnetic helicity hm and cross helicity hc are

Lagrangian invariants in magnetohydrodynamic flows of

incompressible ideal fluids.

2. Invariants associated with one-forms or S-invariants: One-forms can

be represented as α1 = a0dx0 + a1dx1 + a2dx2 + a3dx4. Then (2.1)

results in

(vk∂xkai + ak∂xivk)dxi = 0. (2.5)

For the flow ξ, the above equation takes the form

(∂tai + vk∂xkai + ak∂xivk)dxi = 0, (2.6)

where i takes the value 0, 1, 2, 3 and summation over k = 1, 2, 3.

Comparing with equation (1.11), it can be observed that the above

equation is the analogous form of an S-invariant in four dimensions.

Let v = (v1, v2, v3) be a divergence-free velocity field in R3 satisfying

Euler’s or Navier-Stokes’ equations as in (1.1) or (1.2). Let f : R4 →
R. The velocity four-vector field can be represented as V = (f, v)

in R4. Equipping R4 with the Euclidean metric, the one-form or
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the covector field associated with the velocity V can be defined as

σ = fdt+ v1dx+ v2dy + v3dz or σ = fdt+ v̂. (2.7)

It will be shown later (see equation (2.14)) for an ideal

incompressible flow and f = −ε,

Lξσ = d(
v2

2
− (

p

ρ
+ ϕ)) = dβ1.

The transformation σ
′

= σ + dθ, where the scalar function θ is

chosen such that Lξθ = −β1, leads to an S-invariant in R4.

In general, if a is a Lagrangian invariant, then da is an S-invariant.

Thus the exterior differentials of the Lagrangian invariants, such as

dS, d$, dhm, dhc are examples of S-invariants.

3. Invariants associated with two-forms: A two-form can be

represented as

α2 = b01dx0 ∧ dx1 + b02dx0 ∧ dx2 + b03dx0 ∧ dx3 + b12dx1 ∧ dx2

+ b13dx1 ∧ dx3 + b23dx2 ∧ dx3,

with the convention that bij = −bji. Condition (2.1) of invariance

of forms results in

(vk∂xkbij + [bkj∂xivk]k 6=j + [bik∂xjvk]k 6=i)dxi ∧ dxj = 0. (2.8)

For the velocity one-form σ, the vorticity two-form ω = dσ for ideal

fluids and the Faraday two-form for electrically conducting fluids

are invariants associated with two-forms. If α1 and α2 are invariant

forms, then α1 ∧ α2 is also an invariant form. Hence the pair-wise
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exterior products of all the invariant one-forms lead to additional

invariant two-forms.

4. Invariants associated with three-forms: A three-form can be

represented as α3 = c0dx1 ∧ dx2 ∧ dx3 + c1dx0 ∧ dx2 ∧ dx3 +

c2dx0 ∧ dx1 ∧ dx3 + c3dx0 ∧ dx1 ∧ dx2 or α3 = cidxj ∧ dxk ∧ dxl. On

applying (2.1) we get

(vm∂xmci + ci∂xmvm + εijklc̃m∂xmvi)dxj ∧ dxk ∧ dxl = 0, (2.9)

where εijkl is the Levi- Civita symbol of four dimensions and c̃m =

(−1)m+1cm. The above equation takes the analogous form of the

frozenness invariants associated with the three-forms in R3. The

exterior differential of two-forms and exterior products of two, one

and zero forms lead to invariants of the above form.
dS ∧ d$ ∧ q

ρ
can be considered as the four dimensional analogue to the invariant

in the Hollman model (Tur and Yanovsky, 1993).

From the velocity one-form σ and the vorticity two-form ω, the

helicity three-form is defined as η = σ ∧ ω, It will shown later

that (from equation (2.48)) Lξη = d((v
2

2
− (P + ϕ))ω) = dβ2. The

transformation η′ = η+dθ′, where the two-form θ′ is so chosen that

Lξθ′ = −β2 leads to an invariant three-form.

5. Invariants associated with four-forms: A four-form can be

represented as α4 = g(x0, x1, x2, x3)dx0 ∧ dx1 ∧ dx2 ∧ dx3. On

applying (2.1) we get,

(∂xkgvk)dx0 ∧ dx1 ∧ dx2 ∧ dx3 = 0. (2.10)

For the flow ξ, the above equation takes the form

(∂tg + ∂xk(gvk))dt ∧ dx ∧ dy ∧ dz = 0, (2.11)
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which is analogous to the density invariants associated with three-

forms in R3.

The invariance of density four-form ρdt∧ dx∧ dy ∧ dz, leads to the

mass conservation law for ideal flows without sources and sinks and

the invariance of ρSdt∧dx∧dy∧dz leads to the entropy conservation

law. The invariance of the four-form of parity κ = ω ∧ ω leads to

the Ertel’s theorem of potential vorticity (see equation (2.69).

Comparing the invariant relations in the three and four dimensional cases,

we find that the invariant relation associated with the two-forms in R4

has no counterpart in the three dimensional manifold and its geometric

significance is to be further investigated.

2.2 Integral Invariants in R4

In the next sections we apply the concepts of absolute and relative

invariance of forms as described in section (1.1.7) to classical flows in a

four dimensional manifold and obtain some results.

2.2.1 Integral Invariance Associated with the One-Form of
Velocity

Let v = (v1, v2, v3) be a divergence-free velocity field in R3 satisfying

Euler’s or Navier-Stokes’ equations as in (1.1) or (1.2). Associated with

the four-velocity vector field V = (f, v) in R4 the velocity one-form is

expressed as,

σ = fdt+ v1dx+ v2dy + v3dz or σ = fdt+ v̂.

If the four-velocity V is also divergence free then we have,

∂tf + v · ∇f = 0, (2.12)
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so that V satisfies the Euler’s equation (Shashikanth, 2012). The velocity

one-form σ satisfies the divergence free condition ðσ = 0 where ð = −∗d∗
is the co-differential operator and ∗ is the Hodge star dual operator with

respect to the Euclidean metric.

For an incompressible fluid,
dp

ρ
is exact, say dP . In particular, choose

f = −ε, the Bernoulli function, then the velocity one-form is expressed

as

σ = −εdt+ v1dx+ v2dy + v3dz or σ = −εdt+ v̂. (2.13)

Let Γ =
∫
D1 σ, where D1 is an arbitrary 1 - chain.

Then,
dΓ

dt
=

d

dt

∫
D1

σ =

∫
D1

Lξσ.

For the flow field ξ = ∂t + v,

Lξσ = d(
v2

2
− (P + ϕ)) = dβ̄, (2.14)

for incompressible ideal flows, Hence Lξσ is exact for ideal flows. By

applying Stokes’ theorem we have,

dΓ

dt
=

∫
D1

dβ̄ =

∫
∂D1

(
v2

2
− (P + ϕ)).

dΓ

dt
vanishes when ∂D1 = 0. i.e, when D1 is a 1 - cycle C1. Thus Γ is

an invariant over arbitrary 1 - cycles C1 in R4. Thus
∮
C1 σ represents a

relative integral invariant. If the domain of integration lies on the hyper

surface of constant time, then
∮
C1 σ is the circulation and its invariance

implies the Kelvin’s circulation theorem. But the invariance of
∮
C1 σ still

remains valid even if the cycle C1 lies in different coordinates of time.

From the condition L∂tα̂ + ivd̂α̂ = d̂β̂ of relative invariance of the

velocity one form σ, we get L∂t v̂ + ivd̂v̂ = −d̂ε, which in vector form
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yields the Euler’s equation (1.3).

For viscous flows, using equation (1.4), we get

Lξσ = ν(v · ∇ × w)dt− ν(∇× w) · dx + d(
v2

2
− (P + ϕ)).

Then,

dΓ

dt
=

∫
D1

Lξσ =

∫
D1

ν(v · (∇×w))dt− ν(∇×w) · dx + d(
v2

2
− (P +ϕ)).

(2.15)

If D1 lies on fixed coordinates of time the above equation reduces to

dΓ

dt
=

∫
D1

(−ν(∇× w) +∇(
v2

2
− (P + ϕ))) · dx.

Also,
dΓ

dt
=

∮
C1

−ν(∇× w) · dx,

over 1 - cycles. The above expression evaluates the rate of change of

circulation for viscous incompressible fluids for three dimensional flows

and equation (2.15) gives the four dimensional expression to evaluate the

rate of change of circulation.

Circulation plays an important role in biomechanics. The emergence

of the study of four dimensional flows in the field of biofluids and

magnetic resonance imaging is reflected in recent studies (Francois et.al

(2013), Kamphius et.al (2013), Markl et.al (2016)). Equation (2.15) can

be considered as the general expression to evaluate the rate of change of

circulation of viscous fluids for four dimensional flows.
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2.2.2 Integral Invariance Associated with the Two-Form of
Vorticity

From the velocity one-form σ = fdt+ v̂, the vorticity two-form is defined

as

ω = dσ

= w1dy ∧ dz + w2dz ∧ dx+ w3dx ∧ dy

+ (∂tv1 − ∂xf)dt ∧ dx+ (∂tv2 − ∂yf)dt ∧ dy + (∂tv3 − ∂zf)dt ∧ dz
(2.16)

= Ω̂ + dt ∧ Ê ,

where

Ω̂ = w1dy ∧ dz + w2dz ∧ dx+ w3dx ∧ dy = w · ds

and

Ê = (∂tv1 − ∂xf)dx+ (∂tv2 − ∂yf)dy + (∂tv − ∂zf)dz.

w = ∇ × v = (w1, w2, w3) is the vorticity vector in R3. The vorticity

two-form is expressed as

ω = w · ds+ ((v × w)−∇φ)dt ∧ dx, (2.17)

in the space of solutions of Euler equations and for viscous fluids,

ω = w · ds+ ((v × w)−∇φ+ ν∇2v)dt ∧ dx, (2.18)

where φ = f + ε. If f = −ε, the above equations reduce to

ω = w · ds+ (v × w)dt ∧ dx (2.19)

and

ω = w · ds+ ((v × w) + ν∇2v)dt ∧ dx. (2.20)
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In R4, the vorticity two-form can also be represented as (L,w), where

L = ∂tv +∇ε = (L1, L2, L3).

L = v × w, the negative of the Lamb vector for ideal fluids and

L = (v × w) + ν∇2v for viscous fluids.

