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ABSTRACT 

 

The oceans encompass almost two-thirds of the earth's surface and 

possess significant explored as well as unexplored marine living and non-

living resources.  This necessitates the need and requirements for the 

exploration and in-situ online almost real time, monitoring of the ocean in a 

general perspective. Undersea communication channel is one of the most 

difficult and challenging communication media in use today.  As radio 

frequency waves are not suitable for undersea communication due to its 

high propagation loss in water, acoustic waves are used as the mode of 

communication in undersea wireless networks, though it suffers from 

innumerable limitations such as low bandwidth, high and variable latency, 

power constraints, high failure rate on account of biofouling and corrosion, 

unpredictable propagation characteristics, etc. This thesis entitled, Sparse 

Signal Processing for Undersea Acoustic Links envisages the 

implementation of a prototype system for undersea communication 

between static sensor nodes employing Orthogonal Frequency Division 

Multiplexing (OFDM) concepts and the estimation of underwater channel 

exploiting its sparse features. It also addresses the use of compressive 

sensing for effectively utilizing the available scarce bandwidth in undersea 

acoustic links.  
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         CHAPTER 1

INTRODUCTION 

Underwater acoustic channels are generally recognized as one of the most 

difficult and challenging communication media in use today.  This chapter 

addresses the various factors affecting the propagation of sound in water.  

Underwater acoustic communication is characterised by certain 

undesirable effects like multipath, ambient noise, attenuation, spreading, 

etc.  Evaluation of new communication schemes and devices under 

realistic conditions being very expensive and time-consuming, simulators 

for modeling the acoustic underwater communication channel accurately 

like Bellhop and Rayleigh models have been studied.   

1.1 Background 

Undersea links are complex due to the effects of multipath, 

scattering, absorption, ambient noise, etc.  Even though complex, a reliable 

communication is achievable using acoustic waves.  During the last three 

decades, the realm of undersea communication scenario has witnessed 

remarkable progress and there was an exponential migration from systems 

with low bit rate to high bit rate and high power to low power consumption, 

which facilitated the development and deployment of undersea acoustic 

networks.   Current research in this area focuses on judicially formulating 

an integrated solution for meeting the emerging demands for applications 

of undersea networks in environmental data collection, pollution 

monitoring, offshore surveillance, coastal surveillance, etc. 
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1.2 Undersea Acoustic Communication  

Acoustic signals are widely used in ocean exploration, 

oceanographic data collection, underwater communication, etc.   Optical 

waves and electromagnetic waves do not propagate over long distances in 

underwater environment.  The underwater channel is too complex due to 

various phenomena like multipath propagation, spreading, attenuation, etc.   

The available bandwidth of an underwater acoustic channel depends on the 

transmission loss, which increases with range and frequency.   Moreover, 

the ambient noise also affects the performance of underwater acoustic 

communication systems.  The sound speed is typically 1500m/s; but varies 

with depth, climatic conditions, etc.  Sea trials being very expensive and 

time consuming, various toolboxes available for simulating the underwater 

acoustic communication have been used in this thesis, for investigating the 

behavior of the underwater channels.  

1.3 Underwater Acoustic Sensor Networks 

Underwater sensor network consists of a number of sensor nodes 

deployed to perform collaborative monitoring tasks over a given area for 

applications like oceanographic data collection, pollution monitoring, 

offshore exploration, mapping of the ocean floor for detection of objects, 

offshore oil/gas field monitoring, etc.  A typical underwater acoustic sensor 

network is shown in Figure 1.1.  Sensor nodes are mounted on the seabed 

by using anchors for observations of environmental conditions such as 

temperature, pollution data and other parameters of strategic and civilian 

applications.   
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Fig. 1.1 A typical Underwater Acoustic Network {Courtesy: [1]} 

1.3.1 Static Topology 

1.3.1.1 Two dimensional 

In two-dimensional underwater networks, a group of sensor nodes 

are anchored to the bottom of the ocean with deep ocean anchors for 

applications like environmental monitoring.  The topology of a two-

dimensional underwater network is shown in Figure 1.2.  Underwater 

sensor nodes are interconnected to one or more cluster heads by means of 

wireless acoustic links.  Cluster heads are network devices in charge of 

relaying data from the ocean bottom network to a surface station.  To 

achieve this objective, cluster heads are equipped with two acoustic 

transceivers, namely a vertical and a horizontal transceiver.  The horizontal 

transceiver is used by the cluster head to communicate with the sensor 

nodes in order to send commands and configuration data to the sensor 

nodes and collect monitored data.  The vertical link is used by the cluster 

heads to relay data to a surface station.  In deep water applications, vertical 
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transceivers must be long range transceivers as the ocean can be as deep as 

10km.  The surface station is equipped with an acoustic transceiver that is 

able to handle multiple parallel communications with the cluster heads.  It 

is also endowed with a long range RF and/or satellite transmitter to 

communicate with the onshore sink and/or to a surface sink.  

 

Fig. 1.2 Two-dimensional underwater network {Courtesy: [2]} 

1.3.1.2 Three-dimensional 

Three-dimensional underwater networks are used to detect and 

observe phenomena that cannot be adequately observed by means of ocean 

bottom sensor nodes, i.e., to perform cooperative sampling of the 3D ocean 

environment.  In three-dimensional underwater networks, sensor nodes are 

anchored to the bottom of the ocean and they float at different depths in 

order to observe a given phenomenon.   
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In three-dimensional topology, as depicted in Figure 1.3, each node 

is equipped with a floating buoy that can be inflated by a pump.  The buoy 

pushes the node towards the ocean surface.  The depth of the node can then 

be regulated by adjusting the length of the wire that connects the node to 

the anchor, by means of an electronically controlled engine that resides on 

the node.  A challenge to be addressed in such a topology is the effect of 

ocean currents on the described mechanism to regulate the depth of the 

sensor nodes. 

 

Fig. 1.3 Three-dimensional underwater network {Courtesy: [2]} 

1.3.2 Hybrid Topology - Networks with mobile sensor nodes 

Autonomous Underwater Vehicles (AUVs) can function without 

tethers, cables, or remote control, and therefore they have a multitude of 

applications in oceanography, environmental monitoring, and underwater 

resource study.  Hence, they can be used to enhance the capabilities of 

underwater sensor networks in many ways.  The integration and 
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enhancement of fixed sensor networks with AUVs, Remotely Operated 

Vehicles (ROVs) or any other sea gliders, is a promising area of research in 

undersea networks.  This is called a Hybrid topology where an underwater 

acoustic sensor network consists of lots of static nodes together with a 

number of mobile nodes, as shown in Figure 1.4.  In hybrid topology, 

mobile nodes play a key role for additional support in accomplishing the 

task, perhaps for data harvesting or enhancing the network capacity.  

Mobile nodes could be considered as super nodes which has more energy 

and can move independently, it could be a router between fixed nodes, a 

manager for network reconfiguration, or even a normal node for data 

sensing.  

 

Fig. 1.4 Hybrid Underwater Network {Courtesy: [3]} 

1.4 Factors Affecting Propagation of Sound in Water  

Ocean forms a complex medium for the propagation of sound.  

Underwater acoustic communications include undesirable effects like 

ambient noise, attenuation, spreading, etc.  Transmission loss (TL) can be 
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defined as ten times the log (base 10) of the ratio of the reference intensity 

(Iref) measured at a point 1m from the source, to the intensity (I), measured 

at a distant point, and is expressed in units of decibels (dB): 

�� = 10 log 
��

 .                                           (1.1) 

Transmission loss may be considered to be the sum of loss due to 

spreading and attenuation.  Spreading effect is the regular weakening of 

sound as it spreads outwards from the source.  Attenuation loss includes the 

effects of absorption, scattering and leakage out of sound channels. 

 
Fig. 1.5 Geometry for (a) Spherical Spreading (b) Cylindrical Spreading {Courtesy: [4,5]} 

1.4.1 Spreading  

Spreading can be cylindrical, in which, the intensity decreases 

proportional to the range or spherical, in which the intensity decreases as 
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the square of the range.  Figure 1.5 shows the geometry for spherical 

spreading and cylindrical spreading.  Cylindrical spreading occur when the 

medium has plane parallel upper and lower bounds and is given by 

������������ ���� =  10 ��� �,                                        (1.2)         

where r is the range from the transmitter.  For spherical spreading, the 

transmission loss varies as, 

������������ ���� = 20 log �.                             (1.3) 

1.4.2 Attenuation 

Absorption involves conversion of acoustic energy into heat.  The 

Thorpe attenuation model for absorption is given by 

���� = 0.1 �� !�� + 40 ��$ %%!�� + 0.000275�(,                        (1.4) 
where attenuation ���� is in decibels per kiloyard and frequency f is in 

kHz.  Thus, for every kiloyard travelled, the sound intensity gets 

diminished due to the absorption by an amount �dB.  It is known that 

absorption of sound in sea water is high compared to that in distilled water 

due to the dissolved minerals in the sea.   

1.4.3 Sound Speed Profile 

The sound speed profile (SSP) represents a plot of the speed of 

sound with depth from the surface to bottom.  The Sound Speed Profile 

may be constructed from any number of actual data points and then 

subjecting it to a fitting algorithm to produce a smoother graph.  Given the 

Conductivity, Temperature, Depth (CTD) data, the Sound Speed Profile 

can be computed using the Leroy’s formula given by * =  1492.9 +  3�� − 10�–  6 × 1012�� − 10�( − 4 × 101(�� − 18�( 

+1.2�4 − 35� − 101(�� − 18��4 − 35� + 56 ,               (1.5) 
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where C is the sound velocity in m/s, T is the temperature in degree 

centigrade, S is salinity in parts per thousand and z is the depth in meters. 

The sound speed varies non-linearly with depth, due to the variation 

of temperature, salinity and pressure from surface to bottom.  At lower 

depths, temperature determines the sound speed, but as the water depth 

increases, pressure becomes the main determining factor in the speed of 

sound propagation at larger depths.   

When the measurements are not available, standard models like 

Munk profile, can be used for many ocean regions.  Walter H. Munk 

introduced an equation for sound velocity as function of depth, with the 

exponential increase dominating in the upper waters and the linear term 

dominating in deep waters.  Figure 1.6 shows a Munk profile and the Munk 

equation is given as 

7�8� = 1492.091.0 + :�;1< + = − 1�>,                    (1.6) 

 

Fig. 1.6 Sound speed profile using Munk equation {Courtesy: [6]} 



Chapter 1 Introduction 

 10 

where 

= = (�51 2%%� 2%% ,                                       (1.7)     

: = 7.4 x 10-3 is the Perturbation coefficient, the fractional adiabatic 

velocity increase over a scale depth and z is the water depth. 

A typical deep sea profile may be divided into several layers such as 

the surface layer, seasonal thermocline, main thermocline as well as the 

deep isothermal layer as shown in Figure 1.7.  In the surface layer, the 

velocity of sound is susceptible to daily and local changes of heating, 

cooling and wind action.  In the seasonal thermocline, temperature, and 

hence velocity decreases with depth.  The main thermocline, which lies 

below the seasonal thermocline, is affected only slightly by seasonal 

changes.  Close to the sea bottom, there is the deep isothermal layer with 

positive velocity gradient due to the effect of pressure on sound velocity.  

As a consequence of the characteristic velocity profile of the deep sea, a 

sound channel also called the SOFAR (sound fixing and ranging) channel 

or deep sound channel (DSC) occurs in the deep sea.  This sound channel 

offers low transmission loss, and hence, very long ranges are achievable. 

1.4.4 Ambient Noise 

Noise in underwater communication scenario consists of ambient 

noise which is always present in the background of the sea, and site-specific 

noise which exists only in certain regions.  The sources of ambient noise 

include tides, seismic disturbances, oceanic turbulences, thermal noise, 

biological sources, etc.  At low frequencies (0.1 - 100Hz), earthquakes, 

underwater volcanic eruptions, turbulence in the ocean and atmosphere, etc. 

are the main noise sources.  In the frequency band 50 - 300Hz, underwater 

noise  is mainly due to remote shipping  traffic, while in the frequency band 
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Fig. 1.7 Layered structure of ocean {Courtesy: [4,5]} 

0.5 - 50kHz, underwater noise is directly associated with the state of the 

ocean surface and the winds in the area of interest.  At frequencies greater 

than 100kHz, thermal noise is dominant.  Biological noise produced by 

marine animals for communication with each other, locating the prey, 

frightening enemies and so on, is seasonal and spatial in nature.   

1.4.5 Multipath 

Multipath effects occur due to the reflection of sound by the sea 

surface and sea bottom as well as due to the refraction of sound in the 

water.  As a result, the receiver gets a bewildering mix of signals from the 

transmitter in direct path as well as multipath as shown in Figure 1.8.   
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Fig. 1.8 Shallow water multipath propagation: direct as well as reflected paths {Courtesy: 
[7]} 

 

 

    

 

Fig. 1.9 Multipath Channel Model {Courtesy: [8]} 

The channel impulse response of a multipath channel can be 

modeled as in Figure 1.9 and expressed as 

? = ∑ AB  C�D − DB�EBF ,                                             (1.8) 

where N is the number of multipaths, DB is the nth path delay and AB is the  

amplitude associated with nth path. 

The different types of propagation paths that exist between a source 

and a receiver in the deep sea are as shown in Figure 1.10.  Sound 

propagates in the sea by way of a variety of paths depending on the sound 

speed structure in the water column and the source–receiver geometry.  

These paths are direct path (A), surface duct (B), bottom bounce (C), 

convergence zone (D), deep sound channel (E) and reliable acoustic path 

(F), where x is the source and o is the receiver.   
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Fig. 1.10 Various sound propagation paths in deep sea {Courtesy: [5]} 

1.5 Compressive Sensing 

Nyquist sampling theorem forms the basis of nearly all the signal 

acquisition, transmission and reconstruction techniques widely used in 

almost all the systems.  Sampling a signal at the Nyquist rate and 

transmitting it at the same rate in situations where the bandwidth is a scarce 

resource may adversely affect the system throughput and efficiency.  This 

warrants the need and requirement for devising systems and techniques for 

transmitting a signal at a rate lower than the Nyquist rate.  If the signal is 

transmitted at par with the Nyquist criteria, it might result in too many 

samples.  This necessitates the need for compressing the signal before it is 

stored or transmitted.  The signals so compressed can be reconstructed at a 

later stage following certain optimization techniques. 

The available bandwidth of an underwater acoustic channel depends 

on the transmission loss, which increases with range and frequency.  This 

implies that the transmission loss limits the available bandwidth for 

underwater acoustic communication.  The bandwidth available for 

underwater acoustic communication is of the order of 1kHz, which is much 

lower than that available for RF communication links.  If the information 
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could be stored or transmitted by fewer numbers of samples than the 

Nyquist rate, it would have been advantageous in underwater acoustic 

communication scenario. 

A new method called compressive sensing is used to represent and 

reconstruct certain classes of signals at a rate below the Nyquist rate.  

Compressive Sensing is a new paradigm that gained the attention of 

researchers in signal processing, communication as well as mathematics.  It 

helps in reconstructing the signal from far less samples than that required 

by the sampling theorem, which paves the way for saving memory and 

catering low data rate requirements in communication applications. 

1.6 Sound Propagation Models 

This section discusses the Bellhop and Rayleigh models, which are 

used widely for undersea acoustic modeling. 

1.6.1 Bellhop Model 

Bellhop is a highly efficient ray tracing toolbox for predicting the 

acoustic pressure fields in ocean environments.  It was developed by 

Michael Porter from Heat, Light & Sound (HLS) Research, Inc. and is 

available as free software.  Bellhop model can generate a variety of useful 

outputs including transmission loss, Eigen rays, Channel Impulse 

Response, etc. for the environment specified by the user. 

To utilize the ray tracing capabilities of the Bellhop model, a 

precise description of the physical characteristics of the targeted 

environment is important, which include the depth of the ocean, sound 

speed profile in the location, information concerning the bottom contour 

and roughness, information about the surface, etc.  The environmental data 

can be gathered from the real measurements or are available from known 

data sets for the particular ocean environments.  In general perspective, the 
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real measurement data are preferred so that the model will generate more 

realistic results.  The environmental file specified should include the 

frequency of operation, depth-speed pairs, number of sources as well as 

receivers and their depths.  Bellhop model allows for range-dependence on 

the top and bottom boundaries (altimetry and bathymetry), as well as the 

sound speed profile.  Additional input files allow the specifications of 

directional sources and geo-acoustic properties of the bounding media as 

well as the surface/ bottom reflection coefficients.   

1.6.2 Rayleigh Model 

The effects of multipath in underwater acoustic channel causes 

constructive and destructive interferences and phase shifting of the signal.  

The shallow water medium range channel, where the multipath fading is 

predominantly due to reflections from the sea bed and the sea surface, 

exhibits Rayleigh fading properties.  Rayleigh fading, which is used for 

modeling the effect of propagation in a wireless environment, assumes that 

the magnitude of a signal that has passed through such a transmission 

medium will fade according to certain well known (Rayleigh) distribution. 

The Rayleigh probability density function (pdf) is defined as, 

��G� = H IJ�K ;GL H1I�(J�K,                                 (1.9) 

and the Cumulative Distribution Function (CDF) is expressed as,   

M�G� = 1 − ;GL H1I�(J�K,                                (1.10) 

where σ is the scale parameter and x lies in the range [0, ∞). 
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1.7 Scope of Work Done 

This thesis addresses one of the emerging topics in Underwater 

Acoustics, viz. the various modulation and coding techniques for realising 

reliable OFDM for Undersea Acoustic Links. This thesis proposes a matrix 

padding method for sparse recovery, which is robust even in the presence 

of noise. Orthogonal Frequency Division Multiplexing and coded 

interleaved OFDM as well as coded interleaved STBC have been 

investigated. The synchronization and channel estimation issues in OFDM 

systems have also been investigated. 

Chapter 2 is devoted to the review of the works reported in open 

literature in the areas of compressive sensing, propagation of sound in sea, 

channel modeling, various modulation schemes, various coding schemes, 

channel estimation techniques, synchronization issues in OFDM 

(Orthogonal Frequency Division Multiplexing), etc. Compressive sensing 

methods have been reported and various reconstruction methods have also 

been consolidated by various researchers. Many compressive sensing 

solvers do exist, which include l1-magic, l1-Regularized Least Squares 

(l1_ls), Convex Optimization (CVX), Your Algorithm for L1 Optimization 

(YALL1), Orthogonal Matching Pursuit (OMP), Compressive Sampling 

Matching Pursuit (CoSaMP), etc. Various research works relating to 

modeling of underwater channel using Bellhop and Rayleigh models as 

well as OFDM, diversity techniques and channel estimation techniques 

were also covered in the literature survey. 

 Compressive sensing has been evolved as a very useful technique 

for sparse reconstruction of signals that are sampled at sub-Nyquist rates.  

Compressive sensing helps to reconstruct the signals from few linear 

projections of the sparse signal.  Chapter 3 presents the background of 
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compressive sensing and the various compressive sensing algorithms that 

are reported in open literature. A method for Sparsification and Recovery 

has also been proposed with a block diagram.  Undersea acoustic links have 

numerous applications in pollution monitoring, environmental data 

collection, offshore and coastal surveillance, etc. Chapter 3 also provides a 

brief description of the various modulation techniques in use for undersea 

acoustic links. Orthogonal Frequency Division Multiplexing, which is a 

multicarrier modulation technique, is widely employed in undersea acoustic 

applications because of its numerous advantages. OFDM requires an 

estimate of the channel parameters at the receiver for undoing the channel 

effects. The sparsity of the channel impulse response of undersea links can 

be used for estimating the channel characteristics. A brief overview of the 

dictionary based sparse channel estimation is also included. 

Compressive sensing recently gained immense attention due to the 

commendable advantages the technique offers in recovering certain target 

signals from a few random measurements. With the help of compressive 

sensing, the salient information in a signal can be preserved in a relatively 

small number of linear projections. A new technique which converts the 

signal into sparse domain by applying Discrete Cosine Transform (DCT) 

and then compressing it using a modified measurement matrix, followed by 

an LMS based adaptation, has been proposed in chapter 4. Making use of 

this proposed matrix padding technique, a computationally efficient sparse 

signal reconstruction has been achieved. Ambient noise is always present in 

the background of the undersea channel and the four basic sources that can 

model the ambient noise in the ocean are noise effects due to turbulence, 

shipping, wind and thermal processes. A study of variation of power 

spectral density (PSD) of the overall ambient noise has also been 

performed. Generation of channel impulse response using the Bellhop 
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model utilizing the environmental data like the sound speed profile of the 

water column, the number of transceivers and their depths has also been 

described. OFDM is a good choice in underwater communication, because 

of its numerous advantages. Chapter 4 also introduces the system models 

for normal OFDM as well as coded and interleaved OFDM, for undersea 

acoustic links. Space-time block coding (STBC) offers higher link 

reliability and this thesis combines STBC with coding and interleaving for 

improving the bit-error-rate performances. Synchronization and channel 

estimation are critical in practical OFDM communication scenario. A 

system model of an OFDM Receiver with Symbol Time Offset (STO) and 

Carrier Frequency Offset (CFO) estimation as well as channel parameter 

estimation has also been described.  

Orthogonal Frequency Division Multiplexing is widely employed 

nowadays because of its advantages like resilience to intersymbol 

interference, higher spectral efficiency, simpler channel equalization, etc.  

Various modulation techniques like Quadrature Amplitude Modulation and 

Phase Shift Keying are used in conjunction with OFDM.  Coding 

techniques like convolutional and BCH coding, as well as interleaving 

techniques can be used along with OFDM for improving the error 

correction capability of the receiver. Chapter 5 discusses OFDM as well as 

some of the modulation and coding techniques which can effectively 

improve underwater acoustic communication. Diversity techniques improve 

reliability of data transfer by transmitting the same data on two or more 

communication channels with different characteristics. The most 

commonly used space-time block coding (STBC) technique, the Alamouti 

STBC, has also been described. For undoing the channel effects and 

demodulating the signal with fairly acceptable accuracies, the channel 

parameters need to be estimated. Channel estimation is performed in 
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orthogonal frequency division multiplexing by inserting pilots into the 

subcarriers of an OFDM symbol. Underwater channels exhibit sparse 

channel impulse response which implies that very few of the channel taps 

have a nonzero value and the channel can be estimated using the 

compressive sensing techniques to achieve better performance. The 

dictionary based sparse channel estimation technique has also been 

analytically explained.  

The performance of the matrix padding method is compared with 

other existing compressive sensing algorithms like l1_ls, l1-magic, YALL1, 

OMP, CoSaMP, etc. and the results of comparison in terms of signal-to-

noise ratio, correlation and mean squared error, have been investigated in 

chapter 6. OFDM has been simulated using QAM (Quadrature Amplitude 

Modulation) and PSK (Phase Shift Keying) based modulation techniques 

for undersea acoustic links.  The performances of various orders of QAM 

based OFDM systems for undersea acoustic communications have been 

studied and the bit-error-rates under various Signal to Noise Ratio 

conditions have also been compared for Additive White Gaussian Noise 

(AWGN) and Underwater Channels for 16-QAM based OFDM. The bit-

error-rate performances of normal as well as coded OFDM with and without 

interleaving schemes have been simulated for various signal-to-noise ratio 

levels for both convolutional and Bose, Chaudhuri and Hocquenghem 

(BCH) codes. The performances of Alamouti STBC for a 2x1 and a 2x2 

system were studied. It has been observed that the proposed STBC system 

with coding and interleaving offers better performance compared to the 

normal 2x1 and a 2x2 STBC systems. The performances of various STO as 

well as CFO estimation methods have been compared and it has been 

observed that STO estimation using difference method and CFO estimation 

using pilot based method guarantee acceptable performances. The undersea 
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channel has been estimated using dictionary based sparse channel 

estimation technique for various ranges and it has been found that by using 

a minimum number of pilots, acceptable bit-error-rate (BER) performance 

can be achieved.  Chapter 7 brings out the salient highlights of the research 

work undertaken for realizing an underwater acoustic communication 

system and the general inferences gathered. This chapter also enlists the 

scope and direction for future research in this area. 

1.8 Summary 

 The importance of underwater acoustic communication as well as 

various topologies for underwater acoustic sensor networks were covered.  

The factors affecting the propagation of sound in water as well as modeling 

of undersea channel using the Bellhop and Rayleigh models have also been 

discussed.  This chapter also gives an introduction to Compressive Sensing, 

which helps in efficient use of the available scarce bandwidth of the 

undersea channel.  Sparsity, an inherent characteristic of many natural 

signals, enables the signal to be stored in a fewer samples than that has 

been dictated by the Nyquist rate and subsequently be recovered, by means 

of compressive sensing.  The scope of the work carried out in this thesis has 

also been briefly outlined. 
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  CHAPTER 2

REVIEW OF PAST WORK 

This chapter is devoted to the review of the research work reported in 

open literature in the areas of compressive sensing, propagation of sound 

in sea, channel modeling, various modulation schemes, various coding 

schemes, channel estimation techniques, synchronization issues in OFDM, 

etc.  Compressive sensing methods have been reported and the various 

reconstruction methods have also been consolidated by various 

researchers.  Many compressive sensing solvers exist, which include l1-

magic, l1_ls, SPARLS, YALL1, OMP, CoSaMP, etc.  Various research 

works relating to modeling of underwater channel using Bellhop and 

Rayleigh models as well as OFDM, diversity techniques and channel 

estimation techniques were also covered in the literature survey.  

