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Chapter 1

Introduction and review of

literature

1.1 Introduction

The concept of coordinate subtangent is not only of use in geometry but also of

importance as a statistical measure. The reciprocal coordinate subtangent (RCST)

has been used in the statistical literature as a useful tool to describe the behaviour of

a density curve. As the strong unimodal densities have an increasing RCST function,

RCST is considered as a measure for strongly unimodal property (see Hajek and

Sidak (1967)). By definition RCST to a curve y = f(x) is given by

η(x) = −f
′(x)

f(x)
, (1.1)

provided f ′(x) exist.

Let X be an absolutely continuous random variable (rv) with probability density

1



2 1 Introduction and review of literature

function (pdf) f(·) such that f ′(·) exists. Then we say that the RCST of the density

curve of X exists and is defined by (1.1). Equivalently,

η(x) = − d

dx
log f(x). (1.2)

Since the application of RCST is closely related to reliability modelling, in following

sections we give a brief review on basic reliability concepts and other related concepts

useful in the present study, followed by more applications of RCST are discussed.

1.2 Some basic concepts in reliability theory - Uni-

variate case

The term reliability of a device, component, material or structure, is to denote the

probability of performing its intended function satisfactorily, for a given period of

time when operating under normal environmental conditions.

1.2.1 Reliability function

Let a = inf{x|F (x) > 0} and b = sup{x|F (x) < 1} be such that (a, b), −∞ ≤ a <

b ≤ ∞ is the interval support of rv X. The reliability function or survival function

(sf) of a rv X, denoted by F̄ (·) is defined as

F̄ (x) = P (X > x) = 1− F (x),

where F (·) is the distribution function (df) of rv X. It gives the probability of failure

free operation for a time period greater than x.
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1.2.2 Hazard rate

The hazard rate (or failure rate) of a rv X, denoted by h(·), is defined as

h(x) = lim
∆x→0

P [x ≤ X < x+∆x|X > x]

∆x
. (1.3)

The failure rate h(x), measures the instantaneous rate of failure at time x, given that

the component survives at least up to time x. h(x)∆x represents the approximate

probability of failure in the interval [x, x+∆x), given the component survived up to

time x, provided ∆x is very small. Kotz and Shanbhag (1980) defined failure rate as

the Radon Nikodym derivative with respect to Lebesgue measure on {x : F (x) < 1},

of the hazard measure H(B) =
∫
B

dF (x)
[1−F (x)]

for every Borel set B of the form (−∞, L),

where L = inf{x : F (x) = 1}. If f(·) is the pdf of X, (1.3) can be equivalently

written as

h(x) =
f(x)

F̄ (x)
= − d

dx
log F̄ (x).

h(·) uniquely determines the sf F̄ (·) through the relationship

F̄ (x) = exp

(
−
∫ x

0

h(u)du

)
= exp(−H(x)),

where H(x) =
∫ x

0
h(u)du is known as cumulative hazard rate.

The concept of hazard rate is widely used for characterizing lifetime distributions.

For example, constancy of hazard rate is a characteristic property of exponential

distribution (Galambos and Kotz (1978)). A large volume of literature is available

on characterizations and other properties of hazard rate function (see, for example,

Barlow et al. (1963), Nanda and Shaked (2001), Nair and Asha (2004), Nanda (2010),

Noughabi et al. (2013) and references therein).
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1.2.3 Reversed hazard rate

Barlow et al. (1963) proposed reversed hazard rate function for a rv X, denoted by

h̄(·) and is defined as

h̄(x) = lim
∆x→0

P [x−∆x < X ≤ x|X ≤ x]

∆x
.

h̄(x) measures the instantaneous rate of failure of a unit at time x, given that it

failed before time x. Thus, h̄(x)∆x gives the probability that the unit failed in an

infinitesimal interval (x−∆x, x], given that it failed before x. If the pdf f(·) exists,

the above equation can be expressed as

h̄(x) =
f(x)

F (x)
=

d

dx
logF (x).

Keilson and Sumita (1982) shown that h̄(·) determines the df through the relation-

ship

F (x) = exp

(
−
∫ b

x

h̄(u)du

)
= exp(−H̄(x)),

where H̄(x) =
∫ b
x
h̄(u)du denotes the cumulative reversed hazard rate.

Finkelstein (2002) established the relationship between h̄(·) and h(·) as

h̄(x) =
h(x)

exp
(∫ x

0
h(u)du

)
− 1

.

For more details on reversed hazard rate one can refer to Gupta and Nanda (2001),

Nanda and Shaked (2001), Nair and Asha (2004), Bartoszewicz and Skolimowska

(2004), Chandra and Roy (2005), Nair et al. (2005), Sunoj and Maya (2006), Sankaran

et al. (2007) and Kundu and Ghosh (2017) .
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1.2.4 Mean residual life function

For a rv X with E(X) < ∞, the mean residual life function (MRLF) denoted by

r(·), defined by Swartz (1973) as

r(x) = E(X − x|X > x). (1.4)

r(x) measures the average residual life of a component which has survived a time x.

If the df F (·) is continuous with respect to Lebesgue measure, (1.4) becomes

r(x) =
1

F̄ (x)

∫ ∞
x

F̄ (u)du.

r(·) uniquely determines the underlying distribution through the relationship

F̄ (x) =
r(0)

r(x)
exp

[
−
∫ x

0

1

r(u)
du

]
.

Model identification can be done easily by knowing the functional form of r(·). For

example, characterization of distribution using the linear form of r(·) is available in

Hall and Wellner (1981). MRLF is related to the failure rate by the equation

h(x) =
1 + r′(x)

r(x)
.

Bryson and Siddiqui (1969) proved that increasing hazard rate of a component im-

plies decreasing MRLF of that component.

For more properties on r(·), one could refer to Hall and Wellner (1981), Mukherjee

and Roy (1986), Nanda (2010), Gupta (2016) and references therein.
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1.2.5 Reversed mean residual life function

The reversed mean residual life function is an analogous concept of MRLF but

defined for the past lifetime (x−X|X ≤ x), given by

r̄(x) = E(x−X|X ≤ x).

It measures the average past lifetime of a rv which failed at time x. It is also

known as mean inactivity time or mean past lifetime in reliability. If the df F (·) is

continuous with respect to Lebesgue measure, r̄(·) can be written as

r̄(x) =
1

F (x)

∫ x

0

F (u)du.

The reversed mean residual life time is related to reversed hazard rate through the

relationship,

h̄(x) =
1− r̄′(x)

r̄(x)
.

Like r(·), r̄(·) also uniquely determines the underlying df by the relationship (Chan-

dra and Roy (2001)),

F (x) = exp

(
−
∫ ∞
x

1− r̄′(u)

r̄(u)
du

)
.

For more details on reversed mean residual life functions we refer to Kayid and Ah-

mad (2004), Ahmad and Kayid (2005), Gandotra et al. (2011), Kayid and Izadkhah

(2014), Kundu and Ghosh (2017) and references therein.
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1.2.6 Vitality function

Kupka and Loo (1989) introduced the concept of vitality function as a Borel-measurable

function on the real line as

m(x) = E (X |X > x) =
1

F̄ (x)

∞∫
x

uf(u)du. (1.5)

Clearly, (1.5) measures the expected life of a component, when it has survived x

units of time. The vitality function is closely related to MRLF by the relationship

m(x) = x+ r(x)

and

m′(x) = r(x)h(x),

where m′(x) is the derivative of m(x). Due to the one-to-one relationship between

m(·) and r(·), the vitality function uniquely determines the underlying distribution.

1.3 Bivariate case

Let (X1, X2) be a random vector defined on R2 = (−∞,∞)× (−∞,∞). Then joint

(bivariate) df of (X1, X2) is defined as F (x1, x2) = P (X1 ≤ x1, X2 ≤ x2). It satisfies

the following properties:

1) lim
x1→−∞

lim
x2→−∞

F (x1, x2) = lim
x1→−∞

F (x1, x2) = lim
x2→−∞

F (x1, x2) = 0,

2) lim
x1→∞

lim
x2→∞

F (x1, x2) = 1,

3) If a < b and c < d, then F (a, c) < F (b, d),

4) If a > x1 and b > x2, then F (a, b)− F (a, x2)− F (x1, b) + F (x1, x2) ≥ 0.



8 1 Introduction and review of literature

The bivariate sf of (X1, X2) is defined as F̄ (x1, x2) = P (X1 > x1, X2 > x2). F̄ (x1, x2)

is related to F (x1, x2) by the equation

F̄ (x1, x2) = 1− lim
x2→∞

F (x1, x2)− lim
x1→∞

F (x1, x2) + F (x1, x2).

If F (x1, x2) is absolutely continuous and if the second order derivative exists then

the joint density function f(x1, x2) can be defined as

f(x1, x2) =
∂2F̄ (x1, x2)

∂x1∂x2

=
∂2F (x1, x2)

∂x1∂x2

.

1.3.1 Bivariate hazard rate

A straightforward extension of hazard rate (or failure rate) in univariate case to the

bivariate case is due to Basu (1971), defined as a scalar failure rate,

k(x1, x2) =
f(x1, x2)

F̄ (x1, x2)
.

Puri and Rubin (1974) characterized a mixture of exponential distributions by the

constancy k(x1, x2) = c for x1 > 0 and x2 > 0. However, in general k(x1, x2) does

not determine a bivariate distribution uniquely. For more properties, see Yang and

Nachlas (2001), Finkelstein (2003) and Finkelstein and Esaulova (2005).

An alternative and a more popular definition on bivariate hazard rate is due to

Johnson and Kotz (1975) who proposed a vector-valued bivariate failure rate,

h(x1, x2) = (h1(x1, x2), h2(x1, x2)),
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where

hi(x1, x2) = − ∂

∂xi
log F̄ (x1, x2), i = 1, 2,

is the instantaneous failure rate of Xi at time xi given that Xi was alive at time

xi and that X3−i survived beyond time x3−i, i = 1, 2. Unlike k(x1, x2), h(x1, x2)

uniquely determines the df (see Marshall and Olkin (1979) and Shanbhag and Kotz

(1987)) through the expression

F̄ (x1, x2) = exp

[
−
∫ x1

0

h1(u, 0)du−
∫ x2

0

h2(x1, v)dv

]

or

F̄ (x1, x2) = exp

[
−
∫ x1

0

h1(u, x2)du−
∫ x2

0

h2(0, v)dv

]
.

Some characterizations of probability models based on h(x1, x2) can be found in

Navarro and Ruiz (2004), Kotz et al. (2007) and Navarro et al. (2007).

Some other versions of failure rate in bivariate set up are also available in literature,

for example Cox (1972), Marshall (1975), Shaked and Shanthikumar (1987), Basu

and Sun (1997), Finkelstein (2003) and references therein.

1.3.2 Bivariate reversed hazard rate

Motivated with the wide applicability of bivariate failure rate due to Johnson and

Kotz (1975), Roy (2002a) proposed a vector-valued reversed hazard rate. Let (X1, X2)

be a random vector with joint df F (x1, x2) and Fi(·) denotes the marginal df of

Xi, i = 1, 2. The support of (X1, X2) be D = [0, b1] × [0, b2] where (b1, b2) is such
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that F (b1, b2) < 1 then the bivariate reversed failure rate is defined as

h̄(x1, x2) = (h̄i(x1, x2), h̄i(x1, x2)),

where

h̄i(x1, x2) = lim
∆xi→0

P (xi −∆xi ≤ Xi ≤ xi|X1 ≤ x1, X2 ≤ x2)

∆xi

=
∂

∂xi
logF (x1, x2), i = 1, 2.

Here h̄1(x1, x2)∆x1, represents the probability of failure of the first component in

the interval (x1−∆x1, x1] given that it has failed before x1 and the second has failed

before x2. The interpretation for h̄2(x1, x2) is similar.

h̄(x1, x2) uniquely determine F (x1, x2) by the relationships

F (x1, x2) = exp

− b1∫
x1

h̄1(u, b2)du−
b2∫

x2

h̄2(x1, v)dv


or

F (x1, x2) = exp

− b1∫
x1

h̄1(u, x2)du−
b2∫

x2

h̄2(b1, v)dv

 .
For more details on bivariate reversed hazard rate we refer to Sankaran and Gleeja

(2006), Asha and Rejeesh (2007), Sankaran and Gleeja (2008), Asha and Rejeesh

(2009), Domma (2011) and Kundu and Kundu (2017).
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1.3.3 Bivariate mean residual life function

Buchanan and Singpurwalla (1977) introduced a bivariate MRLF as

e(x1, x2) =
1

F̄ (x1, x2)

∫ ∞
0

∫ ∞
0

P [X1 > x1 + t1, X2 > x2 + t2]dt1dt2, xi > 0, i = 1, 2.

Even if e(x1, x2) is a direct extension of univariate MRLF, it does not uniquely de-

termine the underlying distribution.

An alternative definition to bivariate MRLF is provided by Shanbhag and Kotz

(1987) and Arnold and Zahedi (1988) as follows. Let (X1, X2) be a random vector

on R+
2 = {(x1, x2)|xi > 0, i = 1, 2} with joint df F (x1, x2) and let (L1, L2) be the

vector of extended real numbers such that Li = inf{x|Fi(xi) = 1} where Fi(·) is the

df of Xi. Further let E(Xi) < ∞, for i = 1, 2. The vector-valued Borel-measurable

function r(x1, x2) on R+
2 is given by

r(x1, x2) = (r1(x1, x2), r2(x1, x2))

= (E(X1 − x1|X1 > x1, X2 > x2), E(X2 − x2|X1 > x1, X2 > x2)),

for all (X1, X2) ∈ R+
2 , xi < Li, i = 1, 2, is called the bivariate mean residual life

function. When (X1, X2) is continuous and nonnegative, the components of bivariate

MRLF are given by

r1(x1, x2) = E(X1 − x1|X1 > x1, X2 > x2) =
1

F̄ (x1, x2)

∫ ∞
x1

F̄ (u, x2)du
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and

r2(x1, x2) = E(X2 − x2|X1 > x1, X2 > x2) =
1

F̄ (x1, x2)

∫ ∞
x2

F̄ (x1, v)dv.

Unlike e(x1, x2), the bivariate MRLF r(x1, x2) uniquely determines the distribution

through the identities (Nair and Nair (1988))

F̄ (x1, x2) =
r1(0, 0)r2(x1, 0)

r1(x1, 0)r2(x1, x2)
exp

[
−
∫ x1

0

du

r1(u, 0)
−
∫ x2

0

dv

r2(x1, v)

]

or

F̄ (x1, x2) =
r1(0, x2)r2(0, 0)

r1(x1, x2)r2(0, x2)
exp

[
−
∫ x2

0

dv

r2(0, v)
−
∫ x1

0

du

r1(u, x2)

]
.

Similar to the relationship between failure rate and MRLF in the univariate case,

the bivariate MRLF is related to bivariate failure rate by

hi(x1, x2) =
1 + ∂

∂xi
ri(x1, x2)

ri(x1, x2)
, i = 1, 2.

For more applications of bivariate mean residual life function we refer to Sankaran

and Nair (1993a), Roy (2002b), Nair et al. (2004) and Sunoj and Vipin (2017).

1.3.4 Bivariate reversed mean residual life function

A vector-valued bivariate reversed mean residual life function is proposed by Nair and

Asha (2008). Let (X1, X2) be a random vector defined on R2 with joint df F (x1, x2)

and marginal df Fi(·), i = 1, 2, E(X1, X2) < ∞ and let (a1, a2) and (b1, b2) be

vectors of real numbers such that ai = inf{x|Fi(x) > 0} and bi = sup{x|Fi(x) < 1}

then bivariate reversed mean residual life function is defined as a Borel-measurable
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function

r̄(x1, x2) = (r̄1(x1, x2), r̄2(x1, x2)),

where

r̄1(x1, x2) = E(x1 −X1|X1 ≤ x1, X2 ≤ x2) =
1

F (x1, x2)

∫ x1

a1

F (u, x2)du

and

r̄2(x1, x2) = E(x2 −X2|X1 ≤ x1, X2 ≤ x2) =
1

F (x1, x2)

∫ x2

a2

F (x1, v)dv.

The bivariate reversed mean residual life function uniquely determines the underly-

ing distribution through the relationships

F (x1, x2) =
r̄1(b1, b2)r̄2(x1, b2)

r̄1(x1, b2)r̄2(x1, x2)
exp

(
−
∫ b1

x1

du

r̄1(u, b2)
−
∫ b2

x2

dv

r̄2(x1, v)

)

and

F (x1, x2) =
r̄1(b1, x2)r̄2(b1, b2)

r̄1(x1, x2)r̄2(b1, x2)
exp

(
−
∫ b1

x1

du

r̄1(u, x2)
−
∫ b2

x2

dv

r̄2(b1, v)

)
.

Further, bivariate reversed mean residual life function is related to bivariate reversed

hazard rate by

h̄i(x1, x2) =
1− ∂

∂xi
r̄i(x1, x2)

r̄i(x1, x2)
, i = 1, 2.

For more properties and results based on bivariate reversed mean residual life func-

tion, we refer to Kayid (2006), Asha and Rejeesh (2009) and Ghosh and Kundu

(2017).
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1.4 Weighted distributions

The concept of weighted distributions can be traced from the studies by Fisher

(1934) on how methods of ascertainment can influence the form of distribution of

recorded observations. However, Rao (1965) identified the need for a unifying the

concept of weighted distributions and studied various sampling situations that can

be modeled by weighted distributions. These situations happen when the recorded

observations cannot be considered as a random sample from the original distribu-

tions, such as non observability of some events or damage occurred to the original

observation resulting in reduced value, or the adoption of a sampling mechanism

which gives unequal chances to the units in the original.

A mathematical definition of a weighted distribution is obtained by considering a

probability space (Ω, I, P ) and a rv X : Ω → H, where H = (a, b) is an interval on

the real line with a > 0 and b(> a) can be finite or infinite. When the df F (·) of

X is absolutely continuous with pdf f(·) and w(·), a nonnegative function satisfying

µw = E(w(X)) <∞, then the rv Xw with pdf

fw(x) =
w(x)

µw
f(x), a < x < b,

is said to have weighted distribution, corresponding to the distribution of X. The

definition in the discrete case is similar.

Depending on the selection of weight function w(·), we have different weighted dis-

tributions. For example, when w(x) = x, then Xw is called the length-biased rv X l

with pdf,

f l(x) =
x

µ
f(x), a < x < b,
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where µ = E(X) <∞. Length-biased sampling is usually adopted when a suitable

sampling frame is absent. In length-biased sampling items are selected at a rate pro-

portional to their length, so that larger values of the quantity being measured are

sampled with higher probabilities. In such situations, the possible bias due to the

nature of data collection process can be utilized to connect the population parame-

ters to that of the sampling distribution. That is, if we know the choice mechanism

behind the biased sample, then the process of inference on population parameters

is easier. Length-biased sampling has wide variety of applications on various topics

such as reliability theory, survival analysis, population studies and clinical trials.

For a more details on various aspects of length-biased sampling one can refer to

Fisher (1934), Rao (1965), Neel and Schull (1966), Eberhardt (1968), Zelen (1971),

Cook and Martin (1974), Patil and Rao (1977, 1978), Eberhardt (1978), Sankaran

and Nair (1993b), Sen and Khattree (1996), Oluyede (1999, 2000), Van et al. (2000),

Sunoj (2004), Bar-Lev and Schouten (2004), Kersey and Oluyede (2013) and Das

and Kundu (2016).

When the weight is inversely proportional to length of unit of interest, we use w(x) =

1
x
, called inversed length-biased distribution (see Barmi and Simonoff (2000)). Barmi

and Simonoff (2000) proposed a transformation-based technique for the density es-

timation of weighted distributions and used length-biased and inverse length-biased

sampling for the study.

Some of the known and important distributions in statistics and applied probability

can be expressed as weighted distributions. Equilibrium distributions, residual-

life distributions, distribution of order statistics, proportional hazards models (see

Gupta and Kirmani (1990), Bartoszewicz and Skolimowska (2004)) are some of the
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examples. Some of the special cases of weighted distributions are given Table 1.1.

Thus the theory of weighted distributions is appropriate whenever these distribu-

tions are applied. For more details of applications and recent works of weighted

distributions, we refer to Gupta and Kirmani (1990), Jones (1991), Navarro et al.

(2001), Sunoj and Maya (2006), Di Crescenzo and Longobardi (2006), Maya and

Sunoj (2008), Navarro et al. (2014), Jarrahiferiz et al. (2016) and Sunoj and Vipin

(2017).

Table 1.1: Special cases of weighted distributions

w(x) Distribution pdf

1
h(x) Equilibrium distribution F̄ (x)

E(X)[
F̄ (x)

]θ−1
, θ > 0 Proportional hazards model θ

[
F̄ (x)

]θ−1
f(x)

[F (x)]
θ−1

, θ > 0 Proportional reversed hazards model θ [F (x)]
θ−1

f(x)

f(x+t)
f(x) Residual life distribution f(x+t)

F̄ (t)

f(t−x)
f(x) , t > x Reversed residual life distribution f(t−x)

F (t)

[F (x)]
j−1 [

F̄ (x)
]n−j

,

j = 1, 2, ..., n

Distribution of jth order statistics n!
(j−1)!(n−j)! [F (x)]

j−1 [
F̄ (x)

]n−j
f(x)

[− log F̄ (x)]
n−1

Distribution of upper record value [− log F̄ (x)]n−1

(n−1)! f(x)

[− logF (x)]
n−1

Distribution of lower record value [− logF (x)]n−1

(n−1)! f(x)

1.4.1 Bivariate weighted distributions

The wide applicability of weighted distributions in the univariate case has motivated

many researchers to extend the concept of weighted distribution to higher dimen-

sions. Let (X1, X2)′ be a bivariate random vector in the support of (a1, b1)× (a2, b2),
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bi > ai, i = 1, 2 where (ai, bi) is an interval on the real line with absolutely contin-

uous df F (x1, x2), and pdf f(x1, x2). By defining w(x1, x2) as a nonnegative weight

function satisfying E(w(X1, X2)) <∞, Mahfoud and Patil (1982) defined bivariate

weighted distribution as the distribution of the random vector (Xw
1 , X

w
2 )′ with pdf

fw(x1, x2) =
w(x1, x2)

E(w(X1, X2))
f(x1, x2), ai < xi < bi, i = 1, 2. (1.6)

For more properties of bivariate weighted distributions one can refer to Nair and

Sunoj (2003), Sunoj and Sankaran (2005), Navarro et al. (2006), Arnold et al. (2016),

Alavi (2017), Kayal and Sunoj (2017) and references therein.