Let W =
∫
D2 ω, then

W =

∫
D2

dσ =

∫
∂D2

σ.

Thus W = Γ when ∂D2 = C1.

dW

dt
=

∫
D2

Lξω =

∫
D2

Lξdσ =

∫
D2

dLξσ =

∫
∂D2

Lξσ. (2.21)

Thus W is invariant over 2 - cycles for which ∂D2 = 0 or when Lξσ = 0

over ∂D2.

For ideal flows, Lξσ is exact. Then,

dW

dt
= 0.

Hence W represents an integral invariant.

Now,
∮
C1 σ is a relative invariant for ideal flows. From equation (1.19)

it follows that
∫
D2 ω is an absolute integral invariant, when C1 = ∂D2.

We also have Ê = −ivΩ̂. Thus ω can be represented in the form

Ω̂− dt ∧ ivΩ̂. The condition

L∂tΩ̂ + L̂vΩ̂ = 0,

for absolute invariance of forms as in equation (1.22), in vector form

results in the vorticity equation (1.5). The condition Lξω = 0 for the

absolute invariance of two form ω results in the following vector
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equations,

∂t((∂tv +∇ε) + w × v) +∇((∂tv +∇ε) · v) = 0

and

∇× ((∂tv +∇ε) + w × v) = 0.

In R3, vortex lines are curves tangent to the vorticity vector field. But

vorticity vector fields do not exist in R4. Because of the two-form nature

of ω there are no vortex lines in R4, instead ω can be considered as vortex

surfaces (Shashikanth, 2012).

The absolute invariance of the two-form ω implies that
∫
D2

1
ω =

∫
D2

2
ω,

where D2
1 and D2

2 = ϕt(D
2
1) are two dimensional surfaces or 2-chains (not

necessarily lying in fixed hypersurfaces of constant time) encircling vortex

surfaces in R4.

If D2 is a two-chain lying on the hypersurface of constant time, then∫
D2 ω reduces to

∫
D2 ω · ds, conventionally termed as the net vorticity

flux, is an invariant for ideal three dimensional flows.

For non-barotropic fluids, Lξω =
dρ ∧ dp
ρ2

6= 0 and hence the two-form

ω fails to satisfy the invariance condition (Fecko, 2013). But it will be

shown that the generalized vorticity two-form ω̃ is an absolute integral

invariant (see chapter 3).

For viscous fluids, using equation (2.21)

dW

dt
=

∫
D2

−ν[(∇× (∇× w)) · ds+ dt ∧ (∂t(∇× w) +∇((∇× w) · v) · dx]

=

∫
∂D2

ν(v · (∇× w))dt− ν(∇× w) · dx + d(
v2

2
− (P + ϕ)).

(2.22)
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If D2 lies on fixed coordinates of time then,

dW

dt
=

∫
D2

−ν(∇× (∇× w)) · ds

=

∫
∂D2

[−ν(∇× w) +∇(
v2

2
− (P + ϕ))] · dx. (2.23)

The expression (2.23) can be considered as the rate of change of vorticity

flux for viscous fluids in three dimensions. Equation (2.22) can be used

to evaluate the vorticity flux for four dimensional flows.

2.2.3 Vorticity Stress Tensor Analogous to Magnetic Stress
Tensor

An analogy between Maxwell stress tensor in electromagnetic theory

and a tensor influenced by vorticity in incompressible inviscid fluids was

explored by M.J. Vedan et.al (2015).

For an incompressible three dimensional flow of an ideal fluid, the

vorticity field is frozen-in and satisfies the vorticity equation (1.5).

Analogous to the magnetic energy, the energy associated with the

vorticity can be defined as
|w|2

2
=
w · w

2
.

The rate of change of this energy can be expressed as ∂t

(
|w|2

2

)
.

Suppose that the vorticity is confined to the sub domain of the fluid,

then on integrating the above equation over a volume V, we get,

dM

dt
=

∫
V

∂t

(
|w|2

2

)
= −

∫
V

v · PdV, (2.24)

where P = (∇× w)× w and

M =

∫
V

(
w2

2
)dV,
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is the total enstrophy. Then the ith component of P , i.e., Pi = ∂xjΠij,

where Πij = wiwj −
|w|2

2
δij, is the ijth entry of the matrix Π = [Πij]

Π =


w2

1 −
|w|2

2
w1w2 w1w3

w1w2 w2
2 −
|w|2

2
w2w3

w1w3 w2w3 w2
3 −
|w|2

2

 (2.25)

The vorticity stress tensor Π thus obtained is associated to the

enstrophy in the same way as the magnetic stress tensor is associated to

the magnetic energy. The normal components of this tensor represents

the tension in the vortices and the tangential components represent the

shearing forces on the plane to which w is normal i.e., the plane

associated with w as a bivector.

Π can be diagonalized to obtain

Π′ =


|w|2

2
0 0

0 − |w|
2

2
0

0 0 − |w|
2

2

 (2.26)

Thus the stress tensor constitutes a tension
|w|2

2
along a vortex surface

and an equal pressure normal to it. The expressions of the vorticity

stress tensor can be compared with that of the magnetic stress tensor

discussed by Stierstadt and Liu (2014). In this work they present a

number of applications of the stress tensor in modern devices and

ferrofluids. Similar results can be applied to the vorticity stress tensor

also.

The vorticity two-form in a three dimensional manifold is expressed
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as ω = w1dy ∧ dz + w2dz ∧ dx+ w3dx ∧ dy. Thus we have

W =

 0 w3 −w2

−w3 0 w1

w2 −w1 0


as the tensor associated with the vorticity two-form. The dual of the

vorticity two-form ω is a one form ∗ω = w1dx + w2dy + w3dz, where ∗

denotes the Hodge dual operator. Let W ∗ denote the (3 × 1) column

matrix associated with ∗ω. The vorticity stress tensor can be derived

from W by

Π =
1

2
(WW +W ∗W ∗T ), (2.27)

where W ∗T is the transpose of W ∗. The two-form of vorticity

ω = L1dt∧dx+L2dt∧dy+L3dt∧dz+w1dy∧dz+w2dz∧dx+w3dx∧dy

given in equation (2.19) in the four dimensional case can be associated

to a vorticity field tensor F in R4. This tensor can be expressed as

F =


0 L1 L2 L3

−L1 0 w3 −w2

−L2 −w3 0 w1

−L3 w2 −w1 0

 .

Let ∇′ denote the matrix
[
∂t ∂x ∂y ∂z

]
, then
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∇′F =
[
−q −J1 −J2 −J3

]
yields the following equations

−∂xL1 − ∂yL2 − ∂zL3 = −q
∂tL1 − ∂yw3 + ∂zw2 = −J1

∂tL2 + ∂xw3 − ∂zw1 = −J2

∂tL3 − ∂xw2 + ∂yw1 = −J3,

which can be expressed as,

∇ · L = q (2.28)

and

−∂tL+∇× w = J. (2.29)

Here q = ∇2ε and J = −∂2
t v −∇∂tε+∇× w.

The dual of the two-form ω is given by

∗ω = w1dt∧dx+w2dt∧dy+w3dt∧dz+L1dy∧dz+L2dz∧dx+L3dx∧dy,

where ∗ is the Hodge dual operator. ∗ω can be associated to the tensor

F ∗ given by

F ∗ =


0 w1 w2 w3

−w1 0 L3 −L2

−w2 −L3 0 L1

−w3 L2 −L1 0

 .
Thus ∇′F ∗ yields the equations,

−∂xw1 − ∂yw2 − ∂zw3 = 0

∂tw1 − ∂yL3 + ∂zL2 = 0

∂tw2 + ∂xL3 − ∂zL1 = 0

∂tw3 − ∂xL2 + ∂yL1 = 0,
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which in vector notation can be expressed as

∇ · w = 0 (2.30)

and

∂tw −∇× L = 0. (2.31)

Thus we have ∇′F ∗ = 0. The equations (2.28), (2.29), (2.30) and (2.31)

together form the equations analogous to Maxwell’s equations in

electromagnetic theory.

Also we have detF = detF ∗ = (L · w)2. Here F is analogous to the

electromagnetic tensor F in electromagnetic theory.

2.2.4 Maxwell’s Equations in Fluid Dynamics

Maxwell’s equations in electromagnetic theory were formulated in 1865.

The formulations of equations in fluid dynamics analogous to Maxwell’s

equations can be seen in Marmanis (1998), Kambe (2010) and Shridhar

(1998).

Equations (2.28), (2.29), (2.30) and (2.31) together form a set of fluid

Maxwell’s equations

∇ · w = 0, (2.32)

∇× L = ∂tw, (2.33)

∇ · L = q, (2.34)

∇× w = J + ∂tL. (2.35)

Here q = ∇2ε is termed as hydrodynamic charge density and J , is termed

as hydrodynamic current vector. Marmanis recognized the vorticity and

the Lamb vector as the kernel of a dynamical theory of turbulence and

introduced the concept of turbulent charge and turbulent current in the
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study of metafluid dynamics. A study of the effectiveness of the Lamb

vector and the hydrodynamic charge density in analyzing the dynamics

of coherent structures of turbulent flow can be seen in Rousseaux et.al

(2007). The first two equations in the above set can be considered as the

conservation and evolution equations for the vorticity and the last two

equations as the conservation and the evolution of the Lamb vector. We

have

dω = (∇ · w)dx ∧ dy ∧ dz + (∂tw −∇× L)dt ∧ ds

and

d(∗ω) = (∇ · L)dx ∧ dy ∧ dz + (∂tL−∇× w)dt ∧ ds.

Or, ∗ d(∗ω) = −(∇ · L)dt+ (∂tL−∇× w) · dx.

Thus the above set of four fluid Maxwell’s equations can be derived from

dω = 0 and ∗ d(∗ω) = (−q,−J).

Also the four vector J = (q, J) satisfies the conservation equation

∂tq +∇ · J = 0.

As the vorticity stress tensor Π was constructed from the tensor

associated with vorticity W in equation (2.27), we can construct a

tensor T associated to F such that

T =
1

2
(FF + F ∗F ∗T ). (2.36)
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Thus,

T =


1
2
(−|L|2 + |w|2) −(L× w)1 −(L× w)2 −(L× w)3

−(L× w)1 π11 π12 π13

−(L× w)2 π21 π22 π23

−(L× w)3 π31 π32 π33

 (2.37)

where πij = −(LiLj − 1
2
|L|2δij) + (wiwj − 1

2
|w|2δij). Also T is traceless.