2.1 Background 

This chapter is devoted to the review of the research work reported 

in open literature in the fields of  compressive sensing, modulation and 

coding schemes, communication in underwater environments, effects of 

underwater channel, underwater channel modeling, channel estimation,  

etc. as included in the following sections.  

2.2 Underwater Acoustic Communication 

Acoustic waves, which are used as the mode of communication in 

underwater wireless sensor networks, suffer from innumerable constraints 

such as low bandwidth, high latency, high failure rates, etc.  The available 

bandwidth of an underwater acoustic channel depends on the transmission 

loss, which increases with range and frequency.  This implies that the 
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transmission loss limits the available bandwidth for underwater acoustic 

communication.  Studies on the underwater acoustic channel have been 

included in this section. 

Tri Budi Santoso et al. [1] discussed the research and development 

of underwater acoustic communication systems.  Acoustic propagation in 

the underwater channel influenced by three factors: signal attenuation, 

multipath propagation, and low speed of sound propagation. The 

experimental planning for underwater acoustic propagation characteristics 

has also been presented and the characterization results are used to evaluate 

the performance of communication system through simulation. Ian F. 

Akyildiz et al. [2] investigate several fundamental key aspects of 

underwater acoustic communications.  Different topologies for two-

dimensional and three-dimensional underwater sensor networks are 

discussed.  The main challenges for the development of efficient 

networking solutions posed by the underwater environment has been 

analyzed and a cross-layer approach for the integration of all 

communication functionalities has been suggested.   

The applications of two dimensional, three dimensional and hybrid 

underwater networks are discussed in [3]. Static two-dimensional networks 

can be used for applications like environmental monitoring or monitoring 

of underwater plates in tectonics. Static three-dimensional networks may be 

used for surveillance applications or monitoring of ocean phenomena 

(ocean bio-geo-chemical processes, water streams, pollution, etc.). Hybrid 

underwater networks can be used in both shallow as well as deep water and 

these networks can be used for distributed target classification and tracking. 

Sonar, active and passive, the sonar equations and the factors that 

affect the propagation of sound in the sea are described by Robert J. Urick 

[4].  Sound propagation is affected by spreading, attenuation, multipath, 
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absorption, etc.  Also velocity structure and thermocline of the sea, effects 

of sea surface and sea bottom on sound propagation, etc. are also described.  

Moreover, radiated noise and self-noise as well as the methods to reduce 

them are considered.  Spreading loss, which is a geometrical effect 

representing the regular weakening of a sound signal as it spreads outward 

from the source, can be either cylindrical or spherical. 

Paul C. Etter [5] provides an authoritative overview of currently 

available propagation, noise, reverberation and sonar-performance models.  

Sound propagates in the sea by way of a variety of paths.  The particular 

paths traveled depend upon the sound speed structure in the water column 

and the source–receiver geometry.  These paths include the direct path, 

surface duct, bottom bounce, convergence zone, deep sound channel and 

reliable acoustic path.  Walter H. Munk [6] introduces an equation for 

computing sound velocity in ocean as function of depth.  The exponential 

stratification model leads to an equation with the exponential increase 

dominating in the upper waters and the linear term dominating in deep 

waters.  The Munk profile is an idealized sound speed profile; however, it 

allows us to illustrate many features that are typical of the deep-water 

sound speed profiles.   

Milica Stojanovic et al. [7] discuss the acoustic propagation in 

underwater communication channels.  There are three major factors in 

underwater acoustic communication: attenuation that increases with signal 

frequency, time-varying multipath propagation, and low speed of sound, 

approximately 1500m/s.  Fangkun Jia [8] et al. studies time-variant 

characteristics of underwater acoustic channels.  With the characteristics of 

high ambient noise level, very narrow bandwidth, low carrier frequency, 

enormous propagation latency and time-space-frequency variant multipath 
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effect, the stochastic ocean channel is very complex and difficult to achieve 

reliable underwater acoustic communications. 

Gordon M. Wenz [9] discusses on the spectra and the sources of 

acoustic ambient noise in the ocean.  The results of ambient noise 

investigations, after appropriate processing are compared on the basis of 

pressure spectra in the frequency band 1Hz to 20kHz.  In the past, active 

and passive military sonar sonars have dominated the activity in the field.   

With passive sonar systems, one listens to signals that are radiated by the 

various sources of acoustic energy in the ocean.  A. B. Baggeroer [10] 

discusses active and passive sonar and their corresponding digital signal 

processing schemes.   

William C. Knight et al. [11] describe the sonar digital signal 

processing functions along with the associated implementational 

considerations.  The unwieldiness of the undersea propagation medium has 

been explained in detail.  The theory of sound propagation in the ocean in 

its most fundamental form is systematically presented by L. M. 

Brekhovskikh et al. [12].  An important characteristic of the ocean is its 

underwater ambient noise and the various sources of ambient noise as well 

as their frequency ranges have also been touched upon. 

Multipath transmission has the great beneficial effect in producing 

stronger sound fields than would exist in their absence as explained by R. J. 

Urick [13].  Yet these stronger signals are not always utilizable, in that they 

are smeared in time and frequency, and tend to become rapidly de-

correlated with hydrophone separation in arrays.  These effects are not 

predictable, because of the complexity of the existing multipath, and one 

has to devise elaborate processing techniques, such as replica correlation 

and matched filter approaches, which will not result in any signal 

enhancement. John G. Proakis [14] explains that in underwater, 
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electromagnetic waves do not propagate over long distances except at 

extremely low frequencies.  In contrast, acoustic signals propagate over 

distances of tens and even hundreds of kilometers.  An underwater acoustic 

channel is characterized as a multipath channel due to signal reflections 

from the surface and the bottom of the sea.  In spite of this hostile 

environment, it is possible to design and implement efficient and highly 

reliable underwater acoustic communication systems for transmitting 

signals over large distances. 

A. D. Waite [15] provides an understanding of the basic principles 

of sonar and investigates the sonar design and performance analysis.  He 

describes the deep sound channel, reliable acoustic path, surface duct 

propagation as well as convergence zone propagation.  Between the 

negative gradient of the main thermocline and the positive gradient of the 

deep layer there is a sound speed minimum, where sound tends to be 

focused by refraction.  Seaweb networks interconnect fixed and mobile 

nodes distributed across a wide area in the undersea environment.  Acoustic 

communications between neighboring DSP equipped telesonar modems is 

the basis for the physical layer.  Node-to-node ranging is a byproduct of 

telesonar signaling, permitting localization of sensor nodes and navigation 

of mobile nodes such as submarines and autonomous vehicles.  Joseph Rice 

[16] reviews the concept of operations for undersea networks with 

illustrative examples of actual Seaweb deployments. 

It is well known that the frequency-dependency of the acoustic path 

loss imposes a bandwidth limitation on an underwater communication 

system, such that a greater bandwidth is available for a shorter transmission 

distance.  Milica Stojanovic [17] offers an insight into the relationship 

between an acoustic link capacity and distance.  Mandar Chitre, et al. [18] 

explain various challenges posed by the underwater channel.  The 
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bandwidth available for communication is severely limited due to the 

strong absorption of high frequency sounds by the sea water.  Extended 

multi-path and severe fading are also common in many underwater 

channels.  A good understanding of the communications channel is 

important in the design and simulation of a communication system.  

Andrew C. Singer [19] et al. provide a brief overview of signal processing 

methods and advances in underwater acoustic communications, discussing 

both single-carrier and emerging multicarrier methods. 

In underwater channel model, the attenuation, transmission 

distance, power consumption, Signal to Noise Ratio, Bit Error Ratio, inter 

symbol interference, error coding and alternative modulation strategies, etc.  

are of primary concern in the whole study and design of the transceiver 

structure.  Nejah Nasri et al. [20] aim to survey the existing transceiver and 

its applicability to underwater communication based on the simulation 

parameters.  

The depths of the oceans have a high potential for future industrial 

development and applications.  However, communications must face harsh 

conditions that hinder the performance.  Due to this, acoustic equipment is 

envisaged as the most appropriate technology, even though it suffers from 

several adverse effects such as strong attenuation at high (ultrasonic) 

frequencies, Doppler shifts and a time-varying multipath.  The 

characteristics of the acoustic underwater channel and how it affects the 

mechanisms at the link and network layers have been described by 

J.Poncela et al. [22]. 

A new multipath channel model for shallow underwater acoustic 

communications has been proposed by F. De Rango et al. [23].  In 

particular, this model takes into account the effects due to spreading loss, 

scattering and reflections.  José S. G. Panaro et al. [24] describe an 



Sparse Signal Processing for Undersea Acoustic Links 

 27

empirical model for the noise of the shallow underwater channel based on 

the analysis of the measured field data.  A probability density function for 

the noise amplitude distribution has been proposed and the associated 

likelihood functions have been derived, based on which, an expression for 

the probability of error for binary signaling has been arrived at.  The results 

of simulations carried out using the field noise data samples paved the way 

for establishing the noise effect on the performance of underwater acoustic 

communication systems. 

Michael B. Porter et al. [25] discuss the application of four principal 

approaches: normal modes, ray/beam tracing, parabolic equations, and 

wavenumber integration to shallow waters with an eye on coastal security.  

As a particular application of interest, acoustic modems are considered 

which may be used to provide communications links with underwater 

vehicles.  The basic physics, the modeling approaches, and the implications 

for modem performance have also been discussed. 

Nan Jing et al. [26] describe a shallow water acoustic channel 

model based on the actual acoustic propagation characteristics with path 

attenuation, ambient noise, multiple paths, and Doppler effects.  The 

channel model has been implemented in MATLAB and the simulation 

results show that the absorption coefficient and path losses are both 

dependent on the frequencies as well as propagation distances and the path 

gain is seen to have improved with Line of Sight (LOS)/ short range 

acoustic propagations. 

2.3 Compressive Sensing 

Compressive Sensing (CS) is a new signal acquisition technique 

that enables the reduction of the number of measurements required for the 
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recovery of sparse or compressible signals in an appropriate basis.  Signal 

recovery is carried out by means of certain optimization techniques.   

Emmanuel J. Candes [27] consolidates an emerging theory which 

goes by the name of compressive sensing or compressed sensing, making 

use of which, it is possible to reconstruct images or signals of scientific 

interest accurately and sometimes even exactly from a much less number of 

samples.  This new sampling theory may come to underlie procedures for 

sampling and compressing data simultaneously.  Justin Romberg [28] gives 

an introduction to compressive sensing and recovery via convex 

programming.  A way to avoid the large digital data set to begin with and a 

way to build the data compression directly into the acquisition is what 

compressive sensing is all about.  The mathematical theory draws from 

diverse fields including harmonic analysis, convex optimization, random 

matrix theory, statistics, approximation theory, and theoretical computer 

science. 

Xiao Wang et al., [29] describe current researches on the 

applications of compressive sensing in wireless communication networks, 

and then enumerate burning questions and the master keys of their 

corresponding solutions in these fields.  The techniques of using 

compressive sensing in communication networks have been studied.  Saad 

Qaisar et al. [30] give a brief background on the origins of this idea, 

reviews the basic mathematical foundation of the theory and then goes on 

to highlight different areas of its application with a major emphasis on 

communications and network domain.  Finally, the survey concludes by 

identifying new areas of research where compressive sensing could be 

beneficial.  Richard G. Baraniuk [31] explains that in many applications, 

including digital image and video cameras, the Nyquist rate is so high that 

too many samples result, making compression a necessity prior to storage 
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or transmission.  In other applications, including imaging systems and high-

speed analog-to-digital converters, increasing the sampling rate is very 

expensive.  Compressive sensing employs non adaptive linear projections 

that preserve the structure of the signal and the signal is then reconstructed 

from these projections using an optimization process.   

Compressive Sensing has attracted a lot of interests over the past 

few years as a revolutionary signal sampling paradigm.  While the 

sampling process is simply a random linear projection, the reconstruction 

process to recover the original signal from the measurements is highly 

nonlinear.  The measurement matrix should be incoherent with the basis 

matrix and the incoherence between the two matrices is mathematically 

quantified by the mutual coherence coefficient, the formula for which is 

given by Thong T. Do et al. [32].  Mark D. Plumbley, et al. [33] give an 

overview of a number of current and emerging applications of sparse 

representations in areas from audio coding, audio enhancement and music 

transcription to blind source separation solutions that can solve the cocktail 

party problem.  

Supatana Auethavekiat [34] reviews the compressive sensing 

fundamentals and describes the implementation of compressive sensing 

reconstruction by basis pursuit (BP) and matching pursuit (MP) algorithms.  

Joel A. Tropp et al. [35, 36, 37] give an overview of the algorithms for 

sparse approximation, describing their computational requirements and the 

relationships between them.  Pursuit method for sparse approximation 

includes orthogonal matching pursuit (OMP), compressive sampling 

matching pursuit (CoSaMP), etc.  

Compressive sensing is a new type for signal reconstruction, which 

predicts that sparse signals and images can be reconstructed from what was 

previously believed to be incomplete information.  The theory has many 
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potential applications in signal processing and imaging.  In [38], Jagdeep 

Kaur et al. present the compressive sensing study carried out by many 

researchers.  A theoretical framework of compressive sensing is presented 

by Shuai Yu et al. [39], for real audio signals, which are compressive and 

the performance of different reconstruction algorithms have been studied 

for original audio signals based on a number of measurements.  It was 

concluded that OMP offered good reconstruction performance.  Deanna 

Needell et al. [40] describe a recent algorithm, called CoSaMP that 

accomplishes the data recovery task.  It was the first known method to offer 

near-optimal guarantees on resource usage, which is a greedy iterative 

method for reconstructing a signal from compressive samples. 

Leveraging the concept of transform coding, compressive sensing 

has emerged as a new framework for signal acquisition and sensor design 

as explained by Richard Baraniuk et al. [41].  Compressive sensing enables 

a potentially large reduction in the sampling and computation costs for 

sensing signals that have a sparse or compressible representation.  

Emmanuel J. Candès et al. [42] give a detailed introduction to compressive 

sensing and survey the theory of compressive sampling or compressive 

sensing as a novel sensing/sampling paradigm that goes against the 

common wisdom in data acquisition.  Compressive sensing relies on two 

principles: sparsity and incoherence. 

Christian R. Berger, et al. [43] discuss an application of 

Compressive Sensing to Sparse Channel Estimation.  There are large 

classes of matrices that obey the Restricted Isometry Property (RIP) with 

high probability.  A simple technique for verifying the RIP for random 

matrices that underlies Compressive Sensing have been proposed by 

Richard Baraniuk et al. [44].  Emmanuel Candes et al. [45] formulated a 

condition for sparse signal reconstruction when the measurements are noisy 
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and the signal is not exactly sparse.  The mathematical framework to 

recover the signal when the available information is not only severely 

incomplete, but also, the few available observations are inaccurate, has 

been given.  The recovery procedure has been substantiated by using a 256 

x 256 pixel boat image. 

A unified view of the area of sparse signal processing has been 

presented by Farokh Marvasti et al. [46].  The key application domains of 

sparse signal processing have also been elaborated.  Emmanuel J. Candes et 

al. [47] establish that it is possible to recover an input sparse vector by 

solving a simple convex optimization problem.  The computational 

intractability of l0-norm has recently led researchers to develop alternatives 

to l0-norm, and a frequently discussed approach considers a similar 

program in the l1-norm which goes by the name of basis pursuit.  The l1-

norm is convex and it can be recast as a linear program (LP). 

It is well known that compressive sensing problems reduce to 

solving large under-determined systems of equations.  If we choose the 

compressed measurement matrix according to some appropriate distribution 

and the signal is sparse enough, the l1 optimization can exactly recover the 

ideally sparse signal with overwhelming probability.  The case of 

approximately sparse signals has also been considered by Mihailo Stojnic 

et al. [48].  Vidya L. et al. [49] review some of the compressive sensing 

algorithms like basis pursuit, orthogonal matching pursuit, compressive 

sensing matching pursuit, etc. and try to find the best algorithm to make use 

of that in launch vehicle telemetry system.  The recovery of the original 

signal from compressive sensing measurements becomes difficult when the 

compressive sensing data acquisition is noisy.   
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In [50], Vivekanand V. et al. review the robustness of some of the 

compressive sensing algorithms in recovering the original signal in 

presence of data acquisition noise.  The results of the experimental 

evaluation using generic sparse data have been presented.  In general, the 

relaxation based algorithms are found to have better recovery precision.  A 

comparison of the performance of several algorithms for Compressive 

Sensing reconstruction has been carried out by Radomir Mihajlović et al. 

[51].   

Moreno-Alvarado, et al. [52, 53], propose application of both DCT 

and the compressive sensing to the compression of audio signals.  For the 

problem of making a sparse representation of an audio signal, DCT is used, 

which is one of the most widely used transform for image and video 

compression systems.  Deanna Needell [54] analyzes a modified version of 

l1-minimization problem, called the reweighted l1-minimization method in 

the noisy case. The results of the experiments demonstrate large 

improvements in the error of the reweighted reconstruction compared to the 

reconstruction from the standard method. 

Many l1-minimization solvers exist.  These include l1-magic [55], 

l1_ls [56], SPARLS [57], YALL1 [58], etc.  A sparse vector can be 

recovered from a small number of linear measurements by solving a convex 

program. Junfeng Yang et al. [59] propose the use of alternating direction 

algorithms for the basis pursuit and the basis pursuit de-noising problems in 

compressive sensing.  Two classes of algorithms derived from either the 

primal or the dual form of l1-problems have also been investigated. 

Convex optimization problems arise frequently in many different 

fields.  The convex optimization, a special class of mathematical 

optimization problems, includes least-squares and linear programming 

problems.  Interior-point methods, developed in the 1980s to solve linear 
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programming requirement has been used to solve the convex optimization 

problems.  The advantages in recognizing or formulating a problem as a 

convex optimization problem has been elaborated and various algorithms 

such as Newton’s method, barrier method, primal-dual interior-point 

methods, etc.  have been explained in detail by Stephen Boyd et al. [60].  

Richard G. Baraniuk et al. [61] discuss some of the applications of 

compressive sensing.  A number of low-dimensional signal models that 

support stable information-preserving dimensionality reduction are 

compared from a geometric perspective by Richard G. Baraniuk et al. [62].  

There are large classes of diverse signal models that support stable 

dimensionality reduction and thus can be used to effect data acquisition, 

analysis, or processing more efficiently.  Convex optimization (CVX) [63] 

is another effective software for finding solutions for complex convex 

optimization problems, including non-differentiable functions, such as ℓ1-

norms. 

2.4 Modulation and Coding Schemes 

This section discusses some of the modulation schemes used in the 

area of underwater acoustic communication.  In [64], Hamada Esmaiel et 

al. attempt to provide an overview of the key developments, both 

theoretical and applied, in topics relating to multicarrier communication for 

realising underwater acoustic links.  This paper also includes acoustic 

propagation properties in seawater and underwater acoustic channel 

representation. 

The application of OFDM for high speed data transmission 

in underwater scenario has been studied by Jeong-woo Han, et al.[66].  

Underwater channel simulation modeling and experimentation has been 

performed and OFDM exhibits better performances than QPSK.  Discrete 
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Cosine Transform based Orthogonal Frequency Division Multiplexing 

(DCT-OFDM) has been proposed for underwater acoustic communication 

by Prashant Kumar et al. [67].  This system provides higher peak to 

average power ratio (PAPR) reduction as well as achieve better noise 

immunity and hence better BER performance than standard OFDM has 

been achieved, while maintaining a low implementation cost.  

M. C. Domingo [68] presents a detailed survey on ray-theory-based 

multipath Rayleigh underwater channel models for underwater wireless 

communication and outlines the research challenges for an efficient 

communication in this environment which are valid for shallow or deep 

waters, based on acoustic propagation physics which captures different 

propagation paths of sound in underwater and considers all the effects of 

shadow zones, multipath fading, operating frequency, depth and water 

temperature.  Further simulations have been carried out to study the bit-

error-rate effects and the maximum internode distances for different 

networks and depths, considering a 16-QAM modulation scheme with 

OFDM as the multicarrier transmission technique.  Ghorpade et al. [71] 

introduce the design of OFDM transceiver system, simulated in MATLAB. 

Bellhop beam tracing has been used to model two regions in the 

north of Arabian Sea by Rehan Khan et al. [72]. Multipath with delay 

channel model has been obtained using the Bellhop ray tracing algorithm 

with random Doppler shifts on each block and also in the complete OFDM 

packet.  Simulation results yielded low BER even in high relative speed 

between transmitter and receiver.  Neha Pathak [74] also discusses the 

design and implementation of an OFDM modem used in wireless 

communication. 

Guoqing Zhou et al. [75] present an adaptive transmission 

technique to adapt the channel fluctuations based on a statistical channel 
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model. Simulation analysis shows that the data rate can be optimized 

allowing the transmit power to vary with SNR, subject to an average power 

constraint and also establishes that the data rate can be increased 

adaptively.  Under the optimum data rate, the MATLAB Simulink of 

underwater acoustic channel QPSK communication system gives a 

benchmark for the experiments in the open ocean.  The design aspects of 

adaptive modulation based on orthogonal frequency-division multiplexing 

(OFDM) for underwater acoustic communications are explored by Andreja 

Radosevic et al. [76] and its performance using real-time in-situ 

experiments have been studied.    

Implementation and design of the real-time underwater speech 

communication system based on orthogonal frequency division 

multiplexing (OFDM) technology, was used to compress the speech coding 

by Lu Yin et al. [78].  The feasibility of underwater acoustic speech 

communication system based on OFDM technology has been 

experimentally proved.  Baosheng Li et al. [80] propose an approach to 

mitigate the Doppler effect and focus on zero-padded orthogonal 

frequency-division multiplexing (OFDM) to minimize the transmission 

power.  Null subcarriers have been used to facilitate Doppler compensation 

while the pilot subcarriers carry out the channel estimation.  The data from 

two shallow-water experiments near Woods Hole, Massachusetts, has been 

used to demonstrate the receiver performance.  Acceptable validation 

results have been obtained even when the transmitter and the receiver are 

moving. 

Xuefei Ma et al. [81] present underwater acoustic communication 

using OFDM. An LMS adaptive equalizer has been used for equalization.  

Simulation and pool trial show that the method has rapid convergence and 

the system has good performance.  This approach is very attractive for high 
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speed implementation of an underwater acoustic OFDM receiver.  The 

effectiveness of different spread OFDM techniques with transmit diversity 

used for underwater acoustic communications has been compared by 

Prashant Kumar et al. [82].  Spreading by Walsh-Hadamard codes, discrete 

Fourier transform, discrete cosine transform, etc. have been combined with 

the application of space-time and space-frequency transmit diversity in 

OFDM for underwater acoustic communication.       

The performance of differentially encoded quadrature phase shift 

keying (DQPSK) modulated orthogonal frequency division multiplexing 

(OFDM) for underwater acoustic communication has been evaluated by 

Prashant Kumar et al. [83].  The combination of OFDM and the non-

coherent detection scheme maintains the receiver design simple, reliable 

and spectrally efficient.  The performance of orthogonal frequency division 

multiplexing (OFDM) with π/4-differential quadrature phase shift keying 

modulation over underwater acoustic (UWA) channels has also been 

studied by Prashant Kumar et al. [84]. This result in spectrally efficient, 

reliable and simple receiver design and it has been shown that with a pair of 

hydrophones for reception and maximum-ratio combining (MRC) 

technique, considerably low bit-error-rate (BER) at practical signal-to-noise 

ratio (SNR) value can be achieved.  

Suzi Seroja Sarnin et al. [86] describe performance evaluation of 

phase shift keying modulation technique such as Binary Phase Sift Keying 

(BPSK) and QPSK using error correcting code.  Three error correcting 

codes - Bose-Chaudhuri-Hocquenghem (BCH), Cyclic as well as Hamming 

codes were used to compute the bit-error-rate in an AWGN channel.  It has 

been concluded that BCH codes demonstrate the best performance 

compared to Hamming and Cyclic codes for both BPSK and QPSK. 
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The gain of the BCH code has been investigated by applying it to 

BPSK modulation scheme in symmetric AWGN channel by Mahmoud A. 

Smadi [87].  The bit error probability of coded (63, 36) BCH system has 

been evaluated and compared with the performance of un-coded system.  

The price to be paid for this performance improvement is the higher 

transmission data rate and hence higher transmission bandwidth.  Jitendra 

Prakash Shreemukh et al. [88] proposed some selection criteria for the 

puncturing vector to achieve excellent performance in terms of BER and 

offer useful guidelines for the design of puncturing vector based on 

simulation results.  The performance of turbo codes for different puncturing 

location for two parity branches has also been studied. 

Jyoti Kataria et al. [89] compare the Coded Orthogonal Frequency 

Division Multiplexing (COFDM) with OFDM and the study shows that 

COFDM outperforms the OFDM with respect to reliable transmission, 

BER performance and bandwidth efficiency.  Ch Sekhararao K. et al. [90] 

present a novel combination of Coding techniques and OFDM to combat 

impulsive noise.  The simulation results show that, in the presence of 

impulsive noise, convolutional coding improves the performance of OFDM 

based Power Line Communication systems significantly.  

