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Preface

Thermodynamics was born in the nineteenth century along with the in-

dustrial revolution and it deals with macroscopic description of energy

conversion involving heat and other forms of energy. The great generality

of thermodynamics is due to the fact that its axioms, called the laws, are

based on well established empirical results and are applicable to most of

the systems in nature. In spite of its generality, some aspects of ther-

modynamics remain to be uncertain and are not evident in the classical

description, as for example the non-extensive systems in thermodynamics.

In this regard, many attempts have been made to describe the thermo-

dynamic behaviour of the systems using the language of geometry, from

the pioneering works of Gibbs and Caratheodory. In all these descrip-

tions, contact geometry of thermodynamic phase space and Riemannian

geometry of the equilibrium space have been explored. Understanding the

geometric description of thermodynamics received great attention because

of many reasons. Among them, the important one is that, geometry pro-

vides a language that can be used to describe the fundamental theories of

physics and can be used to infer the new physical ideas that exhibits by

the system. The discovery of the analogue between the laws of thermody-

namics and those of black hole mechanics by Bekenstein and Hawking has

received the attention of many researchers. These observations led to the

idea of regarding the existence of a strong connection between geometrical

aspects of gravitation and their thermodynamic equivalence, like, the area

of the event horizon and the entropy of a black hole, commonly referred to

as Bekenstein-Hawking area theorem. Hence it is believed that a deeper

understanding of the geometrical description of the thermodynamics of

black holes could shed some light on the relationship among thermody-

namics, gravity and quantum mechanics. On the other hand, the short-

comings of Einstein’s general relativity made the theory to undergoing

many explorations and accordingly modifications are introduced into the

xi



xii Preface

formalism. Modified theories of gravity are among these efforts which shed

light in to such a development. Thermodynamic aspects of black holes in

such modified theories will definitely help the scientific community to per-

fectly model a theory of gravity that withstand all the observational tests

as well as they may give information regarding the microscopic origin of

entropy and quantum gravity.

The subject of this thesis work is an attempt to provide a general

and consistent way of studying the geometric description of black holes

in modified theories of gravity and their thermodynamic properties and

interactions through a new geometric approach, known as Geometrother-

modynamics (GTD).

In chapter 1 of the thesis, we will present a brief review of Einstein’s

General theory of relativity and modified theories of gravity with a special

emphasis on Hořava-Lifshitz gravity and Massive gravity. The black hole

solutions in both these theories are discussed. Moreover, a detailed in-

troduction to black hole thermodynamics, entropy spectrum of the black

holes as well as the Geometrothermodynamics of the system are also given.

The thermodynamics of black holes in modified theories of gravity is

discussed in chapter 2. Black hole solutions in Hořava-Lifshitz gravity,

like Kehagias-Sfetsos, Lü-Mei-Pope and Park solutions are studied in this

chapter. We have also studied different black hole solutions in Massive

gravity that include the dRGT black hole and (2+1) BTZ black hole in

New Massive Gravity. Their thermodynamic properties have been an-

alyzed in detail with a special emphasis on phase transitions shown by

these black holes. We have obtained the variation of temperature, mass

and heat capacity of these black hole systems. In KS black hole and LMP

black hole cases, it is evident from the existence of an infinite discontinuity

in the heat capacity diagram that the systems exhibits phase transitions.

The transition is from a positive heat capacity phase to a negative heat
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capacity phase, change in sign of heat capacity in turn indicates the transi-

tion from a thermodynamically stable phase to an unstable phase. For the

Park black hole case also there exists a phase transition and this solution

exhibits different anomalous behaviours in the form of negative tempera-

ture and existence of mass bound. In dRGT massive gravity black hole

solution, we obtained Reissner-Nordstorm black hole solution in de Sitter

and anti de Sitter space-time by varying the coupling parameters of the

theory. One expects that thermodynamics of these black holes would be

the same as in general relativity, taking into account that massive gravity

differs from general relativity by a non-derivative coupling to a fiducial

metric. But the present studies show that, even though the results agree

with general relativity when massive parameter tends to zero, there are

significant changes in the phase transition structure. Whereas in the BTZ

black hole case in new massive gravity, black hole does not possess an

infinite discontinuity transition, but shows a continuous transition from a

thermodynamically stable to an unstable phase.

