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ABSTRACT 

Keywords: analytical model, partial differential equation, boundary conditions, axially 

polarized hollow piezoelectric cylinder, piezoceramic rings, piezoceramic stacks, solid 

elastic cylinder, sandwich transducer, Langevin transducer, exact series, complete set of 

functions, transfer matrix, continuity condition. 

The underwater electroacoustic resonant transducer is a very critical part of any active 

sonar system. An array of transducers is used in ships, submarines, and helicopters to 

radiate acoustic energy into the ocean; and, in ships, the same array of transducers is often 

used to receive the echo. The Tonpilz transducer is still the most commonly used acoustic 

radiator in ships and submarines. Models of transducers are necessary to design and 

develop transducers and arrays. Attempts to develop a transducer with a large number of 

components by using a trial and error approach and without using a good model are usually 

not very successful. A better model of a transducer can be built only by using better models 

of its components. In the present work, analytical models of an axially polarized hollow 

piezoelectric ceramic cylinder and a stack of hollow piezoceramic cylinders that is used in 

a Tonpilz transducer are developed. A classical Langevin transducer, a predecessor of the 

Tonpilz transducer, is also analyzed.  

This thesis begins with an overview of underwater Tonpilz transducers and its 

components and the methods already existing in literature to analyze them. An axially 

polarized hollow piezoelectric cylinder (ring) is analyzed first.  A method is presented to 

determine the response of a cylinder with arbitrary length to radius ratio and electrodes 

only on the top and bottom flat surfaces to electrical and mechanical excitations. The exact, 

linearized, two-dimensional, axisymmetric, governing partial differential equations of the 

cylinder are considered. The forms of the expressions for displacement and electric 

potential are obtained by using the method of separation of variables and they are products 

of Bessel and sinusoidal functions. Series solutions are formed by using complete sets in 

the radial and axial directions. All the functions of interest including displacements, electric 

potential, stresses and electric field displacements are expressed in terms of complete sets 

of functions. Therefore, it is possible to satisfy arbitrary piecewise continuous boundary 

conditions on all the surfaces. The coefficients in the series solutions are determined by 

using the boundary conditions.  
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An analytical model of a stack of identical, axially polarized, hollow piezoelectric 

cylinders is also presented in the thesis. A two-dimensional axisymmetric model of the 

stack is obtained by retaining only the leading terms in the series solution of the 

piezoceramic hollow cylinder. The model is used to develop a transfer matrix for one ring. 

The rings are arranged coaxially in the stack and at the flat interface between the two rings, 

the normal and shear stresses and the axial displacement are continuous. The transfer matrix 

of each individual ring is used to build a transfer matrix for the stack; and express the 

normal stress and normal displacement at one flat end of a stack in terms of the same 

functions at the other flat end and the electric potential. The input electrical admittance of 

the stack and electrical resonances are computed using the model. 

An analytical model of a classical Langevin transducer, a stack of solid elastic and 

piezoelectric cylinders, is presented next. The axially polarized solid piezoelectric cylinder 

is sandwiched between two elastic solid cylinders. Exact series solutions to the exact 

equations of motion are used for both elastic and piezoelectric cylinders. Here, in contrast 

to the model of the stack, the normal and shear stresses and the normal and radial 

components of the displacement are continuous at the interfaces between the flat ends of 

the cylinders. Further, a large number of terms in each series is used to compute the 

numerical results. Transducers with identical elastic cylinders at the ends as well as those 

with a lighter head mass and a heavier tail mass are analyzed. The input electrical 

admittance, critical frequencies, and the components of displacement and stress at various 

cross-sections are computed. 

Accurate models to determine the forced responses of axially polarized hollow 

piezoelectric ceramic cylinders, stacks of cylinders, and a classical Langevin transducer, 

all with internal losses, are developed in this thesis. Internal losses are modelled using 

complex piezoelectric coefficients. The electrical and mechanical functions of interest are 

computed using MATLAB. It is shown that the method is correct and that accurate 

numerical results are obtained by comparing the values of the critical frequencies, the 

frequency-dependent complex input electrical admittance, and the components of stress 

and displacement computed using the present method with those computed using the finite 

element software package ATILA [1]. These values are in excellent agreement upto many 

significant digits even at frequencies that are many times the fundamental resonance 

frequency. Results are shown for piezoelectric hollow cylinders with various sets of 
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boundary conditions, stacks of hollow cylinders, and stacks of solid cylinders of various 

dimensions. The accuracy is more than sufficient for most practical applications. 

The analytical models developed here can be used to design components of transducers 

with specific resonance frequencies or other characteristics. The analytical models can also 

be used to determine the specific dimensions that result in the desired characteristics. These 

models can also be used to design other types of transducers with these components. 
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NOMENCLATURE 

  English Symbols 

Symbols Description 

𝑎 Inner radius of the hollow piezoelectric cylinder/ Radius of the solid 

cylinder 

𝐴, 𝐴1, 𝐴2, 𝐴𝑚𝑠 Coefficients in the series expansion 

𝑏 Outer radius of the hollow piezoelectric cylinder 

𝐵, 𝐵1, 𝐵2, 𝐵𝑚𝑠, 𝐵𝑞𝑠 Coefficients in the series expansion/ B is susceptance also 

𝐵𝑚𝑎𝑥 Local maxima of 𝐵 

𝐵𝑚𝑖𝑛 Local minima of 𝐵 

𝐶, 𝐶𝑚𝑠, 𝐶𝑞𝑠 Coefficients in the series expansion 

𝐶𝜈, 𝜈 = 0,1 Generalized Bessel functions 

𝐶𝜈
′ , 𝜈 = 0,1 Derivative of 𝐶𝜈  

𝑐𝑖𝑗
𝐸  Elastic stiffness coefficients 

𝑐33
𝐷  Piezoelectric coefficient 

𝑐𝑠 Wave velocities 

cos Cosine function 

𝐷 Coefficient in the series expansion 

𝑑𝑖𝑗 Piezoelectric coefficients 

𝐷𝑖 Components of electric displacements 

𝐸 Coefficient in the series expansion 
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INTRODUCTION 

1.1 INTRODUCTION 

The underwater sonar electroacoustic transducer is a vibrating device which, as a 

projector, is set into motion by electrical means causing it to alternately compress and rarefy 

the water it is in contact with and radiate sound. An array of projectors is used in sonar 

systems to radiate acoustic energy into the ocean. The transducers in these arrays are 

usually mounted on a plane, cylindrical, or spherical surface and enclosed in an acoustic 

window in the hull of a ship, a submarine, or a towed body. The design and development 

of underwater electro acoustic transducer is a challenging task as it comprises a large 

number of components of different shapes, sizes, and material properties. The task is made 

more challenging by the need to finalize acoustic and electrical specifications for the 

transducer in consultation with designers of other sub-systems of the sonar and to deliver a 

large number of transducers that meet the specifications. 

 

 

  

 

 

 

 

 

Fig. 1.1. 2-D schematic of a Tonpilz transducer. 

The Tonpilz transducer is still the most commonly used acoustic radiator in ships and 

submarines. It is a sandwich-type transducer that comprises piezoelectric cylinders and 

other elastic components. A Tonpilz transducer has a stack of axially polarized hollow 

piezoelectric ceramic cylinders sandwiched between two elastic metal masses: the tail and 

the head. The tail is often a solid elastic circular cylinder and the head is a frustum of a 

cone with a circular or square cylinder at it end. Axially polarized hollow piezoelectric 

ceramic cylinders are bonded to each other using adhesives to form the stack. An elastic 

circular cylindrical stress rod is used to pre-stress the stack. A schematic of the Tonpilz 
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transducer is shown in Fig. 1.1. It typically resonates at a few kHz and is often preferred 

when the acoustic energy is to be radiated in a specific direction of interest. 

1.2 MOTIVATION 

Models of transducers are necessary to design and develop transducers and arrays. 

Attempts to develop a transducer with a large number of components by using a trial and 

error approach and without using a good model are usually not very successful. About 50 

years ago, one-dimensional models of components of a Tonpilz transducer were first used 

to build a model of a Tonpilz transducer [2]. The model yields accurate results near the 

fundamental resonance frequency of the transducer when its length to diameter ratio is, say, 

10. However, Tonpilz transducers seldom have such large ratios. Therefore, a better model 

is required. 

A better model of a transducer can be built only by using better models of its 

components. The model of the components and the transducer are required not only to 

design the transducer but also to develop acceptance tests for the components. The 

transducer is assembled and tested in stages and a good model of the sub-assembly is also 

required.  

The piezoelectric hollow cylinder used in Tonpilz and other sonar transducers has a 

length to diameter ratio that is less than one and a wall thickness to diameter ratio that is 

not small enough to use a simple model. It is commonly known as a piezoelectric ring. The 

primary motivation for this thesis is the need for an accurate model of an axially polarized 

hollow piezoelectric cylinder (ring) as it is the basic building block of the transducer. 

Another motivation is the need for a model of a stack of hollow piezoelectric cylinders used 

in the transducer that is better than the currently available one-dimensional model. A third 

motivation is the need to develop a method to model a stack of solid piezoelectric and 

elastic cylinders and show that it is accurate. The Langevin transducer has this type of 

construction and is the predecessor of the more modern Tonpilz transducer. The models of 

building blocks developed and validated in this thesis and other models developed later will 

lead to an accurate model of a Tonpilz transducer that has non-cylindrical components also.  

1.3 LITERATURE REVIEW 

The analytical models of axially polarized hollow piezoelectric ceramic cylinders and 

a stack of axially polarized hollow piezoelectric ceramic cylinders are developed in the 

thesis as components of a Tonpilz transducer. A model of a classical Langevin transducer, 
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a sandwich transducer, in air is also developed.  The existing literature and the evolution of 

analysis on each of these is extensively reviewed.  

 Hollow Piezoceramic Cylinder 

The piezoceramic stack in the Tonpilz transducer is comprised of several axially 

polarized piezoelectric ceramic rings. Each ring is a hollow cylinder. The length of the ring 

is approximately equal to the wall thickness and a small fraction of the inner radius.  

A model of the ring is of interest.  

The piezoelectric ceramics have randomly oriented dipoles due to lack of symmetry in 

its ionic structure, which can be aligned by an applied electric field. They can generate 

electric voltage by applying pressure and vice versa. Vibrations of piezoelectric materials 

are of great importance because of their wide applications in transducers. The mechanical 

driving unit of the transducers is stacks of piezoceramic materials - slabs, disks, and rings.  

The analysis of piezoceramics in an electrical system can be described through 

equivalent circuit analysis. Mason [3] analyses a long thin piezoelectric ceramic rod with 

electrodes at the ends. He uses the one-dimensional approximation and presents 

expressions for the displacement, stress, and current when it is electrically excited. He also 

presents an equivalent circuit.  

Langevin [4] presents a derivation of the voltage or pressure sensitivity of cylindrical 

ceramic tubes for the axial, radial, and tangential polarizations and three different boundary 

conditions. He determines the voltage generated when hydrostatic pressure acts on the 

surface shells of finite length and arbitrary thickness cylinders after neglecting anisotropy. 

Therefore, his sensitivity calculation is valid only for frequencies well below the lowest 

resonance frequency of the structure. He uses elastic theory alone to calculate the 

sensitivity.  

 Martin [5] analyses longitudinally polarized ceramic tubes including the lateral 

interaction. The electrodes are placed on the annular surfaces. The longitudinal 

displacement is expressed in terms of trigonometric functions that depends only on the axial 

coordinate. A new equivalent circuit is obtained which is similar to that of Mason [3], 

except that the latter ignores lateral effects. 

Paul [6] presents solutions for the exact governing equations of an axially polarized 

hollow piezoelectric circular cylinder belonging to 6mm crystal class. Each solution is a 
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product of a sinusoidal and a Bessel function. He derives the frequency equation for hollow 

cylinders.  

Rogers [7] develops a mathematical model for the acoustical and electrical responses 

of a free-flooded, radially polarized piezoelectric cylinder. The cylinder is driven by a 

sinusoidal voltage. The solutions are expressed as the sum of a series in terms of its natural 

modes of a non-piezoceramic material and a particular solution corresponds to 

piezoelectricity. But this model uses membrane theory to model the cylinder. 

Buchanan and Peddieson analyze infinite piezoceramic isotropic [8] and anisotropic 

[9] cylinders by applying the finite element analysis. The displacement components and 

the potential are expanded as a trigonometric series using shape functions. In their analysis, 

the boundary conditions are limited to stress free and short circuit conditions at the surface 

of the cylinder. They computed the natural frequencies of piezoceramics. They also 

analyzed the effect of a thin elastic coating on piezoceramic cylinders on natural 

frequencies. 

Kunkel et al. [10] calculate the length, radial and edge vibration modes of axially 

symmetric piezoelectric ceramic disks (PZT-5H) by the finite-element method. The 

dependence of these vibrational modes on the disk diameter-to-thickness ratio has been 

studied. An analysis of the complete spectrum of vibrational modes as a function of 

diameter to thickness ratio is presented that include the identification of radial, edge, length, 

thickness shear, and thickness extensional vibrations. From this analysis, they optimize the 

disk diameter to thickness ratio. 

Brissaud [11] uses pure modes to analyze thickness polarized piezoelectric disks, rings, 

and plates. The displacement in a particular direction depends only on the corresponding 

coordinate. He presents an axisymmetric model but neither the exact governing equations 

nor all boundary conditions are satisfied by the solutions that contain only two coefficients. 

The stress and strain components and the electrical impedance are obtained for rectangular 

and cylindrical geometries. He concludes that, the wave velocities and permittivity depend 

neither on the geometry nor on the mode that is considered.  

Lamberti and Pappalardo [12] develop an approximate 2-D model of an axially 

polarized hollow piezoceramic cylinder. The displacements are two orthogonal wave 

functions in the 𝑥 and 𝑧 directions expressed in terms of sinusoidal functions and are similar 

to those proposed by Brissaud. The stress free boundary conditions are satisfied in an 

integral way by equating the surface integral of stresses to zero. Their model predicts the 
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lateral mode resonance in addition to the length mode resonance predicted by the  

one-dimensional model [3]. 

Iula et al. [13] describe an approximated axisymmetric model of solid axially polarized 

piezoelectric cylinders with electrodes on its flat surfaces. They use two orthogonal wave 

functions in 𝑟 and 𝑧 directions as Brissaud’s solutions [11]. The boundary conditions on 

stress and electric potential are satisfied in an average sense.  

Mancic and Radmanovic [14] present an approximated axisymmetric model of a 

axially polarized hollow piezoceramic cylinder. Their solutions are also based on those 

presented by Brissaud [11] and satisfy the boundary conditions on stress only in an average 

sense.  

Lin and co-workers analyze thickness polarized piezoelectric ceramic rectangular 

plates [15,16], axially polarized solid cylinders [17], and hollow cylinders [18, 19,20] by 

using Brissaud-type solutions [11]. They present equivalent circuits and study the effect of 

dimensions on the effective piezoelectric coupling coefficient.  

Feng et al. [21] develop a 2-D equivalent circuit of longitudinally polarized 

piezoelectric ceramic rings. They ignore shearing stress and torsion. The equivalent circuit 

includes the effect of both axial and radial vibrations. The continuity between the stresses 

and external forces is satisfied in an average sense at the mechanical boundaries. The 

predicted radial and thickness mode resonances are comparable with experimental values 

when the disk or ring is thin. 

In Refs. 11 - 21, shear stress is zero everywhere and the equipotential boundary 

condition on the flat electroded surfaces is not exactly satisfied. 

Ying et al. [22] focus on the random vibration analysis of a thick piezoelectric, radially 

polarized, axisymmetric, hollow cylinder in plane strain conditions. They consider the 

Gauss electrostatic condition [23] in their analysis. The displacements are expanded as a 

Legendre series and the electric field boundary conditions are homogenous. The frequency 

response characteristics and electrical and mechanical coupling properties are explored. 

Jalili and Goudarzi [24] use the force-velocity boundary conditions and force - voltage 

equivalence to derive the equivalent electro mechanical impedance matrix of an axially 

polarized piezoceramic ring. The determinant of the impedance matrix is minimum in 

resonant condition and is maximum in anti-resonant condition. They compute the 

resonance and anti-resonance frequencies and present only two or three vibration modes.  
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Brissaud [25] presents a 3-D model of piezoelectric materials - rectangular and 

cylindrical elements - based on an approximate description of the potential and electric 

field inside the material. The displacements along the three coordinate axes and electrical 

impedance are calculated for each geometry and the resonance conditions are stated. 

Ebenezer and Abraham [26] present a thin shell analytical model of axially polarized 

piezoelectric ceramic finite cylinders with internal losses. Governing equations for a thin 

shell are first derived by using the Flugge approximations, assuming that the electric 

potential has a quadratic variation between the curved surfaces, and using Hamilton’s 

principle extended to piezoelectric media. A finite series solution to the displacement-

potential equations is presented. The analytical values of resonance frequencies and the 

input electrical admittance of thin shells are in excellent agreement with finite element 

results. In the model, the radial stress is assumed to be zero on the surfaces of the cylinder 

and therefore inside the thin shell also. However, when the wall thickness of the shell is 

comparable to the length, it cannot be neglected at the upper branch resonance frequency.  

Ebenezer and Abraham [27] use eigenfunctions to analyze radially polarized 

cylindrical membranes. They show that the infinite series solution converges to the wrong 

value when the radial displacement is specified to be zero at the ends of the cylinder. 

Correct solutions, without discontinuities in the radial displacement, are obtained by 

expressing the displacements as a weighted sum of eigenfunctions plus the low-frequency 

solution. They use infinite series to analyze radially [28] polarized thin piezoelectric 

cylindrical shells with internal losses also. 

Ebenezer and Ramesh [29] present a few exact solutions, with four coefficients, to the 

governing equations of solid axially polarized piezoelectric cylinders. They show that only 

these solutions are required to exactly satisfy certain uniform boundary conditions and 

approximately satisfy others in an average sense. The uniform potential boundary 

conditions are exactly satisfied. 

Ramesh and Ebenezer [30] present an axisymmetric analytical model of hollow axially 

polarized piezoelectric ceramic cylinders with radius a few times the wall-thickness and 

the length. They assume that the axial displacement and electric potential are functions of 

only the axial coordinate and the radial displacement is a function of the radial coordinate. 

Using exact solutions to the exact governing equations, the boundary conditions on electric 

potential are satisfied exactly and the others are satisfied in an average sense. The computed 
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complex input electrical admittance is in good agreement with Finite Element Analysis 

results in the neighborhood of both lower and upper branch resonance frequencies. 

Ebenezer and Ramesh [31] present a method to analyze solid axially polarized 

piezoelectric ceramic cylinders with arbitrary length to radius ratio. They use infinite series 

expressions for the axial and radial displacements and the electric potential. Each term in 

the series is an exact solution to the exact governing equations. Every function of interest 

is expressed in terms of a complete set of orthogonal functions in the radial direction. 

Therefore, it is possible to satisfy arbitrary boundary conditions on the flat surfaces. On the 

curved surface, zero shear stress, specified uniform radial displacement, and zero normal 

component of charge density are satisfied exactly and other more general boundary 

conditions are satisfied in an average sense.  The displacement, stress, and potential fields 

within the cylinder are in good agreement with finite element results obtained using  

ATILA [1]. 

Ebenezer et al. [32] analyze the forced vibration of solid finite axially polarized 

piezoelectric ceramic cylinders. They use exact solutions to the exact axisymmetric 

governing equations. Each term in the solution is a product of a sinusoidal function and a 

Bessel function. These functions form complete sets in the axial and radial directions 

respectively. The weights in the solution are determined by using the orthogonal properties 

of the functions and are used to satisfy specified, arbitrary, axisymmetric boundary 

conditions on all the surfaces. All numerical results including those for a free cylinder of 

length and diameter 10 mm are in excellent agreement with those computed using  

ATILA [1]. The aspect ratio of the cylinder is one and other approximate models do not 

yield accurate results for this case. The method can be extended to analyze hollow cylinders 

and composite transducers.  

In the present work, the forced response of axially polarized finite piezoelectric hollow 

cylinders with arbitrary length to radius ratios and electrodes only on the top and bottom 

flat surfaces is analyzed. Internal losses are included in the model using complex dielectric, 

elastic and piezoelectric coefficients. Exact, linearized, axisymmetric governing equations 

for the piezoceramic cylinder and Gauss electrostatic condition in cylindrical coordinates 

are considered. Exact series solutions are used for displacements and electric potential with 

each term in the series is a solution to the governing equations. They are products of 

trigonometric and Bessel functions and are not pure modes as that in Brissaud [11]. The 

solutions form complete orthogonal [33] sets in both radial and axial directions. Therefore, 



 

8 

 

      

      

the response to arbitrary and piecewise continuous boundary conditions can be determined. 

The boundary conditions are satisfied in a weighted average sense using orthogonal and 

complete weights. Each boundary condition is multiplied by an infinite set of complete 

orthogonal sets and integrated over the surfaces. The model developed is an accurate one 

to determine the forced responses of piezoceramic cylinders. Numerical values of the 

complex input electrical admittance and the complex displacement are computed and 

compared with those obtained using the finite element package ATILA. They are in 

excellent agreement. 

 Stack of Piezoceramic Cylinders 

The cylinder or ring is a common piezoelectric ceramic element which, when stacked 

axially and cemented together with a piston head mass and inertial rear tail mass, forms the 

common Tonpilz piston transducer. In the stack, the rings are normally connected 

electrically in parallel to decrease the impedance compared to a single element. Each 

component is coated with electrodes on both its flat ends and then glued together to form 

the stack. When a voltage is applied across the stack, each component receives the same 

voltage and individual expansions sum, allowing large expansions for a reasonable voltage. 

The schematic of a piezoceramic stack is shown in Fig. 1.2. 

 

 

Fig. 1.2. Schematic of a stack of axially polarized hollow piezoceramic cylinders. 

Martin [34] develops an equivalent circuit of a stack or segment of identical rings. The 

circuit for one ring is obtained by using Mason’s model [3] or Martin’s model [11]. The 

stress, displacement, and strain distributions at the interfaces are computed. His segmented 

system is thin to ensure very high radial mode resonance frequency. His analysis does not 

consider the losses at the joints as reported by Toulis [35]. 
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Sherrit et al. [36] uses Martin’s model [34] to develop a model of the stack and 

piezoelectric coefficients are calculated from the model impedance data using inversion 

techniques.  

Nowotny et al. [37] present a one-dimensional transfer matrix description of layered 

piezoelectric structures with two electrodes. The piezoceramic layer is in between the two 

electrodes and there are non-piezoceramic layers, one on each side of the piezoceramic 

layer. The continuity of stresses and displacement along the axial direction is applied 

between the layers and a transfer matrix is derived for the multi-layered structure. Later 

Nowotny et al. [38] extend their work to multi-layered structures with N electrodes.  

Flint et al. [39] presents electrical power predictions of piezoceramic stack actuators 

with respect to its host structure. They derive the electrical impedance of the stack using a 

one-dimensional model and the influence of host structure is incorporated as an external 

impedance term. The electrical behaviour of elements in the stack are analyzed separately. 

The theory is experimentally validated with a particular host structure.  

The models existed in literature are all based on one-dimensional models. An improved 

two-dimensional analytical model of a stack of axially polarized hollow piezoelectric 

ceramic cylinders with internal losses is presented in the thesis. A few exact solutions to 

the exact equations of motion of hollow piezoelectric cylinders and the Gauss electrostatic 

condition is used. Complex piezoelectric coefficients will be used to model internal losses. 

Transfer matrix approach is used in the analysis. The model of a single piezoceramic ring 

is modified to form a transfer matrix for one ring and this is extended to develop a transfer 

matrix for the stack. The continuity of the axial stress and displacement at the flat interfaces 

between two rings in the stack is used to develop the transfer matrix. The input electrical 

admittance and current in the stack are computed by specifying zero stresses at the 

boundaries.  

 Langevin Transducer 

The Langevin transducer is a sandwich transducer that comprises one or more pairs of 

piezoelectric rings or cylinders sandwiched between two metal masses. It is considered to 

be a predecessor of the Tonpilz transducer. In the thesis, a classical Langevin transducer is 

analyzed in vacuum. The transducer comprises an axially polarized solid piezoelectric 

cylinder sandwiched between two elastic solid cylinders. All three cylinders are of the same 

diameter. The elastic cylinders and piezoceramic cylinders are reviewed here. 
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The classical one-dimensional model of longitudinal vibration of long, thin, elastic 

cylinders, developed during the 18th century, is the simplest model of cylinders [40]. In this 

model, it is assumed that only the longitudinal stress is non-zero. When the ends of the rod 

are excited, two waves travel along the axis in opposite directions and cause displacement 

and normal stresses, along the axis of the rod, that are independent of radial distance from 

the axis of the rod.  

 

 

 

 

 

 

 

 

 

 

Fig. 1.3. Schematic of a Langevin transducer. 

Pochhammer and Chree [41,42] independently present models for free axisymmetric 

vibration of an infinite circular cylinder, governed by exact one-dimensional equations of 

elasticity, and with zero normal and shear stress on the curved surface. In this model, the 

axial and radial displacements are functions of both axial and radial coordinates, travelling 

along the axis, in opposite directions. When this model is used to analyze transducers, 

continuity of only average stress and average displacement, along the axis, can be ensured 

at the plane interface between components.  

Filon [43] presents a static model of elastic cylinders in which the solution to the 

biharmonic [44] equation is expressed as the sum of an infinite series. Each term in the 

series is an exact solution to the exact equation of elasticity and is a product of sinusoidal 

function of the axial coordinate and Bessel function of the radial coordinate. The sinusoidal 

functions form a complete set in the axial direction and are used to satisfy arbitrary 

boundary conditions on the curved surface. However, on the flat ends, only some boundary 

conditions are satisfied exactly and the others are satisfied only at some points or in a 

Elastic end 
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Piezoceramic 
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weighted average sense. He presented several numerical results after truncating the infinite 

series. 

Purser [45] presents a model of static finite cylinder with specified uniform normal 

stress and zero shear stress on the surfaces. In the model, dilatation is expressed as the sum 

of two series. Each term in both the series is an exact solution to the exact governing 

equation. The sinusoidal functions in the first series form a complete set in the axial 

direction and Bessel functions in the series form a complete set in the radial direction. The 

series solutions are used to satisfy all the boundary conditions exactly or with high accuracy 

in a weighted - average sense.  

Aggarwal [46] analyses the free vibration of a finite elastic disk. His solution is a single 

term and is the product of sinusoidal and Bessel functions. The coefficients in the solution 

are determined for two cases. In the first case, zero-stress boundary conditions on the flat 

surfaces are satisfied exactly.  Further, on the curved boundary, the zero shear stress is 

satisfied exactly or the normal stress is satisfied only at the rims. Numerical results are 

presented to illustrate the magnitude of the normalized residual stresses on the curved 

boundary. In the second case, zero-stress boundary conditions on the curved surface are 

satisfied exactly.   

Hutchinson extends Purser’s approach to analyze free vibration of finite elastic 

cylinders with certain specified uniform boundary conditions. The axial and radial 

components of displacement are expressed in terms of complete sets of functions. The 

infinite series is simply truncated and each term in the solution satisfies the boundary 

conditions on the axial displacement exactly. Some boundary conditions are satisfied 

exactly and others are approximately satisfied by orthogonalization on the boundaries. He 

analyzes cylinders with zero displacements at the boundaries [47] and zero stress at the 

boundaries [48] and presents several resonance frequencies for each case. 

Grinchenko [49] analyzes a hollow static cylinder of finite length with specified non 

zero normal stress on the outer and inner curved surfaces. The other stresses are zero. All 

components of stress are expressed as sums of two infinite series. The coefficients in the 

series are determined without truncating the series.  

McMahon [50] analyzes the free axisymmetric vibrations of solid, isotropic, elastic 

cylinders by using finite-difference method. In this method, the differential equations and 

boundary condition equations are transformed into finite-difference equations by 

substituting difference expressions for the derivatives. When the solid has free boundaries, 
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the set of equations is homogeneous and the roots of the determinant of coefficients yield 

the resonant frequencies. For forced vibrations, the equations are non-homogeneous and 

are solved to yield displacements and stresses. 

Grinchenko and Meleshko [51] analyze the forced axisymmetric vibration of a circular 

elastic disk. They use infinite series solutions and the sum of the series is approximated by 

using the asymptotic values of some coefficients. This model predicts the edge resonances. 

Leissa and So [52,53] present a variational Ritz method for 3-D analysis of finite solid 

circular elastic cylinders. In this method, the components of displacement are expressed as 

sums of Fourier series in the circumferential coordinate.  The coefficients in the series are 

expressed as weighted sums of complete sets of polynomial functions in the radial and axial 

directions. They present extensive tables of natural frequencies of cylinders with various 

length to radius ratios. The flat boundaries are either free or fixed and the curved boundary 

is free. 

Meleshko [54] revisits Filon’s static problem and expresses the components of 

displacements as sums of two infinite series. He considers the axisymmetric distribution of 

stresses and displacements in a finite elastic cylinder under non-uniform and discontinuous 

loading on its curved surface. The coefficients in the series are determined by using the 

boundary conditions. In one approach the series are simply truncated. In another approach, 

a modification of the method presented by Grinchenko [49] is used to achieve rapid 

convergence of the series solution for a special case.  

Ebenezer et al. [55,56] present a method to determine the vibratory response of a solid, 

finite, elastic cylinder with arbitrary length to radius ratio. In their analysis, the axial and 

radial displacements are expressed in terms of complete sets of functions. The components 

of stress are also expressed in terms of complete sets. They present natural frequencies of 

free cylinders that are in good agreement with those presented by Leissa and So [53] and 

those obtained using ATILA. They also determine the forced response for various cases of 

non-uniform loads on the flat and curved surfaces and show that they are in good agreement 

with those obtained using ATILA. Only a few terms of the infinite series are needed to 

compute a large number of resonance frequencies as well as determine the response to high 

frequency loads on the flat and curved surfaces of cylinders.  

Sburlati [57] analyzes static cylinders by expressing the Love function in the form of a 

Fourier-Bessel series. All the Bessel functions are zero on the curved surface and therefore 

cannot be used to correctly represent any non-zero value there. To overcome this difficulty, 
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she uses two auxiliary terms that are dependent only on the axial coordinate. She presents 

analytical solutions for the case of specified radial displacement on the curved surface and 

zero stress on the flat surfaces. Numerical results are presented to show that all the boundary 

conditions are satisfied.  

In our analysis of elastic cylinders, the method used by Purser [45] to analyze static 

elastic cylinders and by Hutchinson [47, 48] to study the free vibration of elastic cylinders 

is extended to determine the forced vibration response of solid, elastic, isotropic cylinders 

to excitations that are neither symmetric nor antisymmetric about the plane that is midway 

between the flat ends of the cylinder. The method is based on the use of two infinite series 

solutions to the governing equations. Each term in the two series is an exact solution to the 

governing equations. The two series consist of terms that are orthogonal and form complete 

sets of functions in the axial and radial directions. The components of stress are also 

expressed in terms of complete sets of functions and hence arbitrary boundary conditions 

can be satisfied on the boundaries of the cylinder.  

Axially polarized solid piezoceramic cylinders are analyzed using exact series 

solutions to the exact governing equations. The displacements and electric potential are 

expressed in terms of complete orthogonal functions. They are expressed as the product of 

Bessel and trigonometric functions where the former form a complete set in the axial 

direction and the latter form a complete set in the radial direction. Both symmetric and 

antisymmetric components are used. The response of the cylinder to symmetric excitations 

is analyzed in Ref. [32]. They used radial displacement that is symmetric about the center 

of the cylinder. In the present analysis, the antisymmetric radial displacement is also 

considered

The design of a sandwich transducer is discussed by Stansfield [58].  Woollett [59] 

analyzes transducers using circuit network analysis and as a longitudinal vibrator. 

Underwater sandwich transducers are optimized for their performance using Mason’s  

one-dimensional equivalent circuit model [60,61]. Decarpigny et al. [62] present a mixed 

model of axisymmetric Tonpilz transducers in vacuum. They use a finite element model of 

the head and a plane wave or rod model of other components. Continuity conditions are 

used to match the stress and displacement at the interface. Finite element methods are also 

used to optimize underwater electroacoustic sandwich transducers [63]. 

Iula et al. [64] present an approximate axisymmetric analytical model of the Langevin 

transducer in vacuum and discuss its improvements over 1-D models. Their model, based 
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on Brissaud’s work [11], is used to predict radial and thickness extensional modes. They 

use an axisymmetric analytical model of the piezoceramic cylinder in which the 

displacements represent pure mode propagation and shear stress is zero everywhere in the 

transducer. Electrical and mechanical boundary conditions are satisfied in an average sense. 

The piezoceramic cylinder is described as 4 port system with 3 mechanical and one 

electrical port and the two end masses are described using 3 port systems. The full Langevin 

model is obtained by loading the mechanical ports with the mechanical impedance of the 

surrounding media, the continuity of the velocities at the interfaces, and applying an 

alternating voltage to the electric port. The frequency spectrum, impedance and 

displacement modes are computed and are experimentally validated. 

Iula et al. [65] present a finite element analysis of the vibrational behaviour of the 

Langevin transducer in vacuum and its dependence on the length to diameter ratio of the 

transducer. Transducers with total length greater than, comparable to, and smaller than the 

diameter are studied and the frequency spectrum are shown. They conclude that, the 

product of the radiating area and the displacement is a little higher for transducers with 

comparable longitudinal and lateral dimensions than it is for transducers with length much 

greater than diameter. 

Lin [66] proposes an approximate analytic method to analyze the coupled vibration of 

sandwich piezoelectric transducer with a large cross-section in air. He uses pure modes. 

The coupled resonance frequency equations for the radial resonances of the piezoceramic 

and elastic cylinders and the longitudinal vibration of the transducer are derived. His 

analysis ignores the shear and torsional strains and assumes that the mechanical coupling 

coefficient is a constant. The disadvantage of the model is that it cannot be used to 

accurately determine the displacement distribution and the stresses and strains in the 

transducer. Later he uses this pure mode model to study the multimode behaviour of 

Langevin transducers with large cross section [67]. 

Arnold [68] uses Mason’s equivalent circuit of the transducer to study the effect of 

stress rod in Langevin transducers. His results show that the stress rod does not have a 

significant effect on the fundamental resonance. However, certain higher order resonances 

can be predicted only if the stress rod is included in the model. Besides, the central bolt 

reduces the electromechanical coupling factor because it represents a load for the 

transducer.  
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Liang et al. [69] analyze the electrical limit for a typical Langevin ultrasonic 

transducer. They propose to use piezoceramic rings with different thicknesses at different 

locations in a transducer to improve the electrical limit and service life. The calculation 

process of the electric field energy densities of piezoceramic rings by using ANSYS is 

introduced, and a design example is presented.  

Butler [70] designs a sandwich transducer with inactive and active material components 

to achieve wide band response. A plane wave model is used to compute the transmitting 

and receiving characteristics and an equivalent circuit is further developed.   

In the thesis, a classical Langevin transducer in vacuum is modelled using exact 

solutions to the exact governing equations for both elastic and piezoelectric cylinders. Two 

infinite series solutions are used for each component of the Langevin transducer; one 

represents the symmetric part and other the antisymmetric response. Unlike stacks, here 

stresses and displacements are in series form. The continuity of the axial, radial 

displacements, and normal and shear stresses are used at the two flat interfaces of the 

Langevin transducer. The boundary and continuity conditions are satisfied in the weighted 

average sense using orthogonal Bessel and trigonometric functions as weights. The 

resonance frequencies and electrical and mechanical parameters of interest are computed. 

Langevin transducers with identical and different end masses are analyzed. 

1.4 OBJECTIVE AND ORGANIZATION OF THE THESIS 

Though there are various finite element models and approximate one-, two-, and three-

dimensional analytical models of piezoelectric transducers and their components; there is 

an increasing demand for exact analytical models to analyze them. The primary objective 

in this work is to develop an improved two-dimensional axisymmetric analytical model of 

a piezoelectric hollow cylinder and a model of stacks of cylinders. In this work, only stacks 

with hollow piezoelectric cylinders of the same inner and outer radii and stacks of solid 

cylinders with the same diameter that are either elastic or piezoelectric are considered.  

In the model of one cylinder [71], the boundary conditions are to be satisfied on flat 

and curved surfaces, in contrast to one-dimensional models in which the boundary 

conditions are satisfied at two points. In the model of a stack of cylinders [72] that is used 

as the driver in a Tonpilz transducer, in addition to the boundary conditions at the flat ends 

of the stack and the inner and outer surfaces, continuity conditions are satisfied at each 

interface between flat ends of the cylinders. 
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 Accurate models of axisymmetric stacks of cylinders that are either hollow or solid 

are presented in the thesis. The flat ends of the cylinders are in contact with each other. All 

the cylinders have the same outer diameter. If the cylinders are hollow, all of them have the 

same inner diameter also. Models of a stack of piezoelectric rings used in Tonpilz 

transducers and Langevin transducers [73] are presented to illustrate the procedure. The 

numerical results generated by these models are compared with those computed by using 

ATILA - a finite element package to analyze underwater electroacoustic transducers [1].  

The thesis has been structured into six chapters. A brief introduction to transducers and 

their components is presented and the methods already existing in literature to analyze them 

are extensively reviewed in Chapter 1. Chapter 2 is devoted to the analysis of electrically 

or mechanically excited, axially polarized, axisymmetric, hollow piezoelectric ceramic 

cylinders. Both the electrical and mechanical responses are analyzed with arbitrary 

boundary conditions. In Chapter 3, an analytical model is presented of a stack of identical, 

axially polarized, hollow piezoelectric ceramic cylinders. The stack is excited by applying 

a voltage across the electrodes that are on the flat surfaces. A transfer matrix is developed 

for each cylinder in the stack and is used to build a transfer matrix for the stack. In  

Chapter 4, an analytical model of a classical Langevin transducer with an axially polarized 

piezoelectric cylinder sandwiched between two elastic cylinders is presented. All the three 

cylinders in the transducer are solid and of the same diameter. Exact series solutions to the 

exact equations of motion are used for both elastic and piezoelectric cylinders. In  

Chapter 5, a summary of the thesis and the significance of the contribution are presented. 

The thesis concludes with Chapter 6 where the applications and the direction in which 

future work may progress is presented.  
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AXIALLY POLARIZED HOLLOW PIEZOCERAMIC 

CYLINDER 

 

2.1 INTRODUCTION 

Axially polarized piezoelectric ceramic hollow cylinders (rings) are often used as 

electro-mechanical transformers in electro-elastic transducers. They are preferred because 

it is necessary to pre-stress the piezoceramic and an axisymmetric structure is obtained by 

passing a rod through the center of the ring to pre-stress it. A stack of axially polarized 

piezoceramic rings is used in Tonpilz type transducers that are often used for generation of 

underwater sound. The length of the ring in a stack is approximately equal to the wall 

thickness and a small fraction of the inner radius.  

In this chapter, axially polarized hollow piezoceramic cylinders of arbitrary length to 

radius ratio are analyzed. A model of the cylinder with arbitrary boundary conditions is 

presented. A method is presented to determine the forced response of the cylinders with 

electrodes only on the top and bottom flat surfaces. Electrical and mechanical excitations 

are considered. Internal losses are included in the model using complex dielectric, elastic, 

and piezoelectric coefficients. The exact, linearized, two-dimensional, axisymmetric 

governing equations are obtained in cylindrical coordinates by using two equations of 

dynamic equilibrium and the Gauss electrostatic condition. The resulting equations are 

Partial Differential Equations in the axial and radial coordinates. The response of the 

cylinder to arbitrary and piecewise continuous excitation of the boundary is determined by 

using complete, orthogonal, infinite sets of functions. All components of the primary 

variables - displacement and electric potential - are expressed as a sum of series solutions 

and each term in each series is an exact solution to the exact governing equations of motion 

and the Gauss condition. The terms in the expressions for components of displacement and 

electric potential are products of Bessel and sinusoidal functions and are orthogonal to each 

other. The coefficients in the series solutions are computed by specifying boundary 

conditions on the surfaces of the cylinder. Complete sets of functions in the radial and axial 

directions are formed by appropriately choosing the arguments of Bessel and trigonometric 

functions, respectively. Therefore, arbitrary piecewise boundary conditions can be satisfied 

on all surfaces of the piezoceramic ring. Numerical values of the complex input electrical 
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admittance, the complex displacements, and stresses are computed and compared with 

those computed by the finite element package ATILA. Both are in excellent agreement. 

The method can be extended to analyze a stack of axially polarized hollow cylinders, 

sandwich, and Tonpilz transducers. 

2.2 GOVERNING EQUATION 

Consider a hollow, piezoelectric, isotropic cylinder of finite length L, inner radius a, 

and outer radius b as shown in Fig. 2.1. Forced vibrations of the cylinder with specified 

axisymmetric boundary conditions and the response of the cylinder to arbitrary but 

axisymmetric stresses or displacements specified on the surfaces of the cylinder are 

analyzed. The origin of the cylindrical local coordinate system is placed at the geometric 

center of the cylinder.  

 

Fig. 2.1. A hollow piezoceramic cylinder of length L, inner radius a, and outer radius b. 