Fernando H. Gregorio [91] presents coding and interleaving 

techniques applied in WLAN systems. An overview of coding, decoding 

and puncturing of convolutional codes as well as time and frequency 

interleaving have been presented. The improvement in performance has 

been measured in terms of bit-error-rate and packet error rates.  Mandar 

Chitre et al. [92] tested coded OFDM in a very shallow water channel in 

Singapore waters. The results show that it is a promising technique for use 

in very shallow, warm water channels. 
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2.5 Synchronization Issues in OFDM 

Due to the unpredictable practical conditions, the receiver in OFDM 

may sample a new frame at the incorrect time instant, which is called 

Symbol Time Offset (STO).  Also, in practical situations, frequency 

mismatch between local oscillators at the transmitter and receiver or 

Doppler frequency shift can occur, leading to Carrier Frequency Offset 

(CFO) problems in OFDM which destroys orthogonality among the 

subcarriers leading to inter carrier interference.  Hence, estimation of STO 

and CFO are very important and critical in any practical scenario.  The 

effects of STO are studied and correspondingly W.Aziz et al. [93] have 

proposed different precautionary schemes in the receiver.   

Praween Kumar Nishad et al. [94] present a basic useful technique 

for CFO estimation in OFDM over frequency selective fading channel.  

The performances of cyclic prefix (CP) based estimation, training symbol 

based estimation and pilot based methods are compared.  Abdul Gani 

Abshir et al. [95] have examined the effects of CFO on the OFDM signals.  

The deterioration in bit-error-rate as well as the loss in Signal to Noise 

Ratio due to the CFO for an OFDM system have been investigated.  The 

paper also presents comparative analysis between CP based estimation 

technique, Symbol based estimation method and Pilot Tone based 

estimation schemes.   CFO and its effects have been analysed in detail for 

OFDM symbols and the techniques to estimate CFO are also described in 

detail by W.Aziz et al. [96].  The estimation techniques cover the time and 

frequency domains for OFDM system.   

Mahmood A.K. Abdulsattar et al. [97] describe real-time 

implementation of a timing and frequency synchronization for OFDM 

system using MATLAB software Simulink and a DSP processor.  The 
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practical results and performance evaluation of the synchronization 

algorithms in OFDM system are presented and discussed.  The results are 

plotted for different offsets of CFO and STO at different values of signal to 

noise ratio.  Ferdinand Classen et al. [101] consider the problem of carrier 

synchronization of OFDM systems in the presence of a substantial 

frequency offset.  The two-stage structure considered in this paper is able to 

cope with frequency offsets in the order of multiples of the spacing 

between subchannels.  This ensures high-speed synchronization at a low 

implementation effort. 

Seung Hee Han et al. [102] describes some of the important peak to 

average power ratio reduction techniques for multicarrier transmission 

including amplitude clipping and filtering, coding, partial transmit 

sequence, selected mapping, interleaving, tone reservation, tone injection, 

and active constellation extension.  Single Carrier Frequency Division 

Multiple Access (SC-FDMA) is currently adopted as the Long Term 

Evolution standard for the uplink due to its high data rate and low PAPR.  

In SC-FDMA, two methods of choosing subcarriers for transmission are 

used-distributed using Interleaved (IFDMA) and localized (LFDMA).  In 

[103], the PAPR for LFDMA and IFDMA techniques are simulated and 

compared by Mohammed Melood et al. 

2.6 Channel Estimation 

Evaluation of new communication schemes and devices under 

realistic conditions in the open ocean is very expensive and time-

consuming, as it involves ship time, diver resources and other related 

components.  Hence various channel modeling schemes are widely used 

before realizing an implementable system.  Studies of the channel modeling 

efforts reported by various researchers are included in this section.   
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A survey of the characteristics of all existing seawaters has been 

made by C. C. Leroy [104], covering all the previous methods and 

formulated two equations for the speed of sound in the waters, one of 

which fits with Wilson's second equation for seawater to within 0.1m/sec in 

the domain described, and the other fits with the Wilson's corresponding 

data with a better accuracy than does Wilson's equation. 

Michael B. Porter et al. [105] describes Gaussian beam tracing for 

computing ocean acoustic fields.  The method of Gaussian beam tracing 

has recently received a great deal of attention in the seismological 

community.  Compared to standard ray tracing, the method has the 

advantage of being free of certain ray-tracing artifacts such as perfect 

shadows and infinitely high energy at caustics.  BELLHOP [106 – 107] is a 

beam tracing model for predicting acoustic pressure fields in ocean 

environments.  The beam tracing structure leads to a particularly simple 

algorithm.  BELLHOP can produce a variety of useful outputs including 

transmission loss, eigen rays, arrivals and the received time-series.   

Peter King et al. [108], present the development of an improved 

channel model based on the BELLHOP beam tracing program.  The 

BELLHOP program provides path computations that connect a given 

source-receiver pair which are dependent on a description of the 

environment provided by the user.  This model is an efficient ray tracing 

tool for performing two-dimensional analysis of an ocean environment.  

The BELLHOP program was selected because of its efficacy and accuracy 

in generating acoustic data sets consisting of amplitude, phase, and delay 

for each path between a given transmitter-receiver pair.  Lars Michael 

Wolff, et al. [109], use channel impulse responses (CIRs) generated by the 

BELLHOP ray tracing model to simulate multipath propagation.  The CIRs 

for fixed nodes are post-processed to simulate mobile nodes.    
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Modeling and Simulation plays an important role in understanding 

the performance of underwater acoustic sensor networks before its 

implementation, as the design, development and testing of actual system 

turns out to be expensive and time consuming.  The research community 

working in the underwater acoustic network area is faced with limited 

options as far as simulation tools are concerned.  Sumi. A. Samad [112] et 

al. discuss some details of the underwater communication model generally 

used to accurately model the behavior of underwater communication 

channel. 

Hou Pin Yoong et al. [113] carried out a study on modeling of 

underwater wireless communication with a detailed model on the channel 

characteristic, environmental noise, signal to noise ratio and the Doppler 

Effect.  Simulation of a modified Rayleigh fading communication channel 

model has been presented by Mario A. Muñoz et al. [114], which takes into 

account the boundary reflections and Doppler shift effects.  The statistical 

characteristics of underwater acoustic channels using experimental 

measurements have been analyzed by Jesse Cross [115].  CIRs are 

estimated in the time domain using a least squares method with sliding 

windows applied to the received data.  The experimental results 

demonstrate that underwater channels often offer poorer communication 

quality than Rayleigh fading channels. 

Xueyi Geng et al. [117], reviewed and discussed the properties of 

underwater acoustic channels.  Based on some experimental results and 

analytical considerations, the limitations of the Rayleigh fading channel 

model commonly used to  model underwater acoustic channels has been 

pointed out and a novel underwater acoustic communication channel model 

simulator has been proposed, based on the concept of eigen paths that 
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consist of one dominant component and several sub-eigen path 

components. 

An Underwater Acoustic Signals Separation method based on prior 

information about the Channel Impulse Response (CIR) has been attempted 

by S. Bonnifay et al. [118].  Using a sound speed profile measured in real 

world environment, the channel impulse response of the ocean is estimated 

with normal mode theory and the ray tracing method.  This preliminary 

work has shown that prior information on the transmission channel can lead 

to success in underwater signal separation in real world situations. 

Milica Stojanovic [119] discusses the effects of attenuation, noise, 

multipath propagation and the Doppler effects in underwater acoustic 

communication scenario.  Muhammad Ali Raza [120] models impulse 

response of a time-varying acoustic channel as a superposition of multiple 

propagation paths where each path is characterized by a frequency 

dependent path loss.  Later, an estimation model based on adaptive filtering 

has been proposed, to model the impulse response of the underwater 

acoustic communication channel. 

A statistical model was developed for underwater acoustic channels 

by Parastoo Qarabaqi et al. [122] that take into account physical aspects of 

acoustic propagation as well as the effects of inevitable random channel 

variations.  John Heidemann et al. [123] examine the main approaches and 

challenges in the design and implementation of underwater wireless sensor 

networks.  The key applications and the main phenomena related to 

acoustic propagation have also been summarized.  

In [125], M. S. Chavan et al. proposed multipath fading channel 

simulation model for wireless communication.  The model has been tested 

for sine wave and complex wave inputs.  The effects of noise on fading and 

scattering property of the channel have been validated.  The performance of 
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various channel models: Rayleigh model, AWGN channel model and 

Rician model have been evaluated, analyzed and compared.  In [126], 

Joaqu´ın Aparicio et al. presented an underwater acoustic channel model 

based on ray tracing.  This model takes into account the common 

phenomena such us sound speed profiles and transmission loss.  The model 

has also been used to simulate the sound propagation for a relative 

positioning system, which measures the surface current, yielding acceptable 

surface current estimates.    

Adaptive filters have been used in many diverse applications in the 

past.  An investigation of some of the adaptive filters and their possible 

applications are addressed here.  Adaptive equalization removes the effect 

of the channel and allows subsequent demodulation of the signal.  Bernard 

Widrow et al. [127] introduced the concept of adaptation as a property or 

characteristic of certain systems in engineering and adaptive linear 

combiner, which is the simplest and most widely used adaptive structure.    

Simon Haykin [128] examines the mathematical theory behind various 

linear adaptive filters.  The adaptive filter is described as a device that is 

self-configuring one, which relies on a recursive algorithm for its operation 

that makes it possible for the filter to perform satisfactorily in an 

environment where complete knowledge of the relevant signal 

characteristics is not available. Yilun Chen et al. [129] propose a new 

approach to adaptive system identification when the system model is 

sparse.  The approach applies l1 relaxation, common in compressive 

sensing, to improve the performance of LMS type adaptive methods.  In 

order to improve the performance of LMS based system identification of 

sparse systems, a new adaptive algorithm has been proposed by Yuantao 

Gu et al. [130] which utilizes the sparsity property of such systems.  A 

general approximation approach on l0 norm has been proposed and 
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integrated into the cost function of the LMS algorithm.  The simulations 

demonstrate that the proposed algorithm can effectively improve the 

performance of LMS-based identification algorithms in sparse systems. 

The function of channel estimation is to form an estimate of the 

amplitude and phase shift caused by the wireless channel.  The estimated 

channel state information can be used in the receiver for undoing the 

channel effects.  The following papers deals with estimation of channel 

which is critical in proper signal recovery.  

Ons Benrhouma et al. [131] estimate the underwater acoustic 

channel and the method of channel estimation have been validated through 

experiments.  A statistical study of the estimated underwater channel such 

as the number of paths, the attenuation of the principal path and the delay 

between the principal and the secondary paths have been demonstrated.  

Another method for estimating the underwater acoustic channel has been 

proposed by Oe-Hyung Lee et al. [132], which uses a probe signal.  The 

underwater channel impulse responses are estimated and the received data 

signals are convolved with the time-reversed channel impulse responses. 

The Channel Capacity of a point-to-point communication link in an 

underwater acoustic channel has been computed by B. Jagdishwar Rao et 

al. [133].  The approach takes into account the effects of various acoustic 

propagation models.  A comparative assessment of the influence of various 

acoustic transmission loss models on the acoustic bandwidth and the 

capacity has been consolidated.  Nina Wang et al. [134] propose a novel 

sparse channel estimation method with compressive sensing using CoSaMP 

algorithm for sparse multipath multicarrier underwater acoustic 

communication systems.  Simulation results confirm that the proposed 

method offer high spectral efficiency, good performance guarantee and low 

computational complexity.  
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Channels with a sparse impulse response arise in a number of 

communication applications.  Exploiting the sparsity of the channel, Shane 

F. Cotter et al. [135] show how an estimate of the channel may be obtained 

using a matching pursuit (MP) algorithm.  This estimate has been compared 

with the least squares (LS) channel estimate.  Among these sparse channel 

estimates, the MP estimate is computationally much simpler to implement 

and a shorter training sequence is required to form an accurate channel 

estimate leading to higher information throughput.  C. Qi et al. [136] 

attempted underwater acoustic channel estimation based on sparse 

recovery.  The underwater acoustic communication system under 

consideration employs orthogonal frequency division multiplexing 

(OFDM) and receiver preprocessing to compensate for the Doppler effect 

before channel estimation.  The authors propose enhancements to the sparse 

recovery-based underwater acoustic channel estimator by exploiting the 

recursive least-squares algorithm for channel tracking.  Moreover the 

authors propose a scheme to optimize the pilot placement over the OFDM 

subcarriers based on the discrete stochastic approximations.  

It has been shown that sparse channel estimation, implemented with 

orthogonal matching pursuit (OMP) and basis pursuit (BP) algorithms, has 

impressive performance gains over alternatives that do not take advantage 

of the channel sparsity, for underwater acoustic communications.  J.-Z. 

Huang et al. [138] compare the performance and complexity of three 

popular BP algorithms, namely l1_ls, SpaRSA, and YALL1, using both 

simulation and experimental data for underwater OFDM systems with both 

single and multiple transmitters.  It was found that all BP solvers achieve 

similar block-error-rate performance, considerably outperforming OMP.  

Sichuan Guo et al. [139] propose a new compressive sensing based 

channel estimation method with block-by-block channel tracking for 
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underwater acoustic communication.  Compared with conventional channel 

estimation algorithms, the proposed method efficiently exploits the sparsity 

of the underwater acoustic channel and improves the channel tracking 

capability of underwater acoustic communication system.  In [140], Guan 

Gui et al. introduce a novel channel estimation strategy using compressive 

sampling matching pursuit (CoSaMP) algorithm which combines the 

greedy algorithm with the convex program method.  The effectiveness of 

the proposed algorithm has been confirmed through comparisons with the 

existing methods.  It is seen that, when compared with the existing 

algorithms, this method is bandwidth efficient as well as computationally 

efficient. 

Various efficient pilot based channel estimation schemes for OFDM 

systems have been investigated and compared by Srishtansh Pathak et al. 

[142].  Two major types of pilot arrangement such as block type and comb-

type pilot have been focused employing LS (Least Squares) and MMSE 

(Minimum Mean Square Error) channel estimators.  Block type pilot 

subcarriers are suitable especially for slow-fading radio channels whereas 

comb type pilots provide better resistance to fast fading channels.  A full 

review of block-type and comb-type pilot based channel estimation has also 

been proposed by Sinem Coleri et al. [143].  The simulation results show 

that comb-type pilot based channel estimation with low-pass interpolation 

performs the best among all channel estimation algorithms.  OFDM pilot-

aided underwater acoustic channel estimation approaches, which involve in 

block-type pilot, comb-type pilot and grid-type pilots are investigated by 

Thomas Pedersen et al. [144].  Simulation revealed that based on different 

channel conditions, pilot types which give best performance has to be 

adopted. 
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Underwater acoustic channels have been regarded significantly 

different from wireless radio channels, due to their unique characteristics 

such as large temporal variations, abundance of transmission paths, etc.  

Shengli Zhou et al. [145] survey the challenges in underwater acoustic 

communications for orthogonal frequency division multiplexing and 

underwater acoustic channel estimation for OFDM in both time-invariant  

as well as time-varying environments has been performed. The underwater 

acoustic channel is well known to consist of sparsely distributed 

propagation paths and the channel sparsity can be exploited to reduce the 

number of unknown parameters to estimate. 

The channel estimation in OFDM and its implementation in 

MATLAB using pilot based block type channel estimation techniques by 

LS and MMSE algorithms have been discussed by Sajjad Ahmed Ghauri et 

al. [146].  The paper starts with comparisons of OFDM using BPSK and 

QPSK on different channels, followed by modeling the LS and MMSE 

estimators.  The results of different simulations have been compared and it 

has been established that the LS algorithm gives less complexity but the  

MMSE provides comparatively better results. 

Various channel estimation techniques based on pilot arrangement 

with the communication system that uses QPSK and 16-QAM to transmit 

information using OFDM over multipath Rayleigh fading channel have 

been investigated and compared by Sanjay Kumar Khadagade et al. [147] 

for block type and comb type pilot arrangements and the bit-error-rate 

performance has been considered as the performance index in all the 

studies.  

The channel estimation techniques for OFDM systems based on 

pilot arrangement are investigated by Sinem Coleri et al. [149]. The 

channel estimation based on comb type pilot arrangement has been studied 



Chapter 2 Review of Past Work 

 48 

using different algorithms for estimating channel at pilot frequencies and 

interpolating the channel behavior.  The estimation of channel at pilot 

frequencies is based on least squares and least mean squares approaches.  

The channel estimation based on block type pilot arrangement has also 

been performed.  The performances of all the schemes have been compared 

by measuring the bit-error-rate with 16-QAM, QPSK, DQPSK and BPSK 

as the modulation schemes, and multi-path Rayleigh fading channels as 

channel model. 

The computational complexity required in the channel estimation 

plays an important role in underwater acoustic communications (UAC) 

with orthogonal frequency duplex access (OFDM), especially when the 

channel is sparse. Chunguo Li et al. [150] develop an algorithm to carry out 

the orthogonal matching pursuit (OMP) for the sparse channel estimation 

based on the compressive sensing, where the goal is to obtain the minimum 

computational complexity. Numerical simulations are demonstrated that the 

proposed algorithm achieves the remarkable gain of the computational 

complexity compared to the existing algorithm. 

2.7 Multiple-Input Multiple-Output Systems 

Multiple Input Multiple Output (MIMO) transmission system is one 

of the recent and the most promising area of the smart antenna technology 

which uses multiple antennas in the transmitter and the receiver side and is 

currently followed for high-rate wireless communication.  This section 

discusses some of the papers on Space-Time Block Coding (STBC), MIMO 

and their applications.  A simple two-branch transmit diversity scheme has 

been presented by Siavash M. Alamouti [151].  Using two transmitter and 

one receiver antenna, the scheme provides the same diversity order as 

maximal-ratio receiver combining with one transmit antenna and two 
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receive antennas.  It is also shown that the scheme may easily be 

generalized to two transmit antennas and M receive antennas.  

The viability of using space-time processing methods to improve 

the robustness and/or capacity of underwater acoustic communication links 

has been tested experimentally by R.F.Ormondroyd et al. [152]. Alamouti 

space-time coding has also been investigated in conjunction with OFDM 

modulation for high-rate underwater acoustic communications over time 

varying channels by Baosheng Li et al. [153].  Performance has been 

demonstrated using experimental data transmitted in a 10kHz bandwidth 

over a 1km shallow water channel south of the Martha’s Vineyard island in 

New England.  The two-transmitter Alamouti scheme showed improved 

performance over the same-rate single-transmitter scheme.  

The performance analysis of Alamouti STBC has been compared 

with SISO performance by Yamini Devlal et al. [155].  The paper includes 

study of SISO system, STBC, Alamouti STBC theory and its mathematical 

expressions.  The results for each of the systems considered, SISO, 2x1 and 

2x2 Alamouti STBC have also been plotted and 2x2 Alamouti STBC was 

found to have the smallest BER values. MIMO techniques for increasing 

the data rates in the area of underwater communications have been 

performed by Byung-Chul Gwun et al. [156]. The advantage of MIMO 

techniques is to increase the channel capacity without additional transmit 

power. 

2.8 Summary 

An attempt has been made in this chapter to present a state-of-the-

art literature in the topic covered by the thesis, the sparse signal processing 

as well as underwater acoustic communication.  Various compressive 

sensing reconstruction algorithms, problems in underwater acoustic 
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communication, modulation and coding schemes used for undersea links, 

underwater channel estimation, multicarrier modulation techniques, various 

synchronization issues, etc. have been included in the review of the papers 

reported in open literature. 
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  CHAPTER 3

METHODOLOGY 

Compressive sensing has been evolved as a very useful technique for 

sparse reconstruction of signals that are sampled at sub-Nyquist rates.  

Compressive sensing helps to reconstruct the signals from fewer linear 

projections of the sparse signal.  This chapter presents a brief overview 

of the proposed method for sparsification and recovery.  Undersea 

acoustic links have applications in pollution monitoring, environmental 

data collection, offshore and coastal surveillance, etc.  Orthogonal 

Frequency Division Multiplexing (OFDM), which is a multicarrier 

modulation technique, is widely employed in undersea acoustic 

applications because of its numerous advantages.  OFDM requires an 

estimate of the channel parameters at the receiver for undoing the 

channel effects.  The sparsity of the channel impulse response for 

undersea links can be used for estimating the channel characteristics.  A 

brief overview of the dictionary based sparse channel estimation is also 

included in this chapter. 

The Nyquist sampling theorem specifies that in order to avoid 

information loss when capturing a signal, it must be sampled at least twice 

the maximum signal frequency.  In many applications, the Nyquist rate is 

so high that too many samples result, making compression a necessity prior 

to storage or transmission.  A new method called “Compressive Sensing” 

can be used to capture and represent compressible signals at a rate 

significantly below the Nyquist rate.  Compressive sensing has applications 

in signal processing, in areas such as coding, signal level enhancement, 

source separation, etc.  For example, a sparse representation has only a few 
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non-zero values, which necessitates encoding only these values for 

transmission and storage.   

3.1 Background 

Underwater channel is known to be bandwidth limited due to sound 

attenuation by sea water and interaction with ocean surface and bottom.  

Table 3.1 shows the available bandwidth for different ranges in underwater 

acoustic channels [2].  If the information could be stored or transmitted by 

fewer numbers of samples than the Nyquist rate, it would have been 

advantageous in underwater acoustic communication scenario.  The method 

called compressive sensing can be used to represent and reconstruct certain 

classes of signals at a rate below the Nyquist rate.  

Traditional methods make use of signal representations conforming 

to the sampling theorem that makes compression a necessity before storage 

or transmission in situations where the memory space and bandwidth are 

scarce resources.  A signal with only a few non zero coefficients in any 

transform domain is called a sparse signal and a signal which can be 

approximated by a few non zero coefficients in any transform domain is 

called a compressible signal.  For sparse or compressible signals, the 

compressive sensing technology is a paradigm shift. 

Table 3.1 Available Bandwidth for different ranges in Underwater Acoustic 
Channels 

 Range [km] Bandwidth [kHz] 

Very long  1000 <1 

Long  10–100 2–5 

Medium  1–10 ≈10 

Short  0.1–1 20–50 

Very short  <0.1 >100 
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The recovery of the signal is carried out by using certain 

optimization techniques.  The recovery becomes more difficult when the 

signal to be compressed is corrupted with noise.  For resorting to 

compressive sensing, it is required that the compression and reconstruction 

techniques should be capable of transforming the data into a suitable 

representation domain.  Many natural and manmade signals have 

underlying sparse representations in some basis functions.  Basis functions 

like Discrete Fourier Transform, Discrete Cosine Transform, Wavelets, etc. 

can be used, depending on the information and type of the signal.  

A discrete time signal x(n) with N elements, can be viewed as an N 

x 1 vector with n=1, 2, .... N.  Consider a basis function ψ, which provides 

K sparse representations (i.e., ||x||0 ≤ K) of x(n), with K < N.  x(n) can be 

represented in the matrix form as  x=ψf, where ψ is the basis matrix of 

order N x N and f is the weighting coefficient vector of order N x 1.  The 

vector y=ϕx, where ϕ is the measurement matrix of order M x N with M < 

N, is the linear projection of the signal x(n).  The matrix ϕ is often referred 

to as a dictionary [35].  The vector y preserves the information content of 

the signal, while being much smaller than the signal, effectively 

constituting a compression.  Figure 3.1 illustrates the concept of 

compressive sensing. 

 
Fig. 3.1 Concept of compressive sensing 
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Recovering the original signal x requires solving an 

underdetermined system of simultaneous linear equations.  Given the 

knowledge that x is sparse, the system regenerates the actual signal from 

the acquired small number of non-adaptive linear projections of the signal. 

Figure 3.2 shows a basic model of compressive sensing. 

  

 

 

To recover the sparse signal, the condition that should be satisfied is  

   minimize ||x||0  subject to y=ϕx,                         (3.1) 

where ||x||0 is the number of non-zero elements of x, which is also called l0 

norm.  Computing l0 norm is an NP-hard problem [33] which led to making 

use of the basis pursuit relaxation or convex optimization [47].  Such 

approaches have led to the establishment of an l1 - l0 equivalence [61] and 

hence, (3.1) can be represented as, 

minimize ||x||1 subject to y=ϕx,                         (3.2) 

where ||x||1 is the sum of the absolute values of the elements in x, which is 

also being referred to as the l1-norm (||x||1= ∑ |GO|O ).  In the case of signals, 

which are contaminated with noise, the equality constraint has been relaxed 

to allow some error tolerance є ≥ 0 [35], such that  

minimize ||x||1 subject to ||PQ − R||( ≤ є,                (3.3) 

will help to reconstruct x with insignificant error [27],[45]. 

3.2 Compressive Sensing Algorithms 

Solution to the sparse recovery problem can be achieved with 

Relaxation Methods or with Greedy Algorithms.  Relaxation methods 

ψ ϕ Estimation 
f x y QT 

Fig. 3.2 Block diagram representation of compressive sensing 
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replace the original sparse recovery problem with a convex optimization 

problem, whereas Greedy Algorithms focus on finding the non-zero values 

of x at their respective locations, which are determined iteratively.  l1-norm 

based sparse recovery problems can be solved using a variety of existing 

solvers such as l1-magic, YALL1, l1_ls, etc.  l1-magic involves recovery of 

a sparse vector x from a small number of linear measurements y=ϕx or 

y=ϕx+e using primal-dual method [55], where e is the measurement noise.  

