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Chapter 1

Introduction

Stochastic Modelling is the art of modelling natural phenomena, taking into

consideration the randomness involved. It combines the possibility of the-

oretical beauty with a real world meaning of its key concepts. Application

fields such as telecommunication or insurance bring methods and results of

stochastic modelling to the attention of theoreticians and practitioners.

One of the most important domains in stochastic modelling is the field of

queueing theory. We can see queues in almost all walks of life. For instance,

in banks, super market check-out counters, airport check-in systems, doctor’s

clinic, manufacturing systems, communication systems. The queues may be

visible or not. Apparently, nobody wants to be in queue for a long time. Thus

analyzing these congestion situations using appropriate queueing models has

a great significance in this modern world.

Queueing theory is the probabilistic study of waiting lines and it is very

useful for analyzing the procedure of queueing of daily life of human being.

It deals with techniques for analyzing congestion situations. Many real sys-

tems can be reduced to components which can be modelled by the concept

of a socalled queue. The formation of queue is a common phenomenon which

occurs whenever the current demand for a service exceeds the current ca-

1



2 Chapter 1: Introduction

pacity to provide that service. The pioneer investigator was the well-known

Danish Mathematician A.K.Erlang, who in 1909 published ’The Theory of

Probabilities and Telephone Conversations’ in which he studied the problem

of telephone traffic congestion. A queue consists of a system into which there

comes a stream of users who demand some capacity of the system over a cer-

tain time interval before they leave the system. Users are served in the system

by one or many servers. The former describe the input into a queue, while the

latter represents the function of the inner mechanisms of a queueing system.

Until middle of 1970’s queueing theorists were heavily depending on com-

plex analytic tools for solving queueing models. Motivated by this fact, in

1975, Marcel F. Neuts developed Phase type distributions and Matrix analaytic

methods. The representation of system elements by phase-type distributions

and their analysis by matrix-analytic method has significantly expanded the

scope of queueing systems for which many useful results can be derived.

1.1 Phase Type distribution

(Continuous time)

The continuous PH distributions are introduced as a natural generalization

of the exponential and Erlang distributions. A PH-distribution is obtained

as the distribution of the time until absorption in a Markov chain having a

finite state space and an absorbing state. Phase-type distributions have matrix

representations that are not unique. Furthermore, any probability distribution

defined on the nonnegative real line can be approximated arbitrarily closely

by a phase-type distribution. This means that the class of PH distributions

is dense in the family of continuous distributions of random variables on the

non-negative half of the real line.

Consider a Markov process χ = {X(t) : t ≥ 0} having finite state space

{1, 2, . . . ,m+ 1} and the infinitesimal generator matrix
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Q =

(
T T0

0 0

)
where T is a square matrix of order m, TTT 0, a column vector and 0, the zero

row vector of the same dimension. The initial distribution of χ is given by the

row vector ᾱ̄ᾱα = (ααα, αm+1), with ααα a row vector of dimension m. The states

{1, ...,m} are transient, while the state m + 1 is absorbing. Let Y := inf{t ≥
0 : X(t) = m + 1} denote the random variable of the time until absorption

in state m + 1. The distribution of Y is called phase–type distribution (or

shortly PH distribution) with parameters (ααα, T ). We write Y ∼ PH(ααα, T ).

The dimension m of T is called the order of the distribution PH(ααα, T ). The

states (1, ...,m) are also called phases, which gives rise to the name phasetype

distribution. Let eee denote the column vector of dimension m with all entries

equal to one. Also, we have TTT 0 = −Teee and αm+1 = 1 − αααeee. These follow

immediately from the properties that the row sums of a generator are zero

and the sum of a probability vector is one. The vector TTT 0 is called the exit

vector of the PH distribution.

The distribution function of Y is given by

F (t) := P (Y ≤ t) = 1−αααeTteee, for all t ≥ 0

and its density function is

f(t) = αααeTtTTT 0, for all t > 0.

Here, the function eTt = exp(Tt) =
∑∞

n=0
tn

n!T
n denotes a matrix exponential

function.

The Laplace-Stieltjes transform of F (t) is given by

φ(s) =

∫ ∞
0

e−stdF (t) = αm+1 +ααα(sI − T )−1T 0T 0T 0
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for all s ∈ C with Re(s) ≥ 0.

The moments of Y are given by

E(Y n) = (−1)nn!αααT−neee

for all n ∈ N .

Theorem 1.1.1 (see Theorem 9.3 of [5]). Let F denote a PH(ααα, T )

distribution function. F is non defective, i.e. F (∞) = 1 for all ααα, if and only

if T is invertible. In this case, (−T−1)ij is the expected total time spent in

state j given that the process χ started in state i.

For further information about the PH distribution, see, Neuts, [40], Breuer

and Baum, [5], Latouche and Ramaswami , [33] and Qi-Ming He, [42]. Use-

fulness of PH distribution as service time distribution in telecommunication

networks is elaborated, e.g., in Pattavina and Parini [41] and Riska, Diev and

Smirni [43].

1.2 Markovian Arrival Process

Markovian Arrival Processes (MAP) introduced in Neuts [40] is a rich class

of point processes that includes many well-known processes such as Poisson,

PH-renewal processes and Markov-modulated Poisson process. A significant

feature of the MAP is the underlying Markovian structure that fits ideally

in the context of matrix-analytic solutions to stochastic models. MAP is a

generalization of the Poisson process, which keeps many useful properties of

the Poisson process. For example, the memoryless property of the Poisson

process is partially preserved by the MAP by conditioning on the phase of the

underlying Markov chain. Any stochastic counting process can be approxi-

mated arbitrarily closely by a sequence of Markovian arrival processes. MAP

is a convenient tool to model both renewal and non-renewal arrivals. In [6],
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Chakravarthy provides an extensive survey of the Batch Markovian Arrival

Process (BMAP) in which arrivals are in batches where as it is in singles in

MAP.

A continuous time Markov chain {(N(t), I(t)), t ≥ 0} with state space

{(i, j) : i ≥ 0, 1 ≤ j ≤ m} and infinitesimal generator

Q =


D0 D1

D0 D1

D0 D1

. . .
. . .

 .

is called a MAP with matrix representation (D0, D1). Here D0 and D1 are

square matrices of order m, where m is a positive integer. The diagonal

elements of D0 are negative and its off-diagonal elements are nonnegative, D1

has all its elements nonnegative and D0 +D1 is an infinitesimal generator. Let

D0 = (d
(0)
ij ) and D1 = (d

(1)
ij ), then d

(0)
ij is the rate of transitions from phase i

to j without an arrival, for i 6= j; d
(1)
ij is the rate of transitions from phase i

to j with an arrival and −d(0)
ii is the total rate of events in phase i. Let N(t)

denote the number of arrivals in (0, t) and I(t) the phase of the Markov chain

at time t. Let π∗ be the stationary probability vector of D. Then the constant

β∗ = π∗D1e, referred to as fundemental rate, gives the expected number of

arrivals per unit of time in the stationary version of the MAP.

1.3 Quasi-birth-death processes

Consider a Markov process with
{
X(t), t ∈ R+

}
on the bivariate state space

Ω =
⋃
n≥0
{(n, j) : 1 ≤ j ≤ m}. The first coordinate n represents the level, and

j the phase of the nth level. The number of phases in each level may be either

finite or infinite. The Markov process is called a QBD process if one-step

transitions from a state are restricted to the same level or to the two adjacent
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levels. In other words,

(n− 1, j′) 
 (n, j) 
 (n+ 1, j′′) for n ≥ 1.

If the transition rates are level independent, the resulting QBD process is

called level independent quasi-birth-death process (LIQBD); else it is called

level dependent quasi-birth-death process (LDQBD). Arranging the elements

of Ω in lexicographic order, the infinitesimal generator of a LIQBD process is

block tridiagonal and has the following form:

Q =


B1 A0

B2 A1 A0

A2 A1 A0

. . .
. . .

. . .

 (1.1)

where the matrices A0, A1, A2 are square and have the same dimension; matrix

B1 is also square and need not have the same size as A1. Also, the matrices B2,

A2 and A0 are nonnegative and the matrices B1 and A1 have nonnegative off-

diagonal elements and strictly negative diagonals. The row sums of Q are equal

to zero, so that we have B1eee+A0eee = B2eee+A1eee+A0eee = (A0 +A1 +A2)eee = 0.

Among the various tools that we used in this thesis Matrix geometric

method plays an important role. A brief description of this is given below.

1.4 Matrix Geometric Method

Marcel F. Neuts pioneered matrix-geometric methods in the study of queueing

models in the 1970s. The transform techniques used in solving QBD processes

are replaced largely by the matrix geometric approach with the advent of

high speed computers and efficient algorithms. In matrix geometric method

the distribution of a random variable is defined through a matrix; its density

function, moments, etc. are expressed with this matrix. The modelling tools
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such as Phase type distributions, Markovian Arrival Processes, Batch Marko-

vian Arrival Processes, Markovian Service Processes etc. are well suited for

Matrix Geometric Methods. The power and popularity of matrix-geometric

methods come from their flexibility in stochastic modelling, ability for ana-

lytic exploration, natural algorithmic thinking, and tractability in numerical

computation.

Theorem 1.4.1 (see Theorem 3.1.1. of Neuts [40]). The process Q in

(1.1) is positive recurrent if and only if the minimal non-negative solution R

to the matrix-quadratic equation

R2A2 +RA1 +A0 = 0 (1.2)

has all its eigenvalues inside the unit disk and the finite system of equations

xxx0 (B1 +RB2) = 0

xxx0(I −R)−1eee = 1 (1.3)

has a unique positive solution xxx0.

If the matrix A = A0 +A1 +A2 is irreducible, then sp(R) < 1 if and only

if

πA0e < πA2e (1.4)

where π is the stationary probability vector of A.

The stationary probability vector xxx = (xxx0,xxx1, . . .) of Q is given by

xxxi = xxx0R
i for i ≥ 1. (1.5)

Once R, the rate matrix, is obtained, the vector x can be computed.

We can use an iterative procedure or logarithmic reduction algorithm (see

Latouche and Ramaswami [33]) or the cyclic reduction algorithm (see Bini

and Meini [4]) for computing R.
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1.5 Computation of R matrix

There are many algorithms for finding rate matrix R. Here we describe one

of them.

Iterative algorithm

From (1.2), we can evaluate R in a recursive procedure as follows.

Step 0: R(0) = 0.

Step 1:

R(n+ 1) = A0(−A1)−1 +R2(n)A2(−A1)−1, n = 0, 1, . . .

Continue Step 1 until R(n+ 1) is close to R(n).

That is, ||R(n+ 1)−R(n)||∞ < ε.

1.6 Review of related work

In classical queueing systems, servers are always available. But in vacation

queueing systems, the server may not be available for a certain duration of time

since he has to attend some supplementary jobs or is to undergo maintenance

work or by its failure resulting in interruption of current service or simply

to take a break. Levy and Yechiali [35] introduced the concept of server

vacation.They considered both single vacation and multiple vacation queueing

models. Under a single vacation policy, after taking a vacation at the end of

a busy period, the server either serves the waiting customers, if any, else stays

idle. Under multiple vacation policy, the server takes vacations until it finds

at least one customer waiting in the system at a vacation completion instant.
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Considerable number of work in this area upto 1986 were surveyed by

Doshi in [9]. More studies on vacation models could be found in Takagi [47]

and in Tian and Zhang [49]. Servi and Finn [46] introduced the concept of

a working vacation in which the server offers services at a lower rate during

vacation if customers are available.They computed explicit formulae for the

mean, variance and distribution of the number of customers and time spent by

a customer in the system. Kim et al. [25] considered the M/G/1 queue with

working vacations and obtained the steady-state queue length distribution.

Wu and Takagi [55] considered M/G/1 queue with multiple working vacations

and obtained the distribution of the queue size and the time in the system for

an arbitrary customer in the steady-state. The concept of vacation interrup-

tion was introduced by Li and Tian [36]. They studied the M/M/1 queue with

working vacations and vacation interruptions. Under the vacation interrup-

tion policy, the server can come back from the vacation without completing

the vacation. By employing the matrix-geometric method, they obtained the

distributions and the stochastic decomposition for the number of customers

and the waiting time. Li et al. [37] analyzed a single server vacation queue

with a general arrival process with working vacation and vacation interrup-

tion. By matrix manipulations they obtained various performance measures

such as mean queue length and waiting time.

In classical queueing models N -policy is used as a control mechanism to

start service when the number of customers present in the system hits N ,

starting from the epoch the server becomes idle due to the system becoming

empty. Yadin and Naor [51] introduced the concept of N-policy for M/M/1

queueing system without start-up time. Lee et al. [34] considered an MX/G/1

queueing system with N-policy and multiple vacations. They obtained the

system size distribution and showed that the system size could be decom-

posed into three random variables one of which is the system size of ordinary

MX/G/1 queue.They also derived the waiting time distribution, some per-

formance measures and also a condition under which the optimal stationary
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operating policy is achieved under a linear cost structure. Kasahara et al.

[22] considered MAP/G/1 queueing systems with and without vacations. For

both the cases, they analyzed the stationary queue length and the waiting

time distributions, and derived recursive formulas to compute the moments of

those distributions. Also they provided a numerical algorithm to obtain the

mass function of the stationary queue length.

Zhang and Hou [56] considered the MAP/G/1 queue with working vaca-

tions and vacation interruption and obtained the queue length distributions.

Cosmika and Selavaraju [14] analyzed a working vacation queueing model with

priority customers where the service time of customers follows phase-type dis-

tributions. They assumed that after serving a customer in working vacation, if

the server finds any customer waiting in the queue, the vacation is interrupted

and the server switches to normal service mode. They derived distributions of

duration of a busy period, busy cycle, queue length and waiting time for the

two types of customers.

Sreenivasan et al. [45] studied a MAP/PH/1 queueing model with working

vacations, vacation interruptions and N-policy. The server takes vacation and

offers service at a lower rate during those times. The server returns to normal

state whenever a random clock expires or the queue length hits a specific

threshold value whichever occurs first. They analyzed the model in steady

state using matrix analytic methods.

Queues with interruption play an important role in day to day life. We

encounter different kinds of interruptions in various activities like internet

browsing, banking, medical check ups, in supermarkets etc. The works so far

reported in the literature discuss about interruptions such as server induced,

customer induced, enviornment dependent service interruptions, server vaca-

tions, vacation interruptions and interruption due to arrival of a priority cus-

tomer. The first reported work on queues with service interruption is by White

and Christie[54] in which they considered a two-priority single server system

with the low priority customer in service pre-empted on arrival of a high pri-
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ority customer. Even in the case of single class customer system, the customer

in service has to wait whenever a system breakdown occurs. The interrupted

service starts from the very beginning (repeat) or from where it got interrupted

(resumption) on completion of interruption. These two cases are separately

considered in Keilson [24], Gaver [13] and by several other researchers. Fiems

et al. [12] introduced probability measures for repeat/resumption on comple-

tion of interruption without assigning any rule. Krishnamoorthy et al. [30] are

the first to give a specific rule for resumption/repetition of service. We refer

the review paper by Krishnamoorthy et al. [29] for details on queueing models

with system induced service interruption (priority queues not included).

Varghese et al.[50] introduced a new type of interruption called customer

induced interruption in which a customer interrupts own service. They con-

sidered an infinite capacity queueing system with a single server in which

customers arrive according to a Poisson process with the service time fol-

lowing an exponential distribution. The interruptions occur according to a

Poisson process and the duration of each interruption follows an exponen-

tial distribution. The self-interrupted customers enter into a finite buffer of

size K. Any interrupted customer, finding the buffer full, is considered lost.

Those interrupted customers who complete their interruptions move into an-

other buffer of same size and are given a nonpreemptive priority over new

customers. They evaluated several performance measures. Numerical illustra-

tions of the system behavior are provided and also discussed an optimization

problem through an illustrative example. Krishnamoorthy et al. [31] extended

this to a multi-server queueing system. They investigated the behavior of the

queueing system, several performance measures are evaluated and provided

numerical illustrations of the system behaviour. Also an optimization prob-

lem to maximize the revenue with respect to number of servers and optimal

buffer size for the self-interrupted customers are discussed through two illus-

trative examples. Dudin et al. [10] extended these to MMAP/PH(PH)/c

queue with negative arrivals.
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Varghese and Krishnamoorthy [32] considered a single-server retrial queue

with infinite capacity of the primary buffer and finite capacity of the orbit to

which customers arrive according to a Poisson process, and the service time

follows phase-type distribution. The customer-induced interruption occurs

according to a Poisson process. The self-interrupted customers enter into the

orbit. Any interrupted customer, finding the orbit full, is considered lost. The

interrupted customers retry for service after the interruption is completed.

Several performance measures are evaluated and some numerical illustrations

of the system behavior provided.

In most of the work reported in queueing theory it is implicitly assumed

that if the server is ready to serve and customers are available to receive

service then the service process proceeds. Either availability of ”additional”

items required to provide service is not taken into consideration/ignored or its

abundance is taken for granted. In the latter case the holding cost incurred

is completely ignored. Sometimes the item(s) required for service may not be

available. In such cases service cannot be provided even when server(s) is/are

readily available and customer(s) are waiting.

Thus in several cases availability of both customers and servers alone can-

not guarantee service. This naturally leads to the investigation of availability

of additional item(s) required to provide service. Then some control problems

also arise– how much of additional item(s) to be held, time required to procure

such items and so on. This leads to the consideration of holding cost, shortage

cost and associated revenue loss. Kazimirisky [23] seems to be the first to

introduce ’additional items needed for service’. He considered a BMAP/G/1

queue, with the server engaged in producing additional items whenever cus-

tomers are not waiting. In most of the work on queues with ’additional items’

for service exactly one processed item is assumed to be required for each cus-

tomer. Customer service time distribution depends on whether processed item

is available or not. Thus there are two distinct service time distributions.

Baek et al. [3] considered MMAP of customers of two types– type I(high
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priority) and type II (low priority). Both type of customers require a certain

minimum number of additional items to start their service. Type I customers

do not have space to wait. If a type I customer is in service while another

type I customer arrives, the latter leaves the system. On the other hand if

a type II customer is in service, the former is pushed out of the system by

the type I arrival, provided the number of additional items available is atleast

equal to the minimum number required to start its service. Else, it leaves

the system without changing the status. Type II customers have an infinite

capacity waiting space. Additional items arrive to the system according to

MAP. They invetigate system stability and analyze its performance. Dhanya

et al.[7] extend the above to retrial queueing set up.

Hanukov et al. [17] analyze a single server queueing system where again ad-

ditional items is needed for service of a customer (one item for each customer).

The arrival process is Poisson and service time is exponenetially distributed.

The service consists of two independent stages. The first stage can be per-

formed even in the absence of customers, whereas the second stage requires the

customer to be present. When the system is devoid of customers, the server

produces an inventory of first stage called ’preliminary ’ services, which is used

to reduce customer’s overall sojourn times. Hence in this model customer will

not have to wait for the entire service to be carried out from the beginning,

provided processed item is available at the time the customer is taken for ser-

vice. Such customers have a shorter service time in comparison to those who

encounter the system with no processed item when taken for service. Divya et

al. [8] considered single server queue in which customers arrive according to

MAP with representaion (D0, D1) of order n. The details are given in chapter

4 of this thesis.

In real life, people become impatient while waiting for service. Hence to

model reality, we should take into consideration customer’s impatience. To

characterize customers’ impatient behaviour, some terminologies like balking,

reneging and retrials are employed in queueing system. Balking customers
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decide not to join the queue if it is too long and reneging customers leave the

queue if they have waited too long for service. Retrial queues study systems

where customers do not wait in a line (provided there is no buffer to wait)

when server is found to be busy; instead they keep repeating their attempts

to access the server at random time points (see Falin and Templeton [11],

Artalejo and Gomaz-Corral [1]). Wang et al [52] has presented a review on

queuing systems with impatient customers.

Wang and Zhang [53] consider a single-server service-inventory system

where customers arrive according to a Poisson process and the service times

are independent and exponentially distributed. A customer takes exactly one

item from the inventory upon service completion. A continuous review policy

is adopted to replenish the inventory. With two different information levels,

i.e. the fully unobservable case and the partially observable case, arriving

customers decide whether to join or to balk the system. They investigated

customers’ individually optimal and socially optimal strategies, and further

consider the optimal pricing issue that maximises the servers revenue. Some

numerical experiments are carried out to show that the individually optimal

joining probability (or threshold) is not always greater than that of socially

optimal one. It was observed that, to maximise the servers revenue, concealing

some system information from customers may be more profitable. Conversely,

to maximise the social welfare, the customers need more system information.

Finally, numerical results in the fully unobservable case illustrate a reasonable

phenomenon that the revenue maximum is equal to social optimum in most

cases.

1.7 Summary of the thesis

In this thesis we discuss a few queueing models with working vacation, working

interruption and with processing of items for service by identifying continuous

time Markov chains. The modelling tools like Poisson process, Markovian
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Arrival Process (MAP) and Phase type distributions (PH-distributions) are

used. The resulting QBD process are analyzed algorithmically using matrix

geometric method. Numerical examples are done using MATLAB Program.

Now we turn to the content of the thesis. This thesis entitled ’Analysis of

Queueing Models with Working Vacations, Working Interruptions

and on Queueing Models with Processing of Items for Service’, is

divided into 6 chapters including the present introductory chapter(chapter 1).

In chapter 2, we study two single server queueing models with non-preemp-

tive priority and working vacation under two distinct N -policies. High prior-

ity(type I) customers are served even in vacation mode whereas low prior-

ity(type II) customers are served only when the server comes to normal mode

of service. Type I customers have only a limited waiting space L whereas

type II customers have unlimited capacity. The two distinct N -policies are as

described below: In model I, while service of type I customers are in progress

in vacation mode (working vacation), if the number of such customers present

in the system hits N (≤ L) or the vacation timer(clock) expires, whichever

occurs first, the server is switched to normal mode. In model II, switching

the server to normal mode from vacation mode occurs as soon as the accu-

mulated number(those served out plus those present in the system) of type

I customers during that working vacation hits N or the vacation timer ex-

pires, whichever occurs first. Type I customers arrive according to a Poisson

process whereas type II customer’s arrival is governed by Markovian Arrival

Process(MAP). Service time of type I and type II customers follow distinct

phase type distributions. At a service completion epoch, finding the system

empty, the server takes an exponentially distributed working vacation. During

working vacation, type I customers are served at a reduced rate. On vacation

expiration, the service of the type I customer, already in service, will start

from the beginning in the normal mode of service. We analyze these models

in steady state to compute the distribution of the duration of service time

continuously in slow mode, expected number of returns to 0 type I customer
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state, starting from 0 type I customer state during vacation mode of service

before the arrival of a type II customer, the distribution of a p-cycle in normal

mode, LSTs of busy cycle, busy period of type I customers generated during

the service time of a type II customer and LSTs of waiting time distributions

of type I and type II customers. We compare these models in steady state by

numerical experiments to identify the superior model.

In chapter 3, we study a (M,MAP)/(PH,PH)/1 queue with nonpreemptive

priority, working interruption and protection from interruption. Two types of

priority classes of customers, where type I customers arrive according to a

Poisson process and type II customers arrive according to Markovian Arrival

Process are considered. Service time of both type I and type II customers

follow mutually independent phase type distributions. The number of type

I customers in the system is restricted to a maximum of L. Also type I cus-

tomers are assumed to have a non-preemptive priority over type II customers.

Customer services are subject to interruption by a self–induced mechanism.

The interruptions occur according to a Poisson process. Instead of stopping

service completely, the service continues at a slower rate during interruption.

Also we assume that an interruption occuring while customer is already under

interruption will not affect the customer.The server continues to serve at this

lower rate until interruption is fixed. The duration of interruption is assumed

to be exponentially distributed. A protection mechanism to reduce the effect

of interruptions on type I customers service is arranged.The protection for the

service of type I customers is provided at the epoch of realization of the clock

which starts ticking at the moment a type I customer is taken for service.

Type II customers are not provided protection against interruption during

their service. Also we assume that type I customers get service at a faster

rate starting from the epoch of providing service protection. We analyse the

distribution of service time duration of both type I and type II customers and

the distribution of a p-cycle. Also we provide LSTs of busy cycle, busy period

of type I customers generated during the service time of a type II customer
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and LSTs of waiting time distributions of type I and type II customers. Also

we compute the expected number of interruptions during a type I and a type

II service. We perform numerical computations to evaluate important system

characteristics and also optimal system cost using a cost function .

In chapter 4, we study a MAP/(PH,PH)/1 queue with processing of service

items under Vacation and N-policy. We assume that customers arrive at a

single server queueing system according to Markovian Arrival process. When

the system is empty, the server goes for vacation and produces inventory for

future use during this period. The maximum number of inventory at a stretch

is L. The inventory processing time follows phase type distribution. These

are required for the service of customers-one for each customer. The server

returns from vacation when there are N customers in the system. The service

time follows two distinct phase type distributions depending on whether there

is processed item or no processed item available at service commencement

epoch. We analyse the distribution of time till the number of customers hit

N or the inventory level reaches L, that of idle time, the distribution of time

until the number of customers hit N and also the distribution of the number

of inventory processed before the arrival of the first customer in a cycle. Also

we provide the distribution of a busy cycle, LSTs of busy cycles in which no

item is left in the inventory and that of at least one item left in the inventory.

We perform some numerical experiments to evaluate the expected idle time,

standard deviation and coefficient of varaiation of idle time of the server .

In chapter 5, we extend the queueing model considered in the previous

chapter to the case where the customers are impatient. Arriving customers join

the queue with probability p or balk with probability 1−p. Also the customers

waiting for service become impatient and renege after a random time period

which is exponentially distributed. Thus the system is level dependent. We

find the distribution of time until the number of customers hit N . Several

system performance characteristics are computed. Also we compute LST of

the waiting time distribution for the case of no reneging. For the special case
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of no reneging, some numerical experiments for computing individual optimal

strategy, maximum revenue to the server and social optimal strategy are also

discussed.

In last chapter, we study a two-server queueing system in which the cus-

tomers arrive according to Markovian Arrival Process. Each customer is to

be provided with a processed item at the end of his service. Server 1 provides

service only, whereas Server 2 provides service and also processes the item re-

quired to serve customers. The maximum inventory level permitted is L. The

inventory processing time follows phase type distribution. After processing L

items, server 2 starts serving customers, if any waiting; else stays idle. Server

1 is dedicated to service only. Service is rendered only if there are processed

items. Also, if at the time of arrival of a customer both servers are idle, server

1 provides him service and server 2 continues to remain idle even if it has com-

pleted the processing of L items. The duration of service time given by both

servers follow phase type distributions of same order, but server 1 provides

service at a slower rate than server 2. If the inventory level drops to a prede-

termined level s at a customer departure epoch due to a service completion

by server 2, then he starts processing items. If the inventory level drops to

level s due to a service completion by server 1, then the customer served by

server 2 is shifted to server 1 to provide him the residual service and server

2 starts processing items. The arrival process is independent of the inventory

processing and service process. The long run behaviour of the system is an-

alyzed under condition for stability. We derive some important distributions

associated with the model. Numerical investigation of the optimal values of L

and s is provided.

Finally a section “concluding remarks and suggestions for future study”,

is included.



Chapter 2

(M, MAP)/(PH, PH)/1

queue with Non-preemptive

priority and working vacation

under N-policy

In this chapter we analyze two single server queueing models with two prior-

ity classes of customers where type I customers are assumed to have a non-

preemptive priority over type II. The server goes on working vacation whenever

the system becomes empty. Further the working vacation ends as soon as N

customers accumulate. A working vacation queueing system provides relief to

customers since the server is always available for service, though at a reduced

rate, at the beginning of a cycle. Thus customer impatience gets reduced

1. Presented in the International Conference on Stochastic Modelling Analysis and Ap-
plications organised by the Centre for Research, Department of Mathematics, CMS College,
Kottayam held on 10 and 11 January 2018.
2. Some results of this chapter are included in the following paper.
A. Krishnamoorthy, Divya V.: (M, MAP)/(PH, PH)/1 queue with Non-preemptive
priority and working vacation under N-policy (communicated).
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through introduction of working vacation in the place of vacation (without

service). We have introduced a two-priority system where high priority cus-

tomers alone are served during working vacation. This is a realistic situation

since the system has to take care of impatience of such customers more than

that of low priority customers. Further we imposed finite capacity for the

High priority queue; this is to ensure ”not too large waiting time” for such

customers. In the N -policy introduced by Yadin and Naor [51], the server

waits (or server is not activated) until the number of customers present in the

system becomes N to start service in every new cycle. A customer arriving

during this time will have to wait until the server is activated. The customers

could become impatient while no service is provided. The purpose is to extend

the duration of a busy period and thus reduce per unit time cost to the system.

In a working vacation queueing model the above definition of N -policy needs

modification. In Sreenivasan et al.[45] the N -policy is introduced as follows:

The server goes on vacation when, at the end of a service, no customer is

left in the system. However, he starts giving service at a slower mode with

the arrival of the first customer to the system. This is called working vaca-

tion since the server serves even during vacation. New customers may arrive

during that service time. The service continues to be on vacation mode until

either the number of customers in the system reaches N or the vacation timer

expires, whichever occurs first. In the absence of occurence of these events,

the server goes for another vacation when the system becoming empty again.

If the vacation timer has large mean value and arrival rate is much slower

than even service rate during working vacation, it will take a long time for

N customers to be present at any given time. In fact, quite often the system

becomes empty more often than the service hits normal mode.

We introduce another type of N -policy, in connection with working vaca-

tion. The server on vacation serves in working vacation mode customers who

arrive after the just concluded busy period. This continues until the vacation

timer expires or the number of customers present in the system plus number
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of customers already served (accumulated number) during the current vaca-

tion hits N , whichever occurs first; else the server goes for another vacation

since the system is found to be empty immediately after completion of a ser-

vice. We provide a comparison between the two models to check which is

superior under given conditions. During working vacation type I customers

alone recieve service. This assumption can be justified; type I customers are

more impatient than type II, though we have not brought in this paper the

customer impatience factor.

In model I, we use N-policy as a control mechanism to end a working va-

cation, as described: During a working vacation, either N type I customers

should be present in the system at a given epoch or the vacation clock should

expire, whichever occurs first, inorder to switch to normal mode of service. In

model II also we use N-policy as a control mechanism to terminate a working

vacation: During a working vacation, either the number of type I customers

present in the system plus number of type I customers already served during

that vacation hits N or the vacation clock expires, whichever occurs first in-

order to switch to normal mode of service. Type I customers alone are served

during working vacation. Thus the idle time of the server in the discussed

N–policy is better utilized in working vacation under N–policy. This also

helps in reducing impatience of high priority customers. Further since the

normal mode is realized in model II at a higher rate than in model I, we ex-

pect the former to perform better, which is seen to be true through numerical

experiments.

2.1 Model Description and Mathematical formula-

tion of model I

We consider a single server queue with two priority classes of customers where

type I customers arrive according to a Poisson process with rate λ and type

II customer arrival follows a Markovian Arrival Process with representation
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(D0, D1) of order n. Service time of type I customer is assumed to be of

phase type distributed with representation (ααα, T ) of order m and of a type

II customer is assumed to be of phase type distributed with representation

(α′α′α′, T ′) of order m′. The maximum number of type I customers in the sys-

tem is restricted to L. They are assumed to have a non-preemptive priority

over type II customers. At a service completion epoch, finding the system

empty, server takes a WV. The duration of vacation is assumed to be ex-

ponentially distributed with parameter η. Type I customers arriving during

vacation are served at a lower rate(WV): Phase Type distribution with repre-

sentation (ααα, θT ), 0 < θ < 1. Thus the expected service rate in normal mode

is µ = [ααα(−T )−1eee]−1 and θµ is the rate of the vacation mode of service. If on

completion of service of a type I customer during WV, no type I is waiting,

then the server continues in vacation, even if type II customers are available

in the system. The server turns to normal working mode during a WV either

when the vacation clock expires or when the number of type I customers in

the system hits level N, 1 ≤ N ≤ L whichever occurs first. Type II customers

are considered for service only when on completion of vacation, no type I cus-

tomer is present in the system or on service completion of a type I customer

in normal mode none of type I customer is left in the system. The expected

service rate of a type II customer is µ′ = [α′α′α′(−T ′)−1eee]−1. Also on vacation

expiration, the service of the type I customer already in service, starts from

the beginning in the normal mode of service.

Let Q∗ = D0 + D1 be the generator matrix of the type II arrival process

and π∗π∗π∗ be its stationary probability vector. Hence π∗π∗π∗ is the unique (positive)

probability vector satisfying

π∗π∗π∗Q∗ = 0, π∗eπ∗eπ∗e = 1

The constant β∗ = π∗π∗π∗D1eee, referred to as fundemental rate, gives the expected

number of type II arrivals per unit of time in the stationary version of the
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MAP. It is assumed that the two arrival processes are independent of each

other and are also independent of the service processes.

2.1.1 The QBD process

The model described above can be studied as a LIQBD process. First we

introduce the following notations:

At time t:

N1(t): the number of type II customers in the system,

N2(t): the number of type I customers in the system,

S(t) =


0, if the server is on vacation/onWV

1, if type I customer in service and service in normal mode

2, if type II customer in service

J(t): the phase of the service process when the server is busy

M(t): the phase of arrival of the type II customer.

It is easy to verify that {(N1(t), N2(t), S(t), J(t),M(t)) : t ≥ 0} is a LIQBD

with state space

Ω = ∪∞i=0l(i)

where l(0) = {(0, 0, k) : 1 ≤ k ≤ n} ∪ {(0, i2, j1, j2, k) : 1 ≤ i2 ≤ N − 1; j1 =

0 or 1; 1 ≤ j2 ≤ m; 1 ≤ k ≤ n} ∪ {(0, i2, 1, j2, k) : N ≤ i2 ≤ L; 1 ≤ j2 ≤ m; 1 ≤
k ≤ n} and for i1 ≥ 1,

l(i1) = {(i1, 0, 0, k) : 1 ≤ k ≤ n} ∪ {(i1, 0, 2, j2, k) : 1 ≤ j2 ≤ m′; 1 ≤ k ≤
n}∪{(i1, i2, 0, j2, k) : 1 ≤ i2 ≤ N−1; 1 ≤ j2 ≤ m; 1 ≤ k ≤ n}∪{(i1, i2, 1, j2, k) :

1 ≤ i2 ≤ L; 1 ≤ j2 ≤ m; 1 ≤ k ≤ n} ∪ {(i1, i2, 2, j2, k) : 1 ≤ i2 ≤ L; 1 ≤ j2 ≤
m′; 1 ≤ k ≤ n}

Note that when N1(t) = N2(t) = 0, server will be on vacation and so S(t)

and J(t) need not be considered. Also when N2(t) = 0 and S(t) = 0, then
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J(t) need not be considered.The only other component in the state vector in

both cases would be M(t).

The infinitesimal generator of this CTMC is

Q1 =


B0 C0

B1 A1 A0

A2 A1 A0

. . .
. . .

. . .

 .

where B0 contains transitions within the level 0; C0 represents transitions from

level 0 to level 1; B1 represents transitions from level 1 to level 0; A0 represents

transitions from level h to level h+1 for h ≥ 1, A1 represents transitions within

the level h for h ≥ 1 and A2 represents transitions from level h to h − 1 for

h ≥ 2. The boundary blocks B0, C0, B1 are of orders n(1 +m(L+N − 1))×
n(1+m(L+N−1)), n(1+m(L+N−1))×n(1+mN+(L−1)m+(L+1)m′),

n(1+mN+(L−1)m+(L+1)m′)×n(1+m(L+N−1)) respectively. A0, A1, A2

are square matrices of order n(1 +mN + (L− 1)m+ (L+ 1)m′).

Define the entries of B
(i2,j2,k2,l2)
0(i1,j1,k1,l1)

, C
(i2,j2,k2,l2)
0(i1,j1,k1,l1)

and B
(i2,j2,k2,l2)
1(i1,j1,k1,l1)

as tran-

sition submatrices which contains transitions of the form (0, i1, j1, k1, l1) →
(0, i2, j2, k2, l2), (0, i1, j1, k1, l1)→ (1, i2, j2, k2, l2) and (1, i1, j1, k1, l1)→ (0, i2,

j2, k2, l2) respectively. Define the entries of A
(i2,j2,k2,l2)
0(i1,j1,k1,l1)

, A
(i2,j2,k2,l2)
1(i1,j1,k1,l1)

and

A
(i2,j2,k2,l2)
2(i1,j1,k1,l1)

as transition submatrices which contains transitions of the form

(h, i1, j1, k1, l1)→ (h+1, i2, j2, k2, l2), where h ≥ 1; (h, i1, j1, k1, l1)→ (h, i2, j2,
k2, l2), where h ≥ 1 and (h, i1, j1, k1, l1)→ (h−1, i2, j2, k2, l2), where h > 1 re-
spectively. Since none or one event alone could take place in a short interval of
time with positive probability, in general, a transition such as (i1, i2, j, k, l)→
(i′1, i

′
2, j
′, k′, l′) has positive rate only for exactly one of i′1, i

′
2, j
′, k′, l′ different

from i1, i2, j, k, l.
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B
(i2,j2,k2,l2)
0(i1,j1,k1,l1)

=



λ(ααα ⊗ In) i1 = 0, i2 = 1; j1 = j2 = 0; 1 ≤ k2 ≤ m,
1 ≤ l1, l2 ≤ n

λImn 1 ≤ i1 ≤ N − 2, i2 = i1 + 1; j1 = j2 = 0;

1 ≤ k1, k2 ≤ m; 1 ≤ l1, l2 ≤ n
λeee(m)⊗ (ααα⊗ In) i1 = N − 1, i2 = N ; j1 = 0, j2 = 1; 1 ≤ k1, k2 ≤ m;

1 ≤ l1, l2 ≤ n
λImn 1 ≤ i1 ≤ L− 1, i2 = i1 + 1; j1 = j2 = 1;

1 ≤ k1, k2 ≤ m; 1 ≤ l1, l2 ≤ n
θTTT 0 ⊗ In i1 = 1, i2 = 0; j1 = 0, j2 = 0; 1 ≤ k1 ≤ m;

1 ≤ l1, l2 ≤ n
TTT 0 ⊗ In i1 = 1, i2 = 0; j1 = 1, j2 = 0; 1 ≤ k1 ≤ m;

1 ≤ l1, l2 ≤ n
θTTT 0ααα⊗ In 2 ≤ i1 ≤ N − 1, i2 = i1 − 1; j1 = 0, j2 = 0;

1 ≤ k1, k2 ≤ m; 1 ≤ l1, l2 ≤ n
TTT 0ααα⊗ In 2 ≤ i1 ≤ L, i2 = i1 − 1; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m;

1 ≤ l1, l2 ≤ n
ηeee(m)⊗ (ααα⊗ In) 1 ≤ i1 ≤ N − 1, i2 = i1; j1 = 0, j2 = 1;

1 ≤ k1, k2 ≤ m; 1 ≤ l1, l2 ≤ n
D0 − λIn i1 = i2 = 0; j1 = j2 = 0; 1 ≤ l1, l2 ≤ n
θT ⊕D0 − (λ+ η)Imn 1 ≤ i1 ≤ N − 1, i2 = i1; j1 = j2 = 0; 1 ≤ k1, k2 ≤ m;

1 ≤ l1, l2 ≤ n
T ⊕D0 − λImn 1 ≤ i1 ≤ L− 1, i2 = i1; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m;

1 ≤ l1, l2 ≤ n
T ⊕D0 i1 = i2 = L; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m;

1 ≤ l1, l2 ≤ n

C
(i2,j2,k2,l2)
0(i1,j1,k1,l1)

=


D1 i1 = 0, i2 = 0; j1 = j2 = 0; 1 ≤ l1, l2 ≤ n
Im ⊗D1 1 ≤ i1 ≤ N − 1, i2 = i1; j1 = j2 = 0; 1 ≤ k1, k2 ≤ m; 1 ≤ l1, l2 ≤ n
Im ⊗D1 1 ≤ i1 ≤ L, i2 = i1; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m; 1 ≤ l1, l2 ≤ n

B
(i2,j2,k2,l2)
1(i1,j1,k1,l1)

=


T ′T ′T ′0 ⊗ In i1 = i2 = 0; j1 = 2, j2 = 0; 1 ≤ k1 ≤ m′; 1 ≤ l1, l2 ≤ n
T ′T ′T ′0α⊗ In 1 ≤ i1 ≤ L, i2 = i1; j1 = 2, j2 = 1; 1 ≤ k1 ≤ m′, 1 ≤ k2 ≤ m;

1 ≤ l1, l2 ≤ n
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A
(i2,j2,k2,l2)
2(i1,j1,k1,l1)

=


T ′T ′T ′0α′α′α′ ⊗ In i1 = i2 = 0; j1 = j2 = 2; 1 ≤ k1, k2 ≤ m′; 1 ≤ l1, l2 ≤ n
T ′T ′T ′0ααα⊗ In 1 ≤ i1 ≤ L, i2 = i1; j1 = 2, j2 = 1; 1 ≤ k1 ≤ m′, 1 ≤ k2 ≤ m;

1 ≤ l1, l2 ≤ n

A
(i2,j2,k2,l2)
1(i1,j1,k1,l1)

=



λ(ααα ⊗ In) i1 = 0, i2 = 1; j1 = j2 = 0; 1 ≤ k2 ≤ m; 1 ≤ l1, l2 ≤ n
λImn i1 = 0, i2 = 1; j1 = j2 = 2; 1 ≤ k1, k2 ≤ m′;

1 ≤ l1, l2 ≤ n
λImn, 1 ≤ i1 ≤ N − 2; i2 = i1 + 1; j1 = j2 = 0; 1 ≤ k1, k2 ≤ m;

1 ≤ l1, l2 ≤ n
λeee(m)⊗ (ααα⊗ In) i1 = N − 1, i2 = N ; j1 = 0, j2 = 1; 1 ≤ k1, k2 ≤ m;

1 ≤ l1, l2 ≤ n
λImn 1 ≤ i1 ≤ L− 1, i2 = i1 + 1; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m;

1 ≤ l1, l2 ≤ n
λImn 1 ≤ i1 ≤ L− 1, i2 = i1 + 1; j1 = j2 = 2; 1 ≤ k1, k2 ≤ m′;

1 ≤ k1, l2 ≤ n
θTTT 0 ⊗ In i1 = 1, i2 = 0; j1 = j2 = 0; 1 ≤ k1 ≤ m;

1 ≤ l1, l2 ≤ n
TTT 0α′α′α′ ⊗ In i1 = 1, i2 = 0; j1 = 1, j2 = 2; 1 ≤ k1 ≤ m, 1 ≤ k2 ≤ m′;

1 ≤ l1, l2 ≤ n
θTTT 0ααα⊗ In 2 ≤ i1 ≤ N − 1, i2 = i1 − 1; j1 = j2 = 0; 1 ≤ k1, k2 ≤ m;

1 ≤ l1, l2 ≤ n
TTT 0ααα⊗ In 2 ≤ i1 ≤ L, i2 = i1 − 1; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m;

1 ≤ l1, l2 ≤ n
η(α′α′α′ ⊗ In) i1 = i2 = 0; j1 = 0, j2 = 2; 1 ≤ k2 ≤ m′; 1 ≤ l1, l2 ≤ n
ηeee(m)⊗ (ααα⊗ In) 1 ≤ i1 ≤ N − 1, i2 = i1; j1 = 0, j2 = 1; 1 ≤ k1, k2 ≤ m;

1 ≤ l1, l2 ≤ n
D0 − (λ+ η)In i1 = i2 = 0; j1 = j2 = 0; 1 ≤ l1, l2 ≤ n
T ⊕D0 − λImn i1 = i2 = 0; j1 = j2 = 2; 1 ≤ k1, k2 ≤ m′; 1 ≤ l1, l2 ≤ n
θT ⊕D0 − (λ+ η)Imn 1 ≤ i1 ≤ N − 1, i2 = i1; j1 = j2 = 0; 1 ≤ k1, k2 ≤ m;

1 ≤ l1, l2 ≤ n
T ⊕D0 − λImn 1 ≤ i1 ≤ L− 1, i2 = i1; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m;

1 ≤ l1, l2 ≤ n
T ⊕D0 − λImn 1 ≤ i1 ≤ L− 1, i2 = i1; j1 = j2 = 2; 1 ≤ k1, k2 ≤ m′;

1 ≤ l − 1, l2 ≤ n
T ⊕D0 i1 = i2 = L; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m; 1 ≤ l1, l2 ≤ n
T ⊕D0 i1 = i2 = L; j1 = j2 = 2; 1 ≤ k1, k2 ≤ m′; 1 ≤ l1, l2 ≤ n
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A
(i2,j2,k2,l2)
0(i1,j1,k1,l1)

=



D1 i1 = i2 = 0; j1 = j2 = 0; 1 ≤ l1, l2 ≤ n
Im ⊗D1 i1 = i2 = 0; j1 = j2 = 2; 1 ≤ k1, k2 ≤ m′; 1 ≤ l1, l2 ≤ n
Im ⊗D1 1 ≤ i1 ≤ N − 1, i2 = i1; j1 = j2 = 0; 1 ≤ k1, k2 ≤ m;

1 ≤ l1, l2 ≤ n
Im ⊗D1 1 ≤ i1 ≤ L, i2 = i1; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m;

1 ≤ l1, l2 ≤ n
Im ⊗D1 1 ≤ i1 ≤ L, i2 = i1; j1 = j2 = 2; 1 ≤ k1, k2 ≤ m′;

1 ≤ l1, l2 ≤ n

2.2 Steady State Analysis

First we find the condition for stability of the system under study.

2.2.1 Stability condition

Let πππ = (πππ0,πππ1, . . . ,πππL) denote the steady state probability vector of the

generator

A = A0+A1+A2 =



F0 F1

F2 F3 λI

F4 F3 λI
. . .

. . .
. . .

F4 F3 λI

F4 F3 F5

F6 F7 λI

F8 F7 λI
. . .

. . .
. . .