The excitation and the boundary conditions, and therefore, the response of the circular 

cylinder are axisymmetric. The axisymmetric dynamic equilibrium equations [74] 

expressed in cylindrical coordinates (r,, z) as, 

𝜕𝑇𝑧𝑧

𝜕𝑧
+
𝜕𝑇𝑟𝑧

𝜕𝑟
+
1

𝑟
𝑇𝑟𝑧 = −𝜌𝜔

2𝑈          (2.1a) 

and  

𝜕𝑇𝑟𝑟

𝜕𝑟
+
𝜕𝑇𝑟𝑧

𝜕𝑧
+
1

𝑟
(𝑇𝑟𝑟 − 𝑇𝜃𝜃) = −𝜌𝜔

2𝑊        (2.1b) 

where 𝑈 and 𝑊 are the axial and radial components of displacements, respectively. 𝑇𝑟𝑟, 

𝑇𝑧𝑧, and 𝑇𝜃𝜃 are the normal components of stress in the radial, axial, and tangential 

directions, respectively, and 𝑇𝑟𝑧 is a shear component of stress. Here,  is the density and 

ω is the angular frequency. The excitation and response are time-harmonic, and 𝑒𝑗𝜔𝑡 where 

𝑡 denotes time, is suppressed in all the equations for convenience. The components of strain 

[74] are expressed as,  



 

19 

 

      

      

[𝑆𝑟𝑟 , 𝑆𝜃𝜃, 𝑆𝑧𝑧, 𝑆𝑟𝑧] = [
∂𝑊

𝜕𝑟
,

𝑊

𝑟
,

∂𝑈

𝜕𝑧
,

𝜕𝑈

𝜕𝑟
+
∂𝑊

𝜕𝑧
]      (2.2a) 

and the components of electric field are expressed as, 

[𝐸𝑟 , 𝐸𝑧] = − [
𝜕∅

𝜕𝑟
,

𝜕∅

𝜕𝑧
]          (2.2b) 

where ∅ is the electric potential. The constitutive relations for a piezoelectric material of 

6mm crystal class [74] are written as, 

{
 
 

 
 
𝑇𝑟𝑟
𝑇𝜃𝜃
𝑇𝑧𝑧
𝑇𝑟𝑧
𝐷𝑟
𝐷𝑧 }
 
 

 
 

=

[
 
 
 
 
 
 
𝑐11
𝐸 𝑐12

𝐸

𝑐12
𝐸 𝑐11

𝐸

𝑐13
𝐸 0

𝑐13
𝐸 0

0 −𝑒31
0 −𝑒31

𝑐13
𝐸 𝑐13

𝐸

0 0

𝑐33
𝐸 0

0 𝑐44
𝐸

0 −𝑒33
−𝑒15 0

0 0
𝑒31 𝑒31

0 𝑒15
𝑒33 0

𝜀11
𝑆 0

0 𝜀33
𝑆 ]
 
 
 
 
 
 

{
 
 

 
 
𝑆𝑟𝑟
𝑆𝜃𝜃
𝑆𝑧𝑧
𝑆𝑟𝑧
𝐸𝑟
𝐸𝑧 }
 
 

 
 

.   (2.3) 

Here, 𝑐11
𝐸 , 𝑐12

𝐸 , 𝑐13
𝐸 , 𝑐33

𝐸 , and 𝑐44
𝐸  are the elastic stiffness coefficients; 𝑒31, 𝑒33, and 𝑒15 

are the piezoelectric stress coefficients, and 𝜀11
𝑆  and 𝜀33

𝑆  are dielectric permittivity 

coefficients of the piezoceramic material. Since there is no net charge enclosed by the 

piezoceramics, the components of electric displacement, 𝐷𝑟 and 𝐷𝑧, must satisfy the Gauss 

condition [23], 

𝜕(𝑟𝐷𝑟)

𝑟𝜕𝑟
+
𝜕𝐷𝑧

𝜕𝑧
= 0.        (2.4) 

Substituting Eqs. (2.2) and (2.3) in Eqs. (2.1) and (2.4) yield 

[
 
 
 
 𝑐33
𝐸 𝜕2

𝜕𝑧2
+ 𝑐44

𝐸 {
𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
} + 𝜌𝜔2 (𝑐13

𝐸 + 𝑐44
𝐸 ) {

𝜕2

𝜕𝑟𝜕𝑧
+

1

𝑟

𝜕

𝜕𝑧
} 𝑒33

𝜕2

𝜕𝑧2
+ 𝑒15 {

𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
}

(𝑐13
𝐸 + 𝑐44

𝐸 )
𝜕2

𝜕𝑟𝜕𝑧
𝑐11
𝐸 {

𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
−

1

𝑟2
}
𝜕2

𝜕𝑧2
+ 𝑐44

𝐸 𝜕2

𝜕𝑧2
+ 𝜌𝜔2 (𝑒31 + 𝑒15)

𝜕2

𝜕𝑟𝜕𝑧

𝑒33
𝜕2

𝜕𝑧2
+ 𝑒15 {

𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
} (𝑒31 + 𝑒15) {

𝜕2

∂𝑟 ∂𝑧
+

1

𝑟

𝜕

𝜕𝑧
} −𝜀33

𝑆 𝜕2

𝜕𝑧2
− 𝜀11

𝑆 {
𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
}]
 
 
 
 

 

{
𝑈
𝑊
∅
} = {

0
0
0
}.                                                                                                                                  (2.5) 

In this analysis, the piezoceramic cylinder is modeled with internal losses using 

complex values of the material coefficients. The coefficients are represented as the sum of 

real and imaginary parts. For example, 𝑐11
𝐸  is represented as 𝑐11

𝐸 =  𝑐11
𝐸′ +  j𝑐11

𝐸′′,  

where ′ denotes the real part and ′′ denotes the imaginary part, and  𝑗2 = −1. Standard book 

values are used for the real parts. The imaginary parts of these complex quantities are not 

arbitrarily chosen. In fact, they must satisfy Holland’s conditions [75] separately. Holland 
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derived the following conditions that are to be satisfied by the imaginary parts of complex 

coefficients of piezoelectric materials:  

𝑠11
𝐸′′ ≥ 0, 𝑠33

𝐸′′ ≥ 0, 𝑠44
𝐸′′ ≥ 0 , 𝑠66

𝐸′′ , 𝜀11
𝑇′ ≥ 0, 𝜀33

𝑇′ ≥ 0, 𝑠11
𝐸′′ ≥ |𝑠12

𝐸′′| 

𝑠11
𝐸′′𝑠33

𝐸′′ ≥ (𝑠13
𝐸′′)

2
, 𝑠11
𝐸′′𝜀33

𝑇′′ ≥ (𝑑31
′′ )2,  𝑠33

𝐸′′𝜀33
𝑇′′ ≥ (𝑑33

′′ )2, 𝑠44
𝐸′′𝜀11

𝑇′′ ≥ (𝑑24
′′ )2  

𝑠33
𝐸′′( 𝑠11

𝐸′′ +  𝑠12
𝐸′′) ≥ 2(𝑠13

𝐸′′)
2
,  𝜀33

𝑇′′( 𝑠11
𝐸′′ +  𝑠12

𝐸′′) ≥ 2(𝑑31
′′ )2.                                      (2.6) 

where 𝜀11
𝑇  and 𝜀33

𝑇  are dielectric permittivity coefficients; 𝑠11
𝐸 , 𝑠12

𝐸 , 𝑠13
𝐸 , 𝑠33

𝐸 , and 𝑠44
𝐸  are 

elastic compliance coefficients; 𝑑31, 𝑑33, and 𝑑15 are piezoelectric coefficients. When 

some other equivalent set of coefficients is used it is convenient to determine the above 

coefficients and ensure that the conditions are satisfied. 

2.3 PRIMARY VARIABLES: EXACT SERIES SOLUTION 

The solution to Eq. (2.5) is obtained by the method of separation of variables [76]. The 

form of the solution is found to be products of Bessel and trigonometric functions. Bessel 

functions of both kinds are included here because the cylinder is hollow. Series solutions 

are used and each term in each series is an exact solution to the exact governing equations 

of motion. It is easily verified that 

[𝑈 𝑊 ∅]𝑇 = [𝑈1 𝑊1 ∅1]
𝑇 + [𝑈2 𝑊2 ∅2]

𝑇 + [𝑈3 𝑊3 ∅3]
𝑇 +

[𝑈4 𝑊4 ∅4]
𝑇           (2.7a) 

is the sum of four independent exact solutions to Eq. (2.5). The four independent solutions 

are 

[

𝑈1
𝑊1

∅1

] = [

𝐴 sin(𝑘𝑧0𝑧)
0

𝐴
𝑒33

𝜀33
𝑆 sin(𝑘𝑧0𝑧)

] + [

∑ ∑ 𝐴𝑚𝑠𝐶0(𝑘𝑟𝑚𝑟) sin(𝑘𝑧𝑚𝑠𝑧)
3
𝑠=1

𝑀𝑟
𝑚=1

∑ ∑ 𝐴𝑚𝑠𝜓𝑚𝑠𝐶1(𝑘𝑟𝑚𝑟) cos(𝑘𝑧𝑚𝑠𝑧)
3
𝑠=1

𝑀𝑟
𝑚=1

∑ ∑ 𝐴𝑚𝑠𝜒𝑚𝑠𝐶0(𝑘𝑟𝑚𝑟) sin(𝑘𝑧𝑚𝑠𝑧)
3
𝑠=1

𝑀𝑟
𝑚=1

],                 (2.7b) 

where 𝑘𝑧0 = 𝜔/𝑣
𝐷, 𝑣𝐷 = (

𝑐33
𝐸 +𝑒33

2 𝜀33
𝑆⁄

𝜌
)
1/2

=(
𝑐33
𝐷

𝜌
)
1/2

;  

𝐶0(𝑘𝑟𝑚𝑟) = 𝐽0(𝑘𝑟𝑚𝑟) + 𝜁𝑚𝑌0(𝑘𝑟𝑚𝑟), 𝐶1(𝑘𝑟𝑚𝑟) = 𝐽1(𝑘𝑟𝑚𝑟) + 𝜁𝑚𝑌1(𝑘𝑟𝑚𝑟) and 𝐽𝑛(. ) 

and 𝑌𝑛(. ), 𝑛 = 0, 1 are the 𝑛th order Bessel functions of the first and second kind, 

respectively;                                      

  [

𝑈2
𝑊2

∅2

] = [
0

𝐵𝐽1(𝑘𝑟0𝑟)
0

] +

[
 
 
 ∑ ∑ 𝐵𝑞𝑠𝐽0(𝑘𝑟𝑞𝑠𝑟) sin(𝑘𝑧𝑞𝑧)

3
𝑠=1

𝑀𝑧
𝑞=1

∑ ∑ 𝐵𝑞𝑠𝜙𝑞𝑠𝐽1(𝑘𝑟𝑞𝑠𝑟) cos(𝑘𝑧𝑞𝑧)
3
𝑠=1

𝑀𝑧
𝑞=1

∑ ∑ 𝐵𝑞𝑠𝛾𝑞𝑠𝐽0(𝑘𝑟𝑞𝑠𝑟) sin(𝑘𝑧𝑞𝑧)
3
𝑠=1

𝑀𝑧
𝑞=1 ]
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where  𝑘𝑟0 =
𝜔
𝑣𝐸⁄ ,  𝑣𝐸 = (

𝑐11
𝐸

𝜌
)
1/2

;                                                                            (2.7c) 

[

𝑈3
𝑊3

∅3

] = [
0

𝐶𝑌1(𝑘𝑟0𝑟)
0

] +

[
 
 
 ∑ ∑ 𝐶𝑞𝑠𝑌0(𝑘𝑟𝑞𝑠𝑟) sin(𝑘𝑧𝑞𝑧)

3
𝑠=1

𝑀𝑧
𝑞=1

∑ ∑ 𝐶𝑞𝑠𝜙𝑞𝑠𝑌1(𝑘𝑟𝑞𝑠𝑟) cos(𝑘𝑧𝑞𝑧)
3
𝑠=1

𝑀𝑧
𝑞=1

∑ ∑ 𝐶𝑞𝑠𝛾𝑞𝑠𝑌0(𝑘𝑟𝑞𝑠𝑟) sin(𝑘𝑧𝑞𝑧)
3
𝑠=1

𝑀𝑧
𝑞=1 ]

 
 
 

,    (2.7d) 

and           

 [

𝑈4
𝑊4

∅4

] = [
0
0

𝐷𝑧 + 𝐸
].   (2.7e) 

Here; 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐴𝑚𝑠, 𝐵𝑞𝑠, and 𝐶𝑞𝑠; 𝑚= 1, 2, …,  𝑀𝑟 and 𝑞= 1, 2, …, 𝑀𝑧 are the 

coefficients to be determined. The 𝐷𝑧 + 𝐸 term in Eq. (2.7e) is required in the expression 

for ∅ to satisfy the non - zero potential condition even when the displacements are zero 

under clamped boundary conditions. 

The trigonometric and Bessel functions form an orthogonal complete sets of functions 

in the axial and radial directions, respectively. The orthogonality properties of the sin 

functions [77] are shown below.  

∫ sin (𝑋𝑧)
𝑏 2⁄

−𝑏 2⁄
sin (𝑘𝑧𝑞𝑧)𝑑𝑧 =

{
 
 

 
 0, 𝑋 = 𝑘𝑧𝑞 , 𝑞 ≠ 𝑛 

𝑏 2⁄ , 𝑋 = 𝑘𝑧𝑛, 𝑞 = 𝑛 

2 [
𝑋sin(𝑘𝑧𝑛𝑏/2) cos(

𝑋𝑏

2
)−𝑘𝑧𝑛cos(𝑘𝑧𝑛𝑏/2) sin(

𝑋𝑏

2
)

𝑘𝑧𝑛−𝑋2
] , 𝑋 ≠ 𝑘𝑧𝑛, 𝑛 = 1,2,3, …

                 (2.8) 

Similarly, for q = 0, 1, 2, 3,…, and 𝑀𝑧 = ∞, the terms in cos(𝑘𝑧𝑞𝑧) are orthogonal, i.e., 

∫ cos(𝑋𝑧)
𝐿

2

−
𝐿

2

cos(𝑘𝑧𝑛𝑧)𝑑𝑧 =

{
 
 

 
 0,   𝑋 = 𝑘𝑧𝑚 and 𝑚 ≠ 𝑛

𝐿/2,    𝑋 = 𝑘𝑧𝑚 and 𝑚 = 𝑛 = 1,2,3,… 

2(−1)𝑛+1𝑋𝐿2

4𝑛2𝜋2−𝑋2𝐿2
sin (

𝑋𝐿

2
)  𝑜𝑟 2 [

𝑘𝑧𝑛sin(𝑘𝑧𝑛𝑏/2) cos(
𝑋𝑏

2
)−𝑋cos(𝑘𝑧𝑛𝑏/2) sin(

𝑋𝑏

2
)

𝑘𝑧𝑛
2−𝑋2

] ,    𝑋 ≠ 𝑘𝑧𝑛 & 𝑛 = 1,2,3,…

   

                          (2.9) 

It is noted that the m = 0 term in the cosine series is 1 and is contained in the leading terms 

of Eqs. (2.7c) and (2.7d).  

A set of orthogonal functions is a complete set, when clearly not all the coefficients in 

the expansion of a nonzero function in terms of these orthogonal functions can be zero; and 
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thus no nontrivial function can have a trivial expansion. The expansion of a function in 

terms of the members of a complete set converges and can be integrated and differentiated 

term by term and the sum of the series cannot differ from the function over any interval of 

finite length [78]. Hollow cylinders can be analyzed using two different sets of functions 

[79] that are complete in the axial direction. In the first set, 𝑘𝑧𝑞 are chosen such that 

𝑘𝑧𝑞 𝐿 2⁄ = 𝑞𝜋, 𝑞 = 0, 1, 2, 3, … ,𝑀𝑧 .  Here, the series begin with the 𝑞 = 0 term. In the first 

term, 𝑊 is zero, but 𝑈 is a function of 𝑘𝑧0. In the second set, 𝑘𝑧𝑞 are chosen such that 

𝑘𝑧𝑞 𝐿 2⁄ = (2𝑞 − 1) 𝜋 2⁄ , 𝑞 =  1, 2, 3, … ,𝑀𝑧 , where 𝑀𝑧 is ∞. In both sets, for 𝑀𝑧 = ∞, 

sin(𝑘𝑧𝑞𝑧) and cos(𝑘𝑧𝑞𝑧) are complete sets of functions that are orthogonal.  

Bessel functions in the solutions are chosen such that they form an orthogonal and 

complete set in the radial direction. The values of 𝑘𝑟𝑚 and 𝜁𝑚 are chosen such that they are 

the solutions to 𝐶1(𝑘𝑟𝑚𝑎) = 0 and 𝐶1(𝑘𝑟𝑚𝑏) = 0. For 𝑚 = 0, 1, 2, 3, …, 𝑀𝑟  = , the 

terms in the 𝐶0 series are orthogonal [77] , i.e.,  

∫ 𝐶0(𝑘𝑟𝑚𝑟)
𝑏

𝑎
𝐶0(𝑘𝑟𝑛𝑟)𝑟𝑑𝑟 = {

0; 

0.5(𝑏2 − 𝑎2); 

0.5𝑟2{𝐶0
2(𝑘𝑟𝑛𝑟) + 𝐶1

2(𝑘𝑟𝑛𝑟)}|𝑎
𝑏; 

𝑚 ≠ 𝑛
𝑚 = 𝑛 = 0

𝑚 = 𝑛 = 1,2,3, …
 (2.10) 

The 𝑚 =  0 term in the 𝐶0 
 
series is 1 and is contained in the leading terms of Eqs. (2.7c) 

and (2.7d). The terms in the 𝐶1(𝑘𝑟𝑚𝑟)series are also orthogonal [77],  

∫ 𝐶1(𝑘𝑟𝑚𝑟)
𝑏

𝑎
𝐶1(𝑘𝑟𝑛𝑟)𝑟𝑑𝑟 =

{
0; 

[0.5𝑟2{(1 − (𝑘𝑟𝑛𝑟)
−2)𝐶1

2(𝑘𝑟𝑛𝑟) + 𝐶1
′2(𝑘𝑟𝑛𝑟)}]𝑎

𝑏
; 

𝑚 ≠ 𝑛
𝑚 = 𝑛 = 1,2,3, …

                             (2.11) 

and they form a norm-wise complete set of functions. In Eq. (2.12), the prime denotes 

derivative with respect to the argument. 

The frequency-dependent values of 𝑘𝑧𝑚𝑠 are now determined by substituting Eq. (2.7b) 

in Eq. (2.5) and equating the determinant of the resulting equation to zero. The 

characteristic equation is cubic in 𝑘𝑧𝑚𝑠
2
 and is solved for 𝑚 = 1, 2, …, 𝑀𝑟 to obtain the 

values of 𝑘𝑧𝑚𝑠, 𝑠 = 1,2,3. Similarly, by substituting Eq. (2.7c) in Eq. (2.5) and equating 

the determinant of the resulting equation to zero, the frequency-dependent values of 𝑘𝑟𝑞𝑠 

are determined. Then, substituting Eq. (2.7b) in Eq. (2.5) yields the following expressions: 

𝜓𝑚𝑠 =
(𝜌𝜔2−𝑐33 

𝐸 𝑘𝑧𝑚𝑠
2−𝑐44 

𝐸 𝑘𝑟𝑚
2)(𝜀33 

𝑆 𝑘𝑧𝑚𝑠
2+𝜀11 

𝑆 𝑘𝑟𝑚
2)−(𝑒33𝑘𝑧𝑚𝑠

2+𝑒15𝑘𝑟𝑚
2)
2

(𝑒33𝑘𝑧𝑚𝑠
2+𝑒15𝑘𝑟𝑚

2)(𝑒31+𝑒15)𝑘𝑟𝑚𝑘𝑧𝑚𝑠+(𝜀33 
𝑆 𝑘𝑧𝑚𝑠

2+𝜀11 
𝑆 𝑘𝑟𝑚

2)(𝑐13 
𝐸 +𝑐44 

𝐸 )𝑘𝑟𝑚𝑘𝑧𝑚𝑠
 (2.12a) 
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and 

𝜒𝑚𝑠 =
(𝜌𝜔2−𝑐33 

𝐸 𝑘𝑧𝑚𝑠
2−𝑐44 

𝐸 𝑘𝑟𝑚
2)(𝑒31+𝑒15)𝑘𝑟𝑚𝑘𝑧𝑚𝑠+(𝑐13 

𝐸 +𝑐44 
𝐸 )𝑘𝑟𝑚𝑘𝑧𝑚𝑠(𝑒33𝑘𝑧𝑚𝑠

2+𝑒15𝑘𝑟𝑚
2)

(𝑒33𝑘𝑧𝑚𝑠
2+𝑒15𝑘𝑟𝑚

2)(𝑒31+𝑒15)𝑘𝑟𝑚𝑘𝑧𝑚𝑠+(𝜀33 
𝑆 𝑘𝑧𝑚𝑠

2+𝜀11 
𝑆 𝑘𝑟𝑚

2)(𝑐13 
𝐸 +𝑐44 

𝐸 )𝑘𝑟𝑚𝑘𝑧𝑚𝑠
. (2.12b) 

 

Similarly, substituting Eq. (2.7c) in Eq. (2.5) yields the following expressions for 𝜙𝑞𝑠 and 

𝛾𝑞𝑠: 

𝜙𝑞𝑠 =
(𝜌𝜔2−𝑐33 

𝐸 𝑘𝑧𝑞
2−𝑐44 

𝐸 𝑘𝑟𝑞𝑠
2)(𝜀33 

𝑆 𝑘𝑧𝑞
2+𝜀11 

𝑆 𝑘𝑟𝑞𝑠
2)−(𝑒33𝑘𝑧𝑞

2+𝑒15𝑘𝑟𝑞𝑠
2)
2

(𝑒33𝑘𝑧𝑞
2+𝑒15𝑘𝑟𝑞𝑠

2)(𝑒31+𝑒15)𝑘𝑟𝑞𝑠𝑘𝑧𝑞+(𝜀33 
𝑆 𝑘𝑧𝑞

2+𝜀11 
𝑆 𝑘𝑟𝑞𝑠

2)(𝑐13 
𝐸 +𝑐44 

𝐸 )𝑘𝑟𝑞𝑠𝑘𝑧𝑞
  (2.12c) 

and 

𝛾𝑞𝑠 =
(𝜌𝜔2−𝑐33 

𝐸 𝑘𝑧𝑞
2−𝑐44 

𝐸 𝑘𝑟𝑞𝑠
2)(𝑒31+𝑒15)𝑘𝑟𝑞𝑠𝑘𝑧𝑞+(𝑒33𝑘𝑧𝑞

2+𝑒15𝑘𝑟𝑞𝑠
2)(𝑐13 

𝐸 +𝑐44 
𝐸 )𝑘𝑟𝑞𝑠𝑘𝑧𝑞

(𝑒33𝑘𝑧𝑞
2+𝑒15𝑘𝑟𝑞𝑠

2)(𝑒31+𝑒15)𝑘𝑟𝑞𝑠𝑘𝑧𝑞+(𝜀33 
𝑆 𝑘𝑧𝑞

2+𝜀11 
𝑆 𝑘𝑟𝑞𝑠

2)(𝑐13 
𝐸 +𝑐44 

𝐸 )𝑘𝑟𝑞𝑠𝑘𝑧𝑞
.   (2.12d) 

The axial displacement, 𝑈, and the potential, ∅, are anti-symmetric about the plane 

midway between the ends of the cylinder in Eqs. (2.7b) - (2.7d) and are expressed in terms 

of sine functions. The radial displacement, 𝑊, in these equations is symmetric because it 

is expressed in terms of cosine functions. Axial displacement and the potential that are 

symmetric and radial displacement that is anti-symmetric, can also be modelled. But, here 

the axisymmetric excitation to the single cylinder induces anti-symmetric axial vibrations 

only.  

2.4 SECONDARY VARIABLES 

The secondary variables of interest are the components of stress and electric field 

displacement. They are determined by using stress-strain and strain-displacement relations 

in Eqs. (2.3) and (2.2), respectively. The normal components of stress are expressed as 

𝑇𝑟𝑟 = 𝐴 (𝑐13
𝐸 +

𝑒31𝑒33

𝜀33
𝑆 ) 𝑘𝑧0 cos(𝑘𝑧0𝑧) + 𝐵 {𝑐11

𝐸 𝑘𝑟0𝐽0(𝑘𝑟0𝑟) +
𝑐12
𝐸 −𝑐11

𝐸

𝑟
𝐽1(𝑘𝑟0𝑟)} +

 𝐶 {𝑐11
𝐸 𝑘𝑟0𝑌0(𝑘𝑟0𝑟) +

𝑐12
𝐸 −𝑐11

𝐸

𝑟
𝑌1(𝑘𝑟0𝑟)} + 𝐷𝑒31 + ∑ ∑ 𝐴𝑚𝑠

3
𝑠=1

𝑀𝑟
𝑚=1 {[𝑐11

𝐸 𝜓𝑚𝑠𝑘𝑟𝑚 + (𝑐13
𝐸 +

𝑒31𝜒𝑚𝑠)𝑘𝑧𝑚𝑠]𝐶0(𝑘𝑟𝑚𝑟) +
𝑐12
𝐸 −𝑐11

𝐸

𝑟
𝜓𝑚𝑠𝐶1(𝑘𝑟𝑚𝑟)} cos(𝑘𝑧𝑚𝑠𝑧) +

∑ ∑ 𝐵𝑞𝑠
3
𝑠=1

𝑀𝑧
𝑞=1 {[𝑐11

𝐸 𝜙𝑞𝑠𝑘𝑟𝑞𝑠 + (𝑐13
𝐸 + 𝑒31𝛾𝑞𝑠)𝑘𝑧𝑞]𝐽0(𝑘𝑟𝑞𝑠𝑟) +

𝑐12
𝐸 −𝑐11

𝐸

𝑟
𝜙𝑞𝑠𝐽1(𝑘𝑟𝑞𝑠𝑟)} cos(𝑘𝑧𝑞𝑧) + ∑ ∑ 𝐶𝑞𝑠

3
𝑠=1

𝑀𝑧
𝑞=1 {[𝑐11

𝐸 𝜙𝑞𝑠𝑘𝑟𝑞𝑠 + (𝑐13
𝐸 +

𝑒31𝛾𝑞𝑠)𝑘𝑧𝑞]𝑌0(𝑘𝑟𝑞𝑠𝑟) +
𝑐12
𝐸 −𝑐11

𝐸

𝑟
𝜙𝑞𝑠𝑌1(𝑘𝑟𝑞𝑠𝑟)} cos(𝑘𝑧𝑞𝑧),                                         (2.13)                                                   

and 
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𝑇𝑧𝑧 = 𝐴(𝑐33
𝐸 +

𝑒33
2

𝜀33
𝑆 )𝑘𝑧0 cos(𝑘𝑧0𝑧) + 𝐵𝑐13

𝐸 𝑘𝑟0𝐽0(𝑘𝑟0𝑟) + 𝐶𝑐13
𝐸 𝑘𝑟0𝑌0(𝑘𝑟0𝑟) + 𝐷𝑒33 +

∑ ∑ 𝐴𝑚𝑠
3
𝑠=1

𝑀𝑟
𝑚=1 [𝑐13

𝐸 𝜓𝑚𝑠𝑘𝑟𝑚 + (𝑐33
𝐸 + 𝑒33𝜒𝑚𝑠)𝑘𝑧𝑚𝑠] 𝐶0(𝑘𝑟𝑚𝑟)cos(𝑘𝑧𝑚𝑠𝑧) +

∑ ∑ 𝐵𝑞𝑠
3
𝑠=1

𝑀𝑧
𝑞=1 [𝑐13

𝐸 𝜙𝑞𝑠𝑘𝑟𝑞𝑠 + (𝑐33
𝐸 + 𝑒33𝛾𝑞𝑠)𝑘𝑧𝑞]𝐽0(𝑘𝑟𝑞𝑠𝑟) cos(𝑘𝑧𝑞𝑧) +

∑ ∑ 𝐶𝑞𝑠
3
𝑠=1

𝑀𝑧
𝑞=1 [𝑐13

𝐸 𝜙𝑞𝑠𝑘𝑟𝑞𝑠 + (𝑐33
𝐸 + 𝑒33𝛾𝑞𝑠)𝑘𝑧𝑞]𝑌0(𝑘𝑟𝑞𝑠𝑟) cos(𝑘𝑧𝑞𝑧).                     (2.14) 

The shear stress is expressed as 

𝑇𝑟𝑧 = −∑ ∑ 𝐴𝑚𝑠
3
𝑠=1 [𝑐44

𝐸𝑀𝑟
𝑚=1 (𝑘𝑟𝑚 + 𝜓𝑚𝑠𝑘𝑧𝑚𝑠) + 𝑒15𝜒𝑚𝑠𝑘𝑟𝑚]𝐶1(𝑘𝑟𝑚𝑟) sin(𝑘𝑧𝑚𝑠𝑧) −

∑ ∑ 𝐵𝑞𝑠
3
𝑠=1 [𝑐44

𝐸𝑀𝑞
𝑚=1 (𝑘𝑟𝑞𝑠 + 𝜙𝑞𝑠𝑘𝑧𝑞) + 𝑒15𝜒𝑞𝑠𝑘𝑟𝑞𝑠]𝐽1(𝑘𝑟𝑞𝑠𝑟) sin(𝑘𝑧𝑞𝑧)  

−∑ ∑ 𝐶𝑞𝑠
3
𝑠=1 [𝑐44

𝐸𝑀𝑞
𝑚=1 (𝑘𝑟𝑞𝑠 + 𝜙𝑞𝑠𝑘𝑧𝑞) + 𝑒15𝜒𝑞𝑠𝑘𝑟𝑞𝑠]𝑌1(𝑘𝑟𝑞𝑠𝑟) sin(𝑘𝑧𝑞𝑧).              (2.15) 

The components of electric field displacement are expressed as, 

𝐷𝑟 = ∑ ∑ 𝐴𝑚𝑠
3
𝑠=1 [−𝑒15

𝑀𝑟
𝑚=1 (𝑘𝑟𝑚 + 𝜓𝑚𝑠𝑘𝑧𝑚𝑠) + 𝜀11

𝑆 𝜒𝑚𝑠𝑘𝑟𝑚]𝐶1(𝑘𝑟𝑚𝑟) sin(𝑘𝑧𝑚𝑠𝑧) +

∑ ∑ 𝐵𝑞𝑠
3
𝑠=1 [−𝑒15

𝑀𝑞
𝑚=1 (𝑘𝑟𝑞𝑠 + 𝜙𝑞𝑠𝑘𝑧𝑞) + 𝜀11

𝑆 𝜒𝑞𝑠𝑘𝑟𝑞𝑠]𝐽1(𝑘𝑟𝑞𝑠𝑟) sin(𝑘𝑧𝑞𝑧) +

∑ ∑ 𝐶𝑞𝑠
3
𝑠=1 [−𝑒15

𝑀𝑞
𝑚=1 (𝑘𝑟𝑞𝑠 + 𝜙𝑞𝑠𝑘𝑧𝑞) + 𝜀11

𝑆 𝜒𝑞𝑠𝑘𝑟𝑞𝑠]𝑌1(𝑘𝑟𝑞𝑠𝑟) sin(𝑘𝑧𝑞𝑧)                (2.16) 

and  

𝐷𝑧 = 𝐵𝑒31𝑘𝑟0𝐽0(𝑘𝑟0𝑟) + 𝐶𝑒31𝑘𝑟0𝑌0(𝑘𝑟0𝑟) − 𝐷𝜀33
𝑆 +∑ ∑ 𝐴𝑚𝑠

3
𝑠=1 [(𝑒33 −

𝑀𝑟
𝑚=1

𝜀33
𝑆 𝜒𝑚𝑠 ) 𝑘𝑧𝑚𝑠 + 𝑒31𝜓𝑚𝑠𝑘𝑟𝑚]𝐶0(𝑘𝑟𝑚𝑟) cos(𝑘𝑧𝑚𝑠𝑧) + ∑ ∑ 𝐵𝑞𝑠

3
𝑠=1 [(𝑒33 −

𝑀𝑧
𝑞=1

𝜀33
𝑆 𝛾𝑞𝑠 ) 𝑘𝑧𝑞 + 𝑒31𝜙𝑞𝑠𝑘𝑟𝑞𝑠]𝐽0(𝑘𝑟𝑞𝑠𝑟) cos(𝑘𝑧𝑞𝑧) + ∑ ∑ 𝐶𝑞𝑠

3
𝑠=1 [(𝑒33 − 𝜀33

𝑆 𝛾𝑞𝑠 )
𝑀𝑧
𝑞=1 𝑘𝑧𝑞 +

𝑒31𝜙𝑞𝑠𝑘𝑟𝑞𝑠]𝑌0(𝑘𝑟𝑞𝑠𝑟) cos(𝑘𝑧𝑞𝑧).                                                                                (2.17) 

Finally, the current is expressed as 

𝐼 = −∫ 𝑗𝜔𝐷𝑧2𝜋𝑟𝑑𝑟 = −2𝜋𝑗𝜔𝐵𝑒31[𝑏𝐽1(𝑘𝑟0𝑏)
𝑏

𝑎
− 𝑎𝐽1(𝑘𝑟0𝑎)] −

2𝜋𝑗𝜔𝐶𝑒31[𝑏𝑌1(𝑘𝑟0𝑏) − 𝑎𝑌1(𝑘𝑟0𝑎)] + 2𝜋𝑗𝜔𝐷𝜀33
𝑆 (𝑏2 − 𝑎2).                                     (2.18a)  

and the admittance is           

𝑌 = 𝐺 + 𝑗𝐵 =
𝐼

∅0
,            (2.18b)   

where 𝐺 is the real part of admittance, the conductance, and  𝐵 is the imaginary part of 

admittance, the susceptance.                        
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All the components of displacement and stress are expressed in terms of functions that 

are complete in both axial and radial directions. In the radial direction 𝑈, 𝑇𝑟𝑟, 𝑇𝑧𝑧, and 𝐷𝑧 

are expressed as a weighted sum of 𝐶0(𝑘𝑟𝑚𝑟), 𝑚 = 0, 1, 2, … ,∞ and other terms. Further, 

𝐶1(𝑘𝑟𝑚𝑟), 𝑚 =  1, 2, … ,∞ are all zero at 𝑟 = 𝑎 and 𝑏, and form a complete set of 

functions: 𝑊, 𝑇𝑟𝑟, and 𝐷𝑟 are expressed as a weighted sum of these functions and other 

terms. Similarly, in the axial direction, the components of displacements and stresses are 

expressed as the sum of either complete sets of sin or cos functions or other terms. In 

general, the components of displacement and stress are expressed in terms of complete sets 

of functions. It therefore follows that the response of the hollow piezoceramic cylinder can 

be determined for arbitrary excitations. 

2.5 BOUNDARY CONDITIONS 

On the flat, electroded surfaces, 𝑈 and 𝑇𝑧𝑧 are expressed in terms of 𝐶0(𝑘𝑟𝑚𝑟), 

𝑚=0,1,2,...; and 𝑊 and 𝑇𝑟𝑧 are expressed in terms of 𝐶1(𝑘𝑟𝑚𝑟), 𝑚=1,2,.... On the curved, 

unelectroded surfaces, 𝑈 and 𝑇𝑟𝑧 are expressed in terms of sin(𝑘𝑧𝑞𝑧), 𝑞=1,2,...,𝑀𝑧; and 𝑊 

and 𝑇𝑟𝑟 are expressed in terms of cos(𝑘𝑧𝑞𝑧),𝑞 = 0,1,2,... 𝑀𝑧.  

All fields on the flat and curved surfaces are denoted using a flat over-bar and a curved 

frown, respectively. For example,  

𝑇𝑧𝑧 = 𝑇̅𝑧𝑧 and 𝑇𝑟𝑧 = 𝑇̅𝑟𝑧 on 𝑎 ≤ 𝑟 ≤ 𝑏, 𝑧 = ±𝐿 2⁄ ,     (2.19a, 2.19b) 

𝑇𝑟𝑟 = 𝑇̂𝑟𝑟𝑎 and 𝑇𝑟𝑧 = 𝑇̂𝑟𝑧𝑎 on 𝑟 = 𝑎, |𝑧| ≤ 𝐿 2⁄ ,                (2.20a, 2.20b) 

and 

𝑇𝑟𝑟 = 𝑇̂𝑟𝑟𝑏 and 𝑇𝑟𝑧 = 𝑇̂𝑟𝑧𝑏 on 𝑟 = 𝑏, |𝑧| ≤ 𝐿 2⁄ .                                             (2.21a, 2.21b) 

A similar notation is used for the components of displacements 𝑈 and 𝑊. The boundary 

conditions are satisfied in a weighted-average sense by using complete orthogonal weights. 

Both sides of each boundary condition is multiplied with the weights and are integrated. As 

a large number of weights are used to satisfy the conditions in an average sense, the 

conditions are nearly satisfied at every point on the surface. The complete orthogonal 

Bessel functions are the weights on the boundary conditions specified on the flat surfaces 

and trigonometric functions are on those specified on the curved surfaces.  

The boundary condition on 𝑇𝑧𝑧 in Eq. (2.19a) is satisfied in by using the orthogonal 

property of 𝐶0(𝑘𝑟𝑛𝑎) in Eq.  (2.10). 𝑇𝑧𝑧, in Eq. (2.14), is multiplied both sides by 𝑟𝐶0(𝑘𝑟𝑛𝑟) 

and integrating over 𝑟 from 𝑎 to 𝑏 yields 
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𝐴 (𝑐33
𝐸 +

𝑒33
2

𝜀33
𝑆 ) 𝑘𝑧0 cos(𝑘𝑧0𝐿 2⁄ )

𝑏2−𝑎2

2
+ 𝐵𝑐13

𝐸 {𝑏𝐽1(𝑘𝑟0𝑏) − 𝑎𝐽1(𝑘𝑟0𝑎)} +

𝐶𝑐13
𝐸 {𝑏𝑌1(𝑘𝑟0𝑏) − 𝑎𝑌1(𝑘𝑟0𝑎)} + 𝐷𝑒33

𝑏2−𝑎2

2
+ ∑ ∑ 𝐵𝑞𝑠

3
𝑠=1

𝑀𝑧
𝑞=1 {𝑐13

𝐸 𝜙𝑞𝑠𝑘𝑟𝑞𝑠 + (𝑐33
𝐸 +

𝑒33γ𝑞𝑠)𝑘𝑧𝑞} cos(𝑘𝑧𝑞
𝐿
2⁄ ) {𝑏𝐽1(𝑘𝑟𝑞𝑠𝑏) − 𝑎𝐽1(𝑘𝑟𝑞𝑠𝑎)} 𝑘𝑟𝑞𝑠⁄ +

∑ ∑ 𝐶𝑞𝑠
3
𝑠=1

𝑀𝑧
𝑞=1 {𝑐13

𝐸 𝜙𝑞𝑠𝑘𝑟𝑞𝑠 + (𝑐33
𝐸 +

𝑒33γ𝑞𝑠)𝑘𝑧𝑞} cos(𝑘𝑧𝑞
𝐿
2⁄ ) {𝑏𝑌1(𝑘𝑟𝑞𝑠𝑏) − 𝑎𝑌1(𝑘𝑟𝑞𝑠𝑎)} 𝑘𝑟𝑞𝑠⁄ = ∫ 𝑇̅𝑧𝑧𝑟𝑑𝑟

𝑏

𝑎
  for 𝑛 = 0,      

                                               (2.22a)                                                                                                                                                    

and 

𝐵𝑐13
𝐸 𝑘𝑟0

2 {𝑏𝐶0(𝑘𝑟𝑛𝑏)𝐽1(𝑘𝑟0𝑏) − 𝑎𝐶0(𝑘𝑟𝑛𝑎)𝐽1(𝑘𝑟0𝑎)} (𝑘𝑟0
2⁄ − 𝑘𝑟𝑛

2) +

𝐶𝑐13
𝐸 𝑘𝑟0

2 {𝑏𝐶0(𝑘𝑟𝑛𝑏)𝑌1(𝑘𝑟0𝑏) − 𝑎𝐶0(𝑘𝑟𝑛𝑎)𝑌1(𝑘𝑟0𝑎)} (𝑘𝑟0
2⁄ − 𝑘𝑟𝑛

2) +

∑ 𝐴𝑛𝑠
3
𝑠=1 {𝑐13

𝐸 𝜓𝑛𝑠𝑘𝑟𝑛 +

(𝑐33
𝐸  𝑒33𝜒𝑛𝑠)𝑘𝑧𝑛𝑠} 𝐶0(𝑘𝑟𝑚𝑎) cos(𝑘𝑧𝑛𝑠

𝐿
2⁄ ) {𝑏2𝐶0

2(𝑘𝑟𝑛𝑏) − 𝑎
2𝐶0

2(𝑘𝑟𝑛𝑎)} 2⁄ +

∑ ∑ 𝐵𝑞𝑠
3
𝑠=1

𝑀𝑧
𝑞=1 {𝑐13

𝐸 𝜙𝑞𝑠𝑘𝑟𝑞𝑠 + (𝑐33
𝐸 +

𝑒33𝛾𝑞𝑠)𝑘𝑧𝑞 cos(𝑘𝑧𝑞
𝐿
2⁄ )𝑘𝑟𝑞𝑠} {𝑏𝐶0(𝑘𝑟𝑛𝑏)𝐽1(𝑘𝑟𝑞𝑠𝑏) − 𝑎𝐶0(𝑘𝑟𝑛𝑎)𝐽1(𝑘𝑟𝑞𝑠𝑎)} (𝑘𝑟𝑞𝑠

2⁄ −

𝑘𝑟𝑛
2) + ∑ ∑ 𝐶𝑞𝑠

3
𝑠=1

𝑀𝑧
𝑞=1 {𝑐13

𝐸 𝜙𝑞𝑠𝑘𝑟𝑞𝑠 + (𝑐33
𝐸 +

𝑒33𝛾𝑞𝑠)𝑘𝑧𝑞 cos(𝑘𝑧𝑞
𝐿
2⁄ )𝑘𝑟𝑞𝑠} {𝑏𝐶0(𝑘𝑟𝑛𝑏)𝑌1(𝑘𝑟𝑞𝑠𝑏) − 𝑎𝐶0(𝑘𝑟𝑛𝑎)𝑌1(𝑘𝑟𝑞𝑠𝑎)} (𝑘𝑟𝑞𝑠

2⁄ −

𝑘𝑟𝑛
2) = ∫ 𝑇̅𝑧𝑧𝑟𝐶0(𝑘𝑟𝑛𝑟)𝑑𝑟

𝑏

𝑎
;   for  𝑛 = 1,2,3, … ,𝑀𝑟.                                                (2.22b) 

The boundary condition on 𝑈 on the flat surfaces is also satisfied in the same way. 

Multiplying both sides of 𝑈 by 𝑟𝐶0(𝑘𝑟𝑛𝑎) and integrating over r yields: 

𝐴 sin(𝑘𝑧0𝐿/2)  = ∫ 𝑈̅𝑟𝑑𝑟,
𝑏

𝑎
  for   𝑛 = 0,          (2.23a) 

and   

∑ 𝐴𝑛𝑠 sin(𝑘𝑧𝑛𝑠𝐿/2) {𝑏
2𝐶0

2(𝑘𝑟𝑛𝑏) − 𝑎
2𝐶0

2(𝑘𝑟𝑛𝑎)} 2⁄
3
𝑠=1 = ∫ 𝑈̅𝑟𝐶0(𝑘𝑟𝑛𝑟)𝑑𝑟

𝑏

𝑎
,for 𝑛 =

1,2, … ,𝑀𝑟.                                                                                                                  (2.23b)                                                                                               

The boundary condition on 𝑇𝑟𝑧 in Eq. (2.19b) is satisfied by using the orthogonal 

property of 𝐶1(𝑘𝑟𝑛𝑟) in Eq. (2.11). Multiplying both sides of Eq. (2.19b) by 𝑟𝐶1(𝑘𝑟𝑛𝑟) and 

integrating over 𝑟 yields 
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∑ 𝐴𝑛𝑠 sin(𝑘𝑧𝑛𝑠
𝐿
2⁄ ) {𝑐44

𝐸 (𝑘𝑟𝑛 +𝜓𝑟𝑛𝑘𝑧𝑛𝑠) + 𝑒15𝜒𝑛𝑠𝑘𝑟𝑛}{𝑏
2𝐶0

2(𝑘𝑟𝑛𝑏) − 𝑎
2𝐶0

2(𝑘𝑟𝑛𝑎)} 2⁄ =3
𝑠=1

∫ 𝑇̅𝑟𝑧𝑟𝐶1(𝑘𝑟𝑛𝑟)𝑑𝑟
𝑏

𝑎
, for  𝑛 = 1,2, … ,𝑀𝑟.                                                                        (2.24) 

The orthogonal property of cos(𝑘𝑧𝑞𝑧) in Eq. (2.9) is used to satisfy the boundary 

condition on 𝑇̂𝑟𝑟𝑎in Eq. (2.20a). Multiplying both sides of the above equation by cos(𝑘𝑧𝑞𝑧) 

and integrating over z yields 

𝐴 (𝑐13
𝐸 +

𝑒31𝑒33

𝜀33
𝑆 )2 sin(𝑘𝑧0𝐿 2⁄ ) + 𝐵𝐿 {𝑐11

𝐸 𝑘𝑟0𝐽0(𝑘𝑟0𝑎) +
𝑐12
𝐸 −𝑐11

𝐸

𝑎
𝐽1(𝑘𝑟0𝑎)} +

𝐶𝐿 {𝑐11
𝐸 𝑘𝑟0𝑌0(𝑘𝑟0𝑎) +

𝑐12
𝐸 −𝑐11

𝐸

𝑎
𝑌1(𝑘𝑟0𝑎)} + 𝐷𝐿𝑒31 + ∑ ∑ 2 𝐴𝑚𝑠

3
𝑠=1

𝑀𝑟
𝑚=1 {𝑐11

𝐸 𝜓𝑚𝑠
𝑘𝑟𝑚

𝑘𝑧𝑚𝑠
+

𝑐13
𝐸 + 𝑒31𝜒𝑚𝑠} 𝐶0(𝑘𝑟𝑚𝑎) sin(𝑘𝑧𝑚𝑠

𝐿
2⁄ ) = ∫ 𝑇̂𝑟𝑟𝑎𝑑𝑧

𝐿/2

−𝐿/2
  when 𝑞 = 0,                         (2.25a)                            

and  

𝐴 (𝑐13
𝐸 +

𝑒31𝑒33

𝜀33
𝑆 )2

(−1)𝑛+1𝑘𝑧0
2𝐿2

4𝑛2𝜋2−𝑘𝑧0
2𝐿2
sin(𝑘𝑧0𝐿 2⁄ ) + ∑ ∑ 𝐴𝑚𝑠

3
𝑠=1

𝑀𝑟
𝑚=1 {𝑐11

𝐸 𝜓𝑚𝑠𝑘𝑟𝑚 + (𝑐13
𝐸 +

𝑒31𝜒𝑚𝑠)𝑘𝑧𝑚𝑠}𝐶0(𝑘𝑟𝑚𝑎)2
(−1)n+1𝑘𝑧𝑚𝑠𝐿

2

4n2π2−𝑘𝑧𝑚𝑠
2𝐿2
sin(𝑘𝑧𝑚𝑠

𝐿
2⁄ ) + ∑ 𝐵𝑞𝑠

3
𝑠=1 {[𝑐11

𝐸 𝜙𝑞𝑠𝑘𝑟𝑞𝑠 + (𝑐13
𝐸 +

𝑒31𝛾𝑞𝑠)𝑘𝑧𝑞]𝐽0(𝑘𝑟𝑞𝑠𝑎) +
𝑐12
𝐸 −𝑐11

𝐸

𝑎
𝜙𝑞𝑠𝐽1(𝑘𝑟𝑞𝑠𝑎)}

𝐿

2
+∑ 𝐶𝑞𝑠

3
𝑠=1 {[𝑐11

𝐸 𝜙𝑞𝑠𝑘𝑟𝑞𝑠 + (𝑐13
𝐸 +

𝑒31𝛾𝑞𝑠)𝑘𝑧𝑞]𝑌0(𝑘𝑟𝑞𝑠𝑎) +
𝑐12
𝐸 −𝑐11

𝐸

𝑎
𝜙𝑞𝑠𝑌1(𝑘𝑟𝑞𝑠𝑎)}

𝐿

2
= ∫ 𝑇̂𝑟𝑟𝑎 cos(𝑘𝑧𝑞𝑧) 𝑑𝑧

𝐿/2

−𝐿/2
;  

for 𝑞 = 1,2, … ,𝑀𝑧.                    (2.25b) 

Similarly, the boundary condition on rzaT


 is satisfied by using the orthogonal property 

of sin(𝑘𝑧𝑞𝑧) in Eq. (2.8). Multiplying both sides of Eq. (2.20b) by sin(𝑘𝑧𝑞𝑧) and 

integrating over z yields 

−∑ 𝐵𝑛𝑠
3
𝑠=1 {[𝑐44

𝐸 (𝑘𝑟𝑛𝑠 + 𝜙𝑛𝑠𝑘𝑧𝑛) + 𝑒15𝛾𝑛𝑠𝑘𝑟𝑛𝑠]𝐽1(𝑘𝑟𝑛𝑠𝑎)}
𝐿

2
−∑ 𝐶𝑛𝑠

3
𝑠=1 {[𝑐44

𝐸 (𝑘𝑟𝑛𝑠 +

𝜙𝑛𝑠𝑘𝑧𝑛) + 𝑒15𝛾𝑛𝑠𝑘𝑟𝑛𝑠]𝑌1(𝑘𝑟𝑛𝑠𝑎)}
𝐿

2
= ∫ 𝑇̂𝑟𝑧𝑎 sin(𝑘𝑧𝑞𝑧) 𝑑𝑧

𝐿/2

−𝐿/2
 for 𝑞 = 1,2, … ,𝑀𝑧.      