The four dimensional fluid dynamic stress-energy tensor T is analogous

to the electromagnetic stress-energy tensor T in electromagnetic theory.

As T is associated to the Maxwell stress tensor, T is associated to the

vorticity stress tensor given in equation (2.25).

The electromagnetic tensor F is a second-rank antisymmetric tensor

field that describes the electromagnetic field and the forces that would

act on a charged test particle at a given location with a given velocity.

The electromagnetic stress-energy tensor T is a symmetric second rank

tensor which describes the energy and momentum carried by the

electromagnetic field.

The term −(L × w) = P can be seen as the Poynting vector, which

describes the energy flux. The term 1
2
(−|L|2 + |w|2) = ξ̃ represents

the fluid dynamic energy density. From the fluid dynamic stress energy

tensor T , we can derive the four dimensional energy conservation laws.

Evaluating ∇′T, we get

∂tξ +∇ · P = J · L. (2.38)

∂tP1 + ∂iπ1i = (J × w)1

∂tP2 + ∂iπ2i = (J × w)2 (2.39)

∂tP3 + ∂iπ3i = (J × w)3.

Thus we have ∇′T =
[
J · L (J × w)1 (J × w)2 (J × w)3

]
.
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The equation (2.38) is the Poynting theorem and it describes the

transfer of the energy momentum or the energy dissipation rate. The

term J · L describes the rate at which the energy density is produced.

The set of three equations in (2.39) together can be expressed as

∂tP +∇ · π = J × w, (2.40)

which can be considered as the fluid dynamical Lorentz force law. If

J =
[
q J1 J2 J3

]T
, then

FJ =
[
J · L −qL1 + (J × w)1 −qL2 + (J × w)2 −qL1 + (J × w)3

]T
.

The four-vector of the form fl = (J ·L,−qL+(J×w)) can be considered

as the four dimensional force analogous to the Lorentz force.

Thus we have derived the fluid dynamical analogs of the Poynting

theorem and the Lorentz force. These results can be applied to analyze

the stress-energy propagation and dissipation based on Navier-Stokes’

theory in Euclidean space time. Scofield and Huq (2014) have derived

similar results in the context of geometrodynamical theory of fluids in

Minkowski space time.

2.2.5 Integral Invariance Associated with the Three-Form of
Helicity

Helicity is the natural tendency of flows to form vortices or coherent

structures and is defined as a measure of linkage, knottedness or

intertwining of vortex lines or tubes in the flow (Moffat 1969). Helicity

is one of the tools used in fluid topology to measure the topological

change of flows and to study the development and decay of turbulence

in fluid flows.
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Total helicity is conserved for ideal fluids, but how helicity changes in

real fluids in the presence of viscosity is still being investigated. Scheeler

et.al (2017) describes the measurement of total helicity in a real fluid by

using a set of hydrofoils to track linking, twisting, and writhing. They

show that twisting dissipates total helicity, whereas writhing and linking

conserve it. This provides a fundamental insight into tornado genesis,

atmospheric flows, and the formation of turbulence.

The conventional helicity of a fluid flow confined to a bounded or

unbounded domain in R3 is defined as

H =

∫
D

v · wdV.

The quantity h(x, t) = v · w is the helicity density of the flow. Helicity

density is a measure of how much the velocity and the vorticity are not

orthogonal and is a conserved quantity for perfect fluid flows (Moffat,

(1969)).

From the velocity one-form σ and the vorticity two-form ω, we can

define,

η = σ ∧ ω
= v · wdx ∧ dy ∧ dz + h1dt ∧ dy ∧ dz + h2dt ∧ dz ∧ dx+ h3dt ∧ dx ∧ dy
= v · wdx ∧ dy ∧ dz + dt ∧ ((∂tv −∇f)× v + fw)ds (2.41)

= ĥ− dt ∧ Ĥ,

as the three-form associated with helicity. Here h = v · w and

−H = (h1, h2, h3) = (∂tv −∇f)× v + fw.

Substituting for the term ∂tv from equation (1.3) we get,

η = v · wdx ∧ dy ∧ dz + dt ∧ (((v × w)−∇φ)× v + fw) · ds, (2.42)
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in the space of solutions of Euler equations and substituting for ∂tv from

equation (1.4),

η = v ·wdx∧dy∧dz+dt∧ (((v×w)−∇φ+ν∇2v)×v+fw) ·ds, (2.43)

for viscous fluids. In particular if we choose f = −ε, then

η = v · wdx ∧ dy ∧ dz + dt ∧ ((∂tv +∇ε)× v − εw) · ds. (2.44)

From equation (2.42) for Euler flows we have,

η = v · wdx ∧ dy ∧ dz + dt ∧ ((v × w)× v − εw) · ds, (2.45)

and from (2.43) for viscous flows we have

η = v · wdx ∧ dy ∧ dz + dt ∧ (((v × w) + ν∇2v)× v − εw)ds. (2.46)

In the Euclidean space time R4, we define helicity H as

H =

∫
D3

η =

∫
D3

σ ∧ ω,

where D3 is a three dimensional volume co-moving with the fluid and

D3(t) = ψt(D
3(0)). The integrand three-form η contains space time

coupled terms and the three dimensional chain D3 may contain points

lying on different coordinates of time. The rate of change of helicity is

given by
dH
dt

=
d

dt

∫
D3

η =

∫
D3

Lξη.

By Cartan’s formula we have,

Lξη = iξdη + d(iξη). (2.47)
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We also have the property,

iξη = iξ(σ ∧ ω) = (iξσ) ∧ ω + (−1)σ ∧ (iξω).

Now,

iξdη = (∂th+∇ ·H)dx ∧ dy ∧ dz − v(∂th+∇ ·H)dt ∧ ds.

From the expression which will be later derived in equation (2.65) we

have,

iξdη = −2(∇φ) · wdx ∧ dy ∧ dz + 2v((∇φ) · w)dt ∧ ds

and

d(iξη) = ∇ · (v
2

2
− (P + ϕ))wdx ∧ dy ∧ dz

+ [(∂t(
v2

2
− (P + ϕ)))w

− (∇(
v2

2
− (P + ϕ)))× (v × w −∇φ)]dt ∧ ds

for ideal flows.

Choose f = −ε. Then for ideal flows iξdη = 0. Substituting in

Cartan’s formula (2.47) we get,

Lξη = ∇ · (v
2

2
− (P + ϕ))wdx ∧ dy ∧ dz

+ [(∂t(
v2

2
− (P + ϕ)))w

− (∇(
v2

2
− (P + ϕ)))× (v × w −∇φ)]dt ∧ ds

= d((
v2

2
− (P + ϕ))ω). (2.48)
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From the expression which will later be derived (in equation 2.66), for

viscous flows we have,

iξdη = 2(−∇φ+ν∇2v)·wdx∧dy∧dz−2v((−∇φ+ν∇2v)·w)dt∧ds (2.49)

and

d(iξη) = [(∇ · (v
2

2
− (P + ϕ))w)− ν(∇ · (∇× w)× v)]dx ∧ dy ∧ dz

+ [(∂t(
v2

2
− (P + ϕ))w

− (∇(
v2

2
− (P + ϕ)))× (v × w −∇φ+ ν∇2v))

− ν((∂t(∇× w)× v) +∇× (ε(∇× w) + (v · ∇ × w)v))]dt ∧ ds.
(2.50)

Combining the above two expressions and substituting in equation (2.47)

we get,

Lξη = [2(−∇φ+ ν∇2v) · w +∇ · (v
2

2
− (P + ϕ))w

− ν(∇ · (∇× w)× v)]dx ∧ dy ∧ dz

[−2v((−∇φ+ ν∇2v) · w) + (∂t(
v2

2
− (P + ϕ))w

− (∇(
v2

2
− (P + ϕ)))× (v × w −∇φ+ ν∇2v))

− ν((∂t(∇× w)× v) +∇× (ε(∇× w) + (v · ∇ × w)v))]dt ∧ ds,
(2.51)

for viscous flows.
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Choose f = −ε, then the above equations reduce to

Lξη = [2(ν∇2v) · w +∇ · (v
2

2
− (P + ϕ))w

− ν(∇ · (∇× w)× v)]dx ∧ dy ∧ dz

[−2v((ν∇2v) · w) + (∂t(
v2

2
− (P + ϕ))w

− (∇(
v2

2
− (P + ϕ)))× (v × w + ν∇2v))

− ν((∂t(∇× w)× v) +∇× (ε(∇× w) + (v · ∇ × w)v))]dt ∧ ds,
(2.52)

for viscous flows.

For an ideal flow, consider cycles C3 such that ∂C3 = 0. We have seen

that
∮
C1 σ represents a relative integral invariant and hence from (1.18),

H =
∫
C3 σ ∧ dσ =

∫
C3 η must also be a relative integral invariant in R4.

From equation (2.48) for ideal flows Lξη is exact, i.e,

Lξη = d((
v2

2
− (P + ϕ))ω) = d(β̃).

The exactness of Lξη can also be derived from equation (2.14) as,

Lξη = Lξ(σ ∧ dσ)

= (Lξσ) ∧ dσ

= d(
v2

2
− (P + ϕ)) ∧ dσ

= d((
v2

2
− (P + ϕ))ω). (2.53)

Also,

dH
dt

=

∫
C3

d((
v2

2
− (P + ϕ))ω) =

∮
∂C3

(
v2

2
− (P + ϕ))ω = 0. (2.54)
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Thus for an ideal fluid, the helicity H is conserved over a three

dimensional chain whose boundary vanishes.

Also note that, from (2.48)

dH
dt

=

∫
C3

d((
v2

2
− (P + ϕ))ω)

=

∫
C3

(∇ · (v
2

2
− (P + ϕ))w)dx ∧ dy ∧ dz

+ [∂t(
v2

2
− (P + ϕ))w − (∇(

v2

2
− (P + ϕ)))× (v × w)]dt ∧ ds.

(2.55)

For cycles lying on hypersurfaces of fixed time, the rate of change of

helicity reduces to

dH
dt

=

∫
C3

(∇ · (v
2

2
− (P + ϕ))w)dx ∧ dy ∧ dz

=

∫
C3

(w · ∇)(
v2

2
− (P + ϕ))dx ∧ dy ∧ dz, (2.56)

since ∇ · w = 0.