Jain and Nanda (1995) extended the definition to the p - variate case. Let X =

(X1, X2, ..., XP )′ be a p - dimensional nonnegative random vector with pdf f(x) and

Xw = (Xw
1 , X

w
2 , ..., X

w
p )′ be the multivariate weighted version of X such that the

weight function w(x)[w : X → A ⊆ R+, where R+ denotes the positive real line]

is nonnegative with finite and nonzero expectation. Then the multivariate weighted

density corresponding to f(x) is given by

fw(x) =
w(x)f(x)

E(w(X))
. (1.7)

For more applications of multivariate weighted distributions, see Navarro et al.

(2006), Kim (2008) and Kim (2010a,b).

1.5 Characterization

In modelling statistical data, an important problem one encounters is the identifi-

cation of an appropriate model that is supposed to generate the observations. In
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such a situation one can start with a general system of distributions and then select

an appropriate member from the system that fits the data. The difficulty here is

that most of the models used can have different right tail behaviour and the sample

size may not be large enough to observe such differences. A standard practice used

in such situations is to ascertain the physical properties of the process generating

the observations, express them by means of equations or inequalities and then solve

them to obtain the model. The only exact method of finding a probability distri-

bution is to use a characterization theorem, which in general terms say that under

certain conditions a family of distributions F is the only one possessing a designated

property P . For instance, in reliability theory, the failure rate or mean residual life

are uniquely determines the underlying distribution.

1.6 Applications of reciprocal coordinate subtan-

gent (RCST)

RCST plays a very important role in reliability analysis, however, used it rather

unknowingly. For example, failure rate or hazard rate is the RCST measured on

the curve y = F̄ (x). Also, since many of the failure rate functions have complex

expressions, Glaser (1980) identified (1.1) (but not called as ‘RCST’) as an easy

statistical tool to determine the shape of the failure rate function. η(·) in (1.1) can

also be represented in terms of the failure rate h(·) by

η(x) = h(x)− h′(x)

h(x)
, (1.8)

provided h′(x) exist. According to Glaser (1980), the nature of failure rate function

can be determined in the following way.
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(i). If η(·) ∈ I, then h(·) ∈ I (increasing failure rate, IFR)

(ii). If η(·) ∈ D, then h(·) ∈ D (decreasing failure rate, DFR)

(iii). If η(·) ∈ BS, then h(·) is either BS (bathtub shaped failure rate) or D

(iv). If η(·) ∈ UBS, then h(·) is either UBS (upside-down bathtub shaped failure

rate) or I.

Glaser (1980) and Gupta and Warren (2001) used η(·) to determine the shape of

the failure rate of the mixture of two gamma densities. Navarro and Hernandez

(2004) have considered the shape of the failure rate of the mixture of two positively

truncated normal distributions by using η(·).

However, the Theorem 3.1 given in Mukherjee and Roy (1989) established RCST

as a measure to characterize various models by a unique determination of f(·) from

η(·) by

f(x) = k exp

[
−
∫ x

0

η(u)du

]
, (1.9)

where k is a normalizing constant. Mukherjee and Roy (1989) also studied some

properties and applications of η(·) and proved characterization results to certain

important life distributions. For more applications of η(·) in reliability theory, we

refer to Gupta (2001), Gupta and Warren (2001), Block et al. (2002), Ghitany (2004),

Mi (2004), Lai and Xie (2006) and Navarro (2008). Recently, Roy and Roy (2009)

further extended the concept of RCST in the multivariate setup and proved some

characterization theorems useful in reliability modelling.
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1.7 Present Study

The thesis is organized into seven chapters. The present work is fully devoted to

study RCST and its various properties. In continuation of the present chapter, in

Chapter 2, we further explore the concept of RCST in the context of weighted mod-

els. We prove characterizations to some important distributions such as gamma and

Rayleigh, equilibrium, residual lifetime (reversed residual lifetime) and proportional

hazards model. We derive an identity for weighted distribution when RCST takes

the form of a general class of distributions which contains many important moment

relationships, and a generalization of the result due to Nair and Sankaran (2008).

In Chapter 3, we study the monotone properties of weighted random variable based

on RCST and illustrated it using some examples. Roy and Roy (2013) introduced

Mean RCST (MRCST) as a counterpart of mean residual life function in the density

domain. We study the relationship between RCST and MRCST for characterizing

distributions. The different stochastic orderings of two random variables based on

RCST and MRCST are also studied. We also prove certain characterizations of

probability models based on RCST of record values. We conclude the chapter on

the study of some properties of RCST in the context of circular distributions.

In Chapter 4, RCST is studied in context of bivariate and conditionally specified

models. We have obtained characterization results for a general bivariate model pro-

posed by Navarro and Sarabia (2013), Sarmanov family, Farlie-Gumbel-Morgenstern

(FGM) family and Ali-Mikhail-Haq family proposed by Ali et al. (1978). We define

RCST for conditionally specified distributions and proved characterization results

based on it. We also obtain a relationship between local dependence function of
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Holland and Wang (1987) and RCST.

Chapter 5 is focused on finding the properties of RCST in discrete time. Gupta et al.

(1997) introduced a discrete measure that can be useful for measuring the shape of

a failure rate function. We study the usefulness of that measure (discrete analogue

of RCST) in modelling different discrete distributions/families. A new definition for

discrete analogue of RCST is also introduced that possesses certain new properties

than the measure introduced by Gupta et al. (1997). A discrete proportional haz-

ards model is characterized based on this definition.

In Chapter 6, we propose a nonparametric estimator for RCST under right censored

dependent case. We have examined the asymptotic property of the estimator. A

simulation study is carried out to illustrate the performance of the estimator. Finally,

in Chapter 7, we have given a conclusion of the thesis and a brief outline about the

future research.





Chapter 2

Some results on reciprocal

coordinate subtangent in the

context of weighted distributions1

2.1 Introduction

In most cases of analysing lifetime data, a fundamental problem is the identification

of an appropriate model that is supposed to generate the observations. Generally,

it is not easy to segregate all the physical properties that individually or collec-

tively contributing to the life mechanism and to mathematically account for each

and therefore the task of identifying the appropriate model representing the data is

challenging. A standard practice used in such a modelling situation is to ascertain

the physical properties of the data generating mechanism, express them in terms of

equations or inequalities and then solve them to obtain the best model. For exam-

1Contents of this chapter have been published as entitled “Some results on reciprocal subtangent
in the context of weighted models”, Communications in Statistics–Theory and Methods, 41(8),1397–
1410 (see Sunoj and Sreejith (2012)).

23



24 2 Some results on RCST in the context of weighted distributions

ple, in reliability modelling the basic concepts such as hazard rate, mean residual

life function, vitality function, etc. are used to describe the physical characteris-

tics of the life mechanism and therefore these concepts form the basis of specifying

a probability distribution of lifetimes. If one can translate the characteristics of

the life mechanism in terms of the reliability properties such as failure rate, mean

residual life function or any other reliability related concepts and if there exists a

probability distribution characterised by such a property or concept, the problem of

model identification is satisfactorily resolved.

In this chapter, we study the concept of RCST in the context of weighted models.

The chapter is organized as follows. In Section 2.2, we introduce RCST for weighted

models and prove some univariate characterizations to distributions such as gamma

and Rayleigh, under the inversed length-biased model. We also introduce characteri-

zations to equilibrium, residual lifetime (reversed residual lifetime) and proportional

hazards model in the context of weighted distributions. An identity for weighted

distribution is also obtained when the RCST takes the form in terms of a general

class of distributions. In Sections 2.3 and 2.4, we further extend RCST of weighted

distributions to bivariate and multivariate setup and examine some characterization

theorems arising out of it.

2.2 Univariate RCST for weighted models

By virtue of the definition of RCST in (1.1), the RCST for the weighted rv Xw is

given by

ηw(x) = − fw ′(x)

fw(x)
,
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where fw ′(·) is the derivative of fw(·). Equivalently,

ηw(x) = η(x)− w′(x)

w(x)
, (2.1)

provided w′(·) exist.

Remark 2.2.1. If w(·) is monotonically increasing (decreasing) and η(·) is mono-

tonically increasing or decreasing, then ηw(x) ≤ (≥) η(x).

The following theorem uniquely determines the weighted distribution by using the

RCST of weighted distributions.

Theorem 2.2.2. For a nonnegative rv X, the RCST function of Xw, ηw(·) uniquely

determines the pdf fw(·) by

fw(x) = C exp

[
−
∫ x

0

ηw(u)du

]
, (2.2)

where C is a constant to be determined from the identity
∫∞

0
fw(x)dx = 1.

Proof. The proof follows from Theorem 3.1 of Mukherjee and Roy (1989).

If we know the functional form of RCST for weighted distribution ηw(·), we can also

find the original distribution, which is given in the following corollary.

Corollary 2.2.3. For a nonnegative rv X, the RCST function of Xw, ηw(·) uniquely

determines the pdf f(·) by

f(x) =
K

w(x)
exp

[
−
∫ x

0

ηw(u)du

]
, (2.3)

where K is a constant to be determined from the identity
∫∞

0
f(x)dx = 1.
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Now we prove some characterization theorems to certain well-known univariate mod-

els viz. gamma, Rayleigh and some applied models such as equilibrium, proportional

hazards and residual lifetime models using weighted RCST function ηw(·).

Theorem 2.2.4. For a nonnegative rv X and weight function w(x) = 1
x
, then

ηw(x) = cx+ d if and only if X follows a gamma distribution with pdf

f(x) = a2xe−a x , x > 0, a > 0 (2.4)

according as c = 0 and d > 0, and Rayleigh distribution with pdf

f(x) = 2a xe−a x
2

, x > 0, a > 0 (2.5)

according as c > 0 and d = 0.

Proof. Suppose X follows a gamma distribution with pdf (2.4), then

η(x) =
ax− 1

x
,

and hence

ηw (x) = d,

which is of the form ηw(x) = cx+ d where c = 0 and d > 0.

On the other hand, when X follows a Rayleigh distribution with pdf (2.5), then

η(x) =
2ax2 − 1

x
,

and therefore

ηw(x) = 2ax,
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which is of the form ηw(x) = cx+ d with c > 0 and d = 0.

Conversely, assume that ηw (x) = d, a constant, then from (2.3) we have

f(x) =K xe−
∫ x
0 d du

=K xe−dx,

where K is a constant. Now using the identity
∫∞

0
f(x)dx = 1, we get K = d2 and

hence

f(x) = d2xe−dx, x > 0, d > 0,

the gamma model (2.4). Similarly, if we assume that ηw(x) = cx, then from (2.3),

we get

f(x) =K xe−
∫ x
0 cu du

=K xe−
c
2
x2 .

Using the identity
∫∞

0
f(x)dx = 1, we have K = c and therefore

f(x) = c xe−
c
2
x2 , x > 0, c > 0,

which is the Rayleigh distribution (2.5).

Theorem 2.2.5. For a nonnegative rv X, the relationship ηw(x) = h(x) holds if

and only if Xw follows an equilibrium distribution.

Proof. Suppose Xw follows an equilibrium distribution. i.e., w(x) = 1
h(x)

(see Gupta

and Kirmani (1990)), then w′(x)
w(x)

= −h′(x)
h(x)

. Using (1.8) and (2.1), we get ηw(x) =

h(x).
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Conversely, suppose that ηw(x) = h(x), then from (2.2) we get

fw(x) = C e−
∫ x
0 h(u) du.

Equivalently,

fw(x) = C F̄ (x). (2.6)

Now from
∫∞

0
fw(x)dx = 1, we have C = 1

E(X)
, where E(X) =

∫∞
0
F̄ (x) dx and

therefore (2.6) becomes

fw(x) =
F̄ (x)

E(X)
.

i.e., Xw follows an equilibrium distribution.

Theorem 2.2.6. For a nonnegative rv X, then

ηw(x) = θ h(x)− h′(x)

h(x)
, θ > 0

if and only if Xw follows proportional hazards model.

Proof. Suppose Xw follows proportional hazards model. i.e., w(x) =
[
F̄ (x)

]θ−1
, θ >

0 (see Bartoszewicz and Skolimowska (2004)), then w′(x)
w(x)

= (1− θ)h(x). Using (1.8)

and (2.1) we get, ηw(x) = θ h(x)− h′(x)
h(x)

.

Conversely, assume that ηw(x) = θ h(x)− h′(x)
h(x)

holds, then from (2.2)

fw(x) = C e
−
∫ x
0

[
θ h(u)−h

′(u)
h(u)

]
du
,

= C eθ
∫ x
0 [ d

du
log F̄ (u)] du+

∫ x
0 [ d

du
log h(u)] du,

= A
[
F̄ (x)

]θ
h(x),

= A
[
F̄ (x)

]θ−1
f(x). (2.7)
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Using
∫∞

0
fw(x)dx = 1, we get A = θ and therefore (2.7) becomes

fw(x) = θ
[
F̄ (x)

]θ−1
f(x).

i.e., Xw follows proportional hazards model.

Theorem 2.2.7. For a nonnegative rv X, ηw(x) = η(x+t) if and only if Xw follows

a residual life distribution.

Proof. Suppose Xw follows a residual life distribution. i.e., w(x) = f(x+t)
f(x)

(see

Gupta and Kirmani (1990)), then w′(x)
w(x)

= η(x) − η(x + t). From (2.1), we have

ηw(x) = η(x+ t).

To prove the converse, assume that ηw(x) = η(x+ t) holds. Now from (2.2),

fw(x) = C e−
∫ x
0 η(u+t) du,

= C e
∫ x
0

d
du

log f(u+t) du,

= A(t)f(x+ t). (2.8)

Using the identity
∫∞

0
fw(x)dx = 1, we get A(t) = 1

F̄ (t)
and therefore (2.8) becomes

fw(x) = f(x+t)

F̄ (t)
, which is the residual life distribution.

Corollary 2.2.8. ηw(x) = η(t−x) if and only if Xw follows a reversed residual life

distribution. (where w(x) = f(t−x)
f(x)

).

Theorem 2.2.9. Let ηw(·) be the RCST function of Xwand let η(·), h(·) and h̄(·)

respectively be the RCST function, failure rate and reversed failure rate of X. Then

ηw(x) = η(x) + (1− j) h̄(x) + (n− j)h(x), j = 1, 2, ..., n.

if Xw follows the distribution of a jth order statistics.
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Proof. Let Xw follows the distribution of a jth order statistics. i.e., wj(x) =

[F (x)]j−1 [F̄ (x)
]n−j

(see Bartoszewicz and Skolimowska (2004)), then

w
′
j(x)

wj(x)
= −

[
(1− j) h̄(x) + (n− j)h(x)

]
.

From (2.1), we have

ηw(x) = η(x) + (1− j) h̄(x) + (n− j)h(x), j = 1, 2, ..., n.

Corollary 2.2.10. If Xw follows the distribution of a first order statistics, then

ηw(x) = η(x) + (n− 1)h(x).

Corollary 2.2.11. If Xw follows the distribution of a nth order statistics, then

ηw(x) = η(x) + (1− n) h̄(x).

In the next theorem, we consider a general class of distributions by defining a rv

X in the support of (a, b), a subset of the real line, −∞ ≤ a < x < b ≤ ∞ with

a = inf {x : F (x) > 0} and b = sup {x : F (x) < 1}. We say that the rv X belongs

to the general class of distributions if the RCST η(·) is of the form

η(x) = −k −B(x)− g′(x)

g(x)
, (2.9)

where k is a constant, B(·) is a suitably chosen function of X, g(·) is a real function

defined on (a, b) and the derivative of g(·) exist. The identity (2.9) is equivalent to

E [B(X) |X > x ] = k + g(x)h(x) (2.10)

and if lim
x→a

[g(x)h(x)] = 0, then (2.10) reduces to E [B(X) |X > x ] = µ + g(x)h(x),
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where µ = E [B(X)] (see Nair and Sankaran (2008)). If B(x) = x then the identity

(2.10) becomes

E [X |X > x ] = k + g(x)h(x)

or by using (1.5), we have

m(x) = k + g(x)h(x),

which gives the relationship connecting the vitality function and the hazard rate

function for a general class of a distribution given in (2.9).

Now the following theorem gives the generalization of the identity (2.10) in the

context of weighted distributions.

Theorem 2.2.12. A rv X belongs to the general class of distributions (2.9) if and

only if it satisfies the weighted identity corresponding to (2.10) as

E [B(X) w(X) |X > x ] = k E [w(X) |X > x ]+w(x)g(x)h(x)+E [w′(X)g(X) |X > x ]

(2.11)

under the regularity condition lim
x→b

[w(x)g(x)f(x)] = 0.

Proof. When the rv X belongs to the general class of distributions (2.9), then from

(2.1), we have

ηw(x) = −k −B(x)− g′(x)

g(x)
− w′(x)

w(x)
.

Equivalently,

fw ′(x)

fw(x)
− k −B(x)− g′(x)

g(x)
=
w′(x)

w(x)
,

g(x)fw
′
(x)− k fw(x) +B(x) fw(x) + g′(x)fw(x) =

w′(x)

w(x)
g(x)fw(x),
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which gives

B(x)fw(x) = k fw(x)− d

dx
[g(x)fw(x)] +

w′(x)

w(x)
g(x)fw(x),

or

B(x)w(x)f(x) = k w(x)f(x)− d

dx
[w(x)g(x)f(x)] + w′(x)g(x)f(x). (2.12)

Integrating (2.12) and applying regularity condition, we get

∫ b

x

B(u)w(u)f(u)du = k

∫ b

x

w(u)f(u)du+ w(x)g(x)f(x) +

∫ b

x

w′(u)g(u)f(u)du.

(2.13)

Dividing (2.13) by F̄ (x), we get (2.11). The converse part can be proved by retracing

the above steps.

As a special case of the above theorem, we have the following corollaries. Here we

consider the length-biased distribution i.e., w(x) = x and for B(x) = x.

Corollary 2.2.13. If B(x) = x and w(x) = x, (2.11) reduces to

E(X2 |X > x) = k E(X |X > x) + x g(x)h(x) + E(g(X) |X > x) (2.14)

Using (2.10), (2.14) can be written as

E(X2 |X > x) = k2 + g(x)h(x)l(x) + E(g(X) |X > x), (2.15)

where l(x) is a linear function in x and if lim
x→a

(g(x)h(x)l(x)) = 0, then k2 = E(X2)−

E(g(X)).
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Corollary 2.2.14. If the random variable X follows Pearson family, i.e., g(x) =

a0 + a1x+ a2x
2 and B(x) = x, w(x) = x, then

E(X2 |X > x) = l1(x)E(X |X > x) + l2(x), (2.16)

where l1(x) and l2(x) are linear functions in x, the form same as given in Glänzel

(1991). Using (2.10), (2.16) can also be expressed in terms of failure rate h(x) as

E(X2 |X > x) = A+ (A0 + A1x+ A2x
2)h(x)l3(x),

where A is a constant, Ai = ai
1−a2 , a2 6= 1, i = 0, 1, 2. and l3(x) is a linear function

in x. If lim
x→a

(g(x)h(x)l3(x)) = 0, then A = E(X2).

Example 2.2.15 (Exponential). k = 0 , g(x) = ax+1
a2

, f(x) = a e−a x, x > 0, a > 0,

then E(X) = 1
a
, V (X) = 1

a2
. In this case (2.15) becomes

E(X2 |X > x) = V (X) + h(x)q1(x),

where q1(x) is a quadratic function in x.

Example 2.2.16 (Gamma). k = µ , g(x) = x
a
, f(x) = aaµ

|aµ x
aµ −1

e −a x , x > 0, a >

0, µ > 0, then E(X) = µ , V (X) = µ
a
, E(X2) = µ

a
+ µ2. Here (2.15) reduces to

E(X2 |X > x) = E(X2) + h(x)q2(x),

where q2(x) is a quadratic function in x.

Example 2.2.17 (Beta). k = µ , g(x) = x(1−x)
a+b

, f(x) = 1
B(a,b)

x
a −1

(1 − x)b−1, 0 <

x < 1 , a > 0, b > 0, then E(X) = a
a+b

, V (X) = ab
(a+b)2(a+b+1)

,E(X2) = a(1+a)
(a+b)(a+b+1)

.
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Therefore (2.15) becomes

E(X2 |X > x) = E(X2) + h(x)c1(x),

where c1 (x) is a cubic function in x.

Example 2.2.18 (Pareto). k = µ , g(x) = x(x−a)
c−1

, c > 1, f(x) = c
a

(
x
a

)−c−1
, a <

x <∞, a > 0, then E(X) = ac
c−1

, V (X) = a2c
(c−1)2(c−2)

, E(X2) = a2c3−2a2c2+a2c
(c−1)2(c−2)

. The

identity (2.15),

E(X2 |X > x) = E(X2) + h(x)c2(x),

where c2(x) is a cubic function in x.

Example 2.2.19 (Normal). k = µ , g(x) = σ2,f(x) = 1
σ
√

2π
e−

1
2(x−µσ )

2

, −∞ < x <

∞,−∞ < µ < ∞, σ > 0, then E(X) = µ , V (X) = σ2 , E(X2) = σ2 + µ2. Then

(2.15) becomes

E(X2 |X > x) = E(X2) + h(x)l4(x),

where l4(x) is a linear function in x.

Example 2.2.20 (Student - t). k = 0 , g(x) = n+x2

n−1
, f(x) = 1√

nB( 1
2
,n
2 )

1(
1+x2

n

)n+1
2

,

−∞ < x <∞, then V (X) = n
n−2

, n > 2. (2.15) becomes

E(X2 |X > x) = V (X) + h(x)c3(x),

where c3(x) is a cubic function in x.
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2.3 Bivariate RCST for weighted models

For a nonnegative vector variable X = (X1, X2)
′

with pdf f(x1, x2), the vector-

valued bivariate RCST (see Roy and Roy (2009)) is given by

ηi(x1, x2) = − ∂

∂xi
log f(x1, x2), i = 1, 2.

Denoting Xw = (Xw
1 , X

w
2 )
′

be the bivariate weighted version of X, then the vector-

valued bivariate RCST for Xw is defined as

ηwi (x1, x2) = − ∂

∂xi
log fw(x1, x2), i = 1, 2.