YALL1 is another solver that can be applied to l1-optimization, which is a 

collection of fast l1-minimization algorithms based on the dual alternating 

direction method [58-59].  It is a first order primal-dual algorithm, as it 

explicitly updates both primal and dual variables at every iteration.  l1_ls is 

a specialized interior-point method [56] that uses the preconditioned 

conjugate gradients algorithm to compute the search direction.  CVX [60, 

63] is an effective software for finding solutions for complex convex 

optimization problems, including non-differentiable functions, such as l1-

norms. 

Greedy Algorithms include Orthogonal Matching Pursuit (OMP), 

Compressive Sampling Matching Pursuit (CoSaMP), etc.  Orthogonal 

Matching Pursuit, which is one of the earliest methods for sparse 

approximation, provides simple and fast implementation [37].  It is an 

iterative algorithm that selects at each step the dictionary element best 

correlated with the residual part of the signal [36].  New approximation is 

generated by projecting the signal on to the dictionary elements that have 

already been selected and solving a least squares problem.  The residual is 

updated in every iteration.  The number of iterations can be made equal to 

the sparsity of the signal or the stopping criteria can be based on the 

magnitude of the residual [35].  Compressive Sampling Matching Pursuit 

[40] which selects multiple columns per iteration [35], is an enhancement 
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to OMP.  Each iteration of CoSaMP reduces the error in the current signal 

approximation. 

3.3 Sparsification and Recovery 

In view of the overwhelming limitations of the existing compressive 

sensing algorithms, in terms of computational complexities, response time, 

overall reconstruction capabilities, etc., there has been a constant search for 

high performance, more capable and reliable techniques for the 

sparsification and recovery of audio, speech and natural images.  Hence, a 

new method has been proposed in this thesis which involves padding the 

matrix ϕ during compression phase for the purpose of solving the 

underdetermined system of simultaneous linear equations, followed by least 

mean square based adaptation during the reconstruction phase.  The 

solution is obtained with the help of a Moore Penrose inverse matrix, which 

is then corrected using iterative least mean square based adaptation. Figure 

3.3 shows the block diagram of the proposed technique. 
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Fig. 3.3 Block diagram of the proposed matrix padding technique 
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3.4 Propagation Theory 

The propagation of sound in a medium is described mathematically 

by solving the wave equation using the appropriate boundary and medium 

conditions for a particular condition.  There are two approaches [15] for 

solving this equation, wave theory and ray theory.  Ray theory (Ray 

acoustics) postulates wavefronts and the existence of rays, which indicate 

where the sound emanating from the source is being sent.  It does not 

provide a good solution under conditions where the radius of curvature of 

the rays or the pressure amplitude changes significantly over the distance of 

a wavelength.  Hence, ray theory is restricted to high frequencies or short 

wavelengths. 

3.5 Modulation techniques for Undersea Acoustic Links 

The modulation techniques widely used in underwater acoustic 

communication include frequency hopped FSK, direct sequence spread 

spectrum, single carrier transmission and multicarrier modulation. 

In FSK modulation, information bits are used to select the carrier 

frequencies of the transmitted signal.  This scheme does not require the 

estimation of the channel and is robust to channel variations.  The guard 

bands help to avoid interference caused by frequency-spreading while the 

guard intervals help to avoid interference caused by time-spreading.  

However, the bandwidth efficiency is significantly low. 

In Direct Sequence Spread Spectrum, a narrow band waveform is 

spread to a large bandwidth before transmission by multiplying each 

symbol with a spreading code.  Multiple arrivals at the receiver can be 

handled with a de-spreading operation.  This technique necessitates the 

need for channel estimation and tracking. 
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One major step towards high data rate communication is single 

carrier transmission of information symbols from constellations such as 

phase-shift-keying (PSK) and quadrature-amplitude-modulation (QAM).  

The channel introduces inter symbol interference (ISI) due to multipath.  

Channel equalization is also needed. 

Multicarrier modulation is a technique for transmitting data by 

sending the data over multiple carriers.  An advantage of multicarrier 

systems is that they are less susceptible to interference than a single carrier 

system as interference may only affect a small number of the carriers. 

Frequency-division multiplexing (FDM) and Orthogonal Frequency 

Division Multiplexing (OFDM) come under multicarrier modulation 

methods. FDM approach splits a large bandwidth into non-overlapping 

bands and guard bands are inserted between neighboring subbands.  Band 

pass filtering can be used to separate the signal from different subbands.  

OFDM is also an FDM approach with overlapping subbands, leading to 

better spectral efficiency.   

3.6 Orthogonal Frequency Division Multiplexing 

Underwater channel is too complex compared to the terrestrial radio 

channels leading to the requirement of sophisticated equalization 

techniques at the receiver.  Recently, Orthogonal Frequency Division 

Multiplexing (OFDM), which is used in several terrestrial radio 

communications standards, is also considered for underwater acoustic 

communications due to its high data transmission rate, efficient spectral 

utilization and ability to cope up with the multipath interference.  OFDM 

has been applied in broadband wireless radio applications, including digital 

audio/video broadcasting, wireless local area networks and fourth 

generation cellular networks.   
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Coded OFDM is a form of OFDM where error correction 

mechanisms have been incorporated into the signal.  This technique uses 

multiple orthogonal sub-carriers to carry the data along with the error 

correcting mechanisms, which adds extra bits at transmitters to recover 

many subcarriers affected by fading.  Channel coding schemes include 

block codes in which, the input bit stream is segmented into blocks for 

adding redundant bits and convolutional codes, which encodes the bit 

stream continuously without any segmentation. Coding offers better 

security and interleaving reduces the effect of burst errors.  Hence, OFDM 

combined with coding and interleaving, is a good choice for complex as 

well as bursty channels like the undersea acoustic links. 

3.6.1 Advantages of OFDM 

OFDM, which can be efficiently implemented using Fast Fourier 

Transform (FFT), has been used in many wired as well as wireless systems 

because of the following advantages: 

• high spectral efficiency because of the use of overlapping 

subcarriers  

• eliminates ISI with a guard band  

• simpler channel equalization 

• computationally efficient, as it uses FFT techniques to 

implement modulation and demodulation functions 

• eliminates Inter Carrier Interference (ICI) by the use of 

orthogonal subcarriers  

OFDM has gained a significant importance in the wireless market.  

The combination of high spectral efficiency and its resilience to 

interference due to multipath effects makes it a suitable candidate for 

undersea acoustic communication scenario. 
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3.6.2 Disadvantages of OFDM 

The disadvantages of OFDM are  

• Cyclic Prefix Overhead - A cyclic prefix at least as long as the 

channel response must be attached to each OFDM symbol to 

prevent the interference between symbols. 

• Sensitivity to frequency synchronization problems - 

Frequency synchronization problems destroy the 

orthogonality between subcarriers, resulting in inter carrier 

interference and severe degradation in performance. 

• High peak-to-average power - Peak to average power ratio 

(PAPR) in an OFDM system is usually high.  Because of 

IFFT operation, data symbols across subcarriers add up to 

produce a high peak value OFDM symbol. 

Due to the numerous advantages offered by OFDM, this thesis 

considers the application of coded OFDM with and without interleaving for 

an undersea acoustic link.  

3.7 Channel Estimation 

In OFDM, the transmitter modulates the message bits into symbols, 

assigns them to various sub carriers and sends them through the channel, 

which distorts the signal.  For undoing the channel effects and 

demodulating the signal with reasonable accuracy, OFDM needs an 

estimate of the channel parameters.  Channel estimation is performed by 

inserting pilots [149] into the subcarriers of an OFDM symbol.  The 

transmitted signal can then be reconstructed by a single tap equalizer at the 

receiver using the estimated channel. 
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3.7.1 Channel Estimation techniques in use 

The underwater channel causes spreading, attenuation, absorption, 

etc. of the transmitted signals and hence, the received OFDM signals will 

be distorted.  For proper recovery of the transmitted data, the channel effect 

has to be estimated and compensated in the receiver.  The channel 

characteristics can be estimated by sending symbols known to both the 

transmitter and receiver.  Even though this approach provides acceptable 

performances, the transmission overhead is high, due to the requirement of 

pilot tones in addition to data symbols. 

 

Fig. 3.4 Pilot arrangement (a) block type (b) comb type 

Pilots can be inserted into all the subcarriers of an OFDM symbol 

periodically, leading to block type channel estimation.  Block type pilots 

are suitable for a slow fading channel where the channel transfer function is 

fairly a constant over the period of transmission of a few OFDM symbols.  

Thus, the pilots are assigned to a particular OFDM block, which is sent 

periodically in time-domain.  In Comb type channel estimation, pilots are 
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inserted into each OFDM symbol, at periodically located subcarriers and 

the comb type pilots are suitable for rapidly fading channels.  Underwater 

channels are fast time-varying and as a result, comb type pilots are more 

appropriate for realising undersea acoustic links.  Block type and comb 

type pilot arrangements are illustrated in Figure 3.4. 

The traditional channel estimation methods [143] include Least 

Squares (LS) and minimum mean square error (MMSE) estimations.  If 4U 

is the transmitted set of pilots and VU, the set of received pilots, the LS 

channel estimate is given as 

WXYZ = [\Z\.                                             (3.4) 

The LS estimate of the channel is susceptible to noise and offers 

poor performance.  The MMSE method gives a better estimate of the 

channel.  But, the BER performance of both LS and MMSE are 

substantially lower, as these methods do not consider the sparsity of the 

channel.  Since underwater channel is characterized by sparse multipath, a 

method based on compressive sensing can be used which will give 

excellent BER performance compared to the LS and MMSE based 

estimations. 

3.7.2 Dictionary based Sparse Channel Estimation Technique  

When a signal is sparse in a known transform domain, compressive 

sensing (CS) helps to reconstruct it with much fewer samples than that 

required by the dimensions of this domain.  A channel impulse response 

with only a few significant coefficients is referred to as a sparse channel.  

Underwater channel exhibits sparse impulse response.  Compressive 

sensing promises to estimate such channels with much less pilot overhead 

or at higher accuracy with a constant number of pilots. A dictionary based 

sparse channel estimation has been presented in the thesis and the results 
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have been compared for various environmental conditions as well as for 

various number of pilots.  The number of pilots to be chosen is a trade-off 

between channel estimation accuracy and bandwidth efficiency.  Also, the 

data rates for an OFDM system for different number of pilots have been 

computed and compared, in this thesis.  

3.8 Summary 

A brief overview of a method proposed for sparsification and 

recovery has been presented in this chapter.  The advantages of OFDM as 

well as need for channel estimation have also been outlined briefly. A brief 

overview of the dictionary based sparse channel estimation has also 

included in this chapter. 
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  CHAPTER 4

SYSTEM MODEL 

Compressive sensing recently gained immense attention due to the 

commendable advantages the technique offers in recovering certain 

target signals from a few random measurements.  A new matrix padding 

technique, which converts the signal into sparse domain by applying 

Discrete Cosine Transform (DCT) and then compressing it using a 

modified measurement matrix, followed by an LMS based adaptation, 

has been proposed.  Making use of this matrix padding technique, a 

computationally efficient sparse signal reconstruction has been achieved.  

Ambient noise is always present in the background of the undersea 

channel and the four basic sources that can model the ambient noise in 

the ocean are the noise effects due to turbulence, shipping, wind and 

thermal processes.  A study of the variation of power spectral density of 

the overall ambient noise has been performed.  Generation of channel 

impulse response using the Bellhop model utilizing the environmental 

data like the sound speed profile of the water column, the number of 

transceivers and their depths has also been described.  OFDM is a good 

choice in underwater communication and this chapter describes the 

system models for normal OFDM as well as coded and interleaved 

OFDM, for the undersea acoustic links.  Space-time block coding offers 

higher link reliability and its combination with coding and interleaving 

has been proposed in this thesis, for improving BER performances.  A 

system model of an OFDM Receiver with Symbol Time Offset (STO) 

and Carrier Frequency Offset (CFO) estimation as well as channel 

parameter estimation has also been described in this chapter. 
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4.1 Background 

Modeling and simulation are very important in studying the 

performance of undersea acoustic links, as the design, development and 

testing of the actual system is very expensive as well as time consuming.  

One of the biggest advantages of OFDM is the ability to convert channels 

into parallel narrowband subchannels, thus significantly simplifying the 

equalization at the receiver end.  Coding, is a method of adding redundancy 

to information so that it can be transmitted over a noisy channel and 

subsequently be checked and corrected for errors that occurred in 

transmission at the receiving end.  This chapter discusses the system 

models used for simulating OFDM as well as coded interleaved OFDM for 

undersea acoustic links.  The diversity techniques improve the reliability of 

communication by using two or more communication channels with 

different characteristics.  This chapter also discusses the system models for 

normal and coded STBC systems for an undersea acoustic link. 

4.2 Sparse Signal Reconstruction 

The bandwidth constraint of an undersea acoustic link makes 

compressive sensing very useful for underwater acoustic communication.  

Compressive sensing, which has gained immense importance nowadays, 

bases its signal recovery capabilities on the sparsity and incoherence of the 

processes involved.   Incoherence addresses the idea that the signals that 

are spread out in the domain in which they are acquired, may have a sparse 

representation in another domain.  For effective reconstruction, it is 

mandatory that ϕ has to be incoherent with ψ.  Incoherence implies that the 

mutual coherence or the maximum magnitude of entries of the product 

matrix ϕψ is relatively small.  Coherence is measured according to  

μ�P, ^� =  √` ��Ga〈cd , e f〉a   1 ≤ h, i ≤ `,                (4.1) 
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where ψ is the basis matrix of order N x N and ϕ is the measurement matrix 

of order M x N with M < N. 

If ϕ and ψ contain correlated elements, the coherence is large [42].   

Coherence takes the values in the range [1, √`].  The random measurement 

matrices are largely incoherent with any fixed basis function ψ.  Hence the 

sparsity basis function need not even be known, when designing the 

measurement system.  

The necessary and sufficient condition for the sparse signals to be 

uniquely determined is that the matrix j = P^ should satisfy the 

Restricted Isometry Property of order K [35], such that 

�1 − Ck�‖Q‖((≤‖jQ‖((≤ �1 + Ck�‖Q‖((,                   (4.2) 

where Ck is the isometry constant of the matrix j and K is the sparsity of 

the signal.  Evaluating Restricted Isometry Property (RIP) for a given 

matrix being computationally complex, this property is normally verified 

by computing the coherence of the matrix ϕ.  Certain random matrices such 

as Gaussian and Bernoulli matrices are known to obey RIP [44]. 

A signal x is compressible if its sorted coefficient magnitudes �n in 

the transform domain ψ observe a power law decay [45], according to 

which, 

|�B| ≤ m�1n, n=1, 2, … ,                            (4.3) 

where R and q are constants with q ≥ 1. 

The general block diagram for Compressive Sensing and recovery is 

shown in Figure 4.1.  The data from the wave file is segmented into frames 

followed by a transformation of the signal into suitable domain for making 

it sparse.  It is then compressed with the help of a measurement matrix.  

These values can either be stored or transmitted, depending on the 
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requirement.  These signals are reconstructed with the help of a 

compressing sensing algorithm, followed by transforming it to the domain 

in which the data is acquired and the frames are reassembled to regenerate 

the signal. 

 

 

 

 

 

 

The signal has to be converted to the domain in which it is sparse, 

depending on the information and type of the signal.  In the simulation 

studies, the domain chosen is Discrete Cosine Transform (DCT).  

Conversion of the audio signal to DCT results in a signal which is sparse 

with real valued coefficients, thus making the reconstruction easier [52].  

The advantages of the Discrete Cosine Transform over Discrete Fourier 

Transform lies on the fact that it is real-valued, has better energy 

compaction and as such a sizeable fraction of the signal energy can be 

represented by a few initial coefficients.  The DCT of a 1-D sequence f(x) 

of length N is 

7�o� = ��o� ∑ ��G� 7�� pq�(I! �r(E sE1 IF% ,                    (4.4) 

for u = 0,1,2,…,(N −1).  

where 

Fig. 4.1 Block Diagram for Compressive Sensing and Recovery 
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��o� = tu
v w E , ��� o = 0

w(E , �x?;�y��;.                                    (4.5) 

The first coefficient, being the average value of the sample 

sequence, is referred to as the dc coefficient, while all other transform 

coefficients are called the ac coefficients.  Similarly, the inverse DCT is 

defined as 

��G� = ∑ ��o� 7�o� 7�� pq�(I! �r(E sE1 rF% ,                   (4.6) 

for x = 0, 1, 2,… (N −1).  

Sections 3.1 and 3.2 presented a background on compressive 

sensing. A block diagram showing the proposed matrix padding technique 

has been briefly illustrated in Section 3.3.  This section details the proposed 

matrix padding method. The proposed technique converts the signal into 

sparse domain by applying DCT, followed by compressing it using a 

modified measurement matrix.  This modification of the measurement 

matrix has been effected by padding it with a suitable sub matrix for 

resolving the singularity problems, while solving the underdetermined 

system of simultaneous linear equations.  Making use of this technique, a 

computationally efficient sparse signal reconstruction can be achieved. 

4.2.1 Matrix Padding 

The data from the wave file is divided into N' frames of N samples 

and these frames are then converted to the frequency domain by using DCT 

which resulted in a sparse data representation.  The compression matrix 

used is a random Gaussian measurement matrix ϕ of size M x N with M < 

N.  In order to make the computation of the matrix inverse feasible during 

the reconstruction phase at the receiver, it is padded with (N-M) x N ones 
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which makes the matrix size to N x N.  Operation of this modified matrix ϕ' 

upon the framed sparse data results in a signal matrix y that has two sub 

matrices of which the first sub matrix yc gives the data pertaining to the 

matrix operation y=ϕx, while the other sub matrix yam provides certain 

redundant data consequent to the process of matrix padding.  Removing the 

redundant data from yam results in a vector yav of size 1 x N'.  The matrix yc 

of order M x N' and the vector yav of order 1 x N' are to be transmitted or 

stored separately.  The algorithmic procedure for the compression is given 

in ALGORITHM 4.1. 

ALGORITHM 4.1: Compression Procedure 

Begin 

     Read the wave file 

     Convert it into N' frames of N samples 

     Create a matrix x(N,N') with the N' frames of samples 

     Generation of modified Measurement matrix 

          Generate Gaussian random measurement matrix ϕ 

          Generate modified Measurement matrix ϕ' 

     Compression Phase 

         Multiply x with DCT matrix ψ 

         Compress the signal using ϕ' 

     Generate yc (compressed data) and yam (auxiliary matrix)  

     Store / transmit yc and yav (auxiliary vector) separately 

End 

The signal is reconstructed at the receiver by generating the signal 

matrix y' by appending the received yc' with yam', which is generated from 

the received yav' by performing the reverse of the operations carried out at 

the transmitter.  The Moore Penrose inverse [158] of ϕ' is taken and 

multiplied with y' and the data so obtained is converted back to the time 

domain by the Inverse DCT operation to generate the initial solution, which 
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is refined further by iterative LMS adaptation.  The procedure for the 

recovery of the signal at a later stage is furnished in ALGORITHM 4.2. 

 

ALGORITHM 4.2: Recovery Procedure 

Begin 

     Generate the initial solution 

          Retrieve / receive the signals yc' and yav'  

          Generate yam' from yav' 

          Append yam' to yc' and generate y' 

          Generate Moore Penrose inverse of ϕ' and multiply it with y' 

          Perform Inverse DCT operation and reassembling of frames 

     Perform LMS based adaptation for signal refinement 

     For n=1,……Length of x(n) 

          Compute the output y(n) 

          Compute the error signal e(n) 

          Update the filter coefficients w(n+1) 

     End 

     Reassembling of frames 

End 

4.2.2 LMS Based Adaptation 

An adaptive filter is a self-designing one, which relies on a 

recursive algorithm for its operation that makes it possible for the filter to 

perform satisfactorily in an environment where complete knowledge of the 

relevant signal characteristics is not available [128].  For descending 

towards the minimum on the mean-square-error performance surface of the 

adaptive filter, least-mean-square or LMS algorithm can be used, which is 

simple and has less computational complexity.  LMS filter is used in a large 

number of applications like echo cancellation, channel equalization, signal 

prediction, to name a few.  
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If y(n) is the nth sample of the observed output signal [129], then  

R�n� = Q{�n� |�n�,                                  (4.7) 

where |�n� = 9w%�n� w �n� … … w�1 �n�>{ and x�n� = 9x�n� x�n −1� … … x�n − L + 1�>{denote the filter coefficient vector and input vector 

respectively and L is the filter length.  The error of the adaptive filter output 

with respect to the desired response signal d(n) is 

��n� = ��n� − Q{�n� |�n�.                            (4.8) 

By minimizing the cost function which is the mean squared error 

[130], the filter coefficients are updated iteratively, so that 

|�n + 1� = |�n� + � ��n� Q�n�,                        (4.9) 

where � is the adaptation step size.  If R is the autocorrelation matrix of the 

input vector Q�n� and λmax, its maximum eigen value, the condition for 

convergence for the LMS is [129] 

0 ˂ � ˂  ����.                                    (4.10)                               

The structure of adaptive LMS FIR filter is shown in Figure 4.2.  It 

is known that the optimum weight vector, which is the point at the bottom 

of the performance surface, is 

�∗ = �1 �,                                      (4.11)                                  

where R is the input correlation matrix given by 

� = E9Q�n�Q�n�{>                                  (4.12)                           

and 

� = E9��n�Q�n�>.                                   (4.13)         

Taking expectation on both sides of (4.9), E9|�n + 1�> = E9|�n�> + � E9��n�Q�n�> 
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= E9|�n�> + � E9��n�Q�n� − Q�n� Q{�n� |�n�> = E9|�n�> + ��� − E9Q�n� Q{�n� |�n�>� = E9|�n�> + ��� − E9Q�n� Q{�n�> E9|�n�>� 

(∵ Coefficient vector |�n� is independent of input vector Q�n�) 

E9|�n + 1�> = E9|�n�> + ��� − � E9|�n�>�.           (4.14) 

           

                   

 

 

 

 

 

 

 

 

 

 

Let the error in coefficient vector s(n) be, 

��n� = |�n� − �∗.                            (4.15) 

Substituting (4.14) in (4.15), E9��n + 1�> = E9��n�> + ��� − � �E9��n�> + �∗�� 

                  = E9��n�> + ��� − � E9��n�> − ��∗� 

                       = E9��n�> − � � E9��n�>     �∵ � = ��∗� 

= �� − � �� E9��n�>.                          (4.16) 

Fig. 4.2 Tapped delay line structure of the LMS filter 
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This implies that the mean error in filter coefficients at instant n+1 

depend on the step size, autocorrelation of the input vector and the mean 

error in the filter coefficients at the instant n. 

4.3 Undersea Acoustic Channel Effects 

4.3.1 Ambient Noise 

Ambient noise is always present in the background of the sea.  The 

four basic sources that can contribute to the ambient noise in the ocean are 

the noise due to turbulence �̀, noise due to shipping �̀, noise due to wind `�  and thermal noise �̀�.  

The overall power spectral density `��� of the ambient noise is 

given by 

`��� = �̀��� + �̀��� + `���� + �̀����,                     (4.17) 

where the ambient noise due to turbulence, shipping, wind and thermal 

noise are described by the following equations: 

�̀��� = 17 − 30 ������,                                     (4.18) 

�̀��� = 40 + 20�� − 0.5� + 26 ������ − 60 ����� + 0.03�,     (4.19) 

� being the shipping activity factor whose value ranges between 0 and 1 for 

low to high shipping activities and � is the frequency (in kHz). 

`���� = 50 + 7.5�� /( + 20 ������ − 40 ����� + 0.4�,      (4.20) 

�� being the wind speed in m/s and 

�̀���� = −15 + 20 ������.                       (4.21) 

Figure 4.3 shows the variation of power spectral density of the 

overall Ambient Noise with respect to shipping traffic and wind speed.  The 

black ones are for lower wind speed and the red ones are for higher wind 
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speeds.  As seen from the plot, the curve in the region 500Hz to 100kHz 

shifts up as the wind speed increases. 

 

Fig. 4.3 Variation of PSD of Overall Ambient Noise with respect to wind speed and 
shipping factor 

For computing the maxima or minima of the noise equations, the 

general practice is to equate the first derivative to 0 and compute the second 

derivative.  Differentiating equations (4.18), (4.19), (4.20) and (4.21) with 

respect to �,  

�E��� = 12%� �B  %,                                               (4.22)                                                    

�E��� = %.��12$����! %.%2� �B  %,                                               (4.23)                                                 
�E �� = �1(%�� ��!%.$� �B  %,                                               (4.24)                                                

�E�¡�� = (%� �B  %.                                                   (4.25)                                                         
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For shipping noise, equating (4.23) to 0, we get � = 0.02294kHz.  Since, 

��E���� < 0,  at � = 22.94Hz, there is a maxima at � =22.94Hz.   For wind 

noise, equating (4.24) to 0, we get � = 0.4kHz.  Since, 
��E ��� < 0, at � = 

400Hz,   there is a maxima at � = 400Hz.  Similarly for turbulence noise, 

there is a minima at � = ∞ and for thermal noise, there is a maxima at � = 

∞. 