The rate of change of helicity as derived by Moffat [1969] [34] is,

dH
dt

=

∫
V

(w · ∇)(
v2

2
− (P + ϕ))dV

=

∫
S

(n · w)(
v2

2
− (P + ϕ))ds (2.57)

= 0,

over surfaces for which n · w = 0.

The equation (2.56) derived as a particular case in the four dimensional

space using the language of differential forms is exactly the expression

derived by Moffat to establish the invariance of helicity for ideal flows
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in three dimensions. Thus from (2.54) and (2.56) we find that helicity is

conserved and hence is an invariant. The equation (2.55) can be

considered as the general expression for the rate of change of helicity for

ideal flows in the four dimensional space time manifold. Thus (2.54)

establishes the invariance of helicity in a more general four dimensional

space time manifold irrespective of the fact that the three dimensional

cycles C3 over which the integrals are considered, lie on different or

fixed co-ordinates of time.

The rate of change of helicity for Navier-Stokes’ viscous flow in R3 as

derived by Moffat is

dH
dt

= −2ν

∫
V

w · (∇× w)dV. (2.58)

From (2.52) the rate of change of helicity for viscous flow is,

dH
dt

=

∫
C3

Lξη

=

∫
C3

[2(ν∇2v) · w +∇ · (v
2

2
− (P + ϕ))w

− ν(∇ · (∇× w)× v)]dx ∧ dy ∧ dz

[−2v((ν∇2v) · w) + (∂t(
v2

2
− (P + ϕ))w

− (∇(
v2

2
− (P + ϕ)))× (v × w + ν∇2v))

− ν((∂t(∇× w)× v) +∇× (ε(∇× w) + (v · ∇ × w)v))]dt ∧ ds.
(2.59)

As a particular case, if we consider cycles C3 lying on fixed hyper surfaces
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of time, the above equations reduce to

dH
dt

=

∫
C3

[(2ν∇2v · w +∇ · (v
2

2
− (P + ϕ))w)

− ν(∇ · (∇× w)× v)]dx ∧ dy ∧ dz

= −2ν

∫
C3

w.(∇× w)dx ∧ dy ∧ dz, (2.60)

since ∇2v = −(∇ × w) and using the equations (2.56) and (2.57). The

above equation is exactly the expression derived by Moffat as in (2.58).

Thus (2.59) can be considered as the general expression for the rate of

change of helicity in the four dimensional space time manifold.

The condition (1.21) for the relative invariance of forms

L∂tĥ+ ivd̂ĥ = d̂Ĥ,

in vector form gives the equation

∂th+∇ ·H = 0, (2.61)

which is the helicity evolution equation for perfect fluids.

As mentioned above, helicity measures the linking and knotting of

vortex lines composing a flow. Recent research reveals the predominant

role of knots and links the in fields of plasma motion, biological and

DNA structures, liquid crystals, optics and electromagnetics. Hence the

question whether these conservation laws extend to real, dissipative flows

becomes relevant. The conservation of helicity in the presence of viscosity

is therefore important to understand the fundamental dynamics of real

fluids. By considering the four dimensional Euclidean space time instead

of the conventional three dimensional space, we are able to construct

the two-form vorticity (2.20) and the three-form helicity (2.46) including
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the terms involving viscosity, in the space of solutions of Navier-Stokes’

equations.

Recent research in the medical field shows that four dimensional flows

are used in new imaging techniques. Vorticity, circulation and helicity are

some of the haemodynamic quantities which are analyzed during medical

diagnosis. The above results may find applications in medical and other

relevant fields.

To every vorticity surface on which the boundary condition w·n = 0 is

satisfied, there corresponds a helicity invariant. If the vortex lines of flow

lie on a family of (nested) surfaces, then there is a corresponding family

of helicity invariants. If w·n 6= 0 on the boundary of the domain, then the

total helicity of the flow is not invariant. Helicity is then either created

or destroyed in a boundary of the domain. Viscosity is responsible for

the reconnection of vortex lines and hence for the evolution of helicity.

Helicity in three dimensions is an invariant of the flow. However, in

four dimensional Minkowski space time helicity need not be an invariant.

The non conservation of helicity in four dimensional spaces is attributed

to the fact that 1-cycles do not link in four dimensional space. But it

is observed that for ideal barotropic flows, vortex lines link in spatial

or temporal cross sections of space time and hence linking number is

conserved (Yoshida et.al, 2014).

The Hodge dual of η is a one-form.

∗η = −hdt+−H · dx.

The four-vector (−h,−H) associated with the one-form is termed as

topological torsion tensor (Kiehn, 2001). The first component h is the

helicity density as defined by Moffatt and the latter component form

a helicity or torsion current vector −H. If the four components of the

torsion tensor vanish over a domain, then the flow is Frobenius integrable
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and can never be chaotic. The Frobenius integrability condition for the

velocity one-form σ is that σ ∧ dσ = 0. Thus helicity is produced when

the velocity field is not Frobenius integrable.

The integral of the torsion density

HG =
1

16π2

∫
C3

η,

is a kind of a Hopf invariant in algebraic topology. Since η is a relative

integral invariant, the three dimensional cycle C3 can be taken as a

boundary of a four dimensional manifold ∂C4. Also by Stokes’ theorem∫
∂C4 η =

∫
C4 dη. Thus the integral

∮
∂C4 η vanishes if η is closed (dη = 0)

or η is exact (η = dβ) or if the boundary ∂C4 vanishes (for example, if

the boundary is of the form of a sphere or a torus)(Scofield and Huq,

2010).

In R4, vortex filaments link, because vorticities are two-forms and the

corresponding two chains link in four dimension. Thus helicity measures

the linking number of vortex filaments that are proper-time cross-sections

of the vorticity two chains.

2.2.6 Integral Invariance Associated with the Four-Form of
Parity

From the vorticity two-form ω given in equation (2.16), we define the

four-form parity

κ = ω ∧ ω = 2(∂tv −∇f) · wdt ∧ dx ∧ dy ∧ dz.

Thus for ideal Euler flows we have

κ = 2((v × w)−∇φ) · wdt ∧ dx ∧ dy ∧ dz
= −2(∇φ) · wdt ∧ dx ∧ dy ∧ dz (2.62)
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and for viscous flows,

κ = 2((v × w)−∇φ+ ν∇2v) · wdt ∧ dx ∧ dy ∧ dz
= 2(−∇φ+ ν∇2v) · wdt ∧ dx ∧ dy ∧ dz. (2.63)

If we choose f = −ε, then the four-form κ vanishes for ideal flows. For

viscous flows we have

κ = 2ν∇2v · wdt ∧ dx ∧ dy ∧ dz
= −2ν(∇× w) · wdt ∧ dx ∧ dy ∧ dz. (2.64)

Clearly κ is exact. For,

κ = ω ∧ ω = (dσ) ∧ ω = d(σ ∧ ω) = dη.

Also we have, dη = (∂th+∇ ·H)dt ∧ dx ∧ dy ∧ dz.
Thus, dη = κ⇒

∂th+∇ ·H = −2(∇φ) · w (2.65)

for Euler flows and

∂th+∇ ·H = 2(−∇φ+ ν∇2v) · w (2.66)

for viscous flows.

If f = −ε, the above equations reduce to

∂th+∇ ·H = 0. (2.67)

which is the helicity evolution equation for ideal flows as derived in

equation (2.61) and for viscous flows we have

∂th+∇ ·H = 2ν(∇2v) · w
= −2ν(∇× w) · w. (2.68)
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The above equation (2.68) can be considered as the helicity evolution

equation for viscous flows (Gumral, 2016). This also shows that helicity

can be conserved when (∇ × w) · w vanishes even in the presence of

viscosity.

Define K =
∫
D4 κ. Then by Stokes’ theorem we get,

dK

dt
=

d

dt

∫
D4

κ =

∫
D4

Lξκ =

∫
D4

Lξ(dη) =

∫
D4

d(Lξη) =

∫
∂D4

Lξη.

This shows that K is an integral invariant over a four dimensional cycle

for which ∂D4 = 0 or if Lξη = 0 over ∂D4.

The condition for the absolute invariance of the four form is given

by Lξκ = 0. Thus for an inviscid flow, Lξκ = 0. The condition for the

absolute invariance of the four-form κ leads to the equation

∂t(w · ∇φ) +∇ · (w · ∇φ)v = 0.

For an incompressible ideal fluid, we obtain

∂t(w · ∇φ) + v · ∇(w · ∇φ) = 0.

i.e,
D

Dt
(w · ∇φ) = 0, (2.69)

where
D

Dt
is the total derivative. From the relations (1.7) and (2.12), φ

is a material conserved quantity and hence w · ∇φ is also a conserved

quantity. Thus by using the absolute invariance condition of the four

form κ we are able to establish the Ertel’s theorem for the potential

vorticity w · ∇φ. Arnold and Khesin (1999) calls the term w · ∇φ as the

vorticity function.

In particular, if we choose f = S − ε, where S is the specific entropy,

then φ = S and κ = −2(w ·∇S)dt∧dx∧dy∧dz. Hence (2.69) represents
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the equation of Ertel’s invariant.

For viscous flows we have,

dK

dt
=

∫
D4

Lξκ,

= 2

∫
D4

[∂t(w · (−∇φ+ ν∇2v))

+∇ · ((w · (−∇φ+ ν∇2v))v)]dt ∧ dx ∧ dy ∧ dz. (2.70)

In particular, if f = −ε then, the equation (2.70) reduces to,

dK

dt
=

∫
D4

Lξκ,

= 2

∫
D4

[∂t(w · (ν∇2v)) +∇ · ((w · (ν∇2v))v)]dt ∧ dx ∧ dy ∧ dz

= −2ν

∫
D4

[∂t(w · (∇× w)) +∇ · ((w · (∇× w))v]dt ∧ dx ∧ dy ∧ dz.

=

∫
∂D4

(2ν∇2v · w +∇ · (v
2

2
− (P + ϕ))w)dx ∧ dy ∧ dz

[−((2v(ν∇2v) · w) + (∂t(
v2

2
− (P + ϕ))w

−∇× (v × w + ν∇2v)))]dt ∧ ds. (2.71)

For incompressible fluids,

dK

dt
= −2ν

∫
D4

(
D(w · (∇× w))

Dt

)
dt ∧ dx ∧ dy ∧ dz. (2.72)

The scalar function w ·(∇×w) is called the vortical helicity density. Thus

equation (2.72) evaluates the rate of change of the integral of parity.