Using (1.6), ηwi (x1, x2) can be written as

ηwi (x1, x2) = ηi(x1, x2)− wi(x1, x2), (2.17)

where wi(x1, x2) = ∂
∂xi

logw(x1, x2).

The following theorem uniquely determines the bivariate weighted distribution by

using the bivariate RCST for weighted models.

Theorem 2.3.1. For a bivariate setup, if the ith RCST of Xw is ηwi (x1, x2), i = 1, 2

and is continuous, then the weighted density curve can be uniquely determined in

terms of the following two alternative forms:

fw(x1, x2) = C exp

[
−
∫ x1

0

ηw1 (u, 0)du−
∫ x2

0

ηw2 (x1, v)dv

]
(2.18)

fw(x1, x2) = C exp

[
−
∫ x2

0

ηw2 (0, v)dv −
∫ x1

0

ηw1 (u, x2)du

]
. (2.19)
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We can also uniquely determines the bivariate original distribution by using the

bivariate RCST for weighted models.

Corollary 2.3.2. For the bivariate setup, if the ith RCST of Xw is ηwi (x1, x2), i =

1, 2 and is continuous, then the density curve can be uniquely determined in terms

of the following two alternative forms:

f(x1, x2) =
K

w(x1, x2)
exp

[
−
∫ x1

0

ηw1 (u, 0)du−
∫ x2

0

ηw2 (x1, v)dv

]

f(x1, x2) =
K

w(x1, x2)
exp

[
−
∫ x2

0

ηw2 (0, v)dv −
∫ x1

0

ηw1 (u, x2)du

]
.

Analogues to the univariate case we have the following characterization theorems

for the special cases of weighted distributions.

Theorem 2.3.3. Let h(x1, x2) = (h1(x1, x2), h2(x1, x2)) be the vector-valued bivari-

ate failure rate of a nonnegative random vector X = (X1, X2)
′
. Then

ηwi (x1, x2) = hi(x1, x2) , i = 1, 2,

where hi(x1, x2) = − ∂
∂xi

log F̄ (x1, x2) if and only if Xw follows a bivariate equilibrium

distribution.

Proof. If Xw follows a bivariate equilibrium distribution, then w(x1, x2) = 1
k(x1,x2)

(see Navarro et al. (2006)), where k(x1, x2) = f(x1,x2)

F̄ (x1,x2)
. It follows that wi(x1, x2) =

ηi(x1, x2)−hi(x1, x2), i = 1, 2 and therefore (2.17) becomes ηwi (x1, x2) = hi(x1, x2), i =

1, 2.

Conversely, assume that ηwi (x1, x2) = hi(x1, x2), i = 1, 2 holds. Now using (2.18)
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and (2.19), we have

fw(x1, x2) = C exp

[
−
∫ x1

0

h1(u, 0)du−
∫ x2

0

h2(x1, v)dv

]
(2.20)

fw(x1, x2) = C exp

[
−
∫ x2

0

h2(0, v)dv −
∫ x1

0

h1(u, x2)du

]
. (2.21)

Equations (2.20) and (2.21) together implies

fw(x1, x2) = CF̄ (x1, x2). (2.22)

Applying the condition of total probability, we obtain C = 1
E(X1X2)

, (2.22) reduces

to fw(x1, x2) = F̄ (x1,x2)
E(X1X2)

, the bivariate equilibrium distribution.

Theorem 2.3.4. For a nonnegative random vector X = (X1, X2)
′
, the relationship

ηwi (x1, x2) = ηi(x1 + t1, x2 + t2), i = 1, 2

satisfies if and only if Xw follows a bivariate residual life distribution.

Proof. If Xw follows a bivariate residual life distribution, then w(x1, x2) = f(x1+t1,x2+t2)
f(x1,x2)

,

wi(x1, x2) = ηi(x1, x2) − ηi(x1 + t1, x2 + t2), i = 1, 2 and therefore ηwi (x1, x2) =

ηi(x1 + t1, x2 + t2), i = 1, 2.

Conversely, assume that ηwi (x1, x2) = ηi(x1 + t1, x2 + t2), i = 1, 2 holds, then using

(2.18) and (2.19), we get

fw(x1, x2) = C exp

[
−
∫ x1

0

η1(u+ t1, t2)du−
∫ x2

0

η2(x1 + t1, v + t2)dv

]
(2.23)

fw(x1, x2) = C exp

[
−
∫ x2

0

η2(t1, v + t2)dv −
∫ x1

0

η1(u+ t1, x2 + t2)du

]
. (2.24)
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Equations (2.23) and (2.24) can be rewritten as

fw(x1, x2) = C exp

[∫ x1

0

[
∂

∂u
log f(u+ t1, t2)

]
du+

∫ x2

0

[
∂

∂v
log f(x1 + t1, v + t2)

]
dv

]
(2.25)

fw(x1, x2) = C exp

[∫ x2

0

[
∂

∂v
log f(t1, v + t2)

]
dv +

∫ x1

0

[
∂

∂u
log f(u+ t1, x2 + t2)

]
du

]
.

(2.26)

Equations (2.25) and (2.26) together give

fw(x1, x2) = A(t1, t2)f(x1 + t1, x2 + t2).

Applying the condition of total probability, yield A(t1, t2) = 1
F̄ (t1,t2)

and therefore

fw(x1, x2) = f(x1+t1,x2+t2)

F̄ (t1,t2)
, proves the result.

Corollary 2.3.5. ηwi (x1, x2) = ηi(t1− x1, t2− x2), i = 1, 2 if and only if Xw follows

a reversed residual life distribution. (where w(x1, x2) = f(t1−x1,t2−x2)
f(x1,x2)

).

Theorem 2.3.6. Let X1 and X2 be independent and identically distributed nonneg-

ative random variables (rv’s) and let h̄1(·) be the reversed failure rate of X1, h2(·) be

the failure rate of X2 and a1(x1, x2), a2(x1, x2) be the generalized failure rates, where

ai(x1, x2) = f(xi)
F (x2)−F (x1)

, i = 1, 2 (see Navarro and Ruiz (1996)), then the identities

ηw1 (x1, x2) = η1(x1, x2) + (1− j) h̄1(x1) + (k − j − 1) a1(x1, x2)

and

ηw2 (x1, x2) = η2(x1, x2) + (n− k)h2(x2)− (k − j − 1) a2(x1, x2)

holds if Xw follows the joint pdf of jth and kth order statistics, 1 ≤ j < k ≤ n.

Proof. Let Xw follows the joint pdf of jth and kth order statistics. i.e., wjk(x1, x2) =
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[F (x1)]j−1 [F (x2)− F (x1)]k−j−1 [F̄ (x2)
]n−k

, then

w1(x1, x2) =
∂

∂x1

logwjk(x1, x2) = −
[
(1− j) h̄1(x1) + (k − j − 1) a1(x1, x2)

]
and

w2(x1, x2) =
∂

∂x2

logwjk(x1, x2) = − [(n− k)h2(x2)− (k − j − 1) a2(x1, x2)] .

Clearly, (2.17) becomes

ηw1 (x1, x2) = η1(x1, x2) + (1− j) h̄1(x1) + (k − j − 1) a1(x1, x2)

and

ηw2 (x1, x2) = η2(x1, x2) + (n− k)h2(x2)− (k − j − 1) a2(x1, x2), 1 ≤ j < k ≤ n.

Corollary 2.3.7. If Xw follows the joint pdf of jth and (j + 1)th order statis-

tics then ηw1 (x1, x2) = η1(x1, x2) + (1− j) h̄1(x1) and ηw2 (x1, x2) = η2(x1, x2) +

(n− j − 1)h2(x2).

Corollary 2.3.8. If Xw follows the joint pdf of first and second order statistics then

ηw1 (x1, x2) = η1(x1, x2) and ηw2 (x1, x2) = η2(x1, x2) + (n− 2)h2(x2).

Corollary 2.3.9. If Xw follows the joint pdf of (n − 1)th and nth order statistics

then ηw1 (x1, x2) = η1(x1, x2)− (n− 2) h̄1(x1) and ηw2 (x1, x2) = η2(x1, x2).

Corollary 2.3.10. If Xw follows the joint pdf of first and nth order statistics then

ηw1 (x1, x2) = η1(x1, x2)+(n− 2) a1(x1, x2) and ηw2 (x1, x2) = η2(x1, x2)−(n− 2) a2(x1, x2).
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Example 2.3.11 (Exponential). f(x) = b e− bx, 0 < x <∞, b > 0 and f(x1, x2) =

b2 e− b(x1+x2), then

ηw1 (x1, x2) = b+ (1− j)b 1

eb x1 − 1
+ (k − j − 1)b

1

1− eb(x1−x2)

and

ηw2 (x1, x2) = b+ (n− k)b+ (k − j − 1)b
1

1− eb(x2−x1)
.

Example 2.3.12 (Power). f(x) = cxc−1, 0 ≤ x ≤ 1, c > 0 and f(x1, x2) =

c2 xc−1
1 xc−1

2 , then

ηw1 (x1, x2) = (1− j) 1

x1

+ (k − j − 1)
c xc−1

1

xc2 − xc1

and

ηw2 (x1, x2) =
1− c
x2

+ (n− k)
c xc−1

2

1− xc2
− (k − j − 1)

c xc−1
2

xc2 − xc1
.

Example 2.3.13 (Pareto). f(x) = c
a

(
x
a

)−c−1
, a ≤ x < ∞ , a > 0, c > 0 and

f(x1, x2) =
(
c
a

)2 (x1
a

)−c−1 (x2
a

)−c−1
, then

ηw1 (x1, x2) =
c+ 1

x1

+ (1− j) c ac

x1(xc1 − ac)
+ (k − j − 1)

c xc2
x1(xc2 − xc1)

and

ηw2 (x1, x2) =
1

x2

+ (n− k + 1)
c

x2

− (k − j − 1)
c xc1

x2(xc2 − xc1)
.

2.4 Multivariate RCST for weighted models

The vector-valued multivariate RCST of X is given by η(x) = (η1(x), η2(x), ..., ηp(x))
′
,

where ηi(x) = − ∂
∂xi

log f(x), i = 1, 2, ..., p. The corresponding vector-valued multi-
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variate RCST of Xw is given by

ηw(x) =
(
ηw1 (x), ηw2 (x), ..., ηwp (x)

)′
,

where ηwi (x) = − ∂
∂xi

log fw(x), i = 1, 2, ..., p. Using (1.7), ηwi (x) can be written as

ηwi (x) = ηi(x)− wi(x),

where wi(x) = ∂
∂xi

logw(x).

Remark 2.4.1. For p = 1 and p = 2 the above definition reduces to the correspond-

ing univariate and bivariate RCST of weighted distributions respectively.

Remark 2.4.2. If w(x) is monotonically increasing (decreasing) and ηi(x) is mono-

tonically increasing or decreasing, then ηwi (x) ≤ (≥) ηi(x), i = 1, 2, .., p.

Theorem 2.4.3. For the multivariate setup if the ith RCST of Xw is ηwi (x1, x2, ..., xp),

i = 1, 2, ..., p and is continuous, then the weighted density curve can be uniquely de-

termined as

fw(x) = C exp

[
−
∫
Γ

ηw(u)du

]
,

where the integration is a line integration with respect to u = (u1, u2, ..., up) over a

piecewise smooth curve Γ , joining the points (0, 0, ..., 0) and x = (x1, x2, ..., xp) and

where C is the normalizing constant such that the total probability is one (see Roy

and Roy (2009)).

Corollary 2.4.4. For a multivariate setup if the ith RCST of Xw is ηwi (x1, x2, ..., xp),

i = 1, 2, ..., p and is continuous, then the density curve can be uniquely determined

by

f(x) =
K

w(x)
exp

[
−
∫
Γ

ηw(u)du

]
,
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where K is the normalizing constant such that the total probability is one.

Similar to Roy and Roy (2009), we have the following theorem for weighted random

variables.

Theorem 2.4.5. If Xw
1 , X

w
2 , ..., X

w
p are independent rv’s then

ηw(x) =
(
ηw1 (x1), ηw2 (x2), ..., ηwp (xp)

)′
,

where ηwi (xi) = ηi(xi)− wi(xi) is the univariate RCST of Xw
i , i = 1, 2, ..., p.

We can define strictly constant vector-valued multivariate RCST of Xw as ηw(x) =

(a1, a2, ..., ap)
′
, where a = (a1, a2, ..., ap)

′
is an absolute constant with respect to all

the variables.

Theorem 2.4.6. If w(x) =
∏p

i=1
1
xi

then the vector-valued multivariate RCST of

Xw is an absolute constant if and only if the underlying distribution is a joint col-

lection of independent univariate gamma distribution with pdf

f(x) = a2xe−a x , x > 0, a > 0. (2.27)

Proof. Suppose Xi’s are follows independent univariate gamma distribution with pdf

given by (2.27). Under the weight function w(x) =
∏p

i=1
1
xi

, Xw
i ’s are independent

(see Arnold and Nagaraja (1991)) for the given pdf (2.27) with wi(xi) = − 1
xi
, i =

1, 2, ..., p and therefore ηw(x) = (a1, a2, ..., ap)
′
.

Conversely, suppose ηw(x) is constant.

i.e.,

ηwi (xi) = ai , i = 1, 2, ..., p,
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or

∂

∂xi
log fw(x) = −ai.

Equivalently,

∂

∂xi
log f(x) +

∂

∂xi
logw(x) = −ai.

Integrating both sides with respect to xi, we get

f(x)w(x) = exp(−aixi)gi(x1, x2, ..., xi−1, xi+1, ..., xp), i = 1, 2, ..., p

or

f(x) =
1

w(x)
exp(−aixi)gi(x1, x2, ..., xi−1, xi+1, ..., xp), i = 1, 2, ..., p.

Combining f(x), i = 1, 2, ..., p, we have

f(x) ∝

[
p∏
i=1

xi

][
exp

(
−

p∑
i=1

aixi

)]
.

Applying the condition of total probability, we obtain f (x) =
∏p

i=1 a
2
ixi exp [−aixi],

which proves the result.





Chapter 3

Some properties of reciprocal

coordinate subtangents in the

context stochastic modelling2

3.1 Introduction

The study of lifetime of organisms, devices, components, materials, etc., is of major

importance in the reliability and survival analysis. A major part of such studies is

devoted to the mathematical description of the lifetime by a failure distribution.

In reliability studies a useful tool for identifying the failure behaviour of an item is

by the study on the shape and monotonicity of its failure rate function because it

explain some of the characteristics of the mechanism leading to the identification

of its underlying distribution. Since the monotone properties of lifetime of device

or component plays a very important role in reliability modelling, we study the

2Some of the results in this Chapter have been accepted as entitled “Some properties of reciprocal
coordinate subtangents in the context stochastic modelling”, in the Journal of the Indian Statistical
Association (see Sunoj and Sreejith (2017)).
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monotone properties of weighted rv based on RCST. As given in (1.2) the RCST to

a curve y = f(x) of the rv X is given by

η(x) = − d

dx
log f(x). (3.1)

Recalling the RCST for the weighted rv Xw given in (2.1),

ηw(x) = η(x)− d

dx
logw(x). (3.2)

We make use of (3.1) and (3.2) to study the monotone properties weighted distri-

bution in comparison with the original distribution.

Mixture distributions have an important role in statistical analysis as they represent

heterogeneity in the distribution of a rv. It describes the random variables that are

drawn from more than one parent population. A finite mixture model is a convex

combination of two or more probability density functions. By combining the proper-

ties of individual probability density functions, finite mixture models are a powerful

and flexible tool for modelling complex data. Roy and Roy (2013) introduced Mean

RCST (MRCST) as the counterpart of mean residual life function in the density

domain. For a nonnegative rv X, MRCST denoted by M(x) is defined by

M(x) =

∫ ∞
0

f(x+ t)

f(x)
dt,

Equivalently,

M(x) =
1

f(x)

∫ ∞
x

f(u)du. (3.3)

From (3.3) it is clear that M(x) is an inverse of failure rate, and an increasing M(x)
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will lead to an increasing mean residual life function. η(·) can be expressed in terms

of M(·) by

η(x) =
1 +M ′(x)

M(x)
.

Hence we look into how the RCST and MRCST helpful to characterize finite mix-

tures of lifetime distributions.

The classical theory of records is an important area considered by many researchers

in past. The theory of records and order statistics are closely related. Various studies

on the properties and characterizations related to order statistics and record values

are available in Arnold et al. (1992), Arnold et al. (2011), Wu and Lee (2001), Bal-

akrishnan and Stepanov (2004), Su et al. (2008), Kundu and Nanda (2010), Kumar

(2015) and the references therein. Motivated with these, we obtain characterizations

of probability models based on RCST of record values.

The present Chapter is organized as follows. In Section 3.2, we prove that monotone

failure properties of probability models are invariant under nonsingular transforma-

tion. We further extend the concept to study the failure property of weighted rv

with respect to its original rv. The stochastic comparison of two rvs based on RCST

and MRCST are also studied. In Section 3.3, characterization result is obtained for

mixtures of exponential, Lomax and beta distributions using a relationship between

RCST and MRCST. We also prove characterization results based on RCST of record

values in Section 3.4 and in Section 3.5 we study some properties of RCST in the

context of circular distributions.
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3.2 Properties of RCST

In this section, we study the monotone properties of probability models and com-

parison of two random variables X and Y based on RCST.

3.2.1 Ageing properties of RCST

In the following theorem, we prove that increasing RCST (IRCST) and decreasing

RCST (DRCST) classes are invariant under nonsingular transformations.

Theorem 3.2.1. (i). If X is IRCST and φ′ is nonnegative and log-convex, then

φ is also IRCST.

(ii). If X is DRCST and φ′ is nonnegative and log-concave, then φ is also DRCST.

Proof. If fY (·) is the pdf of Y = φ(X), then fY (y) = fX(φ−1(y))
φ′(φ−1(y))

. Now using (3.1), we

get

ηY (y) = ηX(φ−1(y)) +
d

dy
log φ′(φ−1(y)),

where ηY (·) is the RCST of Y . Now if X is IRCST and φ′ is nonnegative and

log-convex, then φ is also IRCST. The proof of (ii) is similar.

Corollary 3.2.2. If X is IRCST (DRCST) then the distribution of location-scale-

shape family
(
i.e., Y =

(
X−θ
β

)α
, X > θ, β > 0, α > 0

)
is IRCST (DRCST) if 0 <

α < 1 (α > 1).

Proof. Here φ(x) =
(
x−θ
β

)α
, x > θ, β > 0, α > 0 which implies φ′(x) = α

β

(
x−θ
β

)α−1

and is log-convex (log-concave) if 0 < α < 1 (α > 1). Therefore from Theorem 3.2.1,

the distribution of Y =
(
X−θ
β

)α
is IRCST (DRCST) if 0 < α < 1 (α > 1).

Example 3.2.3. Assume thatX follows an exponential distribution with pdf fX(x) =

λe−λx, x > 0, λ > 0. Let Y = φ(X) = X
1
α , α > 0, then Y has the Weibull distri-
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bution with pdf fY (y) = αλyα−1e−λy
α
. Clearly φ′(x) = 1

α
x

1
α
−1 is log-convex (log-

concave) if α > 1 (0 < α < 1). Then from Theorem 3.2.1, we can conclude that

Weibull distribution is IRCST (DRCST).

In the next theorem we prove the preservation properties of weighted distribution

and illustrate with examples.

Theorem 3.2.4. (i). If X is DRCST and w(·) is log-convex, then Xw is DRCST.

(ii). If X is IRCST and w(·) is log-concave, then Xw is IRCST.

(iii). If X is BS and w(·) is log-convex, then Xw is DRCST. The change point when

Xw become BS will be greater than the change point when X is BS.

(iv). If X is UBS and w(·) is log-concave, then Xw is IRCST. The change point

when Xw become UBS will be greater than the change point when X is UBS.

Proof. (i) and (ii) follows from (3.2). For (iii), suppose that X is BS, then from

(3.2) we have,

d

dx
η(x) =

d

dx
ηw(x) +

d

dx
logw(x) = 0

for some x = x0 which means that

d

dx
ηw(x) = −

(
d

dx
logw(x)

)

at x0. Since w(x) is log-convex, we have that ηw(x) is still nonincreasing and hence

Xw is DRCST. It is clear that, Xw is DRCST even at the change point of X is BS.

Therefore, if Xw is BS, the change point will be greater than the change point of X

is BS (see Nair and Sankaran (2012)). The proof of (iv) when X is UBS and w(x)

is log-concave is similar.
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Example 3.2.5. Let X ∼ Gamma(p, λ) and the corresponding RCST is η(x) =

λ − p−1
x

. Then the gamma distribution is DRCST (IRCST) if 0 < p < 1 (p > 1).

Suppose w(x) = 1
x

and is log-convex then from Theorem 3.2.4, the inverse length-

biased gamma distribution Xw ∼ Gamma(p − 1, λ) is also DRCST for 0 < p < 1

(Figure 3.1.1) and for a log-concave weight function w(x) = x, the length-biased

gamma distribution Xw ∼ Gamma(p+ 1, λ) is IRCST for p > 1 (Figure 3.1.2).

Example 3.2.6. Let X follows a modified Weibull distribution proposed by Lai

et al. (2003) with pdf f(x) = a(α + λx)xα−1eλx exp(−axαeλx), x > 0, a > 0, α > 0

and λ > 0, which is an extension of two parameter Weibull distribution, and has

a BS when 0 < α < 1 (Lai and Xie (2006)). The corresponding RCST is η(x) =

(α+λx)
x

(
α

(α+λx)2
+ axαeλx − 1

)
, which is plotted in Figure 3.1.3 along with ηw(x) for

a log-convex weight function w(x) = 1
x
.

Example 3.2.7. A Burr XII distribution with pdf f(x) = kcxc−1

(1+xc)k+1 , x > 0, k >

0, c > 0 has a UBS if c > 2 (Lai and Xie (2006)) and η(x) = 1−c
x

+ (k + 1) cxc−1

(1+xc)

is the corresponding RCST, which is plotted in Figure 3.1.4 along with ηw(x) for a

log-concave weight function w(x) = x.

On the other hand, if we know the monotonicity property of weighted distribu-

tion, then the following theorem establishes the nature of monotonicity of original

distribution.

Theorem 3.2.8. (i). If Xw is DRCST and w(·) is log-concave, then X is DRCST.