F8 F7 λI

F8 F9


where
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F0(k, l) =


D0 +D1 − (λ+ η)In k = 1, l = 1

η(α′α′α′ ⊗ In) k = 1, l = 2

0 k = 2, l = 1

T ′T ′T ′0α′α′α′ ⊗ In + T ′ ⊕D0 − λIm′n + Im′ ⊗D1 k = 2, l = 2

F1(k, l) =


λ(ααα⊗ In) k = 1, l = 1

λIm′n k = 2, l = 3

0 otherwise

, F2(k, l) =


θTTT 0 ⊗ In k = 1, l = 1

TTT 0α′α′α′ ⊗ In k = 2, l = 2

0 otherwise

F3(k, l) =



θT ⊕D0 − (λ+ η)Imn + Im ⊗D1 k = 1, l = 1

eee(m)⊗ η(ααα⊗ In) k = 1, l = 2

T ⊕D0 − λImn + Im ⊗D1 k = l = 2

T ′ ⊕D0 − λIm′n + Im′ ⊗D1 k = l = 3

T ′T ′T ′0ααα⊗ In k = 3, l = 2

0 otherwise

F4(k, l) =


θTTT 0ααα⊗ In k = 1, l = 1

TTT 0ααα⊗ In k = 2, l = 2

0 otherwise

, F5(k, l) =


λeee(m)⊗ (ααα⊗ In) k = l = 1

λImn k = 2, l = 1

λIm′n k = 3, l = 2

0 otherwise

F6(k, l) =

{
TTT 0ααα⊗ In k = 1, l = 2

0 otherwise



2.2. Steady State Analysis 29

F7(k, l) =


T ⊕D0 − λImn + Im ⊗D1 k = l = 1

T ′ ⊕D0 − λIm′n + Im′ ⊗D1 k = l = 2

0 k = 1, l = 2

T ′T ′T ′0α⊗ In k = 2, l = 1

F8(k, l) =

{
TTT 0ααα⊗ In k = l = 1

0 otherwise
, F9(k, l) =


T ⊕D0 + Im ⊗D1 k = l = 1

T ′ ⊕D0 + Im′ ⊗D1 k = l = 2

T ′T ′T ′0ααα⊗ In k = 2, l = 1

with dimension of F0, F1, F2 be n(1 + m′) × n(1 + m′), n(1 + m′) × (2m +

m′)n, (2m + m′)n × n(1 + m′) respectively. F3, F4 are square matrices of

order (2m + m′)n, F5 is of order (2m + m′)n × (m + m′)n, F6 is of order

(m + m′)n × (2m + m′)n, F7, F8, F9 are square matrices of order (m + m′)n.

ie,

πππA = 0,πππeee = 1 (2.1)

The LIQBD description of the model indicates that the queueing system is

stable (see Neuts [40] ) if and only if the left drift exceeds that of right drift.

That is,

πππA0e < πππA2e (2.2)

The vector πππ cannot be obtained directly in terms of the parametres of the

model. From (2.1) we get

πππi = πππi−1Ui−1, 1 ≤ i ≤ L (2.3)

where

U0 = −F1(F3 + U1F4)−1
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Ui =



−λ(F3 + Ui+1F4)−1 for 1 ≤ i ≤ N − 3

−λ(F3 + UN−1F6)−1 for i = N − 2

−F5(F7 + UNF8)−1, for i = N − 1

−λ(F7 + Ui+1F8)−1 for N ≤ i ≤ L− 2

−λF−1
9 for i = L− 1

From the normalizing condition πe = 1 we have

πππ0

L−1∑
j=0

j∏
i=0

Ui + I

eee = 1 (2.4)

The inequality (2.2) gives the stability condition as

πππ0

(I(1+m′) ⊗D1)eee+

N−2∑
i=0

i∏
j=0

Uj(I(2m+m′) ⊗D1)eee+

L−1∑
i=N−1

i∏
j=0

Uj(I(m+m′) ⊗D1)eee


< π0π0π0

A20 +

N−2∑
i=0

i∏
j=0

UjA21 +

L−1∑
i=N+1

i∏
j=0

UjA22

 (2.5)

where, A20 =

[
0

(T ′T ′T ′0α′α′α′ ⊗ I)eee

]
, A21 = A22 =

[
0

(T ′T ′T ′0ααα⊗ I)eee

]
, with 0 a zero

column vector of order n, 2mn and mn for A20, A21 and A22 respectively.

2.2.2 Steady-state probability vector

Assuming that the condition (2.5) is satisfied we proceed to find the steady-

state probability of the system state.

Let xxx be the steady state probability vector of Q. We partition this vector

as

xxx = (xxx0,xxx1,xxx2 . . .),

where xxx0 is of dimension n(1 + m(L + N − 1)), xxx1,xxx2, . . . are of dimension
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n(1 +mN + (L− 1)m+ (L+ 1)m′). Under the stability condition, we have

xxxi = xxx1R
i−1, i ≥ 2

where the matrix R is the minimal nonnegative solution to the matrix quadratic

equation

R2A2 +RA1 +A0 = 0

and the vectors xxx0 and xxx1 are obtained by solving the equations

xxx0B0 + xxx1B1 = 0 (2.6)

xxx0C0 + xxx1(A1 +RA2) = 0 (2.7)

subject to the normalizing condition

xxx0eee+ xxx1(I −R)−1eee = 1 (2.8)

For evaluating the performance of the system we have to compute certain

distributions. We proceed to such computations.

2.2.3 Distribution of duration of slow service mode

The duration Tslow, of a slow service mode is defined as the time the server

stays in slow service mode (through initiating a WV) until either switching to

normal mode through the vacation clock realization or with the number of type

I customers in the system hitting the threshold value N or the number of type

I customers hitting 0 before expiration of vacation, whichever occurs first. We

consider the Markov process Tslow(t) = {(N(t), J(t)) : t ≥ 0} where N(t) is

the number of type I customers in the system at time t, J(t) the service phase

at time t. Thus the state space of the process is {(i, j) : 1 ≤ i ≤ N − 1; 1 ≤
j ≤ m} ∪ {0} ∪ {∗1} ∪ {∗2} where 0 denotes the absorbing state indicating

that there is no type I customer in the system and ∗1 denotes the absorbing
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state indicating the vacation expiration by vacation clock realization and ∗2
denotes the absorbing state indicating the vacation expiration by the number

of type customers in the system hitting N . The initial probability vector is

given by

βββ1 =
1

d1
(w1, w2, · · · , wm,0)

where, for, 1 ≤ j ≤ m, wj =
∑n

k=1
λαj

λ+η−d(0)
kk

x0,0,k+
∑∞

i=1

∑n
k=1

λαj

λ+η−d(0)
kk

xi,0,0,k,

with

d1 =
n∑
k=1

λ

λ+ η − d(0)
kk

x0,0,k +
∞∑
i=1

n∑
k=1

λ

λ+ η − d(0)
kk

xi,0,0,k

and 0 is a zero matrix of order 1× (N − 2)m.

The infinitesimal generator S1 of Tslow(t) has the form

S1 =

[
S1 SSS

(0)
1 SSS

(1)
1 SSS

(2)
1

000 0 0 0

]

where

S1 =



θT − (λ+ η)I λI

θTTT 0ααα θT − (λ+ η)I λI
. . .

. . .
. . .

θTTT 0ααα θT − (λ+ η)I λI

θTTT 0ααα θT − (λ+ η)I


,

SSS
(0)
1 =


θTTT 0

000
...

000

 , SSS(1)
1 =


ηeee(m)

...

ηeee(m)

ηeee(m)

 , SSS(2)
1 =


000
...

000

λeee(m)

 .
Thus we have the following Lemma.

Lemma 2.2.1. The expected duration of time the server stays contin-
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uously in WV until the number of type I customers in the system reach 0 is

given by βββ1(−S1)−2S1S1S1
(0).

Our objective is to compute the expected number of hits to zero type I

customer state until the server returns to normal mode of service before the

arrival of a type II customer. Define the random variable M1 as number of

returns to 0 type I customer state starting from 0 type I customer state during

vacation mode of service before the arrival of a type II customer.

2.2.4 Expected value of M1

Lemma 2.2.2 provides the expected duration of the time starting from the

beginning of a vacation until the start of the next vacation, without going to

normal mode of service in between, before the arrival of a type II customer.

As a first step for computing expected number of such hits, we compute the

following disribution. Let Ts denote the duration of slow service until the

arrival of a type II customer.

Distribution of Ts

We consider the Markov process Ts(t) = {(N(t), J(t),M(t)) : t ≥ 0} where

N(t) is the number of type I customers in the system at time t, J(t) the service

phase and M(t) the arrival phase of type II customer at that instant. Thus

the state space of the process is {(i, j, k) : 1 ≤ i ≤ N − 1; 1 ≤ j ≤ m; 1 ≤
k ≤ n} ∪ {0} ∪ {∗1} ∪ {∗2} where 0 denotes the absorbing state indicating

that there is no type I customer in the system, ∗1,∗2 denote the absorbing

states indicating the vacation expiration and arrival of a type II customer

respectively. The initial probability vector is given by

βββ2 = (1/d2)(w1,1, · · · , w1,n, · · · , wm,1, · · · , wm,n,0)
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where, for, 1 ≤ j ≤ m, 1 ≤ k ≤ n,

wj,k =
λαj

λ+ η − d(0)
kk

x0,0,k,

d2 =
∑n

k=1
λ

λ+η−d(0)
kk

x0,0,k and 0 is a zero matrix of order 1× (N − 2)mn. The

infinitesimal generator S2 of Ts(t) has the form

S2 =

[
S2 SSS

(0)
2 SSS

(1)
2 SSS

(2)
2

000 0 0 0

]

where

S2 =



θT ⊕D0 − (λ+ η)I λI

θTTT 0ααα⊗ I θT ⊕D0 − (λ+ η)I λI

. . .
. . .

. . .

θTTT 0ααα⊗ I θT ⊕D0 − (λ+ η)I λI

θTTT 0ααα⊗ I θT ⊕D0 − (λ+ η)I


.

SSS
(0)
2 =


θTTT 0 ⊗ eee(n)

000
...

000

 , SSS(1)
2 =


δeee(m)

...

δeee(m)

 , SSS(2)
2 =


ηeee(mn)

...

ηeee(mn)

(λ+ η)eee(mn)


where 000 is a zero matrix of order mn× 1 and

δ =


δ1

...

δn

 , (c1)

with δi representing the ith rowsum of D1.

Thus we have the following Lemma.

Lemma 2.2.2. The expected duration of time the server remains con-

tinuously in WV until the number of type I customers reach 0 and before the
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arrival of a type II customer is given by βββ2(−S2)−2SSS
(0)
2 .

Next we compute the following distribution. Let T ′s denote the duration

of time the server, starting in slow service mode until either he gets back to

normal mode through vacation expiration or the arrival of a type II customer,

whichever occurs first.

Distribution of T ′s

The distribution of T ′s can be studied as the time until absorption in a contin-

uous time Markov chain with state space {(0, k) : 1 ≤ k ≤ n} ∪ {(i, j, k) : 1 ≤
i ≤ N − 1; 1 ≤ j ≤ m; 1 ≤ k ≤ n} ∪ {∗1} ∪ {∗2}, i denote the number of type

I customers in the system, j the service phase, k, the arrival phase of type II

customer, ∗1, the absorbing state indicating the vacation expiration and ∗2,

the absorbing state indicating the arrival of a type II customer.

The initial probability vector is given by

βββ3 = (1/d2)(0, w1,1, · · · , w1,n, · · · , wm,1, · · · , wm,n,0)

where, for, 1 ≤ j ≤ m, 1 ≤ k ≤ n, wj,k and d2 are defined above, the first 0 is a

zero matrix of order n and the second 0 is a zero matrix of order 1×(N−2)mn.

The infinitesimal generator S3 of T ′s(t) has the form

S3 =

[
S3 S3S3S3

(0) S3S3S3
(1)

000 0 0

]

where

S3 =



D0 − λI λ(ααα⊗ I)
θTTT0 ⊗ I θT ⊕D0 − (λ + η)I λI

θTTT0ααα⊗ I θT ⊕D0 − (λ + η)I λI

.
.
.

.
.
.

.
.
.

θTTT0ααα⊗ I θT ⊕D0 − (λ + η)I λI

θTTT0α⊗ I θT ⊕D0 − (λ + η)I


,
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SSS
(0)
3 =



000

ηeee(mn)
...

ηeee(mn)

(λ+ η)eee(mn)


, andSSS

(1)
3 =


δ

eee(m)⊗ δ
...

eee(m)⊗ δ

 where 000 is a zero matrix

of order n and δ is given by (c1).

Thus we have the following Lemma.

Lemma 2.2.3. The expected duration of time the server remains in WV

with or without hitting zero state of type I customer until the arrival of a type

II customer is given by βββ3(−S3)−2SSS
(1)
3 .

The Theorem below provides the expected number of visits to the state

“no type I customer”, starting from that state, before the arrival of a type II

customer.

Theorem 2.2.1. The expected number of returns to 0 type I customer

state during the vacation mode of sevice starting from that state before the

arrival of a type II customer is given by(
1

λ
+ βββ3(−S3)−2SSS

(1)
3

)
/

(
1

λ
+ βββ2(−S2)−2SSS

(0)
2

)
.

2.3 Waiting Time Analysis

2.3.1 Type I customer

To find the waiting time of a type I customer who arrives at time x, we have to

consider different possibilities depending on the status of server at that time.

The server may be on vacation, WV, normal mode 1 or in normal mode 2. Let

Z1 be the random variable representing the waiting time of a type I customer

in the queue. Define W1(x) = Prob(Z1 ≤ x) and W ∗1 (s) be the corresponding

LST.
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Case I

The tagged customer arrives to the system when the server is on vacation.

Suppose E1 denote the event that the system is in the state (0, 1, 0, u, v), 1 ≤
u ≤ m; 1 ≤ v ≤ n or in the state (n1, 1, 0, u, v), n1 ≥ 1; 1 ≤ u ≤ m; 1 ≤ v ≤ n
immediately after arrival of the tagged customer. Let W ∗1 (s/E1) denote the

corresponding LST. Then

W ∗1 (s/E1) = 1.

Case II

The tagged type I customer arrives to the system when the server is on

WV. Suppose that a+1 is the position of the tagged customer when he arrives

the system. For 1 ≤ a ≤ N − 2, let E2 denote the event the system be in the

state (n1, a + 1, 0, u, v) , n1 ≥ 0; 1 ≤ u ≤ m; 1 ≤ v ≤ n immediately after

arrival of the tagged customer. Let W ∗1 (s/E2) denote the corresponding LST.

Case (i)

Let E denote the event that the server switches to normal mode due to

random clock (vacation clock) realization during the slow service. Then E =

∪i=a+1
i=1 (E ∩Hi) where H1 denotes the event the random clock expires during

the residual service time of the customer in service and for 2 ≤ i ≤ a , Hi

denotes the event the random clock expire during the ith service. In these

cases, the waiting time of an arbitrary type I customer is the sum of time

duration, starting from his arrival epoch till random clock expiration, service

time of the customer in service at the time of random clock expiration from

the beginning in normal mode of service and service time of the remaining

customers. Let Ha+1 denotes the event the random clock expires after the ath

service. In this case, the waiting time of an arbitrary customer is the sum of

the residual service time of the customer in service when the tagged customer

arrives and service time of remaining a − 1 type I customers in slow mode.



38
(M, MAP)/(PH, PH)/1 queue with Non-preemptive priority and working vacation

under N-policy

Now,

P (E/E2) =

(∫ ∞
t=0

(e′e′e′a+1(N − 1)⊗ e′e′e′u(m))exp(S1t)SSS
(1)
1 dt

)
where S1, SSS

(1)
1 are as defined in section 2.2.3.

Let pa,u =
(
(e′e′e′a+1(N − 1)⊗e′e′e′u(m))(−S1)−2S1S1S1

(1)
)−1

be the rate of absorption

to {∗1} from S1 and µ(i) denote the expected rate of sum of i service time

distributions, each following PH(ααα, T )(except µ((1)) (see Breuer and Baum

[5])from the arrival epoch of the tagged customer. Here, µ(1) = θµu which is

the rate of residual service time when the server is providing slow service in

phase u. Now,

P (H1/E,E2) =
pa,u

pa,u + µ(1)
,

P (Hi/E,E2) =
pa,u

pa,u + µ(i)
− pa,u

pa,u + µ(i−1)
for 2 ≤ i ≤ a,

P (Ha+1/E,E2) =
µ(a)

pa,u + µ(a)

Then the conditional LSTs are given by

W ∗1 (s/E2, E,H1) =

(
η

s+ η

)
(ααα(sI − T )−1TTT 0)a,

W ∗1 (s/E2, E,Hi) =

(
η

s+ η

)
(ααα(sI − T )−1TTT 0)a−i+1, for 2 ≤ i ≤ a

and

W ∗1 (s/E2, E,Ha+1) = (eee′u(sI − θT )−1θT 0)(ααα(sI − θT )−1θTTT 0)a−1.
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Thus conditional LST

W ∗1 (s/E2, E) =
a+1∑
i=1

W ∗1 (s/E2, E,Hi)P (Hi/E2, E).

Case (ii)

Let F denote the event “the server switches to normal mode when the

number of type I customers in the system hit N” during the slow service.

Then F = ∪i=a+1
i=1 (F ∩ Ji) where J1 denotes the event: the number of type

I customers in the system reaches N during the residual service time. For

2 ≤ i ≤ a, Ji denotes the event: the number of type I customers in the system

reaches N during the ith customer’s service time. In these cases, the waiting

time of an arbitrary type I customer is the sum of time duration starting from

his arrival epoch till the number of type I customers hit N , service time of

the customer in service at the time of switching to normal mode from the

beginning in normal mode of service and service time of remaining customers.

Let Ja+1 denote the event “the number of type I customers in the system

reaches N after the ath customer’s service”. In this case, the waiting time of

an arbitrary customer is the sum of the residual service time of the customer

in service when the tagged customer arrives and service time of remaining a−1

type I customers in slow mode.

Now,

P (F/E2) =

(∫ ∞
t=0

(e′e′e′a+1(N − 1)⊗ e′e′e′u(m))exp(S1t)SSS
(2)
1 dt

)

where S1, SSS
(2)
1 are as defined in section 2.2.3.

Let qa,u =
(
(e′e′e′a+1(N − 1)⊗e′e′e′u(m))(−S1)−2S1S1S1

(2)
)−1

be the rate of absorption

to {∗2} from S1

P (J1/F,E2) =
qa,u

qa,u + µ(1)
,
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P (Ji/F,E2) =
qa,u

qa,u + µ(i)
− qa,u

qa,u + µ(i−1)
, for 2 ≤ i ≤ a

and

P (Ja+1/F,E2) =
µ(a)

qa,u + µ(a)

The conditional LSTs are given by

W ∗1 (s/E2, F, J1) =

(
λ

s+ λ

)N−a−1

(ααα(sI − T )−1TTT 0)a,

W ∗1 (s/E2, F, Ji) =

(
λ

s+ λ

)N−a+i−2

(ααα(sI − T )−1TTT 0)a−i+1, for 2 ≤ i ≤ a

and

W ∗1 (s/E2, F, Ja+1) = (eee′u(sI − θT )−1θTTT 0)(ααα(sI − θT )−1θTTT 0)a−1.

Thus the conditional LST,

W ∗1 (s/E2, F ) =
a+1∑
i=1

W ∗1 (s/E2, F, Ji)P (Ji/E2, F )

Case (iii)

Let G denote the event that the system becomes empty before vacation

expiration.

P (G/E2) =

(∫ ∞
t=0

(e′e′e′a+1(N − 1)⊗ e′e′e′u(m))exp(S1t)SSS
(0)
1 dt

)

where S1, SSS
(0)
1 are as defined in section 2.2.3.

In this case the conditional LST,



2.3. Waiting Time Analysis 41

W ∗1 (s/E2, G) = (eee′u(sI − θT )−1θTTT 0)(ααα(sI − θT )−1θTTT 0)a−1.

Thus the conditional LST,

W ∗1 (s/E2) = W ∗1 (s/E2, E)P (E/E2)+W ∗1 (s/E2, F )P (F/E2)+W ∗1 (s/E2, G)P (G/E2).

Case III

The customer arrives to the system when the server is in normal mode 1

of service. Suppose that a + 1 is the position of the tagged customer when

he arrives the system. Let E3 denote the event the system is in the state

(n1, a+ 1, 1, u, v), n1 ≥ 0; 1 ≤ a ≤ L− 1; 1 ≤ u ≤ m; 1 ≤ v ≤ n immediately

after arrival of the tagged customer. In this case the waiting time is the

sum of residual normal service of the type I customer in service and a − 1

remaining normal service time of type I customers. Let W ∗1 (s/E3) denote the

corresponding conditional LST.

Then conditional LST,

W ∗1 (s/E3) = (eee′u(sI − T )−1TTT 0)(ααα(sI − T )−1TTT 0)a−1.

Case IV

The customer arrives to the system when the server is in normal mode 2 of

service. Suppose that a + 1 be the position of the tagged customer when

he arrives the system. Let E4 denote the event the system is in the state

(n1, a+ 1, 2, u, v), n1 ≥ 1; 0 ≤ a ≤ L− 1; 1 ≤ u ≤ m′; 1 ≤ v ≤ n immediately

after arrival of the tagged customer. In this case the waiting time is the sum of

residual service time of the type II customer in service and a remaining normal

service time of type I customers. Let W ∗1 (s/E4) denote the corresponding LST.

Then the conditional LST,

W ∗1 (s/E4) = (eee′u(sI − T ′)−1T ′T ′T ′0)(ααα(sI − T )−1TTT 0)a.
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Let wi1,i2,j,k,l denote the probabilty that the system is in the state (i1, i2, j, k, l)

immediately after arrival of the tagged customer. Then,

w0,1,0,u,v = λαu

λ+η−d(0)
vv

x0,0,v, for, 1 ≤ u ≤ m, 1 ≤ v ≤ n

wn1,1,0,u,v = λαu

λ+η−d(0)
vv

xn1,0,0,v, for, n1 ≥ 1, 1 ≤ u ≤ m, 1 ≤ v ≤ n

wn1,a+1,0,u,v = λ

λ+η−θTuu−d(0)
vv

xn1,a,0,u,v, for, n1 ≥ 0, 1 ≤ a ≤ N − 2,

1 ≤ u ≤ m, 1 ≤ v ≤ n
wn1,N,1,u,v =

∑m
u′=1

λαu

λ+η−θTu′u′−d
(0)
vv

xn1,N−1,0,u′,v + λ

λ−Tuu−d(0)
vv

xn1,N−1,1,u,v,

for, n1 ≥ 0, 1 ≤ u, u′ ≤ m, 1 ≤ v ≤ n
wn1,a+1,1,u,v = λ

λ−Tuu−d(0)
vv

xn1,a,1,u,v, for, n1 ≥ 0, 1 ≤ a ≤ N − 2 or

N ≤ a ≤ L− 1, 1 ≤ u ≤ m, 1 ≤ v ≤ n
wn1,a+1,2,u,v = λ

λ−Tuu−d(0)
vv

xn1,a,2,u,v, for, n1 ≥ 1, 0 ≤ a ≤ L− 1,

1 ≤ u ≤ m′, 1 ≤ v ≤ n

Thus we have the following Theorem.

Theorem 2.3.1. The LST of the waiting time of a type I customer is

given by

W ∗1 (s) =
1

d

[ ∞∑
n1=0

n∑
v=1

wn1,1,0,u,v +
∞∑

n1=0

N−2∑
a=1

m∑
u=1

n∑
v=1

W ∗1 (s/E2)(wn1,a+1,0,u,v)+

∞∑
n1=0

L−1∑
a=1

m∑
u=1

n∑
v=1

W ∗1 (s/E3)(wn1,a+1,1,u,v)+

∞∑
n1=1

L−1∑
a=0

m′∑
u=1

n∑
v=1

W ∗1 (s/E4)(wn1,a+1,2,u,v)
]

(2.9)
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where

d =

∞∑
n1=0

n∑
v=1

wn1,1,0,u,v+

∞∑
n1=0

N−2∑
a=1

m∑
u=1

n∑
v=1

wn1,a+1,0,u,v+

∞∑
n1=0

L−1∑
a=1

m∑
u=1

n∑
v=1

wn1,a+1,1,u,v

+

∞∑
n1=1

L−1∑
a=0

m′∑
u=1

n∑
v=1

wn1,a+1,2,u,v. (2.10)

2.3.2 Type II Customer

To find the LST of the waiting time distribution of a type II customer, we

have to compute certain distributions. We proceed to such computations.

Definition 2.3.1. Duration of time with p type I customers in the system

at a service commencement epoch of type I customers until the number of type

I customers become zero for the first time is defined as a p-cycle denoted by

Bp.

Distribution of a p-cycle in normal mode

This can be studied as a phase type distribution with representation (γγγp, T1)

where the underlying markov chain has state space {(i, j) : 1 ≤ i ≤ L; 1 ≤ j ≤
m}∪ {0} where i denotes the number of type I customers in the system, j the

service phase and 0 the absorbing state indicating that the number of type I

customers become zero. The infinitesimal generator T1 of Bp(t) has the form

T1 =

[
T1 TTT 0

1

000 0

]

where
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T1 =



T − λI λI

T 0α T − λI λI
. . .

. . .
. . .

T 0α T − λI λI

T 0α T


(c2)

TTT 0
1 =



T 0

000
...

000

000


(c3)

and the initial probabilty vector is

γγγp =
[

000 · · · 000 ααα 000 · · · 000
]
, 1 ≤ p ≤ L (c4)

where ααα is in the pth position and 000 is a zero matrix of order m. Thus we

have the following Theorem.

Theorem 2.3.2. The LST of the length of a p-cycle is given by

γγγp(sI − T1)−1TTT 0
1.
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LST of the busy cycle generated by type I customers arriving during

the service time of a type II customer

Theorem 2.3.3. The LST of the busy cycle generated by type I cus-

tomers arriving during the service time of a type II customer is given by

B̂cL(s) = α′α′α′[(s+λ)I−T ′]−1T ′T ′T ′0+

L−1∑
p=1

γγγp(sI−T1)−1TTT 0
1λ

pα′α′α′[(s+λ)I−T ′]−(p+1)T ′T ′T ′0+

γγγL(sI − T1)−1TTT 0
1α
′α′α′[λ−1((s+ λ)I − T ′)]−L[I − λ[(s+ λ)I − T ′]−1]−1

[(s+ λ)I − T ′]−1T ′T ′T ′0. (2.11)

Proof. Let BcL denote the length of the busy cycle generated by type I

customers arriving during the service time of a type II customer , B̂cL(s) the
LST of the length of the busy cycle and l the number of type I customers that
arrive during service time of type II customer.
Then BcL = X + B1

L + · · ·Bl
L where X denote the service time of the type

II customer in service, Bj
L the busy period generated by jth type I customers

that arrive during X, where 1 ≤ j ≤ l.

ˆBcL (s) = E(e−sBcL )

=
∫∞
x=0 E(e−sBcL /X = x)P (x ≤ X < x+ dx)

=
∫∞
x=0

∑∞
p=0 E(e−sBcL /X = x, l = p)P (l = p/X = x)P (x ≤ X < x+ dx)

=
∫∞
x=0

∑∞
p=0 E(e−sBcL /X = x, l = p)

e−λx(λx)p

p!
α′α′α′eT

′xT ′T ′T ′0dx

=
∫∞
x=0 e

−(s+λ)xα′α′α′eT
′xT ′0dx+

∫∞
x=0

∑L−1
p=1 e

−sxγγγp(sI − T1)−1T 0
1
e−λx(λx)p

p!

α′α′α′eT
′xT ′T ′T ′0dx+

∫∞
x=0

∑∞
p=L e

−sxγγγL(sI − T1)−1TTT 0
1
e−λx(λx)p

p!
α′α′α′eT

′xT ′T ′T ′0dx

= α′α′α′[(s+ λ)I − T ′]−1T ′T ′T ′0 +
∑L−1
p=1 γγγp(sI − T1)−1TTT 0

1
λpα′α′α′

p!

∫ ∞
x=0

xpe−[(s+λ)I−T ′]xT ′T ′T ′0dx

+
∑∞
p=L γγγL(sI − T1)−1TTT 0

1
λp

p!
α′α′α′
∫∞
x=0 x

pe[−(s+λ)I−T ′])xT ′T ′T ′0dx

(2.12)

We have, ∫ ∞
x=0

xpe−[(s+λ)I−T ′]xdx =
p!

[(s+ λ)I − T ′]p+1
(2.13)
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Substituting (2.28) in (2.26) , its third term

=
∑∞
p=L γγγL(sI − T1)−1T1T1T1

0λpα′α′α′[(s+ λ)I − T ′]−(p+1)T ′T ′T ′0

= γγγL(sI − T1)−1T1T1T1
0α′α′α′

∑∞
p=L

[
λ−1[(s+ λ)I − T ′]

]−p
[(s+ λ)I − T ′]−1T ′T ′T ′0

= γγγL(sI − T1)−1TTT 0
1α
′α′α′
[
λ−1[(s+ λ)I − T ′]

]−L∑∞
q=0

[
λ−1[(s+ λ)I − T ′]

]−q
[(s+ λ)I − T ′]−1T ′T ′T ′0

= γγγL(sI − T1)−1TTT 0
1α
′α′α′
[
λ−1[(s+ λ)I − T ′]

]−L
[I − λ[(s+ λ)I − T ′]−1]−1[(s+ λ)I − T ′]−1T ′T ′T ′0

(2.14)

Substituting (2.14) in (2.26) gives

ˆBcL (s) = α′α′α′[(s+λ)I−T ′]−1T ′T ′T ′0+

L−1∑
p=1

γγγp(sI−T1)−1TTT 0
1λ
pα′α′α′[(s+λ)I−T ′]−(p+1)T ′T ′T ′0+γγγL(sI−T1)−1TTT 0

1

α′α′α′[λ−1[(s+ λ)I − T ′]−L
[
I − λ[(s+ λ)I − T ′]−1

]−1
[(s+ λ)I − T ′]−1T ′T ′T ′0 (2.15)

LST of the busy period of type I customers generated during the

service time of a type II customer

Theorem 2.3.4. The LST of the busy period of type I customers gen-

erated during the service time of a type II customer is given by

B̄L(s) = α′α′α′[λI − T ′]−1T ′T ′T ′0 +
L−1∑
p=1

γγγp(sI − T1)−1TTT 0
1λ

pα′α′α′[λI − T ′]−(p+1)T ′T ′T ′0+

γγγL(sI − T1)−1TTT 0
1α
′α′α′[λ−1(λI − T ′)]−L[I − λ[λI − T ′]−1]−1[λI − T ′]−1T ′T ′T ′0.

(2.16)

Proof. Let BL denote the length of the busy period generated by type I

customers arriving during the service time of a type II customer , B̂L(s) the

LST of the length of the busy period and l the number of type I customers

that arrive during service time of type II customer.

Then BL = B1
L + · · ·Bl

L ,where Bj
L denote the busy period generated by

jth type I customers that arrive during X, where 1 ≤ j ≤ l. Proceeding as in

the above proof, we get the required result.
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Let T ′′s denote the duration of time the server stays in vacation mode until

either he gets back to normal mode through the random clock realization or

the WV is interrupted with the number of type I customers in the system

hitting N.

Conditional distribution of T ′′s given a type II customer arrives

before the random clock expires

We can study this by a phase type distribution with representation (β4, S4)

where the underlying markov chain has state space {0} ∪ {(i, j) : 1 ≤ i ≤
N − 1; 1 ≤ j ≤ m} ∪ {∗} where i denotes the number of type I customers

in the system, j the service phase and * the absorbing state indicating the

vacation expiration. The infinitesimal generator S4 of T ′′s (t) is given by

S4 =

[
S4 SSS0

4

000 0

]
, where,

S4 =



−(λ+ η) λα

θTTT 0 θT − (λ+ η)I λI

θTTT 0ααα θT − (λ+ η)I λI
. . .

. . .
. . .

θTTT 0ααα θT − (λ+ η)I λI

θTTT 0ααα θT − (λ+ η)I


(c5)

and

SSS0
4 =



η

ηeee(m)
...

ηeee(m)

(λ+ η)eee(m)


. (c6)
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The initial probability vector is given by

βββ4 = (1,000), where 0 is a zero matrix of order 1× (N − 1)m. (c7)

Thus we have the following Lemma.

Lemma 2.3.1. The expected duration of time the server stays in vacation

mode until either the server gets back to normal mode through the random

clock expiring or the WV is interrupted as the number of type I customers in

the system hits N given a type II customer arrives before the random clock

expires, is given by βββ4(−S4)−2SSS0
4.

To find the waiting time of a type II customer who joins for service at time

x, we have to consider different possibilities depending on the status of server

at that time. The server may be in vacation mode, WV mode, normal mode 1

or in normal mode 2. Let Z2 be the random variable representing the waiting

time of a type II customer in the queue. Define W2(x) = Prob(Z2 ≤ x) and

W ∗2 (s) be the corresponding LST.

Case I

Let F1 denote the event that the system is in the state (1, 0, 0, v), 1 ≤ v ≤ n
immediately after arrival of the tagged customer. In this case the waiting

time is the sum of time duration from his arrival epoch till the server shifts

to normal mode and the time duration of busy period generated by type I

customers present at that time, if any. Let W ∗2 (s/F1) denote the corresponding

conditional LST of the waiting time.

Then

W ∗2 (s/F1) = βββ4(sI − S4)−1SSS0
4

[
t0 +

N∑
p=1

γγγp(sI − T1)−1TTT 0
1tp
]

where tp, 0 ≤ p ≤ N denote the probabaility that there are p type I customers
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when the vacation expires, which is given by

tp =


∫∞
t=0βββ4(eS4t)pηdt if p = 0∫∞
t=0βββ4(eS4t)pηeee(m)dt if 1 ≤ p ≤ N − 1∫∞
t=0βββ4(eS4t)N−1λeee(m)dt if p = N

where (eS4t)p denote the columns in eS4t corresponding to p type I customer

states, T1, TTT 0
1, γγγp, S4, SSS0

4 and βββ4 are given by (c2), (c3),(c4),(c5), (c6) and

(c7) respectively.

Case II

Let F2 denote the event the system is in the state (b+1, 0, 0, v), b ≥ 1; 1 ≤
v ≤ n immediately after arrival of the tagged customer. In this case the

waiting time is the sum of time duration from his arrival epoch till the server

shifts to normal mode, the time duration of busy period generated by type I

customers present at that time, if any and the time duration of busy cycles

generated by type I customers arriving during the service time of each of the

b type II customers. Let W ∗2 (s/F2) denote the corresponding conditional LST

of the waiting time.

Then

W ∗2 (s/F2) = βββ4(sI − S4)−1SSS0
4

[
t0 +

N∑
p=1

γγγp(sI − T1)−1TTT 0
1tp
]
(B̂cL(s))b

where B̂cL(s) is given by Theorem 2.3.3.

Case III

Let F3 denote the event the system is in the state (b + 1, a, 0, u, v), b ≥
0; 1 ≤ a ≤ N − 1; 1 ≤ u ≤ m; 1 ≤ v ≤ n immediately after arrival of the

tagged customer. In this case also the waiting time is the sum of time duration

from his arrival epoch till the server shifts to normal mode, the time duration

of busy period generated by type I customers present at that time, if any and

the time duration of busy cycles generated by type I customers arriving during
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the service time of each of the b type II customers. Let W ∗2 (s/F3) denote the

corresponding conditional LST.

Then

W ∗2 (s/F3) = βββua(sI − S4)−1SSS0
4

[
t0 +

N∑
p=1

γγγp(sI − T1)−1TTT 0
1tp
]
(B̂cL(s))b

where βββua = (0,0, · · · , e′u, · · ·0), eee′u is in the (a + 1)th position and 0 denotes

zero matrix of order 1×m.

Case IV

Let F4 denote the event the system is in the state (b + 1, a, 1, u, v), b ≥
0; 1 ≤ a ≤ L; 1 ≤ u ≤ m; 1 ≤ v ≤ n immediately after arrival of the tagged

customer. In this case the waiting time is the sum of time duration of an a-

cycle in which the current service phase is u and time duration of busy cycles

generated by type I customers arriving during the service time of each of the b

type II customers. Let W ∗2 (s/F4) denote the corresponding conditional LST.

Then

W ∗2 (s/F4) = (γγγua(sI − T1)−1TTT 0
1)(B̂cL(s))b

where γγγua = (0, · · · , e′u, · · ·0), where eee′u is in the ath position and 0 denotes

zero matrix of order 1×m.

Case V

Let F5 denote the event the system is in the state (b + 1, a, 2, u, v), b ≥
1; 0 ≤ a ≤ L; 1 ≤ u ≤ m′; 1 ≤ v ≤ n immediately after arrival of the tagged

customer. In this case the waiting time is the sum of the residual service time

of the type II customer in service, time duration of the busy period of type

I customers generated during the service time of type II customer in service

when the tagged customer arrives and time duration of busy cycles generated

by type I customers arriving during the service time of each of the b− 1 type

II customers. Let W ∗2 (s/F5) denote the corresponding conditional LST.
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Then

W ∗2 (s/F5) = (eee′u(sI − T ′)−1T ′T ′T ′0)(B̄L(s))(B̂cL(s))b−1

where B̄L(s) is given by Theorem 2.3.4.

Let wi1,i2,j,k,l denote the probabilty that the system is in the state (i1, i2, j, k, l)

immediately after arrival of the tagged customer. Then,

w1,0,0,v =
d

(1)

v′v
λ+η−d(0)

v′v′
x0,0,v′ , for, 1 ≤ v, v′ ≤ n

wb+1,0,0,v =
d

(1)

v′v
λ+η−d(0)

v′v′
xb,0,0,v′ , for, b ≥ 1, 1 ≤ v, v′ ≤ n

wb+1,a,0,u,v =
d

(1)

v′v
λ+η−θTuu−d(0)

v′v′
xb,a,0,u,v′ , for, b ≥ 0, 1 ≤ a ≤ N − 1,

1 ≤ v, v′ ≤ n

wb+1,a,1,u,v =
d

(1)

v′v
λ−Tuu−d(0)

v′v′
xb,a,1,u,v′ , for, b ≥ 0, 1 ≤ a ≤ L, 1 ≤ u ≤ m,

1 ≤ v, v′ ≤ n

wb+1,a,2,u,v =
d

(1)

v′v
λ−Tuu−d(0)

v′v′
xb,a,2,u,v′ , for, b ≥ 1, 0 ≤ a ≤ L, 1 ≤ u ≤ m′,

1 ≤ v, v′ ≤ n

Thus we have the following Theorem.

Theorem 2.3.5. The LST of the waiting time of a type II customer is

given by

W ∗2 (s) =
n∑
v=1

W ∗2 (s/F1)w1,0,0,v +
∞∑
b=1

n∑
v=1

W ∗2 (s/F2)wb+1,0,0,v+

∞∑
b=0

N−1∑
a=1

m∑
u=1

n∑
v=1

W ∗2 (s/F3)(wb+1,a,0,u,v)+

∞∑
b=0

L∑
a=1

m∑
u=1

n∑
v=1

W ∗2 (s/F4)(wb+1,a,1,u,v)+

∞∑
b=1

L∑
a=0

m′∑
u=1

n∑
v=1

W ∗2 (s/F5)(wb+1,a,2,u,v). (2.17)
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Next we proceed to the analysis of model II.

2.4 Model Description and Mathematical Formula-

tion of model II

Now we consider the case where the server continues to serve at a lower rate

until either the vacation clock realizes or the number of type I customers

present in the system plus the number of type I customers already served

during the current vacation equal to N . All other assumptions are same as in

model I.

In this case, N1(t), N2(t), S(t), J(t) and M(t) are as defined for model I

and we define K(t) to be number of type I customers present in the system

+ number of type I customers already served during the current vacation at

time t.

It is easy to verify that {(N1(t), N2(t), S(t),K(t), J(t),M(t)) : t ≥ 0} is an

LIQBD with state space

Ω = ∪∞i=0l(i)

where l(0) = {(0, 0, k : 1 ≤ k ≤ n)} ∪ {(0, i2, 0, j2, j3, k) : 1 ≤ i2 ≤ N − 1; i2 ≤
j2 ≤ N − 1; 1 ≤ j3 ≤ m; 1 ≤ k ≤ n} ∪ {(0, i2, 1, j3, k) : 1 ≤ i2 ≤ L; 1 ≤ j3 ≤
m; 1 ≤ k ≤ n} and for i1 ≥ 1,

l(i1) = {(i1, 0, 0, k) : 1 ≤ k ≤ n} ∪ {(i1, 0, 2, j3, k) : 1 ≤ j3 ≤ m′; 1 ≤ k ≤
n} ∪ {(i1, i2, 0, j2, j3, k) : 1 ≤ i2 ≤ N − 1; i2 ≤ j2 ≤ N − 1; 1 ≤ j3 ≤ m; 1 ≤ k ≤
n} ∪ {(i1, i2, 1, j3, k) : 1 ≤ i2 ≤ L; 1 ≤ j3 ≤ m; 1 ≤ k ≤ n} ∪ {(i1, i2, 2, j3, k) :

1 ≤ i2 ≤ L; 1 ≤ j3 ≤ m′; 1 ≤ k ≤ n}
Here also we note that when N1(t) = N2(t) = 0, server will be on vacation and

so S(t),K(t) and J(t) need not be considered. When N2(t) = 0 and S(t) = 0,

then K(t) and J(t) need not be considered. The only other component in the

state vector in both cases would be M(t). Also when S(t)=1 or 2, then K(t)

need not be considered.
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The infinitesimal generator of the above process is

Q2 =


G0 H0

H1 A1 A0

A2 A1 A0

. . .
. . .

. . .


where G0 contains transitions within the level 0; H0 represents transitions

from level 0 to level 1; H1 represents transitions from level 1 to level 0; A0

represents transitions from level h to level h + 1 for h ≥ 1, A1 represents

transitions within the level h for h ≥ 1 and A2 represents transitions from

level h to level h− 1 for h ≥ 2.

The boundary blocks G0, H0, H1 are of orders
(
n+ mn

2 (N2 −N + 2L)
)
×(

n+ mn
2 (N2−N + 2L)

)
,
(
n+ mn

2 (N2−N + 2L))×
(
(1 +m′)n+ mn

2 (N2−N +

2L)+Lm′n
)
,
(
(1+m′)n+ mn

2 (N2−N+2L)+Lm′n
)
×
(
n+ mn

2 (N2−N+2L)
)

respectively. A0, A1, A2 are square matrices of order (1+m′)n+ mn
2 (N2−N+

2L) + Lm′n.

Define the entries ofG
(i2,j2,k2,l2,m2)
0(i1,j1,k1,l1,m1)

, H
(i2,j2,k2,l2,m1)
0(i1,j1,k1,l1,m1)

, H
(i2,j2,k2,l2,m2)
1(i1,j1,k1,l1,m1)

as tran-

sition submatrices which contains transitions of the form (0, i1, j1, k1, l1,m1)→
(0, i2, j2, k2, l2,m2), (0, i1, j1, k1, l1,m1)→ (1, i2, j2, k2, l2,m2), (1, i1, j1, k1, l1,

m1) → (0, i2, j2, k2, l2,m2) respectively. Define the entries of A
(i2,j2,k2,l2,m2)
0(i1,j1,k1,l1,m1)

,

A
(i2,j2,k2,l2,m2)
1(i1,j1,k1,l1,m1)

and A
(i2,j2,k2,l2,m2)
2(i1,j1,k1,l1,m1)

as transition submatrices which contains

transitions of the form (h, i1, j1, k1, l1,m1) → (h + 1, i2, j2, k2, l2,m2), where

h ≥ 1;(h, i1, j1, k1, l1,m1)→ (h, i2, j2, k2, l2,m2), where h ≥ 1 and (h, i1, j1, k1,

l1,m1)→ (h− 1, i2, j2, k2, l2,m2), where h ≥ 1 respectively. Since none or one

event alone could take place in a short interval of time with positive probabil-

ity, in general, a transition such as (i1, j1, k1, l1,m1, n1)→ (i2, j2, k2, l2,m2, n2)

has positive rate only for exactly one of i2, j2, k2, l2,m2, n2 different from



54
(M, MAP)/(PH, PH)/1 queue with Non-preemptive priority and working vacation

under N-policy

i1, j1, k1, l1,m1, n1.