The non vanishing of the integral of the parity four-form plays an

important role in the studies of turbulent flows. κ 6= 0 is a necessary

condition for vector fields to describe turbulent evolution. For ideal fluids
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where f is chosen to be −ε, κ vanishes. If the velocity one-form is

Frobenius integrable, i.e σ ∧ dσ = 0, then both η and κ vanish. If κ = 0,

then the associated flow field is reversible and not turbulent. Most of the

known closed solutions to dynamical systems have domains for which

η = 0 and κ = 0 (Kiehn, 2001).
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Chapter 3

Integral Invariants for
Non-barotropic flows

In this chapter we analyze the properties of non-barotropic ideal and

viscous flows using the algebra of differential forms in a four dimensional

space time manifold. We have applied the concepts of absolute and

relative integral invariance to non-barotropic flows.

3.1 Non-barotropic Flows in R3

Let v = (v1, v2, v3) be a velocity field in R3. The equations describing

non-barotropic fluids are given by

1. Equation of continuity:

∂tρ+∇ · (ρv) = 0. (3.1)

2. Conservation of momentum:

∂tv + (v · ∇)v = −∇(I + ϕ) + T∇S, (3.2)

61



62

for perfect fluids and

∂tv + (v · ∇)v = −∇(I + ϕ) + T∇S + ν∇2v +
ν

3
∇(∇ · v), (3.3)

for viscous fluids (Vazsonyi, 1945).

3. Conservation of entropy:

∂tS + (v · ∇)S = 0. (3.4)

Here we have used the relation

−∇I + T∇S = −∇p/ρ, (3.5)

where p is the pressure, I is the specific enthalpy, ρ is the mass density, ϕ

is the potential for the volume force field and ν is the kinematic viscosity.

The identity (v · ∇)v = ∇v2

2
− v × (∇ × v) is used to convert the

equations (3.2) and (3.3) into the form

∂tv − v × (∇× v) = −∇v
2

2
−∇(I + ϕ) + T∇S (3.6)

and

∂tv−v× (∇×v) = −∇v
2

2
−∇(I+ϕ) +T∇S+ν∇2v+

ν

3
∇(∇·v) (3.7)

for ideal and viscous flows respectively.

Defining ṽ = v−τ∇S, where τ is the thermasy and using the relation

D(τ∇S)

Dt
= T∇S − τ [(∇S · ∇)v + (∇S × w)],
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as given in (Mobbs, 1981), equation (3.6) takes the form,

∂tṽ − v × w̃ = −∇(v
2

2
+ I + ϕ− v · τ∇S)

= ∇f̃ , (3.8)

for non-barotropic perfect flows and equation (3.7) takes the form

∂tṽ − v × w̃ = −∇(v
2

2
+ I + ϕ− v · τ∇S) + ν∇2v + ν

3
∇(∇ · v)

= ∇f̃ + ν∇2v + ν
3
∇(∇ · v) (3.9)

for viscous flows, where f̃ = −(v
2

2
+ I + ϕ− v · τ∇S).

Following Mobbs, we define the generalized vorticity as w̃ = (w −∇τ ×
∇S) = ∇× ṽ. The generalized vorticity equation for the non-barotropic

inviscid flow is given by

∂tw̃ −∇× (v × w̃) = 0, (3.10)

∂t(
w̃

ρ
) + (v · ∇)(

w̃

ρ
) = (

w̃

ρ
· ∇)v, (3.11)

and for non-barotropic viscous flow,

∂tw̃ −∇× (v × w̃) = ν∇2w (3.12)

∂t(
w̃

ρ
) + (v · ∇)(

w̃

ρ
) = (

w̃

ρ
· ∇)v + ν∇2w, (3.13)

which can be derived from the Vazsonyi’s vorticity equation for

non-barotropic flows.

In the next sections we apply the concepts of absolute and relative

integral invariance of forms to non-barotropic flows in the space time

manifold and obtain some results pertaining to it. In classical mechanics,

time is independent of the frame of reference and is uniform throughout
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space. Fluid dynamics is a non-relativistic field theory, so we consider

the Euclidean four dimensional space time manifold.

3.1.1 One-Form of Generalized Velocity

The velocity field of a fluid in R4 can be represented as a four-vector

V = (f, v). The one-form or the covector field associated with the velocity

V can be defined as

σ = fdt+ v1dx+ v2dy + v3dz. (3.14)

Let the flow field be ξ = ∂t + vi∂xi .

For a non-barotropic fluid, we let f = f̃ = −(v
2

2
+ I + ϕ− v · τ∇S).

Then the generalized velocity one-form can be expressed as

σ̃ = f̃dt+ ṽ1dx+ ṽ2dy + ṽ3dz. (3.15)

Let Γ̃ =
∫
D1 σ̃, where D1 is an arbitrary 1 - chain. Then,

dΓ̃

dt
=

d

dt

∫
D1

σ̃ =

∫
D1

Lξσ̃. (3.16)

For non-barotropic perfect flows,

Lξσ̃ = d(
v2

2
− (I + ϕ)) = dβ̃1. (3.17)

Hence we obtain that Lξσ̃ is exact for perfect fluids. By applying Stokes’

theorem we have,

dΓ̃

dt
=

∫
D1

dβ̃1 =

∫
∂D1

(
v2

2
− (I + ϕ)). (3.18)

Thus, dΓ̃
dt

vanishes when ∂D1 = 0. i.e, when D1 is a 1 - cycle C1 and Γ̃ is

invariant over arbitrary 1 - cycles C1 in R4. Thus σ̃ represents a relative
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integral invariant and
D

Dt

∮
C1

σ̃ = 0.

If the domain of integration lies on the hyper surface of constant time,

then
∮
C1 σ̃ evaluates the generalized circulation and its invariance implies

the generalized Kelvin’s circulation theorem in R3.

By taking into consideration the four dimensional space time

Euclidean manifold we are able to consider chains and cycles lying on

different coordinates of time (not necessarily lying on hypersurfaces of

constant time) and the invariance of
∮
C1 σ̃ and thereby the generalized

circulation theorem remains valid even in such cases also (Fecko, 2013).

From the condition L∂tα̂ + ivd̂α̂ = d̂β̂ of relative invariance of the

velocity one-form σ̃, we get L∂t ṽ + ivd̂ṽ = −d̂f̃ , which in vector form

yields the equation (3.6).

For viscous flows, using (3.7), we get

Lξσ̃ = (v · (ν(∇× w)− ν

3
∇(∇ · v)))dt

+ (−ν(∇× w) +
ν

3
∇(∇ · v)) · dx + d(β̃1).

Then,

dΓ̃

dt
=

∫
D1

Lξσ̃,

=

∫
D1

(v · (ν(∇× w)− ν

3
∇(∇ · v)))dt

+ (−ν(∇× w) +
ν

3
∇(∇ · v)) · dx + d(β̃1). (3.19)

If D1 lies on fixed coordinates of time the above equation reduces to

dΓ̃

dt
=

∫
D1

(−ν(∇× w) +
ν

3
∇(∇ · v) +∇(β̃1)) · dx.
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Also,
dΓ̃

dt
=

∮
C1

−ν(∇× w) · dx,

over 1 - cycles. The above expression evaluates the rate of change of

generalized circulation for viscous non-barotropic fluids for three

dimensional flows and equation (3.19) evaluates the rate of change of

circulation for viscous non-barotropic flows in the four dimensional

manifold.

3.1.2 Two-Form of Generalized Vorticity

From the velocity one-form, σ̃ = f̃dt+ ṽ1dx+ ṽ2dy + ṽ3dz, the vorticity

two-form can be defined as

ω̃ = dσ̃,

= Ω̃ + dt ∧ Ẽ , (3.20)

where Ω̃ = w̃1dy ∧ dz + w̃2dz ∧ dx+ w̃3dx ∧ dy = w̃ · ds,
Ẽ = (∂tṽ1 − ∂xf̃)dx+ (∂tṽ2 − ∂yf̃)dy + (∂tṽ3 − ∂zf̃)dz = (∂tṽ −∇f̃) · dx
and w̃ = ∇× ṽ = (w̃1, w̃2, w̃3) is the generalized vorticity vector in R3.

From equations (3.6) and (3.7), for perfect fluids, the generalized

vorticity two-form can be expressed in the form

ω̃ = w̃ · ds+ (v × w̃)dt ∧ dx, (3.21)

and for viscous non-barotropic fluids as,

ω̃ = w̃ · ds+ ((v × w̃) + ν∇2v +
ν

3
∇(∇ · v))dt ∧ dx (3.22)

In R4, the generalized vorticity vector can be represented in the form

W̃ = (Ẽ, w̃), where Ẽ = ∂tṽ −∇f̃ .

Let W̃ =
∫
D2 ω̃, then W̃ =

∫
D2 dσ̃ =

∫
∂D2 σ̃.
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Thus W̃ = Γ̃ over boundaries of 2 - chains (ie, when D1 = ∂D2).

Then,

dW̃

dt
=

∫
D2

Lξω̃ =

∫
D2

Lξdσ̃ =

∫
D2

dLξσ̃ =

∫
∂D2

Lξσ̃. (3.23)

Thus in general W̃ is an invariant over 2 - cycles for which ∂D2 = 0 or

when Lξσ̃ = 0 over ∂D2.

From equation (3.17), Lξσ̃ is exact for perfect flows, which implies

dW̃/dt = 0.

Hence W̃ represents an integral invariant. Since σ̃ is a relative integral

invariant for ideal flows over C1, it follows from equation (1.19) that

ω̃ represents an absolute integral invariant over two-chains D2, where

C1 = ∂D2.

For ideal flows we have, Ẽ = −ivΩ̃. Thus ω̃ can be represented in the

form Ω̃− dt ∧ ivΩ̃. The condition (1.22)

L∂tΩ̃ + L̂vΩ̃ = 0

for absolute invariance of forms in vector form results in the vorticity

equation (3.10). Thus the absolute integral invariance of the generalized

vorticity two-form implies the generalizations of the Helmholtz vorticity

theorems to non-barotropic flows in a four dimensional manifold.