Figure 4.4 shows the variation of power spectral density of the 

overall Ambient Noise with respect to frequency and shipping traffic.  As 

seen from the plot, the curve in the region 10Hz to 300Hz shifts up as the 

shipping traffic increases.  Figure 4.5 shows the variation of power spectral 

density of the overall Ambient Noise with respect to frequency and wind 

speed.  As seen from the plot, the curve in the region 500Hz to 100kHz 

shifts up as the wind speed increases. 

 

Fig. 4.4 PSD of Overall Ambient Noise with respect to frequency and shipping factor  
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Fig. 4.5 PSD of Overall Ambient Noise with respect to frequency and wind speed 

 

4.3.2 Generation of Channel Impulse Response 

For simulation, Bellhop is used in order to obtain the channel 

impulse response based on a modeled underwater scenario.  Therefore, 

environmental data like the sound speed profile of the water column, 

obtained from conductivity, temperature, depth (CTD) data sets, the 

number of transceivers and their depths, etc. are given as input to the 

Bellhop.  The sound speed profile varies greatly with location and time of 

year.  The channel impulse response represents multiple paths from any 

active transmitter to any receiver.  By tracing a large number of rays 

through the inhomogeneous acoustic underwater channel that is 

characterized by the sound speed profile (SSP), the multipath sound 

propagation can be modeled.  The rays are traced by numerically solving 

the differential ray equations given in [105].  The resulting rays travel on 
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bend curves rather than on straight lines due to the variation of sound speed 

with depth.  Furthermore, rays are reflected at the surface and bottom, 

whereby absorption losses and phase shifts take place. 

Sound Speed Profile from a real ocean region with the data 

collected using CTD and computed using Leroy’s equation is shown in 

Figure 4.6.  It can be seen that the sound speed varies non-linearly with the 

depth and the nonlinearity can be attributed as due to the variation of 

temperature, salinity and pressure from the surface to bottom.  At lower 

depths, temperature determines the sound speed, but as the water depth 

increases, pressure becomes more and more prominent in influencing the 

speed of sound propagation.  The corresponding normalized channel 

impulse response plot for source depth of 50m, receiver depth of 100m, 

receiver range of 1km and ocean depth of 1km, plotted using Bellhop is 

shown in Figure 4.7.    The  number  of  non-zero  channel  taps  in  channel  

  

Fig. 4.6 A typical Sound Speed Profile from real ocean 
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impulse response varies, depending on the distance between the transmitter 

and the receiver as well as other environmental conditions. 

 
Fig. 4.7 Normalised Channel Impulse Response 

4.3.3 CTD (conductivity, temperature and depth) Instrument 

The CTD instrument refers to a package of electronic instruments 

that measures the conductivity, temperature and depth parameters.  A CTD 

instrument’s primary function is to detect how the conductivity and 

temperature of the water column changes relative to depth.  

Oceanographers usually measure underwater pressure in decibars (dbar) 

because an increase in pressure of 1dbar is approximately equal to an 

increase in depth of 1m. 

4.4 OFDM for Undersea Acoustic Links 

The orthogonal frequency division multiplexing has become a key 

technology for wireless communication systems because of its high spectral 
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efficiency, robustness against multipath fading, and reliable high speed 

transmission over complex channel conditions.    

 

 

 

 

 

 

 

 

 

The block diagram of a general OFDM system is shown in Figure 

4.8 and the OFDM for undersea acoustic link has been simulated using a 

data stream, which has been divided into parallel bit streams, followed by 

modulation and computation of its IFFT as well as insertion of the guard 

band for minimizing the inter symbol interference.  The signal corrupted by 

the ambient noise is then convolved using the channel impulse response 

generated with the Bellhop model as  

¦��� = 9G��� + ����>⨂?���,                       (4.26) 

where x(n) is the transmitted signal, a(n) is the ambient noise, h(n) is the 

channel impulse response and y(n) is the received signal.  At the receiver, 

the guard band is removed, followed by the computation of FFT and 

equalization.  The resultant signal is demodulated to reconstruct the binary 

data and the bit-error-rate has been computed.  The bit-error-rates under 

various Signal to Noise Ratio conditions have been simulated and 

compared for various orders of QAM and PSK based OFDM schemes for 

undersea acoustic links.  The bit-error-rate of underwater channel has also 

been compared with that of an AWGN channel, which assumes that noise is 
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Fig. 4.8 General block diagram of an OFDM System for Undersea Acoustic Links 
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the only source of disturbance in the channel and adds white Gaussian 

noise to the signal that passes through it. 

4.5 Coded OFDM 

Coded OFDM is a form of OFDM where error correction coding is 

incorporated into the signal.  Coding offers better security and interleaving 

reduces the effect of burst errors.  Hence, OFDM, combined with coding 

and interleaving, is a good choice for complex channels like undersea 

acoustic links.  The thesis throws light on the application of interleaved 

coded OFDM (convolutional and BCH) for undersea acoustic links. 

The system model for interleaved coded OFDM is similar to the one 

for the normal OFDM, except the encoding and interleaving at the 

transmitter side as well as deinterleaving and decoding at the receiver side.  

The Block Diagram of the Interleaved Coded OFDM is as shown in Figure 

4.9.  The data stream comprising of 64 bits per OFDM symbol has been 

encoded using convolutional and BCH coding for validating their 

performances.  Convolutional coding has been performed by an encoder 

with a constraint length 7 and code rate 1/2, where as a BCH (7,4) coding 

has been performed on 64 bits resulting in 112 bits.  Thus, 128 and 112 sub 

carriers per OFDM symbol are required for convolutional coded and BCH 

coded OFDMs respectively.  This data has further been subjected to 

interleaving, followed by the BPSK and Differential Phase Shift Keying 

(DPSK) based OFDM modulations.   

If the channel is one which produces burst errors, an effective 

technique to reduce these errors is to shuffle the coded data through the 

method of interleaving in such a way that the error bursts get fairly and 

uniformly distributed in time.  By doing so, the bursty channel effect is 

being manipulated into a channel characterized by statistically independent 
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errors.  The data is written row-by-row into a 16 x 8 matrix for 

convolutional coded OFDM and 14 x 8 matrix for BCH coded OFDM 

respectively and read out column-by-column by the interleaver.  The 

deinterleaver at the receiver performs the reverse process.  The transmitted 

signal contaminated with the background noise is then convolved using the 

channel impulse response generated by the Bellhop model.   

 

 

 

 

 

 

Fig. 4.9 System Model of Interleaved Coded OFDM 

At the receiver, the OFDM demodulated signal is subjected to 

deinterleaving followed by decoding for regenerating the original data 

stream.  The bit-error-rate performances, under various Signal to Noise 

Ratio conditions, have been simulated for BPSK and DPSK based 

convolutional coded OFDM with and without interleaving as well as BCH 

coded OFDM with and without interleaving.  Also, the effect of 

interleaving has been investigated by quantitatively comparing the 

performances of both the coded OFDM schemes, with and without 

interleaving. 

4.6 BCH Coded OFDM 

  Encoding introduces redundancy into a stream of data to correct 
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They can also be decoded easily via syndrome decoding.  The 
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performances of BCH (15, 11) and (15, 7) coded interleaved OFDMs are 

also compared in the thesis.  

The binary input undergoes BCH encoding followed by 

interleaving, which helps to reduce the effects of burst errors in the 

channel, followed by BPSK based OFDM modulation.  The transmitted 

signal is convolved using the channel impulse response generated with the 

Bellhop model.  At the receiver, the BPSK based OFDM demodulation is 

performed, followed by de-interleaving and BCH decoding to regenerate 

the original data stream.   

4.7 STBC MIMO 

Space-time block coding improves reliability and robustness of 

communication system by exploiting space and time diversity.  The idea 

behind using a transmit diversity scheme is that some of the redundant 

signals transmitted may arrive in a better state at the receiver and by 

combining all the received versions, more accurate results can be obtained.  

The key feature of the Alamouti code is the orthogonality between the 

signals transmitted over the two transmitters.  Using Alamouti STBC 

diversity scheme, the data rate is maintained the same, while improving the 

BER performance.   

4.7.1 Normal STBC 

The input bits undergo modulation, which can be 16-QAM or 16-

PSK, followed by the Alamouti STBC encoding and the encoded symbols 

are transmitted by the respective transmitter.  At the receiver, the channel 

impulse responses are estimated and STBC decoding is carried out, 

followed by demodulation to reconstruct the transmitted data.  The 

performances of 16-QAM and 16-PSK systems have been simulated for the 

2x1 case.  It was found that 16-QAM based STBC system performed better 
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than 16-PSK based STBC system.  As a result, 2x1 and 2x2 STBC systems 

were compared for 16-QAM based system.  Figure 4.10 shows the general 

block schematic of a 2x2 STBC system. 

 

 

 

 

 

 

 

 

 

 

4.7.2 Coded STBC 

A modification to the existing STBC is proposed in the thesis by 

incorporating coding and interleaving at the transmitter end followed by 

deinterleaving and decoding at the receiving end, as follows. In coded 

STBC, the input bits undergo channel coding, followed by interleaving.  

BCH (7, 4) encoder followed by 16-QAM modulation and Alamouti STBC 

encoding system has been simulated.  The encoded symbols are transmitted 

by the respective transmitters.  At the receiver, the channel impulse 

responses are estimated and STBC decoding is carried out, followed by 

demodulation, deinterleaving and decoding, to regenerate the transmitted 

data stream.  Figure 4.11 shows the general block schematic of a coded 

interleaved 2x2 STBC system.  

 

 

 

Fig. 4.10 General block schematic of a 2x2 STBC system 
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Fig. 4.11 General block schematic of a coded interleaved 2x2 STBC system 

4.8 Channel Estimation and Synchronization 

Synchronization is important in OFDM due to its great sensitivity 

towards timing and frequency offset errors.  The performance of OFDM 
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demodulation of OFDM signals since the channel is time-varying.  

Compressive sensing has been used in communications domain for sparse 

channel estimation.  A sparse channel is the one whose impulse response 
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varying the number of pilots for estimating the undersea channel for 

various ranges. 

The system model of a generic OFDM receiver is shown in Figure 

4.12.  The synchronization errors, STO and CFO are estimated and 

compensated at the receiving front end.  After guard band removal and 

computation of FFT, the received pilots have been extracted and the 

channel impulse response has been computed using the dictionary based 

sparse channel estimation method, followed by equalization procedure to 

undo the channel effects.  The resultant signal has been demodulated to 

reconstruct the binary data and the bit-error-rates under various Signal to 

Noise Ratio conditions have been simulated and compared for BPSK based 

OFDM schemes.   

 

 

 

 

 

 

4.9 Summary 

A method for sparse signal reconstruction based on matrix padding 

and LMS based adaptation has been proposed.  Ambient noise is always 

present in the background of sea and the effect four basic sources that 

contribute to the ambient noise in the ocean have been examined.  

Moreover, the maxima and minima values of the noise power spectral 

density equations have been computed and the variations of power spectral 
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density of the overall ambient noise with respect to frequency and shipping 

traffic as well as wind speed have been studied.  The system models for 

normal OFDM, coded OFDM as well as normal and the proposed coded 

STBC have been described.  Also, a system model of an OFDM Receiver 

with STO and CFO estimation as well as channel parameter estimation has 

also been described. 
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  CHAPTER 5

MODULATION AND CODING 

In the past few years, there has been a tremendous increase in research 

and development of underwater acoustic communication system.  In 

underwater acoustic communication, the energy received is combination 

of energies contributed by different rays traversing through different 

paths due to multiple reflections of the waves at the boundaries, which 

results in inter symbol interference.  Orthogonal Frequency Division 

Multiplexing is widely employed nowadays because of its advantages 

like resilience to inter symbol interference, immunity to selective fading, 

simpler channel equalization, etc.  Various modulation techniques like 

Quadrature Amplitude Modulation and Phase Shift Keying are used in 

conjunction with OFDM.  Coding techniques like convolutional and 

BCH coding, as well as interleaving techniques can be used along with 

OFDM for improving the error correction capability of the receiver.  

Diversity techniques improve reliability of data transfer by transmitting 

the same data on two or more communication channels with different 

characteristics.  For undoing the channel effects and demodulating the 

signal with fairly acceptable accuracies, the channel parameters need to 

be estimated.  Channel estimation is performed by inserting pilots into 

the subcarriers of an OFDM symbol.  Underwater channels exhibit sparse 

channel impulse response and the channel can be estimated using the 

compressive sensing techniques to achieve good performance.   

5.1 Background 

Though various transmission schemes such as frequency division 

multiplexing, time division multiplexing, code division multiplexing and 
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the hybrid forms are in use for realizing undersea acoustic links, orthogonal 

frequency division multiplexing has been found to be an ideal choice for 

such links due to its numerous advantages.  Multipath propagation is 

responsible for severe degradation of the acoustic communication signal in 

undersea scenario, since it generates Inter Symbol Interference (ISI).  

Maximum spectral efficiency is required to exploit the limited bandwidth 

available in the underwater acoustic channel.  OFDM is a favorable 

communication scheme in underwater acoustic communications thanks to 

its resilience against multipath effects as well as high spectral efficiency.   

Channel coding allows error detection and correction at the receiving 

end by introducing redundancy into transmitted data.  Channel coding 

along with interleaving can be used to improve the performance of normal 

OFDM.  Because of all the limitations of the underwater channel, the 

selection of the type of modulation and error correction techniques is of 

extreme importance. 

5.2 Orthogonal Frequency Division Multiplexing 

Multicarrier modulation, an approach to the design of a bandwidth-

efficient communication system in the presence of channel distortion 

divides the available channel bandwidth into a number of subchannels, such 

that each subchannel is nearly ideal.  Multicarrier modulation techniques 

attract a lot of attention in wireless communication because of its ability to 

efficiently combat multipath and fading effects in complex channels.  

Orthogonal Frequency Division Multiplexing is a multicarrier modulation 

technique which makes efficient use of the available bandwidth.      

OFDM has evolved from Frequency-Division Multiplexing (FDM), 

which is a technique by which the total bandwidth available in a 

communication medium is divided into a series of non-overlapping 
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frequency sub-bands, each of which is used to carry a separate signal.  If 

the FDM system had been able to use a set of subcarriers that were 

orthogonal to each other, a higher level of spectral efficiency could have 

been achieved.  The guard bands that were necessary to allow individual 

demodulation of subcarriers in an FDM system would no longer be 

necessary.  The use of orthogonal subcarriers would allow the spectra of 

subcarriers to overlap, thus increasing the spectral efficiency.  As long as 

the orthogonality is maintained, it is possible to recover the data carried by 

individual subcarriers despite their overlapping spectrums. 

In OFDM, the entire frequency band is divided into a number of sub 

bands.  The data stream is also divided into several parallel data streams of 

lower rate and the individual subcarriers are modulated by individual low 

rate data streams and the resultant signals are added up and transmitted.  

Even though these sub carriers are overlapping, they are orthogonal and 

hence, there is no Inter Carrier Interference (ICI).   

5.2.1 Use of Guard band 

A guard band, which is zero padding or cyclic prefix, is used to 

ensure that the Inter Symbol Interference (ISI) is eliminated.  In Cyclic 

prefixing, the tail end of each OFDM symbol is copied to its beginning.   

Even though the cyclic prefix has high power requirements compared to 

zero padding, it converts linear convolution to circular convolution 

problem, which helps in simplifying the equalization procedure at the 

receiver.  Equalization is the removal of distortion/effects caused by the 

wireless channel to recover the transmitted symbols as accurately as 

possible.  The length of the cyclic prefix is chosen to be greater than the 

expected multipath spread.  The benefit gained in terms of simplified 

equalization is a sufficient justification to accept the reduced data rate. The 

general structure of an OFDM symbol is shown in Figure 5.1. 
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5.2.2 OFDM Variants 

Since OFDM offers a lot of advantages, it can be used to offer better 

performance in a complex and challenging medium like the ocean.  There 

are other variants of OFDM like COFDM (Coded Orthogonal Frequency 

Division Multiplexing), WOFDM (Wideband OFDM), Orthogonal 

Frequency Division Multiple Access (OFDMA) etc. which follow the basic 

format for OFDM, but have additional attributes.  

• COFDM (Coded Orthogonal frequency division multiplexing): A 

form of OFDM where error correction coding is incorporated into 

the signal. 

• WOFDM (Wideband OFDM): The concept of this form of OFDM 

is that it uses a degree of spacing between the channels that is large 

enough that any frequency errors between the transmitter and 

receiver do not affect the performance.  It is particularly applicable 

to Wi-Fi systems. 

• OFDMA (Orthogonal frequency division multiple access): A 

scheme used to provide a multiple access capability for applications 

such as cellular telecommunications when using OFDM 

technologies. 

Copy 

CP        lth OFDM symbol           CP      (l+1)th OFDM symbol 

Copy 

Tsub TG 

Tsym = Tsub+ TG 

Fig. 5.1 General structure of an OFDM symbol 
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5.2.3 Modulation Techniques 

With the fast developments in modern communication techniques, 

the demand for reliable high date rate transmission increased significantly, 

which diverted much interest in modulation techniques.  Different 

modulation techniques aim to send different bits per symbol and thus 

achieve different throughputs or efficiencies.  In the simulation studies, the 

modulation techniques used are Quadrature amplitude modulation (QAM) 

and Phase-shift keying (PSK). 

5.2.3.1 Quadrature Amplitude Modulation 

Quadrature amplitude modulation (QAM) is performed by changing 

the amplitude and phase of a carrier in accordance with the input data.  In 

view of the fact that the signal undergoes both amplitude and phase 

variations, it may be considered to be a composite signal with amplitude 

and phase modulations.  Normally the lowest order QAM encountered is 

16-QAM because 2-QAM is similar to binary phase-shift keying (BPSK) 

and 4-QAM is similar to quadrature phase-shift keying (QPSK).  Using 

higher order QAM, it is possible to transmit more bits per symbol.  But, the 

points on the constellation move closer and the transmission becomes 

susceptible to noise, resulting in a higher bit-error-rate for higher order 

QAM than that for the lower order QAM variants.  Hence, there exist a 

tradeoff between the data rates and bit-error-rates for a given system.  64-

QAM and 256-QAM are often used in digital cable television and cable 

modem applications.   

A graphical representation of the complex envelope of each possible 

symbol state is called a constellation diagram.  The x-axis of a constellation 

diagram represents the in-phase component of the complex envelope, and 

y-axis represents the quadrature component of the complex envelope.  The 
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distance between signals on a constellation diagram relates to how different 

the modulation waveform are, and how well a receiver can differentiate 

between all possible symbols when random noise is present.  Figure 5.2 

shows the constellation diagram for the transmitted 16-QAM symbols. 

 
Fig. 5.2 Constellation diagram for the transmitted 16-QAM symbols 

5.2.3.2 Phase-shift keying  

Phase-shift keying (PSK) is a digital modulation scheme that 

conveys data by modulating the phase of a carrier wave according to the 

input.  The demodulator, which is designed specifically for the symbol set 

used by the modulator, determines the phase of the received signal and 

maps it back to the symbol it represents, thus recovering the original data.   

In binary phase-shift keying (BPSK), the phase of a constant 

amplitude carrier signal is switched between two values which are normally 

separated by 180o, corresponding to binary 1 and 0 respectively.    

Differential phase-shift keying (DPSK) is a non-coherent form of phase 

shift keying which avoids the need for a coherent reference signal at the 

receiver.  Quadrature phase shift keying (QPSK) has twice the bandwidth 

efficiency of BPSK, since two bits are transmitted in a single modulation 
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symbol.  In M-ary PSK (MPSK), the data can be transmitted at a faster rate 

compared to the simplest binary phase shift keying.  Figure 5.3 shows the 

constellation diagram for the transmitted 16-PSK symbols.  

 
Fig. 5.3 Constellation diagram for the transmitted 16-PSK symbols 

5.2.4 Subcarrier Generation 

The modulation of the binary input is carried out by any of the 

schemes like QAM, FSK, PSK or their variants.  The subcarriers of OFDM 

are modulated by the symbols generated from binary input and these 

subcarriers are made orthogonal so that the inter carrier interference (ICI) 

effect is minimized.  If X0, X1, ... XM-1 are the M symbols and c%9�>, c 9�>, 
... , cª1 9�> are the M subcarriers, then the resulting signal is  G9�> = «%c%9�> + « c 9�> + ⋯ + «ª1 cª1 9�>.         (5.1) 

The most popular set of orthogonal subcarriers can be generated by 

computing the IDFT.  Thus, 

G9�> =  √ª ∑ «O;f�­®¯°ª1 OF% = ±²M�³«´,                    (5.2)                   

and can be easily implemented using IFFT efficiently.  These orthogonal 

subcarriers being overlapping, helps OFDM to achieve higher spectral 

efficiency. 
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5.2.5 Signal Estimation 

The use of zero padding or cyclic prefix guard band eliminates the 

inter symbol interference, if the length of guard band is greater than the 

length of channel impulse response.  The cyclic prefix converts the channel 

effect into circular convolution, which corresponds to multiplication in the 

frequency domain.  Equalizers, which are widely used in practical 

communication systems, help to undo the channel effects like the 

multipath, inter symbol interference, etc.  OFDM enables simpler 

equalization at the receiver, which can be accomplished by a simple single 

tap frequency domain equalizer.  This is equivalent to assuming that any 

fading is flat across the bandwidth of each subcarrier and the estimated 

signal at the receiver is given by 

«µ��� = [���¶���,                                           (5.3)                                

where Y(f) and H(f) are the frequency domain counterparts of the received 

signal y(n) and the channel impulse response h(n) respectively. 

5.2.6 Peak to Average Power Ratio (PAPR) Issue in OFDM 

The transmitted signals in an OFDM system can have high peak 

values in time domain because of IFFT operation.  Data symbols across 

subcarriers add up to produce a high peak value OFDM symbol resulting in 

high peak-to-average power ratio (PAPR).  PAPR of a signal x is the ratio 

of the maximum power to the average power of the signal and can be 

defined as 

·¸·m = ¹ºI|I���|�»9|I���|�> .                                   (5.4) 

The maximum possible value of PAPR is N, the number of 

subcarriers, which occurs when all the subcarriers add up constructively at 
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a single point.  The largest PAPR rarely occurs and hence it is a common 

practice to find the probability that the PAPR of a symbol exceeds a given 

threshold ·¸·m%. Hence, for representing PAPR, complementary 

cumulative distribution function (CCDF) is used, which can be defined as 

**²M = ·�·¸·m > ·¸·m%�.                           (5.5) 

Large PAPR means that the OFDM signal has a large variation between the 

average signal power and the maximum signal power. 

5.2.6.1 PAPR Reduction Techniques 

One simplest approach of reducing the PAPR is to clip the 

amplitude of the signal to a fixed level.  The clipping technique employs 

clipping or nonlinear saturation around the peaks to reduce the PAPR.  It is 

simple to implement, but it may cause in-band and out-of-band 

interferences while destroying the orthogonality among the subcarriers.  

Hence, clipping is followed by filtering.   

Another approach commonly used for PAPR reduction is the DFT-

spreading technique, which is used to spread the input signal with DFT and 

can be subsequently taken into IFFT.  An M-point FFT block is inserted at 

the transmitter before the N-point IFFT in the block as in Figure 5.4 and the 

output of M-point FFT is assigned to the subcarriers of N-point IFFT.  The 

effect of PAPR reduction depends on the way of assigning the subcarriers 

to each terminal. As depicted in Figure 5.5, there are two different 

approaches of assigning subcarriers among the users, viz., DFDMA 

(Distributed FDMA) and LFDMA (Localized FDMA).  DFDMA 

distributes M-point FFT outputs over the entire band (of total N subcarriers) 

with zeros filled in (N-M) unused subcarriers, whereas LFDMA allocates 

FFT outputs to M consecutive subcarriers in N subcarriers.  When DFDMA 
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distributes FFT outputs with equi-distance `/½ = 4, it is referred to as 

IFDMA (Interleaved FDMA) where S is called the bandwidth spreading 

factor. 

 
 

 

 

5.3 Forward Error Correction 

Forward error correction (FEC) or channel coding [14] addresses 

the process of mapping message vectors into code vectors using certain 

well-defined mapping procedures in such a way that the errors in the 

overall system can be corrected at the receiving end, leading to improved 

error rate performance.  Coding helps to improve the transmission 

efficiency, security, quality and reliability.  The American mathematician 

Richard Hamming invented the first error-correcting code in 1950: the 

Hamming (7,4) code.  

FEC gives the receiver the ability to correct errors without needing 

a reverse channel to request retransmission of data, but at the cost of a 

fixed, higher forward channel bandwidth.  FEC is therefore applied in 

situations where retransmissions are costly or impossible, such as one-way 

communication links and when transmitting to multiple receivers in 

multicast.  The two main categories of FEC codes are block codes and 

convolutional codes. 
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Fig. 5.5 Subcarrier mapping 

5.3.1 Block codes 

In block codes, the input bit stream is segmented into a block of k 

information bits and each block is appended with a group of r check bits or 

redundant bits that are derived from the respective block.  At the receiver, 

these check bits are used for error detection and correction of the 

information bits in that block.  The block code is referred to as an (n, k) 

code and the rate of the code is m¾ = h �¿ . 