G
(i2,j2,k2,l2,m2)
0(i1,j1,k1,l1,m1)

=



λ(ααα ⊗ In) i1 = 0, i2 = 1; j1 = j2 = 0; k2 = 1;

1 ≤ l2 ≤ m, 1 ≤ m1,m2 ≤ n
λImn 1 ≤ i1 ≤ N − 2, i2 = i1 + 1; j1 = j2 = 0;

i1 ≤ k1 ≤ N − 2,

k2 = k1 + 1; 1 ≤ l1, l2 ≤ m; 1 ≤ m1,m2 ≤ n
λeee(m)⊗ (ααα⊗ In) 1 ≤ i1 ≤ N − 1, i2 = i1 + 1; j1 = 0, j2 = 1;

k1 = N − 1; 1 ≤ l1, l2 ≤ m; 1 ≤ m1,m2 ≤ n
λImn 1 ≤ i1 ≤ L− 1, i2 = i1 + 1; j1 = j2 = 1;

1 ≤ l1, l2 ≤ m; 1 ≤ m1,m2 ≤ n
ηeee(m)⊗ (ααα⊗ In) 1 ≤ i1 ≤ N − 1; j1 = 0, j2 = 1;

i1 ≤ k1 ≤ N − 1; 1 ≤ l1, l2 ≤ m; 1 ≤ m1,m2 ≤ n
θT 0T 0T 0 ⊗ In i1 = 1, i2 = 0; j1 = 0, j2 = 0; 1 ≤ k1 ≤ N − 1,

1 ≤ l1 ≤ m; 1 ≤ m1,m2 ≤ n
TTT 0 ⊗ In i1 = 1, i2 = 0; j1 = 1, j2 = 0; 1 ≤ l1 ≤ m;

1 ≤ m1,m2 ≤ n
θT 0T 0T 0ααα⊗ In 2 ≤ i1 ≤ N − 1, i2 = i1 − 1; j1 = 0, j2 = 0;

i1 ≤ k1 ≤ N − 1, k2 = k1; 1 ≤ l1, l2 ≤ m;

1 ≤ m1,m2 ≤ n
T 0T 0T 0ααα⊗ In 2 ≤ i1 ≤ L, i2 = i1 − 1; j1 = j2 = 1;

1 ≤ l1, l2 ≤ m; 1 ≤ m1,m2 ≤ n
D0 − λIn i1 = i2 = 0; j1 = j2 = 0; 1 ≤ m1,m2 ≤ n
θT ⊕D0 − (λ+ η)Imn 1 ≤ i1 ≤ N − 1, i2 = i1; j1 = j2 = 0;

i1 ≤ k1 ≤ N − 1, k2 = k1; 1 ≤ l1, l2 ≤ m;

1 ≤ m1,m2 ≤ n
T ⊕D0 − λImn 1 ≤ i1 ≤ L− 1, i2 = i1; j1 = j2 = 1;

1 ≤ l1, l2 ≤ m; 1 ≤ m1,m2 ≤ n
T ⊕D0 i1 = i2 = L; j1 = j2 = 1; 1 ≤ l1, l2 ≤ m;

1 ≤ m1,m2 ≤ n
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H
(i2,j2,k2,l2,m2)
0(i1,j1,k1,l1,m1)

=



D1 i1 = 0 = i2 = 0; j1 = j2 = 0; 1 ≤ m1,m2 ≤ n
Im ⊗D1 1 ≤ i1 ≤ N − 1, i2 = i1; j1 = j2 = 0; i1 ≤ k1 ≤ N − 1,

k2 = k1; 1 ≤ l1, l2,≤ m; 1 ≤ m1,m2 ≤ n
Im ⊗D1 1 ≤ i1 ≤ L, i2 = i1; j1 = j2 = 1; 1 ≤ l1, l2 ≤ m;

1 ≤ m1,m2 ≤ n

H
(i2,j2,k2,l2,m2)
1(i1,j1,k1,l1,m1)

=


T ′T ′T ′0 ⊗ In i1 = i2 = 0; j1 = 2, j2 = 0; 1 ≤ l1 ≤ m′;

1 ≤ m1,m2 ≤ n
T ′T ′T ′0ααα⊗ In 1 ≤ i1 ≤ L, i2 = i1; j1 = 2, j2 = 1; 1 ≤ l1 ≤ m′,

1 ≤ l2 ≤ m; 1 ≤ m1,m2 ≤ n

A
(i2,j2,k2,l2,m2)
0(i1,j1,k1,l1,m1)

=



D1 i1 = i2 = 0; j1 = j2 = 0; 1 ≤ m1,m2 ≤ n
Im′ ⊗D1 i1 = i2 = 0; j1 = j2 = 2; 1 ≤ l1, l2 ≤ m′;

1 ≤ m1,m2 ≤ n
Im ⊗D1 1 ≤ i1 ≤ N − 1, i2 = i1; j1 = j2 = 0; i1 ≤ k1 ≤ N − 1,

k2 = k1; 1 ≤ l1, l2 ≤ m; 1 ≤ m1,m2 ≤ n
Im ⊗D1 1 ≤ i1 ≤ L, i2 = i1; j1 = j2 = 1; 1 ≤ l1, l2 ≤ m;

1 ≤ m1,m2 ≤ n
Im′ ⊗D1 1 ≤ i1 ≤ L, i2 = i1; j1 = j2 = 2; 1 ≤ l1, l2 ≤ m′;

1 ≤ m1,m2 ≤ n

A
(i2,j2,k2,l2,m2)
2(i1,j1,k1,l1,m1)

=


T ′T ′T ′0α′α′α′ ⊗ In i1 = i2 = 0; j1 = j2 = 2; 1 ≤ l1, l2 ≤ m′;

1 ≤ m1,m2 ≤ n
T ′T ′T ′0ααα⊗ In 1 ≤ i1 ≤ L, i2 = i1; j1 = 2, j2 = 1; 1 ≤ l1 ≤ m′,

1 ≤ l2 ≤ m; 1 ≤ m1,m2 ≤ n
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A
(i2,j2,k2,l2,m2)
1(i1,j1,k1,l1,m1)

=



λ(ααα⊗ In) i1 = 0, i2 = 1; j1 = j2 = 0; k2 = 1;

1 ≤ l2 ≤ m; 1 ≤ m1,m2 ≤ n
λImn, 1 ≤ i1 ≤ N − 2; i2 = i1 + 1; j1 = j2 = 0;

i1 ≤ k1 ≤ N − 2, k2 = k1 + 1; 1 ≤ l1, l2 ≤ m;

1 ≤ m1,m2 ≤ n
λeee(m)⊗ (ααα⊗ In) 1 ≤ i1 ≤ N − 1; j1 = 0, j2 = 1; k1 = N − 1;

1 ≤ l1, l2 ≤ m; 1 ≤ m1,m2 ≤ n
λImn 1 ≤ i1 ≤ L− 1, i2 = i1 + 1; j1 = j2 = 1;

1 ≤ l1, l2 ≤ m; 1 ≤ m1,m2 ≤ n
λImn 0 ≤ i1 ≤ L− 1, i2 = i1 + 1; j1 = j2 = 2;

1 ≤ l1, l2 ≤ m′; 1 ≤ m1,m2 ≤ n
η(α′α′α′ ⊗ In) i1 = i2 = 0; j1 = 0, j2 = 2; 1 ≤ l2 ≤ m′;

1 ≤ m1,m2 ≤ n
ηeee(m)⊗ (ααα⊗ In) 1 ≤ i1 ≤ N − 1, i2 = i1; j1 = 0, j2 = 1;

i1 ≤ k1 ≤ N − 1; 1 ≤ l1, l2 ≤ m; 1 ≤ m1,m2 ≤ n
θTTT 0 ⊗ In i1 = 1, i2 = 0; j1 = j2 = 0; 1 ≤ k1 ≤ N − 1;

1 ≤ l1 ≤ m; 1 ≤ m1,m2 ≤ n
TTT 0α′α′α′ ⊗ In i1 = 1, i2 = 0; j1 = 1, j2 = 2; 1 ≤ l1 ≤ m,

1 ≤ l2 ≤ m′; 1 ≤ m1,m2 ≤ n
θTTT 0ααα⊗ In 2 ≤ i1 ≤ N − 1, i2 = i1 − 1; j1 = j2 = 0;

i1 ≤ k1 ≤ N − 1,

k2 = k1; 1 ≤ l1, l2 ≤ m; 1 ≤ m1,m2 ≤ n
TTT 0ααα⊗ In 2 ≤ i1 ≤ L, i2 = i1 − 1; j1 = j2 = 1;

1 ≤ l1, l2 ≤ m; 1 ≤ m1,m2 ≤ n
D0 − (λ+ η)In i1 = i2 = 0; j1 = j2 = 0; 1 ≤ m1,m2 ≤ n
T ′ ⊕D0 − λImn i1 = i2 = 0; j1 = j2 = 2; 1 ≤ l1, l2 ≤ m′;

1 ≤ m1,m2 ≤ n
θT ⊕D0 − (λ+ η)Imn 1 ≤ i1 ≤ N − 1, i2 = i1; j1 = j2 = 0;

i1 ≤ k1 ≤ N − 1, k2 = k1; 1 ≤ l1, l2 ≤ m;

1 ≤ m1,m2 ≤ n
T ⊕D0 − λImn 1 ≤ i1 ≤ L− 1, i2 = i1; j1 = j2 = 1;

1 ≤ l1, l2 ≤ m; 1 ≤ m1,m2 ≤ n
T ′ ⊕D0 − λImn 1 ≤ i1 ≤ L− 1, i2 = i1; j1 = j2 = 2;

1 ≤ l1, l2 ≤ m′; 1 ≤ m1,m2 ≤ n
T ⊕D0 i1 = i2 = L; j1 = j2 = 1; 1 ≤ l1, l2 ≤ m;

1 ≤ m1,m2 ≤ n
T ′ ⊕D0 i1 = i2 = L; j1 = j2 = 2; 1 ≤ l1, l2 ≤ m′;

1 ≤ m1,m2 ≤ n
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2.5 Steady State Analysis

First we find the condition for stability of the system under study.

2.5.1 Stability condition

Let πππ = (πππ0,πππ1, . . . ,πππL) denote the steady state probability vector of the

generator

A = A0 + A1 + A2 =



B1 B2

C1 E1 F1

C2 E2 F2

. . .
. . .

. . .

CN−1 EN−1 FN−1

G′ H J

G H J
. . .

. . .
. . .

G H J

G K


where

B1(k, l) =


D0 +D1 − (λ+ η)In k = 1, l = 1

η(α′α′α′ ⊗ In) k = 1, l = 2

0 k = 2, l = 1

T ′T ′T ′0α′α′α′ ⊗ In + T ′ ⊕D0 − λIm′n + Im′ ⊗D1 k = 2, l = 2

B2(k, l) =


λ(ααα⊗ In) k = 1, l = 1

λIm′n k = 2, l = 2

0 otherwise

, C1(k, l) =


eee(N − 1)⊗

(
θTTT 0 ⊗ In

)
k = 1, l = 1

TTT 0α′α′α′ ⊗ In k = 2, l = 2

0 otherwise
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For 2 ≤ i ≤ N − 1,

Ci(k, l) =


IN−i ⊗

(
θTTT 0ααα⊗ In

)
k = 1, l = 2

TTT 0ααα⊗ In k = 2, l = 3

0 otherwise

For 1 ≤ i ≤ N − 1,

Ei(k, l) =



IN−i ⊗
(
θT ⊕D0 − (λ+ η)Imn + Im ⊗D1

)
k = 1, l = 1

eee
(
(N − i)m

)
⊗
(
η(ααα⊗ In)

)
k = 1, l = 2

T ⊕D0 − λImn + Im ⊗D1 k = 2, l = 2

T ′T ′T ′0ααα⊗ In k = 3, l = 2

T ′ ⊕D0 − λIm′n + Im′ ⊗D1 k = 3, l = 3

0 otherwise

For 1 ≤ i ≤ N − 2,

Fi(k, l) =



λI(N−1−i)mn k = 1, l = 1

λeee(m)⊗ (ααα⊗ In) k = 2, l = 2

λImn k = 3, l = 2

λIm′n k = 4, l = 3

0 otherwise

, FN−1(k, l) =


λeee(m)⊗ (ααα⊗ In) k = 1, l = 1

λImn k = 2, l = 1

λIm′n k = 3, l = 2

0 otherwise

G′(k, l) =

{
TTT 0ααα⊗ In k = 1, l = 2

0 otherwise
, G(k, l) =

{
TTT 0ααα⊗ In k = 1, l = 1

0 otherwise

H(k, l) =


T ⊕D0 − λImn + Im ⊗D1 k = l = 1

T ′ ⊕D0 − λIm′n + Im′ ⊗D1 k = l = 2

T ′T ′T ′0ααα⊗ In k = 2, l = 1

0 otherwise

, J(k, l) =

{
λImn k = 1, l = 1

λIm′n k = 2, l = 2
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K(k, l) =


T ⊕D0 + Im ⊗D1 k = l = 1

T ′ ⊕D0 + Im′ ⊗D1 k = l = 2

T ′T ′T ′0ααα⊗ In k = 2, l = 1

with dimension of B1, B2, C1 be (n+m′n)× (n+m′n), (n+m′n)×
(
Nmn+

m′n
)
,
(
Nmn+m′n

)
×(n+m′n) respectively. For 2 ≤ i ≤ N−1, Ci be of order(

((N−i+1)mn+m′n)
)
×
(
((N−i+2)mn+m′n)

)
, Ei be a square matrix of order

(N−i+1)mn+m′n, Fi is of order
(
((N−i+1)mn+m′n)

)
×
(
((N−i)mn+m′n)

)
,

G′ is of order (m+m′)n× (2m+m′)n, G,H, J and K are square matrices of

order (m+m′)n.

ie,

πππA = 0,πππeee = 1. (2.18)

The LIQBD description of the model indicates that the queueing system

is stable (see Neuts [40]) if and only if the left drift exceeds that of right drift.

That is,

πππA0e < πππA2e. (2.19)

The vector πππ cannot be obtained directly in terms of the parametres of

the model. From (2.18)we get

πππi = πππi−1Ui−1, 1 ≤ i ≤ L (2.20)

where

U0 = −B2(E1 + U1C2)−1

Ui =



−Fi(Di+1 + Ui+1Ci+2)−1 for 1 ≤ i ≤ N − 3

−FN−2(EN−1 + UN−1G)−1 for i = N − 2

−EN−1(H + UNG)−1, for i = N − 1

−λ(H + Ui+1G)−1 for N ≤ i ≤ L− 2

−λJ−1 for i = L− 1.
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From the normalizing condition πeπeπe = 1 we have

πππ0

L−1∑
j=0

j∏
i=0

Ui + I

eee = 1. (2.21)

The inequality (2.19) gives the stability condition as

πππ0

[
(I(1+m′) ⊗D1)eee+

N−2∑
i=0

i∏
j=0

Uj(I((N−i)m+m′) ⊗D1)eee+

L−1∑
i=N−1

i∏
j=0

Uj(I(m+m′) ⊗D1)eee

]

< πππ0

[
A20 +

N−2∑
i=0

i∏
j=0

UjA2i +

L−1∑
i=N+1

i∏
j=0

UjA2(N−1)

)]
(2.22)

where, A20 =

[
0

(T ′T ′T ′0α′α′α′ ⊗ I)eee

]
, A2i =

[
0

(T ′T ′T ′0ααα⊗ I)eee

]
, 1 ≤ i ≤ N − 2 and

A2(N−1) =

[
0

(T ′T ′T ′0α′α′α′ ⊗ I)eee

]
, with 0 a zero column vector of order n, (N−i)mn

and mn for A20, A2i, 1 ≤ i ≤ N − 2 and A2(N−1) respectively.

2.5.2 Steady-state probability vector

Assuming that the condition (2.22) is satisfied we proceed to find the steady-

state probability of the system state.

Let xxx be the steady state probability vector of Q. We partition this vector

as

xxx = (xxx0,xxx1,xxx2 . . .),

where xxx0 is of dimension n + mn
2 (N2 − N + 2L), xxx1,xxx2, . . . are of dimension

(1 +m′)n+ mn
2 (N2−N + 2L) +Lm′n. Under the stability condition, we have

xxxi = xxx1R
i−1, i ≥ 2

where the matrix R is the minimal nonnegative solution to the matrix quadratic
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equation

R2A2 +RA1 +A0 = 0

and the vectors xxx0 and xxx1are obtained by solving the equations

xxx0G0 + xxx1H1 = 0 (2.23)

xxx0H0 + xxx1(A1 +RA2) = 0 (2.24)

subject to the normalizing condition

xxx0eee+ xxx1(I −R)−1eee = 1. (2.25)

2.5.3 Distribution of duration of slow service mode

The duration Uslow, in slow service mode is defined as the time the server

starts in slow service mode (through initiating a WV) until either switching

to normal mode through vacation clock realization or with the number of type I

customers in the sytem plus number of type I customers already served during

the current vacation hitting the threshold value N, 1 ≤ N ≤ L or the number

of type I customers hitting 0 before expiration of vacation. We consider the

Markov process Uslow(t) = {(N(t), J(t),K(t)) : t ≥ 0} where N(t) is the

number of type I customers in the system at time t, J(t) the number of type

I customers in the system plus number of type I customers already served

during the current vacation and K(t), the service phase at the time t. Thus

the state space of the process is {(i, j, k) : 1 ≤ i ≤ N − 1; i ≤ j ≤ N − 1; 1 ≤
k ≤ m}∪{0}∪{∗1}∪{∗2} where 0 denotes the absorbing state indicating that

there is no type I customer in the system and ∗1 denotes the absorbing state

indicating the vacation expiration by vacation clock realization and ∗2 denotes

the absorbing state indicating the vacation expiration by the number of type

customers in the system plus number of type I customers already served during
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the current vacation hitting N . The initial probability vector is given by

γγγ1 =
1

d1
(w1, w2, · · · , wm,0)

where, for, 1 ≤ j ≤ m, wj and d1 are defined as in section 2.2.3 and 0 is a

zero matrix of order 1× (N−2)(N+1)
2 m.

The infinitesimal generator U1 of Uslow(t) has the form

U1 =

[
U1 UUU

(0)
1 UUU

(1)
1 UUU

(2)
1

000 0 0 0

]
where,

U1 =



L1 M1

K1 L2 M2

. . .
. . .

. . .

KN−3 LN−2 MN−2

KN−2 LN−1


with,

Ki =
[

000 IN−i−1 ⊗ (θTTT 0ααα)
]
, for 1 ≤ i ≤ N − 2

where 0 is a zero matrix of order (N − i− 1)m×m.

Li = IN−i ⊗ (θT − (λ+ η)Im), for 1 ≤ i ≤ N − 1

Mi =

[
λI(N−i−1)m

000

]
, for 1 ≤ i ≤ N − 2

where 0 is a zero matrix of order m× (N − i− 1)m.

UUU
(0)
1 =

[
eee(N − 1)⊗ θTTT 0

0

]
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where 0 is a zero matrix of order (N−2)(N−1)
2 m× 1.

UUU
(1)
1 =



ηeee((N − 2)m)

ηeee(m)

ηeee((N − 3)m)

ηeee(m)
...

ηeee(m)

ηeee(m)

ηeee(m)


, UUU

(2)
1 =



000

λeee(m)

000

λeee(m)
...

000

λeee(m)

λeee(m)


where 000’s are zero matrices of order (N − 2)m × 1, (N − 3)m × 1, . . . ,m × 1

respectively.

Thus we have the following Lemma.

Lemma 2.5.1. The expected duration of time the server remains in WV

until the number of type I customers reach 0 is given by γγγ1(−U1)−2UUU
(0)
1 .

Define the random variable M2 as number of returns to 0 type I customer

state starting from 0 type I customer state during vacation mode of service

before the arrival of a type II customer.

2.5.4 Expected value of M2

Let Us denote the duration of slow service until the arrival of a type II cus-

tomer.

Distribution of Us

We consider the Markov process Us(t) = {(N(t), J(t),K(t),M(t)) : t ≥ 0}
where N(t) is the number of type I customers in the system at time t, J(t)

the number of type I customers in the system plus number of type I customers
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already served during the current vacation, K(t) the service phase and M(t)

the arrival phase of type II customer at that instant. Thus the state space of

the process is {(i, j, k, l) : 1 ≤ i ≤ N − 1; i ≤ j ≤ N − 1; 1 ≤ k ≤ m; 1 ≤
l ≤ n} ∪ {0} ∪ {∗1} ∪ {∗2} where 0 denotes the absorbing state indicating

that there is no type I customer in the system, ∗1,∗2 denote the absorbing

states indicating the vacation expiration and arrival of a type II customer

respectively. The initial probability vector is given by

γ2γ2γ2 = (1/d2)(w1,1, · · · , w1,n, · · · , wm,1, · · · , wm,n,0)

where, for, 1 ≤ j ≤ m, 1 ≤ k ≤ n, wj,k and d2 are defined as in section 2.2.4

and 0 is a zero matrix of order 1× (N−2)(N+1)
2 mn. The infinitesimal generator

U2 of Us(t) has the form

U2 =

[
U2 UUU

(0)
2 UUU

(1)
2 UUU

(2)
2

000 0 0 0

]
where,

U2 =



L1 M1

K1 L2 M2

. . .
. . .

. . .

KN−3 LN−2 MN−2

KN−2 LN−1


with,

Ki =
[

000 IN−1−i ⊗ (θTTT 0ααα⊗ I)
]
, for 1 ≤ i ≤ N − 2,

where 0 is a zero matrix of order (N − i− 1)mn×mn,

Mi =

[
λI(N−i−1)mn

000

]
, for 1 ≤ i ≤ N − 2,
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where 0 is a zero matrix of order mn× (N − 1− i)mn.

Li = IN−i ⊗ (θT ⊕D0 − (λ+ η)Imn), for 1 ≤ i ≤ N − 1

UUU
(0)
2 =

[
eee(N − 1)⊗ (θTTT 0 ⊗ eee(n))

000

]
,

UUU
(1)
2 =



ηeee((N − 2)mn)

(λ+ η)eee(mn)

ηeee((N − 3)mn)

(λ+ η)eee(mn)
...

ηeee(mn)

(λ+ η)eee(mn)

(λ+ η)eee(mn)


, UUU

(2)
2 =


δeee((N − 1)m))

δeee((N − 2)m)
...

δeee(m)



where 0 is a zero matrix of order (N−2)(N−1)
2 mn× 1 and δ is given by (c1).

Thus we have the following Lemma.

Lemma 2.5.2. The expected duration of time the server remains con-

tinuously in WV until the number of type I customers reach 0 and before the

arrival of a type II customer is given by γγγ2(−U2)−2UUU
(0)
2 .

Let U ′s denote the duration of time the server starts in slow service mode

until either he gets back to normal mode through the vacation expiration or

the arrival of a type II customer.

Distribution of U ′s

The distribution of U ′s can be studied as the time until absorption in a con-

tinuous time Markov chain with state space {(0, l) : 1 ≤ l ≤ n} ∪ {(i, j, k, l) :

1 ≤ i ≤ N − 1; i ≤ j ≤ N − 1; 1 ≤ k ≤ m; 1 ≤ l ≤ n} ∪ {∗1} ∪ {∗2}, where, i

denotes the number of type I customers in the system, j the number of type
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I customers in the system plus number of type I customers already served

during the current vacation, k, the service phase, l, the arrival phase of type

II customer, ∗1 the absorbing state indicating the vacation expiration and ∗2
the absorbing state indicating the arrival of a type II customer.

The initial probability vector is given by

γγγ3 = (λ/d2)(000, w1,1, · · · , w1,n, · · · , wm,1, · · · , wm,n,0)

For, 1 ≤ j ≤ m, 1 ≤ k ≤ n, wj,k and d2 are defined as in section 2.2.4 and,

first 0 is a zero matrix of order n and second 0 is a zero matrix of order

1× (N−2)(N+1)mn
2 .

The infinitesimal generator U3 of U ′s(t) has the form

U3 =

[
U3 UUU

(0)
3 UUU

(1)
3

000 0 0

]
where,

U3 =



D0 − λI M1

K1 L1 M2

. . .
. . .

. . .

KN−2 LN−2 MN−1

KN−1 LN−1


with,

M1 =
[
λ(α⊗ I) 0

]
, where 0 is a zero matrix of order n× (N − 2)mn.

K1 =
[
eee(N − 1)⊗ (θTTT 0 ⊗ I))

]
For 2 ≤ i ≤ N − 1,

Ki =
[

000 IN−i ⊗ (θTTT 0ααα⊗ I)
]
, where 0 is a zero matrix of order (N − i)mn×mn
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and

Mi =

[
λI(N−i)mn

000

]
where 0 is a zero matrix of order mn× (N − i)mn.

Li = IN−i ⊗ (θT ⊕D0 − (λ+ η)Imn), for 1 ≤ i ≤ N − 1,

UUU
(0)
3 =



0

eee(N − 2)⊗ ηeee(mn)

(λ+ η)eee(mn)

eee(N − 3)⊗ ηeee(mn)

(λ+ η)eee(mn)
...

ηeee(mn)

(λ+ η)eee(mn)

(λ+ η)eee(mn)



, UUU
(1)
3 =



δ

eee((N − 1)m))⊗ δ
eee((N − 2)m)⊗ δ

...

eee(m)⊗ δ



where, 0 is a zero matrix of order n× 1 and δ is given by (c1).

Thus we have the following Lemma.

Lemma 2.5.3. The expected duration of time the server remains in WV

with or without hitting zero state of type I customer until the arrival of a type

II customer before hitting normal mode is given by γγγ3(−U3)−2UUU
(1)
3 .

Thus we arrive at

Theorem 2.5.1. The expected number of returns to 0 type I customer

state during the vacation mode of service before the arrival of a type II cus-

tomer, is given by
(

1
λ + γγγ3(−U3)−2UUU

(1)
3

)
/
(

1
λ + γγγ2(−U2)−2UUU

(0)
2

)
.
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2.6 Waiting Time Analysis

2.6.1 Type I customer

To find the waiting time of a type I customer who joins for service at time x,

we have to consider different possibilities depending on the status of server at

that time.The server may be on vacation, WV, normal mode 1 or in normal

mode 2. Let Z1 be the random variable representing the waiting time of a

type I customer in the queue. Define W1(x) = Prob(Z1 ≤ x) and W ∗1 (s) be

the corresponding LST.

Case I

The tagged customer arrives to the system when the server is on vacation.

Suppose E1 denote the event that the system is in the state (0, 1, 0, 1, u, v), 1 ≤
u ≤ m; 1 ≤ v ≤ n or in the state (n1, 1, 0, 1, u, v), n1 ≥ 1; 1 ≤ u ≤ m; 1 ≤ v ≤
n immediately after arrival of the tagged customer. Let W ∗1 (s|E1) denote the

corresponding LST. Then

W ∗1 (s|E1) = 1.

Case II

The tagged type I customer arrives to the system when the server is on

WV. Suppose that a+1 is the position of the tagged customer when he arrives

the system. For 1 ≤ a ≤ N − 2, let E2 denote the event the system be in the

state (n1, a + 1, 0, t + 1, u, v), n1 ≥ 0; a ≤ t ≤ N − 2; 1 ≤ u ≤ m; 1 ≤ v ≤ n

immediately after arrival of the tagged customer arrives.. Let W ∗1 (s|E2) denote

the corresponding LST.

Case (i)

Let E denote the event that the server switches to normal mode due to

random clock expiration during the slow service. Then E = ∪i=a+1
i=1 (E ∩Ki)

where K1 denotes the event the random clock expire during the residual service

time of the customer in service and for 2 ≤ i ≤ a, Ki denotes the event the

random clock expire during the ith service. In these cases, the waiting time
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of an arbitrary type I customer is the sum of time duration, starting from

his arrival epoch till random clock expiration, service time of the customer

in service at the time of random clock expiration from the beginning in the

normal mode of service and service time of the remaining customers. Let Ka+1

denotes the event the random clock expires after the ath service. In this case,

the waiting time of an arbitrary customer is the sum of the residual service

time of the customer in service when the tagged customer arrives and service

time of remaining a− 1 type I customers in slow mode.

Now,

P (E/E2) =

(∫ ∞
t=0

eeea
2

(2N−a−1)m+(t−a−1)m+u(
(N − 1)Nm

2
)exp(U1t)UUU

(1)
1 dt

)

where U1, UUU
(1)
1 are as defined in section 2.5.3.

Let pa,u =
(
ea

2
(2N−a−1)m+(t−a−1)m+u( (N−1)Nm

2 )(−U1)−2UUU
(1)
1

)−1
be the rate of

absorption to {∗1} from U1 and µ(i) denote the expected rate of sum of i

service time distributions, each following PH(ααα, T ) from the arrival epoch of

the tagged customer. Here, µ(1) = θµu which is the residual service rate when

the server is providing slow service in phase u.

P (K1|E,E2) =
pa,u

pa,u + µ(1)
,

P (Ki|E,E2) =
pa,u

pa,u + µ(i)
− pa,u

pa,u + µ(i−1)
, for 2 ≤ i ≤ a,

P (Ka+1/E,E2) =
µ(a)

pa,u + µ(a)
.

Then the conditional LSTs are given by

W ∗1 (s|E2, E,K1) =

(
η

s+ η

)
(ααα(sI − T )−1TTT 0)a,
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W ∗1 (s|E2, E,Ki) =

(
η

s+ η

)
(ααα(sI − T )−1TTT 0)a−i+1, for 2 ≤ i ≤ a

and

W ∗1 (s|E2, E,Ka+1) = (eee′u(sI − θT )−1θTTT 0)(ααα(sI − θT )−1θTTT 0)a−1.

Thus the conditional LST

W ∗1 (s|E2, E) =

a+1∑
i=1

W ∗1 (s|E2, E,Ki)P (Ki|E2, E).

Case(ii)

Let F denote the event “the server switches to normal mode when the

number of type I customers in the system plus number of type I customers

already served during the current vacation hits N” during the slow service.

Then F = ∪i=a+1
i=1 (F ∩Mi) where M1 denote the event: the number of type I

customers plus number of type I customers already served during the current

vacation reaches N during the residual service time. For 2 ≤ i ≤ a, Mi denote

the event: the number of type I customers in the system plus number of type

I customers already served during the current vacation reaches N during the

ith customer’s service time. In these cases, the waiting time of an arbitrary

type I customer is the sum of time duration starting from his arrival epoch till

the number of type I customers in the system plus number of type I customers

already served during the current vacation hits N , service time of the customer

in service at the time of switching to normal mode from the beginning in the

normal mode of service and service time of remaining customers. Let Ma+1

denote the event “the number of type I customers in the system plus number of

type I customers already served during the current vacation reaches N after

the ath customer’s service”. In this case, the waiting time of an arbitrary

customer is the sum of the residual service time of the customer in service

when the tagged customer arrives and service time of remaining a− 1 type I
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customers in slow mode.

Now,

P (F/E2) =

(∫ ∞
t=0

eeea
2

(2N−a−1)m+(t−a−1)m+u(
(N − 1)Nm

2
)exp(U1t)UUU

(2)
1 dt

)

where U1, UUU
(2)
1 are as defined in section 2.5.3.

Let qa,u =
(
eeea

2
(2N−a−1)m+(t−a−1)m+u( (N−1)Nm

2 )(−U1)−2UUU
(2)
1

)−1
be the rate of

absorption to {∗2} from U1.

P (M1|F,E2) =
qa,u

qa,u + µ(1)
,

P (Mi|F,E2) =
qa,u

qa,u + µ(i)
− qa,u

qa,u + µ(i−1)
, for 2 ≤ i ≤ a

and

P (Ma+1|F,E2) =
µ(a)

qa,u + µ(a)

The conditional LSTs,

W ∗1 (s|E2, F,M1) =

(
λ

s+ λ

)N−t−1

(ααα(sI − T )−1TTT 0)a,

W ∗1 (s|E2, F,Mi) =

(
λ

s+ λ

)N−t−1

(ααα(sI − T )−1TTT 0)a−i+1, for 2 ≤ i ≤ a

and

W ∗1 (s|E2, F,Ma+1) = (e′e′e′u(sI − θT )−1θTTT 0)(ααα(sI − θT )−1θTTT 0)a−1
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Thus the conditional LST

W ∗1 (s|E2, F ) =
a+1∑
i=1

W ∗1 (s|E2, F,Mi)P (Mi|E2, F )

Case (iii)

Let G denote the event that the system becomes empty before vacation

expiration.

P (G/E2) =

(∫ ∞
t=0

eeea
2

(2N−a−1)m+(t−a−1)m+u(
(N − 1)Nm

2
)exp(U1t)UUU

(0)
1 dt

)

where U1, UUU
(0)
1 are as defined in section 2.5.3.

In this case the conditional LST,

W ∗1 (s/E2, G) = (eee′u(sI − θT )−1θT 0)(ααα(sI − θT )−1θTTT 0)a−1.

Thus the conditional LST,

W ∗1 (s/E2) = W ∗1 (s/E2, E)P (E/E2)+W ∗1 (s/E2, F )P (F/E2)+W ∗1 (s/E2, G)P (G/E2).

Case III

Let E3 denote the event that the customer arrives to the system when the

server is in normal mode 1. This case is same as for model I. Let W ∗1 (s/E3)

denote the corresponding conditional LST.

Then the conditional LST of the waiting time is given by

W ∗1 (s|E3) = (eee′u(sI − T )−1TTT 0)(ααα(sI − T )−1TTT 0)a−1.

Case IV

Let E4 denote the event that the customer arrives to the system when the
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server is in normal mode 2. This case is also same as for model I. Let W ∗1 (s/E4)

denote the corresponding LST.

Then the conditional LST of the waiting time,

W ∗1 (s|E4) = (eee′u(sI − T ′)−1T ′T ′T ′0)(ααα(sI − T )−1TTT 0)a.

Let wi1,i2,j1,j2,k,l denote the probabilty that the system is in the state (i1, i2, j1,

j2, k, l) immedietly after arrival of the tagged customer. Then,

w0,1,0,1,u,v = λαu

λ+η−d(0)
vv

x0,0,v, for, 1 ≤ u ≤ m, 1 ≤ v ≤ n

wn1,1,0,1,u,v = λαu

λ+η−d(0)
vv

xn1,0,0,v, for, n1 ≥ 1, 1 ≤ u ≤ m, 1 ≤ v ≤ n

wn1,a+1,0,t+1,u,v = λ

λ+η−θTuu−d(0)
vv

xn1,a,0,t,u,v, for, n1 ≥ 0, 1 ≤ a ≤ N − 2,

a ≤ t ≤ N − 2, 1 ≤ u ≤ m, 1 ≤ v ≤ n
wn1,a+1,1,u,v =

∑m
u′=1

λαu

λ+η−θTu′u′−d
(0)
vv

xn1,a,0,N−1,u′,v + λ

λ−Tuu−d(0)
vv

xn1,a,1,u,v, for, n1 ≥ 0, 1 ≤ a ≤ N − 1, 1 ≤ u ≤ m,
1 ≤ v ≤ n

wn1,a+1,1,u,v = λ

λ−Tuu−d(0)
vv

xn1,a,1,u,v, for, n1 ≥ 0, N ≤ a ≤ L− 1,

1 ≤ u ≤ m, 1 ≤ v ≤ n
wn1,a+1,2,u,v = λ

λ−Tuu−d(0)
vv

xn1,a,2,u,v, for, n1 ≥ 1, 0 ≤ a ≤ L− 1,

1 ≤ u ≤ m′, 1 ≤ v ≤ n

Thus we have the following Theorem.

Theorem 2.6.1. The LST of the waiting time of a type I customer is
given by

W ∗1 (s) =
1

d

[ ∞∑
n1=0

n∑
v=1

wn1,1,0,1,u,v +

∞∑
n1=0

N−2∑
a=1

N−2∑
t=a

m∑
u=1

n∑
v=1

W ∗1 (s|E2)(wn1,a+1,0,t+1,u,v)

+
∞∑

n1=0

L−1∑
a=1

m∑
u=1

n∑
v=1

W ∗1 (s|E3)(wn1,a+1,1,u,v) +

∞∑
n1=1

L−1∑
a=0

m∑
u=1

n∑
v=1

W ∗1 (s|E4)(wn1,a+1,2,u,v)
]

(2.26)
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where

d =
∞∑

n1=0

n∑
v=1

wn1,1,0,1,u,v +
∞∑

n1=0

N−2∑
a=1

N−2∑
t=a

m∑
u=1

n∑
v=1

wn1,a+1,0,t+1,u,v+

+
∞∑

n1=0

L−1∑
a=1

m∑
u=1

n∑
v=1

wn1,a+1,1,u,v +
∞∑

n1=1

L−1∑
a=0

m∑
u=1

n∑
v=1

wn1,a+1,2,u,v. (2.27)

2.6.2 Type II Customer

To find the LST of the waiting time distribution of a type II customer, we

have to compute the following distribution.

Let U ′′s be the duration of time the server, starting in vacation, until either

he gets back to normal mode through the random clock expiring or the WV

is interrupted as the number of type I customers in the system plus number

of type I customers already served during the current vacation hits N.

Conditional distribution of U ′′s given a type II customer arrives

before the random clock expires

We can study this by a phase type distribution with representation (γ4, U4)

where the underlying markov chain has state space {0} ∪ {(i, j, k) : 1 ≤ i ≤
N − 1; i ≤ j ≤ N − 1; 1 ≤ k ≤ m} ∪ {∗} where i denotes the number of type

I customers in the system, j the number of type I customers in the system

plus number of type I customers already served during the current vacation,

k, the service phase and * denotes the absorbing state indicating the vacation

expiration. The infinitesimal generator U4 of U ′′s (t) is given by

U4 =

[
U4 UUU0

4

0 0

]
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where,

U4 =



−(λ+ η) M1

K1 L1 M2

. . .
. . .

. . .

KN−2 LN−2 MN−1

KN−1 LN−1


. (c8)

with

M1 =
[
λα 0

]
, where 0 is a zero matrix of order 1× (N − 2)m.

K1 = eee(N − 1)⊗ θTTT 0

For 2 ≤ i ≤ N − 1,

Ki =
[

000 IN−i ⊗ (θTTT 0ααα)
]
, where 0 is a zero matrix of order (N − i)m×m

and

Mi =

[
λI(N−i)m

000

]
where 0 is a zero matrix of order m× (N − i)m.

Li = IN−i ⊗ (θT ⊕D0 − (λ+ η)Im), for 1 ≤ i ≤ N − 1

UUU0
4 =



η

ηeee((N − 2)m)

(λ+ η)eee(m)
...

ηeee(m)

(λ+ η)eee(m)

(λ+ η)eee(m)


. (c9)
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The initial probability vector is given by

γ4 = (1,0), where 000 is a zero matrix of order 1× (N − 1)N

2
m. (c10)

Thus we have the following Lemma.

Lemma 2.6.1. The expected duration of time the server stays in vacation

mode until either the server gets back to normal mode through the random

clock expiring or the WV is interrupted as the number of type I customers

in the system plus the number of type I customers already served during the

current vacation hits N given a type II customer arrives before the random

clock expires, is given by γγγ4(−U4)−1eee.

To find the waiting time of a type II customer who arrives at time x, we

have to consider different possibilities depending on the status of server at

that time. The server may be in vacation mode, WV mode, normal mode 1

or in normal mode 2. Let Z2 be the random variable representing the waiting

time of a type II customer in the queue. Define W2(x) = Prob(Z2 ≤ x) and

W ∗2 (s) be the corresponding LST.

Case I

Let F1 denote the event that the system is in the state (1, 0, 0, v) imme-

diately after arrival of the tagged customer. In this case the waiting time is

the sum of time duration from his arrival epoch till the server shifts to normal

mode and the time duration of busy period generated by type I customers

present at that time, if any. Let W ∗2 (s|F1) denote the corresponding condi-

tional LST of the waiting time.

Then

W ∗2 (s|F1) = γγγ4(sI − U4)−1UUU0
4

[
t0 +

N∑
p=1

γγγp(sI − T1)−1TTT 0
1tp
]

where tp, 0 ≤ p ≤ N denote the probabaility that there are p type I customers
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when the vacation expires which is given by

tp =



∫∞
t=0 γγγ4(eU4t)pηdt if p = 0∫∞
t=0 γγγ4(eU4t)p(UUU

0
4)pdt if 1 ≤ p ≤ N − 2∫∞

t=0 γγγ4(eU4t)N−1ηeee(m)dt if p = N − 1∫∞
t=0 γγγ4(eU4t)N−1λeee(m)dt if p = N

where (eU4t)p denote the columns in eU4t corresponding to p type I customer

states and (UUU0
4)p the absorbing rates corresponding to p type I customers,

T1, TTT 0
1, γγγp, U4, UUU0

4 and γγγ4 are given by (c2), (c3),(c4),(c8), (c9) and (c10)

respectively.

Case II

Let F2 denote the event that the system is in the state (b+1, 0, 0, v), b ≥ 1

immediately after arrival of the tagged customer. In this case the waiting

time is the sum of time duration from his arrival epoch till the server shifts to

normal mode, the time duration of busy period generated by type I customers

present at that time, if any and the time duration of busy cycles generated

by type I customers arriving during the service time of each of the b type II

customers. Let W ∗2 (s|F2) denote the corresponding conditional LST of the

waiting time.

Then

W ∗2 (s|F2) = γγγ4(sI − U4)−1UUU0
4

[
t0 +

N∑
p=1

γpγpγp(sI − T1)−1TTT 0
1tp
]
(B̂cL(s))b

where B̂cL(s)) is given by Theorem 2.3.3.

Case III

Let F3 denote the event that the system is in the state (b+ 1, a, 0, t, u, v),

b ≥ 0; 1 ≤ a ≤ N − 1; a ≤ t ≤ N − 1 immediately after arrival of the tagged

customer. In this case also the waiting time is the sum of time duration from

his arrival epoch till the server shifts to normal mode, the time duration of
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busy period generated by type I customers present at that time, if any and the

time duration of busy cycles generated by type I customers arriving during

the service time of each of the b type II customers. Let W ∗2 (s|F3) denote the

corresponding conditional LST.

Then

W ∗2 (s|F3) = γγγua,t(sI − U4)−1UUU0
4

[
t0 +

N∑
p=1

γγγp(sI − T1)−1TTT 0
1tp
]
(B̂cL(s))b

where γγγua,t = (0,000, · · · , eee′t−a+1(N −a)⊗eee′u,0) with eee′t−a+1(N −a)⊗eee′u is in the

(a + 1)th position, where 0′s are zero matrices of order (N − 1)m, · · · , (N −
a+ 1)m, (N − a− 1)m, · · · ,m respectively, γγγp = (0,0, · · · ,ααα,0, · · · ,0) where

α is in the pth position and 0 denotes zero matrix of order m.

Case IV

Let F4 denote the event that the system is in the state (b + 1, a, 1, u, v),

b ≥ 0; 1 ≤ a ≤ L; 1 ≤ u ≤ m; 1 ≤ v ≤ n immediately after arrival of the

tagged customer. This case is same as for model I. Let W ∗2 (s|F4) denote the

corresponding conditional LST.

Then

W ∗2 (s|F4) = (γγγua(sI − T1)−1TTT 0
1)(B̂cL(s))b

where γγγua = (0, · · · , e′u, · · · ,0) where eee′u is in the ath position and 0 denotes

zero matrix of order m.

Case V

Let F5 denote the event that the system is in the state (b + 1, a, 2, u, v),

b ≥ 1; 0 ≤ a ≤ L; 1 ≤ u ≤ m′; 1 ≤ v ≤ n, immediately after arrival of the

tagged customer. This case is also same as for model I. Let W ∗2 (s|F5) denote

the corresponding conditional LST.

Then

W ∗2 (s|F5) = (eee′u(sI − T ′)−1T ′T ′T ′0)(B̄L(s)(B̂cL(s))b−1

B̄L(s) is given by Theorem 2.3.4.
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Let wi1,i2,j1,j2,k,l denote the probabilty that the system is in the state

(i1, i2, j1, j2, k, l) immediately after arrival of the tagged customer. Then,

w1,0,0,v =
d

(1)

v′v
λ+η−d(0)

v′v′
x0,0,v′ , for, 1 ≤ v, v′ ≤ n

wb+1,0,0,v =
d

(1)

v′v
λ+η−d(0)

v′v′
xb,0,0,v′ , for, b ≥ 1, 1 ≤ v, v′ ≤ n

wb+1,a,0,t,u,v =
d

(1)

v′v
λ+η−θTuu−d(0)

v′v′
xb,a,0,t,u,v′ , for, b ≥ 0, 1 ≤ a ≤ N − 1,

a ≤ t ≤ N − 1, 1 ≤ u ≤ m, 1 ≤ v, v′ ≤ n

wb+1,a,1,u,v =
d

(1)

v′v
λ−Tuu−d(0)

v′v′
xb,a,1,u,v′ , for, b ≥ 0, 1 ≤ a ≤ L, 1 ≤ u ≤ m,

1 ≤ v, v′ ≤ n

wb+1,a,2,u,v =
d

(1)

v′v
λ−Tuu−d(0)

v′v′
xb,a,2,u,v′ , for, b ≥ 1, 0 ≤ a ≤ L, 1 ≤ u ≤ m′,

1 ≤ v, v′ ≤ n

We sum up the above discussions in the following.

Theorem 2.6.2. The LST of the waiting time of a type II customer is

given by

W ∗2 (s) =

n∑
v=1

W ∗2 (s|F1)w1,0,0,v+

∞∑
b=1

n∑
v=1

W ∗2 (s|F2)wb+1,0,0,v+

∞∑
b=0

N−1∑
a=1

N−1∑
t=a

m∑
u=1

n∑
v=1

W ∗2 (s|F3)(wb+1,a,0,t,u,v) +
∞∑
b=0

L∑
a=1

m∑
u=1

n∑
v=1

W ∗2 (s|F4)wb+1,a,1,u,v+

∞∑
b=1

L∑
a=0

m∑
u=1

n∑
v=1

W ∗2 (s|F5)wb+1,a,2,u,v. (2.28)
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2.7 Numerical Results

2.7.1 Comparison of mean/variance of number of type I and

type II customers in the system

We fix λ = 1, θ = 0.6, D0 = (−1), D1 = (1), ααα =
[

1 0
]
, T =

[
−5 5

0 −5

]
and

α′α′α′ =
[

0.8 0.2
]
, T ′ =

[
−2.5 0

2.5 −5

]
.

Table 2.1: Mean/Variance of number of type I customers in the system for
model I: Effect of η and N

η
N=1, L=3 N=2, L=4 N=3, L=5 N=4, L=6 N=5, L=7

Ens Vns Ens Vns Ens Vns Ens Vns Ens Vns
0.01 0.6934 0.7328 0.8170 0.9367 0.8928 1.1001 0.9494 1.2388 0.9947 1.3680
0.02 0.6934 0.7328 0.8169 0.9366 0.8924 1.0996 0.9482 1.2371 0.9924 1.3638
0.03 0.6934 0.7328 0.8168 0.9365 0.8919 1.0991 0.9470 1.2354 0.9901 1.3597
0.04 0.6934 0.7328 0.8166 0.9364 0.8914 1.0986 0.9458 1.2338 0.9878 1.3557
0.05 0.6934 0.7328 0.8165 0.9363 0.8909 1.0981 0.9446 1.2322 0.9857 1.3518

Table 2.2: Mean/Variance of number of type I customers in the system for
model II: Effect of η and N

η
N=1, L=3 N=2, L=4 N=3, L=5 N=4, L=6 N=5, L=7

Ens Vns Ens Vns Ens Vns Ens Vns Ens Vns
0.01 0.6934 0.7328 0.8170 0.9367 0.8807 1.0854 0.9200 1.1885 0.9479 1.2653
0.02 0.6934 0.7328 0.8169 0.9366 0.8804 1.0851 0.9194 1.1878 0.9470 1.2640
0.03 0.6934 0.7328 0.8168 0.9365 0.8801 1.0848 0.9188 1.1872 0.9461 1.2627
0.04 0.6934 0.7328 0.8166 0.9364 0.8797 1.0845 0.9183 1.1865 0.9453 1.2615
0.05 0.6934 0.7328 0.8165 0.9363 0.8794 1.0842 0.9177 1.1858 0.9444 1.2602

In Tables 2.1 and 2.2, Ens denote the expected number of type I customers

in the system and Vns, its variance. In these tables we look at the values of

these measures as functions of N and η. The two models coincide with the

classical model in the case N = 1. These two models coincide in the case of

N = 2 also. As expected, in both the models, both mean and variance are non-

increasing functions of η (for fixed N) and is also non-decreasing functions of

N (for fixed η). The rate of decrease of mean and variance as η grows shows an
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increasing trend with value of N going up. This happens due to the diminished

effect of N as N increases. Also the rate of increase of mean and variance with

growth of N decreases as η increases. This is due to the increased effect of η

with growth of η. But variance is larger than mean in all cases. When N ≥ 3,

both Ens and Vns are comparitively less in model II than in model I.