If D2 is a two-chain lying on the hypersurface of constant time,∫
D2 ω̃ reduces to

∫
D2 w̃ · ds. Thus the invariance of

∫
D2 w̃ · ds implies the

invariance of net flux of the generalized vorticity in R3 in an ideal

non-barotropic flow.
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For viscous fluids, using equation (3.23)

dW̃

dt
= −ν

∫
D2

[∇× ((∇× w)− 1

3
∇(∇ · v))] · ds

+ [∂t((∇× w)− 1

3
∇(∇ · v)) +∇(((∇× w)− 1

3
∇(∇ · v)) · v)]dt ∧ dx,

=

∫
∂D2

(v · (ν(∇× w)− ν

3
∇(∇ · v)))dt+ (−ν(∇× w)

+
ν

3
∇(∇ · v)) · dx + d(β̃1). (3.24)

If D2 lies on fixed coordinates of time then,

dW̃

dt
=

∫
D2

−ν[∇× ((∇× w)− 1

3
∇(∇ · v))] · ds,

=

∫
∂D2

[−ν(∇× w) +
ν

3
∇(∇ · v) +∇(β̃1)] · dx. (3.25)

Equation (3.25) can be considered as the rate of change of flux of the

generalized vorticity for non-barotropic viscous fluids in three dimensions

and equation (3.24) the corresponding expression in a four dimensional

manifold.

3.1.3 Three-Form of Generalized Helicity

In classical theory helicity is defined as a measure of linkage, knottedness

or intertwining of vortex lines or tubes in the flow. Moreau proved the

conservation of helicity for ideal barotropic fluids while Woltjer proved

the conservation of magnetic helicity for perfect magnetohydrodynamics

and Moffat gave a topological interpretation to the two analogous results

(Moffat, 2018). Here we show the invariance of the generalized helicity

for non-barotropic flows in a four dimensional space time manifold and

also derive an expression to evaluate the dissipation rate of helicity for
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viscous non-barotropic flows.

From the velocity one-form σ̃ given in equation (3.15) and the

vorticity two-form ω̃ given in (3.20), the generalized helicity three-form

can be defined as

η̃ = σ̃ ∧ ω̃,

= ṽ · w̃dx ∧ dy ∧ dz + h̃1dt ∧ dy ∧ dz + h̃2dt ∧ dz ∧ dx+ h̃3dt ∧ dx ∧ dy,

= ṽ · w̃dx ∧ dy ∧ dz + dt ∧ ((∂tṽ −∇f̃)× ṽ + f̃ w̃) · dS, (3.26)

= h̃− dt ∧ H̃

where (h̃1, h̃2, h̃3) = − ~H = (∂tṽ −∇f̃)× ṽ + f̃ w̃, and H̃ = ~H · ds.
The Hodge dual ∗η̃ is a one-form and the helicity four-vector

associated to the one-form can be expressed as (−h,− ~H).

From equation (3.6) we get,

η̃ = ṽ · w̃dx ∧ dy ∧ dz + dt ∧ ((v × w̃)× ṽ + f̃ w̃) · ds, (3.27)

for ideal non-barotropic flows and from equation (3.7),

η̃ = ṽ·w̃dx∧dy∧dz+dt∧(((v×w̃)+ν∇2v+
ν

3
∇(∇·v))×ṽ+f̃ w̃)·ds, (3.28)

for viscous fluids.

In the Euclidean space time R4, we define the generalized helicity H̃
as

H̃ =

∫
D3

η̃ =

∫
D3

σ̃ ∧ ω̃,

where D3 is a three dimensional chain co-moving with the fluid. The

rate of change of the generalized helicity is given by

dH̃
dt

=
d

dt

∫
D3

η̃ =

∫
D3

Lξη̃.
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Lξη̃ = Lξ(σ̃ ∧ ω̃) = (Lξσ̃) ∧ ω̃ = (dβ̃1) ∧ ω̃,

= (∇ · (β̃1w̃))dx ∧ dy ∧ dz + ((∂t(β̃1))w̃ − (∇(β̃1))× (v × w̃))dt ∧ ds,

= d((β̃1)ω̃) = d(β̃2) (3.29)

and

Lξη̃ = (2(ν∇2v +
ν

3
∇(∇ · v)) · w̃ +∇ · (β̃1)w̃

+ ν(∇ · (∇2v +
1

3
∇(∇ · v))× v))dx ∧ dy ∧ dz

[−2v((ν∇2v +
ν

3
∇(∇ · v)) · w̃) + (∂t(β̃1)w̃

−∇(β̃1)× (v × w̃ + ν∇2v +
ν

3
∇(∇ · v)))

+ ν((∂t(∇2v +
1

3
∇(∇ · v))× v)

+∇× (f̃(∇2v +
1

3
∇(∇ · v)) + (v · (∇2v +

1

3
∇(∇ · v)))v))]dt ∧ ds

(3.30)

for ideal and viscous non-barotropic flows respectively.

For an ideal flow, we have seen that σ̃ represents a relative integral

invariant and hence from equation (1.18), σ̃ ∧ dσ̃ = η̃ will also represent

a relative integral invariant in R4 and also from equation (3.29) we see

that for ideal non-barotropic flow Lξη̃ is exact. Thus,

dH̃
dt

=

∫
D3

d((β̃1)ω̃) =

∫
∂D3

(β̃1)ω̃. (3.31)

If the three dimensional chain D3 is a cycle such that ∂D3 = 0, then

dH̃
dt

= 0. Thus for a perfect non-barotropic flow, the generalized helicity H̃

is conserved over a three dimensional cycle C3 whose boundary vanishes.



71

Thus we have,
dH̃
dt

=

∮
∂C3

(
v2

2
− (I + ϕ))ω̃ = 0, (3.32)

where C3 is three-cycle such that ∂C3 = 0. Also note that, from equation

(3.29)

dH̃
dt

=

∫
D3

d((β̃1)ω̃),

=

∫
D3

(∇ · (β̃1w̃))dx ∧ dy ∧ dz

+ [(∂t(β̃1))w̃ − (∇(
v2

2
− (I + ϕ)))× (v × w̃)]dt ∧ ds. (3.33)

For three-cycles lying on hypersurfaces of fixed time, the rate of change

of helicity reduces to

dH̃
dt

= 0 =

∫
C3

(∇ · (v
2

2
− (I + ϕ))w̃)dx ∧ dy ∧ dz,

=

∫
C3

(w̃ · ∇)(
v2

2
− (I + ϕ))dx ∧ dy,∧dz, (3.34)

since ∇ · w̃ = 0.

The equation (3.33) can be considered to be the general expression

to evaluate the rate of change of generalized helicity for ideal

non-barotropic inviscid flows in the four dimensional space-time

manifold. Equation (3.34) derived as a particular case of (3.33) is

analogous to the expression derived by Moffat to establish the

invariance of helicity for ideal incompressible flows in three dimensions.

The rate of change of helicity for classical viscous flows derived by

Moffat for three dimensional flows is

dH
dt

= −2ν

∫
V

w · (∇× w)dV, (3.35)
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where H is the fluid helicity defined for classical barotropic flows. From

equation (3.30), the rate of change of the generalized helicity for viscous

flow is,

dH̃
dt

=

∫
D3

Lξη̃,

=

∫
D3

(2(ν∇2v +
ν

3
∇(∇ · v)) · w̃ +∇ · (β̃1w̃)

+ ν(∇ · (∇2v +
1

3
∇(∇ · v))× v))dx ∧ dy ∧ dz

[−2v((ν∇2v +
ν

3
∇(∇ · v)) · w̃) + (∂t(β̃1)w̃

−∇(β̃1)× (v × w̃ + ν∇2v +
ν

3
∇(∇ · v)))

+ ν((∂t(∇2v +
1

3
∇(∇ · v))× v)

+∇× (f̃(∇2v +
1

3
∇(∇ · v)) + (v · (∇2v +

1

3
∇(∇ · v)))v))]dt ∧ ds.

(3.36)

As a particular case if we consider chains D3 lying on fixed hyper surfaces

of time, the above equations reduce to

dH̃
dt

=

∫
D3

(2(ν∇2v +
ν

3
∇(∇ · v)) · w̃ +∇ · (β̃1w̃)

+ ν(∇ · (∇2v +
1

3
∇(∇ · v))× v))dx ∧ dy ∧ dz,

=

∫
D3

(−2ν(∇× w) +
2ν

3
∇(∇ · v)) · w̃dx ∧ dy ∧ dz

+

∫
D3

∇ · (β̃1w̃ + (ν∇2v +
ν

3
∇(∇ · v))× v)dx ∧ dy ∧ dz.

If we consider cycles C3, the second term on the right hand side above



73

vanishes so that

dH̃
dt

=

∫
C3

(−2ν(∇× w) +
2ν

3
∇(∇ · v)) · w̃dx ∧ dy ∧ dz. (3.37)

For the incompressible case we have

dH̃
dt

= −2ν

∫
C3

(∇× w) · w̃dx ∧ dy ∧ dz. (3.38)

The above equation is analogous to the expression derived by Moffat for

barotropic flows as in equation (3.35). Thus equation (3.36) can be

considered as the general expression to evaluate the rate of change of

generalized helicity for non-barotropic viscous flows in the four

dimensional space time manifold.

The condition (1.21) for the relative invariance of forms

L∂th̃+ ivd̂h̃ = d̂ ~H

in vector form gives the equation

∂th̃+∇ · ~H = 0, (3.39)

which is the evolution equation of the generalized helicity or the

conservation law of the helicity four-vector (−h,− ~H) for non-barotropic

ideal flows.

3.1.4 Four-form of Generalized Parity

From the generalized vorticity two-form ω̃ given in (3.20) a four-form

which can be termed ’the generalized parity’ can be defined as

κ̃ = ω̃ ∧ ω̃ = (2(∂tṽ −∇f̃) · w̃)dt ∧ dx ∧ dy ∧ dz.
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For ideal non-barotropic flows we have

κ̃ = (2(v × w̃) · w̃)dt ∧ dx ∧ dy ∧ dz = 0. (3.40)

For viscous flows,

κ̃ = (2((v × w̃) + ν∇2v + ν
3
(∇(∇ · v)) · w̃)dt ∧ dx ∧ dy ∧ dz

= 2(ν∇2v + ν
3
(∇(∇ · v)) · w̃dt ∧ dx ∧ dy ∧ dz. (3.41)

Clearly κ̃ is exact, for

κ̃ = ω̃ ∧ ω̃ = (dσ̃) ∧ ω̃ = d(σ̃ ∧ ω̃) = dη̃.