(ii). If Xw is IRCST and w(·) is log-convex, then X is IRCST.

(iii). If Xw is BS and w(·) is log-concave, then X is DRCST. The change point

when X become BS will be greater than the change point when Xw is BS.
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Figure 3.1: RCST for original and weighted distributions

Figure 3.1.1 Figure 3.1.2

Figure 3.1.3 Figure 3.1.4

(iv). If Xw is UBS and w(·) is log-convex, then X is IRCST. The change point

when X become UBS will be greater than the change point when Xw is UBS.

Proof. The proof is similar to Theorem 3.2.4.

3.2.2 Some ordering results

In this section we compare two random variable X and Y based on η(·) and M(·)

by using the stochastic ordering.

Stochastic orders have been in use over the past few decades, at an accelerated rate,



52 3 Some properties of RCST in the context stochastic modelling

in many diverse areas of probability and statistics such as reliability theory, survival

analysis, economics, actuarial science, operations research, etc. There are several

ways in which one can assert that a rv X is ‘greater than’ (or ‘less than’) another

rv Y (see Marshall and Olkin (1979), Ross (1983) and Shaked and Shanthikumar

(2007)). Likelihood ratio ordering and failure rate ordering are among the various

notions of ordering between rv’s.

Definition 3.2.9. If X and Y are two random variables with respective density

functions fX(·) and fY (·), X is said to be less than Y in likelihood ratio ordering

(X≤
LR
Y ) if fX(x)

fY (x)
is decreasing in x ≥ 0.

Definition 3.2.10. If X and Y are two random variables with respective failure

rate functions hX(·) and hY (·), X is said to be less than Y in failure rate ordering

(X≤
FR
Y ) if hY (x) ≤ hX(x).

Navarro (2008) proved that if X≤
LR
Y if and only if ηX(x) ≥ ηY (x) and in the

context of weighted distributions, Kochar and Gupta (1987) proved that if the weight

function w(·) is monotonically increasing, then X≤
LR
Xw. Now we have following

results and the proofs are omitted as they are directly obtained.

Theorem 3.2.11. For an increasing (decreasing) weight function w(·), X≤
LR
Xw if

and only if ηX(x) ≥ (≤)ηXw(x).

Corollary 3.2.12. For an increasing (decreasing) weight function w(x) = 1
hX(x)

(equilibrium distribution), X≤
LR
Xw if and only if ηX(x) ≥ (≤)hX(x).

Corollary 3.2.13. For an increasing (decreasing) weight function w(x) =
[
F̄X(x)

]θ−1

(proportional hazards distribution), where θ > 0 and F̄X(x) is the reliability func-

tion, X≤
LR
Xw if and only if ηX(x) ≥ (≤)θhX(x) − h

′
X(x)

hX(x)
or θ ≤ (≥)1, by using the

fact that ηX(x) = hX(x)− h′X(x)
hX(x)

.
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Corollary 3.2.14. For an increasing (decreasing) weight function w(x) = fX(x+t)
fX(x)

(residual life distribution), X≤
LR
Xw if and only if ηX(x) ≥ (≤)ηX(x+ t).

Corollary 3.2.15. For an increasing (decreasing) weight function w(x) = fX(t−x)
fX(x)

, t >

x (reversed residual life distribution), X≤
LR
Xw if and only if ηX(x) ≥ (≤)ηX(t− x).

Theorem 3.2.16. X≤
FR
Y if MX(x) ≥MY (x).

Theorem 3.2.17. For an increasing (decreasing) weight function w(·), X≤
FR
Xw if

MXw(x) ≥ (≤)MX(x).

Corollary 3.2.18. For an increasing (decreasing) weight function w(x) = 1
hX(x)

(equilibrium distribution), X≤
FR
Xw if rX(x) ≥ (≤)MX(x), where rX(x)is the mean

residual life function of the rv X.

Corollary 3.2.19. For an increasing (decreasing) weight function w(x) =
[
F̄X(x)

]θ−1

(proportional hazards distribution), where θ > 0 and F̄X(x) is the reliability function,

X≤
FR
Xw if 1

θhX(x)
≥ (≤)MX(x) or θ ≤ (≥)1.

Corollary 3.2.20. For an increasing (decreasing) weight function w(x) = fX(x+t)
fX(x)

(residual life distribution), X≤
FR
Xw if 1

hX(x+t)
≥ (≤)MX(x).

Corollary 3.2.21. For an increasing (decreasing) weight function w(x) = fX(t−x)
fX(x)

, t >

x (reversed residual life distribution), X≤
FR
Xw if 1

hX(t−x)
≥ (≤)MX(x).

3.3 RCST of finite mixture models

The mixture of distributions are common models in reliability since they represent

populations with different kinds of units. Even if the shapes of the failure rate

functions of the members in the mixture are known, it is not easy to determine

the shape of the failure rate of the mixture. Glaser (1980) and Gupta and Warren
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(2001) used (3.1) to determine the shape of the failure rate of the mixture of two

gamma densities. Navarro and Hernandez (2004) have considered the shape of the

failure rate of the mixture of two positively truncated normal distributions by using

(3.1). Navarro (2008) defined η(·) as the Glasers function associated to the mixture

density fP (x) = pf1(x) + (1− p)f2(x) by

ηP (x) = −pf
′
1(x) + (1− p)f ′2(x)

pf1(x) + (1− p)f2(x)
, (3.4)

or

ηP (x) = ϕ(x)η1(x) + (1− ϕ(x))η2(x),

where f1(·), f2(·) denotes the pdf’s of the random variables X1 and X2 respectively,

and ϕ(x) = pf1(x)
pf1(x)+(1−p)f2(x)

.

Example 3.3.1. Consider two random variables X1 and X2 satisfy proportional

hazards model such that F̄2(x) =
(
F̄1(x)

)θ
, then

ηP (x) = (θ(1− ϕ(x)) + ϕ(x))h1(x)− h′1(x)

h1(x)
,

where ϕ(x) = p

p+(1−p)θ(F̄1(x))
θ−1 .

Example 3.3.2. Let X1 and X2 have weighted distributions corresponding to expo-

nential distributions with parameters α and β, respectively, and with weight function

ψ(x). Their densities are then given by, f1(x) = ψ(x)e−αx

µ(α)
, f2(x) = ψ(x)e−βx

µ(β)
, x > 0.

Then

ηP (x) = (α− β)ϕ(x) + β − ψ′(x)
ψ(x)

,

where ϕ(x) = µ(β)pe−αx

µ(β)pe−αx+µ(α)(1−p)e−βx .

Example 3.3.3. Let X1 and X2 have equilibrium distributions with means µ1 and
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µ2, respectively, and with densities given by, f1(x) = F̄1(x)
µ1

, f2(x) = F̄2(x)
µ2

, x > 0.

Then

ηP (x) = ϕ(x)h1(x) + (1− ϕ(x))h2(x).

The following theorem gives an identity connecting RCST and MRCST that char-

acterizes mixtures of exponential, Lomax and beta distributions.

Theorem 3.3.4. The relationship

ηP (x) = (θ1 + θ2 + a)(1 + ax)−1 − θ1θ2(1 + ax)−2MP (x), (3.5)

where MP (·) is the MRCST for mixture density holds, if and only if ith population

Xi, i = 1, 2 follows exponential distribution with pdf

fi(x) = λie
−λix, λi > 0, x > 0 for a = 0, (3.6)

Lomax distribution with pdf

fi(x) = αi(1 + x)−(αi+1), αi > 0, x > 0 for a = 1, (3.7)

and, beta density with pdf

fi(x) = βi(1− x)βi−1, βi > 0, 0 < x < 1 for a = −1. (3.8)

Proof. To prove the ‘if’ part, assume that Xi follows exponential distribution with
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pdf (3.6), then using (3.4) we get

ηP (x) =
pλ2

1e
−λ1x + (1− p)λ2

2e
−λ2x

pλ1e−λ1x + (1− p)λ2e−λ2x

=
(λ1 + λ2)

(
pλ1e

−λ1x + (1− p)λ2e
−λ2x

)
− λ1λ2

(
pe−λ1x + (1− p)e−λ2x

)
pλ1e−λ1x + (1− p)λ2e−λ2x

= (λ1 + λ2)− λ1λ2
F̄P (x)

fP (x)
, (3.9)

where F̄P (x) = pe−λ1x + (1 − p)e−λ2x, reduces (3.9) to the required identity (3.5)

with a = 0. When Xi follows Lomax distribution in (3.7), then (3.4) becomes

ηP (x) =
pα1(α1 + 1)(1 + x)−(α1+2) + (1− p)α2(α2 + 1)(1 + x)−(α2+2)

pα1(1 + x)−(α1+1) + (1− p)α2(1 + x)−(α2+1)

=
(α1 + α2 + 1)

(
pα1(1 + x)−(α1+2) + (1− p)α2(1 + x)−(α2+2)

)
pα1(1 + x)−(α1+1) + (1− p)α2(1 + x)−(α2+1)

−
α1α2

(
p(1 + x)−(α1+2) + (1− p)(1 + x)−(α2+2)

)
pα1(1 + x)−(α1+1) + (1− p)α2(1 + x)−(α2+1)

= (α1 + α2 + 1)(1 + x)−1 − α1α2(1 + x)−2MP (x). (3.10)

Now (3.10) gives the identity (3.5) with a = 1. In a similar way we can prove (3.5)

for (3.8) with a = −1.

To prove the ‘only if’ part, first we assume that a = 0 in (3.5) and which can be

written as

f ′P (x) + (θ1 + θ2)fP (x)− θ1θ2F̄P (x) = 0

Differentiating both sides with respect to x, we obtain

f ′′P (x) + (θ1 + θ2)f ′P (x) + θ1θ2fP (x) = 0

or

1

θ1

1

θ2

f ′′P (x) + (
1

θ1

+
1

θ2

)f ′P (x) + fP (x) = 0,
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which is a second order differential equation whose solution is

fP (x) = Aθ1e
−θ1x +Bθ2e

−θ2x.

Since
∫∞

0
fP (x)dx = 1, we obtain B = 1−A and hence fP (x) is the pdf of a mixture

of two exponentials with means 1
θ1

and 1
θ2

.

Now consider the case a 6= 0 in (3.5), then

−f
′
P (x)

fP (x)
= (θ1 + θ2 + a)(1 + ax)−1 − θ1θ2(1 + ax)−2 F̄P (x)

fP (x)

or equivalently,

(1 + ax)2f ′P (x) + (θ1 + θ2 + a)(1 + ax)fP (x)− θ1θ2F̄P (x) = 0. (3.11)

Differentiating (3.11) with respect to x, we get

(1 + ax)2f ′′P (x) + (θ1 + θ2 + 3a)(1 + ax)f ′P (x) + ((θ1 + θ2 + a)a+ θ1θ2) fP (x) = 0.

(3.12)

To solve the differential equation (3.12), we set ez = 1 + ax and y = f(x), then

(3.12) becomes

a2d
2y

dz2
+ (θ1 + θ2 + 2a) a

dy

dz
+ ((θ1 + θ2 + a)a+ θ1θ2) y = 0,

which is a homogeneous differential equation with constant coefficients. The auxil-

iary equation is

m2 +

(
θ1 + θ2

a
+ 2

)
m+

(
θ1 + θ2

a
+
θ1θ2

a2
+ 1

)
= 0,
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and the roots are m1 = 1 + θ1a
−1 and m2 = 1 + θ2a

−1. The solution of (3.12) is then

y = Ae−(1+θ1a−1)z +Be−(1+θ2a−1)z,

and correspondingly we obtain

f(x) = A(1 + ax)−(1+θ1a−1) +B(1 + ax)−(1+θ2a−1). (3.13)

Now choose A = pθ1 and B = qθ2, (3.13) reduces to

f(x) = pθ1(1 + ax)−(1+θ1a−1) + qθ2(1 + ax)−(1+θ2a−1). (3.14)

For a = 1, (3.14) provides

f(x) = pθ1(1 + x)−(θ1+1) + qθ2(1 + x)−(θ2+1).

Now applying the condition of total probability and f(x) ≥ 0, we get θi > 0 and

q = 1 − p hence fP (·) is the pdf of a mixture of two Lomax distributions (3.7).

Similarly for a = −1, (3.14) gives fP (·), the pdf of a mixture of two beta distributions

(3.8).

Theorem 3.3.5. The relationship

ηwP (x) = (λ1 + λ2)− λ1λ2M
w
P (x),

where Mw
P (·) is the MRCST for mixture weighted density holds, if and only if for

i = 1, 2, fi(x) = λ2
ixe
−λix, λi > 0, x > 0 with wi(x) = 1

x
.

Proof. For i = 1, 2, fi(x) = λ2
ixe
−λix with wi(x) = 1

x
, we havefXw

i
(x) = λie

−λix and
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the remaining part of the theorem follows from Theorem 3.3.4 for the exponential

distribution case.

3.4 RCST of record values

Let {Xi, i ≥ 1} be a sequence of independent and identically distributed continuous

rvs with cumulative distribution function (cdf) F (.) and pdf f(.). The random

variable Xn is called an upper (lower) record value of this sequence if Xn > Xi(Xn <

Xi) for all i = 1, 2, ..., n − 1. By convention X1 is a record value. For more details

about record values we refer to Arnold et al. (1992). We denote the nth upper (lower)

record values by Un(Ln). The pdf of Un is given by

fUn(x) =
[− log F̄ (x)]

n−1

(n− 1)!
f(x), −∞ < x <∞, (3.15)

where F̄ (x) = 1− F (x) and the pdf of Ln is given by

fLn(x) =
[− logF (x)]n−1

(n− 1)!
f(x), −∞ < x <∞. (3.16)

By applying (3.15) in (3.1) we get,

ηUn(x) = η(x)− (n− 1)
d

dx
log[− log F̄ (x)] (3.17)

or

η(x)− ηUn(x)

(n− 1)
=

d

dx
log[− log F̄ (x)]. (3.18)

Similarly by applying (3.16) in (3.1) we get,

η(x)− ηLn(x)

(n− 1)
=

d

dx
log[− logF (x)].
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Theorem 3.4.1. For a rv X, η(x)−ηUn (x)
(n−1)

= p
x

if and only if X follows a Weibull

distribution with F̄ (x) = e−(λx)p , λ > 0, p > 0, x > 0.

Proof. Suppose η(x)−ηUn (x)
(n−1)

= p
x
, then from (3.18) we have

d

dx
log[− log F̄ (x)] =

p

x
.

Integrating the above equation on both sides with respect to x, we get

log[− log F̄ (x)] = p (log x+ log c) , (3.19)

where log c is a constant of integration. (3.19) can be written as F̄ (x) = e−(cx)p ,

reliability function of Weibull distribution. The converse part is straight forward.

Corollary 3.4.2. For a rv X, η(x)−ηUn (x)
(n−1)

= 1
x

if and only if X follows an exponential

distribution with F̄ (x) = e−λx, λ > 0, x > 0.

Remark 3.4.3. For a Weibull distribution with f(x) = λp(λx)p−1e−(λx)p , λ > 0, p >

0, 0 < x < ∞, we have ηUn(x) = 1−np
x

+ λppxp−1, then ηUn(x) is increasing for

p = 1, n > 1 and p > 1, n > 1
p

and ηUn(x) is decreasing for p < 1, n < 1
p
.

Theorem 3.4.4. For a rv X, η(x)−ηUn (x)
(n−1)

= λ
(1+λx) log(1+λx)

if and only if X follows a

Lomax distribution with F̄ (x) = (1 + λx)−p, λ > 0, p > 0, x > 0.

Proof. The proof is similar to Theorem 3.4.1.

Theorem 3.4.5. For a rv X, η(x)−ηUn (x)
(n−1)

= λ
(1−λx) log(1−λx)

if and only if X follows a

beta distribution with F̄ (x) = (1− λx)p, λ > 0, p > 0, 0 < x < 1
λ

.

Proof. The proof is similar to Theorem 3.4.1.

Similar characterizations results can be obtained in the case of lower record values

also (Table 3.1).
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Table 3.1: η(x)−ηLn (x)
(n−1)

for different distributions

Distribution f(x) η(x)−ηLn (x)
(n−1)

Exponential λe−λx, λ > 0, x > 0 λe−λx

(1−e−λx) log(1−e−λx)

Pareto I px−(p+1), p > 0, x > 1 px−(p+1)

(1−x−p) log(1−x−p)

Pareto II
λp(1 + λx)−(p+1), λ > 0, p > 0, x > 0 λp(1+λx)−(p+1)

(1−(1+λx)−p log(1−(1+λx)−p

(Lomax)

Beta λp(1− λx)p−1, λ > 0, p > 0, 0 < x < 1
λ

λp(1−λx)p−1

(1−(1−λx)p log(1−(1−λx)p

Weibull λp(λx)p−1e−(λx)p , λ > 0, p > 0, x > 0 λp(λx)p−1e−(λx)p

(1−e−(λx)p) log(1−e−(λx)p)

Theorem 3.4.6. For a rv Y , the nth upper record value,

ηUnY (x) = ηUnX (x) + (θ − 1)hX(x) (3.20)

if and only if Y follows proportional hazards model with F̄Y (x) =
[
F̄X(x)

]θ
, θ > 0.

Proof. For the proportional hazards model we have F̄Y (x) =
[
F̄X(x)

]θ
, and

fY (x) = θ
[
F̄X(x)

]θ−1
fX(x), then (3.15) becomes

fUnY (x) =

[
− log F̄Y (x)

]n−1

(n− 1)!
fY (x),

=

[
−θ log F̄X(x)

]n−1

(n− 1)!
θ
[
F̄X(x)

]θ−1
fX(x),

=

[
− log F̄X(x)

]n−1

(n− 1)!
θn
[
F̄X(x)

]θ−1
fX(x),

= fUnX (x)θn
[
F̄X(x)

]θ−1
.
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Now taking logarithm on both sides, we get

log fUnY (x) = log fUnX (x) + n log θ + (θ − 1) log
[
F̄X(x)

]
.

Differentiating with respect to x, gives

− d

dx
log fUnY (x) = − d

dx
log fUnX (x)− (θ − 1)

d

dx
log
[
F̄X(x)

]
,

which can be written as (3.20).

Conversely, suppose that (3.20) holds, then by substituting (3.17) in (3.20) we have,

ηUnY (x) = ηX(x)− (n− 1)
d

dx
log
[
− log F̄X(x)

]
+ (θ − 1)hX(x).

Now from (1.9), we have

fUnY (x) = k exp

[
−
∫ x

0

(
ηX(u)− (n− 1)

d

du
log
[
− log F̄X(u)

]
+ (θ − 1)hX(u)

)
du

]
= k exp

[
−
∫ x

0

ηX(u)du

]
exp

[
(n− 1)

∫ x

0

d

du
log
[
− log F̄X(u)

]
du

]
× exp

[
−(θ − 1)

∫ x

0

hX(u)du

]
= k fX(x) exp

[
(n− 1) log

[
− log F̄X(x)

]]
exp

[
(θ − 1) log F̄X(x)

]
= k fX(x)

[
− log F̄X(x)

](n−1) [
F̄X(x)

](θ−1)
,

which is the pdf of the nth upper record value of proportional hazards model.
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3.5 RCST of circular models

Circular distributions play an important role in modelling directional data which

occurs in wide variety of fields such as biology, medicine, physics, oceanography and

geology. For more details on circular distributions we refer to Mardia and Jupp

(2000) and Jammalamadaka and Sengupta (2001).

The wrapped (around the circle) or a circular rv Θ = X(mod2π), has the density

fΘ(θ) =
∞∑

k=−∞

fX(θ + 2kπ), θ ∈ [0, 2π),

then the corresponding RCST can be defined as

ηΘ(θ) = −f
′
Θ(θ)

fΘ(θ)
.

Example 3.5.1 (Wrapped symmetric Laplace (see Jammalamadaka and Kozubowski

(2003))). If fΘ(θ) = λ
2

(
eλ(2π−θ)+eλθ

e2πλ−1

)
, λ > 0, 0 ≤ θ < 2π, then

ηΘ(θ) = λ

(
e2λ(π−θ) − 1

e2λ(π−θ) + 1

)
.

Example 3.5.2 (Wrapped asymmetric Laplace (see Jammalamadaka and Kozubowski

(2003))). If fΘ(θ) = λk
1+k2

(
e−λkθ

1−e−2πλk + e(λ/k)θ

e2πλ/k−1

)
, λ > 0, k > 0, 0 ≤ θ < 2π, then

ηΘ(θ) =
λke−λkθ

1−e−2πλk −
λ
k
e(λ/k)θ

e2πλ/k−1

e−λkθ

1−e−2πλk + e(λ/k)θ

e2πλ/k−1

.

Example 3.5.3 (Wrapped weighted exponential (see Roy and Adnan (2012))).
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If fΘ(θ) = α+1
α
λe−λθ

∑∞
m=o e

−2mπλ(1− e−αλ(θ+2mπ)), α > 0, λ > 0, 0 ≤ θ < 2π, then

ηΘ(θ) = λ− αλ
∑∞

m=o e
−2mπλe−αλ(θ+2mπ))∑∞

m=o e
−2mπλ(1− e−αλ(θ+2mπ))

.

Example 3.5.4 (Wrapped skew-normal (see Pewsey (2000))).

If fΘ(θ) = 2
α

∑∞
m=−∞ φ

(
θ+2πm−µ

α

)
Φ
(
λ
(
θ+2πm−µ

α

))
, α > 0,−∞ < λ < ∞, −∞ <

µ <∞, 0 ≤ θ < 2π, then

ηΘ(θ) =

∞∑
k=−∞

(
φ
(
θ+2πk−µ

α

)
Φ′
(
λ
(
θ+2πk−µ

α

))
λ
α

+ Φ
(
λ
(
θ+2πk−µ

α

))
φ′
(
θ+2πk−µ

α

)
1
α

)
∞∑

k=−∞
φ
(
θ+2πk−µ

α

)
Φ
(
λ
(
θ+2πk−µ

α

)) .

Theorem 3.5.5. For a circular rv Θ,the RCST function ηΘ(θ) uniquely determines

the circular distribution fΘ(θ) by

fΘ(θ) = C exp

[
−
∫ θ

0

ηΘ(u)du

]
, (3.21)

where C is a constant to be determined by
∫ 2π

0
fΘ(θ)dθ = 1.