For the arrival process of type II customers, we consider the following five

sets of matrices for D0 and D1.

1. Exponential (EXP)

D0 = (−1), D1 = (1)

2. Erlang (ERA)

D0 =

 −3 3 0

0 −3 3

0 0 −3

 .D1 =

 0 0 0

0 0 0

3 0 0


3. Hyperexponential (HEXP)

D0 =

[
−3.4000 0

0 −0.8500

]
, D1 =

[
0.6800 2.7200

0.1700 0.6800

]
.

4. MAP with negetive correlation (MNA)

D0 =

 −0.8101 0.8101 0

0 −1.3497 0

0 0 −40.5065

, D1 =

 0 0 0

0.0810 0 1.2687

38.0761 0 2.4304


5. MAP with positive correlation (MPA)
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Table 2.3: Effect of η and N on Mean/Variance of number of type II customers
in the sytem for model I

(N, L)
η EXP ERA HEA MNA MPA

Ens Vns Ens Vns Ens Vns Ens Vns Ens Vns
0.01 2.95 8.11 2.44 4.30 3.14 9.82 3.17 9.15 16.35 693.94

(1,3) 0.03 2.93 8.05 2.42 4.25 3.12 9.76 3.15 9.09 16.33 693.59
0.05 2.91 8.00 2.40 4.21 3.11 9.70 3.13 9.03 16.32 693.26
0.01 5.18 19.55 4.63 13.78 5.39 22.02 5.40 20.89 19.49 804.02

(2,4) 0.03 5.02 18.46 4.47 12.80 5.22 20.90 5.24 19.79 19.33 800.52
0.05 4.87 17.54 4.32 11.97 5.08 19.94 5.10 18.85 19.19 797.43
0.01 9.57 68.10 9.01 59.18 9.78 71.77 9.80 69.91 24.23 944.18

(3,5) 0.03 8.67 55.02 8.10 46.70 8.88 58.46 8.89 56.74 23.33 917.61
0.05 7.97 45.98 7.40 38.13 8.18 49.25 8.19 47.64 22.63 898.11
0.01 17.20 242.85 16.63 228.76 17.41 248.45 17.43 245.42 31.98 1242

(4,6) 0.03 13.84 151.36 13.51 139.51 14.05 156.12 14.06 153.60 28.61 1101
0.05 11.72 105.45 11.15 95.01 11.94 109.69 11.95 107.48 26.50 1023
0.01 28.54 717.64 27.96 695.96 28.75 726.08 28.76 721.32 43.35 1890

(5,7) 0.03 19.59 321.67 19.02 305.95 19.81 327.88 19.82 324.48 34.41 1360
0.05 15.22 186.29 14.65 173.48 15.43 191.41 15.44 188.67 30.03 1159

D0 =

 −0.8101 0.8101 0

0 −1.3497 0

0 0 −40.5065

, D1 =

 0 0 0

1.2687 0 0.0810

2.4304 0 38.0761


All these five MAP processes are normalized so as to have an arrival rate

of 1. However, these are qualitatively different in that they have different

variance and correlation structure. The first three arrival processes, namely

EXP, ERA and HEA correspond to renewal processes and so the correlation

is 0. The arrival process labeled MNA has correlated arrivals with correlation

between two successive interarrival times given by -0.4211 and the arrival

process corresponding to the one labelled MPA has a positive correlation with

value 0.4211.

For the service time distributions, we consider phase type distributions,

ααα =
[

1 0
]
, T =

[
−5 5

0 −5

]
and α′α′α′ =

[
0.8 0.2

]
, T ′ =

[
−2.5 0

2.5 −5

]
.

We fix λ = 1 and θ = 0.6

In this case also, the mean and variance are both non-increasing functions

of η (for fixed N) and is a non-decreasing function of N( for fixed η, with
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Table 2.4: Effect of η and N on Mean/Variance of number of type II customers
in the system for model II

(N, L)
η EXP ERA HEXP MNA MPA

Ens Vns Ens Vns Ens Vns Ens Vns Ens Vns
0.01 2.95 8.11 2.44 4.30 3.14 9.82 3.17 9.15 16.35 693.94

(1,3) 0.03 2.93 8.05 2.42 4.25 3.12 9.76 3.15 9.09 16.33 693.59
0.05 2.91 8.00 2.40 4.21 3.11 9.70 3.13 9.03 16.32 693.26
0.01 5.18 19.55 4.63 13.78 5.39 22.02 5.40 20.89 19.49 804.02

(2,4) 0.03 5.02 18.46 4.47 12.80 5.22 20.90 5.24 19.79 19.33 800.52
0.05 4.87 17.54 4.32 11.97 5.08 19.94 5.10 18.85 19.19 797.43
0.01 7.60 41.37 7.04 33.76 7.81 44.54 7.83 42.99 22.26 888.02

(3,5) 0.03 7.11 36.04 6.55 28.76 7.33 39.10 7.34 37.61 21.77 875.40
0.05 6.71 32.00 6.14 24.99 6.92 34.95 6.93 33.53 21.37 865.32
0.01 10.24 77.57 9.67 68.12 10.45 81.44 10.46 79.46 25.01 972.90

(4,6) 0.03 9.20 61.54 8.63 52.78 9.41 65.15 9.43 63.33 23.98 941.38
0.05 8.41 50.75 7.84 42.52 8.62 54.17 8.63 52.47 23.18 918.76
0.01 13.09 132.02 12.52 120.63 13.31 136.61 13.32 134.19 27.91 1073

(5,7) 0.03 11.26 94.86 10.68 84.70 11.47 99.00 11.48 96.86 26.07 1009
0.05 9.96 72.76 9.39 63.45 10.18 76.57 10.19 74.62 24.78 967

reference to Tables 2.3 and 2.4), for the input parameters prescribed. This is

the case for all combinations of arrival processes of type II customer. But the

rate of change in the case of MPA is much smaller compared to other arrivals.

Both mean and variance are significantly larger for MPA indicating the role

played by (positively) correlated arrivals. We observe that both mean and

variance change significantly as functions of η when N becomes large for both

the models. When N ≥ 3, both Ens and Vns are comparitively less for model

II compared to model I.

From Figures 2.1 and 2.2, we note that as λ increases both Ens and Vns

of type II customers decrease first but increase after a certain stage for all

values of N and for all type II arrival processes for both the models. This

happens because as λ increases, the rate of hitting N become faster and the

queue length decreases. But when λ reaches a specified value the queue length

increases due to diminished effect of N . As N increases this λ value becomes

larger and larger.This λ value is different for different type II arrival processes

and is the smallest for the arrival process MPA.
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2.7.2 Optimal N

Next, we find an optimal N for both the models by constructing a suitable

cost function.

Let

Cs: Unit time cost of switching to normal mode

Ch: Holding cost for retaining a type II customer when the server is in vaca-

tion/WV

Rs: Rate of switching to normal mode

Ev: Expected number of type II customers in the system till vacation expires.

Then the expected cost per unit time,

C = Cs ×Rs + Ch × Ev

For model I,

Rs =
∞∑

n1=1

n∑
k=1

ηxn1,0,0,k +
∞∑

n1=0

N−1∑
n2=1

m∑
j2=1

n∑
k=1

ηxn1,n2,0,j2,k+

∞∑
n1=0

m∑
j2=1

n∑
k=1

λxn1,N−1,0,j2,k (2.29)

and

Ev =
∞∑

n1=1

n∑
k=1

n1xn1,0,0,k +
∞∑

n1=1

N−1∑
n2=1

m∑
j2=1

n∑
k=1

n1xn1,n2,0,j2,k

For model II,

Rs =

∞∑
n1=1

n∑
l=1

ηxn1,0,0,l +

∞∑
n1=0

N−1∑
n2=1

N−1∑
j2=n2

m∑
k=1

n∑
l=1

ηxn1,n2,0,j2,k,l+

∞∑
n1=0

N−1∑
n2=1

m∑
k=1

n∑
l=1

λxn1,n2,0,N−1,0,k,l (2.30)
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and

Ev =
∞∑

n1=1

n∑
l=1

n1xn1,0,0,l +
∞∑

n1=1

N−1∑
n2=1

N−1∑
j2=n2

m∑
k=1

n∑
l=1

n1xn1,n2,0,j2,k,l

For both models we fix L = 15, θ = 0.1, λ = 0.05, η = 0.001, ααα =
[

1 0
]
,

T =

[
−5 5

0 −5

]
and α′α′α′ =

[
0.8 0.2

]
, T ′ =

[
−2.5 0

2.5 −5

]
, Cs = 3000 and

Ch = 0.05.

N
Model I Model II

Rs Ev Cost Rs Ev Cost

1 0.0296 11.3725 89.2242 0.0296 11.3725 89.2242

2 0.0049 69.0362 18.2221 0.0049 69.0362 18.2221

3 0.0012 278.8977 17.6771 0.0018 194.1026 15.0271

4 6.8644× 10−4 508.8820 27.5034 9.8500× 10−4 352.2230 20.5662

5 6.0488× 10−4 578.3485 30.7321 7.3595× 10−4 473.2067 25.8682

6 5.9332× 10−4 589.9899 31.2795 6.4776× 10−4 538.8852 28.8875

7 5.9171× 10−4 591.7079 31.3605 6.1432× 10−4 569.0909 30.2975

8 5.9149× 10−4 591.9660 31.3728 6.0103× 10−4 582.1676 30.9115

Table 2.5: Optimal N for EXP type II arrival process

N
Model I Model II

Rs Ev Cost Rs Ev Cost

1 0.0296 11.4214 89.2608 0.0296 11.4214 89.2608

2 0.0049 69.0862 18.2303 0.0049 69.0862 18.2303

3 0.0012 278.9481 17.6811 0.0018 194.1521 15.0316

4 6.8678× 10−4 508.8366 27.5022 9.8536× 10−4 352.1463 20.5634

5 6.0530× 10−4 578.5717 30.7445 7.3622× 10−4 472.8003 25.8487

6 5.9375× 10−4 590.2368 31.2931 6.4809× 10−4 538.5319 28.8709

7 5.9215× 10−4 591.9584 31.3744 6.1472× 10−4 568.9850 30.2934

8 5.9193× 10−4 592.2169 31.3866 6.0148× 10−4 582.2466 30.9168

Table 2.6: Optimal N for ERA type II arrival process

From Tables 2.5 to 2.9, we get the expected cost corresponding to different

values of N for different type II arrival processes, for model I and model II. For

both the models, Rs decreases and Ev increases as N increases. As expected,
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N
Model I Model II

Rs Ev Cost Rs Ev Cost

1 0.0295 11.3550 89.2110 0.0295 11.3550 89.2110

2 0.0049 69.0182 18.2191 0.0049 69.0182 18.2191

3 0.0012 278.8795 17.6757 0.0018 194.0845 15.0254

4 6.8630× 10−4 508.6858 27.4932 9.8486× 10−4 352.2043 20.5648

5 6.0476× 10−4 578.2960 30.7291 7.3583× 10−4 473.1812 25.8666

6 5.9320× 10−4 589.9324 31.2762 6.4767× 10−4 539.0376 28.8949

7 5.9159× 10−4 591.6498 31.3573 6.1420× 10−4 569.1643 30.3008

8 5.9137× 10−4 591.9077 31.3695 6.0091× 10−4 582.1740 30.9114

Table 2.7: Optimal N for HEXP type II arrival process

N
Model I Model II

Rs Ev Cost Rs Ev Cost

1 0.0295 11.3028 89.1856 0.0295 11.3028 89.1856

2 0.0049 68.9648 18.2125 0.0049 68.9648 18.2125

3 0.0012 278.8374 17.6726 0.0018 194.0309 15.0213

4 6.8609× 10−4 508.7016 27.4933 9.8461× 10−4 352.1768 20.5627

5 6.0451× 10−4 578.2791 30.7275 7.3563× 10−4 473.2641 25.8701

6 5.9292× 10−4 589.7552 31.2665 6.4742× 10−4 538.9180 28.8882

7 5.9131× 10−4 591.4750 31.3477 6.1393× 10−4 569.0171 30.2927

8 5.9109× 10−4 591.7349 31.3600 6.0062× 10−4 582.0134 30.9025

Table 2.8: Optimal N for MPA type II arrival process

Rs is higher and Ev is smaller for model II than model I for all type II arrival

processes. In all cases we see that as N increases, the expected cost first

decreases, reaches a minimum value and then increases. This is due to the

fact that, Rs decreases and Ev increases, as N increases. The optimal cost is

slightly different for different type II arrival processes, but it corresponds to

N = 3 in all cases( This may vary according to variation in the parameters).

Hence model II performs much better than model I for all type II arrival

processes. It may be noted that we assigned small values for λ (Poisson arrival

rate of type I customers), η (parameter of vacation clock duration) for reducing

Rs value and to get clear distinction in the expected cost between models I

and II.
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N
Model I Model II

Rs Ev Cost Rs Ev Cost

1 0.0295 11.4336 89.1955 0.0295 11.4336 89.1955

2 0.0049 69.0995 18.2198 0.0049 69.0995 18.2198

3 0.0012 278.9731 17.6795 0.0018 194.1663 15.0283

4 6.8611× 10−4 508.7373 27.4952 9.8464× 10−4 352.2857 20.5682

5 6.0454× 10−4 578.2921 30.7282 7.3564× 10−4 473.2473 25.8693

6 5.9296× 10−4 589.9148 31.2746 6.4746× 10−4 539.1406 28.8994

7 5.9135× 10−4 591.6300 31.3556 6.1397× 10−4 569.2176 30.3028

8 5.9113× 10−4 591.8876 31.3678 6.0066× 10−4 582.1987 30.9119

Table 2.9: Optimal N for MNA type II arrival process
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Figure 2.1: Effect of λ on expected number of type II customers in the system
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Figure 2.2: Effect of λ on Variance of number of type II customers in the
system
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Chapter 3

(M, MAP)/(PH, PH)/1

queue with Nonpreemptive

priority, Working

Interruption and Protection

In the previous chapter we considered working vacation: service is provided to

customers at a slower rate during a vacation. In this chapter we consider the

case of server providing service when customer is under interruption. We also

investigate the effect of providing a protection mechanism to the customer

against interruption. We analyze a single server queueing model with two

priority classes of customers where the type I customers are assumed to have a

non-preemptive priority over type II customers. We consider customer induced

interruption during own service. Varghese et al. [50] introduced this new type

of interruption in which a customer interrupts own service. Instead of stopping

Some results of this chapter are included in the following paper.
A. Krishnamoorthy, Divya V.: (M, MAP)/(PH, PH)/1 queue with Nonpreemptive
priority, Working Interruption and Protection,Reliability: Theory and Applications,
Vol.13,No.2(49),2018
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service completely, the service continues at reduced rate during interruption.

However these two models cannot be compared. In Varghese et al. [50],

a self interrupted customer goes to the waiting space and stays there until

interruption is completed then he moves to another waiting room and wait

for his turn for service. However in our model the self interrupted customer

is provided service at a reduced rate. The protection for the service of type I

customers is provided at the epoch of realization of the clock which starts at

the epoch at which the type I customer is taken for service.

There are several real life situations in which this model is suitable. For

example, in production process, especially of expensive commodities, it is es-

sential to give protection starting from some stage of manufacture of an item.

Thus in a manufacturing process, wherein the item produced has to be pro-

tected from variations in power supply; for example: The voltage fluctuation

can be considered as an arrival of interruption; this can affect the customer

being served or even the server. Thus protection from breakdown of ser-

vice/damage to customer has to be ensured. Another instance of the model is

a patient admitted to hospital for surgery. In this case, he has to be protected

from enviornment generated complications.

3.1 Model Description and Mathematical formula-

tion

We consider a single server queue with two priority classes of customers type

I and type II with the former arriving according to a Poisson process of rate

λ and the latter according to Markovian Arrival Process with representation

(D0, D1). Service time of both types follow distinct phase type distributions

with representations PH(ααα,T) of order m1 and PH(βββ, S) of order m2 respec-

tively. The number of type I customers in the system is restricted to a maxi-

mum of L. Also type I customers are assumed to have a non-preemptive prior-

ity over type II customers. Customer services are subject to interruption by a
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self induced mechanism. While in interruption arrival of another interruption

doesnot affect the customer.The interruptions occur according to Poisson pro-

cess with rate γ. Instead of stopping the service of that customer completely,

it continues at slower rate during interruption. That is, the service time of

type I and type II, during an interruption follow phase type distributions with

representation PH(ααα, θT ) and PH(βββ, θ′S), 0 < θ, θ′ < 1 respectively. Thus

µ = [ααα(−T )−1eee]−1 is the normal service rate and θµ is the interrupted service

rate of type I customers and µ′ = [βββ(−S)−1eee]−1 and θ′µ′ are respectively the

corresponding rates of normal and interrupted services of type II customers.

The server continues to serve at this lower rate until a random clock expires.

The duration of interruption is assumed to be exponentially distributed with

parameter η. A protection mechanism to diminish the effect of interruptions

on type I customers service is arranged. An exponential random clock with

mean 1
δ is started simultaneously with each type I service. The protection

for the service of type I customers is provided at the epoch of realization of

this clock. Type II customers are not provided protection against interruption

during their service. Also we assume that the service time of type I customers

on activation of protection clock, follows phase type distribution with repre-

sentation PH(ααα, φT ), φ > 1 and finite.

Let Q∗ = D0 + D1 be the generator matrix of the type II arrival process

and π∗π∗π∗ be its stationary probability vector. Hence π∗π∗π∗ is the unique (positive)

probability vector satisfying π∗π∗π∗Q∗ = 0, πππ∗eee = 1. The constant β∗ = π∗π∗π∗D1eee,

referred to as fundemental rate, gives the expected number of type II arrivals

per unit of time in the stationary version of the MAP. It is assumed that the

two arrival processes are mutually independent and are also independent of

the service time distributions.

3.1.1 The QBD process

The model described above can be studied as a LIQBD process. First we

introduce the followiing notations:
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At time t:

N1(t) : number of type II customers in the system

N2(t) : number of type I customers in the system

J(t) =


0, if the type I customer in service is unprotected/type II customer

is in service

1, if the type I customer in service is protected

K(t) =


0, if the server provides service to type I customer inWI

1, if the server provides service to type II customer inWI

2, if the server provides normal service to type I customer

3, if the server provides normal service to type II customer

S(t): the phase of service when the server is busy

M(t) : the phase of arrival of the type II customer.

It is easy to verify that {(N1(t), N2(t), J(t),K(t), S(t),M(t)) : t ≥ 0} is a

LIQBD with state space

l(0) = {(0, 0, k) : 1 ≤ k ≤ n}∪{(0, i2, 0, j2, k1, k2) : 1 ≤ i2 ≤ L; j2 = 0 or 2; 1 ≤
k1 ≤ m1; 1 ≤ k2 ≤ n} ∪ {(0, i2, 1, 2, k1, k2) : 1 ≤ i2 ≤ L; 1 ≤ k1 ≤ m1; 1 ≤
k2 ≤ n}
For i1 ≥ 1,

{(i1, 0, 0, j2, k1, k2) : j2 = 1 or 3; 1 ≤ k1 ≤ m2; 1 ≤ k2 ≤ n}∪{(i1, i2, 0, j2, k1, k2) :

1 ≤ i2 ≤ L; j2 = 0 or 2; 1 ≤ k1 ≤ m1; 1 ≤ k2 ≤ n} ∪ {(i1, i2, 0, j2, k1, k2) : 1 ≤
i2 ≤ L; j2 = 1 or 3; 1 ≤ k1 ≤ m2; 1 ≤ k2 ≤ n} ∪ {(i1, i2, 1, 2, k1, k2) : 1 ≤
i− 2 ≤ L; 1 ≤ k1 ≤ m1; 1 ≤ k2 ≤ n}
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The infinitesimal generator of this CTMC is

Q1 =


B0 C0

B1 A1 A0

A2 A1 A0

. . .
. . .

. . .

 .

where B0 contains transitions within the level 0; C0 represents transi-

tions from level 0 to level 1; B1 represents transitions from level 1 to level

0; A0 represents transitions from level g to level g + 1 for g ≥ 1, A1 repre-

sents transitions within the level g for g ≥ 1 and A2 represents transitions

from level g to g − 1 for g ≥ 2. The boundary blocks B0, C0, B1 are of or-

ders n(1 + 3m1L) × n(1 + 3m1L), n(1 + 3m1L) × (2m2n + (3m1 + 2m2)nL),

(2m2n + (3m1 + 2m2)nL) × n(1 + 3m1L) respectively. A0, A1, A2 are square

matrices of order 2m2n+ (3m1 + 2m2)nL.

Define the entries of B
(h2,i2,j2,k2,l2)
0(h1,i1,j1,k1,l1)

, C
(h2,i2,j2,k2,l2)
0(h1,i1,j1,k1,l1)

, B
(h2,i2,j2,k2,l2)
1(h1,i1,j1,k1,l1)

as transi-

tion submatrices which contains transitions of the form (0, h1, i1, j1, k1, l1) →
(0, h2, i2, j2, k2, l2), (0, h1, i1, j1, k1, l1)→ (1, h2, i2, j2, k2, l2) and (1, h1, i1, j1, k1,

l1)→ (0, h2, i2, j2, k2, l2) respectively. Define the entries of A
(h2,i2,j2,k2,l2)
0(h1,i1,j1,k1,l1)

,

A
(h2,i2,j2,k2,l2)
1(h1,i1,j1,k1,l1)

, A
(h2,i2,j2,k2,l2)
2(h1,i1,j1,k1,l1)

as transition submatrices which contains tran-

sitions of the form (g, h1, i1, j1, k1, l1) → (g + 1, h2, i2, j2, k2, l2), where g ≥
1, (g, h1, i1, j1, k1, l1)→ (g, h2, i2, j2, k2, l2), where g ≥ 1, (g, h1, i1, j1, k1, l1)→
(g−1, h2, i2, j2, k2, l2), where g ≥ 2 respectively. Since none or one event alone

could take place in a short interval of time with positive probability, in general,

a transition such as (g1, h1, i1, j1, k1, l1)→ (g2, h2, i2, j2, k2, l2) has positive rate

only for exactly one of g1, h1, i1, j1, k1, l1 different from g2, h2, i2, j2, k2, l2.
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B
(h2,i2,j2,k2,l2)
0(h1,i1,j1,k1,l1)

=



λ(ααα ⊗ In) h1 = 0, h2 = 1; i2 = 0; j2 = 2, 1 ≤ k2 ≤ m1,

1 ≤ l1, l2 ≤ n
λIm1n 1 ≤ h1 ≤ L− 1, h2 = h1 + 1; i1 = i2 = 0;

j1 = j2, j1 = 0 or 2; 1 ≤ k1, k2 ≤ m1;

1 ≤ l1, l2 ≤ n
λIm1n 1 ≤ h1 ≤ L− 1, h2 = h1 + 1; i1 = i2 = 1;

j1 = j2 = 2; 1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n
θTTT 0 ⊗ In h1 = 1, h2 = 0; i1 = 0; j1 = 0; 1 ≤ k1 ≤ m1;

1 ≤ l1, l2 ≤ n
TTT 0 ⊗ In h1 = 1, h2 = 0; i1 = 0; j1 = 2; 1 ≤ k1 ≤ m1;

1 ≤ l1, l2 ≤ n
φTTT 0 ⊗ In h1 = 1, h2 = 0; i1 = 1; j1 = 2; 1 ≤ k1 ≤ m1;

1 ≤ l1, l2 ≤ n
θTTT 0ααα⊗ In 2 ≤ h1 ≤ L, h2 = h1 − 1; i1 = i2 = 0; j1 = 0,

j2 = 2; 1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n
TTT 0ααα⊗ In 2 ≤ h1 ≤ L, h2 = h1 − 1; i1 = i2 = 0;

j1 = j2 = 2; 1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n
φTTT 0ααα⊗ In 2 ≤ h1 ≤ L, h2 = h1 − 1; i1 = 1, i2 = 0;

j1 = j2 = 2; 1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n
ηIm1n 1 ≤ h1 ≤ L, h1 = h2, i1 = i2 = 0; j1 = 0,

j2 = 2; 1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n
γIm1n 1 ≤ h1 ≤ L, h1 = h2; i1 = i2 = 0; j1 = 2,

j2 = 0;≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n
δIm1n 1 ≤ h1 ≤ L, h1 = h2; i1 = 0, i2 = 1; j1 = 0

or 2, j2 = 2; 1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n
D0 − λIn h1 = h2 = 0; 1 ≤ l1, l2 ≤ n
θT ⊕D0 − (λ+ η + δ)Im1n 1 ≤ h1 ≤ L− 1, h1 = h2; i1 = i2 = 0;

j1 = j2 = 0; 1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n
T ⊕D0 − (λ+ γ + δ)Im1n 1 ≤ h1 ≤ L− 1, h1 = h2; i1 = i2 = 0;

j1 = j2 = 2; 1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n
φT ⊕D0 − λIm1n 1 ≤ h1 ≤ L− 1, h1 = h2; i1 = i2 = 1;

j1 = j2 = 2; 1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n
θT ⊕D0 − (η + δ)Im1n h1 = h2 = L; i1 = i2 = 0; j1 = j2 = 0;

1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n
T ⊕D0 − (γ + δ)Im1n h1 = h2 = L; i1 = i2 = 0; j1 = j2 = 2;

1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n
φT ⊕D0 h1 = h2 = L; i1 = i2 = 1; j1 = j2 = 2;

1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n
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C
(h2,i2,j2,k2,l2)
0(h1,i1,j1,k1,l1)

=



βββ ⊗D1 h1 = h2 = 0; i2 = 0; j2 = 3; 1 ≤ k2 ≤ m2;

1 ≤ l1, l2 ≤ n
Im1 ⊗D1 1 ≤ h1 ≤ L, h1 = h2; i1 = i2 = 0; j1 = j2 = 0;

1 ≤ k1, k2,≤ m1; 1 ≤ l1, l2 ≤ n
Im1 ⊗D1 1 ≤ h1 ≤ L, h1 = h2; i1 = i2 = 0; j1 = j2 = 2;

1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n
Im1 ⊗D1 1 ≤ h1 ≤ L, h1 = h2; i1 = i2 = 1; j1 = j2 = 2;

1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n

B
(h2,i2,j2,k2,l2)
1(h1,i1,j1,k1,l1)

=



θ′SSS0 ⊗ In h1 = h2 = 0; i1 = 0; j1 = 1; 1 ≤ k1 ≤ m2,

1 ≤ l1, l2 ≤ n
SSS0 ⊗ In h1 = h2 = 0; i1 = 0; j1 = 3; 1 ≤ k1 ≤ m2;

1 ≤ l1, l2 ≤ n
θ′SSS0ααα⊗ In h1 = h2, 1 ≤ h1 ≤ L; i1 = i2 = 0; j1 = 1, j2 = 2;

1 ≤ k1 ≤ m2, 1 ≤ k2 ≤ m1; 1 ≤ l1, l2 ≤ n
SSS0ααα⊗ In h1 = h2, 1 ≤ h1 ≤ L; i1 = i2 = 0; j1 = 3, j2 = 2;

1 ≤ k1 ≤ m2, 1 ≤ k2 ≤ m1; 1 ≤ l1, l2 ≤ n

A
(h2,i2,j2,k2,l2)
0(h1,i1,j1,k1,l1)

=



Im2 ⊗D1 i1 = i2 = 0; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m2;

1 ≤ l1, l2 ≤ n
Im2 ⊗D1 i1 = i2 = 0; j1 = j2 = 3; 1 ≤ k1, k2 ≤ m2;

1 ≤ l1, l2 ≤ n
Im1 ⊗D1 1 ≤ h1 ≤ L, h1 = h2; i1 = i2 = 0; j1 = j2 = 0 or 2;

1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n
Im1 ⊗D1 1 ≤ h1 ≤ L, h1 = h2; i1 = i2 = 1; j1 = j2 = 2;

1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n
Im2 ⊗D1 1 ≤ h1 ≤ L, h1 = h2; i1 = i2 = 0; j1 = j2 = 1 or 3;

1 ≤ k1, k2 ≤ m2; 1 ≤ l1, l2 ≤ n

A
(h2,i2,j2,k2,l2)
2(h1,i1,j1,k1,l1)

=



θ′SSS0βββ ⊗ In h1 = h2 = 0; i1 = i2 = 0; j1 = 1, j2 = 3; 1 ≤ k1, k2 ≤ m2;

1 ≤ l1, l2 ≤ n
SSS0βββ ⊗ In h1 = h2 = 0; i1 = i2 = 0; j1 = j2 = 3; 1 ≤ k1, k2 ≤ m2;

1 ≤ l1, l2 ≤ n
θ′SSS0ααα⊗ In 1 ≤ h1 ≤ L, h1 = h2; i1 = i2 = 0; j1 = 1, j2 = 2;

1 ≤ k1 ≤ m2, 1 ≤ k2 ≤ m1; 1 ≤ l1, l2 ≤ n
SSS0ααα⊗ In 1 ≤ h1 ≤ L, h1 = h2; i1 = i2 = 0; j1 = 3, j2 = 2;

11 ≤ k1 ≤ m2,≤ k2 ≤ m1, 1 ≤ l1, l2 ≤ n
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A
(h2,i2,j2,k2,l2)
1(h1,i1,j1,k1,l1)

=



λIm1n 1 ≤ h1 ≤ L− 1, h2 = h1 + 1; i1 = i2 = 0; j1 = j2 = 0 or 2;

1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n
λIm2n

0 ≤ h1 ≤ L− 1, h2 = h1 + 1; i1 = i2 = 0; j1 = j2 = 1 or 3;

1 ≤ k1, k2 ≤ m2; 1 ≤ l1, l2 ≤ n
λIm1n

1 ≤ h1 ≤ L− 1, h2 = h1 + 1; i1 = i2 = 1; j1 = j2 = 2;

1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n
θTTT0βββ ⊗ In h1 = 1, h2 = 0; i1 = i2 = 0; j1 = 0, j2 = 3; 1 ≤ k1 ≤ m1,

1 ≤ k2 ≤ m2; 1 ≤ l1, l2 ≤ n
TTT0βββ ⊗ In h1 = 1, h2 = 0; i1 = i2 = 0; j1 = 2, j2 = 3; 1 ≤ k1 ≤ m1,

1 ≤ k2 ≤ m2; 1 ≤ l1, l2 ≤ n
φTTT0βββ ⊗ In h1 = 1, h2 = 0; i1 = 1, i2 = 0; j1 = 2, j2 = 3; 1 ≤ k1 ≤ m1,

1 ≤ k2 ≤ m2; 1 ≤ l1, l2 ≤ n
θTTT0ααα⊗ In 2 ≤ h1 ≤ L, h2 = h1 − 1; i1 = i2 = 0; j1 = 0, j2 = 2;

1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n
TTT0ααα⊗ In 2 ≤ h1 ≤ L, h2 = h1 − 1; i1 = i2 = 0; j1 = j2 = 2;

1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n
φTTT0ααα⊗ In 2 ≤ h1 ≤ L, h2 = h1 − 1; i1 = i2 = 1; j1 = j2 = 2;

1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n
ηIm1n

1 ≤ h1 ≤ L, h1 = h2; i1 = i2 = 0; j1 = 0, j2 = 2;

1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n
ηIm2n 0 ≤ h1 ≤ L, h1 = h2; i1 = i2 = 0; j1 = 1, j2 = 3;

1 ≤ k1, k2 ≤ m2; 1 ≤ l1, l2 ≤ n
γIm1n

1 ≤ h1 ≤ L, h1 = h2; i1 = i2 = 0; j1 = 2, j2 = 0;

1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n
γIm2n 0 ≤ h1 ≤ L, h1 = h2; i1 = i2 = 0; j1 = 3, j2 = 1;

1 ≤ k1, k2 ≤ m2; 1 ≤ l1, l2 ≤ n
δIm1n

1 ≤ h1 ≤ L, h1 = h2; i1 = 0, i2 = 1; j1 = 0 or 2, j2 = 2;

1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n
θ′S ⊕D0 − (λ + η)Im2n h1 = h2 = 0; i1 = i2 = 0; j1 = j2 = 1, 1 ≤ k1, k2 ≤ m2;

1 ≤ l1, l2 ≤ n
S ⊕D0 − (λ + γ)Im2n

h1 = h2 = 0; i1 = i2 = 0; j1 = j2 = 3, 1 ≤ k1, k2 ≤ m2;

1 ≤ l1, l2 ≤ n
θT ⊕D0 − (λ + η + δ)Im1n 1 ≤ h1 ≤ L− 1, h1 = h2; i1 = i2 = 0, j1 = j2 = 0;

1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n
θ′S ⊕D0 − (λ + η)Im2n

1 ≤ h1 ≤ L− 1, h1 = h2; i1 = i2 = 0, j1 = j2 = 1;

1 ≤ k1, k2 ≤ m2, 1 ≤ l1, l2 ≤ n
T ⊕D0 − (λ + γ + δ)Im1n 1 ≤ h1 ≤ L− 1, h1 = h2; i1 = i2 = 0, j1 = j2 = 2,

1 ≤ k1, k2 ≤ m1, 1 ≤ l1, l2 ≤ n
S ⊕D0 − (λ + γ)Im2n

1 ≤ h1 ≤ L− 1, h1 = h2; i1 = i2 = 0, j1 = j2 = 3,

1 ≤ k1, k2 ≤ m2, 1 ≤ l1, l2 ≤ n
φT ⊕D0 − λIm1n 1 ≤ h1 ≤ L− 1, h1 = h2; i1 = i2 = 1, j1 = j2 = 2,

1 ≤ k1, k2 ≤ m1, 1 ≤ l1, l2 ≤ n
θT ⊕D0 − (η + δ)Im1n

h1 = h2 = L, i1 = i2 = 0, j1 = j2 = 0, 1 ≤ k1, k2 ≤ m1,

1 ≤ l1, l2 ≤ n
θ′S ⊕D0 − ηIm2n

h1 = h2 = L, i1 = i2 = 0, j1 = j2 = 1, 1 ≤ k1, k2 ≤ m2,

1 ≤ l1, l2 ≤ n
T ⊕D0 − (γ + δ)Im1n

h1 = h2 = L, i1 = i2 = 0, j1 = j2 = 2, 1 ≤ k1, k2 ≤ m1,

1 ≤ l1, l2 ≤ n
S ⊕D0 − γIm2n

h1 = h2 = L, i1 = i2 = 0, j1 = j2 = 3, 1 ≤ k1, k2 ≤ m2,

1 ≤ l1, l2 ≤ n
φT ⊕D0 h1 = h2 = L, i1 = i2 = 1, j1 = j2 = 2, 1 ≤ k1, k2 ≤ m1,

1 ≤ l1, l2 ≤ n
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3.2 Steady State Analysis

First we find the condition for stability of the system under study.

3.2.1 Stability condition

Let πππ = (πππ0,πππ1, . . . ,πππL) denote the steady state probability vector of the gen-

erator

A = A0 +A1 +A2 =



F0 F1

F2 F3 λI

F4 F3 λI
. . .

. . .
. . .

F4 F3 λI

F4 F5


.

ie,

πππA = 0,πππeee = 1. (3.1)

In the above,

F0(k, l) =


θ′S ⊕D0 − (λ+ η)Im2n + Im2

⊗D1 k = 1, l = 1

ηIm2n + θ′SSS0β ⊗ In k = 1, l = 2

γIm2n k = 2, l = 1

S ⊕D0 − (λ+ γ)Im2n +SSS0βββ ⊗ In + Im2
⊗D1 k = 2, l = 2

F1(k, l) =


λIm2n k = 1, l = 2

λIm2n k = 2, l = 4

0 otherwise

, F2(k, l) =


θTTT 0βββ ⊗ In k = 1, l = 2

TTT 0βββ ⊗ In k = 3, l = 2

φTTT 0βββ ⊗ In k = 5, l = 2

0 otherwise
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F3(k, l) =



θT ⊕D0 − (λ+ η + δ)Im1n + Im1
⊗D1 k = 1, l = 1

ηIm1n k = 1, l = 3

δIm1n k = 1, l = 5

θ′S ⊕D0 − (λ+ η)Im2n + Im2 ⊗D1 k = 2, l = 2

θ′SSS0ααα⊗ In k = 2, l = 3

ηIm2n k = 2, l = 4

γIm1n k = 3, l = 1

T ⊕D0 − (λ+ γ + δ)Im1n + Im1
⊗D1 k = 3, l = 3

δIm1n k = 3, l = 5

γIm2n k = 4, l = 2

SSS0ααα⊗ In k = 4, l = 3

S ⊕D0 − (λ+ γ)Im2n + Im2
⊗D1 k = 4, l = 4

φT ⊕D0 − λIm1n + Im1 ⊗D1 k = 5, l = 5

0 otherwise

F4(k, l) =


θTTT 0ααα⊗ In k = 1, l = 3

TTT 0ααα⊗ In k = 3, l = 3

φTTT 0ααα⊗ In k = 5, l = 3

0 otherwise

,

F5(k, l) =



θT ⊕D0 − (η + δ)Im1n + Im1 ⊗D1 k = 1, l = 1

ηIm1n k = 1, l = 3

δIm1n k = 1, l = 5

θ′S ⊕D0 − ηIm2n + Im2 ⊗D1 k = 2, l = 2

θ′SSS0ααα⊗ In k = 2, l = 3

ηIm2n k = 2, l = 4

γIm1n k = 3, l = 1

T ⊕D0 − (γ + δ)Im1n + Im1 ⊗D1 k = 3, l = 3

δIm1n k = 3, l = 5

γIm2n k = 4, l = 2

SSS0ααα⊗ In k = 4, l = 3

S ⊕D0 − γIm2n + Im2 ⊗D1 k = 4, l = 4

φT ⊕D0 + Im1 ⊗D1 k = 5, l = 5

0 otherwise
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with dimensions of F0, F1, F2 be 2m2n× 2m2n, 2m2n× (3m1 + 2m2)n,(3m1 +

2m2)n×2m2n respectively. F3, F4 andF5 are square matrices of order (3m1 +

2m2)n. The LIQBD description of the model indicates that the queueing

system is stable (see Neuts [40]) if and only if the left drift exceeds that of

right drift. That is,

πππA0e < πππA2e. (3.2)

The vector πππ cannot be obtained directly in terms of the parametres of the

model. From (3.1)we get

πππi = πππi−1Ui−1, 1 ≤ i ≤ L (3.3)

where
U0 = −F1(F3 + U1F4)−1

Ui =

{
−λ(F3 + Ui+1F4)−1 for 1 ≤ i ≤ L− 2

−λF−1
5 for i = L− 1.

From the normalizing condition πeπeπe = 1 we have

πππ0

(
L−1∑
j=0

j∏
i=0

Ui + I

)
e = 1. (3.4)

The inequality (3.2) gives the stability condition as

πππ0

(I(2m2) ⊗D1)eee+

L−1∑
i=0

i∏
j=0

Uj(I3m1+2m2 ⊗D1)eee

 <
πππ0

[eee1(2)(θ′SSS0βββ ⊗ I) + e2(2)SSS0βββ ⊗ I)]eee(m2n) +

L−1∑
i=0

i∏
j=0

Uj [eee2(5)θ′SSS0ααα⊗ I) + eee4(5)(SSS0ααα⊗ I)]eee(m2n)

 .
(3.5)

3.2.2 Steady-state probability vector

Assuming that the condition (3.5) is satisfied we proceed to find the steady-

state probability of the system state. Let xxx be the steady state probability
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vector of Q. We partition this vector as xxx = (xxx0,xxx1,xxx2 . . .), where xxx0 is of

dimension n(1 + 3m1L) and xxx1,xxx2, . . . are each of dimension n(2m2 + (3m1 +

2m2)L) . Under the stability condition, we have xxxi = xxx1R
i−1, i ≥ 2, where

the matrix R is the minimal nonnegative solution to the matrix quadratic

equation

R2A2 +RA1 +A0 = 0

and the vectors xxx0 and xxx1are obtained by solving the equations

xxx0B0 + xxx1B1 = 0 (3.6)

xxx0C0 + x1x1x1(A1 +RA2) = 0 (3.7)

subject to the normalizing condition

xxx0eee+ xxx1(I −R)−1eee = 1 (3.8)

3.2.3 Analysis of service time of a type I customer

The duration of service of a type I customer is a phase type distribution with
representation (α′α′α′, S1) where the underlying MC has state space {(i, j, k) : i =
0; j = 0 or 2; 1 ≤ k ≤ m1} ∪ {(i, 2, k) : i = 1; 1 ≤ k ≤ m1)} ∪ {∗} where i
denotes the status of the protection clock, j, the status of the server, k, the
service phase and *, the absorbing state indicating service completion. The
infinitesimal generator is

S1 =

[
S1 SSS0

1

000 0

]
, where, S1 =

 θT − (η + δ)Im1 ηIm1 δIm1

γIm1 T − (γ + δ)Im1 δIm1

000 000 φT

 and SSS0
1 =

 θTTT 0

TTT 0

φTTT 0


The initial probability vector is α′α′α′ =

[
000 ααα 000

]
, , where 000 is a zero matrix

of order 1×m1.

Thus the service time distribution of a type I customer is PH(α′α′α′, S1) of order

3m1n.
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3.2.4 Analysis of service time of a type II customer

The duration of service of a type II customer turn out to be a phase type

distribution (β′β′β′, S2) where the underlying MC has state space {(i, j) : i =

1 or 3; 1 ≤ j ≤ m2} ∪ {∗} where i denotes the status of the server, j, the

service phase and *, the absorbing state indicating service completion. The

infinitesimal generator is

S2 =

[
S2 SSS0

2

000 0

]
, where, S2 =

[
θ′S − ηIm2

ηIm2

γIm2 S − γIm2

]
and SSS0

2 =

[
θ′SSS0

S0

]

The initial probability vector is β′β′β′ =
[

000 ααα
]

, where 000 is a zero matrix of

order 1×m2. Thus we have the service time distribution of a type II customer

is PH(β′β′β′, S2) of order 2m2n.

3.3 Waiting time analysis

3.3.1 Type I Customer

To find the waiting time of a type I customer who joins for service at time t,

we have to consider different possibilities depending on the status of server at

that time. Let W1(t) be the waiting time of a type I customer who arrives at

time t and W ∗1 (s) be the corresponding LST.

Case I

Suppose that E1 denote the event the system is in the state (0, 1, 0, 2, u, v), 1 ≤
u ≤ m1; 1 ≤ v ≤ n immediately after arrival of the tagged customer. Let

W ∗1 (s/E1) denote the corresponding LST.Then

W ∗1 (s/E1) = 1

Case II

E2 be the event that the system is in the state (n1, a + 1, 0, 0, u, v), n1 ≥
0; 1 ≤ a ≤ L − 1; 1 ≤ u ≤ m1; 1 ≤ v ≤ n, immediately after arrival of
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the tagged customer. In this case the waiting time is the sum of the residual

service time of the type I customer in service when the tagged customer arrives

and service time of a−1 remaining type I customers. Let W ∗1 (s/E2) represent

the corresponding conditonal LST. Then

W ∗1 (s/E2) =
(
e′e′e′u(3m1)(sI − S1)−1SSS0

1

)(
α′α′α′(sI − S1)−1SSS0

1

)a−1
.

Case III

E3 denote the event: the system is in the state (n1, a+ 1, 0, 2, u, v), n1 ≥
0; 1 ≤ a ≤ L − 1; 1 ≤ u ≤ m1; 1 ≤ v ≤ n, immediately after arrival of

the tagged customer. In this case the waiting time is the sum of the residual

service time of the type I customer in service when the tagged customer arrives

and service times of a− 1 remaining type I customers. With W ∗1 (s/E3) as the

corresponding conditonal LST, we have

W ∗1 (s/E3) =
(
e′e′e′m1+u(3m1)(sI − S1)−1SSS0

1

)(
α′α′α′(sI − S1)−1SSS0

1

)a−1
.

Case IV

E4 denote the event: the system is in the state (n1, a+ 1, 1, 2, u, v), n1 ≥
0; 1 ≤ a ≤ L − 1; 1 ≤ u ≤ m1; 1 ≤ v ≤ n, immediately after arrival of

the tagged customer. In this case the waiting time is the sum of the residual

service time of the type I customer in service when the tagged customer arrives

and service times of a−1 remaining type I customers. Let W ∗1 (s/E4) represent

the corresponding conditonal LST. Then

W ∗1 (s/E4) =
(
e′e′e′2m1+u(3m1)(sI − S1)−1SSS0

1

)(
α′α′α′(sI − S1)−1SSS0

1

)a−1
.

Case V

E5 denote the event: the system is in the state (n1, a+ 1, 0, 1, u, v), n1 ≥
1; 0 ≤ a ≤ L − 1; 1 ≤ u ≤ m2; 1 ≤ v ≤ n, immediately after arrival of the

tagged customer. In this case the waiting time is the sum of the residual service

time of the type II customer in service when the tagged customer arrives and

service times of a remaining type I customers. Let W ∗1 (s/E5) represent the
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corresponding conditonal LST. Then

W ∗1 (s/E5) =
(
e′e′e′u(2m2)(sI − S2)−1SSS0

2

)(
α′α′α′(sI − S1)−1SSS0

1

)a
.