5.3.1.1 BCH Coding 

BCH code, which is a variant of the block code as well as a subclass 

of cyclic codes, has powerful built in properties for multiple error 

corrections and are supplemented with computationally efficient codec 

algorithms.  Decoding of BCH codes involves computing the syndrome 

from the received code words, finding the error locations from the 

syndrome and finally correcting the errors.  BCH codes are used in 

applications such as satellite communications, compact disc players, DVDs, 

disk drives, solid-state drives and two-dimensional bar codes. 
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For every block of k bits, r redundant bits are added and the number 

of bits in the code word is   

� =  h +  �,                                           (5.6)                        

which can correct up to t errors, where 

x = �/�.                                              (5.7)                                            

The value of m is computed from 

� =  2¹ − 1,                                            (5.8)                                       

where � ≥ 3.  The minimum distance between the code words for 

correcting t errors is found to be 

Á = 2x + 1.                                          (5.9)  

One of the key features of BCH codes is that during code design, 

there is a precise control over the number of symbol errors correctable by 

the code.  The communication system designer is provided with a large 

selection of block lengths and code rates.  Table 5.1 lists the number of 

correctable bit errors for a block of k bits using BCH (7, 4), BCH (15, 11), 

BCH (15, 7) and BCH (15, 5) codes. 

5.3.2 Convolutional codes 

Convolutional coder encodes the bit streams continuously using a 

sequential logic in accordance with the coupled memory of the coder.  For 

the purpose of generating the coded symbols, the input stream is fed into a 

shift register and the shift register contents are combined modulo-2 in such 

a way that the coder generates the resultant code vector in accordance with 

certain generator polynomial criteria.  In view of the advantages offered by 

the nonsystematic convolutional codes, it has been used for error correction 

using the probabilistic Viterbi decoding algorithm.  The Viterbi maximum 
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likelihood algorithm is found to be a very effective decoding procedure for 

codes with small constraint lengths.  Both hard and soft decision decoding 

can be implemented for convolutional codes and usually soft decision 

decoding is superior by about 2-3dB. 

Table 5.1 Number of correctable errors using various BCH codes 

n k t 

7 4 1 
 

15 
11 1 
7 2 
5 3 

The general block schematic of a convolutional coder is shown in 

Figure 5.6.  In general, the shift register contains N k-bit stages.  The input 

data is shifted into and along the shift register, k bits at a time.  The number 

of output bits for each k bit user input data sequence is n bits.  The code 

rate is mÂ = h �¿ .  The parameter N is called the constraint length and 

indicates the number of input data bits that the current output is dependent 

upon.  A trellis diagram gives a compact representation of the structure of 

the encoder. 

5.4 Puncturing 

Puncturing can be employed to increase the code rate at the expense 

of bit-error-rate performance.  Puncturing involves eliminating certain 

redundant bits in the code word.  It can be accomplished by using an 

encoder followed by a bit selector which deletes some of the parity bits 

according to the given puncturing rule.  Puncturing is usually done to the 

parity bits since removing systematic bits will degrade the performance of 

the coder severely.  At the receiver, before decoding, zeros are inserted at 

the punctured bit locations.  Thus, the technique called puncturing helps in 
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improving the code rate of the system at the expense of bit-error-rate 

performance. 

 

 

 

 

 

 

 

5.5 Interleaving 

The errors occurring in a real communication scenario are often 

burst errors, which starts and ends with an error, the bits in between may or 

may not be erroneous.  This results in unacceptable error rate performances 

in certain observation intervals.  This problem can be resolved to some 

extent by changing the order of the sequence of transmitted symbols by the 

process of interleaving [14] and recovering the original order of sequence 

of the symbols at the receiver by a deinterleaver.   

Figure 5.7 shows a block interleaver in which the data is written 

row-by-row into a rectangular array of m rows and n columns, and read out 

column-by-column by the interleaver before sending it over the channel.  

The reverse process is performed at the deinterleaver.  The error bursts thus 

occurring due to channel effects get fairly distributed over time, resulting in 

an acceptable error rate performance.  But, the use of interleaving results in 

Fig. 5.6 General block diagram of a convolutional encoder 
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extra delay because deinterleaving can be started only after all the 

interleaved data (mn bits) is received. 

 

 

 

 

 

 

Fig. 5.7 Structure of a block interleaver 

5.6 Diversity Techniques 

Conventional point-to-point communication has a single transmitter 

communicating over the channel to a single receiver.  Underwater acoustic 

communication environment is bandlimited by multipath due to reflections 

and scattering.  To improve the error rate performance of underwater 

channel, diversity techniques can be employed.  In telecommunications, 

a diversity scheme refers to a method for improving the reliability of a 

message signal by using two or more communication channels with 

different characteristics.  Diversity is mainly used in radio 

communication and is a common technique for combatting fading, co-

channel interference and avoiding error bursts.  It is based on the fact that 

individual channels experience different levels of fading and interference.  

Multiple versions of the same signal may be transmitted and/or received 

and are combined in the receiver.  Thus, diversity techniques may exploit 

the multipath propagation, resulting in better bit-error-rate performances. 
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The following classes of diversity schemes are possible: 

� Time diversity, in which multiple versions of the same signal are 

transmitted at different time instants, as illustrated in Figure 5.8. 

� Frequency diversity, in which, the signal is transmitted using 

multiple spectral bands, as illustrated in Figure 5.9. 

 

Fig. 5.8 Time diversity 

� Space diversity, in which, the signal is transmitted over several 

different propagation paths.  In the case of wired transmission, this 

can be achieved by transmitting via multiple wires.  In the case of 

wireless transmission, it can be achieved by antenna diversity using 

multiple transmitters (transmit diversity) and/or multiple receivers 

(reception diversity).  In the latter case, a diversity 

combining technique is applied before further signal processing 

takes place.  Space-time diversity and space-frequency diversity are 

illustrated in Figures 5.10 and 5.11. 
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Fig. 5.9 Frequency Diversity 

 

Fig. 5.10 Space-time diversity 

5.6.1 Space-time coding 

Space-time coding [155] is a method used in wireless 

communication to improve the reliability of the data transfer.  Multiple 

copies of the symbols are transmitted from more than one transmitter in 

different time slots and the receiver uses the received versions in an optimal 

manner to reconstruct the signal.  The space time coder encodes a single 

stream by sending each symbol at different time slots.   
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Fig. 5.11 Space-frequency diversity 

One of the most commonly used space-time code is the Alamouti 

code.  It is a complex orthogonal space-time code specialized for the case 

of two transmitters.  The Alamouti Space-time block code [151] (STBC) 

for 2x1 and the 2x2 systems take two time-slots to transmit two symbols, 

thus maintaining the data rates fairly stable.  The encoding scheme of 

Alamouti Space-time block code is as shown in Figure 5.12. 

5.6.2 Alamouti STBC for 2x1 System 

Figure 5.13 represents two transmitters and a single receiver system.  

In Alamouti STBC coding, two consecutive symbols x1 and x2 are encoded 

according to Table 5.2. 

The Alamouti encoded signal is transmitted from two transmitters 

over two symbol periods.  During the first symbol period, symbol x1 is 

transmitted from the first transmitter and x2 from the second transmitter 

simultaneously.    During   second   symbol   period,   these   symbols     are 
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Fig. 5.12 Alamouti Space-time block coding 

 

 

 

 

 

Fig. 5.13 2x1 System 

Table 5.2 Encoding scheme with 2 transmitters 

 Transmitter 1 Transmitter 2 

Time Slot 1 G  G( 

Time Slot 2 −G(∗ G ∗ 

transmitted again, where �−�G(∗ is transmitted from the first transmitter and G ∗ from the second transmitter simultaneously.  It is assumed that the two 

channel impulse responses, h1(t) and h2(t) are time-invariant over 2 

consecutive symbol periods, i.e. h1(t)=h1 and h2(t)=h2.  Let y1 and y2 denote 

Transmitter 1 

Transmitter 2 

Receiver 
h1 

h2 

Channels 
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the received signals during the first and second time slots respectively, so 

that  

¦ = ? G + ?(G( + 8 ,                                   (5.10) 

¦( = ? �−G(∗� + ?(G ∗ + 8(,                                (5.11) 

where z1 and z2 denote the noise during the first and second time slots 

respectively.  In matrix notation, 

p¦ ¦(∗s = Ã? ?(?(∗ −? ∗Ä pG G(s + p8 8(∗s,                           (5.12) 

where W = Ã? ?(?(∗ −? ∗Ä is a 2x2 channel matrix. 

Multiplying both sides of equation (5.12) by the conjugate 

transpose of the channel matrix H yields the result: 

Ã? ∗ ?(?(∗ −? Ä p¦ ¦(∗s = Ã? ∗ ?(?(∗ −? Ä Ã? ?(?(∗ −? ∗Ä pG G(s + Ã? ∗ ?(?(∗ −? Ä p8 8(∗s 
= �|? |( + |?(|(� pG G(s + Ã? ∗8 + ?(8(∗?(∗8 − ? 8(∗Ä.                    (5.13) 

Equation (5.13) can be represented as, 

Ã¦ Å¦(ÅÄ = �|? |( + |?(|(� pG G(s + Ã8 Æ8(Æ Ä,                    (5.14) 

where ¦ Å and ¦(Å represent the modified receiver versions of the transmitted 

symbols.  Hence, from equation (5.14), the kth symbol can be decoded as, 

GdÇ = ÈÉÅ|�Ê|�!|��|�  for h = 1,2.                          (5.15) 

5.6.3 Alamouti STBC for 2x2 System 

Figure 5.14 represent two transmitters and two receivers (2x2) 

system.  Let ?Of  denotes the channel impulse response from jth transmitter 

to i
th receiver.  Here also, the data is encoded as in Table 5.2 and the 
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channel parameters are assumed to remain constant during the two time 

slots, similar to the case of a 2x1 system. 

 

 

 

 

 

 

 

Fig. 5.14 2x2 System 

The symbols received during first time slot by the two receivers, ¦   

and ¦ (, can be represented in the matrix form as 

p¦  ¦ (s = Ã?  ? (?( ?((Ä pG G(s + p�  � (s.                             (5.16) 

The symbols received during the second time slot by the two 

receivers, ¦(  and ¦((, takes the matrix form, 

p¦( ¦((s = Ã?  ? (?( ?((Ä Ã−G(∗G ∗ Ä + p�( �((s.                             (5.17) 

Combining (5.16) and (5.17), 

Ë¦  ¦ (¦( ∗¦((∗ Ì = Ë?  ?( ? (∗?((∗
? (?((−?  ∗−?( ∗ Ì pG G(s + Ë�  � (�( ∗�((∗ Ì,                       (5.18) 

where the channel matrix, W = Ë?  ?( ? (∗?((∗
? (?((−?  ∗−?( ∗ Ì. 

Multiplying both the sides of equation (5.18) by the conjugate 

transpose of the channel matrix yields the result: 

h12 
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Transmitter 1 

Transmitter 2 

Receiver 1 

h11 

h22 

Channels 

h21 
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Ã?  ∗ ?( ∗? (∗ ?((∗     ? ( ?((−?  −?( Ä Ë¦  ¦ (¦( ∗¦((∗ Ì 

= Ã?  ∗ ?( ∗? (∗ ?((∗     ? ( ?((−?  −?( Ä Ë?  ?( ? (∗?((∗
? (?((−?  ∗−?( ∗ Ì pG G(s 

+ Ã?  ∗ ?( ∗? (∗ ?((∗     ? ( ?((−?  −?( Ä Ë�  � (�( ∗�((∗ Ì 

= �|?  |( + |? (|( + |?( |( + |?((|(� pG G(s 
+ Ã?  ∗ �  + ?( ∗ � ( + ? (�( ∗ + ?((�((∗? (∗ �  + ?((∗ � ( − ?  �( ∗ − ?( �((∗ Ä.          (5.19) 

In line with the 2x1 STBC system, equation (5.19) can be 

represented as:  

Ã¦ Å¦(ÅÄ = �|?  |( + |? (|( + |?( |( + |?((|(� pG G(s + Ã8 Æ8(Æ Ä,          (5.20) 

where ¦ Å and ¦(Å represent the modified receiver versions of the transmitted 

symbols.  Similar to the 2x1 system, the kth symbol can be decoded from 

equation (5.20) as: 

GdÇ = ÈÉÅ|�ÊÊ|�!|�Ê�|�!|��Ê|�!|���|�  for h = 1,2.              (5.21) 

It can be seen from equations (5.15) and (5.21) that Alamouti STBC 

offers a simple linear decoding mechanism, thus making the receiver 

structure less complex. 

5.7 Spatial Multiplexing 

Spatial Multiplexing is a method of MIMO in which original data 

stream is divided into independent data streams and are transmitted using 
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multiple radiators.  The transmitted signals get mixed up in the channel and 

have to be detected in the receiver.  Spatial Multiplexing uses multiple 

transmitters as well as receivers.   

Given fixed bandwidth and transmission power, there is a trade-off 

between the data rate and error rate.  Spatial Multiplexing is a way by 

which data rate can be improved.  This technique uses multiple radiators at 

the transmitter and receiver to offer higher channel capacity.  A high rate 

bit stream is divided into independent bit streams which are transmitted 

using multiple radiators.  These signals get mixed in the channel as they use 

same frequency spectrum.  At the receiver individual bit streams are 

separated, estimated and merged together to yield the original signal.  The 

number of receive elements must be equal to or greater than the number of 

transmit elements, ie. N ≥ M required, where N is the number of receive 

elements and M is the number of transmit elements.  The receiver must 

have proper channel knowledge so as to apply equalization techniques, to 

reconstruct the data.  Figure 5.15 shows a general MIMO system. 

 

 

 

Fig. 5.15 MIMO System 

5.8 Dictionary based Sparse Channel Estimation Technique  

When a signal is sparse in a known transform domain, compressive 

sensing (CS) helps to reconstruct it with much fewer samples than that 

required by the dimensions of the domain.  Compressive sensing [31] has 

numerous applications like coding, image compression, source separation, 
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etc., of which sparse channel estimation in the field of communications is 

of significant importance.  

A signal x(n) of dimension N x 1 can be compressed to y of 

dimension M x 1 as seen in section 3.1.  The signal x can be reconstructed 

from y, which appears to be an incomplete set of observations by taking 

½ ≥ � log�` �¿ �,                              (5.22)                                                             

measurements [31]. 

Channel Estimation involves transmitting known signals (pilots) 

through an unknown channel H, and utilizing the received pilots to estimate 

the unknown channel with sufficient accuracy.  Then, the estimated channel WX is used to decode the received signals that are unknown to the receiver.  

Compressive sensing based channel estimation is used to estimate channels 

whose impulse responses are sparse or at least approximately sparse.   

Let T denote the OFDM symbol duration then, the subcarrier 

spacing is 
 Í and the k

th subcarrier is at frequency �d = �Â + dÍ, 

k=− k(,…, k( − 1, where �Â is the carrier frequency and K is the number of 

subcarriers used.  The multipath channel can be modeled as, 

? = ∑ AB C�D − DB�EBF ,                                (5.23)                                                          

where N is the number of multipaths, DB is the nth path delay and AB is the 

amplitude associated with n
th path.  Let the transmitted set of pilots be 

represented as  

4U = ³L , L(, … , LU´,                                     (5.24)                                                         

where P is the number of pilots used for channel estimation. 

The signals gets distorted by the channel and added upon by the 

noise, which can be represented as 
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¦��� = ����⨂?��� + ����,                               (5.25)                                                  

where s(n) is the transmitted signal, a(n) is the noise, h(n) is the channel 

impulse response and y(n) is the received signal.  Equation (5.25) can be 

represented in frequency domain as 

V = 4W + Î,                                         (5.26)                                                                         

where Y, S, H and Z are frequency domain counterparts of y(n), s(n), h(n) 

and a(n) respectively, which can also be written as 

V = Á����4�MA + Î,                              (5.27)                                                         

where F is the DFT transformation matrix and A of size N x 1 is the channel 

parameter to be estimated.  

The input-output relation can be expressed from equation (5.27) as, 

Ï¦ ⋮¦EÑ = Ë� 0 0 00 �( 0 00 0 ⋱ 00 0 0 �E
Ì

ÓÔÔ
ÔÕ;1f(qÉÊÖÊ× ;1f(qÉÊÖ�× … ;1f(qÉÊÖ���×;1f(qÉ�ÖÊ× ;1f(qÉ�Ö�× … ;1f(qÉ�Ö���×⋮ ⋮ … ⋮;1f(qÉØÖÊ× ;1f(qÉØÖ�× … ;1f(qÉØÖ���× ÙÚÚ

ÚÛ ÏA ⋮AEÑ + Ï= ⋮=EÑ, (5.28)                                       

where the set of subcarriers are ³h , h(, … , hk´.  The delays are 

D ∈  ³D , D(, D2, … … . D¹ºI´,                                  (5.29)                                                    

with D = 0 and D¹ºI = �Ý, where D¹ºI is the maximum channel delay 

spread and �Ý is the guard interval. 

Equation (5.28) can be written using equation (5.29) as 

V = Á����4�Þξ + Î,                             (5.30)                                                                                                 

where Þ is the dictionary matrix [145].        

Since underwater channels are usually sparse, the impulse responses 

can be estimated by using a limited number of pilots via CS-based 

algorithms.  For P pilots, equation (5.30) can be written as 
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Ï¦ ⋮¦UÑ = ÓÔ
ÔÕ�àÊ 0 0 00 �à� 0 00 0 ⋱ 00 0 0 �à\ÙÚ

ÚÛ
ÓÔ
ÔÔ
Õ1 ;1f(qáÊÖâ�× … ;1f(qáÊÖâá×1 ;1f(qá�Öâ�× … ;1f(qá�Öâá×⋮ ⋮ … ⋮1 ;1f(qá\Öâ�× … ;1f(qá\Öâá× ÙÚ

ÚÚ
Û ÏA ⋮AEÑ + Ï= ⋮=UÑ,    (5.31)                                                                             

where 0, D(̅, D2̅, … … . Dà̅ are the path delays. 

Equation (5.31) can be represented as  

VU = ¸ξ + Î,                                           (5.32)                                                         

where j = Á����4àO�ä���ÞàO�ä�� is of size P x N. 

l1 minimization for estimation of Ä can be written as,  

minimize ‖¸A −  VU‖( + å‖A‖ ,                             (5.33)                                         

where λ ˃ 0 is the regularization or tuning parameter which controls the 

solution sparsity. 

Convex optimization using CVX has been utilized for estimating 

the channel coefficients.  CVX is a MATLAB based modeling system for 

handling complex convex optimization problems.  It turns MATLAB into a 

modeling language, allowing constraints and objectives to be specified 

using standard expression syntax.  Upon estimating the channel coefficients Ä using equation (5.33), the channel coefficients at all subcarriers are 

reconstructed from the dictionary as 

WX = ÞÄ.                                      (5.34)                                                                

The equalization is performed to estimate the signal at the receiver 

as  

«µ��� = [���¶X���,                                       (5.35)                                                            

where Y(f) is the received signal in the frequency domain.   
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5.8.1 Algorithm for Sparse Channel Estimation 

During transmission, the data stream is divided into parallel bit 

streams, followed by modulation.  Pilots are inserted at regular intervals 

and the IFFT of the modulated signal is computed followed by guard band 

insertion for eliminating ISI.  The signal gets corrupted by the ambient 

noise as well as the channel.  At the receiver, the guard band is removed 

and the modulated signal is extracted followed by dictionary generation 

from the received pilots.  Depending on the received pilots VU, Ä and hence WX, are estimated by the dictionary based sparse channel estimation.  

Equalization is performed using the computed channel impulse response 

and the resultant signal is demodulated to reconstruct the binary data 

followed by bit-error-rate computation.  The algorithmic procedure for the 

dictionary based sparse channel estimation at the receiver is given in 

ALGORITHM 5.1.   

5.9 Synchronization Issues in Practical OFDM Scenario 

OFDM carries data on orthogonal sub carriers and the orthogonality 

of the sub carriers has to be maintained in order to get all the advantages of 

OFDM.  If the orthogonality is not properly maintained, the performance of 

OFDM will be degraded due to the phenomena of inter symbol interference 

(ISI) and inter carrier interference (ICI).  Due to the unpredictable channel 

effects, the receiver in OFDM may sample a new frame at the incorrect 

time instant, which leads to Symbol Time Offset (STO).  In practical 

situations, a frequency mismatch between local oscillators at the transmitter 

and receiver or Doppler frequency shifts may lead to Carrier Frequency 

Offset (CFO) problem in OFDM, as well.  In underwater, Doppler shift is 

considerably a larger fraction of signal frequency than for radar due to 

higher ratio of vehicle speed to wave propagation speed [11].  Frequency 
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offset destroys orthogonality among the subcarriers leading to inter carrier 

interference (ICI).  Hence, estimation of STO and CFO are very critical in 

practical scenarios [93, 96, 97]. 

ALGORITHM 5.1: Dictionary Based Sparse Channel 

Estimation Procedure 

Begin 

Cyclic Prefix Removal 

Computation of FFT of received signals (Y�f�) 

 Pilot extraction �Yè� 

 Dictionary building (γ) 

 Convex optimization using CVX and ξ̈ estimation  

 min ‖Aξ −  Yè‖( + λ‖ξ‖  

 Channel Construction from Dictionary HX = γξ̈ 

 Equalization (
í�î�ïX�î�) 

 Demodulation and BER computation 

End 

For taking the N-point FFT at the receiver the exact samples of the 

transmitted signal for OFDM symbol duration is an essential requirement.  

Thus, timing synchronization must be performed at the receiver to detect 

the beginning of the each OFDM symbol.  The local oscillators at the 

transmitter and receiver perform up/down conversion of the baseband 

signal.  Any Doppler frequency shift or a mismatch of frequency between 

the transmitter and receiver local oscillators will lead to ICI.  Thus, 

frequency synchronization must also be performed at the receiver for 

minimizing the effects of ICI. 

5.9.1 STO Estimation 

Symbol Time Offset (STO) is the difference between the actual 

symbol start position and the expected symbol start position at the OFDM 

receiver.  Let us consider an OFDM symbol with a cyclic prefix of NG 
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samples over TG duration and an effective data of Nsub samples over Tsub 

duration.  The cyclic prefix and the corresponding data part share 

similarities since cyclic prefix is a replica of the last part of the data in a 

symbol and this similarity can be used for STO estimation.  Two sliding 

windows, W1 and W2 are used to find the similarities between the samples 

in these windows [93], as shown in Figure 5.16.  The point of maximum 

similarity between the values in the two windows can be found by 

correlation method or difference method. Thus, the beginning of the 

symbol can be identified perfectly without any additional transmission 

overhead with the help of STO estimation by correlation method or STO 

estimation by difference method.   

Let ¦� be the l
th symbol received and N, the distance between 

corresponding samples in cyclic prefix and the data part.  The STO C̈ can 

be estimated by finding the point of maximum correlation between the two 

blocks in windows, W1 and W2 as 

C̈ = ��G³∑ |¦�9� + �>¦�∗9� + ` + �>|O ´.                    (5.36) 

STO can also be estimated by finding the point where the squared 

difference between the two blocks in windows, W1 and W2, is minimum. C̈ = ���³∑ �|¦�9� + �>| − |¦�∗9� + ` + �>|�(O ´.            (5.37) 

 

 

Fig. 5.16 STO Estimation 
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5.9.2 CFO Estimation 

The Carrier Frequency Offset (CFO) is caused by the frequency 

mismatch between local oscillators at the transmitter and receiver or by the 

Doppler frequency shift, which is due to the relative motion between the 

transmitter and the receiver in mobile environments.  The normalized CFO, : is defined as a ratio of the frequency offset, �ä to the subcarrier spacing 

Δf. 

i.e., : = �ð∆�.                                  (5.38) 

The received signal in an OFDM receiver is, 

V�h� = W�h�«�h� + Î�h�,                         (5.39) 

where V�h�, «�h�, W�h� and Î�h� are frequency domain counterparts of 

the received signal, the transmitted signal, the channel impulse response 

and the noise, respectively.  The received base band signal, ¦��� = ±²M� ³V�h�´ = ±²M� ³W�h�«�h� + Î�h�´ 
=  E ∑ W�h�«�h�;f(òóô E¿E1 dF% + 8���.                (5.40) 

When the effect of : is incorporated, the base band signal becomes, 

¦��� =  E ∑ W�h�«�h�;f(ò�ó!õ�ô E¿E1 dF% + 8���.           (5.41) 

Taking FFT of the received samples, the received symbol across the 

l
th subcarrier is, 

V��� = ö ¦���;1f(òô÷ E¿
B  

    =   E ∑ ∑ W�h�«�h�;f(ò�ó!õ1÷�ô E¿E1 dF%B + ∑ 8���;1f(ò÷ô E¿B .    (5.42) 

    Splitting the R.H.S. of equation (5.42) for h = � (Desired part) and h ≠ � (Interference part) 
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V��� =  E W���«��� ∑ ;f(òôõ E¿B +  E ∑ ∑ W�h�«�h�;f(ò�ó!õ1÷�ô E¿E1 dF%dù�B +Î���.      (5.43) 

Equation (5.43) consists of three parts, the first part is the desired 

signal, the second part is the ICI due to the presence of : and the third part 

is the noise.  Solving the summation as a sum of Geometric Progression, 

equation (5.43) can be written as, 

V��� = 1̀ W���«��� sin�ü:�sin�ü:¿̀ � ;fqý�E1 � E¿ + 

 E ∑ W�h�«�h� þ���q�ó!õ1÷��þ��H­�ó�õ�÷�
� KE1 dF%dù� ;fq�ó!õ1÷��E1 � E¿ + Î���.     (5.44) 

Hence, 

  V��� =  E W���«��� þ���qý�þ���qý E¿ � ;fqý�E1 � E¿ + ±*± + `���;.       (5.45) 

Thus, any frequency offset destroys the orthogonality of the OFDM 

subcarriers and results in ICI as shown in Figure 5.17, which necessitates 

the estimation of CFO. 