Theorem 3.5.6. For a rv Θ, ηΘ(θ) = λ if and only if Θ follows a wrapped expo-

nential distribution given by Jammalamadaka and Kozubowski (2001)

fΘ(θ) =
λe−λθ

1− e−2πλ
, λ > 0, 0 ≤ θ < 2π.

Proof. Suppose that ηΘ(θ) = λ, then from (3.21) we have

fΘ(θ) = C exp [−λθ] .
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Now using the identity
∫ 2π

0
fΘ(θ)dθ = 1, e get C = λ

1−e−2πλ and hence

fΘ(θ) =
λe−λθ

1− e−2πλ
.

The other part is quite straightforward.





Chapter 4

Characterizations of some

bivariate models using reciprocal

coordinate subtangents3

4.1 Introduction

Conditional densities are always easier to visualise as compared to the marginal or

joint densities. For example, it is reasonable to visualize that in some human popu-

lation, the distribution of heights for a given weight with the mode of the conditional

distribution changing monotonically with weight. In similar fashion a unimodal dis-

tribution of weights for a given height can be easier to visualize with the mode

changing monotonically with the height. However, it is not so easy to visualise the

appropriate joint distributions without certain assertion. One can characterize the

joint distribution by using generating functions such as joint characteristic function,

joint moment generating function, etc. or by using reliability concepts like vector-

3Contents of this chapter have been published as entitled “Characterizations of some bivariate
models using reciprocal coordinate subtangents”, Statistica, 74(2):153–170 (see Sunoj et al. (2014)).

67
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valued hazard function, mean residual life function etc. They are well defined and

uniquely determine the joint distribution.

To determine the joint df, the knowledge of the marginals is inadequate. But if we

introduce a conditional specification instead of a marginal specification or together

with a marginal specification then the situation brightens. The study of reliability

properties in conditionally specified models is quite recent. Arnold (1995, 1996) and

Arnold and Kim (1996) have studied several classes of conditional survival models.

The identification of the joint distribution of (X1, X2) when conditional distributions

of (X1|X2 = x2) and (X2|X1 = x1) are known has been an important problem stud-

ied by many researchers in the past. This approach of identifying a bivariate density

using the conditionals is called the conditional specification of the joint distribu-

tion (see Arnold et al. (1999)). These conditional models are often useful in many

two component reliability systems where the operational status of one component

is known in advance. Another important problem closely associated to this is the

identification of the joint distribution of (X1, X2) when the conditional distribution

or corresponding reliability measures of the rv’s (X1|X2 > x2) and (X2|X1 > x1) are

known. That is, instead of conditioning on a component failing (down) at a specified

time, we study the system when the survival time of one of component is known.

For a recent study of these models, we refer to Navarro et al. (2011), Navarro and

Sarabia (2013) and the references therein.

The Chapter is organized as follows. In Section 4.2, we prove characterization re-

sults for a general bivariate model where conditional distributions are proportional

hazard rate models, Sarmanov family and Ali-Mikhail-Haq family of bivariate distri-

butions and establish a relationship between local dependence function and RCST.
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In Section 4.3 and 4.4, we define RCST for conditionally specified distributions and

some characterization results are proved.

4.2 Bivariate RCST

For a nonnegative vector random variable (X1, X2) with pdf f(x1, x2), the vector-

valued bivariate RCST (see Roy and Roy (2009)) is given by

η1(x1, x2) = − ∂

∂x1

log f(x1, x2) (4.1)

and

η2(x1, x2) = − ∂

∂x2

log f(x1, x2). (4.2)

If the bivariate RCST (η1(x1, x2), η2(x1, x2)) is continuous, then the density curve

can be uniquely determined in terms of the following two alternative forms:

f(x1, x2) = C exp

[
−
∫ x1

0

η1(u, 0)du−
∫ x2

0

η2(x1, v)dv

]
(4.3)

and

f(x1, x2) = C exp

[
−
∫ x2

0

η2(0, v)dv −
∫ x1

0

η1(u, x2)du

]
. (4.4)

In the following subsections, we consider some bivariate models that are important

in terms of richness in members and usefulness.

4.2.1 Bivariate model with conditional distributions as pro-

portional hazards models

Recently, Navarro and Sarabia (2013) studied the reliability properties in two classes
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of bivariate continuous distributions based on the specification of conditional hazard

functions. These classes were constructed by conditioning on two types of events

viz. events of type {X1 = x1} and type {X2 = x2} and events of type {X1 > x1}

and type {X2 > x2} respectively, that has been used in Arnold and Kim (1996). In

survival studies the most widely used semi-parametric regression model is the Cox

proportional hazards rate (PHR) model. The univariate Cox PHR model is a class

of modelling distributions with pdf and sf given by

f(x) = αλ(x) exp{−αΛ(x)}, x ≥ 0, (4.5)

and

F̄ (x) = exp{−αΛ(x)}, x ≥ 0,

where α > 0, λ(x) is the baseline hazard rate function and Λ(x) =
∫ x

0
λ(u)du is

the baseline cumulative hazard function, where both λ(x) and Λ(x) might involve

parameter θ, besides the parameter α. The hazard (or failure) rate function of f(x)

is h(x) = αλ(x). A rv with the pdf (4.5) can be denoted by X ∼ PHR(α;Λ(x)).

Special cases of f(x) in (4.5) include exponential, Burr, Pareto and Weibull. Navarro

and Sarabia (2013) obtained a general form of a bivariate pdf with conditional

distributions satisfying (X1|X2 = x2) ∼ PHR(α1(x2);Λ1(x1)) and (X2|X1 = x1) ∼

PHR(α2(x1);Λ2(x2)), given by

f(x1, x2) = c(φ)a1a2λ1(x1)λ2(x2) exp [−a1Λ1(x1)− a2Λ2(x2)− φa1a2Λ1(x1)Λ2(x2)] ,

(4.6)

for x1, x2 ≥ 0, where a1, a2 > 0 and φ ≥ 0. The model given in (4.6) is a

reparametrization of the bivariate conditional proportional hazard model due to

Arnold and Kim (1996). The case when φ = 0 corresponds to the case of indepen-
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dence. In particular, if Λ1(x1) = x1 and Λ2(x2) = x2, we obtain the class of bivari-

ate distributions with exponential conditionals considered by Arnold and Strauss

(1988). Navarro and Sarabia (2013) also obtained a bivariate pdf with conditional

distributions satisfying (X1|X2 > x2) ∼ PHR(α1(x2);Λ1(x1)) and (X2|X1 > x1) ∼

PHR(α2(x1);Λ2(x2)), with joint pdf is given by

f(x1, x2) = a1a2λ1(x1)λ2(x2)

(
α1(x2)α2(x1)

a1a2

− φ
)

× exp [−a1Λ1(x1)− a2Λ2(x2)− φa1a2Λ1(x1)Λ2(x2)] , (4.7)

where in both cases α1(x2) = a1[1 + φa2Λ2(x2)] and α2(x1) = a2[1 + φa1Λ1(x1)],

Λ1 and Λ2 are two cumulative hazard functions and λ1 and λ2 are their respective

hazard rate functions.

The following two theorems provide characterizations to the vector-valued bivariate

RCST using the baseline hazard functions.

Theorem 4.2.1. For a nonnegative random vector (X1, X2), the relationships

η1(x1, x2) = a1 [1 + φa2Λ2(x2)]λ1(x1)− λ′1(x1)

λ1(x1)
(4.8)

and

η2(x1, x2) = a2 [1 + φa1Λ1(x1)]λ2(x2)− λ′2(x2)

λ2(x2)
, (4.9)

holds if and only if f(x1, x2) is of the form (4.6).

Proof. Assume that equations (4.8) and (4.9) holds, then using (4.3) we obtain

f(x1, x2)

= C exp

[
−a1

∫ x1

0

λ1(u)du+

∫ x1

0

λ′1(u)

λ1(u)
du− a2(1 + φa1Λ1(x1))

∫ x2

0

λ2(v)dv +

∫ x2

0

λ′2(v)

λ2(v)
dv

]
,
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and thus

f(x1, x2) = C exp [−a1Λ1(x1) + log λ1(x1)− a2Λ2(x2) (1 + φa1Λ1(x1)) + log λ2(x2)]

and we have the model (4.6). The other part is quite straightforward.

Example 4.2.2. Bivariate exponential (i.e., Λ1(x1) = x1 and Λ2(x2) = x2) with

joint pdf

f(x1, x2) = c(φ)a1a2 exp [−a1x1 − a2x2 − φa1a2x1x2] ,

obtains characterizing relationships

η1(x1, x2) = a1 + φa1a2x2

and

η2(x1, x2) = a2 + φa1a2x1.

Example 4.2.3. Bivariate Weibull (i.e., Λ1(x1) = x1
γ1 and Λ2(x2) = x2

γ2) with

joint pdf

f(x1, x2) = c(φ)a1a2γ1x1
γ1−1γ2x2

γ2−1 exp [−a1x1
γ1 − a2x2

γ2 − φa1a2x1
γ1x2

γ2 ] ,

the relationships are

η1(x1, x2) = γ1x1
γ1−1 (a1 + φa1a2x2

γ2)− γ1 − 1

x1

and

η2(x1, x2) = γ2x2
γ2−1 (a2 + φa1a2x1

γ1)− γ2 − 1

x2

.

Example 4.2.4. Bivariate Pareto (i.e., Λ1(x1) = log β1+x1
β1

and Λ2(x2) = log β2+x2
β2

)
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with joint pdf

f(x1, x2) = c(φ)a1a2β
a1
1 β

a2
2

(
1

β1 + x1

)a1+1(
1

β2 + x2

)a2+1

× exp

[
−φa1a2 log

β1 + x1

β1

log
β2 + x2

β2

]
,

characterizes

η1(x1, x2) =
1

β1 + x1

(
1 + a1 + φa1a2 log

β2 + x2

β2

)

and

η2(x1, x2) =
1

β2 + x2

(
1 + a2 + φa1a2 log

β1 + x1

β1

)
.

Example 4.2.5. Bivariate Burr (i.e., Λ1(x1) = log β1+x1γ1

β1
and Λ2(x2) = log β2+x2γ2

β2
)

with joint pdf

f(x1, x2) = c(φ)a1a2γ1γ2β
a1
1 β

a2
2 x1

γ1−1x2
γ2−1

(
1

β1 + x1
γ1

)a1+1(
1

β2 + x2
γ2

)a2+1

× exp

[
−φa1a2 log

β1 + x1
γ1

β1

log
β2 + x2

γ2

β2

]
,

we have

η1(x1, x2) =
γ1x1

γ1−1

β1 + x1
γ1

(
1 + a1 + φa1a2 log

β2 + x2
γ2

β2

)
− γ1 − 1

x1

and

η2(x1, x2) =
γ2x2

γ2−1

β2 + x2
γ2

(
1 + a2 + φa1a2 log

β1 + x1
γ1

β1

)
− γ2 − 1

x2

.
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Theorem 4.2.6. For a nonnegative random vector, the relationships

η1(x1, x2) = α1(x2)λ1(x1)

(
1− φa1a2

α1(x2)α2(x1)− φa1a2

)
− λ′1(x1)

λ1(x1)
(4.10)

and

η2(x1, x2) = α2(x1)λ2(x2)

(
1− φa1a2

α1(x2)α2(x1)− φa1a2

)
− λ′2(x2)

λ2(x2)
(4.11)

hold if and only if f(x1, x2) is (4.7).

Proof. Assume that equations (4.10) and (4.11) holds, then using (4.3) we obtain

f(x1, x2) =C exp

− x1∫
0

(
a1λ1(u)

(
1− φa1a2

a1α2(u)− φa1a2

)
− λ′1(u)

λ1(u)

)
du


× exp

− x2∫
0

(
α2(x1)λ2(v)

(
1− φa1a2

α1(v)α2(x1)− φa1a2

)
− λ′2(v)

λ2(v)

)
dv

 ,
Equivalently, we have

f(x1, x2) =C exp

− x1∫
0

(
a1λ1(u)− φa1λ1(u)

[1 + φa1Λ1(u)]− φ
− λ′1(u)

λ1(u)

)
du


× exp

− x2∫
0

(
α2(x1)λ2(v)− φa2α2(x1)λ2(v)

[1 + φa2Λ2(v)]α2(x1)− φa2

− λ′2(v)

λ2(v)

)
dv


which on further simplification yield

f(x1, x2) =C∗λ1(x1)λ2(x2) ([1 + φa1Λ1(x1)][1 + φa2Λ2(x2)]− φ)

× exp [−a1Λ1(x1)− a2Λ2(x2)− φa1a2Λ1(x1)Λ2(x2)]

reduces to the model (4.7). The other part is direct.
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4.2.2 Sarmanov family of bivariate distributions

Assume that f1(·) and f2(·) are univariate pdfs with supports defined on A1 ⊆ R

and A2 ⊆ R. Let φ1(x1) and φ2(x2) be bounded nonconstant functions such that

∫ ∞
−∞

φ1(u)f1(u)du = 0

and ∫ ∞
−∞

φ2(v)f2(v)dv = 0.

Then the function defined by

f(x1, x2) = f1(x1)f2(x2) [1 + ωφ1(x1)φ2(x2)] (4.12)

is a bivariate joint density with specified marginals f1(x1) and f2(x2), provided ω

is a real number which satisfies the condition 1 + ωφ1(x1)φ2(x2) ≥ 0 for all x1

and x2. This is called the Sarmanov family of bivariate distributions. For various

applications of this family, we refer to Willett and Thomas (1985, 1987) and Lee

(1996). When φ1(x1) = 1− 2F1(x1) and φ2(x2) = 1− 2F2(x2) the Sarmanov family

becomes the Farlie-Gumbel-Morgenstern (FGM) family (see Bairamov et al. (2001)).

Theorem 4.2.7. For a nonnegative random vector (X1, X2)

η1(x1, x2) = η1(x1)− ωφ′1(x1)φ2(x2)

1 + ωφ1(x1)φ2(x2)
(4.13)

and

η2(x1, x2) = η2(x2)− ωφ1(x1)φ′2(x2)

1 + ωφ1(x1)φ2(x2)
(4.14)

if and only if f(x1, x2) is (4.12).
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Proof. The proof is similar to Theorem 4.2.1.

The following examples give characterizations to vector-valued bivariate RCST for

various members of Sarmanov family.

Example 4.2.8. Bivariate distributions with beta marginals. In this case, we have

φ1(x1) = x1 − a1
a1+b1

and φ2(x2) = x2 − a2
a2+b2

. Then (4.13) and (4.14) becomes

η1(x1, x2) =
x1(a1 + b1 − 2)− a1 + 1

x1(1− x1)
−

ω
(
x2 − a2

a2+b2

)
1 + ω

(
x1 − a1

a1+b1

)(
x2 − a2

a2+b2

)
and

η2(x1, x2) =
x2(a2 + b2 − 2)− a2 + 1

x2(1− x2)
−

ω
(
x1 − a1

a1+b1

)
1 + ω

(
x1 − a1

a1+b1

)(
x2 − a2

a2+b2

) .
Example 4.2.9. Bivariate distributions with gamma marginals. In this case, we

have φ1(x1) = e−x1 −
(

1 + 1
λ1

)−α1

and φ2(x2) = e−x2 −
(

1 + 1
λ2

)−α2

. Then

η1(x1, x2) = λ1 −
α1 − 1

x1

+
ωe−x1

(
e−x2 −

(
λ2
λ2+1

)α2
)

1 + ω
(
e−x1 −

(
λ1
λ1+1

)α1
)(

e−x2 −
(

λ2
λ2+1

)α2
)

and

η2(x1, x2) = λ2 −
α2 − 1

x2

+
ωe−x2

(
e−x1 −

(
λ1
λ1+1

)α1
)

1 + ω
(
e−x1 −

(
λ1
λ1+1

)α1
)(

e−x2 −
(

λ2
λ2+1

)α2
) .

Example 4.2.10. FGM family. In this case, we have φ1(x1) = 1 − 2F1(x1) and

φ2(x2) = 1− 2F2(x2). Then

η1(x1, x2) = η1(x1) +
2ωf1(x1) (1− 2F2(x2))

1 + ω (1− 2F1(x1)) (1− 2F2(x2))
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and

η2(x1, x2) = η2(x2) +
2ωf2(x2) (1− 2F1(x1))

1 + ω (1− 2F1(x1)) (1− 2F2(x2))
.

4.2.3 Ali-Mikhail-Haq family of bivariate distributions

The family of bivariate distributions proposed by Ali et al. (1978) is given by

F (x1, x2) =
F1(x1)F2(x2)

1− αF̄1(x1)F̄2(x2)
, −1 ≤ α ≤ 1,

where F1(·) and F2(·) are the marginal distribution functions of X1 and X2, F̄1(·) =

1 − F1(·) and F̄2(·) = 1 − F2(·). The above family of bivariate distributions is in-

dexed by a single parameter and contains Gumbel Type I distributions as well as the

case of independent rv’s. The parameter α is essentially a parameter of association

between X1 and X2. A special case of the above model is Gumbels bivariate logistic

distribution given by F (x1, x2) = 1
1+e−x1+e−x2

.

A simple way of describing the model would be through the joint distribution

F (u1, u2) for the rv’s (U1, U2), where U1 = F1(X1) and U2 = F2(X2), and we obtain

the copula

F (u1, u2) =
u1 u2

1− α ū1 ū2

, (4.15)

where ū1 = 1−u1 and ū2 = 1−u2. It can be verified that, for the model (4.15), the

joint density is given by

f(u1, u2) =
(1− α)(1− α ū1 ū2) + 2α u1 u2

(1− α ū1 ū2)3
, (4.16)

for 0 < u1 < 1 and 0 < u2 < 1.
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Theorem 4.2.11. For a nonnegative random vector (X1, X2), the relationships

η1(u1, u2) =
3α ū2

1− α ū1 ū2

− (1− α)α ū2 + 2α u2

(1− α)(1− α ū1 ū2) + 2α u1 u2

and

η2(u1, u2) =
3α ū1

1− α ū1 ū2

− (1− α)α ū1 + 2α u1

(1− α)(1− α ū1 ū2) + 2α u1 u2

are satisfied if and only if f(u1, u2) is (4.16).

Proof. The proof is similar to Theorem 4.2.1.

4.2.4 Local dependence function and RCST

Let (X1, X2) be a bivariate random vector in the support of (a1, b1) × (a2, b2), bi >

ai, i = 1, 2, where (ai, bi) is an interval on the real line with an absolutely contin-

uous distribution function F (x1, x2), and pdf f(x1, x2). Assume that mixed partial

derivative of f(x1, x2) exists. The local dependence function (see Holland and Wang

(1987)) of (X1, X2) is given by,

γf (x1, x2) =
∂2

∂x1∂x2

log f(x1, x2).

The relation between local dependence function and RCST is

γf (x1, x2) = − ∂

∂x2

η1(x1, x2), where η1(x1, x2) = − ∂

∂x1

log f(x1, x2)

or

γf (x1, x2) = − ∂

∂x1

η2(x1, x2), where η2(x1, x2) = − ∂

∂x2

log f(x1, x2).

Theorem 4.2.12. For a nonnegative random vector (X1, X2) with continuous RCST

functions, the following conditions are equivalent:
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(i) (X1, X2) follows a bivariate distribution with joint pdf

f(x1, x2) = a(x1; θ)b(x2; θ)eθx1x2 ,

for some appropriate functions a(x1; θ) and b(x2; θ);

(ii) η1(x1, x2) = −θx2 − a′(x1;θ)
a(x1;θ)

and η2(x1, x2) = −θx1 − b′(x2;θ)
b(x2;θ)

; and

(iii) γf (x1, x2) is a constant.

Proof. The sequence of relationships from (i) to (ii) and (iii) is direct. The proof of

(i) from (iii) can be obtained from Jones (1998).

4.3 Conditionally specified RCST for X1 given X2 =

x2 and for X2 given X1 = x1

In this specification we consider conditioning on events of the forms {X1 = x1} and

{X2 = x2}. Then, let (X1, X2) be a bivariate random variable with support S =

(0,∞)×(0,∞). Suppose f(X1|X2=x2)(x1|x2) and f(X2|X1=x1)(x2|x1) be the conditional

pdf of (X1|X2 = x2) and (X2|X1 = x1) respectively, then a direct extension of RCST

(4.1) and (4.2) to the these conditional rv’s are given by

η(X1|X2=x2)(x1|x2) = − ∂

∂x1

log f(X1|X2=x2)(x1|x2) (4.17)

and

η(X2|X1=x1)(x2|x1) = − ∂

∂x2

log f(X2|X1=x1)(x2|x1). (4.18)
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Integrating both sides of (4.17) with respect to x1 over the integral 0 to x1, we get

f(X1|X2=x2)(x1|x2) = C1(x2) exp

[
−
∫ x1

0

η(X1|X2=x2)(u|x2) du

]
, (4.19)

where C1(x2) is constant of integration determined by
∫
X1
f(X1|X2=x2)(x1|x2)dx1 =

1. This implies that the conditionally specified RCST η(X1|X2=x2)(x1|x2) uniquely

determines the conditional pdf f(X1|X2=x2)(x1|x2). Similarly by using (4.18), the

conditional pdf f(X2|X1=x1)(x2|x1) is determined by

f(X2|X1=x1)(x2|x1) = C2(x1) exp

[
−
∫ x2

0

η(X2|X1=x1)(v|x1) dv

]
, (4.20)

where C2(x1) is constant of integration determined by
∫
X2
f(X2|X1=x1)(x2|x1)dx2 = 1.

Remark 4.3.1. Based on the definitions of conditional distributions, it can be easily

seen that η(X1|X2=x2)(x1|x2) = ηX1(x1, x2) and η(X2|X1=x1)(x2|x1) = ηX2(x1, x2), and

therefore the characterization result in Theorem 4.2.1 can be obtained from Theorem

2.1 in Navarro and Sarabia (2013).

Theorem 4.3.2. A necessary condition for the existence for a random vector (X1, X2)

with support SX1 × SX2 satisfying (4.19) and (4.20) is that

∫ x2

0

η(X2|X1=x1)(v|x1) dv −
∫ x1

0

η(X1|X2=x2)(u|x2) du = s∗(x1) + t∗(x2), (4.21)

holds for all (x1, x2) in SX1 × SX2. Moreover, in this case, the pdf of (X1, X2) can

be obtained as

f(X1,X2)(x1, x2) = K exp

[
s∗(x1)−

∫ x2

0

η(X2|X1=x1)(v|x1) dv

]
(4.22)
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or

f(X1,X2)(x1, x2) = K∗ exp

[
t∗(x2)−

∫ x1

0

η(X1|X2=x2)(u|x2) du

]
(4.23)

where K and K∗ are normalizing constants.