Case VI

E6 denote the event: the system is in the state (n1, a+ 1, 0, 3, u, v), n1 ≥
1; 0 ≤ a ≤ L − 1; 1 ≤ u ≤ m2; 1 ≤ v ≤ n, immediately after arrival of the

tagged customer. In this case the waiting time is the sum of the residual service

time of the type II customer in service when the tagged customer arrives and

service times of a remaining type I customers. Let W ∗(s/E6) represent the

corresponding conditonal LST. Then

W ∗1 (s/E6) =
(
e′e′e′m2+u(2m2)(sI − S2)−1SSS0

2

)(
α′α′α′(sI − S1)−1SSS0

1

)a
.

Let wi1,i2,j1,j2,k,l denote the probabilty that the system is in the state (i1, i2, j1, j2, k, l)

immediately after arrival of the tagged customer. Then,

w0,1,0,2,u,v = λαu
λ−d0

vv
x0,0,v, for, 1 ≤ u ≤ m, 1 ≤ v ≤ n

wn1,a+1,0,0,u,v = λ
λ+η+δ−θTuu−d0

vv
xn1,a,0,0,u,v, for, n1 ≥ 1, 1 ≤ u ≤ m1,

1 ≤ v ≤ n
wn1,a+1,0,2,u,v = λ

λ+γ+δ−Tuu−d0
vv
xn1,a,0,2,u,v, for, n1 ≥ 0, 1 ≤ a ≤ L− 1,

1 ≤ u ≤ m1, 1 ≤ v ≤ n
wn1,a+1,1,2,u,v = λ

λ−Tuu−d0
vv
xn1,a,1,2,u,v, for, n1 ≥ 0, 1 ≤ a ≤ L− 1, 1 ≤ u ≤ m1,

1 ≤ v ≤ n
wn1,a+1,0,1,u,v = λ

λ+η−θ′Suu−d0
vv
xn1,a,0,1,u,v, for, n1 ≥ 1, 0 ≤ a ≤ L− 1,

1 ≤ u ≤ m2, 1 ≤ v ≤ n
wn1,a+1,0,3,u,v = λ

λ+γ−Suu−d0
vv
xn1,a,0,3,u,v, for, n1 ≥ 1, 0 ≤ a ≤ L− 1,

1 ≤ u ≤ m2, 1 ≤ v ≤ n

Thus we have the following Theorem.

Theorem 3.3.1. The LST of the waiting time of a type I customer is
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given by

W ∗1 (s) =
1

d

[ n∑
v=1

w0,1,0,2,u,v +

∞∑
n1=0

L−1∑
a=1

m1∑
u=1

n∑
v=1

W ∗(s/E2)wn1,a+1,0,0,u,v+

∞∑
n1=0

L−1∑
a=1

m1∑
u=1

n∑
v=1

W ∗(s/E3)wn1,a+1,0,2,u,v +

∞∑
n1=0

L−1∑
a=1

m1∑
u=1

n∑
v=1

W ∗(s/E4)wn1,a+1,1,2,u,v+

∞∑
n1=1

L−1∑
a=0

m2∑
u=1

n∑
v=1

W ∗(s/E5)wn1,a+1,0,1,u,v+

∞∑
n1=1

L−1∑
a=0

m2∑
u=1

n∑
v=1

W ∗(s/E6)wn1,a+1,0,3,u,v

]
(3.9)

where,

d =

n∑
v=1

w0,1,0,2,u,v+

∞∑
n1=0

L−1∑
a=1

m1∑
u=1

n∑
v=1

wn1,a+1,0,0,u,v+

∞∑
n1=0

L−1∑
a=1

m1∑
u=1

n∑
v=1

wn1,a+1,0,2,u,v+

∞∑
n1=0

L−1∑
a=1

m1∑
u=1

n∑
v=1

wn1,a+1,1,2,u,v +

∞∑
n1=1

L−1∑
a=0

m2∑
u=1

n∑
v=1

wn1,a+1,0,1,u,v

+

∞∑
n1=1

L−1∑
a=0

m2∑
u=1

n∑
v=1

wn1,a+1,0,3,u,v

3.3.2 Type II customer

To find the LST of the waiting time distribution of a type II customer, we

have to compute certain distributions. We proceed to such computations.

Definition 3.3.1. Consider the duration of time with p type I customers

in the system at a service commencement epoch of type I customers until

the number of type I customers become zero for the first time, we call this a

p-cycle, denoted by Bp.

Distribution of a p-cycle

This is a phase type distribution with representation (γγγp, T1) where the un-
derlying Markov chain has state space {(i, j, k, l) : 1 ≤ i ≤ L; j = 0; k =
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0 or 2; 1 ≤ l ≤ m1} ∪ {(i, j, k, l) : 1 ≤ i ≤ L; j = 1; k = 2; 1 ≤ l ≤ m1} ∪ {∗}
and i, j, k, l and * respectively denote the number of type I customers in the
system, the status of the protection clock, the status of the server, the service
phase and the absorbing state indicating that the number of type I customers
become zero. The infinitesimal generator T1 of Bp(t) has the form

T1 =

[
T1 TTT 0

1

0 0

]
, whereT1 =



E1 λIm1

E2 E1 λIm1

. . .
. . .

. . .

E2 E1 λIm1

E2 E3


, TTT 0

1 =


E0

000
...

000


where

E1 =

 θT − (λ+ η + δ)Im1 ηIm1 δIm1

γI T − (λ+ γ + δ)Im1 δIm1

0 0 φT − λIm1

 , E2 =

 0 θTTT 0ααα 0

0 TTT 0ααα 0

0 φTTT 0ααα 0

 .

E3 =

 θT − (η + δ)Im1 ηIm1 δIm1

γIm1 T − (γ + δ)Im1 δIm1

0 0 φT

 andE0 =

 θTTT 0

TTT 0

φTTT 0

 .

The initial probabilty vector is

γγγp =
[

000 · · · 000 γ′γ′γ′ 000 · · · 000
]
, 1 ≤ p ≤ L

where 000 s a zero matrix of order 1× 3m1, with γ′γ′γ′ =
[

000 ααα 000
]
, 1 ≤ p ≤ L

is in the pth position and 000 is a zero matrix of order 1×m1.

Thus we have the following Theorem.

Theorem 3.3.2. The LST of the length of a p-cycle is given by

γγγp(sI − T1)−1TTT 0
1
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LST of the busy cycle generated by type I customers arriving during

the service time of a type II customer

Theorem 3.3.3. The LST of the busy cycle generated by type I cus-

tomers arriving during the service time of a type II customer is given by

B̂cL(s) = β′β′β′[(s+λ)I −S2]−1S2S2S2
0 +

L−1∑
p=1

γγγp(sI −T1)−1TTT 0
1λ

pβ′β′β′[(s+λ)I −S2]−(p+1)SSS0
2

+γγγL(sI−T1)−1TTT 0
1β
′β′β′[λ−1((s+λ)I−S2)]−L[I−λ[(s+λ)I−S2]−1]−1[(s+λ)I−S2]−1S2S2S2

0

(3.10)

Proof. Replace α′α′α′ by β′β′β′, T ′ by S2 and T ′T ′T ′0 by SSS0
2 in the proof of Theorem

2.3.3.

LST of the busy period of type I customers generated during the

service time of a type II customer

Theorem 3.3.4. The LST of the busy period generated by type I cus-

tomers arriving during the service time of a type II customer is given by

B̂L(s) = β′β′β′[λI−S2]−1S2S2S2
0+

L−1∑
p=1

γγγp(sI−T1)−1TTT 0
1λ

pβ′β′β′[λI−S2]−(p+1)SSS0
2+γγγL(sI−T1)−1

TTT 0
1β
′β′β′[λ−1(λI − S2)]−L[I − λ[λI − S2]−1]−1[λI − S2]−1SSS0

2 (3.11)

Proof. Replace α′α′α′ by β′β′β′, T ′ by S2 and T ′T ′T ′0 by SSS0
2 in the proof of Theorem

2.3.4.

Now, to find the waiting time of a type II customer who joins for service

at time t, we have to consider different possibilities depending on the status

of server at that time. Let W2(t) be the waiting time of a type II customer

who arrives at time t and W ∗2 (s) be the corresponding LST.

Case I

Suppose that F1 denotes the event the system is in the state (1, 0, 0, 3, u, v),
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1 ≤ u ≤ m2; 1 ≤ v ≤ n immediately after arrival of the tagged customer. Let

W ∗2 (s/F1) denote the corresponding LST.Then

W ∗2 (s/F1) = 1

Case II

F2 be the event that the system is in one of the states (b+1, a, 0, 0, u, v), b ≥
0; 1 ≤ a ≤ L; 1 ≤ u ≤ m1; 1 ≤ v ≤ n immediately after arrival of the

tagged customer. In this case, the waiting time is the length of the busy cycle

generated by a type I customers starting from his arrival epoch plus lengths

of busy cycles of type I customers generated during service times of each of

the b type II customers. Let W ∗2 (s/F2) denote the corresponding LST. Then

W ∗2 (s/F2) = e′e′e′(a−1)3m1+u(3Lm1)(sI − T1)−1TTT 0
1(B̂cL(s))b

Case III

F3 denote the event the system is in one of the states (b+1, a, 0, 2, u, v), b ≥
0; 1 ≤ a ≤ L; 1 ≤ u ≤ m1; 1 ≤ v ≤ n immediately after arrival of the

tagged customer. In this case, the waiting time is the length of the busy cycle

generated by a type I customers starting from his arrival epoch plus lengths

of busy cycles of type I customers generated during service times of each of

the b type II customers. Let W ∗2 (s/F3) denote the corresponding LST.Then

W ∗2 (s/F3) = e′e′e′(a−1)3m1+m1+u(3Lm1)(sI − T1)−1TTT 0
1(B̂cL(s))b

Case IV

F4 denote the event the system is in one of the states (b+1, a, 1, 2, u, v), b ≥
0; 1 ≤ a ≤ L; 1 ≤ u ≤ m1; 1 ≤ v ≤ n immediately after arrival of the

tagged customer. In this case, the waiting time is the length of the busy cycle

generated by a type I customers starting from his arrival epoch plus lengths

of busy cycles of type I customers generated during service times of each of

the b type II customers. Let W ∗2 (s/F4) denote the corresponding LST. Then

W ∗2 (s/F4) = e′e′e′(a−1)3m1+2m1+u(3Lm1)(sI − T1)−1TTT 0
1(B̂cL(s))b
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Case V

F5 denote the event the system is in one of the states (b+1, a, 0, 1, u, v), b ≥
1; 0 ≤ a ≤ L; 1 ≤ u ≤ m2; 1 ≤ v ≤ n immediately after arrival of the tagged

customer. In this case, the waiting time is the length of residual service time

of the type II customer in service plus length of the busy period generated

by type I customers arriving during the service time of the type II customer

in service plus lengths of busy cycles of type I customers generated during

service time of each of the b− 1 type II customers. Let W ∗2 (s/F5) denote the

corresponding LST. Then

W ∗2 (s/F5) = e′e′e′u(2m2)(sI − S2)−1SSS0
2B̂L(s)(B̂cL(s))b−1

Case VI

F6 denote the event the system is in one of the states (b+1, a, 0, 3, u, v), b ≥
1; 0 ≤ a ≤ L; 1 ≤ u ≤ m2; 1 ≤ v ≤ n immediately after arrival of the tagged

customer. In this case the waiting time is the length of residual service time

of the type II customer in service plus the length of the busy period generated

by type I customers arriving during the service time of the type II customer

in service plus lengths of busy cycles of type I customers generated during

service time of each of the b− 1 type II customers. Let W ∗2 (s/F6) denote the

corresponding LST.Then

W ∗2 (s/F6) = e′e′e′m2+u(2m2)(sI − S2)−1SSS0
2B̂L(s)(B̂cL(s))b−1

Let wi1,i2,j1,j2,k,l denote the probabilty that the system is in the state
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(i1, i2, j1, j2, k, l) immedietly after arrival of the tagged customer. Then,

w1,0,0,3,u,v =
dv′v

1βu
λ−d0

v′v′
w0,0,v′ , for, 1 ≤ u ≤ m2, 1 ≤ v, v′ ≤ n

wb+1,a,0,0,u,v =
dv′v

1

λ+η+δ−θTuu−d0
v′v′

wb,a,0,0,u,v′ , for, b ≥ 1, 1 ≤ u ≤ m1,

1 ≤ v, v′ ≤ n
wb+1,a,0,2,u,v =

dv′v
1

λ+γ+δ−Tuu−d0
v′v′

wb,a,0,2,u,v′ , for, b ≥ 0, 1 ≤ a ≤ L, 1 ≤ u ≤ m1,

1 ≤ v, v′ ≤ n
wb+1,a,1,2,u,v =

dv′v
1

λ−Tuu−d0
v′v′

wb,a,1,2,u,v′ , for, b ≥ 0, 1 ≤ a ≤ L, 1 ≤ u ≤ m1,

1 ≤ v, v′ ≤ n
wb+1,a,0,1,u,v =

dv′v
1

λ+η−θ′Suu−d0
v′v′

wb,a,0,1,u,v′ , for, b ≥ 1, 0 ≤ a ≤ L, 1 ≤ u ≤ m2,

1 ≤ v, v′ ≤ n
wb+1,a,0,3,u,v =

dv′v
1

λ+γ−Suu−d0
v′v′

wb,a,0,3,u,v′ , for, b ≥ 1, 0 ≤ a ≤ L, 1 ≤ u ≤ m2,

1 ≤ v, v′ ≤ n

Thus we have the following Theorem.

Theorem 3.3.5. The LST of the waiting time of a type II customer is

given by

W ∗2 (s) =

n∑
v=1

w1,0,0,3,u,v +

∞∑
b=0

L∑
a=1

m1∑
u=1

n∑
v=1

W ∗(s/F2)wb+1,a,0,0,u,v+

∞∑
b=0

L∑
a=1

m1∑
u=1

n∑
v=1

W ∗(s/F3)wb+1,a,0,2,u,v+
∞∑
b=0

L∑
a=1

m1∑
u=1

n∑
v=1

W ∗(s/F4)wb+1,a,1,2,u,v+

∞∑
b=1

L∑
a=0

m2∑
u=1

n∑
v=1

W ∗(s/F5)wb+1,a,0,1,u,v+

∞∑
b=1

L∑
a=0

m2∑
u=1

n∑
v=1

W ∗(s/F6)wb+1,a,0,3,u,v

(3.12)



112
(M, MAP)/(PH, PH)/1 queue with Nonpreemptive priority, Working Interruption

and Protection

3.4 Expected number of interruptions during a sin-

gle type I service

3.4.1 Distribution of duration of time till interruptions occur

during a single type I service

Consider the Markov process, χ1 = (N(t), J(t),K(t)), where N(t) denote the

number of interruptions upto time t, J(t), status of the server (providing

normal or interrupted service) and K(t), the service phase at time t. The

state space of the process is given by {(0, 2, k) : 1 ≤ k ≤ m1} ∪ {(i, j, k) : i ≥
1; j = 0 or 2; 1 ≤ k ≤ m1} ∪ {∗1} ∪ {∗2} where ∗1 denotes the absorbing state

indicating the service completion and ∗2 denotes the absorbing state indicating

the realization of protection. The infinitesimal generator of the process is given

by

U =



0 0 0 0 0 0 0 · · ·
δeee(m1) TTT0 T − (γ + δ)Im1

γIm1
0 0 0 · · ·

δeee(m1) θTTT0 0 θT − (η + δ)Im1
ηIm1

0 0 · · ·
δeee(m1) TTT0 0 0 T − (γ + δ)Im1

γIm1
0 · · ·

δeee(m1) θTTT0 0 0 0 θT − (η + δ)Im1 ηIm1 · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·


.

3.4.2 Distribution of number of interruptions during a single

type I service

Let yk be the probabaility that the number of interruptions during a single

type I service is k. Then yk is the probabilty that the absorption occurs from

the level k for the process χ1. Hence yk are given by

y0 = −ααα(T − (γ + δ)I))−1(TTT 0 + δeee)
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and for k = 1, 2, 3, . . .

yk = ααα(T−(γ+δ)I)−1γI
(
(θT − (η + δ)I)

−1
ηI (T − (γ + δ)I)

−1
γI
)k−1

(θT − (η + δ)I)
−1(

(θTTT 0 + δeee)− ηI (T − (γ + δ)I)
−1

(TTT 0 + δeee)
)

(3.13)

Thus we have the following Theorem.

Theorem 3.4.1. The expected number of interruptions during any par-

ticular type I customer service is given by

E(i) =

∞∑
k=0

kyk = ααα(T−(γ+δ)I)−1γI
((
I − (θT − (η + δ)I)

−1
ηI (T − (γ + δ)I)

−1
γI
))−2

(θT − (η + δ)I)
−1 (

(θTTT 0 + δeee)− ηI (T − (γ + δ)I)
−1

(TTT 0 + δeee)
)
. (3.14)

3.5 Expected number of interruptions during a sin-

gle type II service

3.5.1 Distribution of duration of time till interruptions occur

during a single type II service

Consider the Markov process, χ2 = (N(t), J(t),K(t)), where N(t) denote

the number of interruptions, J(t), status of the server (providing normal or

interrupted service) and K(t), the service phase at time t. The state space of

the process of the process is given by {(0, 3, k) : 1 ≤ k ≤ m2} ∪ {(i, j, k) : i ≥
1; j = 1 or 3; 1 ≤ k ≤ m2}∪{∗} where ∗ denotes the absorbing state indicating

the service completion. The infinitesimal generator of the process is given by

U =



0 0 0 0 0 0 · · ·
SSS0 S − γIm2 γIm2 0 0 0 · · ·
θ′SSS0 0 θ′S − ηIm2 ηIm2 0 0 · · ·
SSS0 0 0 S − γIm2 γIm2 0 · · ·
θ′SSS0 0 0 0 θ′S − ηIm2 ηIm2 · · ·
· · · · · · · · · · · · · · · · · · · · ·


.
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3.5.2 Distribution of number of interruptions during a single

type II service

Let zk be the probabaility that the number of interruptions during a single

type II service is k. Then zk is the probabilty that the absorption occurs from

the level k for the process χ2. Hence zk are given by

z0 = −βββ(S − γI))−1SSS0

and for k = 1, 2, 3, . . .

zk = βββ(S − γI)−1γI
(
(θ′S − ηI)

−1
ηI (S − γI)

−1
γI
)k−1

(θ′S − ηI)
−1 (

θ′SSS0−

ηI (S − γI)
−1
SSS0
)

(3.15)

Thus we have the following Theorem.

Theorem 3.5.1. The expected number of interruptions during any par-

ticular type II customer service is given by

E(i) =

∞∑
k=0

kzk = βββ(S − γI)−1γI
(
I − (θ′S − ηI)

−1
ηI (S − γI)

−1
γI
)−2

(θ′S − ηI)
−1 (

θ′SSS0 − ηI (S − γI)
−1
SSS0
)
. (3.16)

3.6 Other Performance Measures

• The probability that the server is idle:

pidle =
n∑
v=1

x0,v.
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• Mean number of type I customers in the system:

Ensh =

∞∑
n1=0

L∑
n2=1

m1∑
u=1

n∑
v=1

n2xn1,n2,0,0,u,v +

∞∑
n1=1

L∑
n2=1

m2∑
u=1

n∑
v=1

n2xn1,n2,0,1,u,v+

∞∑
n1=0

L∑
n2=1

m1∑
u=1

n∑
v=1

n2xn1,n2,0,2,u,v +

∞∑
n1=1

L∑
n2=1

m2∑
u=1

n∑
v=1

n2xn1,n2,0,3,u,v+

∞∑
n1=0

L∑
n2=1

m1∑
u=1

n∑
v=1

n2xn1,n2,1,2,u,v

• Mean number of type II customers in the system:

Ensl =

∞∑
n1=0

n1xn1eee

• The fraction of time during which the system is protected:

Tp =

∞∑
n1=0

L∑
n2=1

m1∑
u=1

n∑
v=1

xn1,n2,1,2,u,v

• The fraction of time the server is providing service to type I customers
during WI:

Tih =

∞∑
n1=0

L∑
n2=1

m1∑
u=1

n∑
v=1

xn1,n2,0,0,u,v

• The fraction of time the server is providing service to type II customers
during WI:

Til =

∞∑
n1=1

L∑
n2=0

m2∑
u=1

n∑
v=1

xn1,n2,0,1,u,v

• The fraction of time the server is providing service to type I customers
in normal mode:

Tnh =

∞∑
n1=0

L∑
n2=1

m1∑
u=1

n∑
v=1

xn1,n2,0,2,u,v

• The fraction of time the server provides service to type II customers in
normal mode:

Tnl =

∞∑
n1=1

L∑
n2=0

m2∑
u=1

n∑
v=1

xn1,n2,0,3,u,v
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3.7 Analysis of a cost function

We construct a cost function based on the above performance measures.

Let

Ch: Holding cost for retaining a type I customer

Cl: Holding cost for retaining a type II customer

Cp: Unit time cost of providing service with protection

Cih: Unit time cost of providing service when the server is providing service

to type I customer in WI

Cil: Unit time cost of providing service when the server is providing service

to type II customer in WI

Cnh: Unit time cost of providing service when the server is providing service

to type I customer in normal mode

Cnl: Unit time cost of providing service when the server is providing service

to type II customer in normal mode

Then the expected cost per unit time,

C = Ensh×Ch+Ensl×Cl+Tp×φCp+Tih×θCih+Til×θ′Cil+Tnh×Cnh+Tnl×Cnl

3.8 Numerical Results

For the arrival process of type II customers, we consider the following two sets

of matrices for D0 and D1 :

1. MAP with negetive correlation (MNA)

D0 =

 −0.8101 0.8101 0

0 −1.3497 0

0 0 −40.5065

, D1 =

 0 0 0

0.0810 0 1.2687

38.0761 0 2.4304


2. MAP with positive correlation (MPA)
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D0 =

 −0.8101 0.8101 0

0 −1.3497 0

0 0 −40.5065

, D1 =

 0 0 0

1.2687 0 0.0810

2.4304 0 38.0761


These two MAP processes are normalized so as to have an arrival rate of

1. The arrival process labeled MNA has correlated arrivals with correlation

between two successive interarrival times given by -0.4211 and the arrival

process corresponding to the one labelled MPA has a positive correlation with

value 0.4211.

θ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ensh 1.3493 1.2748 1.2194 1.1774 1.1450 1.1193 1.0985 1.0815 1.0672 1.0552
Ensl 49.9733 19.8907 13.2051 10.3241 8.7368 7.7382 7.0548 6.5593 6.1843 5.8910
Tp 0.0334 0.0324 0.0318 0.0313 0.0308 0.0305 0.0302 0.0300 0.0298 0.0296
Tih 0.1298 0.1104 0.0955 0.0838 0.0746 0.0672 0.0611 0.0559 0.0516 0.0479
Til 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863
Tnh 0.3924 0.3988 0.4032 0.4063 0.4086 0.4103 0.4116 0.4126 0.4134 0.4141
Tnl 0.3482 0.3482 0.3482 0.3482 0.3482 0.3482 0.3482 0.3482 0.3482 0.3482
C 33.7635 31.2805 30.9839 30.9648 31.0063 31.0595 31.1111 31.1575 31.1982 31.2335

Table 3.1: Effect of θ: Fix L = 3, θ′ = 0, 6, λ = 2, η = 0.5, δ = 1, γ =
0.6 andφ = 4

Tables 3.1 to 3.6 contain the effect of different parameters on various per-

formance measures and on the cost function when the arrival process of type II

customer is MNA and tables 7 to 12 contain the effect of different parameters

on various performance measures and on the cost function when the arrival

process of type II customer is MPA.

Table 3.1 indicates the effect of the parameter θ on various performance

measures and the cost function.As θ increases, type I customers get faster

service during WI and hence Ensh decreases. Then more number of type II

customers also get service and hence Ensl also decreases. Tp and Tih also

decreases since the expected number of type I customers during WI decreases.

As θ increases, Til and Tnl remains fixed due to the diminished effect of θ on

type II customers and Tnh increases due to the fact that the system stays in

WI serving type I customers for lesser time and hence it stays more in normal

mode serving type I customers. As θ increases, the system cost first decreases,

reach an optimal value(30.9648) corresponding to θ = 0.4 and then increases.
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φ 1 1.5 2 2.5 3 3.5 4 4.5 5
Ensh 1.3572 1.1902 1.1112 1.0658 1.0366 1.0162 1.0013 0.9898 0.9808

Ensl 1.1787× 104 12.1182 7.6530 6.1872 5.4634 5.0334 4.7491 4.5473 4.3968
Tp 0.1581 0.1087 0.0826 0.0665 0.0557 0.0479 0.0420 0.0374 0.0337
Tih 0.0482 0.0497 0.0504 0.0507 0.0509 0.0511 0.0512 0.0513 0.0513
Til 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863
Tnh 0.3591 0.3702 0.3751 0.3778 0.3795 0.3806 0.3814 0.3820 0.3824
Tnl 0.3482 0.3482 0.3482 0.3482 0.3482 0.3482 0.3482 0.3482 0.3482

C 1.2112× 103 34.4147 34.2737 34.2923 34.3216 34.3469 34.3673 34.3837 34.3969

Table 3.2: Effect of φ: Fix L = 3, θ = 0.7, θ′ = 0, 6, λ = 2, η = 0.5, δ =
1.5 and γ = 0.6

Table 3.2 indicates the effect of the parameter φ on various performance

measures and the cost function. As φ increases, the type I customers in pro-

tected mode get faster service and hence Ensh decreases. As a result, Ensl

also decreases. As expected Tp also decreases. As φ increases, Tih and Tnh

increase since Tp decreases. Til and Tnl remains unchanged since φ has only

a small effect on low priority customers. As φ increases, the system cost first

decreases, reach an optimal value(34.2737) corresponding to φ = 2 and then

increases.

δ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ensh 1.3590 1.3225 1.2883 1.2562 1.2260 1.1975 1.1706 1.1452 1.1212 1.0985
Ensl 1071.6 57.1361 29.5220 19.9883 15.1618 12.2491 10.3021 8.9100 7.8661 7.0548
Tp 0.0035 0.0069 0.0102 0.0133 0.0164 0.0193 0.0222 0.0250 0.0276 0.0302
Tih 0.0865 0.0831 0.0798 0.0767 0.0737 0.0709 0.0683 0.0657 0.0633 0.0611
Til 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863
Tnh 0.4750 0.4674 0.4599 0.4526 0.4454 0.4384 0.4315 0.4247 0.4181 0.4116
Tnl 0.3482 0.3482 0.3482 0.3482 0.3482 0.3482 0.3482 0.3482 0.3482 0.3482
C 129.7496 29.2871 27.4764 27.4443 27.8543 28.4282 29.0719 29.7453 30.4286 31.1111

Table 3.3: Effect of δ: Fix L = 3, θ = 0.7, θ′ = 0, 6, λ = 2, η = 0.5, γ =
0.6 andφ = 4

Table 3.3 indicates the effect of the parameter δ on various performance

measures and the cost function. As δ increases, protection clock realizes

quickly and hence Tp increases, so Tih and Tnh decreases. But Til and Tnl

remains unchanged since δ has only a small effect on low priority customers.

In this case also, as δ increases, the system cost first decreases, reach an opti-

mal value(27.4443) corresponding to δ = 0.4 and then increases.
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η 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ensh 1.1161 1.1112 1.1067 1.1025 1.0985 1.0948 1.0913 1.0880 1.0848 1.0819
Ensl 7.7025 7.5160 7.3475 7.1944 7.0548 6.9270 6.8096 6.7013 6.6012 6.5083
Tp 0.0302 0.0302 0.0302 0.0302 0.0302 0.0302 0.0302 0.0303 0.0303 0.0303
Tih 0.0663 0.0649 0.0636 0.0623 0.0611 0.0599 0.0587 0.0576 0.0566 0.0555
Til 0.0994 0.0958 0.0924 0.0893 0.0863 0.0836 0.0810 0.0785 0.0762 0.0740
Tnh 0.4058 0.4074 0.4089 0.4103 0.4116 0.4129 0.4141 0.4153 0.4165 0.4175
Tnl 0.3403 0.3425 0.3445 0.3464 0.3482 0.3499 0.3514 0.3529 0.3543 0.3556
C 31.6461 31.5012 31.3642 31.2344 31.1111 30.9939 30.8823 30.7759 30.6743 30.5772

Table 3.4: Effect of η: Fix L = 3, θ = 0.7, θ′ = 0, 6, λ = 2, η = 0.5, γ =
0.6 andφ = 4

Table 3.4 indicates the effect of the parameter η on various performance

measures and the cost function. As η increases, the server turns to normal

mode quickly. Hence Tnh and Tnl increase and Ensh, Ensl, Tih and Til decrease.

η has only a very small effect on Tp. The cost function decreases as η increases.

θ′ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Ensh 1.3367 1.1562 1.0535 0.9894 0.9467 0.9166 0.8945 0.8779 0.8649
Ensl 56.6142 10.2087 6.2053 4.7515 4.0095 3.5628 3.2658 3.0547 2.8973
Tp 0.0464 0.0490 0.0504 0.0512 0.0517 0.0521 0.0523 0.0525 0.0527
Tih 0.0369 0.0389 0.0400 0.0406 0.0410 0.0413 0.0415 0.0417 0.0418
Til 0.2089 0.1576 0.1260 0.1049 0.0898 0.0785 0.0697 0.0627 0.0569
Tnh 0.3182 0.3357 0.3452 0.3508 0.3544 0.3568 0.3586 0.3599 0.3608
Tnl 0.3791 0.3685 0.3622 0.3580 0.3551 0.3529 0.3512 0.3499 0.3488
C 38.4471 35.5315 36.0777 36.5074 36.8103 37.0278 37.1887 37.3113 37.4072

Table 3.5: Effect of θ′: Fix L = 3, θ = 0.7, λ = 2, η = 0.8, δ = 2, γ =
0.6 andφ = 4

Table 3.5 indicates the effect of the parameter θ′ on various performance

measures and the cost function. As expected, Til decreases and hence Ensl

and Ensh decrease, Tih , Tnh and Tp increase since type I customers have high

priority. As a result, Tnl decreases. As θ′ increases, the system cost first

decreases, reach an optimal value(35.5315) corresponding to θ′ = 0.2 and then

increases.

Table 3.6 indicates the effect of the parameter γ on various performance

measures and the cost function. As γ increases, more interruptions occur

during service and hence both Ensh and Ensl increases. Tp also increases in a

slow rate. As γ increases Tih and Til increase and Tnh and Tnl decrease since

the system stays more time in interruption mode. As γ increases, the cost



120
(M, MAP)/(PH, PH)/1 queue with Nonpreemptive priority, Working Interruption

and Protection

γ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ensh 0.9997 1.0204 1.0407 1.0604 1.0797 1.0985 1.1169 1.1349 1.1525 1.1697
Ensl 4.4562 4.8646 5.3190 5.8279 6.4019 7.0548 7.8046 8.6747 9.6973 10.9167
Tp 0.0301 0.0301 0.0302 0.0302 0.0302 0.0302 0.0302 0.0303 0.0303 0.0303
Tih 0.0113 0.0220 0.0324 0.0423 0.0519 0.0611 0.0699 0.0784 0.0866 0.0945
Til 0.0160 0.0313 0.0459 0.0599 0.0734 0.0863 0.0988 0.1107 0.1222 0.1333
Tnh 0.4586 0.4485 0.4378 0.4293 0.4203 0.4116 0.4033 0.3953 0.3876 0.3801
Tnl 0.3904 0.3812 0.3725 0.3640 0.3560 0.3482 0.3407 0.3336 0.3267 0.3200
C 27.0694 27.9294 28.7606 29.5661 30.3486 31.1111 31.8570 32.5901 33.3148 34.0369

Table 3.6: Effect of γ: Fix L = 3, θ = 0.7, λ = 2, η = 0.8, δ = 2, γ =
0.6 andφ = 4

function increases. Note the sharpness in decrease of the value of Ensl is quite

pronounced. However the trend is not seen in table 4 which gives the effect of

η.

θ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ensh 1.3471 1.2716 1.2167 1.1761 1.1451 1.1208 1.1013 1.0853 1.0721 1.0609
Ensl 343.0679 141.3074 96.1158 76.4713 65.5556 58.6331 53.8616 50.3784 47.7263 45.6412
Tp 0.0334 0.0324 0.0318 0.0313 0.0308 0.0305 0.0302 0.0300 0.0298 0.0296
Tih 0.1298 0.1104 0.0955 0.0838 0.0746 0.0672 0.0611 0.0559 0.0516 0.0479
Til 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863
Tnh 0.3924 0.3988 0.4032 0.4063 0.4086 0.4103 0.4116 0.4126 0.4134 0.4141
Tnl 0.3482 0.3482 0.3482 0.3482 0.3482 0.3482 0.3482 0.3482 0.3482 0.3482
C 63.0719 43.4206 39.2737 37.5789 36.6882 36.1497 35.7932 35.5413 35.3548 35.2114

Table 3.7: Effect of θ: Fix L = 3, θ′ = 0, 6, λ = 2, η = 0.5, δ = 1, γ =
0.6 andφ = 4

Table 3.7 indicates the effect of the parameter θ on various performance

measures and the cost function. In this case also Ensh and Ensl decreases as

θ increases. But the values of Ensl is much high when the arrival process of

type II customer is MPA. All other values are same as in the case of MNA.

But the cost function decreases as θ increases.

φ 1 1.5 2 2.5 3 3.5 4 4.5 5
Ensh 1.3571 1.1900 1.1141 1.0711 1.0436 1.0244 1.0104 0.9996 0.9911

Ensl 4.4374× 104 90.9874 58.6062 47.8674 42.5211 39.3245 37.1995 35.6852 34.5516
Tp 0.1581 0.1087 0.0826 0.0665 0.0557 0.0479 0.0420 0.0374 0.0337
Tih 0.0482 0.0497 0.0504 0.0507 0.0509 0.0511 0.0512 0.0513 0.0513
Til 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863
Tnh 0.3591 0.3702 0.3751 0.3778 0.3795 0.3806 0.3814 0.3820 0.3824
Tnl 0.3482 0.3482 0.3482 0.3482 0.3482 0.3482 0.3482 0.3482 0.3482

C 4.4699× 103 42.3015 39.3705 38.4629 38.0309 37.7801 37.6169 37.5023 37.4175

Table 3.8: Effect of φ: Fix L = 3, θ = 0.7, θ′ = 0, 6, λ = 2, η = 0.5, δ =
1.5 and γ = 0.6
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Table 3.8 indicates the effect of the parameter φ on various performance

measures and the cost function. Both Ensh and Ensl decrease as φ increases.

The cost function and Ensl decreases sharply as φ increases from 1 to 1.5.

However, with further increase in φ value does not produce that decrease in

values of cost function and Ensl.

δ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ensh 1.3589 1.3214 1.2867 1.2545 1.2244 1.1965 1.1703 1.1458 1.1229 1.1013
Ensl 7519.70 411.63 214.53 146.44 111.95 91.12 77.17 67.19 59.70 53.86
Tp 0.0035 0.0069 0.0102 0.0133 0.0164 0.0193 0.0222 0.0250 0.0276 0.0302
Tih 0.0865 0.0831 0.0798 0.0767 0.0737 0.0709 0.0683 0.0657 0.0633 0.0611
Til 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863
Tnh 0.4750 0.4674 0.4599 0.4526 0.4454 0.4384 0.4315 0.4247 0.4181 0.4116
Tnl 0.3482 0.3482 0.3482 0.3482 0.3482 0.3482 0.3482 0.3482 0.3482 0.3482
C 774.5584 64.7362 45.9761 40.0889 37.5324 36.3143 35.7588 35.5737 35.6123 35.7932

Table 3.9: Effect of δ: Fix L = 3, θ = 0.7, θ′ = 0, 6, λ = 2, η = 0.5, γ =
0.6 andφ = 4

Table 3.9 indicates the effect of the parameter δ on various performance

measures and the cost function. Both Ensh and Ensl decrease as δ increases.In

this case, as δ increases, the system cost first decreases, reaches an optimal

value(35.5737) corresponding to δ = 0.8 and then increases. Both Ensl and

the cost show sharp decrease in their values when δ moves from 0.1 to 0.2.

Thereafter the decrease is not that pronounced.

η 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ensh 1.1184 1.1136 1.1093 1.1051 1.1013 1.0976 1.0942 1.0910 1.0880 1.0851
Ensl 58.6679 57.2868 56.0367 54.8999 53.8616 52.9096 52.0337 51.2250 50.4761 49.7807
Tp 0.0302 0.0302 0.0302 0.0302 0.0302 0.0302 0.0302 0.0303 0.0303 0.0303
Tih 0.0663 0.0649 0.0636 0.0623 0.0611 0.0599 0.0587 0.0576 0.0566 0.0555
Til 0.0994 0.0958 0.0924 0.0893 0.0863 0.0836 0.0810 0.0785 0.0762 0.0740
Tnh 0.4058 0.4074 0.4089 0.4103 0.4116 0.4129 0.4141 0.4153 0.4165 0.4175
Tnl 0.3403 0.3425 0.3445 0.3464 0.3482 0.3499 0.3514 0.3529 0.3543 0.3556
C 36.7438 36.4795 36.2344 36.0062 35.7932 35.5936 35.4062 35.2298 35.0634 34.9061

Table 3.10: Effect of η Fix L = 3, θ = 0.7, θ′ = 0, 6, λ = 2, η = 0.5, γ =
0.6 andφ = 4

Table 3.10 indicates the effect of the parameter η on various performance

measures and the cost function. Both Ensh and Ensl decrease as η increases.The

cost fuction decreases as η increases.

Table 3.11 indicates the effect of the parameter θ′ on various perfor-
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and Protection

θ′ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ensh 1.3380 1.1630 1.0642 1.0027 0.9616 0.9325 0.9111 0.8947 0.8819 0.8716
Ensl 417.6867 79.1550 49.1289 37.9315 32.0828 28.4903 26.0604 24.3078 22.9843 21.9498
Tp 0.0464 0.0490 0.0504 0.0512 0.0517 0.0521 0.0523 0.0525 0.0527 0.0528
Tih 0.0369 0.0389 0.0400 0.0406 0.0410 0.0413 0.0415 0.0417 0.0418 0.0419
Til 0.2089 0.1576 0.1260 0.1049 0.0898 0.0785 0.0697 0.0627 0.0569 0.0521
Tnh 0.3182 0.3357 0.3452 0.3508 0.3544 0.3568 0.3586 0.3599 0.3608 0.3616
Tnl 0.3791 0.3685 0.3622 0.3580 0.3551 0.3529 0.3512 0.3499 0.3488 0.3479
C 74.5558 42.4295 40.3754 39.8320 39.6251 39.5285 39.4764 39.4450 39.4244 39.4098

Table 3.11: Effect of θ′: Fix L = 3, θ = 0.7, λ = 2, η = 0.8, δ = 2, γ =
0.6 andφ = 4

mance measures and the cost function. Both Ensh and Ensl decrease as θ′

increases.The cost fuction decreases as θ′ increases, as it is to be expected.

However, there is a sharp decrease in value of Ensl when θ′ moves from 0.1 to

0.2. For higher values of θ′, the initial sharpness in decrease is not seen.

γ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ensh 1.0050 1.0251 1.0448 1.0640 1.0829 1.1013 1.1193 1.1369 1.1542 1.1711
Ensl 34.0325 37.1338 40.5924 44.4740 48.8618 53.8616 59.6115 66.2942 74.1569 83.5428
Tp 0.0301 0.0301 0.0302 0.0302 0.0302 0.0302 0.0302 0.0303 0.0303 0.0303
Tih 0.0113 0.0220 0.0324 0.0423 0.0519 0.0611 0.0699 0.0784 0.0866 0.0945
Til 0.0160 0.0313 0.0459 0.0599 0.0734 0.0863 0.0988 0.1107 0.1222 0.1333
Tnh 0.4586 0.4485 0.4378 0.4293 0.4203 0.4116 0.4033 0.3953 0.3876 0.3801
Tnl 0.3904 0.3812 0.3725 0.3640 0.3560 0.3482 0.3407 0.3336 0.3267 0.3200
C 30.0298 31.1586 32.2900 33.4325 34.5961 35.7932 37.0389 38.3530 39.7616 41.3003

Table 3.12: Effect of γ: Fix L = 3, θ = 0.7, λ = 2, η = 0.8, δ = 2, γ =
0.6 andφ = 4

Table 3.12 indicates the effect of the parameter γ on various performance

measures and the cost function. Both Ensh and Ensl increase as γ increases.

As expected, the cost increases as γ increases.



Chapter 4

On a Queueing System with

processing of Service items

under Vacation and N-policy

The motivation for this chapter is two papers by Kazimirsky[23] and Gabi

Hanukov et al. [17]. In those the authors analyzed a single server queue in

which the service consists of two independent stages. The first stage can be

performed even in the absence of customers, whereas the second stage requires

the customer to be present. When there is no customer in the system, the

server produces an inventory of first stage called ’preliminary ’ services, which

is used to reduce customer’s overall sojourn times. Hence in those models

customer will not have to wait for the entire service to be carried out from

the beginning, provided processed item is available at the time the customer

is taken for service. Such customers have a shorter service time in comparison

to those who encounter the system with no processed item when taken for

Some results of this chapter are included in the following paper.
V. Divya, A. Krishnamoorthy , V. M. Vishnevsky : On a Queueing System with pro-
cessing of Service items under Vacation and N-policy DCCN 2018, CCIS 919, pp.
43-57, Springer Nature Switzerland AG 2018.
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service.

Yadin and Naor [51] introduced the concept of N-policy in which the server

turns on with the accumulation of N or more customers and turns off when

the system is empty. This has the advantage that the length of a busy pe-

riod becomes larger when server is activated on accumulation of N or more

customers, thereby bringing down the expected cost incurred per unit time.

We consider a single server queueing system in which customers arrive

according to Markovian Arrival process. When the system is empty, the server

goes for vacation and produces inventory for future use during this period.

Maximum inventory level is fixed as L. Processing time for each item of

inventory follows phase type distribution. The server returns from vacation

when there are N customers in the system. The service time follows two

distinct phase type distributions according to whether there is no processed

item or there are processed items at the beginning of service. Each customer

requires an item from inventory for service which is used exclusively for the

service of that particular customer only.

4.1 Model Description and Mathematical formula-

tion

We assume that customers arrive at a single server queueing system according

to MAP with representation (D0, D1) of order n. When the system is empty,

the server goes for vacation and produces inventory for future use during

this period. The maximum inventory level permitted is L. The inventory

processing time follows phase type distribution PH(ααα, T ) of order m1. These

are required for the service of customers - one for each customer. The server

returns from vacation when N customers accumulate in the system. The

service time follows the PH(βββ, S) distribution of order m2 when there is no

processed item and it follows PH(γγγ, U) of order m3 when there are processed

items with PH(βββ, S) ≺
st
PH(γγγ, U).
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Let Q∗ = D0 +D1 be the generator matrix of the arrival process and π∗ be

its stationary probability vector. Hence π∗ is the unique (positive) probability

vector satisfying

π∗Q∗ = 0, π∗e = 1.

The constant β∗ = π∗D1e, referred to as fundemental rate, gives the expected

number of arrivals per unit of time in the stationary version of the MAP. It

is assumed that the arrival process is independent of the inventory processing

and service process.

4.1.1 The QBD process

The model described above can be studied as a LIQBD process. First we

introduce the following notations:

At time t:

N(t) : the number of customers in the system

I(t): the number of processed inventory

J(t) =

{
0, when the server is on vacation

1, when the server is busy serving customer

K(t): the phase of the inventory processing/service process

M(t) : the phase of arrival of the customer.

It is easy to verify that {(N(t), I(t), J(t),K(t),M(t)) : t ≥ 0} is a LIQBD

with state space: (i) corresponding to no customer in the system

l(0) = {(0, i, 0, k1, l) : 0 ≤ i ≤ L − 1; 1 ≤ k1 ≤ m1; 1 ≤ l ≤ n} ∪ {(0, L, 0, l) :

1 ≤ l ≤ n}.
(ii) when there are h customers in the system, for 1 ≤ h ≤ N − 1:

l(h) = {(h, i, 0, k1, l) : 0 ≤ i ≤ L − 1; 1 ≤ k1 ≤ m1; 1 ≤ l ≤ n} ∪ {(h, L, 0, l) :

1 ≤ l ≤ n}∪ {(h, 0, 1, k2, l) : 1 ≤ k2 ≤ m2; 1 ≤ l ≤ n}∪ {(h, i, 1, k3, l) : 1 ≤ i ≤
L−N + h; 1 ≤ k3 ≤ m3; 1 ≤ l ≤ n}( last part only when L−N + h > 0)

and (iii)for h ≥ N :
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l(h) = {(h, 0, 1, k2, l) : 1 ≤ k2 ≤ m2; 1 ≤ l ≤ n} ∪ {(h, i, 1, k3, l) : 1 ≤ i ≤
L; 1 ≤ k3 ≤ m3; 1 ≤ l ≤ n}.
The infinitesimal generator of this CTMC is

Q =



E0 F0

B1 E1 F1

B2 E2 F2

. . .
. . .

. . .

BN−2 EN−2 FN−2

BN−1 EN−1 F ′N−1

B′N A1 A0

A2 A1 A0

. . .
. . .

. . .



.

The boundary blocks E0, F0, B1, F
′
N−1, B

′
N are of orders (Lm1 + 1)n ×

(Lm1 + 1)n, (Lm1 + 1)n×
(
(Lm1 + 1)n+m2n+ (L−N + 1)m3n

)
,
(
(Lm1 +

1)n+m2n+(L−N+1)m3n
)
×(Lm1 +1)n,

(
(m1 +m2)n+(L−1)(m1 +m3)n+

n
)
×(m2+Lm3)n, (m2+Lm3)n×

(
(m1+m2)n+(L−1)(m1+m3)n+n

)
, respec-

tively. For 2 ≤ h ≤ N−1, Bh is of order
(
(m1+m2)n+(L−N+h)(m1+m3)n+

(N−h−1)m1n+n
)
×
(
m1+m2)n+(L−N+h−1)(m1+m3)n+(N−h)m1n+n

)
.

For 1 ≤ h ≤ N−1, Eh is of order
(
(m1 +m2)n+(L−N+h)(m1 +m3)n+(N−

h−1)m1n+n
)
×
(
(m1 +m2)n+(L−N+h)(m1 +m3)n+(N−h−1)m1n+n

)
.