A CFO of : results in a phase shift of 2ü�:¿̀ .  Let the lth symbol 

be G���� and assuming that it gets affected by a CFO of : yields ¦���� as, 

¦���� = G����;f(òôõ E¿ .                            (5.46) 

Replacing n by n+N, 

¦��� + `� = G��� + `�;f(ò�ô!��õ E¿ .                   (5.47) 

The cyclic prefix and the tail end of the data part, which are spaced 

N samples apart, are same, i.e., G��� + `� = G����. 

Hence,  ¦��� + `� = G����;f(òôõ E¿ ;f(òõ.                (5.48) 
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Fig. 5.17 Illustration of ICI due to frequency offset 

Thus, the phase difference between cyclic prefix and the 

corresponding tail end of an OFDM symbol (spaced N samples apart) 

caused by CFO : is, 2ü`:¿̀ = 2ü:.  Thus, the CFO can be found from 

the phase angle of the product of cyclic prefix and the corresponding tail 

end of an OFDM symbol [94-95].  The estimated CFO, :̂ is given by, 

:̂ =  (q ����∑ ¦�∗9�>¦�9� + `>E�BF 	.                        (5.49) 

Pilots, which are inserted into an OFDM symbol can be used for 

tracking the carrier frequency.  To facilitate this, the receiver transforms the 

symbols, ¦�9�> and ¦�!
9�>, into frequency domain V�9h> and V�!
9h> via 

FFT, from which pilot tones and CFO are estimated, using [101] 

:̂ =  (qÍ��� ��G�a∑ V�!
�L�i��V�∗�L�i��«�!
∗ �L�i��«��L�i��Y1 fF% a	.    (5.50)                                  

where ��r¾ denotes the valid symbol duration, L the number of pilot tones, L�i�, the location of the jth pilot tone, «��L�i�� shows the pilot tone located 
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at L�i� at the lth symbol period, V�!
 and V� are the received symbols and «�!
 and «� are the respective transmitted symbols. 

5.10 Summary 

The characteristic property of the OFDM is orthogonality among the 

subcarriers, which are obtained by splitting the band into closely spaced 

orthogonal subcarriers.  This property ensures the reduction in Inter Carrier 

Interference (ICI).  Channel coding schemes like block codes and 

convolutional codes were briefly studied. The technique of interleaving and 

its advantages were also discussed.  Different diversity techniques as well 

as the most commonly used Alamouti space-time diversity technique were 

also investigated.  Estimation of channel by utilizing the sparsity of the 

channel has also been outlined.  This chapter also presented the 

methodology of various STO and CFO estimation techniques. 
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  CHAPTER 6

RESULTS AND DISCUSSIONS 

The performance of the proposed matrix padding method is compared 

with l1_ls, l1-magic, YALL1, OMP, CoSaMP, etc. and the results of 

comparison in terms of signal-to-noise ratio, correlation and mean squared 

error, have been investigated.  OFDM has been simulated using QAM and 

PSK based modulation techniques for undersea acoustic links.  The 

performances of various orders of QAM based OFDM systems for 

undersea acoustic communications have been studied and the bit-error-

rates under various Signal to Noise Ratio conditions have also been 

compared for AWGN and Underwater Channels for 16-QAM based 

OFDM.  The bit-error-rate performances of normal as well as coded 

OFDM with and without interleaving schemes have been simulated for 

various signal-to-noise ratio levels for both convolutional and BCH codes.  

The performance of the proposed coded STBC system has been compared 

with 2x1 and 2x2 STBC systems.  The performances of various STO as 

well as CFO estimation methods have been compared and it has been 

observed that STO estimation using difference method and CFO 

estimation using pilot based method guarantee acceptable performances.  

The undersea channel has been estimated using dictionary based sparse 

channel estimation technique for various ranges using different number of 

pilots and it has been found that by using a minimum number of pilots, 

acceptable BER performance can be achieved. 
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6.1 Background 

A method for sparse signal reconstruction using matrix padding and 

LMS based adaptation had been presented in section 4.2.  The sounds 

generated by 3-blade engine, music, speech, etc. (available in the databank 

of research lab) have been used to validate and compare the performance of 

the proposed technique with the other existing compressive sensing 

algorithms in ideal and noisy environments.  The results of this method 

have been compared with some of the convex optimization methods as well 

as greedy methods, under section 6.2.   

Ocean is a dynamic and complex environment, which demands 

advanced signal processing for optimum undersea acoustic communication.  

Multicarrier modulation in the form of OFDM facilitates high-rate 

transmission over complex channels.  The results of comparison of 

performances of an acoustic channel with an AWGN channel for 16-QAM 

based OFDM are included in this chapter.  These results motivated the 

investigation of performances of coded and interleaved versions of OFDM 

over underwater acoustic channels.  The comparison of performances of 

convolutional coded and BCH (7,4) coded OFDM systems with and 

without interleaving for BPSK and DPSK based OFDM systems is also 

included in this chapter.  The performances of BCH (15, 11) and BCH (15, 

7) coded OFDM with and without interleaving have also been compared.   

The higher reliability offered by STBC diversity technique created a 

curiosity for studying its performance for undersea acoustic links.  The 

simulation results of normal STBC and the proposed coded STBC system 

for an undersea acoustic link are also studied.  The importance of 

synchronization in OFDM motivated the investigation of various timing 

and frequency synchronization techniques.  The results of STO and CFO 
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estimation techniques as well as dictionary based sparse channel estimation 

for undersea acoustic links have also been presented.   

6.2 Performance of Matrix Padding Technique 

The algorithms for compression (Algorithm 4.1) and reconstruction 

(Algorithm 4.2) using the matrix padding method has been given in Section 

4.2.1.  The proposed matrix padding method for compressive sensing has 

been simulated under noiseless and noisy environments and the 

performance of this approach has been vis-a-vis compared with a few of the 

widely used compressive sensing recovery methods like l1-magic, l1_ls, 

YALL1, OMP and CoSaMP discussed in section 3.2.  Comparison of the 

performances of the various algorithms has been performed in terms of 

signal-to-noise ratio (SNR), correlation and mean squared error (MSE).  

In the simulation studies, the number of samples per frame is 

chosen to be 2048, which resulted in 22 frames for the test signal and the 

tapped delay line structure has been used for the LMS adaptation with 32 

weights, obtained on the basis of the well-established trial and error 

method.  

Let x be the original signal and G′, the recovered signal. The signal-

to-noise ratio is computed using 

SNR = 10 log ∑��∑��1�¤��.                        (6.1)                          

The correlation is computed as 

R��¤ =  ∑ � �¤
�∑ ��  ∑�¤�.                            (6.2)                           

The mean squared error is computed using 

MSE =  
�

∑�x − x′�(.                          (6.3)      
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6.2.1 Performance Comparison under Noiseless Scenario 

Figures 6.1, 6.2 and 6.3 show the results of comparison of the 

performances of the proposed matrix padding method with the widely used 

compressive sensing recovery algorithms at 50% compression.  The plots 

show the values of signal-to-noise ratio, correlation and mean squared error 

for the sparse recovery algorithms under consideration. 

From figure 6.1, it can be seen that in the noiseless case, the 

proposed matrix padding method offers an SNR value of around 30dB and 

other convex optimization techniques offer an SNR above 29dB, whereas 

the greedy methods offer an SNR of nearly 27dB. 

 
Fig. 6.1 Comparison of Signal-to-noise ratio Performance of the proposed matrix padding 

method with the other compressive sensing methods 
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Fig. 6.2 Comparison of the Correlation Performance of the proposed matrix padding 

method with the other compressive sensing methods 

From figure 6.2, it is clear that the proposed matrix padding method 

as well as the other convex optimization techniques give a correlation 

factor above 0.988, whereas the greedy methods offer a correlation factor 

close to 0.96. Similarly, from figure 6.3, it is clear that the proposed matrix 

padding method as well as other convex optimization techniques offer an 

MSE value close to 5x10-4, whereas the MSE value of greedy methods are 

as high as 1.8x10-3. 

These plots reveal that the l1_ls, l1-magic, YALL1, CVX and the 

proposed method give comparable and good performance under noiseless 

scenarios, whereas the signal-to-noise ratio, correlation and mean squared 

error values of OMP and CoSaMP show that these greedy methods do not 

guarantee adequate performance. This improvement in performance of the 

proposed matrix madding method is due to the robustness offered by LMS 

adaptation. 
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Fig. 6.3 Comparison of the Mean Squared Error Performance of the proposed matrix 

padding method with the other compressive sensing methods 

6.2.2 Performance Comparison under Gaussian Noise  

Figures 6.4, 6.5 and 6.6 show the comparison of the performances 

of the proposed matrix padding method with the widely used compressive 

sensing recovery methods, l1-magic, l1_ls, YALL1, CVX, OMP and 

CoSaMP, under noisy environment.  The plots show the variations of 

output signal-to-noise ratio, correlation and mean squared error with 

respect to the SNR variation at the input. 

 It can be seen from figure 6.4 that YALL1 and l1-magic offer 

similar SNR performances.  OMP and CoSaMP offer better performances 

compared to l1_ls, which is better than YALL1 and l1-magic. The proposed 

matrix padding method as well as CVX offers good performances even at 

low SNR input values. 
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Fig. 6.4 Comparison of Signal-to-noise ratio Performance of the proposed matrix padding 
method with the other compressive sensing methods 

As shown in figure 6.5, the proposed matrix padding method as well 

as CVX offer reasonable correlation performances even at low SNR inputs, 

while others do not guarantee good performance at low SNR inputs.  

The simulation studies thus demonstrate the feasibility of improving 

sparse recovery using the proposed matrix padding technique in both ideal 

and noisy environments.  The mean square error performance of this 

method is found to be negligibly small when compared to the other 

compressive sensing algorithms as shown in figure 6.6.  Thus, the proposed 

matrix padding sparse recovery algorithm can be effectively used in 

practical communication scenarios. 
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Fig. 6.5 Comparison of the Correlation Performance of the proposed matrix padding 

method with the other compressive sensing methods 

At high input signal-to-noise ratios, all the methods show 

comparable performances.  But, as the input signal-to-noise ratio decreases 

the performance of the proposed method is much better than that of the rest 

of the methods.  CVX also performs good even at low input signal-to-noise 

ratios.  OMP and CoSaMP also perform better compared to l1-magic, l1_ls 

and YALL1 as the SNR at the input decreases.  Thus, the noise 

immunization of the proposed matrix padding method is better compared to 

the other recovery algorithms considered. 

0 5 10 15 20 25 30
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

SNR Input (dB)

C
o
rr

e
la

ti
o
n

 

 

l
1
-magic

l1-ls

OMP

CoSaMP

Yall1

Proposed method

CVX



Sparse Signal Processing for Undersea Acoustic Links 

 131

 
Fig. 6.6 Comparison of the Mean Squared Error Performance the proposed matrix padding 

method with the other compressive sensing methods 

6.3 BER Performance of OFDM for Undersea Acoustic 

Links 

The system model of OFDM has been given in section 4.4.  OFDM 

has been simulated using a data stream comprising of 2048 bits per OFDM 

symbol using 16-QAM and a comparison of the bit-error-rates under various 

Signal to Noise Ratio conditions have also been simulated for AWGN and 

Underwater Channels and is plotted as in Figure 6.7.  As expected, the bit-

error-rate of AWGN channel is smaller than that of underwater acoustic 

channel for all SNR values.   

The 16-PSK based OFDM for an undersea channel has also been 

simulated.   Figures  6.8 and 6.9  show  the  constellation  diagram  for   the  
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Fig. 6.7 Comparison of bit-error-rate performances of the AWGN channel with 

an Underwater Acoustic channel 

 

 

 
Fig. 6.8 Constellation Diagram of Received 16-QAM Symbols 
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received 16-QAM and 16-PSK  symbols  respectively.  From the 

simulation studies, it has been observed that 16-QAM based OFDM offers 

lower bit-error-rates than that for the 16-PSK based OFDM, due to larger 

distance between the closest points in the constellation diagram. Figure 

6.10 shows the variation of BER  for  16-QAM  and  16-PSK  based  

OFDM  with  respect  to  the SNR variations  whereas  figure 6.11  shows 

the plot of a few of original and recovered data for 16-QAM based OFDM 

through the underwater channel. 

 
Fig. 6.9 Constellation Diagram of Received 16-PSK Symbols 

The order of QAM has also been varied for QAM based OFDM 

systems, to study the trend of bit-error-rate performances.  As the number 

of points in the constellation plot of QAM increases, the bit-error-rate 

increases, due to decrease in the distance between the points in the 

constellation plot.  Figure 6.12 show the variation of BER for 4-QAM, 16-

QAM and 256-QAM based OFDM systems.   Among the three schemes 

compared, it was found that 4-QAM offers lower bit-error-rates. 
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Fig. 6.10 Comparison of bit-error-rate performances of 16-QAM and 16-PSK based 
OFDMs for an Undersea Acoustic channel 

 

Fig. 6.11 Original and recovered data stream for 16-QAM based OFDM through 
underwater channel 
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Fig. 6.12 Comparison of bit-error-rate performances of 4-QAM, 16-QAM and 256-QAM 
based OFDMs for an Undersea Acoustic channel 

 

Figure 6.13 shows a comparison of bit-error-rate performances of 

BPSK, QPSK and 16-PSK based OFDM systems for an Undersea Acoustic 

channel.  It has been observed for PSK also, that as the order decreases, the 

BER performance improves.  As the number of points in the constellation 

plot decreases, the bit-error-rate decreases, due to increase in the distance 

between the points in the constellation plot. The simulation parameters for 

PSK based OFDM are furnished in Table 6.1.  The center frequency of the 

OFDM band is taken to be 10kHz and the bandwidth is also taken to be 

10kHz. 
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Fig. 6.13 Comparison of bit-error-rate performances for BPSK, DPSK, QPSK and 16-PSK 
based OFDMs for an Undersea Acoustic channel 

Table 6.1 Simulation Parameters for PSK based OFDM 

        Mapping Scheme  

 

Parameter 
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Number of subcarriers: N 64 32 16 
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BW/N 
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DPSK mapping with convolutional as well as BCH (7, 4) coded schemes 

with and without interleaving.  The center frequency of the OFDM band is 

taken to be 10kHz.   

 

6.4.1 Simulation Parameters 

In this section, BPSK and DPSK based OFDM has been simulated 

for an ocean channel. The parameters used for comparing the performances 

by simulating the normal, convolutional coded as well as BCH coded 

OFDM systems are furnished in Table 6.2.  Simulation has been performed 

using a data stream comprising of 64 bits per OFDM symbol, which gets 

converted to 128 bits after convolutional coding and 112 bits after BCH 

(7,4) encoding leading to a requirement of 128 and 112 subcarriers for 

convolutional coded and BCH coded OFDM systems respectively. It has 

been assumed that the receiver has complete channel state information. In 

addition, perfect frequency and phase synchronization are assumed. 

Table 6.2 Simulation Parameters for Coded OFDM 

Parameter Normal 

OFDM 

Convolution

al Coded 

OFDM 

BCH (7,4) 

Coded 

OFDM 

No. of transmitted bits 109 

Mapping Scheme BPSK, DPSK 

Carrier frequency 10kHz 

Signal frequency band: BW 10kHz 

Number of subcarriers: N 64 128 112 

Subcarrier bandwidth: Δf = 
BW/N 

156.25Hz 78.125Hz 89.285Hz 

Valid symbol duration: 6.4ms 12.8ms 11.2ms 
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6.4.2 Simulation Results 

 Figure 6.14 shows the BER performances of BPSK based normal 

OFDM, convolutional coded OFDM as well as BCH coded OFDM with 

and without interleaving.  It can be observed that both the coded OFDM 

schemes with interleaving perform better than the normal OFDM.  The 

error rate performance of convolutional coded OFDM is higher compared 

to BCH coded OFDM up to a crossover SNR value; beyond which the   

error rate of the convolutional coded OFDM with interleaving decreases.  

BCH coded OFDM with interleaving offers lower BER compared to 

normal OFDM at all SNR values.  It has also been observed that coded 

schemes with interleaving perform much better than their counterparts 

without  interleaving.  As  a  result  of  interleaving  and  deinterleaving, the  

 

Fig. 6.14 Comparison of bit-error-rate performances of normal OFDM as well as 
Convolutional Coded and BCH coded OFDMs, with and without interleaving for an 

undersea acoustic channel using BPSK modulation 
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error bursts get spread out in time and hence, the process  of  interleaving 

improves  the  error  rate performance of the coded  OFDM systems.  Thus, 

it can be concluded that both the convolutional and BCH coded OFDM 

systems with interleaving offers commendable improvement in 

performances.  The bit-error-rates for various SNR values for BPSK based 

OFDM systems are tabulated in Table 6.3. 

The differential PSK system is expected to give a performance 

which is nearly as good as coherent systems, but with less complex 

implementation.  Differential phase shift keying (DPSK), which is a 

differentially encoded BPSK signal, is often used instead of BPSK, in 

practice, since DPSK receiver does not require a carrier synchronization 

circuit.  In DPSK, the information is represented with relative phase, rather 

than the actual phase of the carrier. 

Table 6.3 Bit-error-rates for various SNR for BPSK based OFDM system 

SNR 

(dB) 

Normal 

OFDM 

with 

BPSK 

BCH 

coded 

OFDM 

Convolutio

nal coded 

OFDM 

BCH coded 

OFDM 

Convolutional 

coded OFDM 

(without interleaving) (interleaved) 

0 0.1374 0.1243 0.2530 0.1081 0.2911 

2 0.1032 0.0936 0.1945 0.0627 0.1507 

4 0.0773 0.0710 0.1520 0.0333 0.0571 

6 0.0579 0.0534 0.1168 0.0161 0.0181 

8 0.0430 0.0394 0.0843 0.0067 0.0051 

10 0.0312 0.0280 0.0543 0.0022 0.0011 

12 0.0219 0.0184 0.0302 0.47592 x 10-3 0.16563 x 10-3 

14 0.0145 0.0104 0.0143 0.5509 x 10-4 0.1143 x 10-4 

16 0.0089 0.0046 0.0056 0.2340 x 10-5 0.33 x 10-6 

18 0.0048 0.0015 0.0017 4 x 10-8 1 x 10-8 
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The performances of coded OFDM techniques with and without 

interleaving have also been simulated for DPSK based OFDM systems and 

the results of this simulation are depicted in Figure 6.15.  DPSK based 

OFDM systems are also found to perform satisfactorily when the data is 

subjected to coding and interleaving.  Thus, in addition to improving 

transmission security, coding combined with interleaving offer significant 

improvement in bit-error-rate performances.  The bit-error-rates for various 

SNR values for DPSK based OFDM systems are tabulated in Table 6.4. 

 

Fig. 6.15 Comparison of bit-error-rate performances of normal OFDM as well as 
Convolutional Coded and BCH Coded OFDMs, with and without interleaving for an 

undersea acoustic channel using DPSK modulation 
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based systems, for SNR above 8dB, coded OFDM with interleaving shows 
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when compared to their counterparts without interleaving.  Thus, coding 

when suitably combined with interleaving, improves the performance of the 

system significantly.  Moreover, as can be seen from the Tables, the bit-

error-rate performance of BPSK based interleaved convolutional coded 

OFDM is superior when compared to the DPSK based system, since errors 

tend to propagate in the case of a DPSK based system. 

Table 6.4 Bit-error-rates for various SNR for DPSK based OFDM system 

SNR 

(dB) 

Normal 

OFDM 

with 

DPSK 

BCH 

coded 

OFDM 

Convolutional 

coded OFDM 

BCH coded 

OFDM 

Convolutional 

coded OFDM 

(without interleaving) (interleaved) 

0 0.2304 0.2345 0.3569 0.2393 0.4509 

2 0.1751 0.1762 0.2727 0.1606 0.3801 

4 0.1314 0.1323 0.2070 0.0967 0.2558 

6 0.0996 0.1006 0.1638 0.0539 0.1309 

8 0.0758 0.0768 0.1331 0.0270 0.0522 

10 0.0571 0.0579 0.1077 0.0111 0.0162 

12 0.0421 0.0430 0.0820 0.0032 0.0037 

14 0.0298 0.0307 0.0545 0.5237 x 10-3 0.49867 x 10-3 

16 0.0198 0.0203 0.0302 0.3575 x 10-4 0.3106 x 10-4 

18 0.0118 0.0115 0.0136 4.9 x 10-7 6.8 x 10-7 

6.4.3 Performance Comparison of BCH (15, 11) and (15, 7) Coded 

OFDM for Undersea Acoustic Links 

Simulation studies have also been carried out for the BPSK based BCH 

coded OFDM for an undersea acoustic link using BCH (15, 11) and (15, 7) 

codes, by pumping out 109 bits under various SNR conditions.  BCH (15, 

11) codes are single error correcting, whereas BCH (15, 7) codes are 



Chapter 6 Results and Discussions 

 142 

double error correcting ones.  Table 6.5 furnishes the simulation parameters 

used for the BPSK based normal as well as BCH Coded OFDMs. 

Table 6.5 Simulation Parameters for BCH Coded OFDM 

Parameters Normal OFDM 

 

BCH Coded OFDM 

(15, 11) (15, 7) 

No. of transmitted bits 109 

Mapping Scheme BPSK 

Carrier frequency 10kHz 

Signal frequency band: BW  10kHz 

Number of subcarriers: N  308 420 660 

Subcarrier bandwidth: Δf = BW/N 32.467Hz 23.8Hz 15.15Hz 

Valid symbol duration: 30.8ms 42ms 66ms 

 
Fig. 6.16 Comparison of bit-error-rate performance of normal OFDM as well as  

BCH (15, 11) coded OFDM with and without interleaving 

Figure 6.16 shows the BER performances of a BPSK based normal 

OFDM as well as BCH (15, 11) coded OFDMs, with and without 
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interleaving.  It can be observed that compared to normal OFDM, BCH 

coded OFDM with interleaving performs significantly better in terms of the 

bit-error-rates.  The plots of BCH coded OFDM with and without 

interleaving reveal that shuffling the orders of the bits at the transmitting 

end and later reordering it at the receiving end, will help in reducing the 

effects of burst errors, thus enhancing the bit-error-rate performances of the 

overall system. 

Figure 6.17 shows the BER performances of a BPSK based normal 

OFDM as well as BCH (15, 7) coded OFDM with and without interleaving.  

This figure also reveals that the BCH coded OFDM with interleaving 

performs significantly better in terms of the bit-error-rates, compared to 

normal OFDM as well as its counterpart without interleaving.  Thus, coding 

combined with interleaving provides improved error rate performances as 

well as higher transmission security. 

 
Fig. 6.17 Comparison of bit-error-rate performances of normal OFDM as well as  

BCH (15, 7) coded OFDM with and without interleaving 
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The BER values at various SNR levels for BPSK based OFDM 

systems have been tabulated in Table 6.6.  In the case of BCH (15, 11) 

codes, for SNR above 15dB, the coded OFDM with interleaving shows 

significant improvement in performance compared to normal OFDM and 

its counterpart without interleaving, whereas in the case of (15, 7) codes, 

for SNR above 9dB, the coded OFDM with interleaving shows 

considerable improvement in performance.  For an SNR of 18dB, BCH (15, 

11) coded OFDM with interleaving has been found to have a BER value of 

0.1527 x 10-3, whereas BCH (15, 7) coded OFDM with interleaving 

exhibits a BER value of 0.6429 x 10-7.  This behavior is expected, as the 

BCH (15, 11) codes are single error correcting codes, whereas (15, 7) codes 

can correct up to 2 errors. 

Table 6.6 BER values for normal OFDM as well as BCH (15, 11) and (15, 7) 
Coded OFDM systems, with and without interleaving, under various SNR 

conditions 

SNR 

(dB) 

Normal 

OFDM 

with 

BPSK 

BCH (15,11) coded OFDM BCH (15,7) coded OFDM 

Without 

Interleaving 

With 

Interleaving 

Without 

Interleaving 

With 

Interleaving 

0 0.1378 0.1397 0.1380 0.1146 0.0999 

2 0.1032 0.1040 0.1041 0.0850 0.0680 

4 0.0774 0.0776 0.0760 0.0672 0.0315 

6 0.0581 0.0597 0.0477 0.0501 0.0125 

8 0.0429 0.0431 0.0265 0.0350 0.0041 

10 0.0312 0.0315 0.015 0.0251 0.0015 

12 0.0220 0.0229 0.0072 0.0170 0.3267 x 10-3 

14 0.0146 0.0142 0.0031 0.0102 0.6005 x 10-4 

16 0.0088 0.0078 0.0072 0.0045 0.2004 x 10-5 

18 0.0048 0.0039 0.1527 x 10-3 0.0016 0.6429 x 10-7 
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6.5 Performance of Space-Time Block Coding for Undersea 

Acoustic Links  

This section gives the results of simulating normal as well as coded 

STBC for undersea acoustic links. 