Also we have, dη̃ = (∂th̃+∇ · ~H)dt ∧ dx ∧ dy ∧ dz.
Thus, dη̃ = κ̃⇒

∂th̃+∇ · ~H = 0, (3.42)

which is the helicity evolution equation for ideal non-barotropic flows as

derived in equation (3.39).

For viscous non-barotropic flows we have

∂th̃+∇ · ~H = 2(ν(∇2v) +
ν

3
∇(∇ · v)) · w̃. (3.43)

In the case of incompressible flows, we have

∂th̃+∇ · ~H = −2ν(∇× w) · w̃. (3.44)

The above equation (3.44) can be termed as the evolution equation of

the generalized helicity for viscous non-barotropic flows. For flows for

which the condition (∇× w) · w̃ = 0 is satisfied, the generalized helicity

is conserved, even for viscous non-barotropic case.

Also, we have

Lξκ̃ = Lξ(dη̃) = d(Lξη̃).
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As described in section (1.1.7) the Lie derivative of four-form of the

generalized parity being exact,
∮
C4 κ̃ shows the property of being a

relative integral invariant for viscous flows too.

Define K̃ =
∫
D4 κ̃. Then by Stokes’ theorem we get,

dK̃

dt
=

d

dt

∫
D4

κ̃ =

∫
D4

Lξκ̃ =

∫
∂D4

Lξη̃. (3.45)

This shows that K̃ is an invariant over a four dimensional cycles for

which ∂D4 = 0 or if Lξη̃ = 0 over ∂D4 . Thus K̃ =
∮
C4 κ̃ is conserved

for viscous non-barotropic flows.

For viscous non-barotropic flows, we have

dK̃

dt
=

∫
D4

Lξκ̃,

= 2

∫
D4

[∂t(w̃ · (ν∇2v +
ν

3
∇(∇ · v)))

+∇ · (w̃ · (ν∇2v +
ν

3
(∇(∇ · v)))v)]dt ∧ dx ∧ dy ∧ dz,

= −2ν

∫
D4

[∂t(w̃ · ((∇× w)− 1

3
∇(∇ · v)))

+∇ · (w̃ · ((∇× w)− 1

3
∇(∇ · v)))v]dt ∧ dx ∧ dy ∧ dz,

=

∫
∂D4

(2(ν∇2v +
ν

3
∇(∇ · v)) · w̃ +∇ · β̃1w̃)dx ∧ dy ∧ dz

− ((2v(ν∇2v +
ν

3
∇(∇ · v)) · w̃)

+ (∂tβ̃1w̃ −∇β̃1 × (v × w̃ + ν∇2v +
ν

3
∇(∇ · v))))dt ∧ ds. (3.46)

For incompressible flows the above equation becomes,

dK̃

dt
= −2ν

∫
D4

(
D(w̃ · (∇× w))

Dt

)
dt ∧ dx ∧ dy ∧ dz. (3.47)



76

For cycles C4 such that ∂C4 = 0, by equation (3.45),

dK̃

dt
=

∮
C4

Lξκ̃ = 0. (3.48)

Thus we have∮
C4

(
D(w̃ · (∇× w))

Dt

)
dt ∧ dx ∧ dy ∧ dz = 0 (3.49)

in this case. The scalar function w̃ · (∇ × w) can be termed as the

generalized vortical helicity density. Thus equation (3.47) evaluates the

rate of change of the integral of the generalized parity. The above

equation (3.49) implies the invariance of the generalized vortical helicity

for viscous non-barotropic flows.



Chapter 4

A Geometric Algebraic
Approach to Fluid Dynamics

A methodical approach to fluid dynamical theories using the calculus of

geometric algebra is still an open task. In this chapter we have used the

language of geometric algebra to analyze the properties of fluid flows.

4.1 Geometric Algebra in Fluid Dynamics

The four-velocity field of a four dimensional fluid flow V = (f, v), can be

expressed as a vector in G4 as

V = fe0 + v1e1 + v2e2 + v3e3,

along with the incompressibility condition or the divergence free

condition

∇ · V = ∂tf + ∂xv1 + ∂yv2 + ∂zv3 = 0,

where ∇ denotes the vector derivative,

∇ = ei∂i = e0
∂

∂t
+ ei

∂

∂xi
= e0

∂

∂t
+∇.

77
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4.1.1 Bivector Associated with Vorticity

For the given velocity V , the derivative of the velocity can be expressed

as a bivector

W = ∇V = ∇ · V + ∇ ∧ V = ∇ ∧ V ,

= (∂tv1 − ∂xf)e0 ∧ e1 + (∂tv2 − ∂yf)e0 ∧ e2 + (∂tv3 − ∂zf)e0 ∧ e3

+ w1e2 ∧ e3 + w2e3 ∧ e1 + w3e1 ∧ e2,

where w = (w1, w2, w3) is the three dimensional vorticity vector.

Here W is a grade-2 blade associated with the vorticity. Hence

vorticity field takes the form of oriented surfaces. As in the previous

chapters, if we take f = −ε, where ε is the Bernoulli energy function

then,

W = (∂tv1 + ∂xε)e0 ∧ e1 + (∂tv2 + ∂yε)e0 ∧ e2 + (∂tv3 + ∂zε)e0 ∧ e3

+ w1e2 ∧ e3 + w2e3 ∧ e1 + w3e1 ∧ e2. (4.1)

Let L = ∂tv +∇ε. Then from Euler’s equation we have, L = v × w for

ideal fluids and from Navier-Stokes’ equation we have L = v×w+ν∇2v,

for viscous flows. Thus for ideal and viscous flows, we express W as,

W = L1e0 ∧ e1 + L2e0 ∧ e2 + L3e0 ∧ e3

+ w1e2 ∧ e3 + w2e3 ∧ e1 + w3e1 ∧ e2.

Let

F = ∇W = ∇ ·W + ∇ ∧W
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Now,

∇ ·W = −(∇ · L)e0 + (∂tL1 − (∇× w)1)e1 + (∂tL2 − (∇× w)2)e2

+ (∂tL3 − (∇× w)3)e3

= −qe0 − J1e1 − J2e2 − J3e3

= (−q,−J) = −J , (4.2)

where q and J are the hydrodynamic charge density and the

hydrodynamic current as defined in section (2.2.4).

∇ ∧W = (∂tw1 − (∇× L)1)e0 ∧ e2 ∧ e3 + (∂tw2 − (∇× L)2)e0 ∧ e3 ∧ e1

+ (∂tw3 − (∇× L)3)e0 ∧ e1 ∧ e2 + (∇ · w)e1 ∧ e2 ∧ e3,

= 0,

for ideal and viscous flows.

Here ∇ ·W = (−q,−J) = −J is a four-vector and ∇ ∧W = 0 is

the trivector part of F . The above 4-vector J satisfies the conservation

equation

∂tq +∇ · J = 0

for both ideal and viscous flows. Thus, the governing equations of the

vorticity and the Lamb vector as derived by (Marmanis, 1998) or

otherwise termed as the fluid Maxwell equations (as in 2.2.4) can be

extracted from a single equation

F = ∇W = −J .

Since W = ∇V ,
F = ∇2V = −J

can be considered as the wave equation for V .
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4.1.2 Fluid Dynamic Stress-Energy Tensor

Define Ti = 1
2
W̃ eiW , where W̃ is the reverse of W . Since W is a

bivector, we have W̃ = −W . Thus we get,

T0 =
1

2
(−|L|2 + |w|2)e0 + (w × L)1e1 + (w × L)2e2 + (w × L)3e3,

T1 = (w × L)1e0 +
1

2
[−(L2

1 − L2
2 − L2

3) + (w2
1 − w2

2 − w2
3)]e1 + (−L1L2 + w1w2)e2

+ (−L1L3 + w1w3)e3,

T2 = (w × L)2e0 + (−L1L2 + w1w2)e1 +
1

2
[−(L2

2 − L2
1 − L2

3) + (w2
2 − w2

1 − w2
3)]e2

+ (−L2L3 + w2w3)e3

and

T3 = (w × L)3e0 + (−L1L3 + w1w3)e1 + (−L2L3 + w2w3)e2

+
1

2
[−(L2

3 − L2
1 − L2

2) + (w2
3 − w2

1 − w2
2)]e3.

Here T0 = 1
2
(−|L|2 + |w|2)e0 +P1e1 +P2e2 +P3e3 is the four dimensional

Poynting vector where P = (w × L) = (P1,P2,P3).

The elements T = [Tij] in the fluid dynamic stress-energy tensor as

given in equation (2.37) can be obtained from the scalar part of the

geometric product Tiej or we have Tij = 1
2
(W̃ eiW ej)S, where Tij is the

ijth entry of the stress-energy tensor T

Consider

WJ = W · J +W ∧ J . (4.3)

W · J = (L1J1 + L2J2 + L3J3)e0

+ (−qL1 + (J × w)1)e1 + (−qL2 + (J × w)2)e2

+ (−qL3 + (J × w)3)e3,

= [L · J,−qL+ J × w] (4.4)
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and

W ∧ J = (w1J1 + w2J2 + w3J3)e1e2e3

+ (qw1 + (L× J)1)e0e2e3 + (qw2 + (L× J)2)e0e3e1

+ (qw3 + (L× J)3)e0e1e2,

= I[−w · J,−(−qw + J × L)]. (4.5)

Therefore,

1

2
(WJ + JW ) = W · J = [L · J,−qL+ J × w]

can be considered as the four dimensional force analogous to the Lorentz

force in fluid dynamics. Hence the vector part of the geometric product

WJ yields the fluid dynamic Lorentz force. Here we have considered

only the vector part of the productWJ . The physical and the geometric

significance of the trivector part which was obtained along with the vector

part needs to be further investigated.

4.1.3 Multivector Associated with Helicity

The geometric product of velocity vector V and the vorticity bivector W

gives a multivector which can be associated with the helicity. Thus,

H = VW = V ·W + V ∧W

V ·W = −(v · L)e0 + (−εL1 + (w × v)1)e1

+ (−εL2 + (w × v)2)e2 + (−εL3 + (w × v)3)e3,

= [−(v · L),−εL+ (w × v)], (4.6)

= (−h′,−H ′). (4.7)
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The quantity −h′ = −(v · L) vanishes for ideal fluids, but it not for

viscous fluids. Hence for ideal fluids V ·W is a usual vector in the three

dimensional space. Here −H ′ = −εL + (w × v) = (−H ′1,−H
′
2,−H

′
3).