  (2.26) 

The boundary conditions in Eq. (2.21) are obtained in a similar way by replacing 𝑎 in Eqs. 

(2.25) and (2.26) by 𝑏. The conditions on electric potential,∅, on the flat surfaces are 

satisfied by using the orthogonality properties of 𝐶0(𝑘𝑟𝑛𝑎). Multiplying ∅ by 𝑟𝐶0(𝑘𝑟𝑛𝑎) 

and integrating over r yields; 

−𝐴
𝑒33

𝜀33
𝑆 sin (𝑘𝑧0

𝐿

2
) − 𝐷

𝐿

2
+ 𝐸 = ∫ ∅̅𝑟𝑑𝑟,

𝑏

𝑎
 when  𝑛 = 0 and at 𝑧 =

−𝐿

2
,                      (2.27a) 
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𝐴
𝑒33

𝜀33
𝑆 sin (𝑘𝑧0

𝐿

2
) + 𝐷

𝐿

2
+ 𝐸 = ∫ ∅̅𝑟𝑑𝑟,

𝑏

𝑎
 when  𝑛 = 0 and at 𝑧 =

𝐿

2
,                           (2.27b) 

and 

 ∑ 𝐴𝑛𝑠𝜒𝑛𝑠 sin(𝑘𝑧𝑛𝑠
𝐿
2⁄ ) {𝑏2𝐶0

2(𝑘𝑟𝑛𝑏) − 𝑎
2𝐶0

2(𝑘𝑟𝑛𝑎)} 2⁄
3
𝑠=1 = ∫ ∅̅𝑟𝐶0(𝑘𝑟𝑛𝑟)𝑑𝑟

𝑏

𝑎
,  

for 𝑛 = 1,2,3, … ,𝑀𝑟 and at 𝑧 = ±
𝐿

2
.                                                                            (2.28) 

The equations thus obtained through the boundary conditions by using the orthogonal 

properties of Bessel and trigonometric functions are combined, truncated, and expressed in 

matrix form as 

[𝐹]{𝑋} = {𝐺}                                                           (2.29a) 

where  

{𝑋}𝑇 = [𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐴11, 𝐴12, 𝐴13, 𝐴21, 𝐴22, 𝐴23,… , 𝐴𝑀𝑟1, 𝐴𝑀𝑟2, 𝐴𝑀𝑟3,𝐵11, 𝐵12, 𝐵13, …, 

𝐵𝑀𝑧1, 𝐵𝑀𝑧2, 𝐵𝑀𝑧3,… , 𝐶11, 𝐶12, 𝐶13, … , 𝐶𝑀𝑧1, 𝐶𝑀𝑧2, 𝐶𝑀𝑧3 ].                                            (2.29b) 

[𝐹] is a square matrix of size [3𝑀𝑟 + 6𝑀𝑧 + 5, 3𝑀𝑟 + 6𝑀𝑧 + 5], and 𝑀𝑟 and 𝑀𝑧 are now 

finite. The elements of the column matrix {𝐺} are zeros when there is no displacement or 

stress on the boundaries. In some cases, the normal displacement is specified and in some 

cases normal stresses are specified and Eq. (2.29) is assembled using the appropriate 

equations. 

2.6 SPECIAL CASES AND NUMERICAL RESULTS 

The forced vibration responses of hollow piezoelectric cylinders to a few excitations 

are presented. Three special cases are considered in the analysis to illustrate the method. 

Numerical results are presented for axially polarized piezoceramic hollow cylinders of 

various length to diameter ratios to illustrate the method. The dimensions, in mm, of the 

cylinder are specified by the triplet (Outer diameter, Inner diameter, Length). PZT-4 

material with internal losses represented by complex coefficients is used in all the cases.  

A set of piezoelectric coefficients used in the analysis is presented in Table 2.1. The real 

parts of these coefficients are from Ref. [80]. The imaginary parts satisfy the conditions 

mentioned by Holland [75]. The computed results are compared with those computed using 

ATILA. Second order, eight-noded, quadrilateral, piezoelectric elements are used in the 

axisymmetric model in ATILA.  
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Table 2.1. Piezoceramic coefficients used to compute required coefficients.  

Material property Value 

𝜌 (kg/m3) 7500 

𝑠11
𝐸 (pm2/N) 12.3 (1 - 𝑗0.005) 

𝑠12
𝐸  -4.05(1 - 𝑗 0.005) 

𝑠13
𝐸  -5.31 (1 - 𝑗 0.005) 

𝑠33
𝐸  15.5 (1 - 𝑗 0.005) 

𝑠44
𝐸  39 (1 - 𝑗 0.005) 

𝑑31 (pC/N) -123(1 - 𝑗 0.005) 

𝑑33 289(1 - 𝑗 0.005) 

𝑑15 = 𝑑24 496(1 - 𝑗 0.005) 

𝜀33
𝑇 (C/Vm) 1300×8.854e−12(1- 𝑗 0.004) 

𝜀11
𝑇  1475×8.854e−12(1- 𝑗 0.004) 

𝑣𝐷(m/s) 4533+ 𝑗 10.22 

𝑣𝐸 4305+ 𝑗 10.76 

 

Table 2.2. Computed PZT coefficients. 

Material property Value 

𝑐11
𝐸  (GPa) 139 (1 + 𝑗 0.005) 

𝑐12
𝐸  77.835(1 + 𝑗 0.005) 

𝑐13
𝐸  74.282 (1 + 𝑗 0.005) 

𝑐33
𝐸  115.41 (1 + 𝑗 0.005) 

𝑐44
𝐸  25.64(1 + 𝑗 0.005) 

𝑒31  (C/m2) -5.2028(1 - j0.005) 

𝑒33 15.0804 (1 - 𝑗 0.005) 

𝑒15 12.7179(1 - 𝑗 0.005) 

𝜀33
𝑆  (C/Vm) 663.21  8.854e−12(1 - 𝑗 0.004) 

𝜀11
𝑆  762.54  8.854e−12(1 - 𝑗 0.004) 

 

Ten coefficients are used in ATILA. Eight of them are the first eight in Table 2.1. The 

other two, 𝜀33
𝑆  and 𝜀11

𝑆 , are computed using the values in Table 2.1. In the analytical model, 

the ten piezoelectric coefficients in Eq. (2.5) are used. They are computed using the values 
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in Table 2.1. The eight coefficients present in the analytical model are 𝑐11
𝐸 , 𝑐12

𝐸 , 𝑐13
𝐸 , 𝑐33

𝐸 , 

𝑐44
𝐸 , 𝑒31, 𝑒33, and 𝑒15. The computed values of these coefficients are given in Table 2.2. 

The significant digits of these coefficients are different from those in Table 2.1 because the 

former is generated from the latter using MATLAB code. In ATILA, the results are 

obtained using 𝐼 × 𝐽 elements: 𝐼 elements in the axial direction and 𝐽 elements in the radial 

direction. The number of finite elements that is necessary for accurate analysis is 

determined through convergence studies.  

In all cases, the frequency, 𝑓𝑠, at which the conductance, 𝐺, reaches a local maximum, 

the value of 𝐺 at this frequency, 𝐺𝑚𝑎𝑥; and the frequency, 𝑓𝑝, at which the resistance, 𝑅, 

reaches a local maximum, and the value of 𝑅 at this frequency, 𝑅𝑚𝑎𝑥, are computed. The 

frequencies 𝑓
−
1

2𝑠

 and 𝑓 1

2𝑠

 at which the susceptance, 𝐵, reaches a local maximum and 

minimum, respectively, the values of 𝐵 at these frequencies, 𝐵𝑚𝑎𝑥 and 𝐵𝑚𝑖𝑛, are presented 

for some cases. They are computed using the present method and ATILA, and are 

compared. The frequencies 𝑓𝑠 and 𝑓𝑝 are referred to as resonance and anti-resonance 

frequencies, respectively. In all the analyses, 𝑘𝑧𝑞 are chosen such that 𝑘𝑧𝑞 𝐿 2⁄ = 𝑞𝜋, 

𝑞 = 0, 1, 2, 3, … ,𝑀𝑧. 

 Case 1: Zero axial displacement on flat surfaces 

In this case, the axial displacement is specified and is zero on the flat surfaces of the 

hollow piezoceramic cylinder. Normal and shear stresses on the curved surfaces and shear 

stress on the flat surfaces are zero. A potential is applied on the top flat surface of the hollow 

piezoceramic cylinder. The boundary conditions are: 𝑈̅ = 0, 𝑇̅𝑟𝑧 = 0, 𝑇̂𝑟𝑟𝑎 = 0, 𝑇̂𝑟𝑧𝑎 = 0, 

𝑇̂𝑟𝑟𝑏 = 0, 𝑇̂𝑟𝑧𝑏 = 0, ∅ = 0 on 𝑧 = −𝐿 2⁄  and ∅ = ∅0 on 𝑧 = 𝐿 2⁄ .  

It is seen by using Eq. (2.23) that the boundary conditions on axial displacement imply 

that the coefficients 𝐴 and 𝐴𝑚𝑠 are zeros. Similarly, it is seen from Eq. (2.26) that the 

boundary conditions on 𝑇̂𝑟𝑧 imply that 𝐵𝑚𝑠 and 𝐶𝑚𝑠 are zero. Then, using 𝐴 = 0 in  

Eq. (2.27) yields 𝐸 = 0.5 and 𝐷 = 1/𝐿. The coefficients 𝐵 and 𝐶 are determined by using 

the following two conditions on 𝑇̂𝑟𝑟: 

𝐵𝐿 {𝑐11
𝐸 𝑘𝑟0𝐽0(𝑘𝑟0𝑟) +

𝑐12
𝐸 −𝑐11

𝐸

𝑎
𝐽1(𝑘𝑟0𝑟)} + 𝐶𝐿 {𝑐11

𝐸 𝑘𝑟0𝑌0(𝑘𝑟0𝑟) +
𝑐12
𝐸 −𝑐11

𝐸

𝑎
𝑌1(𝑘𝑟0𝑟)} +

𝐷𝐿𝑒31 = 0, for  𝑟 = 𝑎, 𝑏.                                                                                              (2.30) 
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It is thus seen that none of the terms in the series are necessary to satisfy the boundary 

conditions and a closed-form solution is obtained for this special case. Only four of the 

coefficients are non-zero and this implies that 𝑈 = 0 everywhere, 𝑊 is independent of 𝑧, 

and ∅ varies linearly with respect to 𝑧. The numerical results obtained from the exact 

analytical solution are used to test the convergence of the finite element results by 

increasing the number of elements.  

Computed resonance and anti-resonance frequencies of a (50, 38, 8) hollow cylinder 

that are less than 5 MHz are presented in Table 2.3. For this cylinder, the 𝐿/𝐷 ratio, where 

𝐷 is the average diameter, is 0.18. For the first four resonance and anti-resonance 

frequencies in Table 2.3, it is seen that 16×12 finite elements yields values of frequencies, 

𝐺 and 𝑅 that are correct to four significant digits. At the highest of these frequencies 

(𝑓𝑚𝑎𝑥 =1078 kHz) and the lower of the two phase velocities in Table 2.1, the side of each 

finite element (0.5 mm) is approximately 𝜆𝐸/8 where 𝜆𝐸 = 𝑣𝐸/𝑓𝑚𝑎𝑥. For the next 10 

resonance and anti-resonance frequencies in Table 2.3, it is seen that the fourth significant 

digit of the values of frequencies computed using ATILA and the analytical model differ 

by at most 1 when 80×60 finite elements are used. The fourth significant digit of the values 

of 𝐺 and 𝑅 differ by at most 2. At the highest of these frequencies (𝑓𝑚𝑎𝑥 =4664 kHz) and 

the lower of the two phase velocities in Table 2.1, the side of each finite element (0.1 mm) 

is approximately 𝜆𝐸/9 where 𝜆𝐸 = 𝑣𝐸/𝑓𝑚𝑎𝑥.  

It is noted that 𝑓𝑠 is the frequency at which the conductance, 𝐺, reaches a local 

maximum, and 𝑓𝑝 is the frequency at which the resistance, 𝑅, reaches a local maximum. 

For the lossless case, 𝑓𝑠 and 𝑓𝑝 do not exist. 𝑓𝑚 and 𝑓𝑛 are the frequencies at which the 

magnitudes of admittance and the impedance, respectively, are maximum.  They exist for 

the lossy and the loss-less cases. The results obtained using the present method and ATILA 

show that 𝑓𝑠𝑛 > 𝑓𝑝𝑛 for 𝑛 = 5, 7, 9, 11, and 13 where 𝑛 is the mode number. However, for 

both the lossy and the loss-less cases,  𝑓𝑚 is always less than the corresponding 𝑓𝑛. It is also 

noted that 𝑓𝑠𝑛 is approximately 𝑛-1 times 𝑓𝑠2 for 𝑛 ≥3. It is concluded by computing the 

resonance frequencies of a few cylinders that 𝑓𝑠1 is inversely proportional to the mean 

diameter and 𝑓𝑠2 is inversely proportional to the wall thickness of the cylinder.  
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Table 2.3. Resonance and anti-resonance frequencies of a (50, 38, 8) cylinder for Case 1. 

The values of 𝐺 and 𝑅 in mS and Ohms, respectively are shown in parenthesis. 

 Model ATILA 

Mode 

No. 

𝑓𝑠 (kHz) 𝑓𝑝 (kHz)  𝑓𝑠 (kHz) 

I=16, J=12 

 𝑓𝑠 (kHz) 

I=80, J=60 

𝑓𝑝  (kHz) 

I=16, J=12 

𝑓𝑝  (kHz) 

I=80, J=60 

1 
26.06 

(0.1906) 

26.18 

(177.7k) 

26.06 

(0.1906) 

26.06 

(0.1906) 

26.18 

(177.8k) 

26.18 

(177.8k) 

2 
359.63 

(7.332) 

364.35 

(3.714k) 

359.63 

(7.332) 

359.63 

(7.332) 

364.35 

(3.714k) 

364.35 

(3.714k) 

3 
717.93 

0.0257 

717.94 

(3.414) 

717.93 

0.0257 

717.93 

0.0257 

717.95 

(3.414) 

717.95 

(3.414) 

4 
1076.53 

(2.460) 

1078.13 

(144.4) 

1076.81 

(2.460) 

1076.53 

(2.459) 

1078.13 

(144.4) 

1078.13 

(144.4) 

5 
1435.22 

(0.0257) 

1435.21 

(0.8544) 

1436.35 

(0.0258) 

1435.22                                      

(0.02575) 

1436.35 

(0.8544) 

1435.21 

(0.8543) 

6 
1793.91 

(1.489) 

1794.88 

(31.58) 

1797.31 

(1.496) 

1793.92 

(1.489) 

1798.19 

(31.62) 

1794.88 

(31.58) 

7 
2152.66 

(0.03145) 

2152.61 

(0.4639) 

2160.69 

(0.03156) 

2152.69 

(0.03145) 

2160.69 

(0.4625) 

2152.61 

(0.4639) 

8 
2511.36 

(1.0785) 

2512.05 

(11.68) 

2528.19 

(1.0909) 

2511.39 

(1.0785) 

2528.81 

(11.67) 

2512.08 

(11.68) 

9 
2870.17 

(0.03859) 

2870.02 

(0.32016) 

2901.39 

(0.03893) 

2870.21 

(0.03859) 

2901.31 

(0.31642) 

2870.12 

(0.3201) 

10 
3228.83 

(0.8538) 

3229.37 

(5.5944) 

3282.18 

(0.8569) 

3228.94 

(0.8539) 

3282.69 

(5.4382) 

3229.47 

(5.5941) 

11 
3587.71 

(0.04629) 

3587.43 

(0.2458) 

3671.5 

(0.04691) 

3587.92 

(0.04629) 

3671.31 

(0.2381) 

3587.54 

(0.2458) 

12 
3946.31 

(0.7139) 

3946.75 

(3.1319) 

4062.12 

(0.5487) 

3946.62 

(0.7140) 

4062.39 

(2.2725) 

3947.00 

(3.1318) 

13 
4305.30 

(0.05429) 

4304.80 

(0.2002) 

4747.69 

(0.05987) 

4305.71 

(0.05429) 

4747.0 

(0.1808) 

4305.20 

(0.2002) 

14 
4663.79 

(0.6196) 

4664.16 

(1.9464) 

5042.08 

(1.2368) 

4664.47 

(0.6198) 

5042.89 

(3.3231) 

4664.84 

(1.9465) 
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Fig. 2.2. (a) 𝑓-𝐺, (b) 𝑓-𝑅, (c) 𝐺-𝐵, and (d) 𝑅-𝑋 in the neighborhood of the second 

resonance frequency of a (50, 38, 8) cylinder for Case 1 computed using the model. 

 

Fig. 2.3. (a) 𝑓-𝐺, (b) 𝑓-𝑅, (c) 𝐺-𝐵, and (d) 𝑅-𝑋 plots in the neighborhood of the fifth 

resonance frequency of a (50, 38, 8) cylinder for Case 1 computed using the model. 

The conductance, 𝐺, and reactance, 𝑅, in the neighborhoods of 𝑓𝑠2 =359.63 kHz and 

𝑓𝑝2 = 364.35 kHz, respectively, of (50, 38, 8) cylinder are shown in Figs. 2.2(a) and 2.2(b), 

respectively. The conductance (𝐺) - susceptance (𝐵) plot in the neighborhood of 𝑓𝑠2 and 
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the resistance (𝑅) - reactance (𝑋) plot in the neighborhood of 𝑓𝑝2, are shown in Figs. 2.2(c) 

and 2.2(d), respectively. In this case, 𝑓𝑠2 < 𝑓𝑝2 and the familiar loops are seen in Figs. 

2.2(c) and 2.2(d). Corresponding figures are shown in the neighborhoods of 𝑓𝑠5 and 𝑓𝑝5 in 

Figs. 2.3(a) to 2.3(d). In this case,  𝑓𝑠5 > 𝑓𝑝5 and the 𝐺-𝐵 and 𝑅-𝑋 loops degenerate as 

shown in Figs. 2.3(c) and 2.3(d), respectively. The basic form of the equivalent circuit of a 

piezoelectric device with one resonance has a capacitor in one arm of the circuit and a 

capacitor, an inductor, and a resistor in a parallel arm. When the resistor has a moderate 

value, the admittance of the circuit has the characteristics shown in Fig. 2.2 and 𝑓𝑠 < 𝑓𝑝. 

When the resistor has a high value, the admittance of the circuit has the characteristics 

shown in Fig. 2.3 and 𝑓𝑠 > 𝑓𝑝.  

 

Fig. 2.4. Equivalent circuit of a piezoelectric ceramic transducer with two resonances in 

the band of interest. 

The form of the equivalent circuit for underwater transducers with two resonances  

[81] is shown in Fig. 2.4. It is valid when the resonance is like the one in Fig. 2.2 or like 

the one in Fig. 2.3. To illustrate this, the values of the equivalent circuit components that 

correspond to the first resonance in Ref. [81] (Set I: 𝐶0 = 15.25e-9; 𝑅1 = 2.468e3;  

𝐿1 = 0.1150; 𝐶1 = 1.005e-9) are used to compute the 𝐺-𝐵 and shown using a red line in the 

Fig.2.5 below. There is moderate loss (𝑅1 = 2.468e3) in Set I. In Set II [𝐶0 = 15.25e-9; 𝑅1 

= 3×2.468e3; 𝐿1 = 0.1150; 𝐶1 = 1.005e-9], the loss is high and the 𝐺-𝐵 is shown using a 

blue line in the Fig.2.5 below. The red line corresponds to moderate loss and the 𝐺-𝐵 curve 

looks like the one in Fig. 2.2(c). The blue line corresponds to higher loss and the 𝐺-𝐵 looks 

like the one in Fig. 2.3(c). Thus, both Figs. 2.2 and 2.3 have realistic equivalent circuits.  
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Fig. 2.5. The 𝐺-𝐵 characteristics derived from the equivalent circuit of a piezoelectric 

ceramic transducer with two resonances in the band of interest [81]. 

In Fig. 2.6, analytical results computed using 𝑀𝑟=𝑀𝑧=0 are compared with those 

obtained using 𝐼=16 and 𝐽=12 elements in ATILA for a (50, 38, 8) ring. 10 Hz resolution 

is used in both methods. The conductance, 𝐺, and susceptance, 𝐵, in the neighborhood of 

the first resonance frequency are shown in Figs. 2.6(a) and 2.6(b), respectively. The 

admittance of the hollow PZT cylinder is obtained by integration over the flat electroded 

surface and accurate values can be obtained even if the spatial dependence of the variables 

is not accurate. However, the spatial dependence of the primary variables is also accurate 

as shown in the figure. The real part of the axial displacement, and the real and imaginary 

parts of the radial displacement at the first resonance frequency, are shown along the radial 

direction, at 𝑧 = 0,  in Figs. 2.6(c), 2.6(d), and 2.6(e), respectively. It is seen from  

Fig. 2.6(c) that the analytical axial displacement is zero everywhere, as discussed earlier. 

When ATILA is used, the axial displacement is not exactly zero. However, it is of the order 

of 1e-15 times the radial displacement shown in Figs. 2.6(d) and 2.6(e). It is noted that  

15 digits are used in double precision calculations using C and that ATILA uses C. The 

conductance and susceptance in the neighborhood of the second resonance frequency, 

359.63 kHz, and resistance in the neighborhood of the second anti-resonance frequency, 

364.35 kHz, are shown in Figs. 2.6(f), 2.6(g), and 2.6(h), respectively.  

The computed electric potential, ∅(z), along the axis at the inner curved surface, r=b, 

is shown in Fig. 2.6(i). It satisfies the applied boundary conditions on potential; as the 

potential is one on the top flat surface and zero on the bottom flat surface. In between it 

varies linearly. The radial displacement at the second resonance, 𝑓𝑠2, is shown in Figs. 2.6(j) 

to 2.6(m). The real and imaginary parts of W are shown in Figs. 2.6(j) and 2.6(k), 
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respectively at the plane midway between the flat ends of the cylinder; and in Figs. 2.6(l) 

and 2.6(m) on the top flat surface of the cylinder. The conductances in the neighborhood 

of the third resonance frequency,𝑓𝑠3, computed using the analytical method and ATILA are 

shown in Fig. 2.6(n). The magnitudes of the radial displacement at 𝑧 = 0, at 𝑓𝑠3, are shown 

in Fig. 2.6(o). The displacement is plotted along the radial direction. All results computed 

using ATILA are in good agreement with the exact analytical results. This shows that 

ATILA yields accurate results and that it has been correctly used here.  

 

Fig. 2.6. Axial and radial displacement, electric potential, conductance, susceptance, and 

resistance for Case 1. The dimensions of the cylinder are (50, 38, 8). Solid line: Model 

and Dots: ATILA. 

Next, results are presented for two other rings with L/D ratios of 1/3 and 1/15. The 

dimensions of the rings are (12, 6, 3) and (100, 80, 6). The first three resonance and anti-

resonance frequencies of these rings and the conductance and resistance, respectively at 

these frequencies, are shown in Table 2.4. For the first ring, when 24×24 finite elements 
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are used, the frequencies computed using ATILA and the analytical model are the same 

upto the fifth significant digit for all the frequencies except for 𝑓𝑠3 where it differs by 1. 

Further, the fourth significant digits of G and R differ from the exact analytical values by 

less than or equal to 2. For the second and larger ring of size (100, 80, 6), when 12×20 and 

24×40 finite elements are used, the fifth significant digits of the resonance frequencies 

computed using ATILA and the analytical model differ at most by 1. The fourth significant 

digits of G differ by at most 1 and third significant digits of  𝑅 by at most 4. 

Table 2.4. Critical frequencies and associated electrical parameters for Case 1. The 

dimensions of the rings are (12, 6, 3) and (100, 80, 6). 

 

Table 2.5. Computed resonances of a (10, 5, 10) cylinder for Case 1. 

Mode  Model ATILA (𝐼= 𝐽=20) 

1 160.892 160.893 

2 875.735 875.728 

3 1729.19 1729.01 

 

The first three resonance frequencies of an electrically excited hollow piezoceramic 

cylinder with a thick wall are shown in Table 2.5. The dimensions of the cylinder are  

(10, 5, 10). The natural frequencies of a steel cylinder with the same dimension are shown 

Parameter 

(12, 6, 3) (100, 80, 6) 

Model ATILA Model ATILA 

𝐼=6, 𝐽=6 𝐼=24, 𝐽=24 𝐼=12, 𝐽=20 𝐼=24, 𝐽=40 

𝑓𝑠1(kHz) 134.08 134.08 134.08 12.699 12.699 12.699 

𝐺1(mS) 0.3047 0.3045 0.3047 0.4204 0.4199 0.4199 

𝑓𝑝1(kHz) 134.78 134.78 134.78 12.757 12.757 12.757 

𝑅1(Ω) 14.44k 14.44k 14.44k 7.995k 7.949k 7.949k 

𝑓𝑠2(kHz) 729.77 729.81 729.77 215.59 215.60 215.60 

𝐺2(mS) 3.846 3.844 3.844 20.04 20.03 20.03 

𝑓𝑝2(kHz) 738.87 738.90 738.87 218.44 218.44 218.44 

𝑅2(Ω) 6.371k 6.374k 6.373k 1.367k 1.368k 1.368k 

𝑓𝑠3(kHz) 1440.8 1441.9 1440.9 430.67 430.67 430.67 

𝐺3(mS) 0.0609 0.0610 0.0609 0.0545 0.0544 0.0544 

𝑓𝑝3(kHz) 1440.9 1442.1 1440.9 430.67 430.68 430.67 

𝑅3(Ω) 26.97 26.99 26.98 0.9713 0.9717 0.9717 



 

38 

 

      

      

in Ref. [79]. The 𝐿/𝐷 ratio of this cylinder is 4/3. The fifth significant digits of the values 

of frequencies computed using ATILA and the analytical model differ by at most 2 when 

20x20 finite elements are used. The forced PZT cylinder has only three resonances that are 

less than 2 MHz, but there are 19 resonances for a free hollow elastic cylinder of same 

dimension with zero axial displacement on its flat surfaces [79].  

 Case 2: Zero radial displacement on cylindrical surfaces 

In this case, the radial displacement is zero on both the curved surfaces. All stresses on 

the flat surfaces and shear stress on the curved surfaces are zero. The boundary conditions 

are 𝑇̅𝑧𝑧 = 0, 𝑇̅𝑟𝑧 = 0, 𝑊̂𝑎 = 0, 𝑇̂𝑟𝑧𝑎 = 0, 𝑊̂𝑏 = 0, 𝑇̂𝑟𝑧𝑏 = 0, ∅ = 0 on 𝑧 = −𝐿 2⁄  and  

∅ = ∅0 on 𝑧 = 𝐿 2⁄ . The resonance and anti-resonance frequencies upto 4 MHz are 

determined for a (50, 38, 8) ring and are presented in Table 2.6. They are computed with 

𝑀𝑟 = 𝑀𝑧 = 0 as the series terms are not required to satisfy the boundary conditions.  

Table 2.6. Resonance and anti-resonance frequencies of a (50, 38, 8) ring for Case 2. 

Mode Method 𝑓𝑟 (kHz) 𝐺 (mS) 𝑓𝑝 (kHz) 𝑅 (Ω) 

1 
Model 251.13 55.959 283.34 41.692k 

ATILA 251.13 55.959 283.34 41.689k 

2 
Model 840.30 16.541 850.02 1.545k 

ATILA 840.29 16.541 850.01 1.545k 

3 
Model 1410.9 9.8554 1416.7 334.11 

ATILA 1410.9 9.8554 1416.7 334.09 

4 
Model 1979.2 7.0360 1983.4 121.97 

ATILA 1979.2 7.0361 1983.4 121.96 

5 
Model 2546.8 5.4799 2550.1 57.518 

ATILA 2546.9 5.4802 2550.1 57.515 

6 
Model 3114.1 4.4943 3116.7 31.593 

ATILA 3114.2 4.4946 3116.9 31.591 

7 
Model 3681.2 3.8148 3683.4 19.205 

ATILA 3681.3 3.8153 3683.6 19.204 

 

ATILA results are computed with I=80 and J=60. All the computed parameters, except 

the conductance value at the 5th resonance frequency, are in excellent agreement. The fifth 

significant digits of the resonance and anti-resonance frequencies differ at most by one and 

two, respectively; those of the conductances differ at most by five; and those of the 

resistances differ at most by three. This again shows that ATILA is accurate and is correctly 
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used. The largest side of the finite element used in ATILA is approximately 𝜆𝐸/10 where 

𝜆𝐸 = 𝑣𝐸/𝑓𝑚𝑎𝑥 and 𝑓𝑚𝑎𝑥 is 4000 kHz. 

 Case 3: Free flat and cylindrical surfaces 

In this case, the stresses are zero on all the surfaces. The boundary conditions are 𝑇̅𝑧𝑧 =

0, 𝑇̅𝑟𝑧 = 0, 𝑇̂𝑟𝑟𝑎 = 0, 𝑇̂𝑟𝑧𝑎 = 0, 𝑇̂𝑟𝑟𝑏 = 0, 𝑇̂𝑟𝑧𝑏 = 0, ∅ = 0 on 𝑧 = −𝐿 2⁄  and ∅ = ∅0 on 

𝑧 = 𝐿 2⁄ . In this case, all the series terms in Eq. (2.7) are required, and therefore used.  

The critical frequencies and admittance in and around the first four resonances 

computed using the present method and ATILA are presented for (50, 25, 50) cylinder in 

Table 2.7. In the present method, 𝑀𝑟 = 𝑀𝑧 = 5 is used and in ATILA 𝐼 =  100 and  

𝐽 =  25 elements are used. In this case, both the present method and ATILA yield 

approximate results. However, it has been shown for Cases 1 and 2 that ATILA yields 

accurate results by comparison with exact analytical results. Therefore, in this case, values 

obtained using ATILA are considered to be the correct values. The values of 𝑓𝑠, 𝐺𝑚𝑎𝑥, 

𝑓−1/2𝑠, 𝐵𝑚𝑎𝑥,  𝑓1/2𝑠, 𝐵𝑚𝑖𝑛, 𝑓𝑝, and 𝑅𝑚𝑎𝑥, computed using the present method and ATILA 

are presented in Table 2.7.  

The 𝐹 matrix in Eq. (2.29) is rank-deficient even when only the 𝐴, 𝐵, 𝐶, 𝐷, and 𝐸 terms 

are used to build it and the elements of the matrix are computed using the above equations. 

It becomes a full-rank matrix when the rows are normalized by dividing each row in the 

equation by the largest element in the row. It is noted that, for this case, only one element 

in the 𝐺 matrix is non-zero. When the series terms are also used to build the 𝐹 matrix, it 

remains rank-deficient even after the row normalization even though the condition number 

improves. A study of the rank-deficient matrix shows that no row (or column) is a multiple 

of some other row (or column). This indicates that some rows (or columns) are linear 

combinations of other rows (or columns). In some rows (and columns) some elements are 

much smaller than others and this could lead to the numerical difficulties. 

The rank-deficiency of the 𝐹 matrix gradually increases when the values of 𝑀𝑟 and 𝑀𝑧 

are increased gradually after starting at one. However, the resonance and anti-resonance 

frequencies converge, the conductance is always positive, and they converge towards the 

values obtained using ATILA. This indicates that the coefficients that are significant for 

the computation of the critical frequencies and conductance are correctly determined even 

though the 𝐹 matrix is rank-deficient. The conductance becomes negative at some 

frequencies when the values of 𝑀𝑟 and 𝑀𝑧 are increased beyond a critical value; and this 
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indicates that rank-deficiency is affecting the values of the significant coefficients. This is 

used to choose the maximum values of 𝑀𝑟 and 𝑀𝑧 used in the computations; and in this 

case they are both five.  

Table 2.7. Critical parameters of a (50, 25, 50) cylinder for Case 3.  

Mode 1 2 3 4 

𝑓𝑟  

(kHz) 

Model 25.21 31.08  38.31 113.3 

ATILA 25.20 30.86 38.30 113.1 

% Error -0.04 -0.7 -0.03 -0.2 

𝐺𝑚𝑎𝑥 (mS) 

Model 3.607 0.1115 1.572 1.088 

ATILA 3.567 0.1299 1.570 1.063 

% Error 1.1 -14 0.13 2.4 

𝑓−1/2𝑠 (kHz) 

Model 25.15 31.01 38.22 113.1 

ATILA 25.13 30.78 38.21 112.9 

% Error 0.08 0.7 0.03 0.2 

𝐵𝑚𝑎𝑥 (mS) 

Model 1.837 0.0679 0.8075 0.6675 

ATILA 1.829 0.0752 0.8059 0.6542 

% Error 0.4 -9.7 0.2 2 

𝑓+1/2𝑠 (kHz) 

Model 25.27 31.16 38.41 113.6 

ATILA 25.26 30.93 38.40 113.4 

% Error 0.04 0.7 0.03 0.2 

𝐵𝑚𝑖𝑛  

(mS) 

Model -1.767 -0.0409 -0.7632 -0.4174 

ATILA -1.757 -0.0525 -0.7617 -0.4053 

% Error -0.6 22 -0.2 -3 

𝑓𝑎  

(kHz) 

Model 29.54 31.54 42.81 115.3 

ATILA 29.45 31.42 42.80  115.1 

% Error 0.3 0.4 0.02 0.2 

𝑅𝑚𝑎𝑥 

(Ω) 

Model 746.4k 264.6k 1.116M 61.37k 

ATILA 702.9k 323.1k 1.118M 60.19k 

% Error 6 -18 -0.2 2 

 

The percentage error, with ATILA as the reference, is computed using the equation 

(𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 –  𝐴𝑇𝐼𝐿𝐴) × 100 / 𝐴𝑇𝐼𝐿𝐴 and are given. The percentage errors are in general 
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very small. They are smallest for the first and third rows, a little higher for the fourth row, 

and highest for the second row. An examination of the displacement at 30.86 kHz  

(second row) using ATILA shows that the relative edge displacement is much higher than 

at 25.20 (first row), 38.30 (third row), and 113.1 kHz (fourth row). Higher values of 𝑀𝑟 

and 𝑀𝑧 are required to accurately compute edge modes but it is not possible to use them 

because of rank-deficiency and ill-conditioning. Even for the case where edge vibrations 

are dominant, the percentage errors in the resonance and anti-resonance frequencies are 

very small and much less than that due to typical variation in values of piezoelectric 

coefficients of samples in one production batch. 

Contour maps and wireframes of the axial and radial displacements, computed using 

ATILA, at the four resonance frequencies 25.20, 30.86, 38.30, 113.1 kHz are shown in 

Figs. 2.7 to 2.10, respectively. In each figure, the real and imaginary parts of 𝑈 are shown 

in (a) and (b), respectively; the real and imaginary parts of 𝑊 are shown in (c) and (d), 

respectively. Wireframes of the real and imaginary parts of the total displacement are 

shown in (e) and (f), respectively. The real and imaginary parts of the electric potential are 

shown in (g) and (h), respectively.  

In all the figures, it is seen that the real and imaginary parts of 𝑈 are zero on the plane 

that is midway between the flat ends of the cylinder and anti-symmetric about this plane. 

Further, 𝑊 is symmetric about the plane. The form of the solution in Eq. 2.7 is appropriate 

for this displacement. In Figs. 2.7 to 2.10, the imaginary parts of 𝑈 and 𝑊 are greater than 

the corresponding real parts. This shows that the vibration is nearly out of phase with the 

applied voltage. In all the figures, the electric potential is 0 at 𝑧 = −𝐿/2 and +1 at  

𝑧 = +𝐿/2 because of the boundary conditions. However, its maximum lies within the 

cylinder and is greater than one.  

At the first three resonance frequencies, 𝑈 is zero only on the 𝑧 = 0 plane. This 

indicates that 𝐵𝑞𝑠, or 𝐶𝑞𝑠, or both, in Eqs. (2.7c) and (2.7d), are large when 𝑞 =  1. At the 

fourth resonance frequency of 113.1 kHz Im(𝑈) = 0 contours lie approximately on three  

𝑧 = constant planes. This indicates that that 𝐵𝑞𝑠, or 𝐶𝑞𝑠, or both, in Eqs. (2.7c) and (2.7d), 

are large when 𝑞 = 3. At 25.20 kHz, the constant 𝑊 contours lie almost on constant 𝑧 lines. 

At 38.30 kHz, they lie almost on constant 𝑟 lines. At both frequencies, the constant 𝑈 

contours lie approximately on constant 𝑧 lines. However, at 25.20 kHz, the inner surface 

has greater axial displacement than the outer curved surface; whereas at 38.30 kHz, the 

outer surface has greater axial displacement than the inner surface. At 30.86 kHz, the axial 
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displacement is quite different from that at 25.20 and 38.30 kHz. On the flat ends, 𝑈 has 

opposite signs on the inner and outer curved surfaces and a Im(𝑈)=0 contour line lies 

approximately on 𝑟 = (𝑎 + 𝑏)/2. Im(𝑊) has opposite signs at the center and ends of the 

cylinder. Therefore, the radius of the cylinder increases at the center and decreases at the 

ends. This is in contrast to the pattern at 25.20 kHz where the radius decreases throughout 

the length of the cylinder. At 25.20, 38.30, 113.1 kHz, max(|𝑈|) is a little greater than 

max(|𝑊|). However, at 30.86 kHz, max(|𝑈|) is about half of max(|𝑊|). In long, thin, 

elastic, circular cylindrical shells, the axial and radial displacements have the same shape 

in two branches. In one branch, max(|𝑈|) > max(|𝑊|); and max(|𝑈|) < max(|𝑊|)  in 

the other branch. 

 

 

 

  

 

Fig. 2.7. Contour maps of the axial and radial displacements of a (50, 25, 50) mm 

cylinder at its first resonance 25.20 kHz. (a) Real and (b) imaginary part of the axial 

displacement; (c) real and (b) imaginary part of the radial displacement; (e) real and  

(f) imaginary part of the total displacement in wireframe view; and (g) real and  

(h) imaginary part of the electric potential. 

(e) (f) 

(g) (h) 
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Fig. 2.8. Contour maps of the axial and radial displacements of a (50, 25, 50) cylinder 

at its second resonance 30.86 kHz. (a) Real and (b) imaginary part of the axial 

displacement; (c) real and (b) imaginary part of the radial displacement; (e) real and  

(f) imaginary part of the total displacement in wireframe view; and (g) real and  

(h) imaginary part of the electric potential. 

 

 

   

   

(e) 

(f) 

(g) 
(h) 
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Fig. 2.9. Contour maps of the axial and radial displacements of a (50, 25, 50) cylinder 

at its third resonance 38.30 kHz. (a) Real and (b) imaginary part of the axial 

displacement; (c) real and (b) imaginary part of the radial displacement; (e) real and  

(f) imaginary part of the total displacement in wireframe view; and (g) real and  

(h) imaginary part of the electric potential. 

 

   

   

  

  

Fig. 2.10. Contour maps of the axial and radial displacements a (50, 25, 50) cylinder at 

its fourth resonance 113.10 kHz. (a) Real and (b) imaginary part of the axial 

displacement; (c) real and (b) imaginary part of the radial displacement. 

(e) 
(f) 

(g) 
(h) 

(e) 
(f) 

(g) 
(h) 
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The first two resonance and antiresonance frequencies of (50, 38, 8) and (50, 38, 50) 

rings are presented in Table 2.8. 𝐿/𝐷 ratios of these rings are 0.18 and 1.14, respectively. 

Computed frequencies are in good agreement with those computed using ATILA. The 

percentage errors are also shown. For both dimensions, the maximum percentage error is 

0.3 %. No 𝑀𝑧 term is required for a (50, 38, 8) ring to achieve the same level of convergence 

as that of a (50, 38, 50) ring with 𝑀𝑧 terms because it is shorter by a factor of 6.25. The 𝑓𝑠2 

of a (50, 38, 8) cylinder computed using 𝑀𝑟 = 𝑀𝑧 = 0 is 192.2 kHz [30] and using  𝑀𝑟 = 5 

yields more nearly accurate results.  

Table 2.8. First two resonance and antiresonance frequencies of hollow piezoelectric 

cylinders of various dimensions for Case 3. 

Freque

ncies  

(kHz) 

(50, 38, 8) (50, 38, 50) 

Model  

𝑀𝑟=5, 𝑀𝑧=0 

ATILA 

𝐼=32, 𝐽=24 

% 

Error 

Model 

𝑀𝑟=5, 𝑀𝑧=5 

ATILA 

𝐼=200, 𝐽=24 

% 

Error 

𝑓𝑠1 23.97 23.96 0.04 22.32 22.30 0.09 

𝑓𝑝1 25.42 25.41 0.04 25.02 24.94 0.3 

𝑓𝑠2 189.9 189.4 0.3 35.58 35.57 0.03 

𝑓𝑝2 236.0 236.0 0 236.0 42.05 0 

 

 

  

Fig. 2.11. Susceptance (𝐵) for Case 3. The dimensions of the cylinder are  

(a) (50, 25, 50) and (b) (50, 38, 50). Solid line: Model and Dots: ATILA. 
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The computed susceptance of (50, 25, 50) and (50, 38, 50) cylinders are shown in  

Figs. 2.11(a) and 2.11(b), respectively. Six resonances of the (50, 25, 50) cylinder are less 

than 150 kHz and five resonances of a (50, 38, 50) cylinder are less than 280 kHz. It is 

shown in the tables that the critical frequencies and the conductance, susceptance, and 

resistance at the critical frequencies are accurately determined by using the present method. 

Therefore, in the figures, the upper and lower limits of the Y axis are chosen to highlight 

the accuracy of the susceptance at frequencies that are not close to the critical frequencies. 

The rate of convergence is good for admittance because it is computed by evaluating an 

integral over the flat surfaces of the cylinder and thus represents an average effect. 

Admittance depends only on the coefficients 𝐵, 𝐶, and 𝐷 and is independent of the series 

terms 𝐴𝑚𝑠, 𝐵𝑚𝑠, and 𝐶𝑚𝑠 - as seen in Eq. (2.18). 

The first three resonance and anti-resonance frequencies of a (12, 6, 3) and a (12, 6, 6) 

cylinders are presented in Table 2.9. The  𝐿/𝐷 ratios are 0.33 and 0.667, respectively. The 

values are computed with 𝑀𝑟=10 and 𝑀𝑧 =1 and 𝐼=𝐽=24 for the (12, 6 3) cylinder; and 

𝑀𝑟= 𝑀𝑧 =2 and 𝐼=48 and 𝐽 =24 for the (12, 6, 6) cylinder. It is noted that sizes of the 

elements are the same in both cases. Comparison of the resonance frequencies of the 

cylinders of different sizes indicates that the first resonance is strongly dependent on the 

diameter; and the second and third resonances are strongly dependent on the length. 