For 1 ≤ h ≤ N−2, Fh is of order
(
(m1 +m2)n+(L−N+h)(m1 +m3)n+(N−

h−1)m1n+n
)
×
(
(m1+m2)n+(L−N+h+1)(m1+m3)n+(N−h−2)m1n+n

)
.

A0, A1, A2 are square matrices of order (m2 + Lm3)n. Define the entries

E
(i2,j2,k2,l2)
0(i1,j1,k1,l1)

, F
(i2,j2,k2,l2)
0(i1,j1,k1,l1)

, B
(i2,j2,k2,l2)
1(i1,j1,k1,l1)

, E
(i2,j2,k2,l2)
h(i1,j1,k1,l1)

, B
(i2,j2,k2,l2)
h(i1,j1,k1,l1)

, F
(i2,j2,k2,l2)
h(i1,j1,k1,l1)

,

F ′N−1
(i2,j2,k2,l2)
(i1,j1,k1,l1) and B′N

(i2,j2,k2,l2)
(i1,j1,k1,l1) as transition submatrices which contains

transitions of the form (0, i1, j1, k1, l1) → (0, i2, j2, k2, l2), (0, i1, j1, k1, l1) →
(1, i2, j2, k2, l2), (1, i1, j1, k1, l1)→ (0, i2, j2, k2, l2), (h, i1, j1, k1, l1)→ (h, i2, j2,
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k2, l2), where 1 ≤ h ≤ N − 1; (h, i1, j1, k1, l1) → (h − 1, i2, j2, k2, l2), where

2 ≤ h ≤ N − 1; (h, i1, j1, k1, l1) → (h + 1, i2, j2, k2, l2), where 1 ≤ h ≤
N − 2; (N − 1, i1, j1, k1, l1) → (N, i2, j2, k2, l2) and (N, i1, j1, k1, l1) → (N −
1, i2, j2, k2, l2) respectively. Define the entries A

(i2,j2,k2,l2)
2(i1,j1,k1,l1)

, A
(i2,j2,k2,l2)
1(i1,j1,k1,l1)

and

A
(i2,j2,k2,l2)
0(i1,j1,k1,l1)

as transition submatrices which contains transitions of the form

(h, i1, j1, k1, l1) → (h − 1, i2, j2, k2, l2), where h ≥ N + 1; (h, i1, j1, k1, l1) →
(h, i2, j2, k2, l2), for h ≥ N and (h, i1, j1, k1, l1) → (h + 1, i2, j2, k2, l2), with

h ≥ N respectively. Since none or one event alone could take place in a

short interval of time with positive probability, in general a transition such as

(h1, i1, j1, k1, l1) → (h2, i2, j2, k2, l2) has positive rate only for exactly one of

h1, i1, j1, k1, l1 different from h2, i2, j2, k2, l2.

E
(i2,j2,k2,l2)
0(i1,j1,k1,l1)

=



TTT 0ααα⊗ In i2 = i1 + 1, 0 ≤ i1 ≤ L− 2; j1 = j2 = 0;

1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n
TTT 0 ⊗ In i1 = L− 1, i2 = L; j1 = j2 = 0; 1 ≤ k1, k2 ≤ m1;

1 ≤ l1, l2 ≤ n
T ⊕D0 i1 = i2, 0 ≤ i1 ≤ L− 1; j1 = j2 = 0; 1 ≤ k1, k2 ≤ m1;

1 ≤ l1, l2 ≤ n
D0 i1 = i2 = L; j1 = j2 = 0; 1 ≤ l1, l2 ≤ n

F
(i2,j2,k2,l2)
0(i1,j1,k1,l1)

=


Im1
⊗D1 0 ≤ i1 ≤ L− 1, i1 = i2; j1 = j2 = 0; 1 ≤ k1, k2,≤ m1;

1 ≤ l1, l2 ≤ n
D1 i1 = i2 = L; j1 = j2 = 0; 1 ≤ l1, l2 ≤ n

B
(i2,j2,k2,l2)
1(i1,j1,k1,l1)

=


SSS0ααα⊗ In i1 = i2 = 0; j1 = 1, j2 = 0; 1 ≤ k1 ≤ m2,

1 ≤ k2 ≤ m1; 1 ≤ l1, l2 ≤ n
UUU0ααα⊗ In 1 ≤ i1 ≤ L−N + 1, i2 = i1 − 1; j1 = 1, j2 = 0;

1 ≤ k1 ≤ m3, 1 ≤ k2 ≤ m1; 1 ≤ l1, l2 ≤ n
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For 1 ≤ h ≤ N − 1,

E
(i2,j2,k2,l2)
h(i1,j1,k1,l1)

=



TTT 0ααα⊗ In 0 ≤ i1 ≤ L− 2, i2 = i1 + 1; j1 = j2 = 0;

1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n
TTT 0 ⊗ In i1 = L− 1, i2 = L; j1 = j2 = 0;

1 ≤ k1 ≤ m1; 1 ≤ l1, l2 ≤ n
T ⊕D0 i1 = i2, 0 ≤ i1 ≤ L− 1; j1 = j2 = 0; 1 ≤ k1, k2 ≤ m1;

1 ≤ l1, l2 ≤ n
S ⊕D0 i1 = i2 = 0; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m2;

1 ≤ l1, l2 ≤ n
U ⊕D0 i1 = i2, 1 ≤ i1 ≤ L−N + h; j1 = j2 = 1;

1 ≤ k1, k2 ≤ m3; 1 ≤ l1, l2 ≤ n
D0 i1 = i2 = L; j1 = j2 = 0; 1 ≤ l1, l2 ≤ n

For 2 ≤ h ≤ N − 1,

B
(i2,j2,k2,l2)
h(i1,j1,k1,l1)

=



SSS0βββ ⊗ In i1 = i2 = 0; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m2;

1 ≤ l1, l2 ≤ n
UUU0βββ ⊗ In i1 = 1, i2 = 0; j1 = j2 = 1; 1 ≤ k1 ≤ m3,

1 ≤ k2 ≤ m2; 1 ≤ l1, l2 ≤ n
UUU0γγγ ⊗ In 2 ≤ i1 ≤ L−N + h, i2 = i1 − 1; j1 = j2 = 1;

1 ≤ k1, k2 ≤ m3; 1 ≤ l1, l2 ≤ n

For 1 ≤ h ≤ N − 2,

F
(i2,j2,k2,l2)
h(i1,j1,k1,l1)

=



Im1
⊗D1 0 ≤ i1 ≤ L− 1, i1 = i2; j1 = j2 = 0; 1 ≤ k1, k2 ≤ m1;

1 ≤ l1, l2 ≤ n
Im2
⊗D1 i2 = i1 = 0; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m2, 1 ≤ l1, l2 ≤ n

Im3
⊗D1 i2 = i1, 1 ≤ i1 ≤ L−N + h; j1 = j2 = 1;

1 ≤ k1, k2 ≤ m3, 1 ≤ l1, l2 ≤ n
D1 i1 = i2 = L; j1 = j2 = 0; 1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n
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F ′N−1
(i2,j2,k2,l2)
(i1,j1,k1,l1)

=



eee(m1)⊗ (βββ ⊗D1) i1 = i2 = 0; j1 = 0, j2 = 1; 1 ≤ k1 ≤ m1,

1 ≤ k2 ≤ m2; 1 ≤ l1, l2 ≤ n
Im2 ⊗D1 i2 = i1 = 0; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m2;

1 ≤ l1, l2 ≤ n
Im3
⊗D1 i2 = i1, 0 ≤ i1 ≤ L− 1; j1 = j2 = 1; ,

1 ≤ k1, k2 ≤ m3, 1 ≤ l1, l2 ≤ n
eee(m1)⊗ (γγγ ⊗D1) 1 ≤ i1 ≤ L− 1; j1 = 0, j2 = 1; 1 ≤ k1 ≤ m1,

1 ≤ k2 ≤ m3; 1 ≤ l1, l2 ≤ n
γγγ ⊗D1 i1 = i2 = L; j1 = 0, j2 = 1; 1 ≤ k1 ≤ m1,

1 ≤ k2 ≤ m3; 1 ≤ l1, l2 ≤ n

B′N
(i2,j2,k2,l2)
(i1,j1,k1,l1)

=



SSS0βββ ⊗ In i1 = i2 = 0; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m2, ;

1 ≤ l1, l2 ≤ n
UUU0βββ ⊗ In i1 = 1, i2 = 0; j1 = j2 = 1; 1 ≤ k1 ≤ m3,

1 ≤ k2 ≤ m2; 1 ≤ l1, l2 ≤ n
UUU0γγγ ⊗ In 2 ≤ i1 ≤ L, i2 = i1 − 1; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m3;

1 ≤ l1, l2 ≤ n

A
(i2,j2,k2,l2)
2(i1,j1,k1,l1)

=



SSS0βββ ⊗ In i1 = i2 = 0; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m2;

1 ≤ l1, l2 ≤ n
UUU0βββ ⊗ In i1 = 1, i2 = 0; j1 = j2 = 1; 1 ≤ k1 ≤ m3, 1 ≤ k2 ≤ m2;

1 ≤ l1, l2 ≤ n
UUU0γγγ ⊗ In i2 = i1 − 1, 2 ≤ i2 ≤ L; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m3;

1 ≤ l1, l2 ≤ n

A
(h,i2,j2,k2,l2)
1(h,i1,j1,k1,l1)

=


S ⊕D0 i1 = i2 = 0; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m2; 1 ≤ l1, l2 ≤ n
U ⊕D0 i1 = i2, 1 ≤ i1 ≤ L; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m3;

1 ≤ l1, l2 ≤ n
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A
(i2,j2,k2,l2)
0(i1,j1,k1,l1)

=


Im2
⊗D1 i1 = i2 = 0; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m2;

1 ≤ l1, l2 ≤ n
Im3
⊗D1 i1 = i2, 1 ≤ i1 ≤ L; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m3;

1 ≤ l1, l2 ≤ n

Next we proceed for the steady state analysis of the system described.

4.2 Steady State Analysis

To this end we first obtain the

4.2.1 Stability condition

The stabilty condition for the system is given by

Lemma 4.2.1. The system is stable iff

π∗π∗π∗D1eee < (βββ(−S)−1eee)−1 (4.1)

4.2.2 Steady-state probability vector

Assuming that the condition (4.1) is satisfied we proceed to find the steady-

state probability of the system state.

Let xxx be the steady state probability vector of Q. We partition this vector

as

xxx = (xxx0,xxx1,xxx2 . . .),

where xxx0 is of dimension (Lm1 + 1)n, xxxh, 1 ≤ h ≤ N − 1 are of dimension

(m1 +m2)n+ (L−N +h)(m1 +m3)n+ (N −h− 1)m1n+n and xxxN ,xxxN+1 . . .

are of dimension (m2 + Lm3)n. Under the stability condition, we have

xxxN+i = xxxNR
i, i ≥ 1
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where the matrix R is the minimal nonnegative solution to the matrix quadratic

equation

R2A2 +RA1 +A0 = 0

and the vectors xxx0,xxx1, · · · ,xxxN . . .are obtained by solving the equations

xxx0E0 + xxx1B1 = 0 (4.2)

xxx0F0 + xxx1E1 + xxx2B2 = 0 (4.3)

xxxi−1Fi−1 + xxxiEi + xxxi+1Bi+1 = 0, for 2 ≤ i ≤ N − 2 (4.4)

xxxN−2FN−2 + xxxN−1EN−1 + xxxNBN ′ = 0 (4.5)

xxxN−1F
′
N−1 + xxxN (A1 +RA2) = 0 (4.6)

(4.7)

subject to the normalizing condition

N−1∑
i=0

xxxieee+ xxxN (I −R)−1eee = 1 (4.8)

Remark:

Our model reduces to Hanukov et al. [17] if we assume N = 1, restrict

MAP arrival process to Poisson process of rate λ, phase type processing time

to exponential distribution of mean duration 1
µ1

, phase type service time when

there is no processed item to two exponential stages with mean durations 1
µ2

and 1
µ3

and phase type service time when there is processed item to a single

exponential stage of mean duration 1
µ3

. Clearly the stability condition

π∗π∗π∗D1eee < (βββ(−S)−1eee)−1

reduces to
1

λ
>

1

µ2
+

1

µ3

which is the stability condition for Hanukov et al. [17] model. Also steady

state vectors in our model with the above restrictions coincides with that in
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Hanukov et al. [17].

4.2.3 Distribution of time till the number of customers hit N

or the inventory level reaches L

We consider the Markov process {N(t), I(t), J(t),K(t)} with state space

{(h, i, j, k) : 0 ≤ h ≤ N−1; 0 ≤ i ≤ L−1; 1 ≤ j ≤ m1; 1 ≤ k ≤ n}∪{∗1}∪{∗2}
where ∗1 denotes the absorbing state indicating the inventory level hitting L

and ∗2 denotes the absorbing state indicating the number of customers reach-

ing N . The infinitesimal generator of the process is

V1 =

[
V1 VVV

(0)
1 VVV

(1)
1

000 0 0

]
where,V1 =


E ILm1

⊗D1

. . .
. . .

E ILm1 ⊗D1

E

 ,

VVV
(0)
1 =


eeeL(L)⊗ (TTT 0 ⊗ eee(n))

...

eeeL(L)⊗ (TTT 0 ⊗ eee(n))

 ,VVV (1)
1 =


000
...

000

eee(Lm1)⊗ δ


with

E =


T ⊕D0 TTT 0ααα⊗ In

. . .
. . .

T ⊕D0 TTT 0ααα⊗ In
T ⊕D0

 and δ =


δ1

...

δn

 ,
with δi representing the sum of ith row of the D1 matrix.

The initial probability vector is

ψψψ1 = (1/d1)(x0,0,0,1,1, · · · , x0,0,0,1,n, · · · , x0,0,0,m1,1, · · · , x0,0,0,m1,n,0)
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where

d1 =

n∑
l=1

m1∑
k=1

x0,0,0,k,l

and 0 is a zero matrix of order 1×
(
(N − 1)Lm1n+ (L− 1)m1n

)
.

Thus we have the following Lemma.

Lemma 4.2.2. The expected duration of time till the inventory level

reaches L before the number of customers hit N is given by ψψψ1(−V1)−2VVV
(0)
1

and the expected duration of time till the number of customers hit N before

the inventory level reaches L is given by ψψψ1(−V1)−2VVV
(1)
1 .

4.2.4 Distribution of idle time

Case (i)

Suppose that the number of customers become N only after the inventory

level hits L. The probabaility for this event is the probability for absorption

of PH(ψψψ1, V1) to ∗1. In this case, we can study this conditional distribution

by a phase type distribution PH(ψψψ2, V2) where the underlying Markov process

has state space {(h, L, 0, l) : 0 ≤ h ≤ N − 1; 1 ≤ l ≤ n} ∪ {∗} where ∗ denotes

the absorbing state indicating that the number of customers hitting N . The

infinitesimal generator is

V2 =

[
V2 V2V2V2

0

000 0

]
, where,V2 =


D0 D1

. . .
. . .

D0 D1

D0

 ,VVV 0
2 =


000
...

000

δ



where δ =


δ1

...

δn

with δi representing the sum of ith row of the D1 matrix.

The initial probability vector is
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ψψψ2 = (1/d2)(v0,L,0,1, · · · , v0,L,0,n, · · · , vN−1,L,0,1, · · · , vN−1,L,0,n)

where, for 0 ≤ h ≤ N − 2, 1 ≤ l ≤ n,

vh,L,0,l =

m1∑
k=1

ηk∑
l 6=l′ d

0
ll′ + δl +

∑
k 6=k′ Tkk′ + ηk

xh,L−1,0,k,l

and, for h = N − 1, 1 ≤ l ≤ n,

vN−1,L,0,l =

m1∑
k=1

ηk∑
l 6=l′ d

0
ll′ +

∑
k 6=k′ Tkk′ + ηk

xN−1,L−1,0,k,l,

with, d2 =
∑N−1

h=0

∑n
l=1 vh,L,0,l.

Here, ηk represents the absorption rate from phase k in PH(ααα, T ), Tkk′′ repre-

sent the kk′th entry of T , d0
ll′ represent the transition rates from the phase l

to the phase l′ without arrival and δl represent the lth row sum of D1 matrix.

Case(ii) Suppose that the number of customers become N before the

inventory level hits L. The probabaility for this event is the probability for

absorption of PH(ψ1ψ1ψ1, V1) to ∗2. In this case, the idle time=0.

Thus we have the following Theorem.

Theorem 4.2.1. The LST of the distribution of the idle time is given by

(
ψψψ2(sI − V2)−1V 0

2

)(∫ ∞
t=0

ψψψ1e
V1tVVV

(0)
1 dt

)

4.2.5 Distribution of time until the number of customers hit

N

We can study this by a phase type distribution PH(ψ3, V3) where the under-

lying Markov process has state space {(h, i, j, k) : 0 ≤ h ≤ N − 1; 0 ≤ i ≤
L− 1; 1 ≤ j ≤ m1; 1 ≤ k ≤ n} ∪ {(h, L, k) : 0 ≤ h ≤ N − 1; 1 ≤ k ≤ n} ∪ {∗}
where ∗ denotes the absorbing state indicating the number of customers reach-
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ing N . The infinitesimal generator is

V3 =

[
V3 VVV 0

3

000 0

]
,

where

V3 =


F ILm1+1 ⊗D1

. . .
. . .

F ILm1+1 ⊗D1

F

 ,VVV 0
3 =


000
...

000

eee(Lm1 + 1)⊗ δ


with

F =



T ⊕D0 TTT 0ααα⊗ In
. . .

. . .

T ⊕D0 TTT 0ααα⊗ In
T ⊕D0 TTT 0 ⊗ In

D0


The initial probability vector is

ψψψ3 = (1/d1(x0,0,0,1,1, · · · , x0,0,0,1,n, · · · , x0,0,0,m1,1, · · · , x0,0,0,m1,n,0)

where

d1 =
n∑
l=1

m1∑
k=1

x0,0,0,k,l

and 0 is a zero matrix of order 1×
(
(N − 1)(Lm1 + 1)n+ ((L− 1)m1 + 1)n

)
.

Thus we have the following Lemma.

Lemma 4.2.3. The distribution of time from the epoch the processing

starts until the number of customers hit N is a phase type with representation

PH(ψ3, V3).
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4.2.6 Distribution of number of inventory processed before the

arrival of first customer

To compute the above distribution, first we find the following:

Distribution of processing time till the arrival of first customer

Consider the Markov process with state space {(i, j, k) : 0 ≤ i ≤ L − 1; 1 ≤
j ≤ m1; 1 ≤ k ≤ n} ∪ {(L, k) : 1 ≤ l ≤ n} ∪ {∗}, where i denotes the number

of items in the inventory, j, the phase of inventory processing, k, the arrival

phase of customer, *, the absorbing state indicating the arrival of a customer.

The infinitesimal generator of the process is given by

V4 =



0 0 0 0 0 0

eee(m1)⊗ δ T ⊕D0 TTT 0ααα⊗ In 0 0 0

eee(m1)⊗ δ 0 T ⊕D0 TTT 0ααα⊗ In 0 0
...

...
. . .

. . .
. . .

...

eee(m1)⊗ δ 0 0 T ⊕D0 TTT 0ααα⊗ In 0

eee(m1)⊗ δ 0 0 0 T ⊕D0 TTT 0 ⊗ In
δ 0 0 0 0 D0


.

The initial probability is given by

ψψψ4 =
1

d1
(x0,0,0,1,1, . . . , x0,0,0,1,n, . . . , x0,0,0,m1,1, . . . x0,0,0,m1,n,000)

where 000 is a zero matrix of order 1× ((L− 1)m1 + 1)n.

Let Y denote the number of items processed before the first arrival and yk be

the probabaility that k items are processed before an arrival. Then yk is the

probabilty that the absorption occurs from the level k for the process. Hence

yk are given by

y0 = −ααα(T ⊕D0)−1(eee(m1)⊗ δ)

For k = 1, 2, 3, . . . L− 1
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yk = (−1)k+1ααα
(
(T ⊕D0)−1(TTT 0ααα⊗ In)

)k
(T ⊕D0)−1(eee(m1)⊗ δ)

and

yL = (−1)L+1ααα
(
(T ⊕D0)−1(TTT 0ααα⊗ In)

)L−1
(T ⊕D0)−1(TTT 0 ⊗ In)D−1

0 δ

Thus we have the following Lemma.

Lemma 4.2.4. The distribution of number of inventory processed before

the arrival of first customer is given by P (Y = k) = yk.

Definition 4.2.1. Starting up with the epoch of departure of a customer

leaving behind no customer in the system until the next epoch at which no

customer is left at a service completion epoch is called a busy cycle.

4.2.7 Distribution of Busy Cycle

First we assume that L > N .

The distribution of duration of busy cycle can be studied by a continuous time

Markov chain with state space {(h, i, 0, k, l) : 0 ≤ h ≤ N−1; 0 ≤ i ≤ L−1; 1 ≤
k ≤ m1; 1 ≤ l ≤ n} ∪ {(h, L, 0, l) : 0 ≤ h ≤ N − 1; 1 ≤ l ≤ n} ∪ {(h, i, 1, k, l) :

1 ≤ h ≤ M ; i = 0; 1 ≤ k ≤ m2; 1 ≤ l ≤ n} ∪ {(h, i, 1, k, l) : 1 ≤ h ≤
N − 1; 1 ≤ i ≤ L−N + h; 1 ≤ k ≤ m3; 1 ≤ l ≤ n} ∪ {(h, i, 1, k, l) : N ≤ h ≤
M ; 1 ≤ i ≤ L; 1 ≤ k ≤ m3; 1 ≤ l ≤ n} ∪ {∗}, where (h, i, 0, k, l) denote the

states that correspond to the server being in vacation with h customers in the

system,i, items in the inventory, k, processing phase and l,the arrival phase,

(h, L, 0, l) denote the states that correspond to the server being in vacation

with h customers in the system, L, items in the inventory and l,the arrival

phase, (h, i, 1, k, l) denote the states that correspond to the server being in

normal mode with h customers in the system,i, items in the inventory, k,
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service phase and l,the arrival phase, ∗ denote the absorbing state indicating

that the number of customers become zero by a service completion and M is

chosen in such a way that P
(∑M

h=0xxxheee > 1− ε
)
→ 0 for every ε > 0. Then

the distribution of a busy cycle can be studied by a phase type distribution

PH(φ,B), whose infinitesimal generator is given by

B =

[
B BBB0

000 0

]
where,B =

[
B11 B12

0 B22

]

Now,

B11 =


F ILm1+1 ⊗D1

. . .
. . .

F ILm1+1 ⊗D1

F

 ,
with

F =



T ⊕D0 TTT 0ααα⊗ In
. . .

. . .

T ⊕D0 TTT 0ααα⊗ In
T ⊕D0 TTT 0 ⊗ In

D0



B12 = eeeN (N)eee′N (M)⊗B′12,

where,

B′12 =


eee(m1)⊗ (βββ ⊗D1)

IL−1 ⊗ (eee(m1)⊗ (γγγ ⊗D1)
. . .

γγγ ⊗D1


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B22 =



E1 F1

G1 E2 F2

. . .
. . .

. . .

GN−2 EN−1 FN−1

GN−1 EN I ⊗D1

. . .
. . .

. . .

GM−2 EM−1 I ⊗D1

GM−1 E′M


For 1 ≤ h ≤ N − 1,

Gh =

 SSS0βββ ⊗ In 0

UUU0βββ ⊗ In 0

0 IL−N+h ⊗ (UUU0γγγ ⊗ In)

 , Eh =

[
S ⊕D0

IL−N+h ⊗ (U ⊕D0)

]

and

Fh =
[
Im2+(L−N+h)m3

⊗D1 0
]
.

ForN ≤ h ≤M − 1, Eh =

[
S ⊕D0

IL ⊗ (U ⊕D0)

]

Forh ≥ N, Gh =

 SSS0βββ ⊗ In 0 0

UUU0βββ ⊗ In 0 0

0 IL−1 ⊗ (UUU0γγγ ⊗ In) 0



E′M =

[
EM0

IL ⊗ (EM1)

]
, where
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EM0 = S ⊕D0 − Im2 ⊗∆ and EM1 = U ⊕D0 − Im3 ⊗∆, with

∆ =


δ1

. . .

δn


and

BBB0 =

[
000

BBB00

]
, with,BBB00 =


B000

000
...

000

 , where,BBB000 =

[
SSS0 ⊗ eee(n)

eee(L−N + 1)⊗ (UUU0 ⊗ eee(n))

]

The initial probability vector is

φφφ = (φ′φ′φ′,000)

where, φ′φ′φ′ = 1
d3

(w0,0,0,1,1, · · · , w0,0,0,m1,n, · · · , w0,L−1,0,1,1, · · · , w0,L−1,0,m1,n,0),

with

d3 =
L−1∑
i=0

m1∑
k′=1

n∑
l=1

w0,i,0,k′,l

.

For 1 ≤ k′ ≤ m1; 1 ≤ l ≤ n,

w0,0,0,k′,l =

m2∑
k=1

σkαk′

δl +
∑

l 6=l′ d
0
ll′ + σk +

∑
k 6=k′′ Skk′′

x1,0,1,k,l+

m3∑
k=1

τkαk′

δl +
∑

l 6=l′ d
0
ll′ + τk +

∑
k 6=k′′ Ukk′′

x1,1,1,k,l, (4.9)

For 1 ≤ i ≤ L− 1; 1 ≤ k′ ≤ m1, 1 ≤ l ≤ n,

w0,i,0,k′,l =

m3∑
k=1

τkαk′

δl +
∑

l 6=l′ d
0
ll′ + τk +

∑
k 6=k′′ Ukk′′

x1,i+1,1,k,l,
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where σk, τk represent the absorption rates from service phase k in PH(βββ, S)

and PH(γγγ, U) respectively, Skk′′ , Ukk′′ represent the kk′′th entry of S and U

respectively, αk′ represents the probability that the processing of item starts

in phase k′, d0
ll′ represent the transition rates from the phase l to the phase l′

without arrival and δl represent the lth row sum of D1 matrix.

From the above discussions we have the following.

Theorem 4.2.2. The LST of the distribution of a busy cycle in which

no item is left in the inventory is given by

B̂C1(s) = φφφ(sI −B)−1I ′(BBB0)′

where, I ′ denote the columns of identity matrix corresponding to the 1 cus-

tomer level with number of items in the inventory 0 and 1 and

(BBB0)′ =

[
SSS0 ⊗ eee(n)

UUU0 ⊗ eee(n)

]

Theorem 4.2.3. The LST of the distribution of a busy cycle in which

atleast one item is left in the inventory is given by

B̂C2(s) = φφφ(sI −B)−1I ′′(BBB0)′′

where, I ′′ denote the columns of identity matrix corresponding to 1 customer

level with number of items in the inventory > 1 and

(BBB0)′′ = eee(L−N)⊗ (UUU0 ⊗ eee(n))

Theorem 4.2.4. For stationary MAP, the expected number of busy

cycles in which at least one inventory left in an interval of length t is given by

(
t/(φφφ(−B)−1eee)

) (
B̂C2

′
(0)/

(
B̂C1

′
(0) + B̂C2

′
(0)
))
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4.3 Numerical Results

We fix ααα =
[

1 0
]
, βββ =

[
1 0

]
and γγγ =

[
0.8 0.2

]
, T =

[
−3 3

0 −3

]
,

S =

[
−4 4

0 −4

]
, U =

[
−2 2

0 −2

]
and D0 = −1, D1 = 1.

For these input parameters we get the system characteristics as given in Table

4.1. The behaviour of the performance characteristics is on expected lines.

Let E denote Expected Idle time, SD, standard deviation of Idle time, CV,

Coefficient of Variation of Idle time.

Table 4.1: Mean/Standard Deviation/Coefficient of Variation of idle time of
the server

L ↓ N → 2 3 4
E SD CV E SD CV E SD CV

2 0.90 1.20 1.33 1.47 1.52 1.03 2.00 1.79 0.90

3 0.63 1.07 1.71 1.15 1.43 1.25 1.78 1.77 1.00

4 0.42 0.92 2.19 0.86 1.31 1.52 1.44 1.68 1.17

5 0.27 0.76 2.80 0.63 1.16 1.86 1.12 1.56 1.39



Chapter 5

On a Queueing System with

Processing of Service Items

under Vacation and N-policy

with Impatient Customers

In this chapter we extend the queueing model considered in the previous chap-

ter to the case where the customers are impatient. In addition we formulate

a strategic game corresponding to the problem and investigate the individual,

social and system optimal strategies by introducing appropriate costs associ-

ated with certain system parameters.

Next we turn to further details of this chapter. We consider a single server

queueing system in which customers arrive according to Markovian Arrival

process. When the system is empty, the server goes for vacation and produces

inventory for future use during this period. Maximum inventory that can be

Some results of this chapter are included in the following paper.
Divya V.,Vishnevsky, V.M., Kozyrev, D., A. Krishnamoorthy : On a Queueing System
with Processing of Service Items under Vacation and N-policy with Impatient
Customers (communicated).
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held is L. Inventory processing time follows phase type distribution. Server re-

turns from vacation when N customers accumulate in the system. Service time

of customers follow two distinct phase type distributions according as there is

no processed item or there are processed items at the beginning of service.The

customers join the queue with probability p or balk with probability 1 − p.
Further customers while waiting for service, may become impatient and renege

after a random time period which is exponentially distributed. Somewhat re-

lated work is by Wang and Zhang [53]. Whereas they follow replenishment

policy through external sources in the context of queueing-inventory, we inves-

tigate the system in which the item is processed by the server himself. Further,

in Wang and Zhang model, the server has to stay idle when inventory level

drops to zero; in the present model the server processes the item and serves

the customer if at a service commencement epoch the item is not available.

5.1 Model Description and Mathematical formula-

tion

We assume that customers arrive at a single server queueing system according

to MAP with representation (D0, D1) of order n. At the end of a service if

the system is left with no customer, the server goes for vacation and produces

inventory for future use during this period. Maximum number of such items

that can be held is restricted to L. Processing time for each item in the

inventory follows phase type distribution PH(ααα, T ) of order m1. Server returns

from vacation when there are N customers in the system. The service time

follows PH(βββ, S) of order m2 when there is no processed item and it follows

PH(γγγ, U) of order m3 when there are processed items. Customers join the

queue with probability p or balk with probability 1 − p. Also the customers

waiting for service may become impatient and renege after a random time

period which is exponentially distributed with parameter (n − 1)φ, n ≥ 1,

where n is the number of customers in the system.
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Let Q∗ = D0 +D1 be the generator matrix of the arrival process and π∗π∗π∗ be

its stationary probability vector. Hence π∗π∗π∗ is the unique (positive) probability

vector satisfying

π∗π∗π∗Q∗ = 0, π∗eπ∗eπ∗e = 1.

The quantity β∗ = π∗π∗π∗D1eee, referred to as fundemental rate, gives the expected

number of arrivals per unit time in the stationary version of the MAP. It is

assumed that the arrival process is independent of the inventory processing

and service process.

5.1.1 The QBD process

The model described above can be studied as a level dependent quasi-birth-

and-death (LDQBD) process. First we introduce the followiing notations:

At time t:

N(t) : the number of customers in the system

I(t): the number of processed inventory

J(t) =

{
0, if the server is on vacation

1, if the server is busy serving customer

K(t): the phase of the inventory processing/service process

M(t) : the phase of arrival of customer.

It is easy to verify that {(N(t), I(t), J(t),K(t),M(t)) : t ≥ 0} is LDQBD with

state space

l(0) = {(0, i, 0, k1, l) : 0 ≤ i ≤ L − 1; 1 ≤ k1 ≤ m1, 1 ≤ l ≤ n} ∪ {(0, L, 0, l) :

1 ≤ l ≤ n}
For 1 ≤ h ≤ N − 1,

l(h) = {(h, i, 0, k1, l) : 0 ≤ i ≤ L − 1; 1 ≤ k1 ≤ m1; 1 ≤ l ≤ n} ∪ {(h, L, 0, l) :

1 ≤ l ≤ n}∪ {(h, 0, 1, k2, l) : 1 ≤ k2 ≤ m2; 1 ≤ l ≤ n}∪ {(h, i, 1, k3, l) : 1 ≤ i ≤
L; 1 ≤ k3 ≤ m3; 1 ≤ l ≤ n}
and for h ≥ N ,
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l(h) = {(h, 0, 1, k2, l) : 1 ≤ k2 ≤ m2; 1 ≤ l ≤ n} ∪ {(h, i, 1, k3, l) : 1 ≤ i ≤
L; 1 ≤ k3 ≤ m3; 1 ≤ l ≤ n}.

Note that if there is no customer in the system and level of processed item

is L, then also J(t) = 0, indicating that server is idle. Further at the start of

a new cycle, the server stays idle until N customers accumumulate.

The infinitesimal generator of this CTMC is

Q̄ =



B0 C0

B1 E1 I ⊗ pD1

B2 E2 I ⊗ pD1

. . .
. . .

. . .

BN−2 EN−2 I ⊗ pD1

BN−1 EN−1 F

B′N A
(N)
1 A0

(N)

A2
(N+1) A1

(N+1) A0
(N+1)

A2
(N+2) A1

(N+2) A0
(N+2)

. . .
. . .

. . .



The boundary blocks B0, C0, B1 are of orders (Lm1+1)n×(Lm1+1)n, (Lm1+

1)n×
(
(m1+m2)n+(L−1)(m1+m3)n+(1+m3)n

)
,
(
(m1+m2)n+(L−1)(m1+

m3)n+(1+m3)n
)
×(Lm1+1)n respectively. For 2 ≤ h ≤ N−1, Bh and for 1 ≤

h ≤ N−1, Eh are square matrices of order (m1+m2)n+(L−1)(m1+m3)n+(1+

m3)n. F and B′N are of orders
(
(m1+m2)n+(L−1)(m1+m3)n+(1+m3)n

)
×

(m2+Lm3)n and (m2+Lm3)n×
(
(m1+m2)n+(L−1)(m1+m3)n+(1+m3)n

)
respectively. For h ≥ N, A0

(h), A1
(h) and for h ≥ N + 1, A2

(h) are square

matrices of order (m2 + Lm3)n. Define the entries B
(i2,j2,k2,l2)
0(i1,j1,k1,l1)

, C
(i2,j2,k2,l2)
0(i1,j1,k1,l1)

and B
(i2,j2,k2,l2)
1(i1,j1,k1,l1)

as transition submatrices which contain transitions of the

form (0, i1, j1, k1, l1) → (0, i2, j2, k2, l2), (0, i1, j1, k1, l1) → (1, i2, j2, k2, l2) and

(1, i1, j1, k1, l1)→ (0, i2, j2, k2, l2) respectively. Define E
(i2,j2,k2,l2)
h(i1,j1,k1,l1)

, B
(i2,j2,k2,l2)
h(i1,j1,k1,l1)

,

F and B′N as transition submatrices which contain transitions of the form

(h, i1, j1, k1, l1) → (h, i2, j2, k2, l2), where 1 ≤ h ≤ N − 1, (h, i1, j1, k1, l1) →
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(h−1, i2, j2, k2, l2), where 2 ≤ h ≤ N−1, (N−1, i1, j1, k1, l1)→ (N, i2, j2, k2, l2)

and (N, i1, j1, k1, l1) → (N − 1, i2, j2, k2, l2) respectively. Define the entries

A2
(h)(i2,j2,k2,l2)

(i1,j1,k1,l1), A1
(h)(i2,j2,k2,l2)

(i1,j1,k1,l1) and A0
(h)(i2,j2,k2,l2)

(i1,j1,k1,l1) as transition submatrices

which contain transitions of the form (h, i1, j1, k1, l1) → (h − 1, i2, j2, k2, l2),

where h ≥ N + 1, (h, i1, j1, k1, l1) → (h, i2, j2, k2, l2) and (h, i1, j1, k1, l1) →
(h+ 1, i2, j2, k2, l2), where h ≥ N respectively. Since none or one event alone

could take place in a short interval of time with positive probability, in general,

a transition such as (h1, i1, j1, k1, l1)→ (h2, i2, j2, k2, l2) has positive rate only

for exactly one of h1, i1, j1, k1, l1 different from h2, i2, j2, k2, l2.

B
(i2,j2,k2,l2)
0(i1,j1,k1,l1)

=



TTT 0ααα⊗ In i2 = i1 + 1, 0 ≤ i1 ≤ L− 2; j1 = j2 = 0; 1 ≤ k1, k2 ≤ m1;

1 ≤ l1, l2 ≤ n
TTT 0 ⊗ In i1 = L− 1, i2 = L; j1 = j2 = 0; 1 ≤ k1, k2 ≤ m1;

1 ≤ l1, l2 ≤ n
T ⊕∆ i1 = i2, 0 ≤ i1 ≤ L− 1; j1 = j2 = 0; 1 ≤ k1, k2 ≤ m1;

1 ≤ l1, l2 ≤ n
∆ i1 = i2 = L; j1 = j2 = 0; 1 ≤ l1, l2 ≤ n

where

∆ = D0 + (1− p)


δ1

δ2

. . .

δn

 .

C
(i2,j2,k2,l2)
0(i1,j1,k1,l1)

=


Im1 ⊗ pD1 0 ≤ i1 ≤ L− 1; i1 = i2; j1 = j2 = 0; 1 ≤ k1, k2,≤ m1;

1 ≤ l1, l2 ≤ n
pD1 i2 = i1 = L; j1 = j2 = 0; 1 ≤ l1, l2 ≤ n

B
(i2,j2,k2,l2)
1(i1,j1,k1,l1)

=


SSS0ααα⊗ In i1 = i2 = 0; j1 = 1, j2 = 0; 1 ≤ k1 ≤ m2,

1 ≤ k2 ≤ m1; 1 ≤ l1, l2 ≤ n
UUU0ααα⊗ In 1 ≤ i1 ≤ L; i2 = i1 − 1; j1 = 1, j2 = 0; ; 1 ≤ k1 ≤ m3,

1 ≤ k2 ≤ m1; 1 ≤ l1, l2 ≤ n

For 1 ≤ h ≤ N − 1,
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E
(i2,j2,k2,l2)
h(i1,j1,k1,l1)

=



TTT 0ααα⊗ In 0 ≤ i1 ≤ L− 2, i2 = i1 + 1; j1 = j2 = 0;

1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n
TTT 0 ⊗ In i1 = L− 1, i2 = L; j1 = j2 = 0;

1 ≤ k1 ≤ m1; 1 ≤ l1, l2 ≤ n
T ⊕∆− (h− 1)φIm1n i1 = i2, 0 ≤ i1 ≤ L− 1; j1 = j2 = 0;

1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n
S ⊕∆− (h− 1)φIm1n i1 = i2 = 0, j1 = j2 = 1, 1 ≤ k1, k2 ≤ m2,

1 ≤ l1, l2 ≤ n
U ⊕∆− (h− 1)φIm1n i1 = i2, 1 ≤ i1 ≤ L; j1 = j2 = 1, 1 ≤ k1, k2 ≤ m3,

1 ≤ l1, l2 ≤ n
∆− (h− 1)φIn i1 = i2 = L; j1 = j2 = 0; 1 ≤ l1, l2 ≤ n

For 2 ≤ h ≤ N − 1,

B
(i2,j2,k2,l2)
h(i1,j1,k1,l1)

=



(h− 1)φIm1n 0 ≤ i1 ≤ L− 1, i1 = i2; ; j1 = j2 = 0;

1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n
(h− 1)φIn i1 = i2 = L; j1 = j2 = 0; 1 ≤ k1, k2 ≤ m1;

1 ≤ l1, l2 ≤ n
SSS0βββ ⊗ In + (h− 1)φIm2n i1 = i2 = 0; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m2;

1 ≤ l1, l2 ≤ n
(h− 1)φIm3n 1 ≤ i1 ≤ L, i1 = i2; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m3;

1 ≤ l1, l2 ≤ n
UUU0βββ ⊗ In i1 = 1, i2 = 0; j1 = j2 = 1; 1 ≤ k1 ≤ m3,

1 ≤ k2 ≤ m2; 1 ≤ l1, l2 ≤ n
UUU0γγγ ⊗ In 2 ≤ i1 ≤ L, i2 = i1 − 1; j1 = j2 = 1;

1 ≤ k1, k2 ≤ m3; 1 ≤ l1, l2 ≤ n

F
(i2,j2,k2,l2)

(i1,j1,k1,l1) =



eee(m1)⊗ (βββ ⊗ pD1) i1 = i2 = 0; j1 = 0, j2 = 1; 1 ≤ k1 ≤ m1, 1 ≤ k2 ≤ m2;

1 ≤ l1, l2 ≤ n
Im2 ⊗ pD1 i2 = i1 = 0; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m2, 1 ≤ l1, l2 ≤ n
Im3 ⊗ pD1 i2 = i1, 1 ≤ i1 ≤ L; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m2,

1 ≤ l1, l2 ≤ n
eee(m1)⊗ (γγγ ⊗ pD1) 1 ≤ i1 ≤ L− 1; j1 = 0, j2 = 1; 1 ≤ k1 ≤ m1, 1 ≤ k2 ≤ m3;

1 ≤ l1, l2 ≤ n
γγγ ⊗ pD1 i1 = i2 = L; j1 = 0, j2 = 1; 1 ≤ k1 ≤ m1, 1 ≤ k2 ≤ m3;

1 ≤ l1, l2 ≤ n
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B′
(i2,j2,k2,l2)
N(i1,j1,k1,l1)

=



SSS0βββ ⊗ In + (N − 1)φIm2n i1 = i2 = 0; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m2;

1 ≤ l1, l2 ≤ n
UUU0βββ ⊗ In i1 = 1, i2 = 0; j1 = j2 = 1; 1 ≤ k1 ≤ m3,

1 ≤ k2 ≤ m2; 1 ≤ l1, l2 ≤ n
UUU0γγγ ⊗ In 2 ≤ i1 ≤ L, i2 = i1 − 1; j1 = j2 = 1;

1 ≤ k1, k2 ≤ m3; 1 ≤ l1, l2 ≤ n
(N − 1)φIm3n 1 ≤ i1 ≤ L, i2 = i1; j1 = j2 = 1;

1 ≤ k1, k2 ≤ m3; 1 ≤ l1, l2 ≤ n

For h ≥ N + 1,

A2
(h)(i2,j2,k2,l2)

(i1,j1,k1,l1) =



SSS0βββ ⊗ In + (h− 1)φIm2n i1 = i2 = 0; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m2;

1 ≤ l1, l2 ≤ n
UUU0βββ ⊗ In i1 = 1, i2 = 0; j1 = j2 = 1; 1 ≤ k1 ≤ m3,

1 ≤ k2 ≤ m2; 1 ≤ l1, l2 ≤ n
UUU0γγγ ⊗ In i2 = i1 − 1, 2 ≤ i2 ≤ L; j1 = j2 = 1;

1 ≤ k1, k2 ≤ m3; 1 ≤ l1, l2 ≤ n
(h− 1)φIm3n i2 = i1, 1 ≤ i2 ≤ L; j1 = j2 = 1;

1 ≤ k1, k2 ≤ m3; 1 ≤ l1, l2 ≤ n

For h ≥ N ,

A1
(h)(i2,j2,k2,l2)

(i1,j1,k1,l1) =


S ⊕∆− (h− 1)φIm2n i1 = i2 = 0, j1 = j2 = 1, 1 ≤ k1, k2 ≤ m2;

1 ≤ l1, l2 ≤ n
U ⊕∆− (h− 1)φIm3n i1 = i2, 1 ≤ i1 ≤ L; j1 = j2 = 1,

1 ≤ k1, k2 ≤ m3, 1 ≤ l1, l2 ≤ n

A0
(h)(i2,j2,k2,l2)

(i1,j1,k1,l1) =


Im2 ⊗ pD1 i1 = i2 = 0; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m2; 1 ≤ l1, l2 ≤ n
Im3 ⊗ pD1 i1 = i2, 1 ≤ i1 ≤ L; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m3;

1 ≤ l1, l2 ≤ n

Remarks: When L = 0 (that is, no item processed during vacation) the

problem discussed reduces to classical N -policy.
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5.2 Steady State Analysis

First we find the condition for stability of the system under study.

5.2.1 Stability condition

Lemma 5.2.1. The system under consideration is stable.

Proof. We use the following result to prove this.

Proposition(Tweedie) Let {X(t)} be a Markov process with discrete

state space S and rates of transition qsr, s, r ∈ S,
∑

r qsr = 0. Assume that

there exist

1. a function ψ(s), s ∈ S, which is bounded from below (this function is said

to be a Lyapunov or test function);

2. a positive number ε such that:

• variables ys =
∑

r 6=s qsr(ψ(r)− ψ(s)) <∞ for all s ∈ S;

• ys ≤ −ε for all s ∈ S except perhaps a finite number of states.

Then the process {X(t)} is regular and ergodic.

For the model under discussion, we consider the following test function:

ψ(s) = ψ(h, i, j, k, l) = h

. The mean drifts
ys =

∑
r 6=s qsr (ψ(r)− ψ(s))

= qs,s+1 − qs,s−1 (5.1)

We have qs,s+1 = r1, say (a constant) and qs,s−1 = r2 + (s− 1)φ, where r2

is a constant.

Hence from (5.1), ys = r1 − r2 − (s− 1)φ, which depends only on the level s.
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Now,

lim
s→∞

ys = −∞.

Thus the assumptions of Tweedie’s result hold and hence the Markov pro-

cess under cosideration is regular and ergodic (see Falin and Templeton [11]).

Hence the system is stable.

Next we proceed to find the steady-state probability of the system state.

5.2.2 Steady-state probability vector

By finite truncation method we get steady state vectors of the LDQBD ap-
proximately. In this method, we truncate the infinitesimal genarator at a finite
level K. The level K is chosen in such a way that probability of customer loss
due to truncation is small. To get an appropriate level,say , Kf , we start with
an initial value for K and increasing it in unit steps until a properly chosen
cut-off criterion is satisfied. Here, we use the algorithm by Artalejo et al.[1],
the steps of which are explained below.
With K as cut-off level, the modified generator is

Q̄K =



B0 C0

B1 E1 I ⊗ pD1

B2 E2 I ⊗ pD1

. . .
. . .