In chapter 3, we have analyzed the entropy spectrum of these black

hole solution in modified theories of gravity. The method suggested by

Majhi, Vagenas, Jiang and Han, in which they have incorporated the ideas

form the adiabatic invariance, tunneling mechanism, Bohr-Sommerfeld

quantization rule and near horizon approximations, is used to calculate

the entropy spectrum of these black holes. For the black hole case in

Hořava-Lifshitz gravity, the entropy spectrum is equally spaced and are

independent of black hole parameters. On the other hand for black hole

in Massive gravity, particularly in the charged BTZ solution, the entropy

spectrum depends on the black hole parameters, even though the spectrum

is equispaced. This may shed some light in to the microscopic origin of

entropy.

Chapter 4 is devoted for the discussion of the new geometric ap-



xiv Preface

proach, Geometrothermodynamics, proposed by Hernando Quevedo as

applied for the case of black holes mentioned earlier. Just as in gen-

eral relativity the physical reality cannot depend on a particular choice of

coordinates, thermodynamics is independent of the potential one uses to

describe a given system. Hence, Legendre invariance should be an essen-

tial ingredient of any geometric construction of thermodynamics. GTD

formalism preserves this Legendre invariance. Usual black hole thermody-

namic studies discussed in Chapter 2 show the presence of phase transition

in black hole systems of modified theories of gravity. But these calculations

were unable to confirm the order of phase transition. Even though one can

eliminate the possibility of first order phase transition from temperature

variation, but divergence in heat capacity can be of second or higher orders

in nature. Here in GTD formalism, thermodynamic interaction can be re-

flected from the curvature of the metric defined on equilibrium spaces. If

thermodynamic curvature is free of singularities, then GTD interprets it

as non-existence of singular points at the level of the heat capacity and

no (second order) phase transitions occur in the system. Interestingly

the curvature of the GTD metric reflects all abnormalities shown by the

system in terms of negative temperature, mass bound, etc. The phase

transition structure of black hole solutions in Hořava-Lifshitz and Massive

gravity is studied in this chapter. Whenever the system shows a phase

transition, the scalar curvature exactly reproduces the behaviour and as

a result, the order of phase transition can also be verified.

Finally, in chapter 5 a summary of the new results are presented and

a possible applications and future developments are also discussed. It is

expected that this work will be a concrete step towards a clearer descrip-

tion of thermodynamics of black holes in modified theories of gravity and

hopefully a deeper understanding of the relation between thermodynamic

geometry and the thermodynamics of black hole systems.
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1
Introduction

1.1 General theory of relativity and Black

holes

The black holes of nature are the most perfect macroscopic

objects there are in the universe: the only elements in their

construction are our concepts of space and time.

-S. Chandrashekar.

In 1687 Newton published the world famous Philosophi Naturalis Prin-

cipia Mathematica [1]. He showed a mathematical treatment of gravity,

which resulted in the well known formula for gravitational forces:

F = G
m1m2

r2
. (1.1)

However this way of understanding gravity turned out to be only a part

of the whole story of gravitation. In this part of the story, Newton’s law

of universal gravitation seemed to account for the motion of all the plan-

ets as well as their satellites. But, when the orbit of Uranus was found,

it became evident that there exists some irregularities that could not be

understood or explained using Newton’s law of gravitation. This discrep-

ancy led to the discovery of a new planet named Neptune. A similar

1



2 Introduction

discrepancy between observation and Newton’s law arose in the case of

planet Mercury. The perihelion of the trajectory precesses more slowly

than the result expected from Newton’s Law of gravitation. In order to

explain this scenario, it was suggested that a planet named Vulcan caused

this discrepancies. The majority of astronomers believed this, but when

convincing evidence could not be found, astronomers started to rethink

their opinion and doubted the idea of an unobserved planet. This failure

of Newton’s law remained unexplained until Einstein proposed a new law

for gravity: the theory of general relativity, about 200 years later in 1915

[2]. One of the major challenges for general relativity was to explain this

anomaly - the precession of the perihelion of the trajectory of Mercury.