Table 2.9. Critical parameters of (12, 6, 3) and (12, 6, 6) cylinders for Case 3. 

Parameter (12, 6, 3)   (12, 6, 6)   

Model ATILA % Error Model ATILA % Error 

𝑓𝑠1 (kHz) 120.87 120.85  -0.02 118.9 118.79  -0.08 

𝐺1 (mS) 6.473 6.466  -0.1 3.919 3.903  -0.4 

𝑓𝑝1 (kHz) 129.4 129.4 0 128.9 128.74  -0.2 

𝑅1 (Ω) 0.1106M 0.1106M  0 249.9k 249.4k 0 

𝑓𝑠2 (kHz) 440.32 436.44 -0.9 201.5 196.26  -2.6 

𝐺2 (mS) 2.804 2.417  -16 0.0783 0.0723  -7.7 

𝑓𝑝2 (kHz) 441.49 437.5  -0.9 201.7 196.48  -2.6 

𝑅2 (Ω) 412.7 408.7  -0.9 1.585k 2.194k  27 

𝑓𝑠3 (kHz) 470.9 468.61 -0.5 275.8 275.64  -0.07 

𝐺3 (mS) 52.81 51.29  -3 16.15 16.11  -0.2 

𝑓𝑝3 (kHz) 551.4 541.7 (1.8) 551.4 339.9 339.70  -0.06 

𝑅3 (Ω) 51.59k 44.38k  -17 419.4k 419.1k  -0.07 
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2.7 CONCLUSIONS 

A method is presented to determine the forced responses of axially polarized, hollow 

piezoelectric ceramic cylinders of finite length with internal losses. In this method, exact 

solutions to the governing equations are used and all field variables; displacements, 

potential, stress, and electric displacement are expressed in terms of complete sets of 

functions. Therefore, arbitrary, piecewise continuous boundary conditions can be satisfied. 

The method is illustrated by presenting many critical frequencies and critical parameters 

for various piezoceramic cylinders subjected to different sets of boundary conditions. 

Numerical values of the complex input electrical admittance and the complex displacement 

are computed and compared with finite element results. For cylinders with internal losses, 

critical frequencies - 𝑓𝑠,  𝑓−1/2𝑠,  𝑓1/2𝑠, and 𝑓𝑎 - and the electrical parameters - 𝐺𝑚𝑎𝑥, 𝐵𝑚𝑎𝑥, 

𝐵𝑚𝑖𝑛, and 𝑅𝑚𝑎𝑥 - are all in excellent agreement with ATILA. These parameters are of 

interest in the design of transducers with hollow piezoceramic cylinders in it and in the 

characterization of piezoelectric material. The displacements and electrical parameters 

computed are in good agreement with ATILA even at high frequencies. The level of 

convergence achieved here is sufficient for most practical applications. In the next chapter, 

the model is used to analyze a stack of hollow piezoceramic cylinders. It can also be used 

to model composite transducers where such stacks are used as components.  
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STACK OF AXIALLY POLARIZED HOLLOW 

PIEZOCERAMIC CYLINDERS 

3.1  INTRODUCTION    

Electromechanical systems are often composed of different components that are 

interconnected to give reinforced mechanical motion. This chapter describes the analysis 

of such a system of an even number of identical axially polarized hollow piezoceramic 

cylinders (rings) in the form of a stack. This is used in Tonpilz type transducers for 

generation of underwater sound. This multilayered structure of piezoceramic rings is 

combined mechanically in series and electrically in parallel. Each ring is coated on both 

flat surfaces with electrodes and then glued together to create the stack. The schematic of 

a stack of axially polarized piezoelectric ceramic rings is shown in Fig. 3.1. Adjacent rings 

have opposite poling directions. The electrode and glue are neglected in this analysis as 

their thicknesses are much smaller than the length of each ring. When a voltage is applied 

across the stack, each ring receives the same voltage and allows ‘large’ expansions for a 

reasonable voltage. The input electrical admittance and some characteristic frequencies in 

the neighborhood of the resonance frequencies of the stack are of interest.  

In this chapter, the model of an axially polarized piezoceramic ring developed in 

Chapter 2 is extended to analyze an electrically excited stack of a finite number of axially 

polarized piezoceramic rings. As in Chapter 2, in the analysis of a stack, the primary 

variables are the displacements and the electric potential. The stresses and electric field 

components are treated as the secondary variables and those are expressed in terms of the 

same coefficients that are used to describe the primary variables. In Chapter 2, these 

coefficients are determined by using the boundary conditions on the flat and curved 

surfaces of the ring. The coefficients are then used to find the primary and secondary 

variable and the Input Electrical Admittance (IEA) in the ring. In this Chapter, each ring is 

in contact with one or two neighbors as shown in Fig. 3.1. The normal and shear stresses 

are zero on both the curved surfaces of each ring. However, the stresses and displacements 

on the flat boundaries of the rings that are not at the ends are not known  

a priori and cannot be directly used to determine the coefficients. Therefore, a transfer 

matrix approach is used.  
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In the transfer matrix approach, the coefficients for each ring are not initially 

determined. Instead, the normal stress and displacement on one flat surface are expressed 

in terms of the same functions on the other flat surface of the ring and the applied electric 

potential. Then, the continuity conditions are applied to develop a model of the stack.  

Then, the zero-normal-stress boundary conditions on the flat ends of the stack are used to 

determine displacements at the ends of the stack. At this stage, the normal stress and 

displacement at one end of the two rings at the ends of the stack are known. They are used 

to determine the normal stress and displacement at the other end of the ring by using the 

transfer matrix for the rings. The procedure is repeated until all the normal stresses and 

displacements at both flat ends of all the rings are known. Then, the coefficients for each 

ring are determined and used to find the current in each ring. They can also be used to find 

the primary and secondary variable within each ring.  

The series solution used in Chapter 2 is labeled as an anti-symmetric series because the 

axial displacement is anti-symmetric with respect to the mid-plane of the cylinder. The 

radial displacement is, however, symmetric. A symmetric series solution also exists in 

which the axial displacement is symmetric with respect to the mid-plane of the cylinder 

and the radial displacement is anti-symmetric. In the anti-symmetric series and in the 

symmetric series, the electric potential is neither purely anti-symmetric nor purely 

symmetric. 

In Chapter 2, only the axial displacement that is anti-symmetric with respect to the 

plane that is midway between the flat ends of the cylinder has been considered. This is 

sufficient because only zero boundary conditions are considered and application of the 

electric potential causes the axial vibration of the cylinder to be anti-symmetric.  However, 

with appropriate boundary conditions, the axial displacement can be symmetric with 

respect to the plane. This analysis is, however, not done in Chapter 2. In the general case, 

the axial displacement is a combination of anti-symmetric and symmetric components. 

Ebenezer et al. [55, 56] analyze purely anti-symmetric and purely symmetric axial 

vibrations of solid elastic cylinders in 2005 and 2008, respectively. A combination of  

anti-symmetric and symmetric axial vibration is considered in Chapters 3 and 4.  

In this Chapter, anti-symmetric and symmetric axial vibrations of hollow piezoelectric 

cylinders are considered. This is necessary as the vibration of a ring in a stack is neither 

purely anti-symmetric nor purely symmetric. However, as a stack with several rings is of 

interest, and the ratio of the length to mean diameter is usually more than one, only the 
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leading terms in the series are used. Numerical results are presented to show that this is 

sufficient for many cases of practical interest. A simple extension of the method yields a 

model based on series solutions.  

 

 

Fig. 3.1. Schematic of a stack of piezoelectric ceramic rings.  

   

3.2 AN EXACT SOLUTION 

In this Chapter, a model of a ring that is suitable for use as a building block to model a 

stack is first developed. The origin of the cylindrical local coordinate system is placed at 

the geometric center of each ring in the stack. Only the leading terms of the exact  

anti-symmetric and symmetric series solutions to the exact governing equations (2.5) are 

used. The solution that is used in this Chapter for each ring is the sum of five solutions. 

Each solution is a function of only the axial or radial coordinate. It is expressed in the form 

{
𝑈
𝑊
∅
} = {

𝑈1
𝑊1

∅1

} + {

𝑈2
𝑊2

∅2

} + {

𝑈3
𝑊3

∅3

} + {

𝑈4
𝑊4

∅4

} + {

𝑈5
𝑊5

∅5

}                                                              (3.1a)   

where 
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{

𝑈1
𝑊1

∅1

} = {

𝐴1sin(𝑘𝑧0𝑧)

0

𝐴1
𝑒33

𝜀33
𝑆 sin(𝑘𝑧0𝑧)

}                                                                                          (3.1b)                                         

{

𝑈2
𝑊2

∅2

} = {

𝐴2cos(𝑘𝑧0𝑧)
0

𝐴2
𝑒33

𝜀33
𝑆 cos(𝑘𝑧0𝑧)

}                                                                                          (3.1c)                                            

{

𝑈3
𝑊3

∅3

} = {
0

𝐵1𝐽1(𝑘𝑟0𝑟) + 𝐵2𝑌1(𝑘𝑟0𝑟)
0

}          (3.1d)                                          

{

𝑈4
𝑊4

∅4

} = {

𝑄1𝐽0(𝑘𝑟0𝑟) + 𝑄2𝑌0(𝑘𝑟0𝑟)

0

𝑄1
𝑒15

𝜀11
𝑆 𝐽0(𝑘𝑟0𝑟) + 𝑄2

𝑒15

𝜀11
𝑆 𝑌0(𝑘𝑟0𝑟)

}                                                               (3.1e)                       

and                        

{

𝑈5
𝑊5

∅5

} = {
0
0

𝐷𝑧 + 𝐸
}.                                                                                                         (3.1f)                                          

Here𝐴1, 𝐴2, 𝑄1, 𝑄2, 𝐵1,𝐵2, 𝐷, and 𝐸 are the coefficients to be determined. 𝑘𝑧0, 𝑘𝑟0, 𝐽𝑛(. )  

and 𝑌𝑛(. ), 𝑛 = 0, 1 follows the same definition as in Chapter2.  

The axial displacement, 𝑈, is expressed as the sum of anti-symmetric terms in Eq. 

(3.1b) and symmetric terms in Eq. (3.1c) and (3.1e). It is a function of 𝑟 and 𝑧. The radial 

displacement, 𝑊, is expressed as the sum of symmetric terms in Eqs. (3.1d). It is a function 

of only 𝑟. The electric potential, ∅, is expressed as the sum of anti-symmetric terms in Eq. 

(3.1b) and symmetric terms in Eq. (3.1c) and a combination of anti-symmetric and 

symmetric terms in Eq. (3.1f). It is a function of 𝑟 and 𝑧. 

Substituting the expressions for displacements and electric potential in Eq. (3.1) in the 

stress-strain and strain-displacement relations in Eqs. (2.3) and (2.2), respectively, yields 

the stress and electric displacement. The axial and radial components of normal stress are 

expressed as  

𝑇𝑧𝑧 = 𝐴1𝑐33
𝐷 𝑘𝑧0 cos(𝑘𝑧0𝑧) − 𝐴2𝑐33

𝐷 𝑘𝑧0 sin(𝑘𝑧0𝑧) + 𝐵1𝑐13
𝐸 𝑘𝑟0𝐽0(𝑘𝑟0𝑟) +

𝐵2𝑐13
𝐸 𝑘𝑟0𝑌0(𝑘𝑟0𝑟) + 𝐷𝑒33                        (3.2)                       

and 
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𝑇𝑟𝑟 = 𝐴1(𝑐13
𝐸 + 𝑒31𝑒33 𝜀33

𝑆⁄ )𝑘𝑧0 cos(𝑘𝑧0𝑧) − 𝐴2(𝑐13
𝐸 + 𝑒31𝑒33 𝜀33

𝑆⁄ )𝑘𝑧0 sin(𝑘𝑧0𝑧) +

𝐵1 {𝑐11
𝐸 𝑘𝑟0𝐽0(𝑘𝑟0𝑟) +

𝑐12−
𝐸 𝑐11

𝐸

𝑟
𝐽1(𝑘𝑟0𝑟)} + 𝐵2 {𝑐11

𝐸 𝑘𝑟0𝑌0(𝑘𝑟0𝑟) +
𝑐12−
𝐸 𝑐11

𝐸

𝑟
𝑌1(𝑘𝑟0𝑟)} + 𝐷𝑒31,  

                                                                                                                                         (3.3) 

 respectively; and both are functions of the axial and radial coordinates. The shear stress is 

expressed as 

𝑇𝑟𝑧 = −(𝑐44
𝐸 +

𝑒15
2

𝜀11
𝑆 ) 𝑘𝑟0{𝑄1𝐽1(𝑘𝑟0𝑟) + 𝑄2𝑌1(𝑘𝑟0𝑟)}                                                   (3.4) 

and is a function of only the radial coordinate. The axial component of electric displacement 

is expressed as 

𝐷𝑧 = 𝐵1𝑒31𝑘𝑟0𝐽0(𝑘𝑟0𝑟) + 𝐵2𝑒31𝑘𝑟0𝑌0(𝑘𝑟0𝑟) − 𝐷𝜀33
𝑆                                                   (3.5) 

and is a function of only the radial coordinate. The radial component of the electric field 

displacement 𝐷𝑟 vanishes everywhere. Finally, the current in the ring is expressed as  

𝐼 = −∫ 𝑗𝜔𝐷𝑧

𝑏

𝑎

2𝜋𝑟𝑑𝑟

= −2𝜋𝑗𝜔 {𝐵1𝑒31[𝑏𝐽1(𝑘𝑟0𝑏) − 𝑎𝐽1(𝑘𝑟0𝑎)] + 𝐵2𝑒31[𝑏𝑌1(𝑘𝑟0𝑏) − 𝑎Y1(𝑘𝑟0𝑎)] − 𝐷𝜀33
𝑆
𝑏2 − 𝑎2

2
}

 

                                                                                                                                         (3.6) 

and the input electrical admittance is determined by using  𝑌 =
𝐼

∅0
.     

The solutions in Eq. (3.1) contain eight coefficients that are determined by using the 

boundary conditions. As there are only eight coefficients, only eight boundary conditions 

can be satisfied. In Chapter 2, ten boundary conditions are specified: Two for the potential 

and two stress or displacement conditions on each of the four surfaces.  Here, in order to 

simplify the model, only eight coefficients are used and appropriate conditions are to be 

specified and satisfied.  This is done in the following sections for one ring and a stack of 

rings.  

3.3 ONE RING 

It is shown in Chapter 2 that the anti-symmetric series solution is necessary and 

sufficient to satisfy all the special cases for one cylinder or ring considered there. In this 

Chapter, the leading terms of the anti-symmetric and the symmetric series are used. Both 

are necessary to analyze a stack. In this Section, analysis of one ring is presented by using 
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the solution in Eq. (3.1). For the special case of a stress-free ring, all the coefficients of the 

leading terms of the symmetric series are expected to become zero - and it is shown that 

this happens.  

In the one-dimensional model of a long thin rod or a stack of piezoelectric ceramic 

rings, it is assumed that the transverse stresses are zero. Therefore, the zero normal and 

shear stress boundary conditions on the inner and outer curved surfaces are to be satisfied. 

This accounts for four of the eight boundary conditions that can be satisfied by using the 

solution in Eq. (3.1). The two boundary conditions on the electric potential are essential for 

a model of a stack and they are to be specified and satisfied. This leaves two boundary 

conditions to be chosen. They are chosen to be either the specified normal stress or the 

normal displacement on each of the two flat ends of the ring. Alternatively, the normal 

stress and the normal displacement are specified on one of the flat ends and there are no 

boundary conditions at the other flat end. The latter set of conditions is used to develop the 

transfer matrix for the ring. This is in contrast with Chapter 2 where two boundary 

conditions are specified on each of the two flat ends of the ring. The boundary condition 

that is not considered in this Chapter is on the shear stress on the flat surfaces. However, if 

the shear stress is zero on both the curved surfaces it will be small everywhere within the 

stack. If the shear stress is zero on one or both ends of the stack, it will be even smaller 

throughout the stack. It is shown later that, as expected, the present model yields results 

that are in better agreement with exact axisymmetric finite element results for a stress-free 

stack than the one-dimensional rod model [3]. The stress-free stack is of special interest 

because the stack is a component of underwater transducers and is tested in the stress-free 

condition before it is used in the assembly of transducer.  

In this Section, a model of a ring with zero stress on all the surfaces is presented and 

the results are compared with those obtained using the series solution for Case 3 in  

Chapter 2.  

The boundary conditions on the electric potential ∅ are: 

∅ = ∅0 on = 𝐿 2⁄ ,                                                                                                        (3.7a) 

and 

∅ = 0 on 𝑧 = −𝐿 2⁄                                                                                                      (3.7b) 

on the top and bottom flat surface of the ring, respectively. Substituting the expression for 

electric potential ∅ in Eq. (3.1a) into the boundary conditions in Eq. (3.7) yields 
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𝐴1
𝑒33

𝜀33
𝑆 sin(𝑘𝑧0 𝐿 2⁄ ) + 𝐴2

𝑒33

𝜀33
𝑆 cos(𝑘𝑧0 𝐿 2⁄ ) + 𝐷 𝐿 2⁄ = ∅0      (3.8a) 

and 

−𝐴1
𝑒33

𝜀33
𝑆 sin(𝑘𝑧0 𝐿 2⁄ ) + 𝐴2

𝑒33

𝜀33
𝑆 cos(𝑘𝑧0 𝐿 2⁄ ) − 𝐷 𝐿 2⁄ = 0.             (3.8b) 

These conditions are independent of r and can, therefore, be exactly satisfied at every point 

on the flat surfaces.  

The normal and shear stresses are specified to be zero at every point on the surface. 

The expression for 𝑇𝑧𝑧 in Eq. (3.2) is dependent on the radial coordinate r. Therefore, 

uniform or zero 𝑇𝑧𝑧 at every point can be achieved only by choosing 𝐵1=𝐵2=0. This results 

in 𝑊=0 which is unrealistic. Therefore, boundary conditions on the normal component of 

stress, on the two flat surfaces, are satisfied only in an average sense by equating the integral 

of the stress over the area to zero: 

∫ 𝑇𝑧𝑧
𝑏

𝑎
2𝜋𝑟𝑑𝑟 = 0 on  𝑧 = ±𝐿 2⁄ .                                                                       (3.9a, 3.9b) 

Substituting the expression for 𝑇𝑧𝑧 in Eq. (3.9) yields 

𝐴1𝑐33
𝐷 𝑆𝑘𝑧0 cos(𝑘𝑧0L/2) − 𝐴2𝑐33

𝐷 𝑆𝑘𝑧0 sin(𝑘𝑧0L/2) + 𝐵1𝑐13
𝐸 2𝜋𝑘𝑟0[𝑏𝐽1(𝑘𝑟0𝑏) −

𝑎𝐽1(𝑘𝑟0𝑎)] + 𝐵2𝑐13
𝐸 2𝜋𝑘𝑟0[𝑏𝑌1(𝑘𝑟0𝑏) − 𝑎𝑌1(𝑘𝑟0𝑎)] + 𝐷𝑒33𝑆 = 0,                         (3.10a)  

at 𝑧 = 𝐿 2⁄  and  

𝐴1𝑐33
𝐷 𝑆𝑘𝑧0cos(𝑘𝑧0L/2) + 𝐴2𝑐33

𝐷 𝑆𝑘𝑧0sin(𝑘𝑧0L/2) + 𝐵1𝑐13
𝐸 2𝜋𝑘𝑟0[𝑏𝐽1(𝑘𝑟0𝑏) −

𝑎𝐽1(𝑘𝑟0𝑎)] + 𝐵2𝑐13
𝐸 2𝜋𝑘𝑟0[𝑏𝑌1(𝑘𝑟0𝑏) − 𝑎𝑌1(𝑘𝑟0𝑎)] + 𝐷𝑒33𝑆 = 0.                         (3.10b) 

at 𝑧 = −𝐿 2⁄  where 𝑐33
𝐷 = 𝑐33

𝐸 + e33
2 /𝜀33

𝑆   and 𝑆 = 𝜋(𝑏2 − 𝑎2). 

Similarly, 𝑇𝑟𝑟 is independent of 𝑧 only when 𝐴1 = 𝐴2 = 0. This makes 𝑈 indepdent  

of 𝑧. Therefore, 𝑇𝑟𝑟 = 0 or a constant on the curved surfaces is satisfied only in an average 

sense:  

∫ 𝑇𝑟𝑟
𝐿 2⁄

−𝐿 2⁄
2𝜋𝑟𝑑𝑧 = 0 on 𝑟 = 𝑎 and 𝑟 = 𝑏.                                                       (3.11a, 3.11b) 

Substituting the expression for  𝑇𝑟𝑟 in Eq. (3.4) into Eq. (3.11) yields 

𝐴1𝑐13
𝐷 4𝜋𝑎 sin(𝑘𝑧0L/2) + 𝐵12𝜋𝑎𝐿 [𝑐11

𝐸 𝑘𝑟0𝐽0(𝑘𝑟0𝑎) +
𝑐12
𝐸 −𝑐11

𝐸

𝑎
𝐽1(𝑘𝑟0𝑎)] +

𝐵22𝜋𝑎𝐿 [𝑐11
𝐸 𝑘𝑟0𝑌0(𝑘𝑟0𝑎) +

𝑐12
𝐸 −𝑐11

𝐸

𝑎
𝑌1(𝑘𝑟0𝑎)] + 𝐷𝑒312𝜋𝑎𝐿 = 0                              (3.12a) 
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on 𝑟 = 𝑎 and 

𝐴1𝑐13
𝐷 4𝜋𝑏 sin(𝑘𝑧0L/2) + 𝐵12𝜋𝑏𝐿 [𝑐11

𝐸 𝑘𝑟0𝐽0(𝑘𝑟0𝑏) +
𝑐12
𝐸 −𝑐11

𝐸

𝑏
𝐽1(𝑘𝑟0𝑏)] +

𝐵22𝜋𝑏𝐿 [𝑐11
𝐸 𝑘𝑟0𝑌0(𝑘𝑟0𝑏) +

𝑐12
𝐸 −𝑐11

𝐸

𝑏
𝑌1(𝑘𝑟0𝑏)] + 𝐷𝑒312𝜋𝑏𝐿 = 0.                             (3.12b) 

on 𝑟 = 𝑏 where 𝑐13
𝐷 = 𝑐13

𝐸 + 𝑒31𝑒33 𝜀33
𝑆⁄ .  

The averaged conditions on shear stress 𝑇𝑟𝑧 are 

∫ 𝑇𝑟𝑧
𝐿 2⁄

−𝐿 2⁄
2𝜋𝑟𝑑𝑧 = 0 on 𝑟 = 𝑎 and 𝑟 = 𝑏.                                                       (3.13a, 3.13b) 

Substituting the expression of 𝑇𝑟𝑧 in Eq. (3.5) into the conditions in Eq. (3.13) yields 

−𝑄1 (𝑐44
𝐸 +

𝑒15
2

𝜀11
𝑆 )2𝜋𝑎𝐿𝑘𝑟0𝐽1(𝑘𝑟0𝑎) − 𝑄2 (𝑐44

𝐸 +
𝑒15

2

𝜀11
𝑆 ) 2𝜋𝑎𝐿𝑘𝑟0𝑌1(𝑘𝑟0𝑎) = 0         (3.14a) 

on 𝑟 = 𝑎 and  

−𝑄1 (𝑐44
𝐸 +

𝑒15
2

𝜀11
𝑆 )2𝜋𝑏𝐿𝑘𝑟0𝐽1(𝑘𝑟0𝑏) − 𝑄2 (𝑐44

𝐸 +
𝑒15

2

𝜀11
𝑆 )2𝜋𝑏𝐿𝑘𝑟0𝑌1(𝑘𝑟0𝑏) = 0.        (3.14b) 

on 𝑟 = b. 

The boundary conditions in Eqs. (3.8), (3.10), (3.12), and (3.14) are expressed in the matrix 

form,  

[R]

[
 
 
 
 
 
 
 
𝐴1
𝐴2
𝐵1
𝐵2
𝐷
𝐸
𝑄1
𝑄2]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
∅0
0
0
0
0
0
0
0 ]
 
 
 
 
 
 
 

                                                                                                          (3.15a) 

where 

[R] =

[
 
 
 
 
 
 
 
 
𝑒33 sin(𝑍) /𝜀33

𝑆

−𝑒33 sin(𝑍) /𝜀33
𝑆

𝑆𝑐33
𝐷 𝑘𝑧0cos (𝑍)

𝑆𝑐33
𝐷 𝑘𝑧0cos (𝑍)

2𝑎𝑐13
𝐷 sin (𝑍)

2𝑏𝑐13
𝐷 sin (𝑍)
0
0

𝑒33 cos(𝑍) /𝜀33
𝑆

𝑒33 cos(𝑍) /𝜀33
𝑆

−𝑆𝑐33
𝐷 𝑘𝑧0sin (𝑍)

𝑆𝑐33
𝐷 𝑘𝑧0sin (𝑍)

0
0
0
0

0
0

2𝜋𝑐13
𝐸 𝐽𝑏𝑎

2𝜋𝑐13
𝐸 𝐽𝑏𝑎

𝐿𝐽𝑐𝑎
𝐿𝐽𝑐𝑏
0
0

0
0

2𝜋𝑐13
𝐸 𝑌𝑏𝑎

2𝜋𝑐13
𝐸 𝑌𝑏𝑎

𝐿𝑌𝑐𝑎
𝐿𝑌𝑐𝑏
0
0

𝐿/2
−𝐿/2
𝑆𝑒33
𝑆𝑒33
𝑎𝐿𝑒31
𝑏𝐿𝑒31
0
0

1
1
0
0
0
0
0
0

0
0
0
0
0
0

𝑘𝑟0𝑐45
𝐷 𝐽1𝑎

𝑘𝑟0𝑐45
𝐷 𝐽1𝑏

0
0
0
0
0
0

𝑘𝑟0𝑐45
𝐷 𝑌1𝑎

𝑘𝑟0𝑐45
𝐷 𝑌1𝑏]

 
 
 
 
 
 
 
 

 

            (3.15b) 
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is an 8th order square matrix, 𝑍 = 𝑘𝑧0𝐿 2⁄ ,  𝑐13
𝐷 = 𝑐13

𝐸 + 𝑒31𝑒33 𝜀33
𝑆⁄ , 𝑐45

𝐷 = 𝑐44
𝐸 + 𝑒15

2 𝜀11
𝑆⁄ , 

𝐽1𝑏 = 𝑏𝐽1(𝑘𝑟0𝑏), 𝐽1𝑎 = 𝑎𝐽1(𝑘𝑟0𝑎), 𝐽0𝑏 = 𝑏𝐽0(𝑘𝑟0𝑏), 𝐽0𝑎 = 𝑎𝐽0(𝑘𝑟0𝑎), 𝑌1𝑏 = 𝑏𝑌1(𝑘𝑟0𝑏), 

𝑌1𝑎 = 𝑎𝑌1(𝑘𝑟0𝑎), 𝑌0𝑏 = 𝑏𝑌0(𝑘𝑟0𝑏), 𝑌0𝑎 = 𝑎𝑌0(𝑘𝑟0𝑎), 𝐽𝑐𝑎 = 𝑐11
𝐸 𝑘𝑟0𝐽0𝑎 +

𝑐12
𝐸 −𝑐11

𝐸

𝑎
𝐽1𝑎, 

𝑌𝑐𝑎 = 𝑐11
𝐸 𝑘𝑟0𝑌0𝑎 +

𝑐12
𝐸 −𝑐11

𝐸

𝑎
𝑌1𝑎, 𝐽𝑐𝑏 = 𝑐11

𝐸 𝑘𝑟0𝐽0𝑏 +
𝑐12
𝐸 −𝑐11

𝐸

𝑏
𝐽1𝑏, 𝑌𝑐𝑏 = 𝑐11

𝐸 𝑘𝑟0𝑌0𝑏 +

𝑐12
𝐸 −𝑐11

𝐸

𝑏
𝑌1𝑏,  𝐽𝑏𝑎 = 𝐽1𝑏 − 𝐽1𝑎, and 𝑌𝑏𝑎 = 𝑌1𝑏 − 𝑌1𝑎.                

The eight coefficients are determined by solving Eq. (3.15). The current and the input 

electrical admittance are then computed using these coefficients and Eq. (3.6).  Numerical 

results for one ring are presented in Section 3.5. 

It is noted that the matrix [R] in Eq. (3.15) is sparse and Eq. (3.15) can be rewritten as 

two independent matrix equations. One independent matrix equation is formed by using 

Eqs. (3.14a) and (3.14b) with the coefficients 𝑄1 and 𝑄2. In Eq. (3.15), they are the last two 

of the eight Eqs. It is to be satisfied at all frequencies. This is done by using 𝑄1 = 𝑄2 = 0. 

It is seen from the matrix equation that the determinant is zero at some frequencies and that 

𝑄1 and 𝑄2 become indeterminate and need not be zero at these frequencies. Therefore, 

𝑄1 = 𝑄2 = 0 is used at all frequencies. It is seen from Eq. (3.4) that this results in zero 

shear stress everywhere in the ring. Therefore, non-zero shear stress boundary conditions 

cannot be satisfied on the flat surfaces. In many applications, in addition to zero shear stress 

on the inner and outer curved surfaces, one end of the ring or stack or the device has zero 

shear stress. For example, in Tonpilz transducers in water, the radiating face of the head 

has zero shear stress and the end of the tail mass has zero shear stress. Therefore, it is 

reasonable to assume that shear stress is zero everywhere in the stack and transducer. 

It is important to note, at this stage, that the normal radial and tangential stresses are 

not assumed to be zero everywhere. These assumptions are used in the classic rod  

model [3]. Martin [5] presents a model of a cylinder in which the membrane approximation 

is used and the normal radial stress is assumed to be zero everywhere because it is zero on 

the inner and outer curved surfaces. Therefore, the exact solution in Eq. (3.1) to the exact 

governing equations in Eq. (2.5) is expected to yield results that are in better agreement 

with exact axisymmetric finite element results for a stack than the one-dimensional rod 

model [3] based on approximate solutions to Eq. (2.5). 
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3.4 STACK 

Analysis of one ring is extended to analyze a stack of a finite number of axially 

polarized piezoceramic rings. First, a transfer matrix for one ring is developed by using the 

solution in Eq. (3.1) and the stress-free boundary conditions on the inner and outer curved 

surfaces and the specified potentials of zero and one on the flat ends of the ring. Then, a 

model of the stack is easily developed by using the transfer matrix for each ring. The details 

are presented below. 

The transfer matrix for a ring is expressed in terms of the functions that are continuous 

at the interfaces between rings and the applied electric potential. In an exact model, the 

normal and shear stresses and axial and radial displacements are continuous at the 

interfaces. Here, only the normal stress and the axial displacement are continuous at the 

interfaces. The same continuity conditions are used in the rod model of the stack. Therefore, 

in the transfer matrix, the normal stress and the axial displacement at one end of the ring 

are expressed in terms of the normal stress and the axial displacement at the other end of 

the ring and the potential difference applied across its ends.  

If either the normal stress or the axial displacement are specified at each end of the 

ring, these boundary conditions together with the two boundary conditions on the applied 

potential form a system of six equations that can be solved to determine the coefficients 

𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝐷, and 𝐸. Then, the coefficients can be used to determine all the functions 

of interest at the ends of the ring and within the ring. Similarly, if the normal stress and the 

axial displacement are specified at one end of the ring, the coefficients can be determined 

and used to find the functions of interest on the other end of the ring. Alternatively, the 

normal stress and the axial displacement at one end can be expressed in terms of the normal 

stress and the axial displacement at the other end, the applied potential, and the transfer 

matrix. The details of the method to find the transfer matrix are presented next.  

In the stack, the axial displacement and axial stress are specified on one flat end. The 

conditions on electric potential on the flat surfaces of each ring and normal and shear stress 

on the curved surfaces remains the same. At the interface between two adjacent rings, the 

axial displacement and axial stress is continuous.  

Consider the case where the normal stress and the axial displacement at 𝑧 = −𝐿 2⁄  of 

the 𝑛th ring of the stack are specified:  

𝑇𝑧𝑧 = 𝑇𝑛
− on 𝑧 = −𝐿 2⁄  
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and 

𝑈 = 𝑈𝑛
− on  𝑧 = −𝐿 2⁄ .                                                                                                 (3.16) 

Using the expressions for 𝑇𝑧𝑧 in Eq. (3.2) and 𝑈 in Eq. (3.1), yields  

𝐴1𝑐33
𝐷 𝑆𝑘𝑧0 cos(𝑘𝑧0L/2) + 𝐴2𝑐33

𝐷 𝑆𝑘𝑧0 sin (
𝑘𝑧0L

2
) + 𝐵1𝑐13

𝐸 2𝜋𝑘𝑟0[𝑏𝐽1(𝑘𝑟0𝑏) −

𝑎𝐽1(𝑘𝑟0𝑎)] + 𝐵2𝑐13
𝐸 2𝜋𝑘𝑟0[𝑏𝑌1(𝑘𝑟0𝑏) − 𝑎𝑌1(𝑘𝑟0𝑎)] + 𝐷𝑒33𝑆 = 𝑇𝑛

−.    (3.17)  

and 

−𝐴1 sin(𝑘𝑧0𝐿 2⁄ ) + 𝐴2 cos(𝑘𝑧0𝐿 2⁄ ) + 𝑄1𝐽0(𝑘𝑟0𝑟) + 𝑄2𝑌0(𝑘𝑟0𝑟) = 𝑈𝑛
−.                 (3.18) 

These equations are combined with the boundary conditions on the normal stresses on the 

inner and outer curved surfaces in Eq. (3.12), the potential on the flat surfaces in Eq. (3.8), 

and expressed as 

[𝑀𝑛
−]

{
 
 

 
 
𝐴1
𝐴2
𝐵1
𝐵2
𝐷
𝐸 }
 
 

 
 

=

{
 
 

 
 
𝑇𝑛
−

𝑈𝑛
−

0
0
0
∅0}
 
 

 
 

.                                                                                                 (3.19a) 

where 

 [𝑀𝑛
−] =

[
 
 
 
 
 
 
𝑐33
𝐷 𝑆𝑘𝑧0 cos(𝑘𝑧0L/2)

− sin(𝑘𝑧0𝐿 2⁄ )

2𝑎𝑐13
𝐷 sin (𝑍)

2𝑏𝑐13
𝐷 sin (𝑍)

𝑒33 sin(𝑍) /𝜀33
𝑆

−𝑒33 sin(𝑍) /𝜀33
𝑆

 

 𝑐33
𝐷 𝑆𝑘𝑧0 sin(𝑘𝑧0L/2)  

cos(𝑘𝑧0𝐿 2⁄ )
0
0

𝑒33 cos(𝑍) /𝜀33
𝑆

𝑒33 cos(𝑍) /𝜀33
𝑆

2𝜋𝑐13
𝐸 𝐽𝑏𝑎
0
𝐿𝐽𝑐𝑎
𝐿𝐽𝑐𝑏
0
0

   2𝜋𝑐13
𝐸 𝑌𝑏𝑎
0
𝐿𝑌𝑐𝑎
𝐿𝑌𝑐𝑎
0
0

    𝑒33𝑆      
0

𝑎𝐿𝑒31
𝑏𝐿𝑒31
𝐿/2

−𝐿/2

0
0
0
0
1
1]
 
 
 
 
 
 

  

           (3.19b) 

Here [𝑀𝑛
−] is a square matrix of order 6. Similarly, the matrix equation corresponding to a 

specified stress 𝑇𝑛
+and axial  displacement 𝑈𝑛

+ on 𝑧 = 𝐿 2⁄ , zero normal stress on the curved 

surfaces and a known potential applied between the electrodes on the flat surfaces of the 

𝑛th ring is expressed as, 
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[𝑀𝑛
+]

{
 
 

 
 
𝐴1
𝐴2
𝐵1
𝐵2
𝐷
𝐸 }
 
 

 
 

=

{
 
 

 
 
𝑇𝑛
+

𝑈𝑛
+

0
0
0
∅0}
 
 

 
 

.                    (3.20a) 

where  

[𝑀𝑛
+] =

[
 
 
 
 
 
 
𝑐33
𝐷 𝑆𝑘𝑧0 cos(𝑘𝑧0L/2)

sin(𝑘𝑧0𝐿 2⁄ )

2𝑎𝑐13
𝐷 sin (𝑍)

2𝑏𝑐13
𝐷 sin (𝑍)

𝑒33 sin(𝑍) /𝜀33
𝑆

−𝑒33 sin(𝑍) /𝜀33
𝑆

 

 −𝑐33
𝐷 𝑆𝑘𝑧0 sin(𝑘𝑧0L/2)  

cos(𝑘𝑧0𝐿 2⁄ )
0
0

𝑒33 cos(𝑍) /𝜀33
𝑆

𝑒33 cos(𝑍) /𝜀33
𝑆

2𝜋𝑐13
𝐸 𝐽𝑏𝑎
0
𝐿𝐽𝑐𝑎
𝐿𝐽𝑐𝑏
0
0

   2𝜋𝑐13
𝐸 𝑌𝑏𝑎
0
𝐿𝑌𝑐𝑎
𝐿𝑌𝑐𝑎
0
0

    𝑒33𝑆      
0

𝑎𝐿𝑒31
𝑏𝐿𝑒31
𝐿/2

−𝐿/2

0
0
0
0
1
1]
 
 
 
 
 
 

. 

           (3.20b) 

Eqs. (3.19) and (3.20) can be combined into the following form: 

{
 
 

 
 
𝑇𝑛
+

𝑈𝑛
+

0
0
0
∅0}
 
 

 
 

= [𝑀𝑛]

{
 
 

 
 
𝑇𝑛
−

𝑈𝑛
−

0
0
0
∅0}
 
 

 
 

                                                                                                   (3.21) 

where [𝑀𝑛] = [𝑀𝑛
+][𝑀𝑛

−]−1. 

The first two equations of Eq. (3.21) can be rewritten as  

[𝑇𝑛
+ 𝑈𝑛

+]𝑇 = [𝐷𝑛][𝑇𝑛
− 𝑈𝑛

−]𝑇 + {𝑑𝑛}∅0                                                                   (3.22) 

where [𝐷𝑛] and {𝑑𝑛} are submatrices of [𝑀𝑛] of order 2×2 and 2×1, respectively. In Eq. 

(3.22), the normal stress and displacement at one end of the 𝑛th ring are expressed in terms 

of the normal stress and displacement at the other end of the ring and the potential 

difference.  

When 𝑁 rings are assembled to form a stack, the top flat surface of the nth ring  

(1 ≤ 𝑛 < 𝑁) is pasted to the bottom flat surface of the (n+1)th ring. Hence, the continuity 

of axial displacement and stress at the interface between the top flat surface of the nth ring 

and bottom flat surface of the (n+1)th ring are expressed as, 

[𝑇𝑛
+ 𝑈𝑛

+]𝑇 = [𝑇𝑛+1
− 𝑈𝑛+1

− ]𝑇.                                                                                     (3.23) 
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Then, substitution of Eq. (3.22) for each ring in the continuity equation in Eq. (3.23) yields 

[𝑇𝑁
+ 𝑈𝑁

+]𝑇 = [𝐷𝑁𝐷𝑁−1…𝐷2𝐷1][𝑇1
− 𝑈1

−]𝑇 + {𝐷𝑁𝐷𝑁−1…𝐷3𝐷2𝑑1 +

𝐷𝑁𝐷𝑁−1…𝐷4𝐷3𝑑2 +⋯+ 𝐷𝑁𝑑𝑁−1 + 𝑑𝑁}∅0.                                                            (3. 24) 

Here, the normal stress and axial displacement at one end of the stack are expressed in 

terms of the normal stress and axial displacement at the other end of the stack and the 

potential difference. Each ring has its own influences in the stack performance. This is 

taken in to account in Eq. (3.24), since the equation is expressed in terms of the products 

of the matrices associated with each ring in the stack. This equation has two unknowns 

because normal stress is zero at the ends of the stack. The displacements at both ends of the 

stack are determined by using the specified stresses at the ends of the stack and the applied 

potential difference.  

The normal stress and the axial displacement are now known at bottom end of the  

1st ring and the top end of the 𝑁th ring. Therefore, the normal stress and the axial 

displacement at the top of the 1st ring is determined by using Eq. (3.22). Then, the normal 

stress and the axial displacement at the bottom of the 2nd ring are determined by using the 

continuity condition in Eq. (3.23). Then, the process is repeated until the normal stress and 

the axial displacement are known at both ends of each ring in the stack.  

Next, the coefficients for each ring are determined by using Eq. (3.19). Then, the 

coefficients are used to determine the current in the nth ring, 𝐼𝑛, by using Eq. (3.7) and the 

total current in the stack is obtained using 

𝐼 = ∑ 𝐼𝑛
𝑁
𝑛=1 .                                                                                                                 (3. 25) 

Finally, the complex admittance, 𝑌, is expressed as  𝑌 = 𝐺 + 𝑗𝐵 = 𝐼 ∅0⁄ .  

3.5  NUMERICAL RESULTS 

Numerical results are presented for different stacks with different rings but the PZT 

material is the same in all stacks - PZT 4 with losses. Analytically computed results are 

compared with those computed using ATILA. Second order, eight-noded, quadrilateral, 

axisymmetric, piezoelectric elements are used in ATILA with internal losses represented 

by complex coefficients. The basic set of piezoelectric coefficients and the density of the 

material that is used both in the analytical model and ATILA are shown in Tables 2.1  

and 2.2.  
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Critical frequencies of the rings and stacks with zero stresses on all the surfaces are 

computed in the neighborhood of the resonance frequencies and compared with ATILA 

and existing 1-D model. The details of the 1-D model is described in the Appendix of this 

Chapter. The model presented in this Chapter is to be used primarily for stacks in which 

the resonance frequency of interest is associated with predominantly axial vibration. 

However, all the resonance frequencies are discussed. In all the figures, a red line is used 

to show the results computed by the present method, a green line to show the results 

computed by the 1-D model, and blue dots are used to show those computed using ATILA, 

unless and otherwise specified. Both analytical and ATILA results are shown with same 

resolution of 10 Hz. The results are produced for three different cases. The description of 

the piezoceramic rings follows the same notation as in Chapter 2.  

 Case 1  

In this case, the dimensions of the axially polarized piezoceramic rings are (12, 6, 3). 

The input electrical admittances of a single ring and stack of 4 such rings are computed and 

the critical parameters are compared. The input conductance (G) of the single ring, in the 

100-600 kHz band, computed by the present model is shown in Fig. 3.2(a). The model 

predicts two resonances in this band; one at 121.60 kHz and other at 481.03 kHz. When the 

complete series solution is used, there are three resonances in the band at 120.87, 440.32, 

and 470.90, kHz as seen in Table 2.9 and there are three corresponding resonances in 

ATILA. The conductance computed using a one-dimensional model of a ring [3] is shown 

by a green line. This model has only one resonance in the band at 511.4 kHz.  

The input conductance in the neighborhood of the first resonance is shown in  

Fig. 3.2(b). In the one-dimensional model, only the axial stress is considered and this model 

does not predict the radial resonance - as seen in Fig. 3.2(a). However, in the present model, 

radial stress is not assumed to be zero everywhere within the ring and the resonance 

frequency differs from that computed using ATILA by only 0.5%. Moreover, the computed 

conductance at the resonance frequency, 𝐺𝑚𝑎𝑥, is nearly equal to that computed using 

ATILA as can be seen in Fig. 3.2(b). Similar good agreement is reported in [30] for rings 

of other dimensions. The second resonance is primarily a function of the length of the ring.  

The resonance frequency computed using ATILA is 468.8 kHz and the 𝐺𝑚𝑎𝑥  is 51.26 mS. 

The present model yields 481.03 kHz and 𝐺𝑚𝑎𝑥  of 62.76 mS. The resonance predicted by 

the 1-D model is at 511.40 kHz. It is seen from Fig. 3.2(a) that 1-D model overestimates 

the resonance frequency and the conductance at this resonance. 
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The magnitudes of the axial (blue line) and radial (red line) components of the 

displacements of the ring at the two resonances computed using the present method are 

shown in Fig. 3.3. Fig. 3.3(a) shows the axial and radial displacements at the first resonance 

frequency of 121.60 kHz at the mean radius, 4.5 mm. The magnitude of the radial 

displacement is about 7 times that of the axial displacement at this frequency and is 

uniform.  This is the hoop mode resonance of the ring. The magnitudes of both the 

displacement components at the second resonance are shown in Fig. 3.3(b). Here, the 

magnitude of the axial displacement is about 7 times that of the radial displacement. This 

resonance is associated with the axial mode of the ring. 