Proof. If (X1, X2) exists and satisfies (4.19) and (4.20), then the densities f(X1|X2=x2)(x1|x2)

and f(X2|X1=x1)(x2|x1) satisfy the compatibility condition (1.20) in Theorem 1.2 of

Arnold et al. (1999), that is,

f(X1|X2=x2)(x1|x2)

f(X2|X1=x1)(x2|x1)
= s(x1)t(x2),

we have

C1(x2) exp
[
−
∫ x1

0
η(X1|X2=x2)(u|x2) du

]
C2(x1) exp

[
−
∫ x2

0
η(X2|X1=x1)(v|x1) dv

] = s(x1)t(x2).

Equivalently,

exp

[
−
(∫ x1

0

η(X1|X2=x2)(u|x2) du−
∫ x2

0

η(X2|X1=x1)(v|x1) dv

)]
= s(x1)C2(x1)

t(x2)

C1(x2)
.

Taking logarithm on both sides, we get

−
(∫ x1

0

η(X1|X2=x2)(u|x2) du−
∫ x2

0

η(X2|X1=x1)(v|x1) dv

)
= log

(
s(x1)C2(x1)

t(x2)

C1(x2)

)
= s∗(x1) + t∗(x2),

which gives (4.21), where

s∗(x1) = log (s(x1)C2(x1)) (4.24)

and

t∗(x2) = log

(
t(x2)

C1(x2)

)
.
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From (4.20) and (4.24), if it exists, the joint pdf of (X1, X2) becomes

f(X1,X2)(x1, x2) = fX1(x1)f(X2|X1=x1)(x2|x1)

= fX1(x1)C2(x1) exp

[
−
∫ x2

0

η(X2|X1=x1)(v|x1) dv

]
= fX1(x1)

exp(s∗(x1))

s(x1)
exp

[
−
∫ x2

0

η(X2|X1=x1)(v|x1) dv

]
.

Then, using that s(x1) is proportional to fX1(x1) (see Arnold et al. (1999)), we have

f(X1,X2)(x1, x2) = K exp(s∗(x1)) exp

[
−
∫ x2

0

η(X2|X1=x1)(v|x1) dv

]

or

f(X1,X2)(x1, x2) = K exp

[
s∗(x1)−

∫ x2

0

η(X2|X1=x1)(v|x1) dv

]
,

thus obtains the form (4.22). In a similar fashion, we can obtain (4.23).

Example 4.3.3. Suppose that η(X1|X2=x2)(x1|x2) and η(X2|X1=x1)(x2|x1) satisfies the

relationships η(X1|X2=x2)(x1|x2) = α1(x2)λ1(x1) − λ′1(x1)

λ1(x1)
and η(X2|X1=x1)(x2|x1) =

α2(x1)λ2(x2) − λ′2(x2)

λ2(x2)
, where α1(x2) = a1[1 + φa2Λ2(x2)] and α2(x1) = a2[1 +

φa1Λ1(x1)]. Then we can easily show that it satisfies relationship (4.21) with s∗(x1) =

log λ1(x1)−a1Λ1(x1) and t∗(x2) = a2Λ2(x2)− log λ2(x2). Now using (4.22) or (4.23),

we have the model (4.6).

Obviously, from Remark 4.3.1, Theorem 4.3.2 can be used to obtain a compatibility

condition for the bivariate RCST.
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4.4 Conditionally specified RCST for (X1|X2 > x2)

and for (X2|X1 > x1)

In the case of bivariate survival models, instead of conditioning on a component

failing at a specified time, it is sometimes more natural to condition on the com-

ponent’s having survived beyond a specified time (see Navarro and Sarabia (2013)).

Then the conditional RCST for (X1|X2 > x2) and (X2|X1 > x1) are defined as

η(X1|X2>x2)(x1|x2) = − ∂

∂x1

log f(X1|X2>x2)(x1|x2) (4.25)

and

η(X2|X1>x1)(x2|x1) = − ∂

∂x2

log f(X2|X1>x1)(x2|x1), (4.26)

where P (X1 > x1|X2 > x2) =
∫∞
x1
f(X1|X2>x2)(u|x2)du and P (X2 > x2|X1 > x1) =∫∞

x2
f(X2|X1>x1)(v|x1)dv are the conditional sf’s of (X1|X2 > x2) and (X2|X1 > x1)

respectively and assume that P (X1>x1|X2>x2)
P (X2>x2|X1>x1)

= U(x1)V (x2) with U(x1) and 1/V (x2)

are two sf’s (see Navarro and Sarabia (2010)). The conditional RCST functions

given in (4.25) and (4.26) where used in Navarro (2008) to study ordering properties

between series systems. Integrating both sides of (4.25) with respect to x1 over the

limit 0 to x1, we get

f(X1|X2>x2)(x1|x2) = D1(x2) exp

[
−
∫ x1

0

η(X1|X2>x2)(u|x2) du

]
, (4.27)

where D1(x2) is constant of integration determined by
∫
X1
f(X1|X2>x2)(x1|x2)dx1 = 1.

Similarly from (4.26), we have

f(X2|X1>x1)(x2|x1) = D2(x1) exp

[
−
∫ x2

0

η(X2|X1>x1)(v|x1) dv

]
, (4.28)
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where D2(x1) is constant of integration determined by
∫
X2
f(X2|X1>x1)(x2|x1)dx2 = 1.

Therefore, like the conditional RCST for (X1|X2 = x2) and (X2|X1 = x1), the

conditional RCST for (X1|X2 > x2) and (X2|X1 > x1) uniquely determines the

conditional pdf’s f(X1|X2>x2)(x1|x2) and f(X2|X1>x1)(x2|x1) through the relationships

(4.27) and (4.28).

Theorem 4.4.1. The RCST functions η(X1|X2>x2)(x1|x2) and η(X2|X1>x1)(x2|x1) are

the conditional RCST functions of a nonnegative random vector (X1, X2) with sup-

port SX1 × SX2 if and only if

∞∫
x1

exp

[
−

u∫
0

η(X1|X2>x2)(z|x2)dz

]
du

∞∫
x2

exp

[
−

v∫
0

η(X2|X1>x1)(z|x1)dz

]
dv

=
U(x1)

V (x2)

holds for SX1 × SX2. Moreover, in this case, the sf of (X1, X2) can be obtained as

F̄(X1,X2)(x1, x2) = cV (x2)

∞∫
x1

exp

− u∫
0

η(X1|X2>x2)(z|x2)dz

 du
or as

F̄(X1,X2)(x1, x2) = c∗U(x1)

∞∫
x2

exp

− v∫
0

η(X2|X1>x1)(z|x1)dz

dv,
where c and c∗ are constants of integration.

Proof. The proof is a consequence of Theorem 11.1 in Arnold et al. (1999) and (4.27)

and (4.28).

Example 4.4.2. The model in (4.7) is characterized by

η(X1|X2>x2)(x1|x2) = α1(x2)λ1(x1)− λ′1(x1)

λ1(x1)
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and

η(X2|X1>x1)(x2|x1) = α2(x1)λ2(x2)− λ′2(x2)

λ2(x2)
.

Example 4.4.3. The functions η(X1|X2>x2)(x1|x2) = θ(x2) and η(X2|X1>x1)(x2|x1) =

τ(x1) are the conditional RCST functions of a random vector (X1, X2) with support

(0,∞)× (0,∞) if and only if θ(x2) = α + γx2 and τ(x1) = β + γx1 where α, β > 0

and γ ≥ 0. In this case they characterize the Gumbel’s type I bivariate exponential

distribution with sf F̄(X1,X2)(x1, x2) = exp(−αx1 − βx2 − γx1x2) for x1, x2 ≥ 0.

More examples can be obtained from that included in Arnold et al. (1999).

The FGM family specified by the joint sf of a two-dimensional random vector

(X1, X2),

F̄(X1,X2)(x1, x2) = F̄1(x1)F̄2(x2)
[
1 + ω

(
1− F̄1(x1)

) (
1− F̄2(x2)

)]
, −1 ≤ ω ≤ 1.

(4.29)

with specified marginal distributions through F̄1(x1) and F̄2(x2).

Theorem 4.4.4. The relationships

η(X1|X2>x2)(x1|x2) = η1(x1)− 2ωf1(x1)F2(x2)

1 + ω (2F1(x1)− 1)F2(x2)
(4.30)

and

η(X2|X1>x1)(x2|x1) = η2(x2)− 2ωf2(x2)F1(x1)

1 + ω (2F2(x2)− 1)F1(x1)
, (4.31)

holds if and only if (X1, X2) follows the FGM family with joint pdf (4.29).

Proof. Assume that (4.30) holds, then using (4.27) we have the conditional pdf

f(X1|X2>x2)(x1|x2) =
D1(x2)f1(x1) [1 + ω (2F1(x1)− 1)F2(x2)]

[1− ωF2(x2)]
.
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Now applying the boundary condition
∞∫
0

f(X1|X2>x2)(x1|x2)dx1 = 1, we obtain

D1(x2)

[1− ωF2(x2)]

(1− ωF2(x2))

∞∫
0

f1(x1)dx1 + 2ωF2(x2)

∞∫
0

F1(x1)f1(x1)dx1

 = 1,

thus obtains D1(x2) = 1− ωF2(x2), and therefore

f(X1|X2>x2)(x1|x2) = f1(x1) [1 + ω(2F1(x1)− 1)F2(x2)] , (4.32)

the conditional pdf of (X1|X2 > x2) for FGM model given in (4.29). Integrating

(4.32) between the limits x1 to ∞, we get

F̄(X1|X2>x2)(x1|x2) = (1− ωF2(x2))

∞∫
x1

f1(u)du+ 2ωF2(x2)

∞∫
x1

F1(u)f1(u)du,

where F̄(X1|X2>x2)(x1|x2) denote the sf of (X1|X2 > x2). On simplification, we further

obtain

F̄(X1|X2>x2)(x1|x2) = F̄1(x1)[1 + ωF1(x1)F2(x2)],

is the conditional sf of FGM with model (4.29). In a similar manner, using (4.31)

and (4.28), we can obtain the conditional sf of (X2|X1 > x1) for FGM in (4.29). The

other part is straightforward.

In Theorem 4.4.4, if we consider identical marginals, i.e., when f1(x1) = f2(x2) =

f(x1), we have η1(x1) = η2(x2) = η(x1). In this case, (4.30) and (4.31) are reduced

to a single relationship in either x1 or x2, which are illustrated in the following

examples.

Example 4.4.5. Uniform [0, 1] marginals. In this case f(x1) = 1, F (x1) = x1 and

η(x1) = 0, then η(X1|X2>x2)(x1|x2) = η(X2|X1>x1)(x2|x1) = − 2ωx1
1+ωx1(2x1−1)

.
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Example 4.4.6. Exponential marginals, with f(x1) = λe−λx1 we have η(x1) = λ,

then

η(X1|X2>x2)(x1|x2) = η(X2|X1>x1)(x2|x1) = λ− 2ωλe−λx1 (1−e−λx1 )

1+ω(1−2e−λx1 )(1−e−λx1 )
.

Example 4.4.7. Pareto marginals, with f(x1) = (1+x1)−2 and η(x1) = 2(1+x1)−1,

then

η(X1|X2>x2)(x1|x2) = η(X2|X1>x1)(x2|x1) = 2
1+x1
− 2ωx1(1+x1)−3

1+ω(2x12(1+x1)−2−x1(1+x1)−1)
.

Example 4.4.8. Weibull marginals, with f(x1) = cx1
c−1e−x1

c
and

η(x1) = x1
−1 (1− c(1− x1

c)), then

η(X1|X2>x2)(x1|x2) = η(X2|X1>x1)(x2|x1) = 1−c(1−x1c)
x1

− 2ωcx1c−1e−x1
c
(1−e−x1c )

1+ω(1−2e−x1
c
)(1−e−x1c )

.





Chapter 5

Reciprocal coordinate subtangent

in discrete time4

5.1 Introduction

Discrete distributions are important when the measurements are taken on a discrete

scale. For example, number of copies made by a photocopier before it fails; number

of road accidents in a city in a given month or devices that are observed or used for

fixed duration of operation, discrete distributions provides better modelling, analysis

and interpretation. Analogous to η(·) in the continuous case, a discrete version is

due to Gupta et al. (1997). Let X be a nonnegative integer valued rv having a

probability mass function (pmf) p(x) = P (X = x). Gupta et al. (1997) introduced

a new discrete measure that can be useful for measuring the shape of a failure rate

4Contents of this chapter have been published as entitled “A discrete analogue of reciprocal
coordinate subtangent and its role in characterization problems”, Calcutta Statistical Association
Bulletin, 66:123–135 (see Sunoj and Sreejith (2014)).
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function, given by

φ(x) =
p(x)− p(x+ 1)

p(x)
= 1− p(x+ 1)

p(x)
. (5.1)

Clearly equation (5.1) is a discrete analogue of η(·) and can be used an equivalent

measure for determining the monotone behaviours of discrete failure rate functions

(see Gupta et al. (1997)). φ(x) for different discrete distributions are given in Table

5.1. It is interesting to note that E(φ(X)) = p(0) for any nonnegative integer valued

pmf, however, E
(

1
φ(X)

)
= 1

p(0)
for the geometric distribution. Like η(·), φ(·) can

also be represented in terms of the discrete failure rate v(x) = 1 − F̄ (x+1)

F̄ (x)
, where

F̄ (x) = P (X ≥ x) by φ(x) = 1− v(x+ 1)
(

1
v(x)
− 1
)

. For further review on φ(·) and

its applications, we refer to Gupta et al. (1997), Sindu (2002), Kemp (2004) and Lai

and Xie (2006).

The Chapter is organized as follows. In Section 5.2, we consider (5.1) and study its

usefulness for the unique determination of the pmf’s and characterizing some distri-

butions. Characterizations are also proved for geometric, discrete Burr and modified

power series family of distributions and obtained a distribution having linear φ(·).

In Section 5.3, we extend (5.1) to the weighted models and obtained characteri-

zation results to logarithmic-series, a distribution for which φ(·) is linear, residual

lifetime and partial sum distributions. Finally in Section 5.4, a new definition for

discrete analogue of RCST is introduced and discrete proportional hazards model is

characterized.

5.2 Characterizations using discrete RCST

In this section, we characterize some discrete distributions using φ(·).
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Table 5.1: 1− φ(x) for different families of distributions

Distribution pmf 1− φ(x)

Geometric pqx, x = 0, 1, ...; 0 < p < 1, q = 1− p q

Binomial

(
n
x

)
pxqn−x, x = 0, 1, ..., n; 0 < p < 1,

q = 1− p

(n−x)p
(x+1)q

Poisson e−λλx

x!
, x = 0, 1, ...;λ > 0 λ

(x+1)

Extended Katz family
p(x+1)
p(x)

= α+βx
γ+x

, α > 0, β < 1, γ > 0 α+βx
γ+x

Kemp family
p(x+1)
p(x)

= (a1+x)(a2+x)...(ap+x)

(b1+x)(b2+x)...(bq+x)
. θ
x+1

(a1+x)(a2+x)...(ap+x)

(b1+x)(b2+x)...(bq+x)
. θ
x+1

Inverse linear failure rate
p(x+1)
p(x)

= a−1+bx
a+b+bx

, a > 0, 0 < b < 1 a−1+bx
a+b+bx

Logarithmic-series θx

−x ln(1−θ) , x = 1, 2, ...; 0 < θ < 1 θx
1+x

Waring
(a−b)(b+x−1)!a!
a(b−1)!(a+x)!

, x = 0, 1, ...; a > b > 0 b+x
a+x+1

Cluster size

p(x+1)
p(x)

= x−α
(x+1)(k+1)

, x = 1, 2, ...;

0 < α < 1, k ≥ 0

x−α
(x+1)(k+1)

Theorem 5.2.1. The discrete RCST φ(x) = C, where 0 < C < 1, a constant if and

only if X follows a geometric distribution.

We prove the following characterization theorems using unique determination of pmf

due to Chechile (2003). That is, φ(·) uniquely determines the pmf p(·)

p(x) =


α, x = 0,

α
∏x−1

i=0 (1− φ(i)) , x = 1, 2, ...

0 otherwise

(5.2)

where α is a constant determined by
∑∞

x=0 p(x) = 1. In the continuous case, RCST
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is linear in x if the underlying distribution is truncated normal. Similarly, in the

next theorem, we obtain a pmf for which φ(x) is linear.

Theorem 5.2.2. Let X be a nonnegative rv with pmf p(·). Then φ(x) = a x + b if

and only if the pmf of X is of the form

p(x) =
1

2F0

[
1, b−1

a
;−;−a

]ax(1− b
a

)(x)

, x = 0, 1, ..., a > 0, b > 0, (5.3)

where pFq [a1, ..., ap; b1, ..., bq;x] is the generalized hypergeometric series, given by

pFq [a1, ..., ap; b1, ..., bq;x] = 1 + a1···ap
b1···bq

x
1!

+ a1(a1+1)···ap(ap+1)

b1(b1+1)···bq(bq+1)
x2

2!
+ ... and (n)(x) = n!

(n−x)!

is the descending factorial.

Proof. The if part is straightforward. To prove the only if part, suppose that φ(x) =

a x+ b holds, then from (5.2), we get

p(x) = α
x−1∏
i=0

(1− a i− b) (5.4)

where α is determined by
∑∞

x=0 p(x) = 1, which implies

α

(
1 +

(
0− 1− b

a

)
(−a) +

(
0− 1− b

a

)(
1− 1− b

a

)
(−a)2 + ...

)
= 1,

That is, α 2F0

[
1, b−1

a
;−;−a

]
= 1, or α = 1

2F0[1, b−1
a

;−;−a]
and hence equation (5.4)

becomes

p(x) =
1

2F0

[
1, b−1

a
;−;−a

] x−1∏
i=0

(1− a i− b) ,

=
1

2F0

[
1, b−1

a
;−;−a

] (ax1− b
a

(
1− b
a
− 1

)(
1− b
a
− 2

)
· · ·
(

1− b
a
− x+ 1

))
,

which gives (5.3).
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In the next theorem, we characterize the discrete Burr family proposed by Nair and

Asha (2004), with pmf

p(x) =


1
c+1

, x = 0

cG(x−1)g(x)
(1+cG(x))(1+cG(x−1))

, x = 1, 2, ...
(5.5)

where G(x) =
∏x

u=1 (1− g(u)) with G(0) = 1 and G(∞) = 0 and g(x) = (1− v(x))

(1− v̄(x)) with v̄(x) = p(x)
F (x)

, F (x) = P (X ≤ x) and c is determined such that
∞∑
0

p(x) = 1. Some important members of (5.5) include uniform, geometric, discrete

Weibull, power series and Waring, obtained by taking different functional forms to

g(x).

Theorem 5.2.3. For a nonnegative rv X, 1− φ(x) = (1− g(x)) g(x+1)
g(x)

(1+cG(x−1))
(1+cG(x+1))

if

and only if the distribution of X belongs to discrete Burr family (5.5) with p(0) =

1
c+1

.

Proof. Assume that, 1 − φ(x) = (1− g(x)) g(x+1)
g(x)

(1+cG(x−1))
(1+cG(x+1))

holds, then from (5.2)

we have

p(x) = α
x−1∏
i=0

(1− g(i))
g(i+ 1)

g(i)

(1 + cG(i− 1))

(1 + cG(i+ 1))
,

= α
g(x)

g(0)

(1 + cG(−1))

(1 + cG(x− 1))

(1 + cG(0))

(1 + cG(x))
(1− g(0))

(
x−1∏
i=1

(1− g(i))

)
,

= αA
g(x)G(x− 1)

(1 + cG(x− 1)) (1 + cG(x))
,

where G(x) =
∏x

u=1 (1− g(u))and A = (1−g(0))
g(0)

(1 + cG(−1)) (1 + cG(0)). Since

p(0) = 1
c+1

, α = 1
c+1

and the constant A is determined by,

1

c+ 1
+

1

c+ 1
A
∞∑
x=1

G(x− 1)g(x)

(1 + cG(x− 1)) (1 + cG(x))
= 1,
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which gives A = c(c+1) and the form (5.5). The proof of the other part is direct.

Theorem 5.2.4. For a nonnegative rv X, 1 − φ(x) = t(x)u(θ), where t(x) =

a(x+1)
a(x)

(> 0) is a function of x and u(θ) > 0 if and only if the distribution of X

belongs to modified power series family p(x) = a(x)(u(θ))x

k(θ)
, x ∈ T where T is a subset

of the set of nonnegative integers, a(x) > 0, and u(θ) and k(θ) are positive, finite

and differentiable.

Proof. The first part is straight forward and the converse part is direct from equation

(5.2).

We say that X is less than or equal in the likelihood ratio order (X ≤
LR
Y ) than

another random variable Y if pX(x)
pY (x)

decreases in x, where pX(x) and pY (x) denotes

the pmf’s of X and Y respectively. Then, it is easy to obtain the following theorem.

Theorem 5.2.5. X ≤
LR

(≥)Y if and only if φX(x) ≥ (≤)φY (x), where φX(·) and

φY (·) are φ(.) functions for the rv’s X and Y .

5.3 Characterizations of discrete RCST for weighted

models

By virtue of the definition of discrete analogue of RCST in (5.1), the discrete ana-

logue of RCST function for the weighted rv Xw is given by φw(x) = 1 − pw(x+1)
pw(x)

.

Equivalently,

1− φw(x) = (1− φ(x))
w(x+ 1)

w(x)
. (5.6)

Following equation (5.2), it can be easily shown that φw(·) also uniquely deter-

mines pw(·). Further, φw(·) uniquely determines the original pmf p(·) using
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the relationship

p(x) =


γ, x = 0,

γ
w(x)

∏x−1
i=0 (1− φw(i)) , x = 1, 2, ...,

0 otherwise

(5.7)

where γ is a constant determined by
∑∞

x=0 p(x) = 1.

Remark 5.3.1. If w(·) is monotonically increasing (decreasing), then X ≤
LR

(≥)Xw

if and only if φw(x) ≤ (≥)φ(x).