. . .

BN−2 EN−2 I ⊗ pD1

BN−1 EN−1 F

B′N A
(N)
1 A0

(N)

A2
(N+1) A1

(N+1) A0
(N+1)

. . .
. . .

. . .

A2
(K−1) A1

(K−1) A0
(K−1)

A2
(K) θ(K)



.

where θK = A1
(K) + A0

(K). Let π̄ be the stationary distribution of Q̄(K)

which satisfies
π̄̄π̄πQ̄(K) = 0

π̄̄π̄πeee = 1
(5.2)
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where π̄̄π̄π = [π̄̄π̄π(0), π̄̄π̄π(1), . . . , π̄̄π̄π(K)]. Define yyy = [yyy0(K), yyy1(K)] with

yyy0(K) = [π̄̄π̄π(0), π̄̄π̄π(1), . . . , π̄̄π̄π(K − 1)],

yyy1(K) = π̄̄π̄π(K).

Now yyy(K, i) = π̄̄π̄π(i), 0 ≤ i ≤ K. Here yyy0(K) is a row vector of dimension

m = (Lm1 + 1)n+ (N − 1)[m2n+L(m1 +m3)n+ n] + (K −N)(m2 +Lm3)n

and yyy1(K) is a row vector of dimension (m2 + Lm3)n. Now from ((5.2)), we

have

[yyy0(K), yyy1(K)]

[
H00(K) H01(K)

H10(K) H11(K)

]
= [000m,000(m2+Lm3)n] (5.3)

where H00(K) is obtained from Q̄(K) by deleting the last column matrices and

last row matrices. H01(K) = [0, 0, . . . , 0, A
(K−1)
0 ]T , H10(K) = [0, 0, . . . , 0, A

(K)
2 ]

and H11(K) = θ(K). These are block structured matrices with K × K,K ×
1, 1×K and 1× 1 blocks respectively. 0m and 0(m2 +Lm3)n are row vectors

of dimensions m and (m2 +Lm3)n respectively, with all entries equal to zero.

From (5.3), we get

yyy1(K)H10(K)H−1
00 (K) = −yyy0(K) (5.4)

yyy1(K)[H11(K)−H10(K)H−1
00 (K)H01(K)] = 000(m2+Lm3)n (5.5)

Also we have

H00(K) =

[
H00(K − 1) H01(K − 1)

J0(K − 1) J1(K − 1)

]
where

J0(K − 1) = [0, . . . , 0, A
(K−1)
2 ]

J1(K − 1) = A
(K−1)
1

The inverse of matrix H00(K) can be determined using Theorem 4.2.4 in

Hunter [19] as
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H−1
00 (K) =

[
M00(K) M01(K)

M10(K) M11(K)

]
where

M00(K) = [H00(K − 1)−H01(K − 1)J−1
1 (K − 1)J0(K − 1)]−1,

M01(K) = −J1
−1(K − 1)J0(K − 1)M00(K),

M11(K) = [J1(K − 1)− J0(K − 1)H−1
00 (K − 1)H01(K − 1)]−1,

M01(K) = −H−1
00 (K − 1)H01(K − 1)M11(K)

Now we can see that the structure of the block matrices H01(K − 1) and

J0(K − 1) simplify the above set of equations. We have H−1
00 (K − 1)H01(K −

1) =

[
M01(K − 1)

M11(K − 1)

]
A0

(K−2). Also J0(K − 1)H−1
00 (K − 1)H01(K − 1) =

A
(K−1)
2 M11(K − 1)A

(K−2)
0 .

By Example 4.2.2 Hunter [19], we have (X +AY B)−1 = X−1−X−1A(Y −1 +

BX−1A)−1BX−1. Then we have

(X +AY B)−1 = [I −X−1A(Y −1 +BX−1A)−1B]X−1.

Here, we have X = H00(K − 1), A = −H01(K − 1), Y = J−1
1 (K − 1) and

B = J)0(K − 1). Finally, we get

M00(K) = [I −M01(K)J0(K − 1)]H−1
00 (K − 1)

M11(K) = [J1(K − 1)−A2
(K−1)M11(K − 1)A0

(K−2)]−1,

M01(K) = −

[
M01(K − 1)

M11(K − 1)

]
A0

(K−2)M11(K)

M10(K) = −J−1
1 (K − 1)J0(K − 1)M00(K)
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Thus the computation of the vector yyy1(K) reduces to solving the system of

equations (5.5) subject to the normalizing condition

π̄̄π̄π(K)[eee−H10(K)H−1
00 (K)eee] = 1

The vector yyy0(K) can be solved by substituting yyy1(K) in (5.4). To get the

cut-off value, successive increments of K are made, starting from N + 2 and

we stop at the point K = Kc when

max0≤i≤Kc ||yyy(Kc, i)− yyy(Kc − 1, i)| |∞ < ε

where ε > 0 is infinitesimal quantity and ||.||∞ is the infinity norm (see

Goswami and Selavaraju[15]).

5.2.3 Distribution of time until the number of customers hit

N

We show that this is a phase type distribution where the underlying Markov
process has state space {(h, i, j, k) : 0 ≤ h ≤ N − 1; 0 ≤ i ≤ L − 1; 1 ≤ j ≤
m1; 1 ≤ k ≤ n} ∪ {(h, L, k) : 0 ≤ h ≤ N − 1; 1 ≤ k ≤ n} ∪ {∗} where ∗
denotes the absorbing state indicating the number of customers reaching N .
The infinitesimal generator is

V1 =

[
V1 VVV

(0)
1

000 0

]
,

where

V1 =



F0 ILm1+1 ⊗ pD1

F0 ILm1+1 ⊗ pD1

G2 F2 ILm1+1 ⊗ pD1

. . .
. . .

. . .

GN−2 FN − 2 ILm1+1 ⊗ pD1

GN−1 FN−1


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,

VVV 0
1 =


000
...

000

eee(Lm1 + 1)⊗ pδ

 withF0 =


T ⊕∆ TTT 0ααα⊗ In 0 0

0 T ⊕∆ TTT 0ααα⊗ In 0

000 000 T ⊕∆ TTT 0 ⊗ In
000 000 000 ∆


For 2 ≤ h ≤ N − 1,

Gh = (h− 1)φI(Lm1+1)n

and

Fh =


T ⊕∆− (h− 1)φIm1n TTT 0ααα⊗ In 0 0

0 T ⊕∆− (h− 1)φIm1n TTT 0ααα⊗ In 0

000 000 T ⊕∆− (h− 1)φIm1n TTT 0 ⊗ In
000 000 000 ∆− (h− 1)φIm1n



The initial probability vector is

ψ1 = (
1

d1
)(w0,0,1,1, · · · , w0,0,1,n, · · · , w0,0,m1,1, · · · , w0,0,m1,n · · · , w0,L−1,m1,1, · · · ,

w0,L−1,m1,n,0) (5.6)

where,

w0,0,k,l =

m2∑
k′=1

σ′kαk

−d(0)
ll − Sk′k′

x1,0,1,k′,l +

m3∑
k′=1

τ ′kαk

−d(0)
ll − Uk′k′

x1,1,1,k′,l,

w0,i,k,l =

m3∑
k′=1

τ ′kαk

−d(0)
ll − Uk′k′

x1,i+1,1,k′,l, with 1 ≤ i ≤ L− 1.

and

d1 =

n∑
l=1

L−1∑
i=0

m1∑
k=1

w0,i,k,l
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where 0 is a zero matrix of order 1× ((N − 1)Lm1n+ n).

Here, σ′k represents the absorption rate to phase k′ from PH(βββ, S), τ ′k repre-

sents the absorption rate to phase k′ from PH(γγγ, U), Sk′k′ represent the k′k′th

entry of S, Uk′k′ represent the k′k′th entry of U and d
(0)
ll represent the diagonal

entry in lth row of D0.

5.2.4 Some other Performance Measures

• Probability that the server is idle,

Pidle =
N−1∑
h=0

n∑
l=1

xh,L,0,l

• Expected number of customers in the system,

Es =
N−1∑
h=1

L−1∑
i=0

m1∑
k=1

n∑
l=1

hxh,i,0,k,l+
N−1∑
h=1

n∑
l=1

hxh,L,0,l+
∞∑
h=1

m2∑
k=1

n∑
l=1

hxh,0,1,k,l+

∞∑
h=1

L∑
i=1

m3∑
k=1

n∑
l=1

hxh,i,1,k,l (5.7)

• Expected number of items in the inventory,

Eit =
N−1∑
h=0

L−1∑
i=1

m1∑
k=1

n∑
l=1

ixh,i,0,k,l+
N−1∑
h=0

n∑
l=1

Lxh,L,0,l+
∞∑
h=1

L∑
i=1

m3∑
k=1

n∑
l=1

ixh,i,1,k,l

(5.8)

• Expected rate at which the inventory processing is switched on,

Eipo =

m2∑
k=1

n∑
l=1

σkx1,0,1,k,l +
L∑
i=1

m3∑
k=1

n∑
l=1

τkx1,i,1,k,l
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5.3 special cases

1. p = 1, φ = 0

In this case, the present model reduces to Divya et al.[8]. We see that

the model can be studied as a LIQBD process.

2. φ = 0

In this case also, the model can be studied as a LIQBD process with

obvious modifications in Divya et al.[8].

From now on we concentrate in the case φ = 0.

First, we find the LST of the waiting time distribution.

5.3.1 Waiting Time Analysis

To find the waiting time of a customer who joins for service at time t, we

have to consider different possibilities depending on the status of server at

that time.The server may be on vacation or in normal mode. Let W (t) be the

waiting time of a customer in the system who arrives at time t and W ∗(s) be

the corresponding LST.

Case I(Vacation mode)

Let E1 denote the event that the tagged customer immedietly after his

arrival finds the system in the state (h′ + 1, i′, 0, k′, l′) or in the state (h′ +

1, L, 0, l′), where 0 ≤ h′ ≤ N − 2; 0 ≤ i′ ≤ L− 1; 1 ≤ k′ ≤ m1; 1 ≤ l1 ≤ n.
In this case, the waiting time is the time until absorption in a Markov

process whose state space is given by {(h, i, k1, l) : 1 ≤ h ≤ N − 1; 0 ≤ i ≤
L − 1; 1 ≤ k1 ≤ m1; 1 ≤ l ≤ n} ∪ {(h, L, l) : 1 ≤ h ≤ N − 1; 1 ≤ l ≤
n} ∪ {(h∗, 0, k2) : 1 ≤ h∗ ≤ N − 1; 1 ≤ k2 ≤ m2} ∪ {(h∗, i, k3) : 1 ≤ h∗ ≤
N − 1; 1 ≤ i ≤ L; 1 ≤ k3 ≤ m3} ∪ {∗} where (h, i, k1, l) denote the states that
correspond to the server being in vacation with h customers in the system
,i,items in inventory, k1,the processing phase and l,the arrival phase, (h, L, l)
denote the state that correspond to the server being in vacation mode with
h customers in the system, L items in inventory and l, the arrival phase.
(h∗, 0, k2) denote the states that correspond to the tagged customer being in
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the position h∗ when the server is in normal mode, k2, the service phase when
there is no processed item, (h∗, i, k3) denote the states that correspond to the
tagged customer being in position h∗ when the server is in normal mode with i
processed items in the inventory and k3 denote the service phase and ∗ denote
the absorbing state indicating the service completion of the tagged customer.
Thus the conditional waiting time can be studied by a phase type distribution
with representation PH(ψψψ1,W1) where

W1 =

[
M11 M12

0 M22

]
, WWW 0

1 =

[
000

MMM0

]
,

where

MMM0 =

[
MMM00

000

]
, withMMM00 =

[
SSS0

eee(L)⊗UUU0

]

M11 =


E ILm1+1 ⊗D1

. . .
. . .

E ILm1+1 ⊗D1

E

 ,
where

E =



T ⊕∆ TTT 0ααα⊗ In
. . .

. . .

T ⊕∆ TTT 0ααα⊗ In
T ⊕∆ TTT 0 ⊗ In

∆


M12 = eN−1(N − 1)eee′h1

(N − 1)⊗ F,

where

F =


eee(m1)⊗ (pδ ⊗ βββ)

eee(m1)⊗ (pδ ⊗ γγγ)
. . .

pδ ⊗ γγγ


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M22 =


G

H G
. . .

. . .

H G

 ,
where

G =

[
S

IL ⊗ U

]
, H =

 SSS0βββ 0 0

UUU0βββ 0 0

0 IL−1 ⊗ (UUU0γγγ) 0


Thus the conditional LST,

W ∗(s|E1) = ψψψ1(sI −W1)−1WWW 0
1,

where ψψψ1 is the initial probabilty vector which ensures that the Markov chain

always starts from the level h.

Case II(Normal mode)

Let E2 denote the event that the tagged customer immedietly after his

joining finds the system in the state (h′+1, 0, 1, k′′, l′), where h′ ≥ 1; 1 ≤ k′′ ≤
m2; 1 ≤ l′ ≤ n or in the state (h′ + 1, i′, 1, k′′′, l′), where 1 ≤ h′ ≤ N − 1; 1 ≤
i′ ≤ L −N + h′; 1 ≤ k′′′ ≤ m3; 1 ≤ l′ ≤ n or in the state (h′ + 1, i′, 1, k′′′, l′),

where h′ ≥ N ; 1 ≤ i′ ≤ L; 1 ≤ k′′′ ≤ m3; 1 ≤ l′ ≤ n.

In this case, the waiting time is the time until absorption in a Markov

process whose state space is given by {(h, 0, k) : 2 ≤ h ≤ K; 1 ≤ k ≤ m2} ∪
{(h, i, k) : 2 ≤ h ≤ N − 1; 1 ≤ i ≤ L − N + h; 1 ≤ k ≤ m3} ∪ {(h, i, k) :

N ≤ h ≤ K; 1 ≤ i ≤ L; 1 ≤ k ≤ m3} ∪ {∗} where (h, 0, k) denote the states

that correspond to the server being in normal mode with h customers in the

system, service phase k when there is no processed item, (h, i, k) denote the

states that correspond to the server being in normal mode with h customers in

the system, service phase k when there are i processed items and ∗ denote the

absorbing state indicating the service completion of the tagged customer and

K is chosen in such a way that P
(∑K

h=0xxxheee > 1− ε
)
→ 0 for every ε > 0.

Thus the conditional waiting time can be studied by a truncated phase type
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distribution with representation PH(ψψψ2,W2) where

W2 =



G1

H1 G2

. . .
. . .

HN−2 GN−1

HN−1 G

H G
. . .

. . .

H G


,WWW 0

2 =


E0

000
...

000

 ,

where

EEE0 =

[
SSS0

eee(L−N + 1)⊗UUU0

]
,

For 1 ≤ h ≤ N − 1,

Gh =

[
S

IL−N+h ⊗ U

]
, Hh =

 SSS0βββ 0

UUU0βββ 0

0 IL−N+h ⊗UUU0γγγ



E =

[
S

IL ⊗ U

]
, F =

 SSS0βββ 0 0

UUU0βββ 0 0

0 IL−1 ⊗UUU0γγγ 0


Thus the conditional LST,

W ∗(s|E2) = ψ2(sI −W2)−1W2
0

where ψψψ2 is the initial probabilty vector which ensures that the Markov chain
always starts from the level h.
Let wh,i,j,k,l and wh,L,0,l denote the probabaility that the tagged customer finds
the system in the state (h, i, j, k, l) and (h, L, 0, l) respectively immedietly after
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his arrival. Then

wh,i,0,k1,l =
∑n
l′=1

pd
(1)

l′l
−d(0)

l′l′−(1−p)δl′−Tk1k1
xh−1,i,0,k1,l′ , 1 ≤ h ≤ N − 1, 0 ≤ i ≤ L− 1,

1 ≤ k1 ≤ m1, 1 ≤ l ≤ n

wh,L,0,l =
∑n
l′=1

pd
(1)

l′l
−d(0)

l′l′−(1−p)δl′
xh−1,L,0,l′ , 1 ≤ h ≤ N − 1, 1 ≤ l ≤ n

wh,0,1,k2,l =
∑n
l′=1

pd
(1)

l′l
−d(0)

l′l′−(1−p)δl′−Sk2k2
xh−1,0,1,k2,l′ , 2 ≤ h ≤ N − 1 orh ≥ N + 1,

1 ≤ k2 ≤ m2, 1 ≤ l ≤ n

wN,0,1,k2,l =
∑n
l′=1

∑m1
k1=1

pd
(1)

l′l βk2

−d(0)
l′l′−(1−p)δl′−Tk1k1

xN−1,0,0,k1,l′

+
∑n
l′=1

pd
(1)

l′l
−d(0)

l′l′−(1−p)δl′−Sk2k2
xN−1,0,1,k2,l′ , 1 ≤ k2 ≤ m2, 1 ≤ l ≤ n

wh,i,1,k3,l =
∑n
l′=1

pd
(1)

l′l
−d(0)

l′l′−(1−p)δl′−Uk3k3
xh−1,i,1,k3,l′ , 2 ≤ h ≤ N − 1, 1 ≤ L−N + h− 1,

1 ≤ k3 ≤ m3, 1 ≤ l ≤ n

wh,i,1,k3,l =
∑n
l′=1

pd
(1)

l′l
−d(0)

l′l′−(1−p)δl′−Uk3k3
xh−1,i,1,k3,l′ , h ≥ N + 1, 1 ≤ i ≤ L,

1 ≤ k3 ≤ m3, 1 ≤ l ≤ n

wN,i,1,k3,l =
∑n
l′=1

∑m1
k1=1

pd
(1)

l′l γk3

−d(0)
l′l′−(1−p)δl′−Tk1k1

xN−1,i,0,k1,l′

+
∑n
l′=1

pd
(1)

l′l
−d(0)

l′l′−(1−p)δl′−Sk2k2
xN−1,i,1,k2,l′ , 1 ≤ i ≤ L, 1 ≤ k2 ≤ m2, 1 ≤ l ≤ n

Thus we have the following Theorem.

Theorem 5.3.1. The LST of the waiting time is given by

W ∗(s) =
1

d2

[N−1∑
h′=1

L−1∑
i′=0

m1∑
k′=1

n∑
l′=1

ψ1(sI−W1)−1W 0
1wh′,i′,0,k′,l′+

N−1∑
h′=1

n∑
l′=1

ψ1(sI−W1)−1W 0
1wh′,L,0,l′

+

∞∑
h′=1

m2∑
k′′=1

n∑
l′=1

ψ2(sI−W2)−1W 0
2wh′,0,1,k′′,l′+

N∑
h′=1

L−N+h′−1∑
i′=1

m3∑
k′′′=1

n∑
l′=1

ψ2(sI−W2)−1W 0
2wh′,i′,1,k′′′,l′

+
∞∑

h′=N+1

L∑
i′=1

m3∑
k′′′=1

n∑
l′=1

ψ2(sI −W2)−1W 0
2wh′,i′,1,k′′′,l′

]
(5.9)
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where

d2 =

N−1∑
h′=1

L−1∑
i′=0

m1∑
k′=1

n∑
l′=1

wh′,i′,0,k′,l′ +

N−1∑
h′=1

n∑
l′=1

wh′,L,0,l′ +

∞∑
h′=1

m2∑
k′′=1

n∑
l′=1

wh′,0,1,k′′,l′+

N∑
h′=1

L−N+h′−1∑
i′=1

m3∑
k′′′=1

n∑
l′=1

wh′,i′,1,k′′′,l′ +

∞∑
h′=N+1

L∑
i′=1

m3∑
k′′′=1

n∑
l′=1

wh′,i′,1,k′′′,l′ (5.10)

Now,we assume that each customer receives a reward of R units after

service completion and he has to pay a price q (0 ≤ q < R) for an item. Let

hw denote the waiting cost per unit time of a customer in the system.

5.3.2 Individual equillibrium strategy

Define

F1(p) = R− q − hwE(W ).

We shall find an equillibrium strategy according to which the customers join

the system.

5.3.3 Revenue maximization

This is concerned with pricing of the item served to the customer. We have

to find an optimal price q to maximize the revenue of the server given by

F2(q) = peqπππ
∗D1eee− h1Es − h2Eit − cEipo

where

h1 : holding cost/customer/unit time

h2 : holding cost/item/unit time

c : switching on cost of inventory processing each time it is turned on.

pe : Individual equillibrium strategy corresponding to q.
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5.3.4 Social optimal strategy

Next we consider social optimal strategy. For a given price q and a joining

probability p, the surplus of all customers is S1 = πππ∗pD1e(R − q − hwE(w))

and the server revenue is S2 = pqπππ∗D1e− h1Es − h2Eit − cEipo.
Therefore, the expected social welfare per unit time is,

F3(p) = S1 + S2

= π∗pD1e(R− hwE(W ))− h1Es − h2Eit − cEipo

5.3.5 Numerical results

Fix N = 3, L = 2,α = β =
[

1 0
]
, γ =

[
0.8 0.2

]
, T =

[
−50 50

0 −50

]
,

S =

[
−80 80

0 −80

]
, U =

[
−150 150

0 −150

]
,R = 75, q = 60, hw = 50, h1 =

2, h2 = 1, c = 30.

We find the individual optimum and social optimum corresponding to the

above parameters.

p Ewt Es Eit Eipo F1 F3

0.1 0.5045 1.0248 1.8794 0.6445 -10.2243 76.2876
0.2 0.2571 1.0514 1.7601 1.2429 2.1430 238.8498
0.3 0.1762 1.0806 1.6421 1.7921 6.1878 339.5609
0.4 0.1368 1.1129 1.5254 2.2882 8.1599 472.8811
0.5 0.1138 1.1486 1.4102 2.7271 9.3077 607.5573
0.6 0.0991 1.1881 1.2965 3.1041 10.0449 743.7425
0.7 0.0891 1.2316 1.1848 3.4149 10.5461 881.5515
0.8 0.0821 1.2794 1.0752 3.6551 10.8954 1021.0406
0.9 0.0773 1.3325 0.9680 3.8207 11.1356 1162.1853
1 0.0743 1.3925 0.8635 3.9081 11.2870 1304.8471

Table 5.1: Effect of p on various performance measures, when D0 =
(−20), D1 = (20)
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p Ewt Es Eit Eipo F1 F3

0.1 0.4052 1.0312 1.8494 0.7985 -5.2584 108.9862
0.2 0.2084 1.0657 1.7009 1.5239 4.5807 273.3550
0.3 0.1446 1.1045 1.5545 2.1694 7.7701 439.4306
0.4 0.1138 1.1486 1.4102 2.7271 9.3077 607.5573
0.5 0.0962 1.1986 1.2684 3.1882 10.1881 778.0391
0.6 0.0853 1.2549 1.1297 3.5441 10.7364 951.0852
0.7 0.0783 1.3187 0.9946 3.7865 11.0843 1126.7485
0.8 0.0743 1.3925 0.8635 3.9081 11.2869 1304.8471
0.9 0.0728 1.4827 0.7371 3.9027 11.3611 1484.8406
1 0.0741 1.6035 0.6156 3.7651 11.2950 1665.6008

Table 5.2: Effect of p on various performance measures, when D0 =
(−25), D1 = (25)

p Ewt Es Eit Eipo F1 F3

0.1 0.3392 1.0378 1.8196 0.9496 -1.9586 141.7398
0.2 0.1762 1.0806 1.6421 1.7921 6.1878 339.5609
0.3 0.1240 1.1303 1.4676 2.5151 8.8023 540.0395
0.4 0.0991 1.1881 1.2965 3.1041 10.0449 743.7425
0.5 0.0853 1.2549 1.1297 3.5441 10.7365 951.0857
0.6 0.0773 1.3324 0.9680 3.8207 11.1356 1162.1853
0.7 0.0734 1.4260 0.8124 3.9215 11.3322 1376.6660
0.8 0.0732 1.5501 0.6636 3.8363 11.3401 1593.3114
0.9 0.0777 1.7424 0.5222 3.5570 11.1132 1809.3387
1 0.0898 2.1045 0.3886 3.0780 10.5080 2018.3028

Table 5.3: Effect of p on various performance measures, when D0 =
(−30), D1 = (30)

In Tables 5.1, 5.2 and 5.3, Ewt denotes the expected waiting time of an

arbitrary customer. We can see that the Ewt decreases as p increases upto

some p′ (shown in bold letters) and after that it increases. This is due to the

effect of N -policy. As p increases (upto p′), the number of customers in the

system hit N more fast so that the server stops processing of service items

and start serving customers and hence Ewt decreases. When p becomes p′,

Ewt starts increasing due to the diminished effect of N . Hence F1 increases
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as p increases upto p′ and after that it decreases. As we expect, Es increases

as p increases. As p increases, Eit decreases, since larger number of customers

are served in a cycle. Eipo increases upto p′, as p increases. This is due to

the effect of N -policy. As p increases, the number of customers in the system

hit N more rapidly and hence customers leave the system quickly sothat the

server can switch on to processing at a faster rate. When p increases beyond

p′, Eipo decreases as p increases due to the diminished effect of N .

From Tables 5.1, 5.2 and 5.3, we can see that F1 is strictly increasing on

[0,p′] and strictly decreasing on [p′,1]. Thus,

1. If F1(p′) ≤ 0, then F1(p) ≤ 0 for all p ∈ [0, 1]. In this case, the maximum

benefit is negative which implies that customers do not join the system

even if there is no customer in the system.

2. If F1(0) > 0 and F1(1) > 0, then F1(p) > 0 for all p ∈ [0, 1]. In this case,

the customers prefer to join the system, because the minimal benefit is

positive.

3. If, F1(p′) ≥ 0 and F1(0) < 0, ∃ pe ∈ [0, p′] such that F1(pe) = 0.

4. If F1(p′) ≥ 0 and F1(1) < 0, ∃ pe ∈ [p′, 1] such that F1(pe) = 0.

5. If F1(p′) ≥ 0, F1(0) < 0 and F1(1) < 0 then ∃ pe ∈ [0, p′] such that

F1(pe) = 0 and p′e ∈ [p′, 1] such that F1(p′e) = 0.

Hence, if, either of the cases 3,4 and 5 happen, then the customers are indif-

ferent between joining and balking the system. Suppose that, case 3 holds.

Then the above discussions imply that when the joining probability p adopted

by other customers is greater than pe, the expected net benefit of an arriv-

ing customer is positive provided he joins, thus the unique best response is 1.

Conversely, the unique best response is 0 if p < pe because then the expected

net benefit is negative. If p = pe, every strategy is the best response since the

expected net benefit is always 0. This behaviour illustrates a situation that
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an individuals best response is an increasing function of the strategy selected

by other customers. Therefore, we expect a crowd situation in this case due

to the effect of N -policy.

Next, suppose that, case 4 holds. Then the above discussions imply that

when the joining probability p adopted by other customers is smaller than

pe, the expected net benefit of an arriving customer is positive provided he

joins, thus the unique best response is 1. Conversely, the unique best response

is 0 if p > pe because then the expected net benefit is negative. If p = pe,

every strategy is the best response since the expected net benefit is always 0.

This behaviour illustrates a situation that an individuals best response is a

decreasing function of the strategy selected by other customers. Therefore, we

can avoid a crowd situation. This is due to the diminished effect of N -policy.

Next, suppose that case 5 holds, then the above discussions imply that

when the joining probability p adopted by other customers is greater than pe

and less than p′e, the expected net benefit of an arriving customer is positive

provided he joins, thus the unique best response is 1. Conversely, the unique

best response is 0 if p < pe or p > p′e because then the expected net benefit

is negative. If p = pe or p = p′e, every strategy is the best response since the

expected net benefit is always 0.

p ↓ q → 10 20 30 40 50 60 70 75
0.02 -50.11 -60.11 -70.11 -80.11 -90.11 -100.11 -110.11 -120.11
0.1 39.78 29.78 19.78 9.78 -0.22 -10.22 -20.22 -30.22
0.2 52.14 42.14 32.14 22.14 12.14 2.14 -7.86 -17.86
0.3 56.19 46.19 36.19 26.19 16.19 6.19 -3.81 -13.81
0.4 58.16 48.16 38.16 28.16 18.16 8.16 -1.84 -11.84
0.5 59.31 49.31 39.31 29.31 19.31 9.31 -0.69 -10.69
0.6 60.04 50.04 40.04 30.04 20.04 10.04 0.04 -9.96
0.7 60.55 50.55 40.55 30.55 20.55 10.55 0.55 -9.45
0.8 60.90 50.90 40.90 30.90 20.90 10.90 0.90 -9.1
0.9 61.14 51.14 41.14 31.14 21.14 11.14 1.14 -8.86
1 61.29 51.29 41.29 31.29 21.29 11.29 1.29 -8.71

Table 5.4: Individual optimum when D0 = (−20), D1 = (20)
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p ↓ q → 10 20 30 40 50 60 70 75
0.02 -25.12 -35.12 -45.12 -55.12 -65.12 -75.12 -85.12 -95.12
0.1 44.74 34.74 24.74 14.74 4.74 -5.26 -15.26 -25.26
0.2 54.58 44.58 34.58 24.58 14.58 4.58 -5.42 -15.42
0.3 57.77 47.77 37.77 27.77 17.77 7.77 -2.23 -12.23
0.4 59.31 49.31 39.31 29.31 19.31 9.31 -0.69 -10.69
0.5 60.19 50.19 40.19 30.19 20.19 10.19 0.19 -9.81
0.6 60.74 50.74 40.74 30.74 20.74 10.74 0.74 -9.26
0.7 61.08 51.08 41.08 31.08 21.08 11.08 1.08 -8.92
0.8 61.29 51.29 41.29 31.29 21.29 11.29 1.29 -8.71
0.9 61.36 51.36 41.36 31.36 21.36 11.36 1.36 -8.64
1 61.30 51.30 41.30 31.30 21.30 11.30 1.30 -8.70

Table 5.5: Individual optimum when D0 = (−25), D1 = (25)

p ↓ q → 10 20 30 40 50 60 70 75
0.02 -8.46 -18.46 -28.46 -38.46 -48.46 -58.46 -68.46 -78.46
0.1 48.04 38.04 28.04 18.04 8.04 -1.96 -11.96 -21.96
0.2 56.19 46.19 36.19 26.19 16.19 6.19 -3.81 -13.81
0.3 58.80 48.80 38.80 28.80 18.80 8.80 -1.20 -11.20
0.4 60.05 50.05 40.05 30.05 20.05 10.05 0.05 -9.95
0.5 60.74 50.74 40.74 30.74 20.74 10.74 0.74 -8.26
0.6 61.14 51.14 41.14 31.14 21.14 11.14 1.14 -8.86
0.7 61.33 51.33 41.33 31.33 21.33 11.33 1.33 -8.67
0.8 61.34 51.34 41.34 31.34 21.34 11.34 1.34 -8.86
0.9 61.12 51.12 41.12 31.12 21.12 11.12 1.12 -8.88
1 60.51 50.51 40.51 30.51 20.51 10.51 0.51 -9.49

Table 5.6: Individual optimum when D0 = (−30), D1 = (30)

From Tables 5.4, 5.5 and 5.6, we get the values of F1 corresponding to

different values of p and q when the arrival rates are 20, 25 and 30 respectively.

In our experiment, ∃ a q′ such that F1(p′) ≥ 0, F1(0) < 0, F1(1) ≥ 0 and

∃ exactly one equillibrium pe in (0, p′] for all q ∈ [0, q′) where 0 < q′ < R (in

Table 5.6, q′ = 70.51). Also pe is strictly increasing for all q in [0, q′)(in Fig

5.1, (pe, 0) corresponding to different q’s are plotted using squares). This is

due to the effect of N -policy. Also, ∃ q′′, where q′ ≤ q′′ < R such that when
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q′ ≤ q ≤ q′′, ∃ pe ∈ [0, p′] and p′e ∈ [p′, 1] such that pe is strictly increasing

and p′e is strictly decreasing in [q′, q′′] (in Table 5.6, q′′ = 71.34). This case

is shown in Fig 5.2. When q ∈ (q′′, R], F1(p) < 0 for p ∈ [0, 1] and there is

no equillibrium probability. Hence, if q increases (upto q′), more customers

are supposed to join the queue, since the server can start service only if the

number of customers in the system hit N . When q increases from q′′ to R,

customers do not join the system since the maximum benefit is negative.
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Figure 5.1: Effect of q (< q′) on individual equillibrium strategy

Fig 5.1 shows individual equillibrium probabilities pe as q varies (0 < q <

q′), corresponding to different arrival rates. We can see that pe increases as q

increases for the three different arrival rates. But pe decreases as arrival rate

increases. Fig 5.2 shows individual equillibrium probabilities pe, p
′
e as q varies

(q′ ≤ q ≤ q′′) corresponding to different arrival rates. We see that pe increases
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Figure 5.2: Effect of q (q′ ≤ q ≤ q′′) on individual equillibrium strategy

and p′e decreases as q increases and coincides when q = q′′ for three different

arrival rates.

Tables 5.7 and 5.8 show the effect of q on revenue of the server. Here, we

see that F2 decreases as q increases upto q′. This happens because when q

increases upto q′, pe increases and hence the rate of hitting N becomes faster

so that Eipo increases. But we see that when q increases in [q′, q′′], after a

certain q-value, revenue function increases if pe is the joining probability. This

is due to the diminished effect of N -policy. Here, in all the cases, maximum

revenue occur corresponding to q = 10 and the revenue decreases if a higher

q is levied upto q′. But when q increases beyond q′, after a certain q-value,

revenue increases if a higher q is levied.

Again, from Tables 5.1, 5.2 and 5.3, we can see that F3 increases as p
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q
D0 = (−20), D1 = (20) D0 = (−25), D1 = (25) D0 = (−30), D1 = (30)
pe F2 pe F2 pe F2

10 0.0646 -15.31 0.0327 -11.22 0.0320 -12.45
20 0.0735 -16.82 0.0477 -14.45 0.0461 -16.08
30 0.0824 -18.32 0.0628 -17.67 0.0603 -19.67
40 0.0913 -19.82 0.0778 -20.81 0.0745 -23.20
50 0.1018 -21.56 0.0929 -23.92 0.0886 -26.65
60 0.1827 -34.50 0.1535 -35.91 0.1240 -35.01
70 0.5932 -84.23 0.4784 -84.63 0.3960 -84.29

Table 5.7: Revenue Maximization (0 < q < q′)

D0, D1 q pe F2 p′e F2

(-20),(20) 71.29( q′ = q′′) 1 -100.89 1 -100.89

71.30(q′) 0.8143 -100.76 1 -91.78
(-25),(25) 71.33 0.8571 -99.87 0.9500 -95.52

71.36(q′′) 0.9000 -98.28 0.9000 -98.28

70.51(q′) 0.4667 -92.10 1 -66.92
71 0.5650 -98.98 0.9197 -80.85

(-30),(30) 71.15 0.6053 -100.39 0.8864 -85.567
71.30 0.6842 -100.66 0.8182 -93.25

71.34(q′′) 0.8000 -94.85 0.8000 -94.85

Table 5.8: Revenue Maximization (q′ ≤ q ≤ q′)

inreases. But the rate of increase decreases as p increases. Here, the social

optimum corresponds to p = 1 (ps) in all cases.

5.4 Special case: The system in normal mode

5.4.1 Waiting time Analysis

To find the waiting time of a customer who joins for service at an epoch in the

long run, we have to consider different possibilities depending on the status of

server at that time. Let E denote the event the system is working in normal

mode. Let W (t|E) be the conditional waiting time of a customer who arrives
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at time t and W ∗(s|E) be the corresponding conditional LST.

Let wh,i,j,k,l denote the probabaility that the tagged customer finds the
system in the state (h, i, j, k, l) immediately after his arrival when the system
is in normal mode.
Then

wh,0,1,k,l =
∑n
l′=1

pd
(1)

l′l
−d(0)

l′l′−(1−p)δl′−Skk
xh−1,0,1,k,l′ , 2 ≤ h ≤ N − 1 orh ≥ N + 1,

1 ≤ k ≤ m2, 1 ≤ l ≤ n

wN,0,1,k,l =
∑n
l′=1

pd
(1)

l′l
−d(0)

l′l′−(1−p)δl′−Skk
xN−1,0,1,k,l′ , 1 ≤ k ≤ m2, 1 ≤ l ≤ n

wh,i,1,k,l =
∑n
l′=1

pd
(1)

l′l
−d(0)

l′l′−(1−p)δl′−Ukk
xh−1,i,1,k,l′ , 2 ≤ h ≤ N − 1, 1 ≤ L−N + h− 1,

1 ≤ k ≤ m3, 1 ≤ l ≤ n

wh,i,1,k,l =
∑n
l′=1

pd
(1)

l′l
−d(0)

l′l′−(1−p)δl′−Ukk
xh−1,i,1,k,l′ , h ≥ N + 1, 1 ≤ i ≤ L, 1 ≤ k ≤ m3,

1 ≤ l ≤ n

wN,i,1,k,l =
∑n
l′=1

pd
(1)

l′l
−d(0)

l′l′−(1−p)δl′−Skk
xN−1,i,1,k,l′ , 1 ≤ i ≤ L, 1 ≤ k2 ≤ m2, 1 ≤ l ≤ n

Case I: L ≤ N

Case (1)

Let E1 denote the event that the tagged customer immediately after his

arrival finds the system in the state (r + 1, 0, 1, k, l), where r ≥ 1; 1 ≤ k ≤
m2; 1 ≤ l ≤ n. In this case, processed item is not available to any customer.

Thus waiting time is the sum of residual service time and r service time each

following PH(βββ, S).

W ∗(s|E,E1) = e′e′e′u(sI − S)−1SSS0(βββ(sI − S)−1SSS0)r

Case (2)

Let E2 denote the event that the tagged customer immediately after his

arrival finds the system in the state (r+ 1, i, 1, k, l), where 1 ≤ r ≤ N − 1; 1 ≤
i ≤ L−N +r; 1 ≤ k ≤ m3; 1 ≤ l ≤ n. In this case, processed item is available

to i customers. Thus waiting time is the sum of residual service time and i−1
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service time each following PH(γγγ, U) and r+ 1− i service time each following

PH(βββ, S).

W ∗(s|E,E2) = e′e′e′u(sI − U)−1UUU0(γγγ(sI − U)−1UUU0)i−1(βββ(sI − S)−1SSS0)r+1−i

Case (3)

Let E3 denote the event that the tagged customer immediately after his

arrival finds the system in the state (r + 1, i, 1, k, l), where r ≥ N ; 1 ≤ i ≤
L; 1 ≤ k ≤ m3; 1 ≤ l ≤ n. In this case, processed item is available to i

customers. Thus waiting time is the sum of residual service time and i − 1

service time each following PH(γγγ, U) and r+ 1− i service time each following

PH(βββ, S).

W ∗(s|E,E3) = e′e′e′u(sI − U)−1UUU0(γγγ(sI − U)−1UUU0)i−1(βββ(sI − S)−1SSS0)r+1−i

Thus the conditional LST of the waiting time,

W ∗(s|E) =
1

d3

[ ∞∑
r=1

m2∑
k=1

n∑
l=1

W ∗(s|E,E1)wr+1,0,1,k,l+

N−1∑
r=1

L−N+r∑
i=1

m3∑
k=1

n∑
l=1

W ∗(s|E,E2)

wr+1,i,1,k,l +

∞∑
r=N

L∑
i=1

m3∑
k=1

n∑
l=1

W ∗(s|E,E3)wr+1,i,1,k,l

]
(5.11)

where

d3 =

∞∑
r=1

m2∑
k=1

n∑
l=1

wr+1,0,1,k,l +

N−1∑
r=1

L−N+r∑
i=1

m3∑
k=1

n∑
l=1

wr+1,i,1,k,l+

∞∑
r=N

L∑
i=1

m3∑
k=1

n∑
l=1

wr+1,i,1,k,l (5.12)

Case II: L > N

Case(1)

Let F1 denote the event that the tagged customer immediately after his
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arrival finds the system in the state (r + 1, 0, 1, k, l), where r ≥ 1; 1 ≤ k ≤
m2; 1 ≤ l ≤ n. In this case, processed item is not available to any customer.

Thus waiting time is the sum of residual service time and r service time each

following PH(βββ, S).

W ∗(s|E,F1) = e′e′e′u(sI − S)−1SSS0(βββ(sI − S)−1SSS0)r

Case(2)

Let F2 denote the event that the tagged customer immediately after his

arrival finds the system in the state (r+ 1, i, 1, k, l), where 1 ≤ r ≤ N − 1; 1 ≤
i ≤ L−N + r; 1 ≤ k ≤ m3; 1 ≤ l ≤ n.

Case(i), 1 ≤ i < r + 1

In this case, processed item is available to i customers. Thus the conditional

LST,

W ∗(s|E,F2) = e′e′e′u(sI − U)−1UUU0(γγγ(sI − U)−1UUU0)i−1(βββ(sI − S)−1SSS0)r+1−i

Case(ii), r + 1 ≤ i ≤ L−N + r

In this case, processed item is available to all the r + 1 customers. Thus the

conditional LST,

W ∗(s|E,F2) = e′e′e′u(sI − U)−1UUU0(γγγ(sI − U)−1UUU0)r

Case(3)

Let F3 denote the event that the tagged customer immediately after his

arrival finds the system in the state (r + 1, i, 1, k, l), where r ≥ N ; 1 ≤ i ≤
L; 1 ≤ k ≤ m3; 1 ≤ l ≤ n.

Case (i), N ≤ r ≤ L
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Case(a), 1 ≤ i < r + 1

In this case, processed item is available to i customers. Thus the condi-

tional LST,

W ∗(s|E,F3) = e′e′e′u(sI − U)−1UUU0(γγγ(sI − U)−1UUU0)i−1(βββ(sI − S)−1SSS0)r+1−i

Case(b), r + 1 ≤ i ≤ L
In this case, processed item is available to all the r + 1 customers. Thus the

conditional LST,

W ∗(s|E,F3) = e′e′e′u(sI − U)−1UUU0(γγγ(sI − U)−1UUU0)r

Case (ii), r ≥ L+ 1

In this case, processed item is available to i customers. Thus the conditional

LST,

W ∗(s|E,F3) = e′e′e′u(sI − U)−1UUU0(γγγ(sI − U)−1UUU0)i−1(βββ(sI − S)−1SSS0)r+1−i

Thus the conditional LST of the waiting time,

W ∗(s|E) =
1

d4

[ ∞∑
r=1

m2∑
k=1

n∑
l=1

W ∗(s|E,F1)wr+1,0,1,k,l +

N−1∑
r=1

L−N+r∑
i=1

m3∑
k=1

n∑
l=1

W ∗(s|E,F2)

wr+1,i,1,k,l +

∞∑
r=N

L∑
i=1

m3∑
k=1

n∑
l=1

W ∗(s|E,F3))wr+1,i,1,k,l

]
(5.13)

where

d4 =

∞∑
r=1

m2∑
k=1

n∑
l=1

wr+1,0,1,k,l+

N−1∑
r=1

L−N+r∑
i=1

m3∑
k=1

n∑
l=1

wr+1,i,1,k,l+

∞∑
r=N

L∑
i=1

m3∑
k=1

n∑
l=1

wr+1,i,1,k,l

(5.14)
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FixN = 3, L = 2,ααα = βββ =
[

1 0
]
,γγγ =

[
0.8 0.2

]
, T =

[
−50 50

0 −50

]
,

S =

[
−80 80

0 −80

]
, U =

[
−150 150

0 −150

]
,R = 75, q = 60, hw = 50, h1 =

2, h2 = 1, c = 30.

p Ewt Es Eit Eipo F1 F3

0.1 0.0485 1.5214 0.6972 19.3813 12.5747 -440.0284

0.2 0.0499 1.5604 0.6564 18.3266 12.5034 -263.5605

0.3 0.0512 1.6081 0.6117 17.2386 12.4386 -86.3546

0.4 0.0524 1.6657 0.5640 16.1240 12.3798 91.4217

0.5 0.0535 1.7341 0.5145 14.9939 12.3259 269.4597

0.6 0.0545 1.8144 0.4645 13.8595 12.2749 447.4200

0.7 0.0555 1.9081 0.4153 12.7308 12.2237 624.9757

0.8 0.0566 2.0174 0.3677 11.6154 12.1681 801.8239

0.9 0.0579 2.1455 0.3224 10.5189 12.1027 977.6669

1 0.0596 2.2971 0.2796 9.4448 12.0200 1152.1810

Table 5.9: Effect of p on various performance measures, when D0 =
(−20), D1 = (20)

From Table 5.9, we see that Ewt increases as p increases. This happens

since when the system is working in normal mode, the number of customers

accumulating in the system increases with increasing value of p. As p increases

F1 decreases consequent to increase in Ewt. As we expect, Es increases as p

increases. As p increases, Eit decreases, since larger number of customers get

served in a cycle. Eipo decreases as p increases. This happens due to the fact

that when p increases more customers accumulate in the system and hence

customers leave the system slowly so that the server switch on to processing

at a slower rate. Also from Table 5.9, we see that F3 increases as p increases.

Thus the social optimum corresponds to p = 1.

Here when q < 72.02, the expected net benefit is always positive. When

q increases beyond 72.02, (see Table 5.9), we can find a pe ∈ [0, 1] such that

F1(pe) = 0 and pe is decreasing (see Fig 5.3). Here when the joining probability

p adopted by other customers is smaller than pe, the expected net benefit of an



176
On a Queueing System with Processing of Service Items under Vacation and

N -policy with Impatient Customers

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

F
1

q=72.1
q=72.2
q=72.3
q=72.4
q=72.5

Figure 5.3: Effect of q on individual equillibrium strategy when D0 =
(−20), D1 = (20)

arriving customer is positive provided he joins. Thus the unique best response

is 1. Conversely, the unique best response is 0 if p > pe since, the expected

net benefit is negative. If p = pe, every strategy is the best response since the

expected net benefit is always 0. This behaviour illustrates a situation that

an individuals best response is a decreasing function of the strategy selected

by other customers. Therefore, we can avoid a crowd situation.

q pe F2

72.1 0.9000 -302.1809

72.2 0.7400 -357.9769

72.3 0.5500 -425.8322

72.4 0.3667 -491.4621

72.5 0.2000 -549.3741

Table 5.10: Effect of q on Revenue function

Also, in this case revenue function F2 decreases as q increases. This hap-

pens due to the fact that as q increases, the equillibrium probability pe de-

creases and hence Eipo increases (see Table 5.10).