A stack of four (12, 6, 3) rings is then analyzed. In the stack, the length is equal to its 

diameter. The input conductance of the stack computed by the present model, ATILA, and 

the 1-D model are shown in Fig. 3.4(a) upto the third resonance frequency. The present 

model predicts the three resonances with 𝐺 and 𝐵 values approximately equal to those 

obtained using ATILA. But the 1-D model predicts only the resonance near 120 kHz. The 

input susceptance in this band is shown in Fig. 3.4(b). 

 

  

Fig. 3.2(a). Conductance in the 100-600 

kHz band of a (12, 6, 3) ring.  Red Line: 

Model; Dots: ATILA; and Green Line:  

1-D model. 

Fig. 3.2(b). Conductance in the 

neighborhood of the first resonance of a 

(12, 6, 3) ring.   Red Line: Model; Dots: 

ATILA; and Green Line: 1-D model. 
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Fig. 3.4(a). Conductance of a stack of four 

(12, 6, 3) rings. Red Line: Present Method, 

Dots: ATILA, and Green Line: 1-D model. 

Fig. 3.4(b). Susceptance of a stack of four 

(12, 6, 3) rings. Red Line: Present 

Method, Dots: ATILA, and Green Line: 

1-D model. 

 

  

Fig. 3.3(a). Displacements at the first 

resonance, 121.6 kHz, of the (12, 6, 3) 

ring. Red line: Radial and blue line: axial 

displacements. 

Fig. 3.3(b). Displacements at the second 

resonance, 481 kHz, of the (12, 6, 3) ring.  

Red line: Radial and blue line: axial 

displacements. 
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The critical frequencies and critical parameters in the neighborhood of the first three 

resonance frequencies of the four ring stack of (12, 6, 3) rings are presented in Table 3.1. 

Both analytical and ATILA values are given. Here, the second resonance is associated with 

the hoop mode of the stack that does not change by increasing the length of the stack.  

The resonance near 103 kHz is the length mode resonance of the stack. The maximum 

percentage error in the critical frequencies in the neighborhood of this resonance is 0.4%. 

Analytically computed values of the critical parameters are also in good agreement with 

ATILA values. 

Table 3.1. 𝐺 and 𝐵 in the neighborhood of the first three resonances of the four ring stack 

of (12, 6, 3) rings. 

Mode Method 𝑓𝑠 

(kHz) 

𝐺𝑚𝑎𝑥 

(mS) 

𝑓−1/2𝑠 

(kHz) 

𝐵𝑚𝑎𝑥 

(mS) 

𝑓1/2𝑠 

(kHz) 

𝐵𝑚𝑖𝑛 

(mS) 

 

First 

ATILA 103.1 52.85 102.9 27.04 103.4 -25.77 

Model 103.5 53.91 103.3 27.55 103.8 -26.34 

% Error  0.4 2 0.4 1.8 0.4 -2.2 

 

Second 

ATILA 124.1 5.253 123.8 2.711 124.4 -2.502 

Model 121.3 4.012 121 1.899 121.6 -2.059 

% Error -2.2 -23.6 -2.3 -29.9 -2.25 17.7 

 

Third 

ATILA 156.9 20.51 156.5 10.62 157.3 -9.875 

Model 159.2 21.16 158.8 10.97 159.6 -10.17 

% Error 1.5 3.16 1.46 3.3 1.46 -2.9 

 

 Case 2  

In case 2, numerical results are presented for stacks with rings of dimensions  

(50, 38, 8). The susceptance of the two ring stack in the neighborhood of its length mode 

resonance is shown in Fig. 3.5(a). The radial and length mode resonances of a (50, 38, 8) 

ring computed by the model described in Chapter 2 are at 23.98 kHz and at 192.2 kHz, 

respectively. The first two resonances of the two ring stack computed using the present 

model are at 23.91 kHz and 103.1 kHz. These frequencies are in good agreement with the 

ATILA computed resonance frequencies at 23.88 kHz and at 102.1 kHz.  

The conductances in the neighborhood of the length mode resonance of the ten ring 

stack computed by the present method and by ATILA are shown in Fig. 3.5(b). The length 

mode resonances of the ten ring stack computed using the present model and ATILA are at 

17.09 kHz. The 𝐺 values at this frequency are also the same and equal to 94.7 mS. The 
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resonance frequency computed using the 1-D model is at 18.37 kHz and the 𝐺𝑚𝑎𝑥  

is 104.2 mS. 

 
 

Fig. 3.5(a). Susceptance of a stack of two 

(50, 38, 8) mm rings. Red Line: Model, 

Dots: ATILA, and Green Line: 1-D 

model. 

Fig. 3.5(b). Conductance of a stack of ten 

(50, 38, 8) mm rings at the length mode 

resonance of 17.09 kHz. Red Line: Model, 

Dots: ATILA, and Green Line: 1-D model. 

 

  

Fig. 3.6(a). Conductance in the 

neighborhood of the second and third 

resonances of the stack of ten (50, 38, 8) 

rings. Red Line: Model, Blue Dots: 

ATILA, and Green Line: 1-D model. 

Fig. 3.6(b). Susceptance at the first three 

resonances of a stack of ten (50, 38, 8) 

rings.  Red Line: Model, Blue Dots: 

ATILA, and Green Line: 1-D model. 
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The second, third, and fourth resonances of stack of ten rings are shown in Fig. 3.6(a). 

In ATILA, the second resonance is at 23.74 kHz and the first resonance of a single ring is 

at the same frequency. Therefore, it is concluded that it is a hoop mode resonance. In the 

present analysis, the second resonance is at 23.64 kHz and corresponds to the hoop mode. 

The third resonance is at 27.12 kHz in ATILA and at 23.93 kHz in the present model. The 

fourth resonance is at 27.94 kHz in ATILA and at 27.99 kHz in the present model. The 

error is 0.2%. The conductances are also in good agreement as seen in Fig. 3.6(a).  These 

resonances are not predicted by the 1-D model. The susceptance, 𝐵, in the neighborhood 

of the first three resonances of this stack is shown in Fig. 3.6(b). The first two resonance 

frequencies and 𝐵 values computed by the present model are in good agreement with 

ATILA. 

The critical frequencies and associated values in the neighborhood of the length mode 

resonance of a single ring, two ring stack, and ten ring stack are given in Table 3.2. It can 

be seen from the table that the length mode resonance of the single ring computed using 

the present model is greater than those computed using ATILA. The difference decreases 

as the length of the stack increases. The maximum percentage error in critical frequencies 

is 1.5% and that occurs at the length mode resonance of a single ring. 

Table 3.2. Critical parameters in the neighborhood of the length mode resonance of 

various stacks of (50, 38, 8) rings. 

No. of rings 

in the stack  

 

Method 

𝑓𝑠 

(kHz) 

𝐺𝑚𝑎𝑥 

(mS) 

𝑓−1/2𝑠 

(kHz) 

𝐵𝑚𝑎𝑥 

(mS) 

𝑓1/2𝑠 

(kHz) 

𝐵𝑚𝑖𝑛 

(mS) 

 

1 

Model 192.2 101.5 191.7 51.4 192.7 -50.1 

ATILA 189.4 95.87 188.9 48.61 189.9 -47.25 

% Error  1.5 5.8 1.1 5.7 1.5 -6.03 

 

2 

 

Model 103.1 102.6 102.9 53.18 103.4 -49.38 

ATILA 102.1 100 101.8 50.73 102.3 -49.3 

% Error 0.9 2.6 1 4.8 1.07 -0.016 

 

10 

Model 17.09 94.7 17.05 48.1 17.13 -46.63 

ATILA 17.09 94.7 17.05 47.89 17.13 -46.42 

% Error 0 0 0 0.4 0 -0.45 

 

 Case 3  

In case 3, the ring considered have dimensions (100, 80, 6). The input electrical 

admittance of three different stacks with 12, 20, and 22 rings are computed in this case.  
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A single ring of the above dimension has the hoop mode resonance at 11.7 kHz and length 

mode resonance at 215.59 kHz. The critical frequencies and associated admittance values 

of different stacks with these rings are shown in Table 3.3. As the number of rings increases, 

the resonance near 11 kHz remains nearly unchanged. Therefore, it is the hoop mode 

resonance of the stack. The length mode resonance is approximately inversely proportional 

to the length when the length of the stack is not much less than the outer diameter. It is seen 

from Table 3.3 that it is at 22.8 kHz, 10.14 kHz, and 9.67 kHz for stacks with 12, 20, and 

22, rings.  

Table 3.3. Critical parameters in the neighborhood of the first two resonances of various 

stacks of (100, 80, 6) rings. 

No. of 

rings in 

the 

stack 

Resonance Method 
𝑓𝑠 

(kHz) 

𝐺𝑚𝑎𝑥 

(mS) 

𝑓−1/2𝑠 

(kHz) 

𝐵𝑚𝑎𝑥 

(mS) 

𝑓1/2𝑠 

 kHz) 

𝐵𝑚𝑖𝑛 

(mS) 

 

12  

I 

Model 11.33 127.2 11.31 70.02 11.36 -58.93 

ATILA 11.36 147.9 11.33 77.93 11.39 -69.76 

% Error -0.3 -14 -0.3 -10.15 -0.3 15.5 

II 

Model 22.8 456.6 22.75 232.2 22.86 -224 

ATILA 22.78 456.7 22.73 232.4 22.84 -224.1 

% Error 0.08 -0.02 0.08 -0.09 0.09 -0.04 

 

20  

I 

Model 10.14 382.3 10.12 201.7 10.17 -190.9 

ATILA 10.14 391.8 10.11 199 10.16 -185.8 

% Error 0 -2.4 0.09 1.36 0.09 -2.74 

II 

Model 11.61 20.09 11.59 12.52 11.72 -12.39 

ATILA 11.69 35.62 11.66 17.51 11.72 -17.86 

% Error -0.68 -43.6 -0.6 -28.5 0 30.6 

 

22  

I 

Model 9.67 451.8 9.64 235.8 9.69 -226.3 

ATILA 9.66 458 9.64 234.8 9.69 -223.1 

% Error 0.1 -1.4 0 0.42 0 -1.4 

II 

Model 11.59 22.09 11.56 14.51 11.72 -11.94 

ATILA 11.64 41.06 11.61 20.94 11.67 -19.87 

% Error -0.43 -46 -0.43 -30.7 0.43 40 

 

It is seen from Table 3.3 that, in all the stacks, the maximum error occurs at the hoop 

mode resonance. But, in most of the practical situations where we are dealing with 

piezoceramic stacks, we are interested in the length mode resonance. In all the stacks, the 
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error in the length mode resonance frequency computed using the present model is less than 

0.1%. 

The conductance of the twelve ring stack is shown in Fig. 3.7(a) upto the first three 

resonances. Only two of them are predicted by the 1-D model. Analytical and ATILA 

values are in very good agreement. The susceptance computed by the present method in 

the neighborhood of the first resonance is shown in Fig. 3.7(b). It can be seen that, 𝐵 values 

are also in good agreement with ATILA computed values. 

 

 

3.6 CONCLUSIONS 

A method is presented here to compute the complex input electrical admittance and 

critical parameters of a stack of finite number of axially polarized piezoelectric ceramic 

rings with internal losses. The method is approximate in the sense that the exact series 

solution to the governing equations is not used and only the leading terms are used. 

Numerical results are presented for different stacks and are compared with ATILA - a finite 

element package for the analysis of sonar transducers. The proposed approximate 

axisymmetric two-dimensional model of the stack yields accurate results for the length 

mode resonances that are used in devices such as the Tonpilz transducer.  

 
 

Fig. 3.7(a). Conductance of a stack of 

twelve (100, 80, 6) rings.  Red Line: 

Model, Dots: ATILA, and Green Line:  

1-D model. 

Fig. 3.7(b).  Susceptance of a 22 ring stack 

of (100, 80, 6) rings at its length mode 

resonance.  Red Line: Model, Dots: 

ATILA, and Green Line: 1-D model. 
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In Chapter 2, the complete series solution is used and a large number of the resonances 

are accurately determined. In this Chapter, only the leading terms in the series are used and 

the focus is on the resonances of the stack that will affect the performance of the Tonpilz 

transducer or device in the operating band of interest. Therefore, a simpler model that is 

able to accurately model the first few resonances of stacks with length that is greater than 

0.5 times the mean diameter is presented.  
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APPENDIX A: 1-D model 

In the classic one-dimensional model referred in [3], only the axial normal stress is 

considered and it is assumed that all other stresses are negligible. The axial displacement 

of the ring is expressed as 

𝜉 = 𝐴 sin(𝑘𝑧) + 𝐵 cos(𝑘𝑧)                                                                                            (A1) 

where 

𝑘 =
𝜔

𝑐
  and 𝑐 = 1/√𝜌𝑠33

𝐷 .                                                                                               (A2) 

The transfer matrix is expressed as 

{
𝐹+

𝑈+

𝐼

} =

[
 
 
 
 1 +

𝑍1

𝑍2
𝑍1(2 +

𝑍1

𝑍2
) −𝜅

𝑍1

𝑍2
1

𝑍2
1 +

𝑍1

𝑍2

−𝜅

𝑍2
𝜅

𝑍2
𝜅
𝑍1

𝑍2

−𝜌𝑐𝜔𝑆𝐶0

𝑍2 sin𝑘𝐿 ]
 
 
 
 

{
𝐹−

𝑈−

∅0

}                                                               (A3) 

where 𝑈 =
𝜕𝜉

𝜕𝑡
 is the velocity, 𝐹 is the axial force,  

𝜅 =
𝑔33𝐶0

𝑠33
𝐷 ,                                                                                                                        (A4) 

𝑍1 = −𝑗𝜌𝑐𝑆 tan(
𝑘𝐿

2⁄ ),                                                                                                (A5) 

and 

𝑍2 =
𝑗𝜌𝑐𝑆

sin𝑘𝐿
− 𝑗

𝜅2

𝜔𝐶0
.                                                                                                          (A6) 

In order to develop the model of the stack, Eq. (A3) is rewritten in the form 

{
𝐹𝑛
+

𝑈𝑛
+} = [𝑇] {

𝐹𝑛
−

𝑈𝑛
−} + {𝑡} ∅0                                                                                             (A7) 

and    

𝐼 =  𝜏1𝐹𝑛
− + 𝜏2𝑈𝑛

− + 𝜏3∅0                                                                                              (A8) 

for the 𝑛th  ring in the stack. T and t are the 2×2 and 2×1 submatrices respectively. For  

N identical rings in a stack, 

{
𝐹𝑁
+

𝑈𝑁
+} = [𝑇]𝑁  {

𝐹1
−

𝑈1
−} + {[𝑇]

𝑁−1 + [𝑇]𝑁−2 +⋯+ 𝑇 + [
1 0
0 1

]} 𝑡 ∅0.                              (A9) 
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CLASSICAL LANGEVIN TRANSDUCER 

 

4.1 INTRODUCTION 

Analytical multi-dimensional modeling of transducer components and the transducer 

itself is challenging due to difficulties in solving the partial differential equations governing 

the system and satisfying the space-dependent boundary and continuity conditions. A few 

components are analyzed using 1-D [3], 2-D [4, 10-13, 34], finite element [64-65] and exact 

axisymmetric models [25, 29-32, 55-56]. In this chapter, an exact series method is 

presented to analyze a classical Langevin transducer with internal losses. 

A classical Langevin transducer is a type of sandwich transducer that comprises an 

axially polarized piezoelectric ceramic cylinder sandwiched between two elastic cylinders 

as shown in Fig. 4.1. All three cylinders have the same radius, 𝑎. The bottom and top elastic 

cylinders are referred to as the tail mass and head mass, respectively of the transducer. The 

head mass is usually shorter and lighter so that it vibrates more than the tail mass at the 

fundamental resonance frequency of the transducer. The piezoelectric cylinder is 

electrically excited. It is the predecessor of the Tonpilz transducer that is often used for 

generation of intense underwater sound.  

            

Fig. 4.1. Schematic of a Langevin Transducer. 

 

Fig. 1. Schematic of a Langevin transducer 
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In chapter 2, an axially polarized piezoceramic ring is analyzed using exact, linearized, 

and axisymmetric governing equations and exact series solutions. There are eight boundary 

conditions on surfaces and all of them are satisfied in a weighted average sense to get very 

accurate results for several resonance frequencies and other functions. Only the 

antisymmetric axial vibration with respect to the plane midway between the ends of the 

ring is excited by the application of electric potential difference across the electrodes and 

the only corresponding series solutions are chosen. In chapter 3, the complexity of the 

structure increases as there are several rings in the stack. In this case, there are boundary 

conditions on the inner and outer curved surfaces of each ring and the continuity conditions 

at the interfaces between rings are to be satisfied. The axial vibration of each ring is neither 

purely symmetric nor antisymmetric about the plane that is midway between the ends of 

each ring. However, only the lowest length mode resonance frequency is of primary 

interest. Therefore, exact series solutions are not expected to be necessary. Only the leading 

terms in the symmetric and antisymmetric series solutions are used to develop a model 

based on the transfer matrix of each ring. The error in finding the lowest length mode 

resonance frequency is less than that when using the classic one-dimensional model even 

when the length is much less than the outer diameter. 

In this Chapter, a model of a stack of solid piezoelectric and elastic cylinders is 

developed by using exact series solutions. In Chapters 2 and 3, hollow cylinders are 

considered and it is necessary to include additional solutions to the governing equations to 

satisfy the boundary conditions on the inner curved surface. Here, there is only one curved 

surface. In Chapter 2, only one cylinder is considered and exact series solutions are used. 

In Chapter 3, only the leading terms in the series are used. Therefore, the boundary 

conditions are satisfied in only an average sense, the shear stress is zero everywhere, and 

continuity of radial displacement could not be considered. In this Chapter, a transducer with 

non-identical head and tail masses is modeled. Therefore, symmetric and antisymmetric 

series solutions are needed not only for the elastic cylinders but also for the piezoelectric 

cylinder. Antisymmetric solutions for the elastic cylinder have been studied earlier [55] but 

the same has not been done earlier for piezoelectric cylinders. Here, symmetric and 

antisymmetric series solutions are used to satisfy all the boundary and continuity conditions 

in a weighted average sense. As a large number of weights are used to satisfy the conditions 

in an average sense, the conditions are nearly satisfied at every point on the surface. 
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Therefore, several resonance frequencies and the corresponding primary and secondary 

variables are accurately determined. 

All the three cylinders in the transducer are analyzed using functions that are symmetric 

and anti-symmetric with respect to the plane midway between the ends of the cylinders. 

The axial and radial components of displacement are the primary variables in both 

piezoelectric and elastic cylinders. Electric potential is also a primary variable for 

piezoelectric cylinder. Secondary variables including stresses and electric field 

displacements are expressed in terms of the weighted functions used to describe the primary 

variables. 

Arbitrary piecewise continuous boundary conditions on the flat and curved surfaces 

and all the continuity conditions at the interfaces can be satisfied because of the 

completeness property of the solution sets. The coefficients in the series solutions are 

determined by satisfying the boundary and continuity conditions in a weighted average 

sense, as explained in Chapter 2, by using the orthogonal property of the Bessel and 

trigonometric functions. Numerical results are presented for different Langevin transducers 

to illustrate the good agreement between the values computed using the present method and 

ATILA. 

4.2 GOVERNING EQUATIONS  

Consider the Langevin transducer shown in Fig. 4.1. Cylindrical coordinates (r,, z) 

are used in the analysis. Local coordinates are used for each cylinder and the origin of the 

local system is at the centre of each cylinder. The three cylinders in the transducer are 

numbered 1, 2, and 3 starting from the bottom elastic cylinder. Superscripts denote the 

number of the cylinder but are omitted for convenience when it is clear from the context. 

The radius of each cylinder is a. The length of the 𝑛th cylinder is 𝐿(𝑛), n = 1, 2, 3. The top 

and bottom flat surfaces of the piezoceramic cylinder are fully electroded. The electrical 

excitation and the response of the transducer have a 𝑒𝑗𝜔𝑡 variation in time that is suppressed 

everywhere for convenience. 

The Langevin transducer, the boundary conditions, and the electrical excitation are 

axisymmetric. The axisymmetric governing differential equations for a piezoceramic 

cylinder are shown in Eq. (2.5). The axisymmetric governing differential equations for the 

elastic cylinder are presented in the following sub-section.  Let 𝑈(𝑝)and 𝑊(𝑝) be the axial 

and radial displacements, respectively and ∅ be the electric potential. 
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4.2.1.1 Elastic Cylinder 

The exact axisymmetric governing equations of the elastic cylinder are derived from 

the stress-strain, strain-displacement, and dynamic equilibrium by following a procedure 

similar to that used to derive the equations for a piezoelectric cylinder. Consider a solid, 

elastic, isotropic cylinder of radius 𝑎 and finite length, 𝐿(𝑒), where 𝑒 is one or three.  The 

dynamic equilibrium equations of an axisymmetric elastic cylinder [74] expressed in 

cylindrical coordinates (𝑟, 𝜃, 𝑧) are 

𝜕𝑇𝑟𝑟
(𝑒)

𝜕𝑧
+
𝜕𝑇𝑟𝑧

(𝑒)

𝜕𝑟
+
1

𝑟
𝑇𝑟𝑧
(𝑒)
= −𝜌(𝑒)𝜔2𝑈(𝑒)                                                                           (4.1a) 

and  

𝜕𝑇𝑟𝑟
(𝑒)

𝜕𝑟
+
𝜕𝑇𝑟𝑧

(𝑒)

𝜕𝑧
+
1

𝑟
(𝑇𝑟𝑟

(𝑒)
− 𝑇𝜃𝜃

(𝑒)
) = −𝜌(𝑒)𝜔2𝑊(𝑒).                                                         (4.1b) 

Here, 𝑈(𝑒) and 𝑊(𝑒) are the axial and radial displacements, respectively, 𝑇𝑟𝑟
(𝑒)

, 𝑇𝑧𝑧
(𝑒)

, 

and 𝑇𝜃𝜃
(𝑒)

 are the normal components of stress, 𝑇𝑟𝑧
(𝑒)

 is the shear component of stress, 𝜌(𝑒) is 

the density of the elastic material. The components of strain [74] are expressed as 

[𝑆𝑟𝑟
(𝑒)

𝑆𝜃𝜃
(𝑒)

𝑆𝑧𝑧
(𝑒)

𝑆𝑟𝑧
(𝑒)  ] = [

𝜕𝑊(𝑒)

𝜕𝑟

𝑊(𝑒)

𝑟

𝜕𝑈(𝑒)

𝜕𝑧

𝜕𝑈(𝑒)

𝜕𝑟
+
𝜕𝑊(𝑒)

𝜕𝑧
].                               (4.2) 

The constitutive relations for an isotropic elastic cylinder [74] are:  

{
 
 

 
 𝑇𝑟𝑟

(𝑒)

𝑇𝜃𝜃
(𝑒)

𝑇𝑧𝑧
(𝑒)

𝑇𝑟𝑧
(𝑒)
}
 
 

 
 

=

[
 
 
 
𝜆(𝑒) + 2𝜇(𝑒) 𝜆(𝑒) 𝜆(𝑒)

𝜆(𝑒) 𝜆(𝑒) + 2𝜇(𝑒) 𝜆(𝑒)

𝜆(𝑒)

0
𝜆(𝑒)

0
𝜆(𝑒) + 2𝜇(𝑒)

0

0
0
0
𝜇(𝑒)

]

{
 
 

 
 𝑆𝑟𝑟

(𝑒)

𝑆𝜃𝜃
(𝑒)

𝑆𝑧𝑧
(𝑒)

𝑆𝑟𝑧
(𝑒)
}
 
 

 
 

.                            (4.3) 

Combining Eqs. (4.1) – (4.3), the axisymmetric governing equations of the elastic cylinder 

are expressed as 

 

[
(𝜆(𝑒) + 2𝜇(𝑒))

𝜕2

𝜕𝑧2
+ 𝜇(𝑒) [

𝜕2

𝜕𝑟2
+
1

𝑟

𝜕

𝜕𝑟
] + 𝜌(𝑒)𝜔2 (𝜆(𝑒) + 𝜇(𝑒)) [

𝜕2

𝜕𝑟𝜕𝑧
+
1

𝑟

𝜕

𝜕𝑧
]

(𝜆(𝑒) + 𝜇(𝑒))
𝜕2

𝜕𝑟𝜕𝑧
(𝜆(𝑒) + 2𝜇(𝑒)) [

𝜕2

𝜕𝑟2
+
1

𝑟

𝜕

𝜕𝑟
−

1

𝑟2
] + 𝜇(𝑒)

𝜕2

𝜕𝑧2
+ 𝜌(𝑒)𝜔2

] {𝑈
(𝑒)

𝑊(𝑒)
} = {

0
0
} 

                (4.4) 

where the superscripts 𝑒 = 1 and 3 are used to denote the bottom and top elastic cylinders, 

respectively, and 𝜆(𝑒) and 𝜇(𝑒) are the Lame constants.  



 

75 

 

      

      

The governing differential equations for the piezoelectric and elastic cylinders, the 

boundary conditions, and the continuity conditions are to be satisfied to determine the 

displacement and electric potential within the transducer and other functions of interest 

such as the admittance and impedance of the transducer.  

4.3 SOLUTIONS 

The primary variables in the governing equations are the axial and radial components 

of displacements. Electric potential is also a primary variable in case of a piezoceramic 

cylinder. These parameters are obtained by solving the governing partial differential 

equations by the method of separation of variables [82].  

 Piezoelectric Ceramic Cylinder 

The solution to Eq. 2.5 of an axially polarized piezoceramic cylinder is expressed as 

the sum of five independent exact solutions: 

{𝑈(𝑝) 𝑈(𝑝) ∅} = {𝑈1
(𝑝)

𝑊1
(𝑝)

∅1} + {𝑈2
(𝑝)

𝑊2
(𝑝)

∅2} + {𝑈3
(𝑝)

𝑊3
(𝑝)

∅3} +

{𝑈4
(𝑝)

𝑊4
(𝑝)

∅4} + {𝑈5
(𝑝)

𝑊5
(𝑝)

∅5}                   (4.6a) 

where  

{

𝑈1
(𝑝)

𝑊1
(𝑝)

∅1

} = {
0
0

𝐷𝑧 + 𝐸
};           (4.6b) 

{

𝑈2
(𝑝)

𝑊2
(𝑝)

∅2

} = {

𝐴(𝑝)sin (𝑘𝑧0𝑧)
0

𝐴(𝑝)
𝑒33

𝜀33
𝑆 sin (𝑘𝑧0𝑧)

} + {

∑ ∑ 𝐴𝑚𝑠
(𝑝)𝐽0(𝑘𝑟𝑚𝑟)sin (𝑘𝑧𝑚𝑠

(𝑝) 𝑧)3
𝑠=1

𝑀𝑟
𝑚=1

∑ ∑ 𝐴𝑚𝑠
(𝑝)𝜓𝑚𝑠𝐽1(𝑘𝑟𝑚𝑟)cos (𝑘𝑧𝑚𝑠

(𝑝) 𝑧)3
𝑠=1

𝑀𝑟
𝑚=1

∑ ∑ 𝐴𝑚𝑠
(𝑝)𝜒𝑚𝑠𝐽0(𝑘𝑟𝑚𝑟)sin (𝑘𝑧𝑚𝑠

(𝑝) 𝑧)3
𝑠=1

𝑀𝑟
𝑚=1

}   (4.6c) 

where 

𝑘𝑧0 = 𝜔√
𝜌

𝑐33
𝐸 +

𝑒33
2

𝜀33
𝑆

;           (4.6d)  

{

𝑈3
(𝑝)

𝑊3
(𝑝)

∅3

} = {
0

𝐵(𝑝)𝐽1(𝑘𝑟0𝑟)
0

} + {

∑ ∑ 𝐵𝑚𝑠
(𝑝)𝐽0(𝑘𝑟𝑚𝑠

(𝑝) 𝑟)sin (𝑘𝑧𝑚
(𝑝)𝑧)3

𝑠=1
𝑀𝑟
𝑚=1

∑ ∑ 𝐵𝑚𝑠
(𝑝)𝜙𝑚𝑠𝐽1(𝑘𝑟𝑚𝑠

(𝑝) 𝑟)cos (𝑘𝑧𝑚
(𝑝)𝑧)3

𝑠=1
𝑀𝑟
𝑚=1

∑ ∑ 𝐵𝑚𝑠
(𝑝)𝛾𝑚𝑠𝐽0(𝑘𝑟𝑚𝑠

(𝑝) 𝑟)sin (𝑘𝑧𝑚
(𝑝)𝑧)3

𝑠=1
𝑀𝑟
𝑚=1

}    (4.6e) 

where 
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𝑘𝑟0 = 𝜔√
𝜌

𝑐11
𝐸 ;                                   (4.6f) 

{

𝑈4
(𝑝)

𝑊4
(𝑝)

∅4

} = {

𝑃(𝑝)cos (𝑘𝑧0𝑧)
0

𝑃(𝑝)
𝑒33

𝜀33
𝑆 cos (𝑘𝑧0𝑧)

} + {

∑ ∑ 𝑃𝑚𝑠
(𝑝)𝐽0(𝑘𝑟𝑚𝑟)cos (𝑘𝑧𝑚𝑠

(𝑝) 𝑧)3
𝑠=1

𝑀𝑟
𝑚=1

∑ ∑ 𝑃𝑚𝑠
(𝑝)𝜈𝑚𝑠𝐽1(𝑘𝑟𝑚𝑟)sin (𝑘𝑧𝑚𝑠

(𝑝) 𝑧)3
𝑠=1

𝑀𝑟
𝑚=1

∑ ∑ 𝑃𝑚𝑠
(𝑝)𝜁𝑚𝑠𝐽0(𝑘𝑟𝑚𝑟)cos (𝑘𝑧𝑚𝑠

(𝑝) 𝑧)3
𝑠=1

𝑀𝑟
𝑚=1

},    (4.6g) 

and 

{

𝑈5
(𝑝)

𝑊5
(𝑝)

∅5

} =

{
 

 ∑ ∑ 𝑄𝑚𝑠
(𝑝)𝐽0(𝐾𝑟𝑚𝑠

(𝑝) 𝑟)cos (𝐾𝑧𝑚
(𝑝)𝑧)3

𝑠=1
𝑀𝑞
𝑚=1

∑ ∑ 𝑄𝑚𝑠
(𝑝)𝜐𝑚𝑠𝐽1(𝐾𝑟𝑚𝑠

(𝑝) 𝑟)sin (𝐾𝑧𝑚
(𝑝)𝑧)3

𝑠=1
𝑀𝑞
𝑚=1

∑ ∑ 𝑄𝑚𝑠
(𝑝)𝜗𝑚𝑠𝐽0(𝐾𝑟𝑚𝑠

(𝑝) 𝑟)cos (𝐾𝑧𝑚
(𝑝)𝑧)3

𝑠=1
𝑀𝑟
𝑚=1 }

 

 

.      (4.6h)   

It is noted that Eqs. (4.6g) and (4.6h) are not used in Chapter 2 as the boundary 

conditions are symmetric with respect to the plane that is midway between the ends. The 

weights 𝐴(𝑝), 𝐵(𝑝), 𝐷, 𝐸, 𝑃(𝑝), 𝐴𝑚𝑠
(𝑝)

, 𝐵𝑚𝑠
(𝑝)

, 𝑃𝑚𝑠
(𝑝)

, and 𝑄𝑚𝑠
(𝑝)

 are to be determined and chosen 

such that the specified boundary conditions on all surfaces of the transducer are satisfied.  

In the above expressions, 𝐽𝜈 is the 𝜈th order Bessel function of the first kind.  

Eqs. (4.6c) and (4.6e) are exact solutions for arbitrary values of 𝑘𝑟𝑚, m = 1,2,3, …, Mr , 

and for 𝑘𝑧𝑚
(𝑝)

, m = 1,2,3, …, Mz,  by suitably choosing the frequency dependent values of 

𝑘𝑧𝑚𝑠
(𝑝)

, 𝑘𝑟𝑚𝑠
(𝑝)

, 
𝑚𝑠

, 
𝑚𝑠 , 𝜙𝑚𝑠 , and 𝛾𝑚𝑠. For each value of 𝑘𝑟𝑚, the frequency-dependent values 

of 𝑘𝑧𝑚𝑠
(𝑝)

  are determined by substituting one term in the series in Eq. (4.6c) into Eq. (2.5) 

and equating the determinant of the resulting equation to zero. The characteristic equation 

is cubic in 𝑘𝑧𝑚𝑠
(𝑝) 2

. Similarly, the frequency-dependent values of 𝑘𝑟𝑚𝑠
(𝑝)

 are determined by 

substituting one term in the series in Eq. (4.6e) into Eq. (2.5) and equating the determinant 

of the resulting equation to zero. The characteristic equation is cubic in 𝑘𝑟𝑚𝑠
(𝑝) 2

. The 

expressions for 
𝑚𝑠

, 
𝑚𝑠

, 𝜙𝑚𝑠, and 𝛾𝑚𝑠  are obtained by substituting Eqs. (4.6c) and (4.6e) 

and the known values of 𝑘𝑧𝑚𝑠
(𝑝)

 and 𝑘𝑟𝑚𝑠
(𝑝)

 in the homogenous Eq. (2.5) and rearranging the 

terms. This yields:   

𝜓𝑚𝑠 =
{[𝜌𝜔2−𝑐33

𝐸 𝑘𝑧𝑚𝑠
(𝑝) 2

−𝑐44
𝐸 𝑘𝑟𝑚

2][𝜀33
𝑆 𝑘𝑧𝑚𝑠

(𝑝) 2
+𝜀11

𝑆 𝑘𝑟𝑚
2]−[𝑒33 𝑘𝑧𝑚𝑠

(𝑝) 2
+𝑒15 𝑘𝑟𝑚

2]
2

}

Δ𝑘
    (4.7a) 

𝜒𝑚𝑠 =
{[𝜌𝜔2−𝑐33

𝐸 𝑘𝑧𝑚𝑠
(𝑝) 2

−𝑐44
𝐸 𝑘𝑟𝑚

2][(𝑒15+𝑒31)𝑘𝑟𝑚𝑘𝑧𝑚𝑠
(𝑝)

]+[𝑒33 𝑘𝑧𝑚𝑠
(𝑝) 2

+𝑒15 𝑘𝑟𝑚
2][(𝑐13

𝐸 +𝑐44
𝐸 )𝑘𝑟𝑚𝑘𝑧𝑚𝑠

(𝑝)
]}

Δ𝑘
       

    (4.7b)     
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where 

Δ𝑘 = [𝑒33 𝑘𝑧𝑚𝑠
(𝑝) 2 + 𝑒15 𝑘𝑟𝑚

2] [(𝑒15 + 𝑒31)𝑘𝑟𝑚𝑘𝑧𝑚𝑠
(𝑝) ] + [𝜀33

𝑆 𝑘𝑧𝑚𝑠
(𝑝) 2 + 𝜀11

𝑆 𝑘𝑟𝑚
2] [(𝑐13

𝐸 +

𝑐44
𝐸 )𝑘𝑟𝑚𝑘𝑧𝑚𝑠

(𝑝) ];                       (4.7c) 

and 

𝜙𝑚𝑠 =
{[𝜌𝜔2−𝑐33

𝐸 𝑘𝑧𝑚
(𝑝)2

−𝑐44
𝐸 𝑘𝑟𝑚𝑠

(𝑝) 2
][𝜀33

𝑆 𝑘𝑧𝑚
(𝑝)2

+𝜀11
𝑆 𝑘𝑟𝑚𝑠

(𝑝) 2
]−[𝑒33 𝑘𝑧𝑚

(𝑝)2
+𝑒15 𝑘𝑟𝑚𝑠

(𝑝) 2
]
2

}

Δ𝑝
;                      (4.7d) 

𝛾𝑚𝑠 =
{[𝜌𝜔2−𝑐33

𝐸 𝑘𝑧𝑚
(𝑝)2

−𝑐44
𝐸 𝑘𝑟𝑚𝑠

(𝑝) 2
][(𝑒15+𝑒31)𝑘𝑟𝑚𝑠

(𝑝)
𝑘𝑧𝑚
(𝑝)
]+[𝑒33 𝑘𝑧𝑚

(𝑝)2
+𝑒15 𝑘𝑟𝑚𝑠

(𝑝) 2
][(𝑐13

𝐸 +𝑐44
𝐸 )𝑘𝑟𝑚𝑠

(𝑝)
𝑘𝑧𝑚
(𝑝)
]}

Δ𝑝
(4.7e) 

where 

Δ𝑝 = [𝑒33 𝑘𝑧𝑚
(𝑝)2 + 𝑒15 𝑘𝑟𝑚𝑠

(𝑝) 2] [(𝑒15 + 𝑒31)𝑘𝑟𝑚𝑠
(𝑝) 𝑘𝑧𝑚

(𝑝)] + [𝜀33
𝑆 𝑘𝑧𝑚

(𝑝)2 + 𝜀11
𝑆 𝑘𝑟𝑚𝑠

(𝑝) 2] [(𝑐13
𝐸 +

𝑐44
𝐸 )𝑘𝑟𝑚𝑠

(𝑝) 𝑘𝑧𝑚
(𝑝)].                       (4.7f) 

Similarly, Eq. (4.6g) and (4.6h) are exact solutions for arbitrary values of 𝑘𝑟𝑚, 

m = 1,2,3, …, Mr  and 𝐾𝑧𝑚
(𝑝)

, m = 1,2,3, …, Mq and corresponding frequency-dependent 

values of 𝑘𝑧𝑚𝑠
(𝑝)

, 𝐾𝑟𝑚𝑠
(𝑝)

, 𝜈𝑚𝑠, 𝜁𝑚𝑠, 𝜐𝑚𝑠 and 𝜗𝑚𝑠. The frequency-dependent values of 𝑘𝑧𝑚𝑠
(𝑝)

 and 

𝐾𝑟𝑚𝑠
(𝑝)

 are determined by substituting each term in the series solutions in Eq. (4.6g) and 

(4.6h), respectively in Eq. (2.5) and then equating the determinant of the resulting equation 

to zero. Both the equations are cubic in respective variables. Then, substituting Eq. 4.4(g) 

and 4.4(h) and the known values of 𝑘𝑧𝑚𝑠
(𝑝)

 and 𝐾𝑟𝑚𝑠
(𝑝)

 in the homogenous Eq. (2.5), yields the 

following expressions for 𝜈𝑚𝑠, 𝜁𝑚𝑠, 𝜐𝑚𝑠 and 𝜗𝑚𝑠: 

𝜈𝑚𝑠 =
{−[𝜌𝜔2−𝑐33

𝐸 𝑘𝑧𝑚𝑠
(𝑝) 2

−𝑐44
𝐸 𝑘𝑟𝑚

2][𝜀33
𝑆 𝑘𝑧𝑚𝑠

(𝑝) 2
+𝜀11

𝑆 𝑘𝑟𝑚
2]+[𝑒33 𝑘𝑧𝑚𝑠

(𝑝) 2
+𝑒15 𝑘𝑟𝑚

2]
2

}

Δ𝑘
;   (4.7g) 

𝜁𝑚𝑠 =
{[𝜌𝜔2−𝑐33

𝐸 𝑘𝑧𝑚𝑠
(𝑝) 2

−𝑐44
𝐸 𝑘𝑟𝑚

2][(𝑒15+𝑒31)𝑘𝑟𝑚𝑘𝑧𝑚𝑠
(𝑝)

]+[𝑒33 𝑘𝑧𝑚𝑠
(𝑝) 2

+𝑒15 𝑘𝑟𝑚
2][(𝑐13

𝐸 +𝑐44
𝐸 )𝑘𝑟𝑚𝑘𝑧𝑚𝑠

(𝑝)
]}

Δ𝑘
;  

                                                                                                                                (4.7h) 

𝜐𝑚𝑠 =
{−[𝜌𝜔2−𝑐33

𝐸 𝐾𝑧𝑚
(𝑝)2

−𝑐44
𝐸 𝐾𝑟𝑚𝑠

(𝑝) 2
][𝜀33

𝑆 𝐾𝑧𝑚
(𝑝)2

+𝜀11
𝑆 𝐾𝑟𝑚𝑠

(𝑝) 2
]+[𝑒33 𝐾𝑧𝑚

(𝑝)2
+𝑒15 𝐾𝑟𝑚𝑠

(𝑝) 2
]
2

}

Δ𝑞
;    (4.7i) 

and 
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𝜗𝑚𝑠 =
{−[𝜌𝜔2−𝑐33

𝐸 𝐾𝑧𝑚
(𝑝)2

−𝑐44
𝐸 𝐾𝑟𝑚𝑠

(𝑝) 2
][(𝑒15+𝑒31)𝐾𝑟𝑚𝑠

(𝑝)
𝐾𝑧𝑚
(𝑝)
]+[𝑒33 𝐾𝑧𝑚

(𝑝)2
+𝑒15 𝐾𝑟𝑚𝑠

(𝑝) 2
][(𝑐13

𝐸 +𝑐44
𝐸 )𝐾𝑟𝑚𝑠

(𝑝)
𝐾𝑧𝑚
(𝑝)
]}

Δ𝑘
  

   (4.7j) 

where  

Δ𝑞 = [𝑒33 𝐾𝑧𝑚
(𝑝)2 + 𝑒15 𝐾𝑟𝑚𝑠

(𝑝) 2] [(𝑒15 + 𝑒31)𝐾𝑟𝑚𝑠
(𝑝) 𝐾𝑧𝑚

(𝑝)] + [𝜀33
𝑆 𝐾𝑧𝑚

(𝑝)2 + 𝜀11
𝑆 𝐾𝑟𝑚𝑠

(𝑝) 2] [(𝑐13
𝐸 +

𝑐44
𝐸 )𝐾𝑟𝑚𝑠

(𝑝) 𝐾𝑧𝑚
(𝑝)].            (4.7k) 

  As noted earlier, the origin of the coordinate system is at the center of each cylinder. 

The radial displacement which represents the symmetric part with respect to the axial 

direction is given in Eq. (4.6e), because it is expressed in terms of cosine function in 𝑧. 

Antisymmetric part of the radial displacement in terms of sine functions in 𝑧 is shown in 

Eq. (4.6h). Similarly, the symmetric and antisymmetric components of the axial 

displacement and electric potential are expressed in Eqs. (4.6h) and (4.6e) respectively. The 

solutions contain Bessel functions of the first kind, but the Bessel function of the second 

kind has not been included in this Chapter in order to satisfy the finiteness condition at the 

origin. 