6.5.1 Simulation Steps 

The script for simulation performs the following 

a. Generate random binary sequence of 1′s and 0′s. 

b. Perform modulation on the sequence 

c. Code the sequence as per the Alamouti Space Time code, include 
the channel effects as in section 5.6.2 and then add noise. 

d. Perform STBC decoding on the received symbols 

e. Perform demodulation  

f. Compute the bit errors 

g. Repeat for multiple values of SNR and plot the simulation results. 

For the proposed coded interleaved STBC, in addition to the above 

steps, encoding as well as interleaving have to be performed before step b 

and deinterleaving and decoding have to be performed after step e.   

6.5.2 Simulation Results 

The block schematic of normal STBC has been given in section 

4.7.1.  The performance of STBC, using 16-QAM and 16-PSK based 2x1 

systems have been analyzed for a Rayleigh fading underwater channel.  

Figure 6.18 shows the BER comparison of a 16-QAM and a 16-PSK based 

2x1 Alamouti STBC system for a shallow water medium range underwater 

acoustic channel.  As seen from the plot, 16-QAM offers lower bit-error-

rate performance compared to 16-PSK system.  The performance of STBC 

for an underwater acoustic channel has also been analyzed for 16-QAM 
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based 2x1 and 2x2 systems.  As seen from the plot, the use of an additional 

receiver offers lower bit-error-rate performances, since a better estimate of 

the transmitted data can be made at the receiving system by combining the 

signals from the two receivers. 

The system model for the proposed coded STBC has already been 

described in section 4.7.2.  The performances of a 2x2 STBC system for 16-

QAM with and without BCH (7,4) coding have been simulated.  The 

channel coding offers improved security and interleaving helps to reduce 

the effects of the burst errors.  Figure 6.19 shows the BER comparison of a 

2x2 STBC system with and without coding using 16-QAM for an 

underwater acoustic channel.  As seen from the plot, coding and 

interleaving offers significant improvement in the error rate performance of 

the system. 

 

Fig. 6.18 Comparison of bit-error-rate performances of 16-QAM and 16-PSK for a 2x1 
case, as well as 2x1 and 2x2 cases, for 16-QAM based system 
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Fig. 6.19 Comparison of bit-error-rate performances of a 2x2 STBC system for 16-QAM 
modulation with and without coding 

Table 6.7 BER values 16-QAM and 16-PSK based STBC systems 

SNR 

(dB) 

16-PSK 

(2x1) 

16-QAM 

(2x1) 

16-QAM 

(2x2) 

Proposed coded 

interleaved STBC 

system 

0 0.3882 0.3186 0.2618 0.2656 

2 0.3611 0.2862 0.2197 0.2166 

4 0.3274 0.2490 0.1707 0.1591 

6 0.2896 0.2054 0.1208 0.0985 

8 0.2480 0.1595 0.0749 0.0469 

10 0.2030 0.1133 0.0404 0.0160 

12 0.1567 0.0745 0.0179 0.0037 

14 0.1122 0.0436 0.0064 6.6797x10-4 

16 0.0733 0.0238 0.0020 8.7891x10-5 

18 0.0440 0.0116 4.834x10-4 2.2461x10-5 

20 0.0239 0.0054 8.9844x10-5 3.9063x10-6 
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The BER values at various SNR levels for 16-PSK and 16-QAM 

based 2x1 STBC systems, 16-QAM based 2x2 STBC system and 16-QAM 

based 2x2 STBC system with coding and interleaving are tabulated in 

Table 6.7.  It can be seen that for SNR above 16dB, 2x2 16-QAM based 

STBC system performs much better compared to 2x1 STBC systems.  It 

can also be seen that for SNR above 12dB, 2x2 STBC system with coding 

and interleaving performs much better compared to all others schemes 

compared.  Thus, the proposed coded STBC system offers improved 

performance in terms of bit-error-rate for the undersea acoustic channel. 

6.6 Effect of channel on BER Performance 

6.6.1 Synchronization 

Symbol time offset occurs when the transmitter and receiver do not 

have a common time reference and hence, the receiver needs to find symbol 

boundaries to avoid inter symbol interference.  Carrier frequency offset 

occurs due to frequency differences between the transmitter and receiver 

oscillators, Doppler shift of mobile channels or oscillator instabilities, 

leading to inter carrier interference.  

The STO estimation methods under consideration are well suited for 

fast-changing channels, because the delay time can be updated on per-

symbol basis.  Table 6.8 lists a comparison of STO estimation by 

correlation and difference methods and it can be seen from this table that 

the difference method outperforms the correlation method for STO 

estimation. 

Figure 6.20 shows a comparison of BER for an undersea acoustic 

channel using BPSK based OFDM modulation for various CFO values.  It 

has been observed that as CFO value increases, the BER performance 
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deteriorates.  Figure 6.21 shows a comparison of CFO estimation using 

cyclic prefix and pilot based methods for a CFO of 0.15 and it has been 

observed that pilot based method gives a better CFO estimation, even 

though it causes additional processing overhead. 

Table 6.8 STO Estimation by correlation and difference methods 

Actual STO -5 -4 -3 -2 -1 0 1 2 3 4 5 

 

STO 

Estimated 

by 

Correlation 

Method 
-4 -4 -3 -2 -1 0 1 2 3 3 5 

Difference 

Method 
-5 -4 -3 -2 -1 0 1 2 3 4 5 

 
Fig. 6.20 Effect of CFO on bit-error-rate under various SNR conditions for BPSK based OFDM in 

an undersea acoustic channel 

6.6.2 Channel Estimation 

Pilots are inserted at specific locations within each OFDM symbol 

for enabling channel estimation.   
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Fig. 6.21 Comparison of CFO Estimation by using Cyclic Prefix and Pilot based approaches for an 

Undersea Acoustic channel 

Table 6.9 Simulation Parameters for channel estimation 

Parameters Values 

Number of transmitted bits 109 

Symbol mapping scheme BPSK 

Carrier frequency (fc) 10kHz 

Signal frequency bandwidth (BW) 10kHz 

Number of subcarriers (N) 64 

Number of pilot subcarriers (P) 4, 8 and 16 

Subcarrier spacing (Δf=BW/N) 156.25Hz 

Valid Symbol duration (T) 6.4ms 

6.6.2.1 Simulation Parameters 

In this section, BPSK modulation has been used for implementing 

OFDM for an ocean channel. The simulation parameters for channel 

estimation are furnished in Table 6.9. The number of subcarriers has been 
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chosen to be 64 and it is assumed that the receiver has complete state 

information and Doppler effect has been neglected. In addition, perfect 

frequency and phase synchronization have been assumed. 

 

Fig. 6.22 Comparison of bit-error-rate performances of LS, MMSE and the dictionary 
based sparse channel estimation method using 16 pilots for an Undersea Acoustic channel 

6.6.2.2 Simulation Results 

Figure 6.22 shows the comparison of LS and MMSE estimation 

methods with that of the dictionary based sparse channel estimation for a 

range of 1km using 16 pilots.  It can be seen that the performance of the 

dictionary based sparse channel estimation method is far superior compared 

to that of the LS and MMSE estimation methods.  Hence, the dictionary 

based sparse channel estimation method with 4, 8 and 16 pilots have been 

used for computing the bit-error-rates for different ranges and the results 

have been compared with an ideal receiver having a known channel state 

information (CSI).   
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Figures 6.23 to 6.26 show the BER performance vs. SNR for a 

BPSK based OFDM for the ranges 200m, 500m, 1km and 10km, 

respectively.  It has been noticed that BER increases as the distance 

between source and receiver increases.  Also, the error rate decreases with 

increase the number of pilots. The minimum number of pilots required for 

an �-sparse channel can be computed using equation (5.22).   

 

Fig. 6.23 Comparison of bit-error-rate performances using different number of pilots for a 
BPSK based OFDM for a range of 200m 

Figure 6.23 shows the bit-error-rate performance of a BPSK based 

OFDM system for a range of 200m. At SNR of 30dB, it can be seen that 

using 16, 8 and 4 pilots, the error rates achieved are 3x10-7, 10-6 and 

1.5x10-6, as compared to the ideal case in which, the achieved bit-error-rate 

is 10-7. Similarly, figure 6.24 and 6.25 show the bit-error-rate performance 

of a BPSK based OFDM system for a range of 500m and 1km respectively. 

As seen from the plots, the error rate decreases with increase the number of  
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Fig. 6.24 Comparison of bit-error-rate performances using different number of pilots for a 

BPSK based OFDM for a range of 500m 

 
Fig. 6.25 Comparison of bit-error-rate performances using different number of pilots for a 

BPSK based OFDM for a range of 1km 
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pilots. At SNR of 30dB, it can be seen that using 16, 8 and 4 pilots, the 

error rates achieved are 10-6, 1.4x10-6 and 3x10-6, for the case of 500m. At 

SNR of 30dB, it can be seen that using 16, 8 and 4 pilots, the error rates 

achieved are 1.25x10-6, 2.5x10-6 and 4.6x10-6, for the case of 1km. 

Table 6.10 BER values for various ranges for channel estimated using 16 pilots for 
channel estimation 

   Range 

    SNR 

200m 500m 1km 10km 

0 0.117 0.1357 0.1857 0.2001 

5 0.0494 0.0594 0.0754 0.1901 

10 0.0202 0.0244 0.0344 0.129 

15 0.0048 0.0058 0.0158 0.069 

20 1.4x10-3 1.4x10-3 3.24x10-3 0.0311 

25 6x10-5 1x10-4 2x10-4 0.0121 

30 3x10-7 1x10-6 1.25x10-6 0.006 

Table 6.10 shows the bit-error-rate values at various SNR values for 

various ranges using 16 pilots for channel estimation.  It can be seen that 

the error rate increases with increase in distance between source and 

receiver. 

The level of sparsity has been quantified by the number of channel 

taps in the Bellhop model.  The number of significant channel taps and the 

minimum  number  of  pilots  required  for  an  �-sparse  channel  computed 

using equation (5.22), have been tabulated for various ranges and the 

results are furnished in Table 6.11.  The minimum number of pilots needed 

for 200m, 500m and 1km ranges are seen to be 3 for the given 

environmental conditions.  Hence, as shown, the channel state information 

has been estimated using 4 pilots per OFDM symbol with fairly acceptable 
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BER performance.  For 10km range, under the given environmental 

conditions, the minimum number of pilots needed per OFDM symbol can 

be seen to be 10.  Hence, as shown in figure 6.26, channel estimation using 

4 and 8 pilots do not give acceptable BER performance, whereas use of 16 

pilots per OFDM symbol can fully characterize the channel state 

information as evident from the BER performances. 

 

Fig. 6.26 Comparison of bit-error-rate performances using different number of pilots for a 
BPSK based OFDM for a range of 10km 

Table 6.11 Minimum number of pilots needed for an �-sparse channel 

Range/Distance 

(km) 

No. of significant 

channel taps L 

(Sparsity) 

Minimum number 
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0.5 2 3 

1 2 3 
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Pilot overhead, which is the ratio of number of pilots to the total 

number of subcarriers, has been computed and the BER values for an SNR 

of 25dB has been plotted against the pilot overhead and its effect is 

depicted in figure 6.27.  It can be seen that as the pilot overhead increases, 

BER performance improves significantly until a pilot overhead value of 

0.25, beyond which, increase in pilot overhead do not have much 

significant effect on the BER performance.  Thus, channel state estimation 

using 16 pilots give reasonably good BER performance. 

 

Fig. 6.27 Bit-error-rate plotted against Pilot Overhead for an SNR of 25dB 

6.7 Data Rate Computation for OFDM in undersea acoustic 

links 

Data Rate is a function of the modulation (BPSK, QPSK, 16- QAM 
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0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

-5

10
-4

10
-3

10
-2

10
-1

Pilot Overhead

B
E

R
 (

fo
r 

a
n
 S

N
R

 o
f 

2
5
d
B

)

 

 
200m

500m

1km

10km



Sparse Signal Processing for Undersea Acoustic Links 

 157

²�x� m�x; = ¾O������ð�E����®����Í��� ,                         (6.4) 

where ��x��È¹¾ä� is the number of bits per symbol, Ầº��O�� is the 

number of data subcarriers, *m is the code rate and ��È¹ is the OFDM 

symbol duration.  The length of the guard band should be greater than the 

expected multipath spread and so, the duration of cyclic prefix is taken to 

be ��  =  5��. 

6.7.1 Comparison of Data Rates for BPSK, QPSK and 16-PSK based 

OFDM schemes 

Computation of data rates for BPSK, QPSK and 16-PSK using 

equation (6.4) and Table 6.1, has been tabulated as in Table 6.12.  It can be 

seen from Table 6.12 that 16-PSK offers the highest data rate among all the 

three schemes compared since it accommodates more bits per symbol. 

Table 6.12 Data Rate Computation for PSK based OFDM schemes 

Modulation 

scheme 
BPSK QPSK 16-PSK 

Number of 
subcarriers 

64 32 16 

Bits per 
symbol 

1 2 4 

Total symbol 
duration 

11.4ms 8.2ms 6.6ms 

Data Rate 5.61kbps 7.804kbps 9.697kbps 

6.7.2 Comparison of Data Rates for normal OFDM, Convolutional 

Coded OFDM and BCH Coded OFDM schemes 

Computation of data rates for BPSK based normal, convolutional 

coded and BCH coded OFDM schemes using equation (6.4) and Table 6.2, 

has been tabulated as in Table 6.13.  It can be seen from Table 6.13 that as 
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the code rate decreases, the data rate also decreases and convolutional 

coded OFDM offers the lowest data rate among the three schemes 

compared. 

Table 6.13 Data Rate Computation for BPSK based OFDM schemes with and 
without coding 

Coding 

scheme 

No coding Convolutional 

coded OFDM 

BCH coded 

OFDM 

Number of 
subcarriers 

64 128 112 

Total symbol 
duration 

11.4ms 17.8ms 16.2ms 

Code Rate 1 1/2 4/7 

Data Rate 5.61kbps 3.596kbps 3.951kbps 

6.7.3 Comparison of Data Rates for normal OFDM with pilot based 

scheme for channel estimation 

Computation of data rates for BPSK based normal OFDM schemes 

with  and  without  pilots   using  equation (6.4)  and  Table 6.9,  have  been 

Table 6.14 Data Rate Computation for BPSK based OFDM schemes with and 
without pilots 

Number of 

pilots per 

OFDM 

symbol 

 

No pilots 

 

4 pilots 

 

8 pilots 

 

16 pilots 

Number of 
subcarriers 

64 

Total symbol 
duration 

11.4ms 

Number of 
data 
subcarriers 

 
64 

 
60 

 
56 

 
48 

Data Rate 5.61kbps 5.263kbps 4.9122kbps 4.210kbps 
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tabulated as in Table 6.14.  It can be seen from Table 6.14 that as the 

number of pilots increases, the data rate decreases and hence the choice of 

the number of pilots should be a compromise between the acceptable bit-

error-rate and the required data rate. 

6.8 Summary 

The results of comparison of matrix padding method with that of the 

other compressive sensing recovery algorithms have been presented in this 

chapter.  The bit-error-rates under various Signal to Noise Ratio conditions 

have been simulated for AWGN and Underwater Channels for 16-QAM 

based OFDM.   The performances of OFDM for 16-QAM and 16-PSK 

based modulation techniques as well as various orders of QAM based 

OFDM have been compared.  The bit-error-rate performances of normal as 

well as coded OFDM with and without interleaving schemes have also been 

simulated for various signal-to-noise ratio levels for both convolutional and 

BCH codes.  The performances of Alamouti STBC for a 2x1 and a 2x2 

system were compared with the proposed coded STBC system.  The 

performances of various STO as well as CFO estimation methods have 

been compared and the channel has been estimated for various ranges using 

different number of pilots. 
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  CHAPTER 7

CONCLUSIONS 

Ocean exploration activities have been steadily increasing and there is 

need to transmit the data collected by the sensors placed underwater to 

the surface of ocean or even to terrestrial networks.  This thesis addresses 

one of the emerging topics in Underwater Acoustics, viz. the various 

modulation and coding techniques for realising reliable OFDM for 

Undersea Acoustic Links.  This thesis proposed a matrix padding method 

for sparse recovery, which is robust even in the presence of noise.  

Orthogonal Frequency Division Multiplexing and coded interleaved 

OFDM as well as coded interleaved STBC have been investigated.  The 

synchronization and channel estimation problems in OFDM systems 

have also been investigated.  This chapter brings out the salient 

highlights of the research work undertaken for realizing an underwater 

acoustic communication system and the general inferences gathered.  

This chapter also enlists the scope and directions for future research in 

this area. 

7.1 Background 

Wireless acoustic transmission through the ocean is the enabling 

technology for the development of undersea sensor networks.  Applications 

of undersea sensor networks include instrument monitoring, pollution 

control, climate recording, prediction of natural disturbances, search and 

rescue missions and study of marine life.  This thesis addresses some of the 

emerging techniques in signal processing for underwater acoustic 
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communications.  This chapter also consolidates the highlights of the thesis 

as well as the future scope for research in the area of undersea acoustic 

networks.    

7.2 Highlights of the Thesis 

The study of underwater acoustic communication has gained 

significant attention due to its strategic and commercial applications.  The 

work reported in the thesis entitled Sparse Signal Processing for Undersea 

Acoustic Links addresses one of the emerging topics in Ocean Engineering.  

The practical applications of the work include numerous military 

applications as well as civilian application like the real-time remote 

monitoring of oceanic parameters like dissolved oxygen, salinity variation, 

pressure variation, etc. The following are the salient highlights of this 

thesis. 

7.2.1 Importance of Undersea Sensor Networks  

Optical as well as electromagnetic waves do not propagate over 

long distances in water.  Cables provide robust communication 

performance; however, the deployment and maintenance cost is very high.  

Even though complex, a reliable communication is provided by acoustic 

waves in water.  An undersea sensor network is a set of autonomous nodes 

that are deployed over a particular region which can communicate with 

each other to form a network, detect and measure certain parameters of the 

region in which they are deployed and forward the requisite data to a 

control station without any human intervention.  The importance of 

acoustic communication underwater as well as various topologies for 

underwater acoustic sensor networks have been elaborated.  Various 

challenges involved in the propagation of sound in water as well as 
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modeling of undersea scenario using Bellhop and Rayleigh models have 

also been discussed.   

7.2.2 Matrix Padding method for Sparse Signal Reconstruction 

Compressive sensing recently gained immense attention due to the 

commendable advantages the technique offers in signal manipulation at 

comparatively low bit rate requirements.  With the help of compressive 

sensing, the salient information in a signal can be preserved in a relatively 

small number of linear projections which helps in saving memory.  

Compressive sensing has applications in communication, speech signal 

processing, image processing, etc.  This thesis proposed a matrix padding 

method for sparse recovery, which is robust even in the presence of noise.  

In practical scenarios, the noise cannot be eliminated and hence, the 

proposed robust signal recovery method is of great importance.  The 

simulation studies demonstrate that the proposed algorithm can effectively 

improve sparse recovery with the help of matrix padding and LMS based 

adaptation in both ideal and noisy environments. 

7.2.3 OFDM for Undersea Acoustic Links 

Modulation and Demodulation of OFDM is achieved easily using 

IFFT and FFT techniques.  With the help of Bellhop, the underwater 

environment has been simulated and the bit-error-rates have been computed 

for 16-QAM and 16-PSK based OFDM schemes.  It was found that 16-

QAM offers lower bit-error-rates compared to 16-PSK based OFDM.  The 

performances of 4-QAM, 16-QAM and 256-QAM based OFDM systems 

have been compared. Among the three schemes compared, 4-QAM has 

been found to offer lower bit-error-rates.  Similarly, a comparison of bit-

error-rate performances of BPSK, QPSK and 16-PSK based OFDM 

systems for an undersea acoustic channel has been performed.  It has been 
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observed for PSK also, that as the order decreases, the BER performance 

improves. 

7.2.4 Effect of Coding and Interleaving on BER performance of 

OFDM systems 

The bit-error-rate performances of normal as well as coded OFDM 

with and without interleaving schemes have been simulated for various 

signal-to-noise ratio levels.  For BPSK based OFDM, the BCH coder with 

interleaving gives better performance compared to convolutional coder 

with interleaving for very low SNR values, whereas for SNR levels higher 

than a cross over SNR value, convolutional coder with interleaving gives 

improved error rate performance.  However, for DPSK based OFDM, the 

error rate performance of BCH coded system with interleaving is found to 

be better for SNR levels typically below a cross over SNR value, beyond 

which both the BCH and convolutional coded systems with interleaving 

exhibit the same bit-error-rate performances.  It has also been observed that 

the performances of coded OFDM with interleaving is superior compared 

to coded OFDM schemes without interleaving.  Thus, the cumulative effect 

of coding and interleaving improves the overall bit-error-rate performance 

of OFDM substantially. 

7.2.5 BER performance of BCH Coded OFDM systems 

A comparison of the BCH (15, 11) and (15, 7) coded BPSK based 

OFDM systems have also been made and the results clearly indicate that 

BCH (15, 7) coded system perform significantly better in terms of bit-error-

rate performances since BCH (15, 7) is double error correcting whereas 

BCH (15, 11) is a single error correcting code.  It has been found that the 

process of interleaving improves the performance of coded OFDM systems 

significantly.  Thus, interleaved coded OFDM has been found to be a good 
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choice for undersea acoustic links as well as for channels where burst errors 

occur. 

7.2.6 Normal STBC and Coded STBC for Undersea Acoustic Links 

Space-time block coding offers higher link reliability by 

purposefully introducing redundancy.  Alamouti STBC offers good 

performance and improved robustness without any sacrifice on the data 

rate, by using special signal processing at the receiver to sort out the 

multiple symbols received to regenerate the transmitted data stream.  It has 

been observed that a 2x2 system offers better performance compared to a 

2x1 STBC system.  It has also been observed that the proposed STBC 

system with coding and interleaving offers better performance compared to 

the normal 2x1 and 2x2 STBC systems.    

7.2.7 Synchronization and Channel Estimation for an Undersea 

Acoustic Link 

The OFDM transmission is very sensitive to receiver 

synchronization imperfections.  The performances of various STO as well 

as CFO estimation methods have been compared.  It has been observed that 

STO estimation using difference method and CFO estimation using pilot 

based method guarantee good performances.  It has been further noted that 

the dictionary based sparse channel estimation method outperforms the 

channel estimation by LS and MMSE estimations.  The channel has been 

estimated for various ranges using different number of pilots and the effect 

of varying the number of pilots for channel estimation has been studied, in 

terms of BER performance.  This study further reveals that using 16 pilots, 

acceptable performance can be achieved for a pilot overhead of 0.25. 
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7.3 Future Scope for Research 

The work presented in this thesis has a significant role to play in 

view of its practical applications for undersea acoustic links.  This work 

also has substantial scope for further research for improving the overall 

system performance.  Some of the possible proposals for future work in this 

area are enlisted below. 

7.3.1 Trials in the Open Ocean 

For the studies of the work presented in the thesis, underwater 

acoustic communication environment has been simulated.  Experimental 

evaluation of the work presented in the thesis in the open ocean is very 

expensive as well as time consuming and hence, will have to be taken up as 

a separate major project from appropriate interest groups and funding 

agencies. 

7.3.2 Use of other Modeling techniques/simulators for Undersea 

Acoustic Communication 

The question of statistical channel modeling is still a controversial 

one for undersea acoustic links.  Hence, other models like Rician models, 

Nakagami or K-distribution can also be used for modeling the underwater 

acoustic communication scenario.  Simulators like NS2 [159], NS3 [160], 

Aqua-Sim [161], etc. are also available.  The one which gives more closer 

results to the field trials has to be used for further studies.  

7.3.3 Other coding schemes 

Other coding schemes, like turbo codes or Low Density Parity 

Check codes (LDPC), which are more powerful than convolutional and 

BCH codes, can as well be used for implementing Coded OFDM for 

Undersea Acoustic Links.  
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7.3.4 Coded STBC-OFDM for Undersea Acoustic Links 

Multiple transmitters and receivers can be combined with OFDM to 

improve the capacity and reliability of communications.  The combination 

of the reliability of an STBC system with the robustness of orthogonal 

frequency division multiplexing against frequency-selective fading caused 

by severe multipath is a very promising basis for future high speed data 

communications.  The performance can be further improved by 

incorporating error correcting codes as well as interleaving into the STBC-

OFDM system. Thus, a coded STBC-OFDM system will offer a spectrally 

efficient and reliable undersea acoustic link, while keeping a simple 

equalizer structure. 

7.3.5 Possibility of utilization of proposed technique for real-time 

data transmission in the SOFAR channel 

The SOFAR channel is a deep sound channel that can act as 

a waveguide for sound, and low frequency sound waves within the channel 

may travel thousands of miles. The coded interleaved OFDM as well as 

coded STBC techniques proposed in the thesis can be effectively utilized in 

the deep sound channel, so as to make long range underwater acoustic 

communication more effective. 

7.4 Summary 

An attempt has been made in this chapter to bring out the salient 

highlights of the work and the general inferences gathered.  A judicious 

selection of modulation scheme, coding, transmission and reception 

techniques is needed for the successful design and implementation of an 

undersea acoustic communication link.  The scope and directions for future 

research in this area have also been proposed.    
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