It may be noted that for most of the weighted models, the probability distributions

are characterized by specifying its weight functions (see Gupta and Kirmani (1990)).

Likewise, equation (5.7) determines pmf uniquely using weight function w(·) and

φw(·). The following two theorems establish this idea.

Theorem 5.3.2. Let X be a nonnegative rv with pmf p(·). Then for w(x) = x,

φw(x) = θ, 0 < θ < 1 if and only if X follows a logarithmic-series distribution with

pmf

p(x) =
(1− θ)x

−x ln θ
, 0 < θ < 1, x = 1, 2, ...

Proof. The first part easily follows from (5.6). Conversely, suppose that φw(x) = θ

holds, then using (5.7) we obtain p(x) = γ
x

∏x−1
i=1 (1− θ) = K

x
(1−θ)x, where K = γ

1−θ

and is determined by
∑∞

x=1 p(x) = 1, implies that γ + K
∑∞

x=2
1
x
(1 − θ)x = 1, i.e.,

K
∑∞

x=1
1
x
(1− θ)x = 1 and therefore K = 1

− ln θ
, proves the theorem.

Theorem 5.3.3. Let X be a nonnegative rv with pmf p(·). Then for w(x) = x,

φw(x) = a x+ b if and only if the pmf of X is of the form

p(x) =
1

3F1

[
1, 1, a+b−1

a
; 2;−a

] ax−1
(

1−a−b
a

)(x−1)

x
, x = 1, 2, ..., a > 0, b > 0.
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Proof. The first part is straightforward from (5.6). The converse part is similar to

the proof of Theorem 5.2.2.

Theorem 5.3.4. For a nonnegative rv X, φw(x) = φ(x + t + 1) if and only if

Xw = x < X ≤ x+ t |X > x follows a residual life distribution.

Proof. Suppose Xw follows a residual life distribution, i.e., w(x) = p(x+t+1)
p(x)

, then

w(x+1)
w(x)

= 1−φ(x+t+1)
1−φ(x)

. From (5.6), we have φw(x) = φ(x+ t+ 1). Conversely, suppose

that φw(x) = φ(x+ t+ 1) holds, we have

pw(x) = β

x−1∏
i=0

(1− φ(i+ t+ 1)) = A(t)p(x+ t+ 1), (5.8)

where A(t) = β
p(t+1)

, using the identity
∑∞

x=0 pw(x) = 1, we get A(t) = 1
F̄ (t+1)

and

therefore (5.8) becomes pw(x) = p(x+t+1)

F̄ (t+1)
, which is the residual life distribution.

Theorem 5.3.5. For a nonnegative rv X, φw(x) = v(x+1) if and only if Xw follows

a partial sum (renewal) distribution.

Proof. SupposeXw follows a partial sum (renewal) distribution. i.e., w(x) = P (X>x)
P (x)

,

then w(x+1)
w(x)

= 1
1−φ(x)

P (X>x+1)
P (X>x)

. From (5.6), we get φw(x) = v(x + 1). Conversely,

suppose that φw(x) = v(x+ 1), we get

pw(x) = β

x−1∏
i=0

(1− v(i+ 1)) , x = 1, 2, ...,

= β P (X > x). (5.9)

Now using the identity
∑∞

x=0 pw(x) = 1, we have β = 1
E(X)

, where E(X) =
∑∞

x=0 P (X >

x) and therefore (5.9) becomes pw(x) = P (X>x)
E(X)

. i.e., Xw follows a partial sum (re-

newal) distribution.
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5.4 An alternative definition to discrete RCST

Although the definition of discrete failure rate function v(x) = 1− F̄ (x+1)

F̄ (x)
has been

widely used in literature, Xie et al. (2002) recently identified a few drawbacks of

this definition and proposed an alternate definition to it, given by v∗(x) = ln F̄ (x)

F̄ (x+1)
.

Xie et al. (2002) showed that v∗(·) is additive for series system and it has the same

monotonicity properties as that of v(·). Motivated by this, we propose an alternate

form for φ(·) in the discrete case by

φ∗(x) = ln
p(x)

p(x+ 1)
.

φ∗(·) can be easily represented in terms of φ(x) by φ∗(x) = − ln (1− φ(x)). Equiva-

lently,

φ(x) = 1− e−φ∗(x). (5.10)

Also, we have,

∆φ∗(x) = φ∗(x+ 1)− φ∗(x) = ln

(
p2(x+ 1)

p(x)p(x+ 2)

)
.

Recalling that the distribution is log-convex if p(x)p(x + 2) > p2(x + 1) and log-

concave if p(x)p(x+2) < p2(x+1) for all x, we can say that log-concavity is equivalent

to ∆φ∗(x) > 0 and log-convexity is equivalent to ∆φ∗(x) < 0. Thus, if ∆φ∗(x) > 0,

then v(x) is nondecreasing (IFR); if ∆φ∗(x) < 0, then v(x) is nonincreasing (DFR)

and if ∆φ∗(x) = 0, then p(x+1)
p(x)

= p(x+2)
p(x+1)

for all x. Therefore the monotonicity of

∆φ∗(x) is same as ∆φ(x) due to Gupta et al. (1997) in (5.1) and hence φ∗(x) is an

alternate form for φ(x) and is equally useful in determining the monotone behaviours

of different discrete distributions. Based on these, we have the following properties.
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Property 5.4.1. The two measures φ(·) and φ∗(·) have the same monotonicity

property. That is, φ(·) is increasing (decreasing) if and only if φ∗(·) is increasing

(decreasing).

When φ∗(x) is small, we have

φ(x) = 1− e−φ∗(x) =
∞∑
j=1

(−1)j+1 (φ∗(x))j

j!
= φ∗(x) +O (φ∗(x)) ,

where O (φ∗(x)) tends to zero when φ∗(x) tends to zero. Hence φ∗(·) and φ(·) are

almost equal for small φ∗(·).

Property 5.4.2. The ratio of two probabilities p(x+1)
p(x)

≥ 0 for all x implies that

φ(x) ≤ 1 i.e., φ(·) is bounded, whereas φ∗(·) is not a bounded measure.

Based on Table 5.1, we have the following examples

Example 5.4.3 (Poisson). p(x)
p(x+1)

= (x+1)
λ

, then φ∗(x) = ln (x+1)
λ

and therefore

∆φ∗(x) > 0 and is IFR.

Example 5.4.4 (Logarithmic-series). φ∗(x) = ln x+1
θx

, then ∆φ∗(x) = ln (x+2)x
(x+1)2

< 0,

and is DFR.

Example 5.4.5 (Waring). φ∗(x) = ln a+x+1
b+x

, we have∆φ∗(x) = ln
[

(a+x+2)(b+x)
(a+x+1)(b+x+1)

]
<

0 and therefore DFR.

We can also express φ∗(·) in terms of v∗(·) by, φ∗(x) = ln
(

ev
∗(x)−1

1−e−v∗(x+1)

)
. In this

fashion, φ(·) for weighted distributions is φ∗w(x) = ln pw(x)
pw(x+1)

, and φ∗w(·) in terms of

φ(·) by

φ∗w(x) = − ln

(
(1− φ(x))

w(x+ 1)

w(x)

)
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whereas φ∗w(·) in terms of φ∗(·) by

φ∗w(x) = φ∗(x) + ln
w(x)

w(x+ 1)
. (5.11)

Further, the relationship between φw(·) and φ∗w(·) is φ∗w(x) = − ln (1− φw(x)), or

φw(x) = 1− e−φ∗w(x).

Theorem 5.4.6. For a nonnegative rv X, φ∗(·) uniquely determines the pmf p(·)

p(x) =


α, x = 0,

α e−
∑x−1
i=0 φ

∗(i), x = 1, 2, ...

0 otherwise

where α is a constant determined by
∑∞

x=0 p(x) = 1.

Proof. The proof is obtained by substituting (5.10) in equation (5.2).

Theorem 5.4.7. For a nonnegative rv X, φ∗w(·) uniquely determines the pmf pw(·)

pw(x) =


β, x = 0,

β e−
∑x−1
i=0 φ

∗
w(i), x = 1, 2, ...,

0 otherwise

(5.12)

where β is a constant determined by
∑∞

x=0 pw(x) = 1.

Corollary 5.4.8. For a nonnegative rv X, φ∗w(·)uniquely determines the pmf p(·)

p(x) =


γ, x = 0,

γ
w(x)

e−
∑x−1
i=0 φ

∗
w(i), x = 1, 2, ...,

0 otherwise
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where γ is a constant determined by
∑∞

x=0 p(x) = 1.

For some probability models, we will not get a closed form characterizing relation-

ships using φ(·) while φ∗w(·) obtains. To illustrate this, in the next theorem we

characterize the discrete proportional hazards model proposed by Dewan and Sud-

heesh (2009) using the functional form of φ∗w(·).

Theorem 5.4.9. For a nonnegative rv X, φ∗w(x) = ln
(

eθv
∗(x)−1

1−e−θv∗(x+1)

)
, θ > 0 if and

only if , Xw follows discrete proportional hazards model.

Proof. SupposeXw follows proportional hazards model, i.e., w(x) =
(F̄ (x))

θ
−(F̄ (x+1))

θ

P (x)
,

then ln w(x)
w(x+1)

= ln
(F̄ (x))

θ
−(F̄ (x+1))

θ

(F̄ (x+1))
θ
−(F̄ (x+2))

θ − φ∗(x). From (5.11), we get

φ∗w(x) = ln

(
F̄ (x)

)θ − (F̄ (x+ 1)
)θ(

F̄ (x+ 1)
)θ − (F̄ (x+ 2)

)θ = ln


(

F̄ (x)

F̄ (x+1)

)θ
− 1

1−
(
F̄ (x+2)

F̄ (x+1)

)θ
 ,

i.e., φ∗w(x) = ln
(

eθv
∗(x)−1

1−e−θv∗(x+1)

)
, θ > 0.

Conversely, suppose that φ∗w(x) = ln
(

eθv
∗(x)−1

1−e−θv∗(x+1)

)
holds, then from (5.12) we have

pw(x) = β exp

(
−

x−1∑
i=0

ln

(
eθv
∗(i) − 1

1− e−θv∗(i+1)

))
= β exp

− x−1∑
i=0

ln


(

F̄ (i)

F̄ (i+1)

)θ
− 1

1−
(
F̄ (i+2)

F̄ (i+1)

)θ

 ,

= β exp

(
x−1∑
i=0

ln
((
F̄ (i+ 1)

)θ − (F̄ (i+ 2)
)θ)− x−1∑

i=0

ln
((
F̄ (i)

)θ − (F̄ (i+ 1)
)θ))

,

= A
((
F̄ (x)

)θ − (F̄ (x+ 1)
)θ)

, (5.13)

where A = β(
(F̄ (0))

θ
−(F̄ (1))

θ
) and is determined by

∑∞
x=0 pw(x) = 1, which implies

that A = 1, therefore (5.13) becomes pw(x) =
(
F̄ (x)

)θ − (F̄ (x+ 1)
)θ

, the discrete

proportional hazards model.



Chapter 6

Nonparametric estimation of

RCST for censored dependent

observations5

6.1 Introduction

Nonparametric estimation is a very effective and useful technique for obtaining

properties having to do with general aspects of a curve (density, regression, etc.).

Nonparametric estimation methods typically involve some kind of approximation

or smoothing method. One of the main smoothing methods used in nonparamet-

ric estimation of density is that of kernel estimation (see Silverman (1986)). Kernel

estimation involves a smoothing parameter or bandwidth which controls the orienta-

tion and amount of smoothing induced. It is quite common that there is no explicit

data-dependent rule for selecting the bandwidth. This is due to the difficulty in

finding rigorous rules for bandwidth selection. Usually in these cases the bandwidth

5Contents of this chapter have been communicated to an International Journal.
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is selected based on a related statistical problem. This is a practically feasible yet

worrisome compromise.

Accordingly, we propose a nonparametric kernel type estimation for η(·) under right

censored dependent data. We consider the situation where the data under study are

dependent. In this situation, the underlying lifetimes are assumed to be α-mixing

(see Rosenblatt (1956)) and its definition is given below.

Definition 6.1.1. Let {Xi; i ≥ 1} denote a sequence of random variables. Given a

positive integer n, set

α(n) = sup
k≥1

{
|P (A ∩B)− P (A)P (B)| ;A ∈ =k1, B ∈ =∞k+n

}
,

where =ki denote the σ-field of events generated by {Xj; i ≤ j ≤ k}. The sequence is

said to be α-mixing (strong mixing), if the mixing coefficient α(n)→ 0 as n→∞.

Many stochastic processes satisfy the α-mixing condition, see, for example, Doukhan

(1994) and Carrasco et al. (2007). Fakoor (2010) examined the strong uniform

consistency of kernel density estimators for censored dependent data. Cai (1998b)

proposed hazard rate estimation for censored dependent data and Cai (1998a) estab-

lished the asymptotic properties of Kaplan-Meier estimator for censored dependent

data. Rajesh et al. (2015) and Rajesh et al. (2016) respectively proposed nonpara-

metric estimators for the residual entropy function and for the inaccuracy measure

based on the right censored dependent data.

The Chapter is organized as follows. In Section 6.2, we present a nonparametric

estimator for η(·) under right censored sample and obtained the bias and mean

squared error (MSE). In Section 6.3, the asymptotic properties of the estimator are
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studied under suitable regularity conditions. In Section 6.4, a simulation study is

carried out to illustrate the performance of the estimator. The usefulness of the

estimator for real data set is also investigated.

6.2 Nonparametric estimation of RCST

In this section, we propose a nonparametric estimator for η(·) for censored data

sets. In reliability and life testing, due to time constraints or cost considerations the

experimenter is forced to terminate the experiment after a specific period of time

or after the failure of a specified number of units. Such nonavailability of the com-

plete information results the underlying data censored. There are different censoring

mechanisms adopted by the experimenters, however, the more commonly encoun-

tered one is the random right censoring. In random right censoring, the individuals

start at random times such that both the lifetimes and the censoring times are ran-

dom and it occurs when a subject leaves the study before an event occurs, or the

study ends before the event has occurred.

Let {Xi; 1 ≤ i ≤ n} be a sequence of nonnegative random variables representing the

life times for n components/devices. The random variables are not assumed to be

mutually independent. However, Xi have a common unknown continuous marginal

distribution function F (·) with a pdf f(·) = F ′(·). Let the random variable Xi be

censored on the right and Yi denotes the censoring time associated with Xi. In

this random censorship model, the censoring times Y1, Y2, ..., Yn are assumed to be

independently and identically distributed random variables with common distribu-

tion function G(·) and are independent of X1, X2, ..., Xn. Let Zi = min(Xi, Yi) and

δi = I(Xi ≤ Yi), where I(·) denotes the indicator function contain the censoring
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information. The actually observed Zi’s have a distribution function L(·) satisfying

1− L(t) = (1− F (t))(1−G(t)), t ∈ R+ = [0,∞).

Let L∗(t) = P (Z1 ≤ t; δ1 = 1) be the corresponding sub-distribution function for

the uncensored observations and l∗(t) = f(t)(1 − G(t)) be the corresponding sub-

density. A reasonable estimator of f(·) should behave like l∗n(t)
(1−G(t))

where l∗n(t) =

1
hn

∫
R+

K
(
t−x
hn

)
dL∗n(x) is the kernel estimator pertaining to L∗n(t) = 1

n

n∑
i=1

I(Zi ≤ t; δi = 1).

The nonparametric estimator for (1.2) under censoring is defined as

ηn(x) = − d

dx
log fn(x),

where

fn(x) =
1

hn

∫
R+

K
(
x−u
hn

)
1−G(u)

dL∗n(u), (6.1)

is the nonparametric estimator for f(x) under right censoring (see Cai (1998b)),

where K(·) is a kernel function and hn is the smoothing parameter or bandwidth.

The Taylor expansion of log fn(x) with integral remainder form (see Wade (2004))

is

log fn(x) = log f(x) +
fn(x)− f(x)

f(x)
+ Tn, (6.2)

where

Tn =

1∫
0

(τ − 1)

{f(x) + τ [fn(x)− f(x)]}2 [fn(x)− f(x)]2 dτ .
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Taking negative differentiation of (6.2), we get

− d

dx
log fn(x) = − d

dx

(
log f(x) +

fn(x)− f(x)

f(x)
+ Tn

)

− d

dx
log fn(x) = − d

dx
log f(x)− d

dx

(
fn(x)− f(x)

f(x)

)
− d

dx
Tn

ηn(x) = η(x)−
(
f ′n(x)− f ′(x)

f(x)
− fn(x)− f(x)

[f(x)]2
f ′(x)

)
− d

dx
Tn

ηn(x)− η(x) = −f
′
n(x)− f ′(x)

f(x)
+
fn(x)− f(x)

[f(x)]2
f ′(x) +Rn (6.3)

where Rn = d
dx

(−Tn)

i.e.,

Rn =

1∫
0

(
d

dx

(1− τ) [fn(x)− f(x)]2

{f(x) + τ [fn(x)− f(x)]}2

)
dτ

=

1∫
0

2(1− τ) [fn(x)− f(x)] [f ′n(x)− f ′(x)]

{f(x) + τ [fn(x)− f(x)]} 2

− 2(1− τ) [fn(x)− f(x)] 2 {f ′(x) + τ [f ′n(x)− f ′(x)]}
{f(x) + τ [fn(x)− f(x)]} 3

dτ

=

1∫
0

2(1− τ) [fn(x)− f(x)] [f ′n(x)− f ′(x)]

{f(x) + τ [fn(x)− f(x)]} 2
dτ

−
1∫

0

2(1− τ) [fn(x)− f(x)] 2 {f ′(x) + τ [f ′n(x)− f ′(x)]}
{f(x) + τ [fn(x)− f(x)]} 3

dτ

=Rn1 −Rn2 ,

where

Rn1 =

1∫
0

2(1− τ) [fn(x)− f(x)] [f ′n(x)− f ′(x)]

{f(x) + τ [fn(x)− f(x)]} 2
dτ (6.4)



106 6 Nonparametric estimation of RCST for censored dependent observations

and

Rn2 =

1∫
0

2(1− τ) [fn(x)− f(x)] 2 {f ′(x) + τ [f ′n(x)− f ′(x)]}
{f(x) + τ [fn(x)− f(x)]} 3

dτ. (6.5)

The following theorem is due to Chen et al. (2009).

Theorem 6.2.1. For positive integers i and j, assume that

(i) f (p)(x), 1 ≤ p ≤ 2j, exists and f (2j)(x) is bounded.

(ii) K(s) ≥ 0,−∞ < s < ∞,
∫
K(s)ds = 1,

∫
saKi(s)ds = 0 for positive odd inte-

gers a and
∫
sbKi(s)ds <∞ for positive even integer b.

Then

E

[
1

hn
K

(
x− Z1

hn

)]i
=

1

hi−1
n

{
f(x)

∫
Ki(u)du +

[
f ′′(x)

2

∫
u2Ki(u)du

]
h2
n

+

[
f (4)(x)

4!

∫
u4Ki(u)du

]
h4
n + ...+

[
f (2j−2)(x)

(2j − 2)!

∫
u2j−2Ki(u)du

]
h2j−2
n +O(h2j

n ).

Now we have the following theorem.

Theorem 6.2.2. For positive integers i and j, assume that

(i) f (p)(x), 1 ≤ p ≤ 2j, exists and f (2j)(x) is bounded.

(ii) K(s) ≥ 0,−∞ < s < ∞,
∫
K(s)ds = 1,

∫
saKi(s)ds = 0 for positive odd inte-

gers a and
∫
sbKi(s)ds <∞ for positive even integer b.
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Then

E

 1

hn

K
(
x−Z1

hn

)
1−G(Z1)

 =f(x) +

(
f ′′(x)

2

∫
u2K(u)du

)
h2
n+

(
f (4)(x)

4!

∫
u4K(u)du

)
h4
n + ...+(

f (2j−2)(x)

(2j − 2)!

∫
u2j−2K(u)du

)
h2j−2
n +O(h2j

n )

and

E

 1

hn

K
(
x−Z1

hn

)
1−G(Z1)

2

=
C(k)

hn

f(x)

1−G(x)
+O(hn),

where C(k) =
∫
K2(u)du.

The proof follows from Theorem 6.2.1.

Theorem 6.2.3. Assume that f ′(x), f ′′(x) and f (3)(x) exists and f (4)(x) is bounded.

If K(·) satisfies condition (ii) in Theorem 6.2.2 and hn → 0, nhn →∞, then

E [fn(x)− f(x)] =

(
f ′′(x)

2

∫
u2K(u)du

)
h2
n +O(h4

n) = O(h2
n)

and

E [fn(x)− f(x)]2 =
Ck
nhn

f(x)

1−G(x)
+

(
f ′′(x)

2

∫
u2K(u)du

)2

h4
n+

O(h5
n) = O

(
1

nhn

)
+O(h4

n).

Proof. The proof follows directly by using (6.1) and Theorem 6.2.2.

An estimator for estimating the rth order derivative of the density f (r)(x) = − dr

dxr
f(x)
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is found by taking derivatives of the nonparametric estimator.

f (r)
n (x) = − dr

dxr
fn(x) =

1

nhn
r+1

n∑
i=1

K(r)
(
x−Zi
hn

)
1−G(Zi)

, (6.6)

where K(r)(x) = dr

dxr
K(x), provided K(r)(x) exist and is nonzero.

Theorem 6.2.4. For positive integers i and j, assume that f (r+p)(x), 1 ≤ p ≤ 2j,

exists and f (r+2j)(x) is bounded, and K(·) satisfies condition (ii) in Theorem 6.2.2,

then

E

 1

hr+1
n

K(r)
(
x−Z1

hn

)
1−G(Z1)

 =f (r)(x) +
f (r+2)(x)

2
h2
n

∫
u2K(u)du+ ...+

f (r+2j−2)(x)

(2j − 2)!
h2j−2
n

∫
u2j−2K(u)du+O(h2j

n ),

and

E

K(r)
(
x−Z1

hn

)
1−G(Z1)

2

= C(k(r))
f(x)

1−G(x)
+O(hn),

where C(k(r)) =
∫ [
K(r) (u)

]2
du.

Proof.

E

 1

hr+1
n

K(r)
(
x−Z1

hn

)
1−G(Z1)

 =

∫
1

hr+1
n

K(r)

(
x− z1

hn

)
f(z1)dz1.