Substituting the expressions for displacement and potential in the stress-strain and 

strain displacement equations [Eqs. (2.2) - (2.3)] yields the following expressions for stress 

and electric field displacement. The normal component of stress along the axis of the 

piezoceramic cylinder is, 

𝑇𝑧𝑧
(𝑝) = 𝐴(𝑝) (𝑐33

𝐸 +
𝑒33
2

𝜀33
𝑆 )𝑘𝑧0 cos(𝑘𝑧0𝑧) + 𝐵

(𝑝)𝑐13
𝐸 𝑘𝑟0 𝐽0(𝑘𝑟0𝑟) + 𝐷𝑒33 − 𝑃

(𝑝) (𝑐33
𝐸 +

𝑒33
2

𝜀33
𝑆 ) 𝑘𝑧0 sin(𝑘𝑧0𝑧) + ∑ ∑ 𝐴𝑚𝑠

(𝑝) {𝑐13
𝐸 𝜓𝑚𝑠𝑘𝑟𝑚 + (𝑐33

𝐸 +3
𝑠=1

𝑀𝑟
𝑚=1

𝑒33𝜒𝑚𝑠)𝑘𝑧𝑚𝑠
(𝑝) } 𝐽0(𝑘𝑟𝑚𝑟) cos (𝑘𝑧𝑚𝑠

(𝑝) 𝑧) + ∑ ∑ 𝐵𝑚𝑠
(𝑝) {𝑐13

𝐸 𝜙𝑚𝑠𝑘𝑟𝑚𝑠
(𝑝) + (𝑐33

𝐸 +3
𝑠=1

𝑀𝑟
𝑚=1

𝑒33𝛾𝑚𝑠)𝑘𝑧𝑚
(𝑝)} 𝐽0 (𝑘𝑟𝑚𝑠

(𝑝) 𝑟) cos (𝑘𝑧𝑚
(𝑝)𝑧) + ∑ ∑ 𝑃𝑚𝑠

(𝑝) {𝑐13
𝐸 𝜈𝑚𝑠𝑘𝑟𝑚 − (𝑐33

𝐸 +3
𝑠=1

𝑀𝑟
𝑚=1

𝑒33𝜉𝑚𝑠)𝑘𝑧𝑚𝑠
(𝑝) } 𝐽0(𝑘𝑟𝑚𝑟) sin (𝑘𝑧𝑚𝑠

(𝑝) 𝑧) + ∑ ∑ 𝑄𝑚𝑠
(𝑝) {𝑐13

𝐸 𝜐𝑚𝑠𝐾𝑟𝑚𝑠
(𝑝) − (𝑐33

𝐸 +3
𝑠=1

𝑀𝑟
𝑚=1

𝑒33𝜗𝑚𝑠)𝐾𝑧𝑚
(𝑝)} 𝐽0 (𝐾𝑟𝑚𝑠

(𝑝) 𝑟)                                                             (4.8) 

and the normal component of stress along the radial direction is,  
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𝑇𝑟𝑟
(𝑝)
= 𝐴(𝑝) (𝑐13

𝐸 +
𝑒31𝑒33

𝜀33
𝑆 ) 𝑘𝑧0 cos(𝑘𝑧0𝑧) + 𝐵

(𝑝) {𝑐11
𝐸 𝑘𝑟0 𝐽0(𝑘𝑟0𝑟) +

𝑐12
𝐸 −𝑐11

𝐸

𝑟
𝐽1(𝑘𝑟0𝑟)} +

𝐷𝑒31 − 𝑃
(𝑝) (𝑐13

𝐸 +
𝑒31𝑒33

𝜀33
𝑆 ) 𝑘𝑧0 sin(𝑘𝑧0𝑧) + ∑ ∑ 𝐴𝑚𝑠

(𝑝) {[𝑐11
𝐸 𝜓𝑚𝑠𝑘𝑟𝑚 +

3
𝑠=1

𝑀𝑟
𝑚=1

(𝑐13
𝐸 + 𝑒31𝜒𝑚𝑠)𝑘𝑧𝑚𝑠

(𝑝) ] 𝐽0 (𝑘𝑟𝑚
(𝑝)𝑟) +

𝑐12
𝐸 −𝑐11

𝐸

𝑟
𝜓𝑚𝑠 𝐽1 (𝑘𝑟𝑚

(𝑝)𝑟)} cos (𝑘𝑧𝑚𝑠
(𝑝) 𝑧) +

∑ ∑ 𝐵𝑚𝑠
(𝑝) {[𝑐11

𝐸 𝜙𝑚𝑠𝑘𝑟𝑚𝑠
(𝑝) + (𝑐13

𝐸 + 𝑒31𝛾𝑚𝑠)𝑘𝑧𝑚
(𝑝)] 𝐽0 (𝑘𝑟𝑚𝑠

(𝑝) 𝑟) +3
𝑠=1

𝑀𝑟
𝑚=1

𝑐12
𝐸 −𝑐11

𝐸

𝑟
𝜙𝑚𝑠 𝐽1 (𝑘𝑟𝑚𝑠

(𝑝) 𝑟)} cos (𝑘𝑧𝑚
(𝑝)𝑧) + ∑ ∑ 𝑃𝑚𝑠

(𝑝) {[𝑐11
𝐸 𝜈𝑚𝑠𝑘𝑟𝑚 − (𝑐13

𝐸 +3
𝑠=1

𝑀𝑟
𝑚=1

𝑒31𝜉𝑚𝑠)𝑘𝑧𝑚𝑠
(𝑝) ] 𝐽0(𝑘𝑟𝑚𝑟) +

𝑐12
𝐸 −𝑐11

𝐸

𝑟
𝜈𝑚𝑠 𝐽1 (𝑘𝑟𝑚

(𝑝)𝑟)} sin (𝑘𝑧𝑚𝑠
(𝑝) 𝑧) +

∑ ∑ 𝑄𝑚𝑠
(𝑝) {[𝑐13

𝐸 𝜐𝑚𝑠𝐾𝑟𝑚𝑠
(𝑝) − (𝑐13

𝐸 + 𝑒31𝜗𝑚𝑠)𝐾𝑧𝑚
(𝑝)] 𝐽0 (𝐾𝑟𝑚𝑠

(𝑝) 𝑟) +3
𝑠=1

𝑀𝑟
𝑚=1

𝑐12
𝐸 −𝑐11

𝐸

𝑟
𝜐𝑚𝑠 𝐽1 (𝐾𝑟𝑚𝑠

(𝑝) 𝑟)} sin (𝐾𝑧𝑚
(𝑝)𝑧).                                       (4.9) 

The shear stress is expressed as, 

𝑇𝑟𝑧
(𝑝) = −∑ ∑ 𝐴𝑚𝑠

(𝑝) {𝑐44
𝐸 [𝑘𝑟𝑚 + 𝜓𝑚𝑠𝑘𝑧𝑚𝑠

(𝑝) ] + 𝑒15𝜒𝑚𝑠𝑘𝑟𝑚}
3
𝑠=1

𝑀𝑟
𝑚=1 𝐽1(𝑘𝑟𝑚𝑟) sin (𝑘𝑧𝑚𝑠

(𝑝) 𝑧) +

∑ ∑ 𝐵𝑚𝑠
(𝑝) {𝑐44

𝐸 [𝑘𝑟𝑚𝑠
(𝑝) + 𝜙𝑚𝑠𝑘𝑧𝑚

(𝑝)] + 𝑒15𝛾𝑚𝑠𝑘𝑟𝑚𝑠
(𝑝) }3

𝑠=1
𝑀𝑟
𝑚=1 𝐽1 (𝑘𝑟𝑚𝑠

(𝑝) 𝑟) sin (𝑘𝑧𝑚
(𝑝)𝑧) +

∑ ∑ 𝑃𝑚𝑠
(𝑝) {𝑐44

𝐸 [−𝑘𝑟𝑚 + 𝜈𝑚𝑠𝑘𝑧𝑚𝑠
(𝑝) ] − 𝑒15𝜉𝑚𝑠𝑘𝑟𝑚} 𝐽1(𝑘𝑟𝑚𝑟)

3
𝑠=1

𝑀𝑟
𝑚=1 cos (𝑘𝑧𝑚𝑠

(𝑝) 𝑧) +

∑ ∑ 𝑄𝑚𝑠
(𝑝)3

𝑠=1
𝑀𝑟
𝑚=1 {𝑐44

𝐸 [−𝐾𝑟𝑚𝑠
(𝑝) + 𝜐𝑚𝑠𝐾𝑧𝑚

(𝑝)] − 𝑒15𝜗𝑚𝑠𝐾𝑟𝑚𝑠
(𝑝) } 𝐽1 (𝐾𝑟𝑚𝑠

(𝑝) 𝑟) cos (𝐾𝑧𝑚
(𝑝)𝑧).  (4.10)   

   

Now, the components of electric field displacement are expressed as  

𝐷𝑟 = ∑ ∑ 𝐴𝑚𝑠
(𝑝) {−𝑒15 [𝑘𝑟𝑚 +𝜓𝑚𝑠𝑘𝑧𝑚𝑠

(𝑝) ] + 𝜀11
𝑆 𝜒𝑚𝑠𝑘𝑟𝑚}

3
𝑠=1

𝑀𝑟
𝑚=1 𝐽1(𝑘𝑟𝑚𝑟) sin (𝑘𝑧𝑚𝑠

(𝑝) 𝑧) +

∑ ∑ 𝐵𝑚𝑠
(𝑝) {−𝑒15 [𝑘𝑟𝑚𝑠

(𝑝) + 𝜙𝑚𝑠𝑘𝑧𝑚
(𝑝)] + 𝜀11

𝑆 𝛾𝑚𝑠𝑘𝑟𝑚𝑠
(𝑝) }3

𝑠=1
𝑀𝑟
𝑚=1 𝐽1 (𝑘𝑟𝑚𝑠

(𝑝) 𝑟) sin (𝑘𝑧𝑚
(𝑝)𝑧) +

∑ ∑ 𝑃𝑚𝑠
(𝑝) {−𝑒15 [𝑘𝑟𝑚 − 𝜈𝑚𝑠𝑘𝑧𝑚𝑠

(𝑝) ] + 𝜀11
𝑆 𝜉𝑚𝑠𝑘𝑟𝑚} 𝐽1(𝑘𝑟𝑚𝑟)

3
𝑠=1

𝑀𝑟
𝑚=1 cos (𝑘𝑧𝑚𝑠

(𝑝) 𝑧) +

∑ ∑ 𝑄𝑚𝑠
(𝑝)3

𝑠=1
𝑀𝑟
𝑚=1 {−𝑒15 [𝐾𝑟𝑚𝑠

(𝑝) − 𝜐𝑚𝑠𝐾𝑧𝑚
(𝑝)] + 𝜀11

𝑆 𝜗𝑚𝑠𝐾𝑟𝑚𝑠
(𝑝) } 𝐽1 (𝐾𝑟𝑚𝑠

(𝑝) 𝑟) cos (𝐾𝑧𝑚
(𝑝)𝑧)   (4.11) 

and  
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𝐷𝑧 = 𝐵(𝑝)𝑒31𝑘𝑟0𝐽0(𝑘𝑟0𝑟) − 𝐷𝜀33
𝑆 + ∑ ∑ 𝐴𝑚𝑠

(𝑝)
{𝑒31𝜓𝑚𝑠𝑘𝑟𝑚 + (𝑒33 −

3
𝑠=1

𝑀𝑟
𝑚=1

𝜀33
𝑆 𝜒𝑚𝑠)𝑘𝑧𝑚𝑠

(𝑝) } 𝐽0(𝑘𝑟𝑚𝑟) cos (𝑘𝑧𝑚𝑠
(𝑝) 𝑧) + ∑ ∑ 𝐵𝑚𝑠

(𝑝) {𝑒31𝜙𝑚𝑠𝑘𝑟𝑚𝑠
(𝑝) + (𝑒33 −

3
𝑠=1

𝑀𝑟
𝑚=1

𝜀33
𝑆 𝛾𝑚𝑠)𝑘𝑧𝑚

(𝑝)} 𝐽0 (𝑘𝑟𝑚𝑠
(𝑝) 𝑟) cos (𝑘𝑧𝑚

(𝑝)𝑧) + ∑ ∑ 𝑃𝑚𝑠
(𝑝) {𝑒31𝜈𝑚𝑠𝑘𝑟𝑚 − (𝑒33 −

3
𝑠=1

𝑀𝑟
𝑚=1

𝜀33
𝑆 𝜉𝑚𝑠)𝑘𝑧𝑚𝑠

(𝑝) } 𝐽0(𝑘𝑟𝑚𝑟) sin (𝑘𝑧𝑚𝑠
(𝑝) 𝑧) + ∑ ∑ 𝑄𝑚𝑠

(𝑝) {𝑒31𝜐𝑚𝑠𝐾𝑟𝑚𝑠
(𝑝) − (𝑒33 −

3
𝑠=1

𝑀𝑞
𝑚=1

𝜀33
𝑆 𝜗𝑚𝑠)𝐾𝑧𝑚

(𝑝)} 𝐽0 (𝐾𝑟𝑚𝑠
(𝑝) 𝑟) sin (𝐾𝑧𝑚

(𝑝)𝑧).                            (4.12) 

Now, the current along the piezoceramic cylinder is computed and is expressed as 

 𝐼 = −∫ 𝑗𝜔𝐷𝑧2𝜋𝑟𝑑𝑟 = −𝑗𝜔𝜋𝑎
𝑎

0
(2𝐵(𝑝)𝑒31𝐽1(𝑘𝑟0𝑎) − 𝐷𝜀33

𝑆 𝑎) −

𝑗𝜔2𝜋∑ cos (𝑘𝑧𝑚
(𝑝)𝑧)∑ 𝐵𝑚𝑠

(𝑝) {𝑒31𝜙𝑚𝑠𝑘𝑟𝑚𝑠
(𝑝) + (𝑒33 −

3
𝑠=1

𝑀𝑧
𝑚=1

𝜀33
𝑆 𝛾𝑚𝑠)𝑘𝑧𝑚

(𝑝)}
𝑎

𝑘𝑟𝑚𝑠
(𝑝) 𝐽1 (𝑘𝑟𝑚𝑠

(𝑝) 𝑎) − 𝑗𝜔2𝜋∑ sin (𝐾𝑧𝑚
(𝑝)𝑧)∑ 𝑄𝑚𝑠

(𝑝) {𝑒31𝜐𝑚𝑠𝐾𝑟𝑚𝑠
(𝑝) −3

𝑠=1
𝑀𝑞
𝑚=1

(𝑒33 − 𝜀33
𝑆 𝜗𝑚𝑠)𝐾𝑧𝑚

(𝑝)}
𝑎

𝐾𝑟𝑚𝑠
(𝑝) 𝐽1 (𝐾𝑟𝑚𝑠

(𝑝) 𝑎),                                (4.13) 

because [77]  

∫ 𝐽0(𝑘𝑟𝑚𝑟)
𝑎

0
𝑟𝑑𝑟 = 0,𝑚 = 1,2, … ,𝑀𝑟.        (4.14) 

The current in Eq. (4.13) should be independent of z, from the Gauss zero-divergence 

condition of Eq. (2.4). Hence, the series terms in Eq. (4.13) should be zero. Finally, the 

input electrical admittance 𝑌 = 𝐺 + 𝑗𝐵 =
𝐼

∅0
 is obtained from Eq. (4.13) and from                                                                                                    

the specified applied voltage, ∅0. Here, the real part, G, of admittance (Y) is the 

conductance and the imaginary part, B, is the susceptance of the transducer. 

 Elastic Cylinder        

The solutions to the exact governing equations for an elastic cylinder in Eq. (4.4) are 

obtained by the method of separation of variables and are expressed as the sum of four 

exact solutions: 

{𝑈(𝑒) 𝑊(𝑒)}𝑇 = {𝑈1
(𝑒)

𝑊1
(𝑒)}

𝑇
+ {𝑈2

(𝑒)
𝑊2

(𝑒)}
𝑇
+ {𝑈3

(𝑒)
𝑊3

(𝑒)}
𝑇
+{𝑈4

(𝑒)
𝑊4

(𝑒)}
𝑇
    

(4.15a)   

where 
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{
𝑈1
(𝑒)

𝑊1
(𝑒)
} = {𝐴

(𝑒)sin (𝑘1
(𝑒)𝑧)

0
} + {

∑ ∑ 𝐴𝑚𝑠
(𝑒)
𝐽0(𝑘𝑟𝑚𝑟)sin (𝑘𝑧𝑚𝑠

(𝑒)
𝑧)2

𝑠=1
𝑀𝑟
𝑚=1

∑ ∑ 𝐴𝑚𝑠
(𝑒)𝛼𝑚𝑠

(𝑒)
𝐽1(𝑘𝑟𝑚𝑟)cos (𝑘𝑧𝑚𝑠

(𝑒) 𝑧)2
𝑠=1

𝑀𝑟
𝑚=1

},             (4.15b)  

{
𝑈2
(𝑒)

𝑊2
(𝑒)
} = {

0

𝐵(𝑒)𝐽1(𝑘2
(𝑒)𝑟)

} + {
∑ ∑ 𝐵𝑚𝑠

(𝑒)𝐽0(𝑘𝑟𝑚𝑠
(𝑒) 𝑟)sin (𝑘𝑧𝑚

(𝑒)𝑧)2
𝑠=1

𝑀𝑟
𝑚=1

∑ ∑ 𝐴𝑚𝑠
(𝑒)𝛽𝑚𝑠

(𝑒)
𝐽1(𝑘𝑟𝑚𝑠

(𝑒) 𝑟)cos (𝑘𝑧𝑚
(𝑒)𝑧)2

𝑠=1
𝑀𝑟
𝑚=1

},                (4.15c) 

{
𝑈3
(𝑒)

𝑊3
(𝑒)
} = {𝑃

(𝑒)cos (𝑘1
(𝑒)𝑧)

0
} + {

∑ ∑ 𝑃𝑚𝑠
(𝑒)𝐽0(𝑘𝑟𝑚𝑟)cos (𝑘𝑧𝑚𝑠

(𝑒) 𝑧)2
𝑠=1

𝑀𝑟
𝑚=1

∑ ∑ 𝑃𝑚𝑠
(𝑒)𝜍𝑚𝑠

(𝑒)
𝐽1(𝑘𝑟𝑚𝑟)sin (𝑘𝑧𝑚𝑠

(𝑒) 𝑧)2
𝑠=1

𝑀𝑟
𝑚=1

},             (4.15d) 

and  

{
𝑈4
(𝑒)

𝑊4
(𝑒)
} = {

∑ ∑ 𝑄𝑚𝑠
(𝑒)𝐽0(𝐾𝑟𝑚𝑠

(𝑒) 𝑟)cos (𝐾𝑧𝑚
(𝑒)𝑧)2

𝑠=1
𝑀𝑞
𝑚=1

∑ ∑ 𝑄𝑚𝑠
(𝑒)𝜂𝑚𝑠

(𝑒)
𝐽1(𝐾𝑟𝑚𝑠

(𝑒) 𝑟)sin (𝐾𝑧𝑚
(𝑒)𝑧)2

𝑠=1
𝑀𝑟
𝑚=1

}                    (4.15e)   

where 

𝑘𝑠
(𝑒)
= 𝜔 𝑐𝑠

(𝑒)
, 𝑠 = 1,2⁄  and 𝑐1

(𝑒)2
=

𝜆(𝑒)+2𝜇(𝑒)

𝜌(𝑒)
, 𝑐2
(𝑒)2

=
𝜇(𝑒)

𝜌(𝑒)
.                (4.15f) 

Here, 𝐴(𝑒), 𝐵(𝑒), 𝑃(𝑒), 𝐴𝑚𝑠
(𝑒)

, 𝐵𝑚𝑠
(𝑒)

, 𝑃𝑚𝑠
(𝑒)

, and 𝑄𝑚𝑠
(𝑒) are weights that depend on the excitation.  

Eqs. (4.15b) to (4.15e) are exact solutions for arbitrary values of  𝑘𝑟𝑚, 𝑚 =  1,2,3, … ,𝑀𝑟; 

for 𝑘𝑧𝑚
(𝑒)

, 𝑚 =  1,2,3, … ,𝑀𝑧; and for 𝐾𝑧𝑚
(𝑒)

, 𝑚 =  1,2,3, … ,𝑀𝑞 by suitably choosing the 

frequency dependent values of 𝑘𝑧𝑚𝑠
(𝑒)

, 𝑘𝑟𝑚𝑠
(𝑒)

, and 𝐾𝑟𝑚𝑠
(𝑒)

, respectively.  

The frequency dependent values of 𝑘𝑧𝑚𝑠
(𝑒)

 and  𝑘𝑟𝑚𝑠
(𝑒)

 are determined by substituting each 

term in the series in Eqs. (4.15b) and (4.15c), respectively, in Eq. (4.4) and then equating 

the determinant of the resulting equation to zero. This characteristic equation is quadratic 

in 𝑘𝑧𝑚𝑠
(𝑒) 2

 in the first case and quadratic in 𝑘𝑟𝑚𝑠
(𝑒) 2

  in the second case. Solving these equations 

yields: 

𝑘𝑧𝑚𝑠
(𝑒)

= √𝑘𝑠
(𝑒)2

− 𝑘𝑟𝑚
2
; 𝑚 =  1,2,3, … ,𝑀𝑟; 𝑠 = 1,2     (4.16a) 

and 

𝑘𝑟𝑚𝑠
(𝑒)

= √𝑘𝑠
(𝑒)2

− 𝑘𝑟𝑚
2
; 𝑚 =  1,2,3, … ,𝑀𝑧; 𝑠 = 1,2.    (4.16b) 

Similarly, the values of 𝐾𝑟𝑚𝑠
(𝑒)

 are determined by substituting each term in the series in 

Eq. (4.15e) in Eq. (4.4) and equating the determinant of the resulting equation to zero.  They 

are given by,  
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𝐾𝑟𝑚𝑠
(𝑒)

= √𝑘𝑠
(𝑒)2

− 𝐾𝑧𝑚
(𝑒)2

; 𝑚 =  1,2,3, … ,𝑀𝑞; 𝑠 = 1,2.                                              (4.16c) 

 The values of 𝛼𝑚𝑠
(𝑒)

 and 𝛽𝑚𝑠
(𝑒)

 are then obtained by substituting Eq. (4.15b) and (4.15c), 

respectively, in Eq. (4.4) and rearranging them. They are computed as:  

𝛼𝑚𝑠
(𝑒)
=

(𝜆(𝑒)+𝜇(𝑒))𝑘𝑧𝑚𝑠
(𝑒)

𝑘𝑟𝑚

𝜌(𝑒)𝜔2−(𝜆(𝑒)+2𝜇(𝑒))𝑘𝑟𝑚
2−𝜇(𝑒)𝑘𝑧𝑚𝑠

(𝑒) 2; 𝑚 =  1,2,3, … ,𝑀𝑟; 𝑠 = 1,2  (4.17a) 

and 

𝛽𝑚𝑠
(𝑒)
=

(𝜆(𝑒)+𝜇(𝑒))𝑘𝑧𝑚
(𝑒)
𝑘𝑟𝑚𝑠
(𝑒)

𝜌(𝑒)𝜔2−(𝜆(𝑒)+2𝜇(𝑒))𝑘𝑟𝑚𝑠
(𝑒) 2

−𝜇(𝑒)𝑘𝑧𝑚
(𝑒) 2

; 𝑚 =  1,2,3, … ,𝑀𝑟; 𝑠 = 1,2.   (4.17b) 

Similarly, substituting Eqs. (4.15d) and (4.15e), respectively, in Eq. (4.4), will yield 𝜍𝑚𝑠
(𝑒)

 

and 𝜂𝑚𝑠
(𝑒)

 as:  

𝜍𝑚1
(𝑒)
= −

𝑘𝑟𝑚 

𝑘𝑧𝑚1
(𝑒) , 𝜍𝑚2

(𝑒)
=

𝑘𝑧𝑚2
(𝑒)

 

𝑘𝑟𝑚
; 𝑚 =  1,2,3, … ,𝑀𝑟              (4.18c,d) 

and    

𝜂𝑚1
(𝑒)

= −
𝐾𝑟𝑚1
(𝑒)

 

𝐾𝑧𝑚
(𝑒) , 𝜂𝑚2

(𝑒)
=

𝐾𝑧𝑚
(𝑒)
 

𝐾𝑟𝑚2
(𝑒) ; 𝑚 =  1,2,3, … ,𝑀𝑞.              (4.18e,f) 

In Eq. (4.15c), the axial displacement is antisymmetric and the radial displacement is 

symmetric about the plane midway between the ends of the cylinder. Axial and radial 

displacements are symmetric and antisymmetric, respectively, in Eq. (4.15d). The stress 

components of the elastic cylinder are computed by using the stress-strain and strain 

displacement relations in Eqs. (4.3) and (4.2), respectively. The normal components of the 

axial stress is expressed as  

𝑇𝑧𝑧
(𝑒)
= 𝐴(𝑒)[𝜆(𝑒) + 2𝜇(𝑒)]𝑘1

(𝑒)
cos(𝑘1

(𝑒)𝑧) + 𝐵(𝑒)𝜆(𝑒)𝑘1
(𝑒)𝐽0(𝑘1

(𝑒)𝑟) − 𝑃(𝑒)[𝜆(𝑒) +

2𝜇(𝑒)]𝑘1
(𝑒) sin(𝑘1

(𝑒)𝑧) + ∑ ∑ 𝐴𝑚𝑠
(𝑒)2

𝑠=1
𝑀𝑟
𝑚=1 {[𝜆(𝑒) + 2𝜇(𝑒)]𝑘𝑧𝑚𝑠

(𝑒) +

𝜆(𝑒)𝛼𝑚𝑠
(𝑒)𝑘𝑟𝑚}𝐽0(𝑘𝑟𝑚𝑟) cos(𝑘𝑧𝑚𝑠

(𝑒) 𝑧) + ∑ ∑ 𝐵𝑚𝑠
(𝑒)2

𝑠=1
𝑀𝑧
𝑚=1 {[𝜆(𝑒) + 2𝜇(𝑒)]𝑘𝑧𝑚

(𝑒) +

𝜆(𝑒)𝛽𝑚𝑠
(𝑒)𝑘𝑟𝑚𝑠

(𝑒) }𝐽0(𝑘𝑟𝑚𝑠
(𝑒) 𝑟) cos(𝑘𝑧𝑚

(𝑒)𝑧) + ∑ ∑ 𝑃𝑚𝑠
(𝑒)2

𝑠=1
𝑀𝑟
𝑚=1 {−[𝜆(𝑒) + 2𝜇(𝑒)]𝑘𝑧𝑚𝑠

(𝑒) +

𝜆(𝑒)𝜍𝑚𝑠
(𝑒)𝑘𝑟𝑚}𝐽0(𝑘𝑟𝑚𝑟) sin(𝑘𝑧𝑚𝑠

(𝑒) 𝑧) +∑ ∑ 𝑄𝑚𝑠
(𝑒)2

𝑠=1
𝑀𝑞
𝑚=1 {−[𝜆(𝑒) + 2𝜇(𝑒)]𝐾𝑧𝑚

(𝑒) +

𝜆(𝑒)𝜂𝑚𝑠
(𝑒)𝐾𝑟𝑚𝑠

(𝑒) }𝐽0(𝐾𝑟𝑚𝑠
(𝑒) 𝑟) sin(𝐾𝑧𝑚

(𝑒)𝑧)                                (4.19) 

and the normal component of the radial stress is expressed as 
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𝑇𝑟𝑟
(𝑒)
= 𝐴(𝑒)𝜆(𝑒)𝑘1

(𝑒)
cos(𝑘1

(𝑒)
𝑧) + 𝐵(𝑒) {[𝜆(𝑒) + 2𝜇(𝑒)]𝑘1

(𝑒)
𝐽0(𝑘1

(𝑒)
𝑟) −

2𝜇(𝑒)

𝑟
𝐽1(𝑘1

(𝑒)
𝑟)} −

𝑃(𝑒)𝜆(𝑒)𝑘1
(𝑒)
sin(𝑘1

(𝑒)𝑧) + ∑ ∑ 𝐴𝑚𝑠
(𝑒)2

𝑠=1
𝑀𝑟
𝑚=1 {(𝜆(𝑒)𝑘𝑧𝑚𝑠

(𝑒) + [𝜆(𝑒) +

2𝜇(𝑒)]𝛼𝑚𝑠
(𝑒)𝑘𝑟𝑚)𝐽0(𝑘𝑟𝑚𝑟) −

2𝜇(𝑒)

𝑟
𝛼𝑚𝑠
(𝑒)𝐽1(𝑘𝑟𝑚𝑟)} cos(𝑘𝑧𝑚𝑠

(𝑒) 𝑧) +

∑ ∑ 𝐵𝑚𝑠
(𝑒)2

𝑠=1
𝑀𝑧
𝑚=1 {(𝜆(𝑒)𝑘𝑧𝑚

(𝑒) + [𝜆(𝑒) + 2𝜇(𝑒)]𝛽𝑚𝑠
(𝑒)𝑘𝑟𝑚𝑠

(𝑒) )𝐽0(𝑘𝑟𝑚𝑠
(𝑒) 𝑟) −

2𝜇(𝑒)

𝑟
𝛽𝑚𝑠
(𝑒)𝐽1(𝑘𝑟𝑚𝑠

(𝑒) 𝑟)} cos(𝑘𝑧𝑚
(𝑒)𝑧) + ∑ ∑ 𝑃𝑚𝑠

(𝑒)2
𝑠=1

𝑀𝑟
𝑚=1 {(−𝜆(𝑒)𝑘𝑧𝑚𝑠

(𝑒) + [𝜆(𝑒) +

2𝜇(𝑒)]𝜍𝑚𝑠
(𝑒)𝑘𝑟𝑚)𝐽0(𝑘𝑟𝑚

(𝑒)𝑟) −
2𝜇(𝑒)

𝑟
𝜍𝑚𝑠
(𝑒)𝐽1(𝑘𝑟𝑚𝑟)} sin(𝑘𝑧𝑚𝑠

(𝑒) 𝑧) +

∑ ∑ 𝑄𝑚𝑠
(𝑒)2

𝑠=1
𝑀𝑞
𝑚=1 {(−𝜆(𝑒)𝐾𝑧𝑚

(𝑒) + [𝜆(𝑒) + 2𝜇(𝑒)]𝜂𝑚𝑠
(𝑒)𝐾𝑟𝑚𝑠

(𝑒) )𝐽0(𝐾𝑟𝑚𝑠
(𝑒) 𝑟) −

2𝜇(𝑒)

𝑟
𝜂𝑚𝑠
(𝑒)𝐽1(𝐾𝑟𝑚𝑠

(𝑒) 𝑟)} sin(𝐾𝑧𝑚
(𝑒)𝑧).                     (4.20) 

The shear stress is obtained as, 

T𝑟𝑧
(𝑒)
= −𝜇(𝑒)∑ ∑ 𝐴𝑚𝑠

(𝑒)2
𝑠=1

𝑀𝑟
𝑚=1 {𝑘𝑟𝑚 + 𝛼𝑚𝑠

(𝑒)𝑘𝑧𝑚𝑠
(𝑒) } 𝐽1(𝑘𝑟𝑚𝑟)sin(𝑘𝑧𝑚𝑠

(𝑒) 𝑧) −

𝜇(𝑒)∑ ∑ 𝐵𝑚𝑠
(𝑒)2

𝑠=1
𝑀𝑧
𝑚=1 {𝑘𝑟𝑚𝑠

(𝑒) + 𝛽𝑚𝑠
(𝑒)𝑘𝑧𝑚

(𝑒)} 𝐽1(𝑘𝑟𝑚𝑠
(𝑒) 𝑟)sin(𝑘𝑧𝑚

(𝑒)𝑧) +

𝜇(𝑒)∑ ∑ 𝑃𝑚𝑠
(𝑒)2

𝑠=1
𝑀𝑟
𝑚=1 {−𝑘𝑟𝑚 + 𝜍𝑚𝑠

(𝑒)𝑘𝑧𝑚𝑠
(𝑒) } 𝐽1(𝑘𝑟𝑚𝑟)cos(𝑘𝑧𝑚𝑠

(𝑒) 𝑧) +

𝜇(𝑒)∑ ∑ 𝑄𝑚𝑠
(𝑒)2

𝑠=1
𝑀𝑞
𝑚=1 {−𝐾𝑟𝑚𝑠

(𝑒) + 𝜂𝑚𝑠
(𝑒)𝐾𝑧𝑚

(𝑒)} 𝐽1(𝐾𝑟𝑚𝑠
(𝑒) 𝑟)cos(𝐾𝑧𝑚

(𝑒)𝑧).                 (4.21) 

 

All the primary and secondary variables for the piezoelectric and elastic cylinders are 

expressed in terms of Bessel and trigonometric functions that are orthogonal and complete 

in the radial and axial directions, respectively. The orthogonality properties of 

trigonometric functions were described in Eqs. (2.9) and (2.10). The orthogonality property 

of the Bessel functions [77] are shown below. 

∫ 𝐽𝜈(𝑋𝑟)𝐽𝜈(𝑘𝑟𝑚𝑟)𝑟𝑑𝑟 = {

0, 𝑋 = 𝑘𝑟𝑚, 𝑚 ≠ 𝑛

(𝑎2 2⁄ )𝐽0
2(𝑘𝑟𝑛𝑎), 𝑋 = 𝑘𝑟𝑛, 𝑚 = 𝑛 

𝑋𝑎

𝑋2−𝑘𝑟𝑛
(𝑐)2
𝐽0(𝑘𝑟𝑛𝑎)𝐽1(𝑋𝑎), 𝑋 ≠ 𝑘𝑟𝑛, 𝑛 = 1,2,3, …  

𝜈 = 0,1
𝑎

0
. 

               (4.22) 

Here, 𝑘𝑟𝑚𝑎 are chosen to be the roots of 𝐽1(𝑘𝑟𝑚𝑎) = 0 and are approximately equal to 0, 

3.83, 7.02, … for m = 0, 1, 2, … respectively. For 𝑀𝑟 =  ∞, 𝐽𝜈(𝑘𝑟𝑚𝑟) form a point-wise 
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complete set of functions when 0 and norm-wise complete sets of functions when

1 . Sets of functions that are not all zero at the same point and form a norm-wise 

complete sets of functions are known as point-wise complete sets. 

Here, 𝑘𝑧𝑚
(𝑐)

 are chosen such that 𝑘𝑧𝑚
(𝑐)
= 𝑚𝜋;𝑚 = 0,1,2, … ,𝑀𝑧, where Mz is ∞. The 

series begins with the m = 0 term. In the second set, 𝐾𝑧𝑚
(𝑐)
𝐿/2 are chosen such that 

𝐾𝑧𝑚
(𝑐)
𝐿

2
=

(2𝑚−1)𝜋

2
, 𝑚 = 1,2,3,… ,𝑀𝑧, where Mz is ∞. Here, the series begins with the m = 1 

term. In both sets, for 𝑀𝑧 = ∞, sin and cos are complete sets of functions.  

The primary and secondary variables of the piezoelectric and elastic cylinders are 

expressed as the sum of a point-wise or norm-wise complete set of functions and other 

functions. On the flat surfaces of the cylinders, U and Tzz are expressed in terms of 

𝐽0(𝑘𝑟𝑚𝑟),𝑚 = 0,1,2, … and 𝑊 and 𝑇𝑟𝑧 are expressed in terms of  𝐽1(𝑘𝑟𝑚𝑟),𝑚 = 0,1,2, …. 

On the curved surfaces, 𝑈 and 𝑇𝑟𝑧  are expressed in terms of cos (𝑘𝑧𝑚
(𝑐)
𝑧) and cos (𝐾𝑧𝑚

(𝑐)
𝑧); 

and 𝑊 and 𝑇𝑟𝑟 are expressed in terms of sin (𝑘𝑧𝑚
(𝑐)
𝑧) and cos (𝐾𝑧𝑚

(𝑐)
𝑧). Hence, arbitrary 

boundary conditions and continuity conditions can be satisfied on the flat and curved 

surfaces of the cylinders of the transducer. 

4.4  BOUNDARY AND CONTINUITY CONDITIONS 

 Various boundary and continuity conditions can be considered on the flat and curved 

surfaces of the Langevin transducer. The case considered in this analysis has zero stress on 

all the exposed surfaces of the elastic and piezoelectric cylinders and specified electric field 

on the flat surfaces of the piezoceramic cylinder. Similar procedure can be followed, when 

the displacements are specified. The continuity of axial and radial displacements and that 

of normal and shear components of stress are used at the two piezoelectric - elastic cylinder 

interfaces.  

 The normal and shear stresses on the flat surfaces are denoted by 𝑇̅𝑧𝑧
(𝑐)

 and 𝑇̅𝑟𝑧
(𝑐)

,  

respectively and that on the curved surface are denoted by 𝑇̂𝑟𝑟
(𝑐)

and 𝑇̂𝑟𝑧
(𝑐)

, respectively; where 

𝑐 =  𝑝 or 𝑒. The potential is zero on the bottom electrode and uniform on the top electrode, 

i.e. ∅ =  ∅0 on the top flat surface of the piezoceramic cylinder. ∅0 is specified for the 

applied potential condition, zero for the short circuit condition, and is to be determined for 

the open-circuit condition. The normal components of electric field displacement on the 

flat and curved surface are denoted by, 𝐷̅𝑧 and 𝐷̂𝑟, respectively. The axial and radial 

displacements on the flat surfaces are denoted by 𝑈̅(𝑐)and 𝑊̅(𝑐), respectively. 
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 Boundary Conditions 

The Langevin transducer has four flat surfaces, one at the bottom and one at the top of 

the transducer and two at the flat ends of the piezoceramic cylinder. It also has three curved 

surfaces, one for each cylinder. Since the piezoceramic cylinder has both electrical and 

mechanical vibrations, the boundary conditions are categorized into two: electrical and 

mechanical. 

4.4.1.1 Electrical Boundary Conditions 

The electrical boundary conditions on the flat electrodes of the piezoceramic cylinder 

are specified as follows for electrical excitation:  

∅ = 0 at z = −𝐿(𝑝)/2                                                                                                 (4.23a) 

and 

∅ = ∅0 at z = 𝐿(𝑝)/2.                    (4.23b) 

These conditions are satisfied in an average sense by using the orthogonal property of 

𝐽0(𝑘𝑟𝑚𝑟) in Eq. (4.22). Substituting the specified values of potential, in Eq. (4.6), 

multiplying both sides of Eq. (4.23) by 𝑟𝐽0(𝑘𝑟𝑛𝑟) and integrating over 𝑟 yields one set of 

equations each for the top and bottom flat surfaces. For the top flat surface of the 

piezoceramic cylinder (𝑧 = 𝐿(2)/2, 0 ≤ 𝑟 ≤ 𝑎), using n = 0 yields 

𝐴(𝑝)
𝑒33

𝜀33
𝑆

𝑎2

2
sin (

𝑘𝑧0𝐿
(𝑝)

2
) + 𝐷

𝑎2𝐿(𝑝)

4
+ 𝐸

𝑎2

2
+ 𝑃(𝑝)

𝑒33

𝜀33
𝑆

𝑎2

2
cos (

𝑘𝑧0𝐿
(𝑝)

2
) +

∑ ∑ 𝑄𝑚𝑠
(𝑝)
𝜗𝑚𝑠cos (

𝐾𝑧𝑚
(𝑝)
𝐿(𝑝)

2
)3

𝑠=1
𝑀𝑞
𝑚=1

𝑎

𝐾𝑟𝑚𝑠
(𝑝) 𝐽1(𝐾𝑟𝑚𝑠

(𝑝)
𝑎) = ∅0

𝑎2

2
     (4.24a) 

and using 𝑛 = 𝑚 = 1, 2,… ,𝑀𝑟 yields 

𝑎2

2
𝐽0
2(𝑘𝑟𝑛𝑎)∑ 𝐴𝑛𝑠

(𝑝)
𝜒𝑛𝑠 sin (𝑘𝑧𝑛𝑠

(𝑝) 𝐿(𝑝)

2
)3

𝑠=1 +
𝑎2

2
𝐽0
2(𝑘𝑟𝑛𝑎)∑ 𝑃𝑛𝑠

(𝑝)
𝜉𝑛𝑠 cos (𝑘𝑧𝑛𝑠

(𝑝) 𝐿(𝑝)

2
)3

𝑠=1 +

∑ ∑ 𝑄𝑚𝑠
(𝑝)3

𝑠=1
𝑀𝑞
𝑚=1 𝜗𝑚𝑠 cos (

𝐾𝑧𝑚
(𝑝)
𝐿(𝑝)

2
)
𝐾𝑟𝑚𝑠
(𝑝)

𝑎𝐽0(𝑘𝑟𝑚
(𝑝)
𝑎)𝐽1(𝐾𝑟𝑚𝑠

(𝑝)
𝑎)

𝐾𝑟𝑚𝑠
(𝑝) 2

−𝑘𝑟𝑛
2

= 0.               (4.24b) 

Similarly, for the bottom flat surface of the piezoceramic cylinder ((𝑧 = −𝐿(2)/2, 0 ≤ 𝑟 ≤

𝑎), using n = 0 yields 
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𝐴(𝑝)
𝑒33

𝜀33
𝑆

𝑎2

2
sin (

𝑘𝑧0𝐿
(𝑝)

2
) − 𝐷

𝑎2𝐿(𝑝)

4
+ 𝐸

𝑎2

2
+ 𝑃(𝑝)

𝑒33

𝜀33
𝑆

𝑎2

2
cos (

𝑘𝑧0𝐿
(𝑝)

2
) +

∑ ∑ 𝑄𝑚𝑠
(𝑝)
𝜗𝑚𝑠cos (

𝐾𝑧𝑚
(𝑝)
𝐿(𝑝)

2
)3

𝑠=1
𝑀𝑞
𝑚=1

𝑎

𝐾𝑟𝑚𝑠
(𝑝) 𝐽1(𝐾𝑟𝑚𝑠

(𝑝)
𝑎) = 0     (4.25a) 

and using n=m=1, 2, …, 𝑀𝑟 yields  

−
𝑎2

2
𝐽0
2(𝑘𝑟𝑛𝑎)∑ 𝐴𝑛𝑠

(𝑝)
𝜒𝑛𝑠 sin (𝑘𝑧𝑛𝑠

(𝑝) 𝐿(𝑝)

2
)3

𝑠=1 +
𝑎2

2
𝐽0
2(𝑘𝑟𝑛𝑎)∑ 𝑃𝑛𝑠

(𝑝)
𝜉𝑛𝑠 cos (𝑘𝑧𝑛𝑠

(𝑝) 𝐿(𝑝)

2
)3

𝑠=1 +

∑ ∑ 𝑄𝑚𝑠
(𝑝)3

𝑠=1
𝑀𝑞
𝑚=1 𝜗𝑚𝑠 cos (

𝐾𝑧𝑚
(𝑝)
𝐿(𝑝)

2
)
𝐾𝑟𝑚𝑠
(𝑝)

𝑎𝐽0(𝑘𝑟𝑚
(𝑝)
𝑎)𝐽1(𝐾𝑟𝑚𝑠

(𝑝)
𝑎)

𝐾𝑟𝑚𝑠
(𝑝) 2

−𝑘𝑟𝑛
2

= 0.    (4.25b) 

The boundary conditions are separately written for n = 0, since 𝐽0(𝑘𝑟𝑛𝑟) = 1 when 𝑛 = 0. 

Electrical conditions are specified only at the two flat surfaces of the piezoceramic cylinder.  

On the curved surface of the piezoceramic cylinder, i.e. on |𝑧| ≤ 𝐿(𝑝) 2⁄ ; the electric 

field displacement in the radial direction, 𝐷𝑟, is specified as zero, i.e. 𝐷̂𝑟 = 0. This 

condition is satisfied by multiplying 𝐷𝑟 in Eq. 4.11 by 1, cos(𝐾𝑧𝑛
(𝑐)
𝑧) and sin(𝑘𝑧𝑛

(𝑐)
𝑧) 

respectively, and integrating over 𝑧 and equating them to zero. Using the orthogonality 

property of trigonometric functions this yields: 

∑ ∑ 𝑄𝑚𝑠
(𝑝)3

𝑠=1
𝑀𝑞
𝑚=1 {−𝑒15 (𝐾𝑟𝑚𝑠

(𝑝) −𝜐𝑚𝑠𝐾𝑧𝑚
(𝑝)) + 𝜀11

𝑆 𝜗𝑚𝑠𝐾𝑟𝑚𝑠
(𝑝) } 𝐽1 (𝐾𝑟𝑚𝑠

(𝑝) 𝑎)
2

𝐾𝑧𝑚
(𝑝) sin (𝐾𝑧𝑚

(𝑝) 𝐿(𝑝)

2
) =

∫ 𝐷̂𝑟𝑑𝑧 = 0
𝐿(𝑝)/2

−𝐿(𝑝)/2
 for n = 0,                       (4.26) 

𝐿(𝑝)

2
∑ 𝑄𝑛𝑠

(𝑝)3
𝑠=1 {𝑒15 (−𝐾𝑟𝑛𝑠

(𝑝)+𝜐𝑛𝑠𝐾𝑧𝑛
(𝑝)) + 𝜀11

𝑆 𝜗𝑛𝑠𝐾𝑟𝑛𝑠
(𝑝)} 𝐽1 (𝐾𝑟𝑛𝑠

(𝑝)𝑎) =

∫ 𝐷̂𝑟 cos (𝐾𝑧𝑛
(𝑝)𝑧) 𝑑𝑧 = 0

𝐿(𝑝)/2

−𝐿(𝑝)/2
  for 𝑛 =  1,2, … ,𝑀𝑞,       (4.27) 

and 

𝐿(𝑝)

2
∑ 𝐵𝑛𝑠

(𝑝)3
𝑠=1 {−𝑒15 (𝑘𝑟𝑛𝑠

(𝑝)+𝜙𝑛𝑠𝑘𝑧𝑛
(𝑝)) + 𝜀11

𝑆 𝛾𝑛𝑠𝑘𝑟𝑛𝑠
(𝑝) } 𝐽1 (𝑘𝑟𝑛𝑠

(𝑝)𝑎) =

∫ 𝐷̂𝑟 sin (𝑘𝑧𝑛
(𝑝)𝑧) 𝑑𝑧

𝐿(𝑝)/2

−𝐿(𝑝)/2
= 0   for 𝑛 =  1,2, … ,𝑀𝑧.            (4.28) 

4.4.1.2 Mechanical Boundary Conditions 

The mechanical boundary conditions are specified on the normal and shear components 

of stresses on the flat and curved boundaries of the transducer. 
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4.4.1.2.1 Flat Surfaces 

At the flat ends of the transducer, the following boundary conditions are specified for 

|𝑟| ≤ 𝑎: 

{
𝑇̅𝑧𝑧
(1)

𝑇̅𝑟𝑧
(1)
} = {

0
0
} at 𝑧 = −𝐿(1)/2                                                                                     (4.29a) 

and 

{
𝑇̅𝑧𝑧
(3)

𝑇̅𝑟𝑧
(3)
} = {

0
0
} at 𝑧 = 𝐿(3)/2.                                                                                       (4.29b) 

Here, the conditions in Eq. (4.29a) are specified on the bottom flat surface of the bottom 

elastic cylinder and those in Eq. (4.29b) are specified on the top flat surface of the top 

elastic cylinder. The boundary conditions on the normal component of stress at the bottom 

flat surface of the transducer is satisfied by multiplying both sides of the equation 𝑇̅𝑧𝑧
(𝑒)
= 0 

by 𝑟𝐽0(𝑘𝑟𝑛𝑟), 𝑛 = 0, 1, 2, 3, …, 𝑀𝑟, at 𝑧 = −𝐿(1)/2 , and integrating over r. This yields 

𝑀𝑟+1 equations instead of the original one, 𝑇̅𝑧𝑧
(𝑒)
= 0. The coefficients in these equations 

are solved after combining these equations with similar equations obtained by using other 

boundary and continuity conditions. Thus each boundary condition is satisfied in a 

weighted-average sense. When 𝑀𝑟 is large, the expression for 𝑇̅𝑧𝑧
(𝑒)

 evaluated on the flat 

surface is nearly zero at all points.  