Now,

V ∧W = (v · w)e1e2e3 + (−εw1 + (L× v)1)e0e2e3

+ (−εw2 + (L× v)2)e0e3e1 + (−εw3 + (L× v)3)e0e1e2,

= I[−(v · w),−εw + (L× v)],

= I(−h,−H), (4.8)

where h = v · w is the helicity density and −H = −εw + (L × v) =

(−H1,−H2,−H3).

Therefore H is a sum of a vector and a grade-3 blade. The dual of

the trivector part HT of H gives a four-vector (−h,−H) which can be

associated to charge density four-vector. It has been shown in section

(2.2.5) that the dual ofHT satisfies the conservation equation for helicity,

∂th+∇ ·H = 0,

for ideal fluids.

The trivector part ofH can be associated with the helicity three-form

seen in chapter 2. The vector part or the scalar product obtained while

executing the geometric product contains additional terms. The physical

and geometrical relevance of these terms need to be further studied.

4.1.4 Multivector Associated with Parity

Evaluating W 2 = WW we get,

W 2 = W ·W +W ∧W .
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Here the scalar part is given by

W ·W = −(L2
1 + L2

2 + L3
3 + w2

1 + w2
2 + w2

3) = −(|L|2 + |w|2),

and the pseudoscalar part is evaluated as

W ∧W = 2(L · w)e0e1e2e3.

Thus,

WW = −(|L|2 + |w|2) + 2(L · w)e0e1e2e3 (4.9)

It has been shown in section(2.2.6) that the quantity L · w = 0 for ideal

fluids and L · w = −ν(∇× w) · w for viscous fluids.

Evaluating ∇H , we get

∇H = ∇ ·H + ∇ ∧H . (4.10)

Here,

∇ ·H = [∂t(−h′) +∇ · (−H ′)]

+ [(∇× (−H))1e0e1 + (∇× (−H))2e0e2 + (∇× (−H))3e0e3

+ (∂t(−H1) + ∂xh)e2e3 + (∂t(−H2) + ∂yh)e3e1

+ (∂t(−H3) + ∂zh)e1e2]

and

∇ ∧H = [(∂t(−H
′

1) + ∂xh
′
)e0e1 + (∂t(−H

′

2) + ∂yh
′
)e0e2

+ (∂t(−H
′

3) + ∂zh
′
)e0e3

+ (∇× (−H ′))1e2e3 + (∇× (−H ′))2e3e1 + (∇× (−H ′))3e1e2]

+ [(∂th+∇ ·H)e0e1e2e3].

Therefore ∇H is a sum of a scalar, a bivector and a pseudoscalar.
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Since H = VW , we can evaluate

∇H = ∇(VW ) = (∇V )W + V∇W
= WW + V (−J ) (4.11)

By comparing the scalar parts from equations (4.9), (4.10) and (4.11) we

get,

−(∂t(h
′) +∇ · (H ′)) = −(|L|2 + |w|2) + (εq − v · J). (4.12)

The above equation describes the evolution equation of the four-vector

(−h′ ,−H ′). By comparing the pseudoscalar parts equations (4.9), (4.10)

and (4.11) we get,

∂th+∇ ·H = 2(L · w). (4.13)

For ideal fluids, (L · w) = 0 and for viscous fluids, we have

∂th+∇ ·H = −2ν(∇× w) · w,

which is the evolution equation for helicity for viscous flows. Thus we

have re-derived the helicity conservation law for ideal fluids and the

helicity evolution equation for viscous fluids using geometric calculus.

In the same manner we can compare the bivector parts from equations

(4.9), (4.10) and (4.11) and extract additional quantities whose physical

and geometrical aspects can be investigated further.



Chapter 5

Conclusion and Scope For
Further Research

Towards 1980’s a feeling had arisen that the conventional analytical

tools are not sufficient for newly arising problems in fluid mechanics. A

new direction in this regard was given in the symposium of

International Union for Theoretical and Applied Mechanics (IUTAM)

held at Cambridge during August 1989. In the proceedings of the

symposium, the editors Moffat and Tsinober say; “the topic of this

meeting was chosen in response to the developing interest in aspects of

fluid mechanics and of magnetohydrodynamics, that can be properly

described as topological, rather than exclusively analytical in

character”(Topological fluid dynamics: Proceedings of the IUTAM

symposium, Cambridge University Press, 1990). Other important works

on topological fluid dynamics are ’Topological aspects of the dynamics

of fluids and plasmas’ by Moffatt, H. K., Zaslavsky, G. M., Comte, P.,

Tabor, M. (2013), ’Topological methods in hydrodynamics’ by Arnold

V. I. and Khesin B.A. (1999) and ’Lectures on topological fluid

mechanics’, Editors: De witt Sumners, Ricca et al. (2009).
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Albert Einstein developed the special theory of relativity in 1905.

Ever since, time is considered to be the fourth dimension of the physical

world. Even then higher dimensional physics was considered to be

mathematical rather than being experimental. Recently two teams of

scientists from USA, Germany, Italy, Israel and Switzerland were able

to successfully illustrate the four dimensional quantum Hall effect

through an experiment in a laboratory (Zilbergerg et.al, 2018). Thus a

time has reached when physicists can now experimentally investigate

the phenomena occurring in four or higher dimensions. Scientists were

able to use a gas of ultracold atoms to visualize the dynamics of the

quantum Hall effect, which was predicted to occur in four dimensions,

paving the way for higher dimensional experimental physics.

The analytical methods used in classical fluid mechanics are

differential and integral equations, variational calculus and integral

transforms. However a paper which did not get much attention was

that of Drobot and Rybarski (1958). In their work, they used group

theory in the form of Noether’s theorem to derive invariants of

barotropic flows. Here for the first time they used a four dimensional

space time manifold as the domain of flow. A follow up for this can be

seen in the works of M.J. Vedan and his group of students. George

Mathew (1988, 1989, 1991), Thomas Joseph (1996) generalized this

work in the case of non-barotropic flows while Geetha (1994) used this

method to study stability of flows. Instead of the method of calculus of

variations used in the above works, Subin (2004, 2006) used differential

forms based on the work of Tur and Yanovsky (1993).

Recent research in the field of medical sciences reveal that four

dimensional flows provide breakthrough advancements in new imaging

techniques. Four dimensional flows (time resolved phase contrast

magnetic resonance imaging (MRI) with three dimensional velocity) are
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effectively used in cardiovascular and abdominal anatomy. Four

dimensional flows yield precise and advanced visualization and

quantification of complex blood flow patterns. Haemodynamic

parameters like that of velocity, kinetic energy, pressure gradients, wall

shear stress, vorticity and helicity of pulmonary arterial blood flow can

be analyzed using four dimensional imaging tools (Garcia et.al (2019)).

The four dimensional expressions in chapter 2, which we have

derived by exploring the mathematical concepts of differential forms

and integral invariance, may find applications in a wide variety of fields.

The expressions obtained to evaluate the rate of circulation, vorticity

flux, rate of change of helicity and parity for viscous fluids in four

dimensions can be utilized in engineering, medical, physical and

theoretical problems. It should be noted that, the fluid Maxwell’s

equations, Poynting theorem and the hydrodynamic stress-energy

tensor were thereby obtained as consequences of applying mathematical

concepts and not by mere analogical methods.

In chapter 3, we extend the above studies to non-barotropic flows in

a four dimensional space time Euclidean manifold. The four

dimensional expressions to evaluate the rate of change of the

generalized circulation, generalized vorticity flux, generalized helicity

and generalized parity in the case of ideal as well as viscous

non-barotropic flows are thereby obtained. The expressions thus

derived, when restricted to hyper surfaces of constant time, yield results

analogous to expressions obtained in three dimensional barotropic flows.

The same method of study can be adopted into other models of fluid

flows like that of magneto hydrodynamics, two-fluid models and so on.

A later development is the application of geometric algebra in fluid

dynamics (Cibura and Hildenbrand, 2008). The introduction of

geometric algebra in classical mechanics was done by Hestenes (1966).
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Hestenes has described the development of the concept of numbers from

that of the Greeks to the present one of multivectors which involves

scalars, vectors, bivectors, trivectors and pseudoscalars. Classical fluid

mechanics considers vorticity as a vector. The bivector character of

vorticity comes into picture when vorticity is expressed in the language

of differential forms or geometric algebra. Thus vorticity is a bivector

and so has a plane associated with it. This is the basis of our definition

of vorticity stress tensor in chapter 2, analogous to Maxwell stress

tensor in electromagnetic theory. Quaternions form a subalgebra of the

geometric algebra G3. Therefore the bivector character of vorticity can

also be exploited in the form of a quaternion. Quaternions are finding

applications in computer graphics and robotics where rotations play an

important role. The main advantage of quaternions is in the

illustrations of rotations of a sphere in space time manifold. This

concept can be made use in vortex dynamics. As geometric algebra

integrates the concept of vectors, complex numbers, tensors, spinors

and quaternions into a coherent mathematical language, it not only

retains the advantages of each special algebras, but it also gives more

insight into the problems of fluid dynamics.

The introduction of geometric algebra in fluid dynamics has been

restricted to some specialized problems. The complete potential of the

geometric product is yet to be explored in the field of fluid dynamics.

In chapter 4, we have adopted a geometric algebraic approach to fluid

flows in the four dimensional Euclidean space time manifold rather than

the conventional Minkowski space time manifold used elsewhere. The

introduction of a four dimensional velocity vector with the Bernoulli

energy function as the time component into geometric algebra is a novel

approach. We find that the most common physical quantities like that

of vorticity, helicity and parity appear as multivectors, i.e., as sum of
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scalars, vectors, bivectors, trivectors and pseudoscalars, thereby

equipping them with additional geometric and physical properties. As

mentioned in sections (4.1.2), (4.1.3) and (4.1.4), the expressions

obtained while executing the geometric product for the vector

derivative of the vorticity and helicity contain additional terms which

need to be mathematically, physically and experimentally investigated,

paving the way for future research.
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