Chapter 6

A Two-Server Queueing

System with Processing of

Service Items by a Server

This chapter is concerned with a two server queueing system in which Server

1 (S1) provides service alone, whereas Server 2 (S2) provides service and also

processes the item required (we call this additional item or inventory) to serve

the customers. Each customer requires exactly one additional item for his

service. In the absence of this additional item service cannot be provided.

Therefore S2 keeps processing the item until it hits a threshold value L. At

this epoch he switches to serve customers, if any waiting. However, when the

additional item level reduces to s, S2 returns to process items. His service rate

is higher than that of S1; both servers provide service according to phase type

1. Presented in the International Conference on Advances in Applied Probability and
Stochastic Processes organised by the Centre for Research, Department of Mathematics,
CMS College, Kottayam held from 07-10 January 2019.
2. Some results of this chapter are included in the following paper.
A. Krishnamoorthy, Divya V.: A Two-Server Queueing System with Processing of
Service Items by a Server (communicated).
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distributed random variable. Processing of each additional item requires a

Phase type distributed amount of time, independent of the arrival and service

processes.

6.1 Model Description and Mathematical formula-

tion

We consider a two-server queueing system in which the customers arrive ac-

cording to Markovian Arrival Process with representation (D0, D1) of order n.

Each customer is to be provided with a processed item at the end of his service.

S1 is always available to the customers provided processed item is available,

whereas S2 produces items for service(inventory) for future use whenever the

inventory level drops to a threshold s. Until the inventory level reaches L,

(the maximum permitted level) he does not provide service to customers. The

inventory processing time follows phase type distribution PH(ααα, T ) of order

m1. After processing L items, S2 starts serving customers if any waiting; else

stays idle. S1 is dedicated to service only. Servers provide service only if there

are processed items. Also, when a customer arrives to an empty system, S1

provides him service and S2 remains idle even he is not engaged in processing

the inventory. The service time at S2 follows phase type distribution PH(βββ, S)

of order m2 and that at S1 follows phase type distribution PH(βββ, θS) of order

m2, 0 < θ < 1. If the inventory level drops to level s after a service completion

by S2, then he starts processing items. If the inventory level drops to level s

due to a service completion by S1, then the customer served by S2 is shifted to

S1 for the remaining part of his service and S2 goes for processing items. The

arrival process is independent of the inventory processing and service process.
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6.1.1 The QBD process

The model described above can be studied as a LIQBD process. First we

introduce the following notations:

At time t:

N(t) : the number of customers in the system

I(t): the number of processed items in the inventory

J(t) : status ofS2 =

{
0, whenS2 is processing items

1, whenS2 is serving a customer

K1(t) =

{
processing/service phase ofS2

0, whenS2 is idle

K2(t) =

{
service phase ofS1

0, whenS1 is idle

M(t) : the phase of arrival of the customer.

It is easy to verify that {(N(t), I(t), J(t),K1(t),K2(t),M(t)) : t ≥ 0} is a

LIQBD with state space:

(i) no customer in the system

l(0) = {(0, i, 0, k1, 0, p) : 0 ≤ i ≤ L − 1; 1 ≤ k1 ≤ m1; 1 ≤ p ≤ n} ∪
{(0, i, 0, 0, p) : s+ 1 ≤ i ≤ L; 1 ≤ p ≤ n}
(ii) when there is 1 customer in the system

l(1) = {(1, 0, 0, k1, 0, p) : 1 ≤ k1 ≤ m1; 1 ≤ p ≤ n} ∪ {(1, i, 0, k1, k2, p) : 1 ≤ i ≤
L − 1; 1 ≤ k1 ≤ m1; 1 ≤ k2 ≤ m2; 1 ≤ p ≤ n} ∪ {(1, i, 0, k2, p) : s + 1 ≤ i ≤
L; 1 ≤ k2 ≤ m2; 1 ≤ p ≤ n} ∪ {(1, i, 1, k1, 0, p) : s + 1 ≤ i ≤ L − 1; 1 ≤ k1 ≤
m2; 1 ≤ p ≤ n}
(iii) when there are h customers in the system, h ≥ 2:

l(h) = (h, 0, 0, k1, 0, p) : 1 ≤ k1 ≤ m1; 1 ≤ p ≤ n} ∪ {(h, i, 0, k1, k2, p) : 1 ≤ i ≤
L− 1; 1 ≤ k1 ≤ m1; 1 ≤ k2 ≤ m2; 1 ≤ p ≤ n} ∪ {(h, i, 1, k1, k2, p) : s+ 1 ≤ i ≤
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L; 1 ≤ k1, k2 ≤ m2; 1 ≤ p ≤ n}
Note that when K1(t) = 0, J(t) need not be considered.

The infinitesimal generator of this CTMC is

Q̄ =



A00 A01

A10 A11 A12

A21 A1 A0

A2 A1 A0

. . .
. . .

. . .


.

where A00, A01, A10, A11, A12, A21 represent transitions within level 0, from

level 0 to level 1, from level 1 to level 0, within level 1, from level 1 to level 2,

from level 2 to level 1 respectively; A0 represents transitions from level h to

level h+1 for h ≥ 2, A1 represents transitions within the level h for h ≥ 2 and

A2 represents transitions from level h to h−1 for h ≥ 3. The boundary blocks

A00, A01, A10, A11, A12, A21 are of orders (s+1)m1n+(L−s−1)(1+m1)n+n,

((s+1)m1n+(L−s−1)(1+m1)n+n)× (m1n+sm1m2n+(L−s−1)(2m2 +

m1m2)n+m2n),(m1n+ sm1m2n+ (L− s− 1)(2m2 +m1m2)n+m2n)× ((s+

1)m1n+(L−s−1)(1+m1)n+n), m1n+sm1m2n+(L−s−1)(2m2+m1m2)n+

m2n, (m1n+sm1m2n+(L−s−1)(2m2 +m1m2)n+m2n)×(m1n+sm1m2n+

(L− s− 1)(m1m2n+m2
2n) +m2

2n), (m1n+ sm1m2n+ (L− s− 1)(m1m2n+

m2
2n) + m2

2n) × (m1n + sm1m2n + (L − s − 1)(2m2 + m1m2)n + m2n) re-

spectively. A0, A1, A2 are square matrices of order m1n+ sm1m2n+ (L− s−
1)(m1m2n+m2

2n) +m2
2n.

Define the entries of A
(h2,i2,j2,k2,l2)
pq(h1,i1,j1,k1,l1)

as transition submatrices which con-

tains transitions of the form (p, h1, i1, j1, k1, l1) → (q, h2, i2, j2, k2, l2), where

q = 0 or 1, when p = 0; q = 0, 1 or 2, when p = 1 and q = 1, when p = 2.

Define the entries of A
(h2,i2,j2,k2,l2)
0(h1,i1,j1,k1,l1)

, A
(h2,i2,j2,k2,l2)
1(h1,i1,j1,k1,l1)

, A
(h2,i2,j2,k2,l2)
2(h1,i1,j1,k1,l1)

as transi-

tion submatrices which contains transitions of the form (g, h1, i1, j1, k1, l1) →
(g + 1, h2, i2, j2, k2, l2), where g ≥ 2; (g, h1, i1, j1, k1, l1) → (g, h2, i2, j2, k2, l2),
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where g ≥ 2; (g, h1, i1, j1, k1, l1)→ (g− 1, h2, i2, j2, k2, l2), where g ≥ 3 respec-

tively. Since none or one event alone could take place in a short interval of time

with positive probability, in general, a transition such as (g1, h1, i1, j1, k1, l1)→
(g2, h2, i2, j2, k2, l2) has positive rate only for exactly one of g2, h2, i2, j2, k2, l2

different from g1, h1, i1, j1, k1, l1.

A
(i2,j2,k

′
1,k
′
2,l2)

00(i1,j1,k1,k2,l1)
=



TTT 0ααα⊗ In i2 = i1 + 1, 0 ≤ i1 ≤ L− 2; j1 = j2 = 0; 1 ≤ k1, k′1 ≤ m1;

k2 = k′2 = 0; 1 ≤ l1, l2 ≤ n
TTT 0 ⊗ In i1 = L− 1, i2 = L; j1 = j2 = 0; 1 ≤ k1 ≤ m1,

k′1 = 0; k2 = k′2 = 0; 1 ≤ l1, l2 ≤ n
T ⊕D0 i1 = i2, 0 ≤ i1 ≤ L− 1; j1 = j2 = 0; 1 ≤ k1, k′1 ≤ m1;

k2 = k′2 = 0; 1 ≤ l1, l2 ≤ n
D0 i1 = i2, s+ 1 ≤ i1 ≤ L; k1 = k′1 = 0; k2 = k′2 = 0;

1 ≤ l1, l2 ≤ n

A
(i2,j2,k

′
1,k
′
2,l2)

01(i1,j1,k1,k2,l1)
=



Im1
⊗D1 i1 = i2 = 0; j1 = j2 = 0; 1 ≤ k1, k′1 ≤ m1;

k2 = k′2 = 0; 1 ≤ l1, l2 ≤ n
Im1 ⊗ (βββ ⊗D1) i1 = i2, 1 ≤ i1 ≤ L− 1; j1 = j2 = 0;

1 ≤ k1, k′1 ≤ m1; k2 = 0;

1 ≤ k′2 ≤ m2; 1 ≤ l1, l2 ≤ n
βββ ⊗D1 i1 = i2, s+ 1 ≤ i1 ≤ L; k1 = k′1 = 0;

k2 = 0; 1 ≤ k′2 ≤ m2; 1 ≤ l1, l2 ≤ n
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A
(i2,j2,k

′
1,k2,l2)

10(i1,j1,k1,k2,l1)
=



Im1 ⊗ (θSSS0 ⊗ In) i2 = i1 − 1, 1 ≤ i1 ≤ L− 1; j1 = j2 = 0;

1 ≤ k1, k′1 ≤ m1, 1 ≤ k2 ≤ m2; k′2 = 0;

1 ≤ l1, l2 ≤ n
θSSS0ααα⊗ In i1 = s+ 1, i2 = s; j2 = 0; k1 = 0, 1 ≤ k′1 ≤ m1;

1 ≤ k2 ≤ m2; k′2 = 0; 1 ≤ l1, l2 ≤ n
θSSS0 ⊗ In i2 = i1 − 1, s+ 2 ≤ i1 ≤ L; k1 = k′1 = 0;

1 ≤ k2 ≤ m2; k′2 = 0; 1 ≤ l1, l2 ≤ n
SSS0ααα⊗ In i1 = s+ 1, i2 = s; j1 = 1, j2 = 0; 1 ≤ k1 ≤ m2,

1 ≤ k′1 ≤ m1; k2 = k′2 = 0; 1 ≤ l1, l2 ≤ n
SSS0 ⊗ In i2 = i1 − 1, s+ 2 ≤ i1 ≤ L− 1; j1 = 1;

1 ≤ k1 ≤ m2, k
′
1 = 0; k2 = k′2 = 0;

1 ≤ l1, l2 ≤ n

A
(i2,j2,k

′
1,k
′
2,l2)

11(i1,j1,k1,k2,l1)
=



TTT 0(ααα⊗ βββ)⊗ In i1 = 0, i2 = 1; j1 = j2 = 0; 1 ≤ k1, k′1 ≤ m1;

k2 = 0, 1 ≤ k′2 ≤ m2; 1 ≤ l1, l2 ≤ n
TTT 0ααα⊗ Im2n 1 ≤ i1 ≤ L− 2, i2 = i1 + 1; j1 = j2 = 0;

1 ≤ k1, k′1 ≤ m1; 1 ≤ k2, k′2 ≤ m2; 1 ≤ l1, l2 ≤ n
TTT 0 ⊗ Im2n i1 = L− 1, i2 = L; j1 = 0; 1 ≤ k1 ≤ m1, k

′
1 = 0;

1 ≤ k2, k′2 ≤ m2; 1 ≤ l1, l2 ≤ n
T ⊕D0 i1 = i2 = 0; j1 = j2 = 0; 1 ≤ k1, k′1 ≤ m1;

k2 = k′2 = 0; 1 ≤ l1, l2 ≤ n
θS ⊕D0 i1 = i2, s+ 1 ≤ i1 ≤ L; k1 = k′1 = 0;

1 ≤ k2, k′2 ≤ m2; 1 ≤ l1, l2 ≤ n
S ⊕D0 i1 = i2, s+ 1 ≤ i1 ≤ L− 1; j1 = j2 = 1;

1 ≤ k1, k′1 ≤ m2; k2 = k′2 = 0;

1 ≤ l1, l2 ≤ n
T ⊕ θS ⊕D0 i1 = i2, 1 ≤ i1 ≤ L− 1; j1 = j2 = 0;

1 ≤ k1, k′1 ≤ m1; 1 ≤ k2, k′2 ≤ m2; 1 ≤ l1, l2 ≤ n
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A
(i2,j2,k

′
1,k
′
2,l2)

12(i1,j1,k1,k2,l1)
=



Im1 ⊗D1 i1 = i2 = 0; j1 = j2 = 0; 1 ≤ k1, k′1 ≤ m1;

k2 = k′2 = 0; 1 ≤ l1, l2 ≤ n
Im1m2 ⊗D1 i1 = i2, 1 ≤ i1 ≤ L− 1; j1 = j2 = 0; 1 ≤ k1, k′1 ≤ m1;

1 ≤ k2, k′2 ≤ m2; 1 ≤ l1, l2 ≤ n
βββ ⊗ (Im2

⊗D1) i1 = i2, s+ 1 ≤ i1 ≤ L; j2 = 1; k1 = 0, 1 ≤ k′1 ≤ m2;

1 ≤ k2, k′2 ≤ m2; 1 ≤ l1, l2 ≤ n
Im2
⊗ (βββ ⊗D1) i1 = i2, s+ 1 ≤ i1 ≤ L− 1; j1 = j2 = 1;

1 ≤ k1, k′1 ≤ m2; k2 = 0, 1 ≤ k′2 ≤ m2;

1 ≤ l1, l2 ≤ n

A
(i2,j2,k

′
1,k2,l2)

21(i1,j1,k1,k2,l1)
=



Im1
⊗ (θSSS0 ⊗ In) i1 = 1, i2 = 0; j1 = j2 = 0; 1 ≤ k1, k′1 ≤ m1,

1 ≤ k2 ≤ m2, k
′
2 = 0; 1 ≤ l1, l2 ≤ n

Im1
⊗ (θSSS0βββ ⊗ In) i2 = i1 − 1, 2 ≤ i1 ≤ L− 1; j1 = j2 = 0;

1 ≤ k1, k′1 ≤ m1; 1 ≤ k2, k′2 ≤ m2;

1 ≤ l1, l2 ≤ n
θSSS0 ⊗ Im2n i2 = i1 − 1, s+ 2 ≤ i1 ≤ L; j1 = j2 = 1;

1 ≤ k1, k′1 ≤ m2; 1 ≤ k2 ≤ m2; k′2 = 0;

1 ≤ l1, l2 ≤ n
SSS0 ⊗ Im2n i2 = i1 − 1, s+ 2 ≤ i1 ≤ L; j1 = 1; 1 ≤ k1 ≤ m2,

k′1 = 0; 1 ≤ k2, k′2 ≤ m2; 1 ≤ l1, l2 ≤ n
SSS0ααα⊗ Im2n + B i1 = s+ 1, i2 = s; j1 = 1, j2 = 0; 1 ≤ k1 ≤ m2;

1 ≤ k′1 ≤ m1; 1 ≤ k2, k′2 ≤ m2; 1 ≤ l1, l2 ≤ n

where,

B =


ααα⊗B1

ααα⊗B2

...

ααα⊗Bm2


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where

Bmi =
[

0 · · · θSSS0 ⊗ In · · · 0
]
,where θS0 ⊗ In is in the ithposition

A
(i2,j2,k

′
1,k
′
2,l2)

0(i1,j1,k1,k2,l1)
=



Im1 ⊗D1 i1 = i2 = 0; j1 = j2 = 0;

1 ≤ k1, k′1 ≤ m1; k2 = k′2 = 0; 1 ≤ l1, l2 ≤ n
Im1m2

⊗D1 i1 = i2, 1 ≤ i1 ≤ L− 1; j1 = j2 = 0; 1 ≤ k1, k′1 ≤ m1;

1 ≤ k2, k′2 ≤ m2; 1 ≤ l1, l2 ≤ n
Im2

2
⊗D1 i1 = i2, s+ 1 ≤ i1 ≤ L; j1 = j2 = 1; 1 ≤ k1, k′1 ≤ m2;

1 ≤ k2, k′2 ≤ m2; 1 ≤ l1, l2 ≤ n

A
(i2,j2,k

′
1,k
′
2,l2)

1(i1,j1,k1,k2,l1)
=



TTT 0(ααα⊗ βββ)⊗ In i1 = 0, i2 = 1; j1 = j2 = 0; 1 ≤ k1, k′1 ≤ m1;

k2 = 0, 1 ≤ k′2 ≤ m2; 1 ≤ l1, l2 ≤ n
TTT 0ααα⊗ Im2n 1 ≤ i1 ≤ L− 2, i2 = i1 + 1; j1 = j2 = 0;

1 ≤ k1, k′1 ≤ m1; 1 ≤ k2, k′2 ≤ m2;

1 ≤ l1, l2 ≤ n
TTT 0βββ ⊗ Im2n i1 = L− 1, i2 = L; j1 = 0, j2 = 1; 1 ≤ k1 ≤ m1,

1 ≤ k′1 ≤ m2; 1 ≤ k2, k′2 ≤ m2;

1 ≤ l1, l2 ≤ n
T ⊕D0 i1 = i2 = 0; j1 = j2 = 0; 1 ≤ k1, k′1 ≤ m1;

k2 = k′2 = 0; 1 ≤ l1, l2 ≤ n
T ⊕ θS ⊕D0 i1 = i2, 1 ≤ i1 ≤ L− 1; j1 = j2 = 0;

1 ≤ k1, k′1 ≤ m1; 1 ≤ k2, k′2 ≤ m2;

1 ≤ l1, l2 ≤ n
S ⊕ θS ⊕D0 i1 = i2, s+ 1 ≤ i1 ≤ L; j1 = j2 = 1; 1 ≤ k1, k′1 ≤ m2;

1 ≤ k2, k′2 ≤ m2; 1 ≤ l1, l2 ≤ n
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A
(i2,j2,k

′
1,k2,l2)

2(i1,j1,k1,k2,l1)
=



Im1 ⊗ (θSSS0 ⊗ In) i1 = 1, i2 = 0; j1 = j2 = 0;

1 ≤ k1, k
′
1 ≤ m1, 1 ≤ k2 ≤ m2,

k′2 = 0; 1 ≤ l1, l2 ≤ n
Im1 ⊗ (θSSS0βββ ⊗ In) i2 = i1 − 1, 2 ≤ i1 ≤ L− 1;

j1 = j2 = 0; 1 ≤ k1, k
′
1 ≤ m1;

1 ≤ k2, k
′
2 ≤ m2; 1 ≤ l1, l2 ≤ n

SSS0ααα⊗ Im2n + B i1 = s+ 1, i2 = s; j1 = 1, j2 = 0;

1 ≤ k1 ≤ m2; 1 ≤ k′1 ≤ m1;

1 ≤ k2, k
′
2 ≤ m2; 1 ≤ l1, l2 ≤ n

Im1 ⊗ (θSSS0βββ ⊗ In) +SSS0βββ ⊗ Im2n i2 = i1 − 1, s+ 2 ≤ i1 ≤ L;

j1 = j2 = 1; 1 ≤ k1, k
′
1 ≤ m2;

1 ≤ k2, k
′
2 ≤ m2; 1 ≤ l1, l2 ≤ n

Next we proceed for the steady state analysis of the system described.

6.2 Steady State Analysis

To this end we first obtain the

6.2.1 Stability condition

Let πππ = (πππ0,πππ1, . . . ,πππL) denote the steady state probability vector of the

generator
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A = A0+A1+A2 =



F0 F1

F2 F3 F4

F5 F3 F4

. . .
. . .

. . .

F5 F3 F4

F5 F3 F6

F7 F8 F9

F10 F8 F9

. . .
. . .

. . .

F10 F8 F9

F10 F8 F11

F12 F13



.

Then πππ satisfies

πππA = 0,πππe = 1. (6.1)

The LIQBD description of the model indicates that the queueing system

is stable (see Neuts[40] ) if and only if the left drift exceeds that of right drift.

That is,

πππA0e < πππA2e (6.2)

The vector πππ cannot be obtained directly in terms of the parameters of the

model. From (6.1)we get

πi = πi−1Ui−1, 1 ≤ i ≤ L (6.3)

where
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Ui =



−F1(F3 + U1F5)−1 for i = 0

−F4(F3 + Ui+1F5)−1 for 1 ≤ i ≤ s− 2

−F4(F3 + UsF7)−1 for i = s− 1

−F6(F8 + Us+1F10)−1 for i = s

−F9(F8 + Ui+1F10)−1 for s+ 1 ≤ i ≤ L− 3

−F9(F8 + UL−1F12) for i = L− 2

−F11(F13)−1 for i = L− 1

From the normalizing condition πeπeπe = 1 we have

πππ0

L−1∑
j=0

j∏
i=0

Ui + I

eee = 1 (6.4)

We get πππ0 by solving (6.1) and (6.4). Substituting (6.3) and (6.4) in (6.2)
gives the stability condition as

πππ0

(Im1
⊗D1)eee +

s∑
j=1

j∏
i=0

Ui(Im1m2
⊗D1)eee +

L−1∑
j=s+1

j∏
i=0

Ui(Im1m2
⊗D1)eee +

L−1∏
i=0

Ui(Im2
2 ⊗D1)eee

 <
πππ0

 s∑
j=1

j∏
i=0

Ui(eee(m1)⊗ (θSSS
0 ⊗ In)eee) +

L−1∑
j=s+1

j∏
i=0

UiA
′
2eee + +

L−1∏
i=0

Ui
(
eee(m1)⊗ (θSSS

0 ⊗ In) + (SSS
0 ⊗ Im2n

)
)
eee)


(6.5)

where

A′2 =

[
eee(m1)⊗ (θSSS0 ⊗ In)

eee(m1)⊗ (θSSS0 ⊗ In) + (SSS0 ⊗ Im2n)

]

6.2.2 Steady-state probability vector

Assuming that the condition (6.5) is satisfied we proceed to find the steady-

state probability of the system state.

Let xxx be the steady state probability vector of Q̄. We partition this vector

as

xxx = (xxx0,xxx1,xxx2 . . .),
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where xxx0 is of dimension (s + 1)m1n + (L − s − 1)(1 + m1)n + n, xxx1 is of

dimension m1n+ sm1m2n+ (L− s− 1)(2m2 +m1m2)n+m2n, xxx2,xxx3, . . . are

of dimension m1n+ sm1m2n+ (L− s− 1)(m1m2n+m2
2n) +m2

2n . Under

the stability condition, we have

xxxi = xxx2R
i−2, i ≥ 3

where the matrixR is the minimal nonnegative solution to the matrix quadratic

equation

R2A2 +RA1 +A0 = 0

and the vectors xxx0, xxx1 and xxx2 are obtained by solving the equations

xxx0A00 + xxx1A10 = 0 (6.6)

xxx0A01 + xxx1A11 + xxx2A21 = 0 (6.7)

xxx1A12 + xxx2(A1 +RA2) = 0 (6.8)

subject to the normalizing condition

xxx0eee+ xxx1eee+ xxx2(I −R)−1eee = 1 (6.9)

6.3 Level crossing problems

6.3.1 Distribution of number of downcrossings from inventory

level s to s− 1 before hitting s+ 1

To find this distribution, first we find the the distribution of duration of time

till down crossing from s to s − 1 occur before hitting s + 1. This can be

studied as the time until absorption in the continuous time Markov chain,χ1=

{(N1(t), N2(t), I(t),K1(t),K2(t),K3(t))} where N1(t) denotes the number of

down crossings from s to s− 1, N2(t), the number of customers in the system,
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I(t), the number of processed items, K1(t), processing phase of S2, K2(t), the

service phase of S1, K3(t), the phase of the customer arrival process at time t.

The state space of the process is {(i, 0, k, l1, 0, p) : i ≥ 0; 0 ≤ k ≤ s; 1 ≤
l1 ≤ m1; 1 ≤ p ≤ n} ∪ {(i, j, 0, l1, 0, p) : i ≥ 0; 1 ≤ j ≤ M ; 1 ≤ l1 ≤
m1; 1 ≤ p ≤ n} ∪ {(i, j, k, l1, l2, p) : i ≥ 0; 1 ≤ j ≤ M ; 1 ≤ k ≤ s; 1 ≤
l1 ≤ m1; 1 ≤ l2 ≤ m2; 1 ≤ p ≤ n} ∪ {∗} where ∗ denote the absorbing state

indicating the hitting of level s + 1. Here M(ε) is chosen in such a way that

P
(∑M(ε)

h=0 xxxheee > 1− ε
)
→ 0 for every ε > 0.

The infinitesimal generator of the process is given by

U =



0 0 0 · · ·
EEE0 B C

EEE0 B C
...

. . .
. . .

EEE0 B C
...

. . .
. . .


.

where

B =



F1 G1

H1 F2 G2

H2 F2 G2

. . .
. . .

. . .

H2 F2 G2

F3


with

F1 =


T ⊕D0 TTT 0ααα⊗ In

. . .
. . .

T ⊕D0 TTT 0ααα⊗ In
T ⊕D0

 , G1 =

[
Im1 ⊗D1

Is ⊗ (Im1 ⊗ (βββ ⊗D1))

]
,
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H1 =

[
0 0

Is ⊗ (Im1 ⊗ (θSSS0 ⊗ In)) 0

]
, F2 =



T ⊕D0 TTT 0(ααα⊗ βββ)⊗ In
T ⊕ θS ⊕D0 TTT 0ααα⊗ Im2n

. . .
. . .

T ⊕ θS ⊕D0 TTT 0ααα⊗ Im2n

T ⊕ θS ⊕D0


,

G2 = Im1+sm1m2⊗D1, H2 =

 0 0

Im1 ⊗ (θSSS0 ⊗ In) 0

0 Is−1 ⊗ (Im1 ⊗ (θSSS0βββ ⊗ In))

 ,

F3 =



T ⊕D0 − Im1 ⊗∆ TTT0(ααα⊗ βββ)⊗ In
T ⊕ θS ⊕D0 − Im1m2

⊗∆ TTT0ααα⊗ Im2n

.
.
.

.
.
.

T ⊕ θS ⊕D0 − Im1m2
⊗∆ TTT0ααα⊗ Im2n

T ⊕ θS ⊕D0 − Im1m2
⊗∆



with

∆ =


δ1

. . .

δn

 .

C =


0 · · · 0 · · · 0
...

...
...

0 · · · 0 · · · 0

0 · · ·C′ · · · 0

 ,where, C′ =

 0 0

Im1 ⊗ (θSSS0 ⊗ In) 0

0 Is−1 ⊗ (Im1 ⊗ (θSSS0βββ ⊗ In))



EEE0 =

[
EEE0

1

eee(M)⊗EEE0
2

]
with

EEE0
1 =


000
...

TTT 0 ⊗ eee(n)

 , EEE0
2 =

[
000

TTT 0 ⊗ eee(m2n)

]

Let yk, k = 0, 1, · · · be the probability that the number of downcrossings

from inventory level s to s − 1 is k. Then yk is the probabilty that the
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absorption occurs from the level k for the process χ1. Hence yk are given by

y0 = γγγ1(−B)−1EEE0

and for k = 1, 2, 3, . . .

yk = γγγ1((−B)−1C)k(−B)−1EEE0

where,

γγγ1 = (1/d)(xxx0,0,0,1,0,1, · · · ,xxx0,s,0,m1,0,n, · · · ,xxxM,0,0,1,0,1, · · · ,xxxM,s,0,m1,m2,n)

with

d =

s∑
i=0

m1∑
k1=1

n∑
p=1

xxx0,i,0,k1,0,p +

M∑
h=1

s∑
i=0

m1∑
k1=1

m2∑
k2=1

n∑
p=1

xxxh,i,0,k1,k2,p

Thus we arrive at the Lemma.

Lemma 6.3.1. The expected number of downcrossings from inventory

level s to s− 1 before hitting s+ 1 is

E(i) =
∞∑
k=0

kyk

6.3.2 Distribution of number of upcrossings of inventory level

from s to s+ 1 before hitting s− 1

To find this distribution, first we find the the distribution of duration of time

till upcrossing from s to s + 1 occur before hitting s − 1. This again can be

studied as the time until absorption in a continuous time the Markov chain

χ2= {(N1(t), N2(t), I(t), J(t),K1(t),K2(t),K3(t))} where N1(t) denotes the

number of upcrossings from s to s+ 1, N2(t), the number of customers in the
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system, I(t), number of processed items, J(t), status of S2, K1(t), process-

ing/service phase of S2, K2(t), the service phase of S1, K3(t), the arrival phase

at time t.

The state space of the process is {(h, 0, j, 0, k1, 0, l) : h ≥ 0; s ≤ j ≤
L − 1; 1 ≤ k1 ≤ m1; 1 ≤ l ≤ n} ∪ {(h, 0, j, 0, 0, l) : h ≥ 0; s + 1 ≤ j ≤
L; 1 ≤ l ≤ n} ∪ {(h, i, j, 0, k1, k2, l) : h ≥ 0; 1 ≤ i ≤ M ; s ≤ j ≤ L − 1; 1 ≤
k1 ≤ m1; 1 ≤ k2 ≤ m2; 1 ≤ l ≤ n} ∪ {(h, 1, j, 0, k2, l) : s + 1 ≤ j ≤ L; 1 ≤
k2 ≤ m2; 1 ≤ l ≤ n} ∪ {(h, 1, j, 1, k1, 0, l) : h ≥ 0; s + 1 ≤ j ≤ L − 1; 1 ≤
k1 ≤ m2; 1 ≤ l ≤ n} ∪ {(h, i, j, 1, k1, k2, l) : h ≥ 0; 2 ≤ i ≤ M ; s + 1 ≤ j ≤
L; 1 ≤ k1, k2 ≤ m2; 1 ≤ l ≤ n} ∪ {∗} where ∗ denote the absorbing state

indicating the hitting of level s + 1. Here M(ε) is chosen in such a way that

P
(∑M(ε)

h=0 xxxheee > 1− ε
)
→ 0 for every ε > 0.

Let zk, k = 0, 1, · · · be the probability that the number of upcrossings from

inventory level s to s + 1 is k. Then zk is the probabilty that the absorption

occurs from the level k for the process χ2.

Proceeding on similar lines as in the proof of Lemma 6.3.1, we arrive at

Lemma.

Lemma 6.3.2. The expected number of upcrossings from inventory level

s to s+ 1 before hitting s− 1 is

E(i) =

∞∑
k=0

kzk

6.4 Performance Measures

1. Expected number of customers in the system, Es =
∑∞

h=1 hxxxheee
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2. Expected number of processed items in the inventory,

Eit =
L−1∑
i=1

m1∑
k1=1

n∑
p=1

ix0,i,0,k1,0,p +
L∑

i=s+1

n∑
p=1

ix0,i,0,0,p+

∞∑
h=1

L−1∑
i=1

m1∑
k1=1

m2∑
k2=1

n∑
p=1

ixh,i,0,k1,k2,p +
L∑

i=s+1

m2∑
k2=1

n∑
p=1

x1,i,0,k2,p+

L−1∑
i=s+1

m2∑
k1=1

n∑
p=1

ix1,i,1,k1,0,p +

∞∑
h=2

L∑
i=s+1

m2∑
k1=1

m2∑
k2=1

n∑
p=1

ixh,i,1,k1,k2,p

3. Expected rate at which the inventory processing is switched on,

Ripo =

m2∑
k1=1

n∑
p=1

σk1x1,s+1,1,k1,0,p +

m2∑
k2=1

n∑
p=1

θσk2x1,s+1,0,k2,p+

∞∑
h=2

m2∑
k1=1

m2∑
k2=1

n∑
p=1

(θσk2 + σk1)xh,s+1,1,k1,k2,p (6.10)

4. Expected rate of switching of S2 to service mode,

Rsn =

m2∑
k2=1

L∑
i=s+1

n∑
p=1

n∑
p′=1

d
(1)
pp′x1,i,1,0,k2,p+

∞∑
h=2

m1∑
k1=1

m2∑
k2=1

n∑
p=1

ηk1xh,L−1,0,k1,k2,p (6.11)

6.5 Analysis of a cost function

We construct a cost function based on the above performance measures.

Let

c1: Unit time cost for switching on inventory processing

c2: Unit time cost for switching of S2 to service mode
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h1: Unit time cost for holding a customer

h2: Unit time cost for holding an item in inventory

Then the expected cost per unit time,

C = c1Ripo + c2Rsn + h1Es + h2Eit

6.6 Numerical Experiments

We find optimal s and optimal L by using the above cost function.

We fix ααα =
[

0.9 0.1
]
, T =

[
−4 4

0 −4

]
,βββ =

[
0.8 0.2

]
, S =[

−3 3

0 −3

]
,

θ = 0.6, c1 = 100, c2 = 5, h1 = 30 and h2 = 1.

For the arrival process of type II customers, we consider the following five

set of matrices for D0 and D1.

1. Exponential (EXP)

D0 = (−1), D1 = (1)

2. Erlang (ERA)

D0 =

 −3 3 0

0 −3 3

0 0 −3

 , D1 =

 0 0 0

0 0 0

3 0 0


3. Hyperexponential (HEXP)

D0 =

[
−3.4000 0

0 −0.8500

]
, D1 =

[
0.6800 2.7200

0.1700 0.6800

]
4. MAP with negative correlation (MNA)
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D0 =

 −0.8101 0.8101 0

0 −1.3497 0

0 0 −40.5065

 , D1 =

 0 0 0

0.0810 0 1.2687

38.0761 0 2.4304


5. MAP with positive correlation (MPA)

D0 =

 −0.8101 0.8101 0

0 −1.3497 0

0 0 −40.5065

 , D1 =

 0 0 0

1.2687 0 0.0810

2.4304 0 38.0761


All these five MAP processes are normalized so as to have an arrival rate

of 1. However, these are qualitatively different in that they have different

variance and correlation structure. The first three arrival processes, namely

EXP, ERA and HEA correspond to renewal processes and so the correlation

is 0. The arrival process labeled MNA has correlated arrivals with correlation

between two successive interarrival times given by -0.4211 and the arrival

process corresponding to the one labelled MPA has a positive correlation with

value 0.4211.

Tables 6.1 to 6.5 indicate the effect of the parameter s on various per-

formance measures and the cost function corresponding to different arrival

processses when L is fixed. In the following we summarize the observations

based on these tables.

We see that Ripo increases when s increases. This happens because when

s increases, the inventory level reaches s more rapidly from above. Rsn also

increases as s increases. This is due to the fact that when s increases, S2 is

switched on to procesing at a faster rate and hence the inventory level reaches

to maximum value L at a faster rate and as a result S2 switched on to service

mode if customers are waiting. Es decreases as s increases. This happens

since when s increases both Ripo and Rsn increase and as a result customers

get service at a faster rate. Eit increases as s increases. This is because

when s increases, S2 is switched on to processing mode at a faster rate. The

cost funtion first decreases reaches a minimum value and then increases for
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all arrival processes. The optimal cost varies for different arrival processes

(see Fig 6.1). It is the highest for MPA. This shows the effect of positive

correlation.

s 2 3 4 5 6 7 8 9 10

Ripo 0.035 0.037 0.039 0.042 0.045 0.049 0.053 0.058 0.064

Rsn 0.178 0.180 0.181 0.182 0.184 0.186 0.188 0.191 0.194

Es 1.984 1.952 1.923 1.894 1.866 1.837 1.808 1.779 1.750

Eit 10.467 10.976 11.485 11.994 12.500 13.005 13.507 14.005 14.497

C 74.336 74.105 73.990 73.918 73.883 73.894 73.963 74.110 74.340

Table 6.1: Effect of s: Fix L = 20 and arrival process as EXP

s 2 3 4 5 6 7 8 9 10

Ripo 0.034 0.036 0.038 0.041 0.045 0.048 0.053 0.058 0.064

Rsn 0.199 0.201 0.202 0.204 0.206 0.209 0.212 0.215 0.219

Es 1.553 1.527 1.501 1.475 1.448 1.421 1.393 1.365 1.336

Eit 10.487 11.001 11.516 12.031 12.546 13.061 13.576 14.089 14.602

C 61.475 61.420 61.414 61.432 61.475 61.553 61.680 61.872 62.155

Table 6.2: Effect of s: Fix L = 20 and arrival process as ERA

s 2 3 4 5 6 7 8 9 10

Ripo 0.035 0.037 0.039 0.042 0.045 0.049 0.053 0.058 0.064

Rsn 0.171 0.172 0.173 0.175 0.176 0.178 0.180 0.183 0.186

Es 2.152 2.119 2.090 2.060 2.032 2.003 1.975 1.947 1.920

Eit 10.457 10.963 11.469 11.975 12.478 12.978 13.474 13.966 14.451

C 79.319 79.051 78.923 78.848 78.815 78.831 78.909 79.068 79.333

Table 6.3: Effect of s: Fix L = 20 and arrival process as HEXP

s 2 3 4 5 6 7 8 9 10
Ripo 0.033 0.035 0.036 0.040 0.043 0.046 0.050 0.055 0.060
Rsn 0.076 0.078 0.079 0.081 0.083 0.085 0.088 0.092 0.095
Es 16.697 16.645 16.631 16.629 16.630 16.633 16.635 16.637 16.639
Eit 10.644 11.122 11.605 12.090 12.573 13.054 13.533 14.009 14.480
C 515.265 514.383 514.689 515.370 516.188 517.078 518.028 519.044 520.144

Table 6.4: Effect of s: Fix L = 20 and arrival process as MPA
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s 2 3 4 5 6 7 8 9 10

Ripo 0.035 0.037 0.040 0.042 0.046 0.049 0.054 0059 0.065

Rsn 0.208 0.209 0.211 0.212 0.214 0.216 0.219 0.222 0.225

Es 2.100 2.068 2.037 2.008 1.9778 1.949 1.918 1.890 1.858

Eit 10.418 10.918 11.427 11.924 12.430 12.918 13.419 13.892 14.381

C 77.951 77.702 77.546 77.460 77.380 77.383 77.399 77.542 77.729

Table 6.5: Effect of s: Fix L = 20 and arrival process as MNA

Tables 6.6 to 6.10 indicate the effect of the parameter L on various per-

formance measures and the cost function when s is fixed. We summarize the

observations based on these tables below.

Ripo decreases as L increases. This is due to the fact that the level s is

attained at a slower rate. Rsn also decreases as L increases. This happens

since L is attained at a slower rate. Es increases as L increases. This happens

since when L increases both Ripo and Rsn decrease and as a result customers

get service at a slower rate. Eit increases as L increases since more items are

processed at a stretch. The cost funtion first decreases reaches a minimum

value and then increases for all arrival processes. The optimal cost varies for

different arrival processes.(see Fig 6.2) It is the highest for MPA. This shows

the effect of positive correlation.

L 8 9 10 11 12 13 14 15 16 17 18
Ripo 0.131 0.109 0.093 0.081 0.072 0.064 0.058 0.053 0.049 0.045 0.042
Rsn 0.227 0.216 0.208 0.202 0.197 0.194 0.191 0.188 0.186 0.184 0.182
Es 1.617 1.641 1.667 1.695 1.723 1.751 1.780 1.809 1.838 1.867 1.895
Eit 5.090 5.597 6.096 6.591 7.083 7.573 8.062 8.549 9.035 9.521 10.006
C 67.86 66.80 66.43 66.52 66.90 67.48 68.21 69.04 69.96 70.93 71.96

Table 6.6: Effect of L: Fix s = 3 and arrival process as EXP
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L 8 9 10 11 12 13 14 15 16 17 18

Ripo 0.134 0.111 0.094 0.081 0.072 0.064 0.058 0.053 0.048 0.045 0.041

Rsn 0.255 0.244 0.235 0.229 0.223 0.219 0.215 0.212 0.209 0.206 0.204

Es 1.187 1.216 1.247 1.277 1.307 1.336 1.365 1.393 1.421 1.448 1.475

Eit 5.208 5.694 6.178 6.660 7.142 7.624 8.106 8.588 9.070 9.552 10.035

C 55.51 54.46 54.12 54.22 54.61 55.19 55.90 56.70 57.57 58.49 59.44

Table 6.7: Effect of L: Fix s = 3 and arrival process as ERA

L 8 9 10 11 12 13 14 15 16 17 18

Ripo 0.130 0.108 0.092 0.081 0.071 0.064 0.058 0.053 0.049 0.045 0.042

Rsn 0.219 0.208 0.200 0.194 0.189 0.186 0.183 0.180 0.178 0.176 0.175

Es 1.795 1.817 1.842 1.867 1.894 1.921 1.949 1.977 2.005 2.033 2.062

Eit 5.048 5.559 6.063 6.561 7.056 7.549 8.040 8.529 9.017 9.504 9.991

C 73.02 71.93 71.54 71.59 71.94 72.49 73.20 74.01 74.92 75.88 76.90

Table 6.8: Effect of L: Fix s = 3 and arrival process as HEXP

L 8 9 10 11 12 13 14 15 16 17 18

Ripo 0.122 0.101 0.087 0.076 0.067 0.060 0.055 0.050 0.046 0.043 0.040

Rsn 0.139 0.124 0.114 0.106 0.100 0.096 0.092 0.088 0.085 0.083 0.081

Es 16.71 16.70 16.69 16.69 16.68 16.68 16.67 16.67 16.66 16.66 16.65

Eit 5.033 5.551 6.063 6.573 7.080 7.587 8.093 8.599 9.104 9.609 10.113

C 519.3 517.3 516.1 515.3 514.7 514.4 514.2 514.1 514.0 514.0 514.1

Table 6.9: Effect of L: Fix s = 3 and arrival process as MPA

L 8 9 10 11 12 13 14 15 16 17 18

Ripo 0.132 0.111 0.094 0.082 0.072 0.065 0.059 0.054 0.049 0.046 0.042

Rsn 0.264 0.250 0.242 0.235 0.230 0.225 0.222 0.219 0.216 0.214 0.212

Es 1.723 1.745 1.776 1.800 1.833 1.860 1.891 1.919 1.950 1.979 2.009

Eit 4.940 5.488 5.979 6.505 6.987 7.500 7.980 8.483 8.964 9.461 9.942

C 71.12 70.14 69.81 69.90 70.32 70.89 71.67 72.50 73.46 74.44 75.51

Table 6.10: Effect of L: Fix s = 3 and arrival process as MNA
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Figure 6.1: Effect of s when L = 20
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Figure 6.2: Effect of L when s = 3



Concluding remarks and

suggestions for future study

In this thesis we discussed some queueing models with working vacation, work-

ing interruption and processing of service items by identifying the underlying

continuous time Markov chains. In the following we give a sketch of our find-

ings in this thesis:

In chapter 2, we considered two (M, MAP)/(PH, PH)/1 queues with non-

preemptive priority and exponentially distributed working vacation under N-

policy. Based on two distinct definitions of N-policies, we studied the distribu-

tion of the duration of slow service mode without any break, expected number

of returns to 0 type I customer state, starting from 0 type I customer state

during vacation mode of service before the arrival of a type II customer and

the distribution of a p-cycle in normal mode. Also we provided LSTs of busy

cycle, busy period of type I customers generated during the service time of a

type II customer. For the waiting time distributions of both type I and type

II customers, we provided an analysis using LST. We also performed some

numerical experiments to find the mean and variance of the number of both

type I and type II customers in the system and optimal N for both models

by constructing a cost function. We compared the two queueing models with

non-preemptive service and exponentially distributed working vacations and

N-policy. These models were analyzed under the assumption of stability. Nu-

201
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merical experiments were carried out to find the superior one. It is possible

to extend the arrival process of type I customers to MAP. In a future work

we propose to extend the models discussed here to the case in which the type

II customers are impatient. This will lead to the problem of finding individ-

ual optimal strategy of type II customers, maximum revenue of the server

and social optimal strategy. Also, the extension of the models discussed to

multi-server case is proposed to be taken up.

In chapter 3, we considered a (M,MAP)/(PH,PH)/1 queue with non pre-

emptive priority, exponentially distributed working interruptions and protec-

tion. We analysed the distribution of service time of type I and type II cus-

tomers and the distribution of a p-cycle. Also we provided LSTs of busy cycle,

busy period of type I customers generated during the service time of a type II

customer. For the waiting time distributions of type I and type II customers,

we provided an analysis using LST and the matrix analytic method. We also

performed some numerical experiments to evaluate some performance mea-

sures and also found optimal values using a cost function. Extension of the

model discussed to multi-server is proposed to be taken up in a future study.

In chapter 4, we considered a MAP/(PH,PH)/1 queue with processing of

service items under Vacation and N-policy. We obtained the distribution of

time till the number of customers hit N or the inventory level reaches L, dis-

tribution of idle time, the distribution of time until the number of customers

hit N and also the distribution of number of inventory processed before the

arrival of first customer. Also we provided the distribution of a busy cycle,

LSTs of busy cycles in which no item is left in the inventory and also that for

atleast one item left in the inventory. We performed some numerical experi-

ments to evaluate the expected idle time, standard deviation and coefficient

of varaiation of idle time of the server .

In chapter 5, we considered a MAP/(PH,PH)/1 queue with processing

of service items under Vacation and N-policy with impatient customers. We

found the distribution of time until the number of customers hit N . Several
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system performance characteristics were computed. LST of the waiting time

distribution for the case of no reneging was derived. Also we performed some

numerical experiments for computing individual optimal strategy, maximum

revenue to the server and social optimal strategy for the special case of no

reneging.

In chapter 6, we considered a MAP/(PH,PH)/2 queue with processing of

service items by a server. We analyzed the model in steady state by Matrix

Analytic Method and also derived some important distributions. Also we

provided some numerical experiments to find the optimal values of L and s.

We propose to extend this model to multi-server in a future study.
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