Using 𝑇𝑧𝑧
(𝑒)

 in Eq. (4.19), multiplying 𝑇̅𝑧𝑧
(𝑒)
= 0  by 𝑟𝐽0(𝑘𝑟𝑛𝑟), integrating over 𝑟, and 

using the orthogonality of Bessel functions in Eq. (4.22) yields 

𝐴(𝑒)[𝜆(𝑒) + 2𝜇(𝑒)]𝑘1
(𝑒) 𝑎2

2
cos(𝑘1

(𝑒)𝑧) + 𝐵(𝑒)𝜆(𝑒)𝑎𝐽1(𝑘1
(𝑒)𝑎) − 𝑃(𝑒)[𝜆(𝑒) +

2𝜇(𝑒)]𝑘1
(𝑒) 𝑎2

2
sin(𝑘1

(𝑒)𝑧) + ∑ ∑ 𝐵𝑚𝑠
(𝑒)2

𝑠=1
𝑀𝑧
𝑚=1 {[𝜆(𝑒) + 2𝜇(𝑒)]𝑘𝑧𝑚

(𝑒) +

𝜆(𝑒)𝛽𝑚𝑠
(𝑒)𝑘𝑟𝑚𝑠

(𝑒) }
𝑎𝐽1(𝑘𝑟𝑚𝑠

(𝑒)
𝑎)

𝑘𝑟𝑚𝑠
(𝑒) cos(𝑘𝑧𝑚

(𝑒)𝑧) +∑ ∑ 𝑄𝑚𝑠
(𝑒)2

𝑠=1
𝑀𝑞
𝑚=1 {−[𝜆(𝑒) + 2𝜇(𝑒)]𝐾𝑧𝑚

(𝑒) +

𝜆(𝑒)𝜂𝑚𝑠
(𝑒)𝐾𝑟𝑚𝑠

(𝑒) }
𝑎𝐽1(𝐾𝑟𝑚𝑠

(𝑒)
𝑎)

𝐾𝑟𝑚𝑠
(𝑒) sin(𝐾𝑧𝑚

(𝑒)𝑧) = ∫ 𝑇̅𝑧𝑧
(𝑒)𝑎

0
𝑟𝑑𝑟 = 0,  for n = 0                         (4.30a) 

and  
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𝐵(𝑒)𝜆(𝑒)𝑎𝑘1
(𝑒)2 𝐽0(𝑘𝑟𝑛𝑎)𝐽1(𝑘1

(𝑒)
𝑎)

𝑘1
(𝑒)2

−𝑘𝑟𝑛
2

+
𝑎2

2
𝐽0
2(𝑘𝑟𝑛𝑎)∑ 𝐴𝑛𝑠

(𝑒)2
𝑠=1 {[𝜆(𝑒) + 2𝜇(𝑒)]𝑘𝑧𝑛𝑠

(𝑒) +

𝜆(𝑒)𝛼𝑛𝑠
(𝑒)𝑘𝑟𝑛} cos(𝑘𝑧𝑛𝑠

(𝑒) 𝑧) + ∑ ∑ 𝐵𝑚𝑠
(𝑒)2

𝑠=1
𝑀𝑧
𝑚=1 {[𝜆(𝑒) + 2𝜇(𝑒)]𝑘𝑧𝑚

(𝑒) +

𝜆(𝑒)𝛽𝑚𝑠
(𝑒)𝑘𝑟𝑚𝑠

(𝑒) }𝑎𝑘𝑟𝑚𝑠
(𝑒) 𝐽0(𝑘𝑟𝑛𝑎)𝐽1(𝑘𝑟𝑚𝑠

(𝑒)
𝑎)

𝑘𝑟𝑚𝑠
(𝑒) 2

− 𝑘𝑟𝑛
2

cos(𝑘𝑧𝑚
(𝑒)𝑧) +

𝑎2

2
𝐽0
2(𝑘𝑟𝑛𝑎)∑ 𝑃𝑛𝑠

(𝑒)2
𝑠=1 {−[𝜆(𝑒) +

2𝜇(𝑒)]𝑘𝑧𝑛𝑠
(𝑒) + 𝜆(𝑒)𝜍𝑛𝑠

(𝑒)𝑘𝑟𝑛} sin(𝑘𝑧𝑛𝑠
(𝑒) 𝑧) + ∑ ∑ 𝑄𝑚𝑠

(𝑒)2
𝑠=1

𝑀𝑞
𝑚=1 {−[𝜆(𝑒) + 2𝜇(𝑒)]𝐾𝑧𝑚

(𝑒) +

𝜆(𝑒)𝜂𝑚𝑠
(𝑒)𝐾𝑟𝑚𝑠

(𝑒) }𝑎𝐾𝑟𝑚𝑠
(𝑒) 𝐽0(𝑘𝑟𝑛

(𝑒)
𝑎)𝐽1(𝐾𝑟𝑚𝑠

(𝑒)
𝑎)

𝐾𝑟𝑚𝑠
(𝑒) 2

− 𝑘𝑟𝑛
2

sin(𝐾𝑧𝑚
(𝑒)𝑧) = ∫ 𝑇̅𝑧𝑧

(𝑒)𝑎

0
𝑟𝐽0(𝑘𝑟𝑛𝑟)𝑑𝑟 = 0   

for n=1, 2, …, 𝑀𝑟.          (4.30b) 

Similarly, the zero shear stress boundary conditions on the two flat ends of the 

transducer are replaced by several equations. Specifically, equating the expression for  

𝑇𝑟𝑧
(𝑒)
, 𝑒 = 1,3 in Eq. (4.21) to zero on the flat surface, multiplying both sides by 𝑟𝐽1(𝑘𝑟𝑛𝑟) 

and integrating with respect to r yields:  

−𝜇(𝑒)
𝑎2

2
𝐽0
2(𝑘𝑟𝑛𝑎)∑ 𝐴𝑛𝑠

(𝑒)2
𝑠=1 {𝑘𝑟𝑛 + 𝛼𝑛𝑠

(𝑒)𝑘𝑧𝑛𝑠
(𝑒) } sin(𝑘𝑧𝑛𝑠

(𝑒) 𝑧) +

𝜇(𝑒)
𝑎2

2
𝐽0
2(𝑘𝑟𝑛𝑎)∑ 𝑃𝑛𝑠

(𝑒)2
𝑠=1 {−𝑘𝑟𝑛 + 𝜍𝑛𝑠

(𝑒)𝑘𝑧𝑛𝑠
(𝑒) } cos(𝑘𝑧𝑛𝑠

(𝑒) 𝑧) +

𝜇(𝑒)∑ ∑ 𝑄𝑚𝑠
(𝑒)2

𝑠=1
𝑀𝑞
𝑚=1 {−𝐾𝑟𝑚𝑠

(𝑒) + 𝜂𝑚𝑠
(𝑒)𝐾𝑧𝑚

(𝑒)}𝑎𝑘𝑟𝑛
(𝑒) 𝐽0(𝑘𝑟𝑛

(𝑒)
𝑎)𝐽1(𝐾𝑟𝑚𝑠

(𝑒)
𝑎)

𝐾𝑟𝑚𝑠
(𝑒) 2

−𝑘𝑟𝑛
2

cos(𝐾𝑧𝑚
(𝑒)𝑧) =

∫ 𝑇̅𝑟𝑧
(𝑒)𝑟𝐽1(𝑘𝑟𝑛𝑟)

𝑎

0
𝑑𝑟 = 0 for 𝑛= 1,2,…,𝑀𝑟.                   (4.31) 

It can be seen from Eqs. (4.30) - (4.31) that the zero stress conditions on the flat ends 

of the transducer are satisfied in a weighted average sense by equating the weighted integral 

of stress to zero. 

4.4.1.2.2 Curved Surfaces 

On the curved surface of each cylinder, the normal and shear stresses are zero. These 

conditions are expressed as  

{
𝑇̂𝑟𝑟
(𝑐)

𝑇̂𝑟𝑧
(𝑐)
} = {

0
0
} on 𝑟 = 𝑎 and |𝑧| ≤

𝐿(𝑐)

2
                                                                           (4.32) 

where  𝑐 = 𝑝 or 𝑒. These are also satisfied in a weighted average sense after replacing them 

by a large number of equations that are simplified by using the orthogonal property of 
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cos (𝑘𝑧𝑛
(𝑐)
𝑧) and sin (𝐾𝑧𝑛

(𝑐)
𝑧). The details are presented below first for the normal radial stress 

for the piezoelectric and elastic cylinders and then for the shear stress for both types of 

cylinders.  

The resulting equations for 𝑇̂𝑟𝑟
(𝑝)

, obtained by using Eq. (4.20), and integrating over z, are 

𝐴(𝑝)2 (𝑐13
𝐸 +

𝑒31𝑒33

𝜀33
𝑆 ) sin (𝑘𝑧0

𝐿(𝑝)

2
) + 𝐵(𝑝)𝐿(𝑝) {𝑐11

𝐸 𝑘𝑟0 𝐽0(𝑘𝑟0𝑎) +
𝑐12
𝐸 −𝑐11

𝐸

𝑎
𝐽1(𝑘𝑟0𝑎)} +

𝐷𝑒31𝐿
(𝑝) + ∑ ∑ 𝐴𝑚𝑠

(𝑝)2 [𝑐11
𝐸 𝜓𝑚𝑠

𝑘𝑟𝑚

𝑘𝑧𝑚𝑠
(𝑝) + 𝑐13

𝐸 + 𝑒31𝜒𝑚𝑠] 𝐽0(𝑘𝑟𝑚𝑎)
3
𝑠=1

𝑀𝑟
𝑚=1 sin (𝑘𝑧𝑚𝑠

(𝑝) 𝐿(𝑝)

2
) =

∫ 𝑇̂𝑟𝑟
(𝑝)
𝑑𝑧

𝐿(𝑝)/2

−𝐿(𝑝)/2
 =  0 for 𝑛 = 0.                              (4.33a) 

Multiplying 𝑇̂𝑟𝑟
(𝑝)
= 0 by cos (𝑘𝑧𝑛

(𝑐)
𝑧)  and integrating over z yields: 

𝐴(𝑝)2 (𝑐13
𝐸 +

𝑒31𝑒33

𝜀33
𝑆 ) [

𝑘𝑧𝑛
(𝑝)

sin(𝑘𝑧𝑛
(𝑝)𝐿(𝑝)

2
) cos(𝑘𝑧0

𝐿(𝑝)

2
)−𝑘𝑧0 cos(𝑘𝑧𝑛

(𝑝)𝐿(𝑝)

2
) sin(𝑘𝑧0

𝐿(𝑝)

2
)

𝑘𝑧𝑛
(𝑝)2

−𝑘𝑧0
2

] +

∑ ∑ 𝐴𝑚𝑠
(𝑝) {[𝑐11

𝐸 𝜓𝑚𝑠𝑘𝑟𝑚 + (𝑐13
𝐸 +3

𝑠=1
𝑀𝑟
𝑚=1

𝑒31𝜒𝑚𝑠)𝑘𝑧𝑚𝑠
(𝑝) ] 𝐽0(𝑘𝑟𝑚𝑎)} 2 [

𝑘𝑧𝑚𝑠
(𝑝)

sin(𝑘𝑧𝑛
(𝑝)𝐿(𝑝)

2
)cos(𝑘𝑧𝑚𝑠

(𝑝) 𝐿(𝑝)

2
)−𝑘𝑧𝑚𝑠

(𝑝)
cos(𝑘𝑧𝑛

(𝑝)𝐿(𝑝)

2
) sin(𝑘𝑧𝑚𝑠

(𝑝) 𝐿(𝑝)

2
)

𝑘𝑧𝑛
(𝑝)2

−𝑘𝑧𝑚𝑠
(𝑝) 2

] +

𝐿(𝑝)

2
∑ 𝐵𝑛𝑠

(𝑝) {[𝑐11
𝐸 𝛷𝑛𝑠𝑘𝑟𝑛𝑠

(𝑝) + (𝑐13
𝐸 + 𝑒31𝛾𝑛𝑠)𝑘𝑧𝑛

(𝑝)] 𝐽0 (𝑘𝑟𝑛𝑠
(𝑝)𝑎) +

𝑐12
𝐸 −𝑐11

𝐸

𝑎
𝛷𝑛𝑠 𝐽1 (𝑘𝑟𝑛𝑠

(𝑝)𝑎)}3
𝑠=1 =

∫ 𝑇̂𝑟𝑟
(𝑝)
cos (𝑘𝑧𝑛

(𝑝)𝑧) 𝑑𝑧 = 0
𝐿(𝑝)/2

−𝐿(𝑝)/2
  for  𝑛 =  1, 2, 3, … 𝑀𝑧,    (4.33b) 

and multiplying 𝑇̂𝑟𝑟
(𝑝)
= 0 by sin (𝐾𝑧𝑛

(𝑐)
𝑧), and integrating over z yields 

−𝑃(𝑝)2 (𝑐13
𝐸 +

𝑒31𝑒33

𝜀33
𝑆 ) 𝑘𝑧0 [

𝑘𝑧0sin(𝐾𝑧𝑛
(𝑝)𝐿(𝑝)

2
) cos(𝑘𝑧0

𝐿(𝑝)

2
)−𝐾𝑧𝑛

(𝑝)
cos(𝐾𝑧𝑛

(𝑝)𝐿(𝑝)

2
) sin(𝑘𝑧0

𝐿(𝑝)

2
)

𝐾𝑧𝑛
(𝑝)2

−𝑘𝑧0
2

] +

∑ ∑ 𝑃𝑚𝑠
(𝑝) [𝑐11

𝐸 𝜈𝑚𝑠𝑘𝑟𝑚
(𝑝) − (𝑐13

𝐸 +3
𝑠=1

𝑀𝑟
𝑚=1

𝑒31𝜉𝑚𝑠)𝑘𝑧𝑚𝑠
(𝑝) ] 𝐽0(𝑘𝑟𝑚𝑎) 2 [

𝑘𝑧𝑚𝑠
(𝑝)

sin(𝐾𝑧𝑛
(𝑝)𝐿(𝑝)

2
)cos(𝑘𝑧𝑚𝑠

(𝑝) 𝐿(𝑝)

2
)−𝐾𝑧𝑛

(𝑝)
cos(𝑘𝑧𝑛

(𝑝)𝐿(𝑝)

2
)sin(𝑘𝑧𝑚𝑠

(𝑝) 𝐿(𝑝)

2
)

𝐾𝑧𝑛
(𝑝)2

−𝑘𝑧𝑚𝑠
(𝑝) 2

] +

𝐿(𝑝)

2
∑ 𝑄𝑛𝑠

(𝑝) {[𝑐11
𝐸 𝜐𝑛𝑠𝐾𝑟𝑛𝑠

(𝑝) − (𝑐13
𝐸 + 𝑒31𝜗𝑛𝑠)𝐾𝑧𝑛

(𝑝)] 𝐽0 (𝐾𝑟𝑛𝑠
(𝑝)𝑎) +

𝑐12
𝐸 −𝑐11

𝐸

𝑎
𝜐𝑛𝑠 𝐽1 (𝐾𝑟𝑛𝑠

(𝑝)𝑎)}3
𝑠=1 =

∫ 𝑇̂𝑟𝑟
(𝑝)
sin (𝐾𝑧𝑛

(𝑝)𝑧) 𝑑𝑧 = 0
𝐿(𝑝)/2

−𝐿(𝑝)/2
 for  𝑛 =  1, 2, 3, … 𝑀𝑞.    (4.33c) 
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Multiplying 𝑇̂𝑟𝑟
(𝑒)
= 0 in by 1 and integrating over z yields  

𝐴(𝑒)2𝜆(𝑒) sin (𝑘1
(𝑒) 𝐿

(𝑒)

2
) + 𝐵(𝑒)𝐿(𝑒) {[𝜆(𝑒) + 2𝜇(𝑒)]𝑘1

(𝑒)𝐽0(𝑘1
(𝑒)𝑎) −

2𝜇(𝑒)

𝑎
𝐽1(𝑘1

(𝑒)𝑎)} +

∑ ∑ 𝐴𝑚𝑠
(𝑒)2

𝑠=1
𝑀𝑟
𝑚=1 2 (𝜆(𝑒) + [𝜆(𝑒) + 2𝜇(𝑒)]

𝛼𝑚𝑠
(𝑒)
𝑘𝑟𝑚

𝑘𝑧𝑚𝑠
(𝑒) ) 𝐽0(𝑘𝑟𝑚𝑎)sin (𝑘𝑧𝑚𝑠

(𝑒) 𝐿(𝑒)

2
) =

∫ 𝑇̂𝑟𝑟
(𝑒)𝐿(𝑒)/2

−𝐿(𝑒)/2
𝑑𝑧 = 0,                     (4.34a) 

and multiplying 𝑇̂𝑟𝑟
(𝑒)
= 0 by cos (𝑘𝑧𝑛

(𝑐)
𝑧)  and integrating over z yields 

𝐴(𝑒)𝜆(𝑒)𝑘1
(𝑒)2 [

𝑘𝑧𝑛
(𝑒)
sin(𝑘𝑧𝑛

(𝑒)𝐿
(𝑒)

2
)cos(𝑘1

(𝑒)𝐿
(𝑒)

2
)−𝑘1

(𝑒)
cos(𝑘𝑧𝑛

(𝑒)𝐿
(𝑒)

2
)sin(𝑘1

(𝑒)𝐿
(𝑒)

2
)

𝑘𝑧𝑛
(𝑒)2

−𝑘1
(𝑒)2

] +

∑ ∑ 𝐴𝑚𝑠
(𝑒)2

𝑠=1
𝑀𝑟
𝑚=1 {𝜆(𝑒)𝑘𝑧𝑚𝑠

(𝑒) + [𝜆(𝑒) +

2𝜇(𝑒)]𝛼𝑚𝑠
(𝑒)𝑘𝑟𝑚} 𝐽0(𝑘𝑟𝑚𝑎) 2 [

𝑘𝑧𝑛
(𝑒)
sin(𝑘𝑧𝑛

(𝑒)𝐿
(𝑒)

2
) cos(𝑘𝑧𝑚𝑠

(𝑒) 𝐿(𝑒)

2
)−𝑘𝑧𝑚𝑠

(𝑒)
cos(𝑘𝑧𝑛

(𝑒)𝐿
(𝑒)

2
)sin(𝑘𝑧𝑚𝑠

(𝑒) 𝐿(𝑒)

2
)

𝑘𝑧𝑛
(𝑒)2

−𝑘𝑧𝑚𝑠
(𝑒) 2 ] +

𝐿(𝑒)

2
∑ 𝐵𝑛𝑠

(𝑒)2
𝑠=1 {(𝜆(𝑒)𝑘𝑧𝑛

(𝑒) + [𝜆(𝑒) + 2𝜇(𝑒)]𝛽𝑛𝑠
(𝑒)𝑘𝑟𝑛𝑠

(𝑒) )𝐽0(𝑘𝑟𝑛𝑠
(𝑒) 𝑎) −

2𝜇(𝑒)

𝑎
𝛽𝑛𝑠
(𝑒)𝐽1(𝑘𝑟𝑛𝑠

(𝑒) 𝑎)} =

∫ 𝑇̂𝑟𝑟
(𝑒)
cos(𝑘𝑧𝑛

(𝑒)
𝑧)

𝐿(𝑒)/2

−𝐿(𝑒)/2
𝑑𝑧,        for 𝑛 =  1, 2, … ,𝑀𝑧    (4.34b) 

and multiplying 𝑇̂𝑟𝑟
(𝑒)
= 0 by sin(𝐾𝑧𝑛

(𝑒)
𝑧) and integrating over z yields 

−𝑃(𝑒)2𝜆(𝑒)𝑘1
(𝑒) [

𝑘1
(𝑒)
sin(𝐾𝑧𝑛

(𝑒)𝐿
(𝑒)

2
)cos(𝑘1

(𝑒)𝐿
(𝑒)

2
)−𝐾𝑧𝑛

(𝑒)
cos(𝐾𝑧𝑛

(𝑒)𝐿
(𝑒)

2
)sin(𝑘1

(𝑒)𝐿
(𝑒)

2
)

𝐾𝑧𝑛
(𝑒)2

−𝑘1
(𝑒)2

] +

∑ ∑ 𝑃𝑚𝑠
(𝑒)2

𝑠=1
𝑀𝑟
𝑚=1 {−𝜆(𝑒)𝑘𝑧𝑚𝑠

(𝑒) + [𝜆(𝑒) +

2𝜇(𝑒)]𝜍𝑚𝑠
(𝑒)𝑘𝑟𝑚} 𝐽0(𝑘𝑟𝑚𝑎) 2 [

𝑘𝑧𝑚𝑠
(𝑒)

sin(𝐾𝑧𝑛
(𝑒)𝐿

(𝑒)

2
) cos(𝑘𝑧𝑚𝑠

(𝑒) 𝐿(𝑒)

2
)−𝐾𝑧𝑛

(𝑒)
cos(𝐾𝑧𝑛

(𝑒)𝐿
(𝑒)

2
)sin(𝑘𝑧𝑚𝑠

(𝑒) 𝐿(𝑒)

2
)

𝐾𝑧𝑛
(𝑒)2

−𝑘𝑧𝑚𝑠
(𝑒) 2 ] +

𝐿(𝑒)

2
∑ 𝑄𝑛𝑠

(𝑒)2
𝑠=1 {(−𝜆(𝑒)𝐾𝑧𝑛

(𝑒) + [𝜆(𝑒) + 2𝜇(𝑒)]𝜂𝑛𝑠
(𝑒)𝐾𝑟𝑛𝑠

(𝑒))𝐽0(𝑘𝑟𝑛𝑠
(𝑒) 𝑎) −

2𝜇(𝑒)

𝑎
𝜂𝑛𝑠
(𝑒)𝐽1(𝐾𝑟𝑛𝑠

(𝑒)𝑎)} =

∫ 𝑇̂𝑟𝑟
(𝑒)
sin(𝐾𝑧𝑛

(𝑒)𝑧)
𝐿(𝑒)/2

−𝐿(𝑒)/2
𝑑𝑧 = 0 for 𝑛 =  1, 2, … ,𝑀𝑞.                          (4.34c) 
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The boundary conditions on 𝑇̂𝑟𝑧
(𝑐)

, c = p or e are also satisfied in a weighted average 

sense. For the piezoceramic cylinder, multiplying 𝑇̂𝑟𝑧
(𝑝)
= 0 in by 1, cos(𝐾𝑧𝑛

(𝑐)
𝑧) and 

sin(𝑘𝑧𝑛
(𝑐)
𝑧) respectively, and integrating over z yields 

∑ ∑ 𝑄𝑚𝑠
(𝑝)3

𝑠=1
𝑀𝑞
𝑚=1 {𝑐44

𝐸 [−𝐾𝑟𝑚𝑠
(𝑝) + 𝜐𝑚𝑠𝐾𝑧𝑚

(𝑝)] − 𝑒15𝜗𝑚𝑠𝐾𝑟𝑚𝑠
(𝑝) } 𝐽1 (𝐾𝑟𝑚𝑠

(𝑝) 𝑎)
2

𝐾𝑧𝑚
(𝑝) sin (𝐾𝑧𝑚

(𝑝) 𝐿(𝑝)

2
) =

∫ 𝑇̂𝑟𝑧
(𝑝)
𝑑𝑧

𝐿(𝑝)/2

−𝐿(𝑝)/2
  for n = 0,        (4.35a)  

𝐿(𝑝)

2
∑ 𝑄𝑛𝑠

(𝑝)3
𝑠=1 {𝑐44

𝐸 [−𝐾𝑟𝑛𝑠
(𝑝) + 𝜐𝑛𝑠𝐾𝑧𝑛

(𝑝)] − 𝑒15𝜗𝑛𝑠𝐾𝑟𝑛𝑠
(𝑝)} 𝐽1 (𝐾𝑟𝑛𝑠

(𝑝)𝑎) =

∫ 𝑇̂𝑟𝑧
(𝑝)
cos (𝐾𝑧𝑛

(𝑝)𝑧) 𝑑𝑧
𝐿(𝑝)/2

−𝐿(𝑝)/2
    for n=1, 2, …, 𝑀𝑞,                 (4.35b) 

and 

−
𝐿(𝑝)

2
∑ 𝐵𝑛𝑠

(𝑝)3
𝑠=1 {𝑐44

𝐸 [𝑘𝑟𝑛𝑠
(𝑝) + 𝜙𝑛𝑠𝑘𝑧𝑛

(𝑝)] + 𝑒15𝛾𝑛𝑠𝑘𝑟𝑛𝑠
(𝑝) } 𝐽1 (𝑘𝑟𝑛𝑠

(𝑝)𝑎) =

∫ 𝑇̂𝑟𝑧
(𝑝)
sin (𝑘𝑧𝑛

(𝑝)𝑧) 𝑑𝑧
𝐿(𝑝)/2

−𝐿(𝑝)/2
  for n = 1, 2, …, 𝑀𝑧.     (4.35c) 

For the elastic cylinders, the same procedure is followed by using 𝑇̂𝑟𝑧
(𝑒)
= 0, Eq. (4.21), 

and the orthogonality properties in Eq. (2.9) and (2.10). This yields 

∑ ∑ 𝑄𝑚𝑠
(𝑒)2

𝑠=1
𝑀𝑞
𝑚=1 [−𝐾𝑟𝑚𝑠

(𝑒) +𝜂𝑚𝑠
(𝑒)
𝐾𝑧𝑚
(𝑒)] 𝐽1(𝐾𝑟𝑚𝑠

(𝑒) 𝑎)
2

𝐾𝑧𝑚
(𝑒) sin (𝐾𝑧𝑚

(𝑒) 𝐿(𝑒)

2
) = ∫ 𝑇̂𝑟𝑧

(𝑒)
𝑑𝑧

𝐿(𝑒)/2

−𝐿(𝑒)/2
  

for n = 0,          (4.36a) 

𝜇(𝑒)
𝐿(𝑒)

2
∑ 𝑄𝑛𝑠

(𝑒)2
𝑠=1 [−𝐾𝑟𝑛𝑠

(𝑒) + 𝜂𝑛𝑠
(𝑒)
𝐾𝑧𝑛
(𝑒)] 𝐽1 (𝐾𝑟𝑛𝑠

(𝑝)𝑎) = ∫ 𝑇̂𝑟𝑧
(𝑒)
cos(𝐾𝑧𝑛

(𝑒)𝑧) 𝑑𝑧
𝐿(𝑒)/2

−𝐿(𝑒)/2
         

for n=1, 2, …, 𝑀𝑞,          (4.36b) 

and  

𝜇(𝑒)
𝐿(𝑒)

2
∑ 𝐵𝑛𝑠

(𝑒)2
𝑠=1 [𝑘𝑟𝑛𝑠

(𝑒) + 𝛽𝑛𝑠
(𝑒)
𝑘𝑧𝑛
(𝑒)] 𝐽1 (𝑘𝑟𝑛𝑠

(𝑝)𝑎) = ∫ 𝑇̂𝑟𝑧
(𝑒)
sin(𝑘𝑧𝑛

(𝑒)𝑧) 𝑑𝑧
𝐿(𝑒)/2

−𝐿(𝑒)/2
            

for n = 1, 2, ..., 𝑀𝑧.              (4.36c) 

 Continuity Conditions 

The classical Langevin transducer has two flat interfaces in addition to the boundary 

surfaces; one is between the bottom elastic and middle piezoceramic cylinders and the other 

is between the piezoceramic and top elastic cylinders. The continuity of the axial and radial 
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displacements and the normal and shear components of stress are used to build the model 

of the Langevin transducer. In order to satisfy the continuity conditions, the stresses and 

displacements are equated at the corresponding interfaces. At the bottom interface between 

the bottom elastic and middle piezoceramic cylinder, the following conditions are satisfied 

for |𝑟| ≤ 𝑎: 

{
 
 

 
 𝑈̅

(1)

𝑊̅(1)

𝑇̅𝑧𝑧
(1)

𝑇̅𝑟𝑧
(1)
}
 
 

 
 

𝑧=𝐿(1)/2

=

{
 
 

 
 𝑈̅

(𝑝)

𝑊̅(𝑝)

𝑇̅𝑧𝑧
(𝑝)

𝑇̅𝑟𝑧
(𝑝)
}
 
 

 
 

𝑧=−𝐿(𝑝)/2

.                                                                               (4.37) 

Similarly, at the top interface between the piezoceramic and top elastic cylinders, the 

following conditions are satisfied for|𝑟| ≤ 𝑎: 

{
 
 

 
 𝑈̅

(𝑝)

𝑊̅(𝑝)

𝑇̅𝑧𝑧
(𝑝)

𝑇̅𝑟𝑧
(𝑝)
}
 
 

 
 

𝑧=𝐿(𝑝)/2

=

{
 
 

 
 𝑈̅

(3)

𝑊̅(3)

𝑇̅𝑧𝑧
(3)

𝑇̅𝑟𝑧
(3)
}
 
 

 
 

𝑧=−𝐿(3)/2

.                               (4.38) 

All the continuity equations are satisfied in a weighted average sense and they are 

simplified by using the orthogonal properties of the Bessel functions in the sets.  

4.4.2.1 Continuity of Displacement  

Multiplying the continuity condition for the axial displacement, 𝑈,  by 𝑟𝐽0(𝑘𝑟𝑛𝑟), 

integrating over 𝑟, and using the orthogonal properties of 𝐽0(𝑘𝑟𝑛𝑟) yields weighted average 

equations for 𝑛 =  0, 1, 2, ….This is done in two steps.  In the first step, performing the 

above operations on the functions on either side of the equations yields the following 

intermediate equations for arbitrary 𝑧. In the second step, the weighted average continuity 

conditions are obtained by equating the appropriate intermediate equations evaluated at 

appropriate specific values of z. 

The continuity condition for 𝑈 is presented first. The expression for 𝑈(𝑝) in the 

piezoelectric cylinder is in Eq. (4.6). Performing the multiplication and integration 

operations yields, for arbitrary z,  

𝐴(𝑝)
𝑎2

2
sin(𝑘𝑧0𝑧) + 𝑃

(𝑝) 𝑎
2

2
cos(𝑘𝑧0𝑧) + ∑ ∑ 𝑄𝑚𝑠

(𝑝)3
𝑠=1

𝑀𝑞
𝑚=1 cos (𝐾𝑧𝑚

(𝑝)𝑧)
𝑎

𝐾𝑟𝑚𝑠
(𝑝) 𝐽1 (𝐾𝑟𝑚𝑠

(𝑝) 𝑎) =

∫ 𝑈̅(𝑝)𝑟𝑑𝑟
𝑎

0
  for 𝑛 = 0                    (4.39a) 

and 
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𝑎2

2
𝐽0
2(𝑘𝑟𝑛𝑎)∑ 𝐴𝑛𝑠

(𝑝)3
𝑠=1 sin (𝑘𝑧𝑛𝑠

(𝑝)
𝑧) +

𝑎2

2
𝐽0
2(𝑘𝑟𝑛𝑎)∑ 𝑃𝑛𝑠

(𝑝)3
𝑠=1 cos (𝑘𝑧𝑛𝑠

(𝑝)
𝑧) +

∑ ∑ 𝑄𝑚𝑠
(𝑝)3

𝑠=1
𝑀𝑞
𝑚=1 cos (𝐾𝑧𝑚

(𝑝)𝑧)𝐾𝑟𝑚𝑠
(𝑝) 𝑎

𝐽0(𝑘𝑟𝑛𝑎)𝐽1(𝐾𝑟𝑚𝑠
(𝑝)

𝑎)

𝐾𝑟𝑚𝑠
(𝑝) 2

−𝑘𝑟𝑛
2

= ∫ 𝑈̅(𝑝)𝑟𝐽0(𝑘𝑟𝑛𝑟)𝑑𝑟
𝑎

0
      

for 𝑛 = 1, 2, … ,𝑀𝑟.                    (4.39b) 

For elastic cylinders, multiplication of 𝑈(𝑒) in Eq. (4.15) by 𝑟𝐽0(𝑘𝑟𝑛𝑟), 𝑒 = 1,3 and 

integrating with respect to r yields: 

𝐴(𝑒)
𝑎2

2
sin(𝑘1

(𝑒)
𝑧) + 𝑃(𝑒)

𝑎2

2
cos(𝑘1

(𝑒)
𝑧) + ∑ ∑ 𝑄𝑚𝑠

(𝑒)2
𝑠=1

𝑀𝑞
𝑚=1 cos(𝐾𝑧𝑚

(𝑒)𝑧)
𝑎

𝐾𝑟𝑚𝑠
(𝑒) 𝐽1(𝐾𝑟𝑚𝑠

(𝑒) 𝑎) =

∫ 𝑈̅(𝑒)𝑟𝑑𝑟
𝑎

0
 for n = 0                      (4.40a) 

and 

𝑎2

2
𝐽0
2(𝑘𝑟𝑛𝑎)∑ 𝐴𝑛𝑠

(𝑒)2
𝑠=1 sin(𝑘𝑧𝑛𝑠

(𝑒)
𝑧) +

𝑎2

2
𝐽0
2(𝑘𝑟𝑛𝑎)∑ 𝑃𝑛𝑠

(𝑒)𝑒
𝑠=1 cos(𝑘𝑧𝑛𝑠

(𝑒)
𝑧) +

∑ ∑ 𝑄𝑚𝑠
(𝑒)2

𝑠=1
𝑀𝑞
𝑚=1 cos(𝐾𝑧𝑚

(𝑒)𝑧)𝐾𝑟𝑚𝑠
(𝑒) 𝑎

𝐽0(𝑘𝑟𝑛𝑎)𝐽1(𝐾𝑟𝑚𝑠
(𝑒)

𝑎)

𝐾𝑟𝑚𝑠
(𝑒) 2

−𝑘𝑟𝑛
2

= ∫ 𝑈̅(𝑒)𝑟𝐽0(𝑘𝑟𝑛𝑟)𝑑𝑟
𝑎

0
        

for 𝑛 = 1, 2, … ,𝑀𝑟.                    (4.40b) 

  The continuity condition on 𝑈 at the interface between the bottom elastic cylinder and 

the piezoelectric cylinder is obtained by using 𝑧 = −𝐿(2)/2 in Eq. (4.39) and 𝑧 =  𝐿(1)/2  

in Eq. (4.40) and equating them. Similarly, the continuity condition on 𝑈 at the interface 

between the piezoelectric cylinder and the top elastic cylinder is obtained by using 

𝑧 =  𝐿(2)/2  in Eq. (4.39) and 𝑧 = −𝐿(3)/2  in Eq. (4.40) and equating them. 

The continuity of the radial displacement 𝑊 at the interfaces is also satisfied in a 

similar manner. It is satisfied by using the orthogonal property of 𝐽1(𝑘𝑟𝑛𝑟) in Eq. (4.22). In 

the first step, the following intermediate equations are obtained by multiplying the 

expressions for 𝑊 for the piezoceramic and elastic cylinders in Eqs. (4.6) and (4.15), 

respectively, by 𝑟𝐽1(𝑘𝑟𝑛𝑟) and integrating with respect to r: 

𝐵(𝑝)𝑘𝑟𝑛𝑎
𝐽0(𝑘𝑟𝑛𝑎)𝐽1(𝑘𝑟0𝑎)

𝑘𝑟0
2−𝑘𝑟𝑛

2 +
𝑎2

2
𝐽0
2(𝑘𝑟𝑛𝑎)∑ 𝐴𝑛𝑠

(𝑝)𝜓𝑛𝑠 cos (𝑘𝑧𝑛𝑠
(𝑝)𝑧)3

𝑠=1 +

∑ ∑ 𝐵𝑚𝑠
(𝑝)3

𝑠=1
𝑀𝑧
𝑚=1 𝜙𝑚𝑠 cos (𝑘𝑧𝑚

(𝑝)𝑧) 𝑘𝑟𝑛
(𝑝)𝑎

𝐽0(𝑘𝑟𝑛𝑎)𝐽1(𝑘𝑟𝑚𝑠
(𝑝)

𝑎)

𝑘𝑟𝑚𝑠
(𝑝) 2

−𝑘𝑟𝑛
2

−

𝑎2

2
𝐽0
2(𝑘𝑟𝑛𝑎)∑ 𝑃𝑛𝑠

(𝑝)𝜈𝑛𝑠 sin (𝑘𝑧𝑛𝑠
(𝑝)𝑧) +3

𝑠=1   
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∑ ∑ 𝑄𝑚𝑠
(𝑝)3

𝑠=1
𝑀𝑧
𝑚=1 𝜐𝑚𝑠 sin (𝐾𝑧𝑚

(𝑝)𝑧) 𝑘𝑟𝑛
(𝑝)𝑎

𝐽0(𝑘𝑟𝑛𝑎)𝐽1(𝐾𝑟𝑚𝑠
(𝑝)

𝑎)

𝐾𝑟𝑚𝑠
(𝑝) 2

−𝑘𝑟𝑛
2

= ∫ 𝑊̅(𝑝)𝑟𝐽1(𝑘𝑟𝑛𝑟)𝑑𝑟
𝑎

0
 for 𝑛 =

1, 2, … ,𝑀𝑟                                                                                                                                          (4.41) 

for the piezoceramic cylinder, and   

𝐵(𝑒)𝑘𝑟𝑛
(𝑒)𝑎

𝐽0(𝑘𝑟𝑛𝑎)𝐽1(𝑘1
(𝑒)
𝑎)

𝑘1
(𝑒)2

−𝑘𝑟𝑛
2

+
𝑎2

2
𝐽0
2(𝑘𝑟𝑛𝑎)∑ 𝐴𝑛𝑠

(𝑒)𝛼𝑛𝑠
(𝑒)
cos(𝑘𝑧𝑛𝑠

(𝑒) 𝑧)2
𝑠=1 +

∑ ∑ 𝐵𝑚𝑠
(𝑒)2

𝑠=1
𝑀𝑧
𝑚=1 𝛽𝑚𝑠

(𝑒)
cos(𝑘𝑧𝑚

(𝑒)𝑧) 𝑘𝑟𝑛𝑎
𝐽0(𝑘𝑟𝑛𝑎)𝐽1(𝑘𝑟𝑚𝑠

(𝑒)
𝑎)

𝑘𝑟𝑚𝑠
(𝑒) 2

−𝑘𝑟𝑛
2

+

𝑎2

2
𝐽0
2(𝑘𝑟𝑛𝑎)∑ 𝑃𝑛𝑠

(𝑒)𝜍𝑛𝑠
(𝑒)
sin(𝑘𝑧𝑛𝑠

(𝑒) 𝑧) +2
𝑠=1

∑ ∑ 𝑄𝑚𝑠
(𝑒)2

𝑠=1
𝑀𝑧
𝑚=1 𝜂𝑚𝑠

(𝑒)
sin(𝐾𝑧𝑚

(𝑒)𝑧) 𝑘𝑟𝑛𝑎
𝐽0(𝑘𝑟𝑛𝑎)𝐽1(𝐾𝑟𝑚𝑠

(𝑒)
𝑎)

𝐾𝑟𝑚𝑠
(𝑒) 2

−𝑘𝑟𝑛
2

= ∫ 𝑊̅(𝑒)𝑟𝐽1(𝑘𝑟𝑛𝑟)𝑑𝑟
𝑎

0
 for 𝑛 =

1, 2, … ,𝑀𝑟             (4.42) 

for the elastic cylinders.  

The continuity condition on 𝑊 at the interfaces between the cylinders is obtained by using 

the appropriate values of 𝑧 in Eqs. (4.41) and (4.42) and equating them. 

4.4.2.2 Continuity of Stress  

The normal stress 𝑇𝑧𝑧 and the shear stress 𝑇𝑟𝑧 are also continuous at the two interfaces. 

The weighted average continuity equations are obtained here by following the two steps 

used earlier for continuity of displacements. 

For the piezoceramic cylinder, multiplying the expression for 𝑇𝑧𝑧
(𝑝)

 in Eq. (4.8) by 

𝑟𝐽0(𝑘𝑟𝑛𝑟) and integrating with respect to r yields: 

𝐴(𝑝) (𝑐33
𝐸 +

𝑒33
2

𝜀33
𝑆 ) 𝑘𝑧0

𝑎2

2
cos(𝑘𝑧0𝑧) + 𝐵

(𝑝)𝑐13
𝐸 𝑎 𝐽1(𝑘𝑟0𝑎) + 𝐷𝑒33

𝑎2

2
− 𝑃(𝑝) (𝑐33

𝐸 +

𝑒33
2

𝜀33
𝑆 ) 𝑘𝑧0

𝑎2

2
sin(𝑘𝑧0𝑧) + ∑ ∑ 𝐵𝑚𝑠

(𝑝) {𝑐13
𝐸 𝜙𝑚𝑠𝑘𝑟𝑚𝑠

(𝑝) + (𝑐33
𝐸 +3

𝑠=1
𝑀𝑧
𝑚=1

𝑒33𝛾𝑚𝑠)𝑘𝑧𝑚
(𝑝)}

𝑎

𝑘𝑟𝑚𝑠
(𝑝) 𝐽1 (𝑘𝑟𝑚𝑠

(𝑝) 𝑎) cos (𝑘𝑧𝑚
(𝑝)𝑧) + ∑ ∑ 𝑄𝑚𝑠

(𝑝) {𝑐13
𝐸 𝜐𝑚𝑠𝐾𝑟𝑚𝑠

(𝑝) − (𝑐33
𝐸 +3

𝑠=1
𝑀𝑞
𝑚=1

𝑒33𝜗𝑚𝑠)𝐾𝑧𝑚
(𝑝)}

𝑎

𝐾𝑟𝑚𝑠
(𝑝) 𝐽1 (𝐾𝑟𝑚𝑠

(𝑝) 𝑎) sin (𝐾𝑧𝑚
(𝑝)𝑧) = ∫ 𝑇̅𝑧𝑧

(𝑝)
𝑟𝑑𝑟

𝑎

0
 for n = 0                          (4.43a) 

and 
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𝐵(𝑝)𝑐13
𝐸 𝑘𝑟0

2𝑎
𝐽0(𝑘𝑟𝑛𝑎) 𝐽1(𝑘𝑟0𝑎)

𝑘𝑟0
2−𝑘𝑟𝑛

2 +
𝑎2

2
𝐽0
2(𝑘𝑟𝑛𝑎)∑ 𝐴𝑛𝑠

(𝑝)3
𝑠=1 {𝑐13

𝐸 𝜓𝑛𝑠𝑘𝑟𝑛 + (𝑐33
𝐸 +

𝑒33𝜒𝑛𝑠)𝑘𝑧𝑛𝑠
(𝑝) } cos (𝑘𝑧𝑛𝑠

(𝑝)𝑧) + ∑ ∑ 𝐵𝑚𝑠
(𝑝) {𝑐13

𝐸 𝜙𝑚𝑠𝑘𝑟𝑚𝑠
(𝑝) + (𝑐33

𝐸 +3
𝑠=1

𝑀𝑧
𝑚=1

𝑒33𝛾𝑚𝑠)𝑘𝑧𝑚
(𝑝)}

𝑘𝑟𝑚𝑠
(𝑝)

𝑎

𝑘𝑟𝑚𝑠
(𝑝) 2

−𝑘𝑟𝑛
2
𝐽0(𝑘𝑟𝑛𝑎) 𝐽1 (𝑘𝑟𝑚𝑠

(𝑝) 𝑎) cos (𝑘𝑧𝑚
(𝑝)𝑧) +

𝑎2

2
𝐽0
2(𝑘𝑟𝑛𝑎)∑ 𝑃𝑛𝑠

(𝑝)3
𝑠=1 {𝑐13

𝐸 𝜈𝑛𝑠𝑘𝑟𝑛 − (𝑐33
𝐸 + 𝑒33𝜉𝑛𝑠)𝑘𝑧𝑛𝑠

(𝑝) } sin (𝑘𝑧𝑛𝑠
(𝑝)𝑧) +

∑ ∑ 𝑄𝑚𝑠
(𝑝) {𝑐13

𝐸 𝜐𝑚𝑠𝐾𝑟𝑚𝑠
(𝑝) − (𝑐33

𝐸 +3
𝑠=1

𝑀𝑧
𝑚=1

𝑒33𝜗𝑚𝑠)𝐾𝑧𝑚
(𝑝)}

𝐾𝑟𝑚𝑠
(𝑝)

𝑎

𝐾𝑟𝑚𝑠
(𝑝) 2

−𝑘𝑟𝑛
2
𝐽0(𝑘𝑟𝑛𝑎) 𝐽1 (𝐾𝑟𝑚𝑠

(𝑝) 𝑎) sin (𝐾𝑧𝑚
(𝑝)𝑧) = ∫ 𝑇̅𝑧𝑧

(𝑝)
𝑟 𝐽0(𝑘𝑟𝑛𝑟) 𝑑𝑟

𝑎

0
             

for = 1, 2, … ,𝑀𝑟.         (4.43b) 

For the elastic cylinder, Eqs. (4.30) correspond to Eqs. (4.43) for the piezoceramic cylinder. 