Using the fact that
∫

1
hn
K(r)

(
x−z1
hn

)
dz1 = −K(r−1)

(
x−z1
hn

)
, the above expression

becomes

E

 1

hr+1
n

K(r)
(
x−Z1

hn

)
1−G(Z1)

 =

∫
1

hrn
K(r−1)

(
x− z1

hn

)
f ′(z1)dz1.
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Repeating this a total of r times, we obtain

E

 1

hr+1
n

K(r)
(
x−Z1

hn

)
1−G(Z1)

 =

∫
1

hn
K

(
x− z1

hn

)
f (r)(z1)dz1

=

∫
K(u)f (r)(x− uhn)du

=f (r)(x) + f (r+1)(x)hn

∫
uK(u)du+

f (r+2)(x)

2!
h2
n

∫
u2K(u)du+ ...+

f (r+2j−2)(x)

(2j − 2)!
h2j−2
n

∫
u2j−2K(u)du+O(h2j

n ).

E

K(r)
(
x−Z1

hn

)
1−G(Z1)

2

=

∫ [
K(r)

(
x−z1
hn

)]2

1−G(Z1)
f(z1)dz1

=

∫ [
K(r) (u)

]2 f(x− uhn)

1−G(x− uhn)
hdu

=
f(x)

1−G(x)
hn

∫ [
K(r) (u)

]2
du+O(hn)

=C(k(r))
f(x)

1−G(x)
hn +O(hn),

where C(k(r)) =
∫ [
K(r) (u)

]2
du.

Theorem 6.2.5. Assume that f ′(x), f ′′(x), f (3)(x) and f (4)(x) exists and f (5)(x) is

bounded. If K(·) satisfies condition (ii) in Theorem 6.2.2 and hn → 0, nhn → ∞,

then

E [f ′n(x)− f ′(x)] =
f (3)(x)

2
h2
n

∫
u2K(u)du+O(h4

n) = O(h4
n)



110 6 Nonparametric estimation of RCST for censored dependent observations

and

E [f ′n(x)− f ′(x)]
2

=
C(k(1))

nhn
3

f(x)

1−G(x)
+

(
f (3)(x)

2

∫
u2K(u)du

)2

h4
n +O(h5

n)

= O

(
1

nhn

)
+O(h4

n).

Proof. The proof straightforward from (6.6) and Theorem 6.2.4.

In the next theorem we derive the bias and MSE of ηn(x) in which the consistency

of ηn(x) is evident.

Theorem 6.2.6. Assume that f ′(x), f ′′(x), f (3)(x) and f (4)(x) exists and f (5)(x) is

bounded. If K(·) satisfies condition (ii) in Theorem 6.2.2 and hn → 0, nhn → ∞

and if m1 < K(x) < M1, x ∈ {y : K(y) 6= 0}, for some positive constants m1 and

M1, and m2 < K ′(x) < M2, x ∈ {y : K ′(y) 6= 0}, for some positive constants m2

and M2, then the bias of ηn(x) is given by

Bias (ηn(x)) =

[
f ′(x)f ′′(x)

2 [f(x)]2
− f (3)(x)

2f(x)

] [∫
u2K(u)du

]
h2
n +O

(
1

nhn

)
+O(h4

n).

The variance of ηn(x) is given by

V ar (ηn(x)) =

[
C(k(1))

h2
nf(x) [1−G(x)]

+
Ck [f ′(x)]2

[f(x)]3 [1−G(x)]

]
1

nhn
+O(h4

n)

and the mean squared error of ηn(x) is given by

MSE (ηn(x)) =

[
C(k(1))

h2
nf(x) [1−G(x)]

+
Ck [f ′(x)]2

[f(x)]3 [1−G(x)]

]
1

nhn
+

[
f ′(x)f ′′(x)

2 [f(x)]2
− f (3)(x)

2f(x)

]2 [∫
u2K(u)du

]2

h4
n +O

(
1

nhn

)
+O(h4

n).

(6.7)
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Proof. Let S =
{
ω : |fn(x)− f(x)| ≤ f(x)

2
and |f ′n(x)− f ′(x)| ≤ f(x)

2

}
and Sc is the

compliment of S. For positive integer j, we will find the integral E |Rn|j over S and

Sc. Clearly, for ω ∈ S, we have

0 < f(x)
(

1− τ

2

)
≤ f(x) + τ [fn(x)− f(x)] ≤ f(x)

(
1 +

τ

2

)
,

and

0 < f(x)
(

1− τ

2

)
≤ f ′(x) + τ [f ′n(x)− f ′(x)] ≤ f(x)

(
1 +

τ

2

)
for 0 ≤ τ ≤ 1.

Let IS denote indicator function of S, then for positive integer j

E |Rn1|
j IS =

∫
S

∣∣∣∣∣∣
1∫

0

2(1− τ) [υ − f(x)] [υ′ − f ′(x)]

{f(x) + τ [υ − f(x)]} 2
dτ

∣∣∣∣∣∣
j

dG(υ)

≤
∫
S

2j |υ − f(x)|j |υ′ − f ′(x)|j
∣∣∣∣∣∣

1∫
0

(1− τ){(
1− τ

2

)
f(x)

}2dτ

∣∣∣∣∣∣
j

dG(υ)

≤
∫
S

2j |υ − f(x)|j |υ′ − f ′(x)|j

[f(x)]2j
dG(υ)

≤
∫
S

2j |υ − f(x)|2j

[f(x)]2j
dG(υ)

≤
∫
R

2j |υ − f(x)|2j

[f(x)]2j
dG(υ)

=
2j

[f(x)]2j
E [fn(x)− f(x)]2j

since
1∫
0

1−τ
(1− τ

2 )
2 dτ = log(16)− 2 < 1. Therefore

E |Rn1|
j IS ≤

2j

[f(x)]2j
E [fn(x)− f(x)]2j . (6.8)
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Now

E |Rn2|
j IS =

∫
S

∣∣∣∣∣∣
1∫

0

2(1− τ) [υ − f(x)]2 {f ′(x) + τ [υ′ − f ′(x)]}
{f(x) + τ [υ − f(x)]}3 dτ

∣∣∣∣∣∣
j

dG(υ)

≤
∫
S

∣∣∣∣∣∣
1∫

0

2(1− τ) [υ − f(x)]2 f(x)
(
1 + τ

2

){(
1− τ

2

)
f ′(x)

}3 dτ

∣∣∣∣∣∣
j

dG(υ)

≤
∫
S

∣∣∣∣∣∣
1∫

0

2(1− τ) [υ − f(x)]2 f ′(x)
(
1 + τ

2

){(
1− τ

2

)
f ′(x)

}3 dτ

∣∣∣∣∣∣
j

dG(υ)

≤
∫
S

4j [υ − f(x)]2j

[f ′(x)]2j
dG(υ)

≤
∫
R

4j [υ − f(x)]2j

[f ′(x)]2j
dG(υ)

=
4j

[f ′(x)]2j
E [fn(x)− f(x)]2j

since
∫ 1

0

(1−τ)(1+ τ
2 )

(1− τ
2 )

3 dτ = 4− 4 log(2) < 2. Therefore

E |Rn2|
j IS ≤

4j

[f ′(x)]2j
E [fn(x)− f(x)]2j . (6.9)

|Rn| = |Rn1 −Rn2| ≤ |Rn1|+ |Rn2|

E |Rn|j IS ≤ E |Rn1 |
j IS + E |Rn2|

j IS

Therefore from (6.8) and (6.9)

E |Rn|j IS ≤
{

2j

[f(x)]2j
+

4j

[f ′(x)]2j

}
E [fn(x)− f(x)]2j .

We proceed to find E |Rn|j ISc . In this case K
(
x−Xi
hn

)
6= 0 and K ′

(
x−Xi
hn

)
6= 0

for some positive integer i. Since m1 < K(u) < M1, we have fn(x) ≥ m1

nhn
, or
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equivalently, 1
fn(x)

≤ nhn
m1

and fn(x) ≤ M1

hn
. Similarly for m2 < K ′(u) < M2, we have

f ′n(x) ≥ m2

nhn
, that is, 1

f ′n(x)
≤ nhn

m2
. Moreover f ′n(x) ≤ M2

hn
and nhn → ∞ implies for

sufficiently large n.

E |Rn|j ISc =E

[∣∣∣∣ηn(x)− η(x) +
f ′n(x)− f ′(x)

f(x)
− fn(x)− f(x)

[f(x)]2
f ′(x)

∣∣∣∣j ISc

]

=E

[∣∣∣∣−f ′n(x)

fn(x)
+
f ′(x)

f(x)
+
f ′n(x)− f ′(x)

f(x)
− fn(x)− f(x)

[f(x)]2
f ′(x)

∣∣∣∣j ISc

]

=E

[∣∣∣∣−f ′n(x)

fn(x)
+
f ′(x)

f(x)
+
f ′n(x)

f(x)
− fn(x)f ′(x)

[f(x)]2

∣∣∣∣j ISc

]

≤E

[∣∣∣∣− m2

nM1

+
f ′(x)

f(x)
+

M2

hf(x)
− m1f

′(x)

nhf 2(x)

∣∣∣∣j ISc

]

=

∣∣∣∣−m2hn
M1

+
nhf ′(x)

f(x)
+
nM2

f(x)
− m1f

′(x)

f 2(x)

∣∣∣∣j [ 1

nhn

]j
EISc

=O(njhjn)

[
1

njhjn

]
EISc

=P

(
|fn(x)− f(x)| ≥ f(x)

2

)
+ P

(
|f ′n(x)− f ′(x)| ≥ f(x)

2

)
≤P

(
|fn(x)− Efn(x)| ≥ f(x)

4

)
+ P

(
|Efn(x)− f(x)| ≥ f(x)

4

)
+

P

(
|f ′n(x)− Ef ′n(x)| ≥ f(x)

4

)
+ P

(
|Ef ′n(x)− f ′(x)| ≥ f(x)

4

)

For sufficiently large n,

P

(
|Efn(x)− f(x)| ≥ f(x)

4

)
→ 0

P

(
|Ef ′n(x)− f ′(x)| ≥ f(x)

4

)
→ 0

and

P

(
|fn(x)− Efn(x)| ≥ f(x)

4

)
≤ 2exp {−C1nhn}



114 6 Nonparametric estimation of RCST for censored dependent observations

P

(
|f ′n(x)− Ef ′n(x)| ≥ f(x)

4

)
≤ 2exp

{
−C2nhn

2
}
,

for constant C1 > 0 and C2 > 0, (see Rao (1983)).

Therefore

E |Rn|j ISc ≤ 2exp {−C1nhn}+ 2exp
{
−C2nhn

2
}
.

E |Rn|j =E |Rn|j IS + E |Rn|j ISc

≤
{

2j

[f(x)]2j
+

4j

[f ′(x)]2j

}
E [fn(x)− f(x)]2j +

2exp {−C1nhn}+ 2exp
{
−C2nhn

2
}
.

In particular for j = 1, 2

E |Rn| ≤
{

2

[f(x)]2
+

4

[f ′(x)]2

}
E [fn(x)− f(x)]2 +

2exp {−C1nhn}+ 2exp
{
−C2nhn

2
}

= O

(
1

nhn

)
+O(h4

n) (6.10)

E |Rn|2 ≤
{

4

[f(x)]4
+

16

[f ′(x)]4

}
E [fn(x)− f(x)]4 +

2exp {−C1nhn}+ 2exp
{
−C2nhn

2
}

= O

(
h3
n

n

)
+O

(
1

n2h2
n

)
+O(h8

n). (6.11)

Since E [fn(x)− f(x)]4 = O
(
h3n
n

)
+ O

(
1

n2h2n

)
+ O(h8

n) (see Rajesh et al. (2016))

and since nhn →∞, 2exp {−C1nhn} and 2exp
{
−C2nhn

2
}

will have orders smaller

than those of E [fn(x)− f(x)]2 and E [fn(x)− f(x)]4, respectively. Consequently,

E |Rn| and E |Rn|2 have the same orders as E [fn(x)− f(x)]2 and E [fn(x)− f(x)]4,

respectively. The desired results follows from (6.3), (6.10), (6.11) and Theorem 6.2.3

and 6.2.5.
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6.3 Asymptotic properties

In this section, we look into consistency, asymptotic normality and the strong con-

vergence of ηn(x).

Definition 6.3.1. A sequence θn of estimators is integratedly consistent in quadratic

mean if the mean integrated squared error (MISE) tends to zero for every θ ∈ Θ, a

family of univariate θ, that is,

lim
n→∞

E

∫
[θn(x)− θ(x)]2dx = 0

(see Rao (1983)).

Theorem 6.3.2. Under the assumptions in Theorem 6.2.6, MISE of ηn(x) is tends

to zero as n→∞.

Proof.

MISE (ηn(x)) = E

∫
[ηn(x)− η(x)]2dx

=

∫
E [ηn(x)− η(x)]2dx

=

∫ {
V ar [ηn(x)] +Bias2 [ηn(x)]

}
dx

=

∫
{MSE [ηn(x)]}dx→ 0,

as n→∞, which is immediate from (6.7).

The following theorem establishes the asymptotic normality of ηn(x).

Theorem 6.3.3. Let ηn(x) be nonparametric estimator of η(x), K(x) be a kernel
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and hn satisfying the conditions for bandwidth. Then

ηn(x)− η(x)
d−→ N(0, σ2

d)

where

σ2
d =

C(k(1))

nhn
3f(x) [1−G(x)]

+
Ck [f ′(x)]2

nhn [f(x)]3 [1−G(x)]
.

Proof.

(nhn)
1
2 [ηn(x)− η(x)] = (nhn)

1
2

{
− d

dx
log fn(x) +

d

dx
log f(x)

}
= −(nhn)

1
2
d

dx
{log fn(x)− log f(x)}

By the asymptotic normality of fn(x) given in Cai (1998b), the proof is immediate.

In following theorem we prove the strong consistency of the estimator ηn(x).

Theorem 6.3.4. Let ηn(x) be nonparametric estimator of η(x), suppose that f(·)

and f ′(·) satisfy the Lipschitz conditions and the kernel K(·) satisfies the require-

ments and for 0 < τ < ∞, the marginal distribution function of L(.) of Z satisfies

L(τ) < 1 (see Cai (1998a)) then sup
0≤x≤τ

|ηn(x)− η(x)| → 0 a.s.

Proof.

ηn(x)− η(x) = −f
′
n(x)

fn(x)
+
f ′(x)

f(x)

=
1

fn(x)

(
−f ′n(x) +

fn(x)f ′(x)

f(x)

)
=

1

fn(x)

(
− (f ′n(x)− f ′(x)) +

f ′(x)

f(x)
(fn(x)− f(x))

)
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Since sup
0≤x≤τ

|fn(x)− f(x)| → 0 a.s (Cai (1998)) and sup
0≤x≤τ

|f ′n(x)− f ′(x)| → 0 a.s

(del Ŕıoz (1997)), the proof completes.

6.4 Numerical examples

Example 6.4.1 (Simulated data). In order to examine the performance of nonpara-

metric estimator ηn(x), we generated data as follows. Let Xi =
√

1− ρ2 |Ti|, where

{Ti} were generated from AR(1) with correlation coefficient ρ = 0.2 and censoring

time {Yi} were generated independently from exponential distribution with param-

eter 2.5. We considered three sample sizes, n = 50, 70 and 100. Also, the kernel

function is taken to be Gaussian kernel, K(u) = 1√
2π

exp
(
−u2

2

)
and the bandwidth

hn = n−
1
7 . Clearly, {Xi} are stationary and pdf f(x) = 2φ(x), and ηn(x) = x, where

φ(x) is the standard normal pdf. Figures 6.1.1, 6.1.2 and 6.1.3 are corresponding to

sample sizes n = 50, 70 and 100. Each figure has two graphs: the true underlying

function is denoted by a solid line, and the estimate is denoted by a dashed line. The

bias and MSE of ηn(x) is given in Table 6.1 and MSE is decreasing with increasing

sample size.

Figure 6.1: Simulation results for n = 50 (Figure 6.1.1), n = 70 (Figure 6.1.2) and
n = 100 (Figure 6.1.3)
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Table 6.1: Bias and MSE of ηn(x)

Sample size Censored observations Bias MSE

50 35 0.0656 0.0058

70 42 -0.0395 0.0027

100 77 -0.0108 0.0004

Example 6.4.2 (Real data). To illustrate the usefulness of the proposed nonpara-

metric estimate ηn(x) for real data, we consider the failure times (measured in mil-

lions of operations) of 40 randomly selected mechanical switches given in Nair (1984)

and Nair (1993) and is reproduced in Table 6.2.

Table 6.2: Failure times (in millions of operations) for a mechanical switch life test

1.151 1.170 1.248 1.331 1.381 1.499 1.508 1.534 1.577 1.584

1.667 1.695 1.710 1.955 1.965 2.012 2.051 2.076 2.109 2.116

2.119 2.135 2.197 2.199 2.227 2.250 2.254 2.261 2.349 2.369

2.547 2.548 2.738 2.794 2.883+ 2.883+ 2.910 3.015 3.017 3.793+

Three of the test positions became available much later than the others, so the three

switches tested at these positions were still operating at the termination of the test.

The corresponding censored observations are indicated by the code +. Here the

censoring mechanisms are dependent, in fact, since the components are subject to

the same stress and operating environment, it is likely that the failure times of the

components are positively dependent. The Gaussian kernel is used as the kernel

function for the estimation. Figure 6.2 shows the plot of ηn(x) calculated using

Gaussian kernel.
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Figure 6.2: ηn(x) for the real data set given in Table 6.2
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From Figure 6.2, it is easy to see that for the data set considered ηn(x) is increasing.

Therefore the failure rate is increasing for the real data set considered.





Chapter 7

Conclusions and future research

In view of the importance and usefulness of RCST in examining the monotone prop-

erties of a function and for model identification, we further studied its properties

in the context of various other situations. Chapter 1 gave an introduction to the

notion of RCST and review of literature on various measures that has been used in

the successive chapters. In Chapter 2, we further studied the usefulness of RCST in

the context of weighted models. We have proved characterizations to some impor-

tant distributions such as gamma and Rayleigh, under the inversed length-biased

model. We have also obtained characterizations to equilibrium, residual lifetime (re-

versed residual lifetime) and proportional hazards model in the context of weighted

distributions. We derived an identity for weighted distribution when RCST takes

the form of a general class of distributions which contains many important moment

relationships, and a generalization of the result due to Nair and Sankaran (2008).

We further extended RCST of weighted distributions to bivariate and multivariate

cases and obtained some characterization theorems arising out of it.

In Chapter 3, we proved that monotone failure properties of probability models

121
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are invariant under nonsingular transformation by using RCST. We studied the

monotone properties of weighted random variable based on RCST and illustrated it

through examples. By using a relationship between RCST and MRCST, a character-

ization result is proved for mixtures of exponential, Lomax and beta distributions.

The different stochastic orderings of two random variables based on RCST and

MRCST are also studied. We proved certain characterizations of probability models

based on RCST of record values. Also we studied some properties of RCST in the

context of circular distributions.

In Chapter 4, RCST is studied in context of bivariate and conditionally specified

models. We have obtained characterization results for a general bivariate model pro-

posed by Navarro and Sarabia (2013), Sarmanov family, Farlie-Gumbel-Morgenstern

(FGM) family and Ali-Mikhail-Haq family proposed by Ali et al. (1978). We defined

RCST for conditionally specified distributions and proved characterization results

based on it. We also obtained a relationship between local dependence function of

Holland and Wang (1987) and RCST.

Chapter 5 is focused on finding the properties of RCST in discrete time. We studied

the usefulness of discrete analogue of RCST introduced by Gupta et al. (1997) in

modelling different discrete distributions/families. Characterizations are also proved

for geometric, discrete Burr (Nair and Asha (2004)) and modified power series family

of distributions. We also obtained a characterization to a new discrete distribution

for which RCST is linear. We have extended RCST to the weighted models in dis-

crete case and proved characterization results to logarithmic series, a distribution

for which RCST is linear, residual lifetime and partial sum distributions. A new

definition for discrete analogue of RCST is also introduced that possess certain new
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properties than the discrete analogue of RCST proposed by Gupta et al. (1997).

Discrete proportional hazards model (Dewan and Sudheesh (2009)) is characterized

using this new definition.

Finally, in Chapter 6, we proposed a nonparametric estimator for RCST under right

censored dependent case. We have examined the asymptotic property of the estima-

tor. A simulation study is carried out to illustrate the performance of the estimator

which in turn implies the nature of failure rate and also evaluated the estimator

using a real data set.

More studies of RCST in the context of bivariate and multivariate setup will be a

potential future work. Since the present study restricts only preliminary investiga-

tions of RCST based on record values and circular distributions, a detailed study in

this direction will be worthwhile.

The extension of RCST in discrete time to the bivariate and its multivariate cases

are yet to be explored. The nonparametric estimation of bivariate RCST is another

interesting problem that can be considered in the future study.

The modelling and analysis of lifetime data can be done by emphasizing the df F (·)

of a rv X that is assumed to generate the observations or through the quantile

function

Q(p) = inf {x |F (x) ≥ p} , 0 ≤ p ≤ 1

with Q(0) = 0 and Q(1) =∞. SinceF (x) is continuous F (Q(p)) = p. Parzen (1979)

defined f (Q(p)) as the density quantile function and q(p) = Q′(p) as the quantile
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density function. The quantile density function q(p) satisfies the relationship

q(p)f (Q(p)) = 1.

Nair and Sankaran (2009) expressed various reliability measures in terms of quantile

functions like the hazard quantile function,

H(p) =
f(Q(p))

F̄ (Q(p))
=

1

(1− p)q(p)
,

and mean residual quantile function,

M(p) = (1− p)−1

∫ 1

p

Q(u) du−Q(p).

Parzen (1979) introduced the score function J(p) equivalent to the RCST function

defined in (1.1) as

J(p) = −f
′(Q(p))

f(Q(p))
=
q′(p)

q2(p)
= − d

du

(
1

q(p)

)
.

Nair et al. (2012) found that J(p) is uniquely determines the distribution of X

through (provided f(∞) = 0),

q(p) =

(∫ 1

p

J(u)du

)−1

.

They also studied the relationships between J(p) and H(p) that characterize many

life distributions. Motivated with this we propose a quantile-based study on the

concept of J(p) in the context of weighted models. This also involves the usefulness

of J(p) for length-biased and equilibrium distributions in the quantile setup.
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