The continuity condition on 𝑇𝑧𝑧  at the interface between the bottom elastic cylinder and 

the piezoelectric cylinder is obtained by using 𝑧 = −𝐿(2)/2 in Eq. (4.43) and 𝑧 = 𝐿(1)/2   

in Eq. (4.30) and equating them. Similarly, the continuity condition on 𝑇𝑧𝑧 at the interface 

between the piezoelectric cylinder and the top elastic cylinder is obtained by using 

𝑧 = 𝐿(2)/2 in Eq. (4.43) and 𝑧 = −𝐿(3)/2   in Eq. (4.30) and equating them. 

The continuity condition on 𝑇𝑟𝑧 is also satisfied by performing the two steps. For the 

piezoceramic cylinder, multiplying 𝑇𝑟𝑧 by 𝑟 𝐽1(𝑘𝑟𝑛𝑟) and integrating with respect to r 

yields the following intermediate equations for arbitrary 𝑧: 

−
𝑎2

2
𝐽0
2(𝑘𝑟𝑛𝑎)∑ 𝐴𝑛𝑠

(𝑝)3
𝑠=1 {𝑐44

𝐸 [𝑘𝑟𝑛 + 𝜓𝑛𝑠𝑘𝑧𝑛𝑠
(𝑝) ] + 𝑒15𝜒𝑛𝑠𝑘𝑟𝑛} sin (𝑘𝑧𝑛𝑠

(𝑝) 𝑧) +

𝑎2

2
𝐽0
2(𝑘𝑟𝑛𝑎)∑ 𝑃𝑛𝑠

(𝑝)3
𝑠=1 {𝑐44

𝐸 [−𝑘𝑟𝑛 + 𝜈𝑛𝑠𝑘𝑧𝑛𝑠
(𝑝) ] − 𝑒15𝜉𝑛𝑠𝑘𝑟𝑛} cos (𝑘𝑧𝑛𝑠

(𝑝) 𝑧) +

∑ ∑ 𝑄𝑚𝑠
(𝑝) {𝑐44

𝐸 [−𝐾𝑟𝑚𝑠
(𝑝) + 𝜐𝑚𝑠𝐾𝑧𝑚

(𝑝)] −3
𝑠=1

𝑀𝑞
𝑚=1

𝑒15𝜗𝑚𝑠𝐾𝑟𝑚𝑠
(𝑝) }

𝑘𝑟𝑛𝑎

𝐾𝑟𝑚𝑠
(𝑝) 2

−𝑘𝑟𝑛
2
𝐽0(𝑘𝑟𝑛𝑎) 𝐽1 (𝐾𝑟𝑚𝑠

(𝑝) 𝑎) cos (𝐾𝑧𝑚
(𝑝)𝑧) = ∫ 𝑇̅𝑟𝑧

(𝑝)
𝑟 𝐽1(𝑘𝑟𝑛𝑟) 𝑑𝑟

𝑎

0
.   

for 𝑛 = 1, 2, … ,𝑀𝑟.   (4.44) 

For the elastic cylinder, Eqs. (4.31) correspond to Eqs. (4.44) for the piezoceramic cylinder. 

The continuity condition on 𝑇𝑟𝑧 at the interfaces between the cylinders is obtained by using 

the appropriate values of 𝑧 in Eqs. (4.44) and (4.31) and equating them. 
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4.5 MATRIX FORM 

In order to compute numerical results, all the boundary and continuity conditions are 

truncated, combined, and expressed in a matrix form as, 

[𝐹]{𝑋} = {𝐺}                                                                                                              (4.45a) 

where  

{𝑋}𝑇

= [𝐴(1), 𝐵(1), 𝑃(1), 𝐴11
(1)
, 𝐴12

(1)
, 𝐴21

(1)
, 𝐴22

(1)
, … , 𝐴𝑀𝑟1

(1) , 𝐴𝑀𝑟2
(1) , 𝐵11

(1), 𝐵12
(1), 𝐵21

(1), 𝐵22
(1), … , 𝐵𝑀𝑧1

(1) , 𝐵𝑀𝑧2
(1) , 

𝑃11
(1)
, 𝑃12

(1)
, … , 𝑃𝑀𝑟1

(1) , 𝑃𝑀𝑟2
(1) , 𝑄11

(1), 𝑄12
(1), … , 𝑄𝑀𝑞1

(1) , 𝑄𝑀𝑞2
(1) , 𝐴(2), 𝐵(2), 𝐷, 𝐸, 𝑃(2), 𝐴11

(2), 𝐴12
(2), 𝐴13

(2), …, 

𝐴𝑀𝑟1
(2) , 𝐴𝑀𝑟2

(2) , 𝐴𝑀𝑟3
(2) , 𝐵11

(2), 𝐵12
(2), 𝐵13

(2), … , 𝐵𝑀𝑧1
(2) , 𝐵𝑀𝑧2

(2) , 𝐵𝑀𝑧3
(2) , 𝑃11

(2), 𝑃12
(2), 𝑃13

(2), … , 𝑃𝑀𝑟1
(2) , 𝑃𝑀𝑟2

(2) , 𝑃𝑀𝑟3
(2)

 

𝑄11
(2), 𝑄12

(2), 𝑄13
(2), … , 𝑄𝑀𝑞1

(2) , 𝑄𝑀𝑞2
(2) , 𝑄𝑀𝑞3

(2) , 𝐴(1), 𝐵(1), 𝑃(1), 𝐴11
(3), 𝐴12

(3), … , 𝐴𝑀𝑟1
(3) , 𝐴𝑀𝑟2

(3) , 𝐵11
(3), 𝐵12

(3), …, 

𝐵𝑀𝑧1
(3) , 𝐵𝑀𝑧2

(3) , 𝑃11
(3)
, 𝑃12

(3)
, … , 𝑃𝑀𝑟1

(3) , 𝑃𝑀𝑟2
(3) , 𝑄11

(3), 𝑄12
(3), … , 𝑄𝑀𝑞1

(3) , 𝑄𝑀𝑞2
(3) ]              (4.45b) 

is a column matrix of coefficients that are to be determined, [𝐹]is a square matrix of size 

[14𝑀𝑟+7𝑀𝑧+7𝑀𝑞+14], and 𝑀𝑟, 𝑀𝑧, and 𝑀𝑞 are the number of terms in the series solutions. 

The elements of the column matrix {𝐺} are non-zero only when the corresponding boundary 

conditions on the surfaces are non-zero. In the special case mentioned here, the only  

non-zero element of {𝐺} is 

𝐺𝑀𝑟+2 = ∫ ∅0𝑟𝑑𝑟 =
𝑎

0
∅0

𝑎2

2
.          (4.46) 

Solving Eq. (4.45) for {𝑋}, yields the coefficients and the parameters of interest are 

then determined by using Eqs. (4.6), (4.8) – (4.21). It is noted that the number of equations 

is equal to the number of coefficients in Eq. (4.45) irrespective of the values of 𝑀𝑟, 𝑀𝑧, and 

𝑀𝑞.  

4.6 NUMERICAL RESULTS AND SPECIAL CASES 

Numerical results are presented for four different Langevin transducers and are 

compared with those computed using ATILA to illustrate the accuracy of the analytical 

model. Values of certain critical frequencies, the input electrical admittance, displacement 
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and stresses are presented. In ATILA, second order, axisymmetric, rectangular elements 

are used. The elements used are equisized. The results are computed using 𝐼 × 𝐽 elements, 

i.e. I elements in the axial direction and J elements in the radial direction. The number of 

finite elements that is necessary for accurate analysis depends on the frequency and spatial 

distribution of the excitation and is determined through convergence studies. Convergence 

is illustrated for one of the transducers. All the ATILA results presented in this report are 

computed with I=J=40 unless specified. 

A PZT 4 piezoceramic cylinder of length 10 mm is used in all the Langevin transducers 

considered and the properties of PZT 4 are shown in Table 2.1. In this analysis, losses are 

considered only for the piezoceramic cylinder.  

The Young’s modulus 𝑌, Poisson’s ratio 𝜎, and density ρ, of the elastic cylinder (steel) 

are 200 GPa, 0.3, and 7800 kg/m3 respectively, i.e., the Lame’s constants are 𝜆 ≈ 115.38 

GPa and 𝜇 ≈76.923 GPa. Similarly, the Young’s modulus, 𝑌, Poisson’s ratio 𝜎, and density 

𝜌, of the elastic cylinder (Aluminium) are 71 GPa, 0.33, and 2700 kg/m3 respectively,  

i.e., the Lame’s constants are 𝜆 ≈ 51.813 GPa and 𝜇 ≈ 26.692 GPa.  

Numerical results are presented for four different Langevin transducers with stress-free 

boundary conditions. Details of the four transducers are shown in Table 4.1. In all the cases, 

both elastic and piezoceramic cylinders are of radius 5 mm and the bottom elastic cylinder 

is of Steel. In case 1, the piezoelectric cylinder is sandwiched between two elastic steel 

cylinders. All the three cylinders have the same length, 10 mm. In the second case, the 

length of the top elastic steel cylinder is reduced to 5 mm. The third transducer has an 

Aluminium head of length 10 mm and in case 4, the length of the Aluminium head is 

reduced to 5 mm. In all the cases, the critical frequencies associated with each transducer 

are computed in the neighborhood of the first three resonances. The critical frequencies 

𝑓𝑠, 𝑓−1/2𝑠, and 𝑓1/2𝑠 and the corresponding electrical parameters at these frequencies 𝐺𝑚𝑎𝑥 , 

𝐵𝑚𝑎𝑥, and 𝐵𝑚𝑖𝑛, respectively, are computed using the present method and by ATILA and 

are shown in tables. The percentage error is also shown. In all the figures, a solid line is 

used to show the values computed using the present method and dots are used to show those 

computed using ATILA, unless specified.  
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Table 4.1. Different cases considered for the analysis. 

Case No. Elastic Cylinder  

(Bottom) 

Piezoceramic 

Cylinder 

Elastic Cylinder 3 

(Top) 

1 

Length, L1=10 mm 

Radius, a = 5 mm 

Material: Steel 

 

Length, L2= 10 mm 

Radius, a = 5 mm 

Material: PZT 4 

 

Length, L3 = 10 mm 

Radius, a = 5 mm 

Material: Steel 

2 

Length, L3 = 5 mm 

Radius, a = 5 mm 

Material: Steel 

3 

Length, L3 = 10 mm 

Radius, a = 5 mm 

Material: Aluminium 

4 

Length, L3 = 5 mm 

Radius, a = 5 mm 

Material: Aluminium 

 

 Case 1 

As mentioned in Table 4.1, in the first case considered, the piezoelectric cylinder is 

sandwiched between two elastic steel cylinders. All the three cylinders have the same 

length 10 mm. The stress is zero at the free ends of the elastic cylinders and at the curved 

surface of each cylinder. The transducer is symmetric. The critical frequencies are shown 

in Table 4.2. Analytical results are computed using 𝑀𝑟= 𝑀𝑧= 𝑀𝑞=10. 

The critical frequencies in the neighborhood of the first three resonances are in good 

agreement with those computed using ATILA. The first resonance of the transducer where 

G has a maximum is at 55.66 kHz by present approach and ATILA shows it is at  

55.65 kHz. In the neighborhood of this resonance, four significant digits of the critical 

frequencies and three significant digits of the admittance are shown in Table 4.1. The 

maximum percentage error in the critical frequencies and admittance is 0.02%. In the 

neighborhood of the second resonance, the maximum error in the critical frequencies is 

0.02% but the error in the admittance is about 0.4%.  𝑀𝑟= 𝑀𝑧= 𝑀𝑞=10 is used to generate 

the analytical results. The conductance (G) and susceptance (B) of the transducer are shown 

in Fig. 4.2(a) and 4.2(b), respectively. The results are shown upto 500 kHz with 1 kHz 

resolution and the agreement between analysis and ATILA is very good in the entire band. 

All the peaks in G are clearly predicted by the present method. 
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Table 4.2. Critical frequencies and 𝐺 and B values of the transducer in Case 1. 

Resonance Method 
𝑓𝑠 

(kHz) 

𝐺𝑚𝑎𝑥 

(mS) 

𝑓−1/2𝑠 

(kHz) 

𝐵𝑚𝑎𝑥 

(mS) 

𝑓1/2𝑠 

(kHz) 

𝐵𝑚𝑖𝑛 

(mS) 

 

First 

ATILA 55.65 2.88 55.54 1.45 55.76 -1.43 

Present Method 55.66 2.88 55.54 1.45 55.77 -1.43 

% Error 0.02 0 0 0 0.02 0 

 

Second 

ATILA 205.61 5.04 205.49 2.58 205.74 -2.46 

Present Method 205.65 5.02 205.52 2.57 205.77 -2.45 

% Error 0.02 -0.39 0.01 -0.39 0.01 -0.41 

 

Third 

ATILA 269.68 0.02 269.26 0.08 270.08 0.06 

Present Method 269.71 0.02 269.29 0.08 270.11 0.06 

% Error 0.01 0 0.01 0 0.01 0 

 

  

Fig. 4.2. (a) Conductance (G) and (b) Susceptance (B) of the transducer in Case 1. Solid 

line: Present Method and Dots: ATILA. 

 

The axial displacement, 𝑈, along the axis of the transducer (𝑟 =  0, −𝐿(1)/2 ≤  𝑧 ≤

 𝐿(3)/2) at the first resonance frequency, 55.66 kHz, is shown in Fig. 4.3. The real and 

imaginary parts of 𝑈 are shown in Fig. 4.3(a) and 4.3(b) respectively. In Fig. 4.3, zero on 
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the x-axis is the axial center of the Langevin transducer, i.e. the center of the piezoceramic 

cylinder on the axis; the negative value on the left side represents the center of the bottom 

flat surface of the bottom elastic cylinder and that on the right end corresponds to the center 

of top flat surface of the top elastic cylinder. The real and imaginary parts of the 

displacement are in very good agreement with ATILA values. As the transducer is 

symmetric about the middle plane of the piezoceramic cylinder, the real and imaginary 

parts are anti-symmetric about zero - as seen in Fig. 4.3. 

 

 

 

Fig. 4.3. (a) Real and (b) imaginary parts of the axial displacement, 𝑈, on the axis of the 

transducer at its first resonance frequency, 55.66 kHz. Solid line: Present Method and 

Dots: ATILA. 

 

 Case 2 

The Langevin transducer in case 2 has a lighter head than in case 1. Here, the length of 

the steel head is reduced to 5 mm and the tail is 10 mm.  The transducer is not symmetric.  

The critical frequencies and the corresponding G-B values are shown in Table 4.3.  

The percentage errors between the analytical and ATILA values are also shown in 

Table 4.3. The present method predicts the first resonance frequency with a percentage 

error of 0.02. The corresponding 𝐺 value differs from ATILA by 0.3%. The rest of the 

critical frequencies and associated 𝐵 values are computed with zero percent error in the 

neighborhood of the first resonance. The maximum percentage error in critical frequencies 
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is 0.07 and that in the corresponding G-B values is less than 3%, which occurs in the 

neighborhood of the third resonance frequency. 

Table 4.3. Critical frequencies and G and B values of the transducer in Case 2. 

Resonance Method 
𝑓𝑠 

(kHz) 

𝐺𝑚𝑎𝑥 

(mS) 

𝑓−1/2𝑠 

(kHz) 

𝐵𝑚𝑎𝑥 

(mS) 

𝑓1/2𝑠 

(kHz) 

𝐵𝑚𝑖𝑛 

(mS) 

 

First 

ATILA 65.41 3.38 65.28 1.71 65.55 -1.68 

Present Method 65.42 3.39 65.28 1.71 65.55 -1.68 

% Error 0.02 0.30 0 0 0 0 

 

Second 

ATILA 172.32 1.32 172.17 0.71 172.47 -0.61 

Present Method 172.36 1.32 172.21 0.71 172.51 -0.61 

% Error 0.02 0 0.02 0 0.02 0 

 

Third 

ATILA 229.67 0.64 229.38 0.38 229.95 -0.26 

Present Method 229.81 0.65 229.53 0.39 230.09 -0.26 

% Error 0.06 1.56 0.07 2.63 0.06 0 

 

 

  

Fig. 4.4. (a) Conductance (G) and (b) Susceptance (B) of the Langevin transducer in 

Case 2. Solid line: ATILA and Dots: Present Method. 
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The conductance (G) and susceptance (B) of this transducer are shown in Fig. 4.4 upto 

500 kHz with 1 kHz resolution. The y-axis values are shown in log scale. There is good 

agreement at all frequencies. 𝑀𝑟 = 𝑀𝑧 = 𝑀𝑞=5 is used to compute model values. 

 

The axial displacement at the center of the piezoelectric ceramic cylinder on the axis  

(𝑧 = 0, 𝑟 = 0 on the PZT cylinder) of the transducer is shown in Fig. 4.5. The real part is 

shown in Fig. 4.5(a) and imaginary part is shown in Fig. 4.5(b). The results are shown upto 

300 kHz. The displacement pattern does not have any symmetry as the transducer is not 

symmetric. Both real and imaginary parts and hence the absolute values of the displacement 

are in good agreement at all frequencies. 

 Case 3 

In case 3, the transducer is similar to that in case 1 except for the head mass. This 

transducer has an Aluminium head. Both the Aluminium head and steel tail are of length 

10 mm. Because this has a lighter head mass and heavier tail mass, this transducer is 

analyzed extensively. The critical frequencies and corresponding 𝐺-𝐵 values for this 

transducer are shown in Table 4.4. 

 

  

Fig. 4.5. (a) Real and (b) imaginary parts of the axial displacement 𝑈 at the centre of the 

PZT cylinder of the asymmetric transducer in Case 2. Solid line: Present Method  

and Dots: ATILA. 



 

103 

 

      

      

Table 4.4. Critical frequencies and 𝐺 and 𝐵 values of the transducer in Case 3. 

Resonance Method 
𝑓𝑠 

(kHz) 

𝐺𝑚𝑎𝑥
(mS) 

𝑓−1/2𝑠 

(kHz) 

𝐵𝑚𝑎𝑥
(mS) 

𝑓1/2𝑠 

(kHz) 

𝐵𝑚𝑖𝑛 

(mS) 

 

First 

ATILA 67.00 3.51 66.86 1.77 67.13 -1.74 

Present Method 67.00 3.51 66.87 1.77 67.13 -1.74 

% Error 0 0 0.01 0 0 0 

 

Second 

ATILA 146.53 0.23 146.46 0.17 146.61 -0.06 

Present Method 146.54 0.23 146.47 0.16 146.62 -0.06 

% Error 0.01 0 0.01 -5.9 0.01 0 

 

Third 

ATILA 198.67 5.03 198.53 2.57 198.82 -2.46 

Present Method 198.71 5.02 198.57 2.57 198.86 -2.45 

% Error 0.02 -0.2 0.02 0 0.02 0.41 

 

  

Fig. 4.6(a) Conductance (G) and (b) susceptance (B) of the transducer in Case 3. 

Solid line: ATILA and Dots: Present Method. 

 

The critical frequencies in the neighborhood of the first and second resonances, 

computed using ATILA and the present method, are the same upto 4 significant digits. The 

values of 𝐺 and 𝐵 at the critical frequencies, in the neighborhood of the first resonance, are 
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the same upto 3 significant digits. The errors are shown upto the third resonance.  

The conductance (𝐺) and susceptance (𝐵) of this transducer upto 500 kHz are shown in  

Fig. 4.6(a) and 4.6(b) respectively. Analytical results are computed using 

 𝑀𝑟 = 𝑀𝑧 = 𝑀𝑞=10. The agreement between present method and ATILA is very good in 

the entire band. 

The convergence of ATILA result is shown in Table 4.5 for this particular transducer. 

The conductance (G) and susceptance (B) values are shown at some spot frequencies of 

100, 200, …, 500 kHz for different mesh densities. In ATILA, I and J values specify the 

mesh densities; the increase in which increases the mesh density. The results are shown for 

I=J=20, 40, and 80. The conductance and susceptance of the transducer computed 

analytically using various 𝑀𝑟, 𝑀𝑧, and 𝑀𝑞  values are shown in Table 4.5. The total number 

of coefficients to be determined, is, for example, 154 when 𝑀𝑟 = 𝑀𝑧 = 𝑀𝑞=5.  

In Table 4.5, the 𝐺-𝐵 values have not converged with 𝑀𝑟 = 𝑀𝑧 = 𝑀𝑞=5. But, most of them 

have converged with 𝑀𝑟 = 𝑀𝑧 = 𝑀𝑞=10 as further increase of 𝑀𝑟, 𝑀𝑧, and 𝑀𝑞 to 15 does 

not result in any significant changes in the values. It is clear from table that, ATILA values 

have converged with I=J=40. 

Table 4.5. Convergence studies for the transducer in Case 3. 

𝐺 (µS) 

ATILA Present Method 

Frequency 

(kHz) 
I=J=20 I=J=40 I=J=80 

𝑀𝑟 = 𝑀𝑧 =

𝑀𝑞=5 

𝑀𝑟 = 𝑀𝑧 =

 𝑀𝑞= 10 

𝑀𝑟 = 𝑀𝑧 =

 𝑀𝑞= 15 

100 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

200 0.0619 0.0618 0.0617 0.0748 0.0655 0.0646 

300 0.0013 0.0012 0.0012 0.0030 0.0015 0.0015 

400 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 

500 0.0019 0.0020 0.0020 0.0017 0.0019 0.0019 

𝐵 (µS) 

100 0.0195 0.0195 0.0195 0.0195 0.0195 0.0195 

200 -0.4952 -0.4948 -0.4948 -0.5481 -0.5106 -0.5038 

300 0.0781 0.0782 0.0782 0.0763 0.0777 0.0777 

400 0.1100 0.1100 0.1100 0.1100 0.1100 0.1100 

500 0.1616 0.1619 0.1619 0.1601 0.1612 0.1612 
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Fig. 4.7. Case 3. Contributions of terms associated with coefficients shown in the 

legend to the normal stress component 𝑇𝑧𝑧 at the top flat surface of the piezoceramic 

cylinder at 67 kHz. 

 

The contribution of various terms, in the expression for 𝑇𝑧𝑧  of the piezoceramic cylinder 

in Eq. (4.8), to the total stress 𝑇𝑧𝑧 on the top flat surface of the piezoceramic cylinder is 

shown in Fig. 4.7 at the first resonance frequency of the transducer, i.e. at 67 kHz. There 

are 6Mr+3Mz + 3Mq + 5 coefficients for the piezoceramic cylinder alone. All the coefficients 

except 𝐸, are present in the expression of 𝑇𝑧𝑧 of the piezoceramic cylinder. The total stress 

computed using the analytical method is in good agreement with that computed using 

ATILA. It is nearly uniform on the surface and approximately equal to 250 kN/m2. The 

contributions by various terms are also nearly independent of 𝑟. The legend shows the 

contributions in descending order. The contributions from the 𝐴(2) and 𝐵(2) terms are very 
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large and of opposite sign. The absolute values of stress due to these terms are greater than 

the total stress. The sums of contributions from 𝑃𝑚𝑠
(2)

; m = 1,2,…, 𝑀𝑟,  and 𝑄𝑚𝑠
(2)

; m = 1,2,…, 

𝑀𝑞 and s=1, 2, 3 are the least. 

The normal component of stress 𝑇𝑧𝑧, along the axis of the transducer (𝑟 = 0) at the first 

resonance frequency, 67 kHz, is shown in Fig. 4.8. The length of the transducer is 30 mm. 

The analytical results are computed using 𝑀𝑟 = 𝑀𝑧 = 𝑀𝑞=5. The absolute stress is 

maximum at the center. It is zero at the ends because of the boundary conditions. The stress 

is nearly out of phase with the applied voltage and the imaginary part of the stress is 

therefore much greater than the real part.  

 

 
 

Fig. 4.8. (a) Real and (b) imaginary parts of the normal component of stress 𝑇𝑧𝑧 along 

the axis of the transducer at 67 kHz. Solid line: Present method and Dots: ATILA. 

 

The absolute value of the axial displacement, 𝑈, on the plane midway between the ends 

of the transducer, is shown in Fig. 4.9, at various 𝑟 values (0 ≤ 𝑟 ≤ 𝑎) at the first resonance 

of 67 kHz. The values obtained using the present method and ATILA are in good 

agreement. They are nearly independent of 𝑟 but the same small variation with 𝑟 is seen in 

the values obtained using both methods. 
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Fig. 4.9. Axial displacement 𝑈 along the axis of the transducer at its first resonance,  

67 kHz. Solid line: Present Method and dots: ATILA. 

 

The bottom interface of the Langevin transducer is at 𝑧 = 𝐿(1)/2  for the bottom elastic 

cylinder and at 𝑧 = −𝐿(2)/2 for the piezoceramic cylinder. Similarly, the top interface is at 

𝑧 = 𝐿(2)/2 for the piezoceramic cylinder and at 𝑧 = −𝐿(3)/2 for the top elastic cylinder. 

At these interfaces, two analytical values can be computed for the same variable; one on 

the elastic cylinder and the other on the piezoceramic cylinder. The arithmetic average of 

these two values at any point on the interface is considered as the value of the parameter at 

that point. The axial displacement 𝑈 at the top interface of the Langevin transducer is shown 

in Fig. 4.10, at the first resonance, i.e. at 67 kHz. Present method is used to compute the 
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displacement for both the cylinders separately; at 𝑧 = 𝐿(2)/2 for the piezoceramic cylinder 

and at 𝑧 = −𝐿(3)/2 for the top elastic cylinder, and their arithmetic average is shown here 

as the model values. The displacement is nearly uniform at the top interface. Both ATILA 

and analytical values are in good agreement.  

 

  

Fig. 4.10. Axial displacement 𝑈 at the top piezoceramic-elastic cylinder interface at  

67 kHz. (a) Real part and (b) Imaginary part. Solid line: Present method and  

Dots: ATILA.  

 

The normal component of stress 𝑇𝑧𝑧 at the top interface is shown in Figs. 4.11 and 4.12 

at the first resonance frequency, 67 kHz of the transducer. The real part is shown in  

Fig. 4.11 and the imaginary part is shown in Fig. 4.12. Here, the stress values computed 

from the elastic and piezoelectric cylinders are shown separately and their average value is 

shown as the model value. A solid line with stars is used to show the stress values at 

𝑧 = 𝐿(2)/2 on the PZT cylinder and a dashed line is used to show values computed at 

𝑧 = −𝐿(3)/2 on the elastic cylinder. Dots are used to show the arithmetic average of these 

two values. All these values are compared with ATILA, shown in solid line. Though the 

values of 𝑇𝑧𝑧, given by the PZT cylinder and the elastic cylinder at the top interface are 

different, their arithmetic average, which is the value of the parameter at any point on the 

interface, is nearly equal to the ATILA value and is nearly uniform over the surface. 

Analytical results are computed with 𝑀𝑟 = 𝑀𝑧 = 𝑀𝑞 = 5. 
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Fig. 4.11. Real part of 𝑇𝑧𝑧 at the piezoceramic-top elastic cylinder interface. Solid line: 

average 𝑇𝑧𝑧 of the PZT and elastic cylinders at the interface computed analytically, 

Dashed line: 𝑇𝑧𝑧 at the bottom of the top elastic cylinder computed analytically, 

Circles: 𝑇𝑧𝑧 at the top of the piezoceramic cylinder computed analytically.  

Dots: ATILA. 
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Fig. 4.12. Imaginary part of 𝑇𝑧𝑧 at the piezoceramic-top elastic cylinder interface  

Solid line: average 𝑇𝑧𝑧 of the PZT and elastic cylinders at the interface computed 

analytically, Dashed line: 𝑇𝑧𝑧 at the bottom of the top elastic cylinder computed 

analytically, Circles: 𝑇𝑧𝑧 at the top of the piezoceramic cylinder computed  

analytically. Dots: ATILA. 

 

The normal component of stress, 𝑇𝑧𝑧, at the midplane of the two elastic cylinders is 

shown in Fig. 4.13 as a function of r, at 100 kHz. 𝑀𝑟 = 𝑀𝑧 = 𝑀𝑞 = 5 is used to compute 

the analytical results. Stress values are shown at two different locations of the transducer; 

one at the center of the bottom elastic cylinder (𝑧 = 0, 0 ≤ 𝑟 ≤ 𝑎) and other at the center 

of the top elastic cylinder (𝑧 = 0, 0 ≤ 𝑟 ≤ 𝑎). The stress is maximum at the center of the 
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cylinders and minimum at the ends. The two elastic cylinders are made of different 

materials and the magnitudes of the stresses generated are, therefore, different. 

  

Fig. 4.13. 𝑇𝑧𝑧 at 100 kHz for the transducer in Case 3; (a) at the center of the bottom 

elastic cylinder, (b) at the center of the top elastic cylinder. Solid line: Present  

Method and Dots: ATILA. 

 

  

Fig. 4.14. Stress values at the free ends of the elastic cylinders at 100 kHz; (a) 𝑇𝑧𝑧  at the 

bottom flat surface of the bottom elastic cylinder, (b) 𝑇𝑧𝑧 at the top flat surface of the 

top elastic cylinder. Solid line: Present Method and Dots: ATILA. 
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After determining the coefficients in Eqs. (4.6) and (4.15), the functions that are 

specified at the boundaries are computed using the present method and ATILA. In the 

present method, all the boundary conditions are satisfied in a weighted average sense. The 

normal stress 𝑇𝑧𝑧 at the bottom and top flat surfaces of the transducer at 100 kHz are shown 

in Fig. 4.14(a) and 4.14(b), respectively and those at the first resonance frequency,  

i.e. 67 kHz are shown in Fig. 4.15(a) and 4.15(b), respectively.   

  

Fig. 4.15. Stress values at the free ends of the elastic cylinders at the first resonance 

frequency, 67 kHz; (a) 𝑇𝑧𝑧 at the bottom flat surface of the bottom elastic cylinder,  

(b) 𝑇𝑧𝑧 at the top flat surface of the top elastic cylinder. Solid line: Present  

Method and Dots: ATILA. 

 

 In the analysis, 𝑇𝑧𝑧 is specified to be zero in an average sense at both the free ends of the 

transducer. This is a weaker condition than the exact condition. Hence, the analytical values 

are not exactly zero, but, their integral average is zero. Moreover, magnitude of these values 

computed at the ends of the cylinders are much less than those computed at the center of 

the cylinder (Fig. 4.13). In ATILA, 𝑇𝑧𝑧 at a point is determined by using the primary 

variables (displacement and electric potential). The stress at a point that lies on two adjacent 

finite elements is computed using the displacements in both the elements. The average of 

these two values is shown in the Figure and it is everywhere nearly zero in Figs. 4.14(a) 

and 4.14(b). 𝑇𝑧𝑧 values at the first resonance frequency of 67 kHz are shown in Fig. 4.15. 

Here also, the average analytical values are zero and the ATILA values are nearly zeros. 

As seen in Figs. 4.14 and 4.15, the error in satisfying the zero normal stress boundary 
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condition is less in ATILA than the present method. The error in the present method may 

due to numerical methods used to solve the equations.  

 Case 4 

In case 4, the piezoceramic cylinder is placed in between an Aluminium head of 5 mm 

length and a Steel tail of 10 mm length. The critical frequencies of this transducer around 

the first three resonances are shown in Table 4.6.  

Table 4.6. Critical frequencies and the 𝐺, 𝐵 values of the transducer in Case 4. 

Resonance Method 
𝑓𝑠 

(kHz) 

𝐺𝑚𝑎𝑥
(mS) 

𝑓−1/2𝑠 

(kHz) 

𝐵𝑚𝑎𝑥 

(mS) 

𝑓1/2𝑠 

(kHz) 

𝐵𝑚𝑖𝑛 

(mS) 

 

First 

ATILA 76.65 3.96 76.49 2.00 76.81 -1.96 

Present Method 76.66 3.96 76.51 2.00 76.82 -1.96 

% Error 0.01 0 0.03 0 0.01 0 

 

Second 

ATILA 179.08 2.52 178.92 1.31 179.23 -1.21 

Present Method 179.08 2.51 178.93 1.31 179.23 -1.20 

% Error 0 -0.4 0.01 0 0 0.8 

 

Third 

ATILA 228.21 0.46 227.95 0.29 228.48 -0.17 

Present Method 228.14 0.48 227.88 0.30 228.41 -0.18 

% Error -0.03 4.3 -0.03 3.45 -0.03 -5.9 

 

The maximum percentage error in the critical frequencies is 0.03% and that in the 

associated 𝐺 and 𝐵 values is less than 6%. The conductance and susceptance values are 

shown in Fig. 4.16 upto 500 kHz with 1 kHz resolution. The agreement between analytical 

and ATILA values is very good. The analytical results are computed with 

𝑀𝑟 = 𝑀𝑧 = 𝑀𝑞=5. 
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Fig. 4.16. (a) Conductance (G) and (b) Susceptance (B) of the transducer for Case 4 in 

1-500 (kHz) frequency band. Solid line: Present Method and Dots: ATILA. 

 

In Fig. 4.17, the axial displacement, 𝑈, at the center of the top interface between 

cylinders, computed using the present method is compared with that computed using 

ATILA. There is good agreement at all frequencies. 

  

  

Fig. 4.17. (a) Real and (b) imaginary parts of the axial displacement U at r=0 at the top 

interface of the transducer. Solid line: Present Method and Dots: ATILA. 
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4.7 CONCLUSIONS 

An analytical method to analyze the response of a Langevin transducer to excitation is 

presented. Exact series solutions to the exact governing equations are used and the 

displacement, potential, stress, and electric displacement fields are expressed in terms of 

complete sets of functions. Therefore, arbitrary boundary conditions and continuity 

conditions can be satisfied. Numerical values of the complex input electrical admittance 

and the complex displacement are computed and compared with finite element results. The 

critical frequencies, input electrical admittance, the primary and secondary variables are all 

in excellent agreement with ATILA. The method can be extended to analyze Tonpilz 

transducers with conical heads. Further extensions are required to include the effect of fluid 

loading and to analyze an array of Tonpilz transducers. 
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SUMMARY 

Mathematical models are presented of axisymmetric piezoelectric transducers that are 

based on models of their components. The components are axially polarized piezoelectric 

solid or hollow cylinders and solid elastic cylinders. The transducers are co-axial cylinders 

stacked end to end. Exact, second order, linear, partial differential equations are used to 

describe the dynamics of the components. For elastic cylinders, they are obtained by using 

the exact dynamic equilibrium equations and the equations of state; and, for piezoelectric 

cylinders, the Gauss electrostatic condition as well. The axial and radial components of 

displacement and the electric potential are used as the primary variables. The governing 

equations are homogeneous because the excitation acts on the boundaries or on the 

interfaces between components. Cylindrical coordinates are used because the components 

and the transducers are axisymmetric circular cylinders of finite length. Infinite series 

solutions to the governing differential equations are used and each term in the series is an 

exact solution to the governing equations. Therefore, the governing equations are exactly 

satisfied even when the series are truncated to find numerical solutions. Thus the approach 

is appropriate for modeling cylinders with arbitrary dimensions. Some existing models of 

the components and the transducers are based on one-dimensional analysis in which it is 

assumed that the longitudinal stress along the axis of the transducer is the only significant 

stress. Therefore, they are appropriate only for modeling transducers with a high length to 

diameter ratio. In others, it is assumed that only the radial stress is significant and they are 

appropriate when the diameter to length ratio is high. Other existing models are based on 

approximate solutions to the governing partial differential equations.  

Boundary conditions complement the governing equations. Together they form a 

mathematical model that has a unique steady-state solution. The boundaries of the 

components are flat and curved surfaces. On each boundary, one of the cylindrical 

coordinates is a constant. A combination of the normal and shear stresses and the normal 

and tangential displacements is specified on each boundary. Electrical boundary conditions 

are specified by using the electric potential and the electric charge density. 

Each term in the series solutions to the governing equations has two components  

(axial and radial components of displacement) for elastic cylinders and three components 

(electric potential being the third) for piezoelectric cylinders. The number of components 

is equal to the number of primary variables for each type of material. Each component is a 
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product of an independent coefficient, a Bessel function with the radial coordinate in its 

argument, and a sinusoidal function with the axial coordinate in its argument. One of the 

arguments in the Bessel and sinusoidal functions can be arbitrarily chosen. The other is 

then determined by using a relationship between the arguments that they should satisfy in 

order to satisfy the governing equations. The number of components in each term of the 

series is also equal to the number of boundary conditions that are to be satisfied on each 

boundary. For elastic components, there are two boundary conditions on each face. For 

piezoelectric components, a third boundary condition in terms of the electric potential or 

the charge density or both is prescribed. The coefficients are determined by using the 

boundary conditions. 

As noted earlier, one of the arguments of the Bessel and sinusoidal functions can be 

arbitrarily chosen. For each choice, there is an associated series. Here, two choices are 

made. In the first, the arguments of the sinusoidal functions are chosen such that they form 

a complete set in the axial direction. In the second, the arguments of the Bessel functions 

are chosen such that they form a complete in the radial direction. This is done so that the 

sets can be used to satisfy arbitrary boundary conditions by appropriately choosing the 

coefficients. It is shown that the functions that form a complete set are also orthogonal to 

each other.  

All functions that are specified on a boundary are expressed in terms of complete sets. 

Therefore, piecewise continuous boundary conditions can be satisfied by appropriately 

choosing the coefficients. Uniform ring loads that do not act over the entire length of the 

cylinder and uniform circular loads that do not act over the entire flat surface are simple 

examples of such loads. All boundary conditions are satisfied in a weighted average sense. 

The weights are the elements of the complete set. Therefore, each boundary condition is 

approximated by several conditions or equations. The number of equations is equal to the 

number of weights used.  

The orthogonal property of the functions reduces the number of coefficients in each 

boundary equation. In the one-dimensional case, arbitrary functions are expressed as the 

weighted sum of a complete set of functions. If the elements of the set are orthogonal, 

multiplying both sides of the equation by one of the elements of the set and integrating over 

the domain yields an equation that has only one weight. In other words, the resulting matrix 

equation is of size one and is diagonal. On the two-dimensional boundary surfaces 

considered here, all functions are expressed in terms of a complete set of functions and 
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other series. Therefore, the boundary equations obtained by using each boundary condition 

yield, after using the orthogonal property of the functions, a matrix equation where the 

number of coefficients is greater than the number of equations and only a part of the matrix 

is diagonal. All the equations obtained by using the boundary conditions are assembled to 

obtain a large matrix equation that has several diagonal sub-matrices. 

The series solutions are truncated in order to find numerical solutions. The number of 

terms that are to be retained depends on the spatial distribution of the boundary loads. More 

terms have to be retained to get an accurate solution if the load is concentrated. In many 

transducer applications, the load acts over the entire face of the cylinder. Therefore, only a 

few terms are needed to get accurate results. 

An arbitrary number of terms can be retained after truncating each series. The number 

of coefficients in the matrix equation will always be equal to the number of equations. More 

terms are needed along the axial direction when the length of a cylinder is much greater 

than its diameter; and vice versa. 

In Chapter 2, an exact series solution is presented for hollow axially polarized 

piezoelectric ceramic cylinders. The excitation is electrical and a potential is applied across 

the flat ends. Therefore, the axial and radial displacements are anti-symmetric and 

symmetric, respectively, about the plane that is midway between the flat ends. A few sets 

of boundary conditions are used to illustrate the approach. It is shown that closed form 

solutions are obtained and series solutions are not necessary when zero axial displacement 

and zero shear stress on the flat ends and zero stress on the inner and outer curved surfaces 

are prescribed. This is also the case when zero radial displacement and zero shear stress on 

the curved surfaces ends and zero stress on the flat ends are prescribed. The results for these 

special cases are compared with those obtained using the finite element package ATILA. 

The excellent agreement shows that ATILA yields accurate results. The case of zero stress 

on all the surfaces is also presented. Here, truncated series are used and the analytical results 

are in good agreement with ATILA. The values of the critical frequencies, the frequency-

dependent complex input electrical admittance, and the components of stress and 

displacement are compared. Only a few terms in the series are required to achieve excellent 

agreement upto many significant digits even at frequencies that are many times the 

fundamental resonance frequency. 

In Chapter 3, a stack of hollow piezoelectric ceramic cylinders (rings) is analyzed by 

the using only the leading terms of the series solution. These stacks are used in Tonpilz 
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transducers and are frequently analyzed under stress free conditions. Only stress free stacks 

are analyzed in the thesis and its input electrical conductance and resonance frequencies 

are computed. Stacks with various number of identical rings are analyzed. It is shown that 

the fundamental length mode resonance computed using the axisymmetric model that 

includes the radial stress in the interior of the stack yields is in better agreement with 

ATILA results than the 1-D model in which it is assumed that the radial stress is zero 

everywhere. The fundamental radial mode resonance frequency is also accurately 

determined in the present model but cannot be obtained by using the 1-D model. As the 

length of the stack increases, the difference between the values computed using the present 

model and ATILA decreases. 

In Chapter 4, classical Langevin transducers that comprise a solid piezoelectric 

cylinder sandwiched between elastic cylinders are analyzed using exact series solutions. 

The model is illustrated for transducers with identical or different elastic cylinders with 

stress free boundaries. In all the cases, the critical parameters are computed with excellent 

agreement with those computed using ATILA. Though the model is illustrated for stress 

free transducers, it can be used to analyze transducers with specified stress or displacements 

at the ends. 
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APPLICATIONS AND FUTURE WORK 

 

The analytical models of piezoceramic cylinders and stacks of cylinders developed here 

can be used to characterize them. Here, a forward problem is solved. The material 

properties and dimensions of the cylinders are used to determine the electrical and 

mechanical responses of the cylinder to electrical excitation. In the inverse characterization 

problem, the electrical and mechanical responses of the cylinder to electrical excitations 

are measured and it is of interest to determine the material properties of the cylinder. Stress-

free conditions on all surfaces are used in the inverse problem as they are easy to achieve 

experimentally. The values of ten coefficients of a piezoelectric cylinder that result in 

excellent agreement between the measured and calculated responses are determined by 

iteration.  

The models presented here can also be used to design components and transducers. It 

is often of interest to design a component with specific resonance frequencies or other 

characteristics and the dimensions of the transducer are to be chosen. It is convenient if the 

model used to determine the resonance frequencies and the method to iterate the dimensions 

are executed using the same software such as MATLAB.  

The work done here can be extended to model other devices. For example, concentric 

cylinders of elastic and piezoelectric materials are of interest. In this case, the continuity 

condition is to be applied at the curved surfaces whereas it is applied on the flat surfaces in 

a stack.  

Devices may have components in other shapes and models of all components are 

required to build a model of the device. For example, a Tonpilz transducer has a head in 

the shape of a frustum of a cone, piezoelectric cylinders, and elastic cylinders. A model of 

a frustum of a cone can be developed by using solutions to exact linearized equations. Then, 

a model of a Tonpilz transducer can be developed.  
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