Einstein calculated the orbit using his theory of general relativity, and

found that it could predict the observed precession of the perihelion of the

trajectory of Mercury without introducing any new objects in the solar

system. This theory of general relativity is the other part, major part of

the story. Einstein’s theory explains that gravitation isn’t a force at all,

but is the effect of distortion of the four dimensional space-time under

consideration by the mass presented in it. Comparing these two indepen-

dent theories, Newton’s theory allowed information to travel at infinite

speeds, whereas Einstein showed that nothing can exceed the speed of

light, not even gravity. As a result of these predictions, general relativity

got transformed as the cornerstone of our theoretical knowledge of the

gravitational interaction, and its predictions are in excellent agreement

with all weak-field experiments. This geometric theory of gravity unified

the description of gravity as a property of space-time. In general relativ-

ity, curvature of space-time is directly related to the stress-energy tensor

through the Einstein’s field equation:

Rµν −
1

2
Rgµν = κTµν . (1.2)

where Rµν is the Ricci tensor, R is the Ricci scalar, gµν is the metric tensor,



General theory of relativity and Black holes 3

Tµν is the energy-momentum tensor of matter present in the universe and

the constant κ = 8πG
c4 , where G is the gravitational constant and c is

the speed of light. Among the predictions made by this theory, the most

striking one among them, is the existence of black holes. Black holes are

the most mysterious exotic entities encountered in physics of the present

time. They are solutions to the classical theories of gravity coupled to

matter, which are characterized by the existence of an event horizon. The

verbal definition of the black hole: it is a region of space-time surrounded

by a boundary known as the event horizon inside which the force of gravity

is so strong that not even light can escape, hence it is invisible. Physically,

a black hole is defined as a region where gravity is so strong that nothing

can escape. When a sufficiently large quantity of matter is compactified

into a small region, a space-time singularity occurs; black holes describe

the endpoints of gravitational collapse.

When one revisits the history of black hole, it can be found that the ex-

istence of black hole was predicted back in 1784 by John Michell, who dis-

cussed classical bodies which have escape velocity greater than the speed

of light. Later in 1875, Pierre Laplace obtained the gravitational radius

in the scenario of Newtonian gravity. But exact theoretical solution was

obtained in 1916, when Karl Schwarzschild [3] solved the Einstein field

equation (1.2) in vacuum for a spherically symmetric uncharged distribu-

tion of matter. For that he considered Minkowski space-time whose line

element in general is given by,

ds2 = A dt2 − (B dr2 + C r2dθ2 +D r2 sin2 θdφ2) . (1.3)

Solving the equation by considering the gravitational effects and weak field

approximations he arrived at the most frequently written-down metric in

black hole physics, known as the Schwarzschild metric, given by,

ds2 =

(
1− 2GM

c2r

)
dt2 −

(
1

1− 2GM
c2r

)
dr2 + r2dθ2 + r2 sin2 θdφ2 . (1.4)
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The above metric which is the solution Einstein field equation describes

nothing but a spherical massive object, a black hole. In (1.4) r, θ and

φ are spherical polar coordinates; M is the mass of the corresponding

black hole known as the Schwarzschild black hole. For each black hole

there associates an event horizon, a boundary in space-time, beyond which

events inside this boundary cannot affect an outside observer. For the

Schwarzschild black hole system, the event horizon can be obtained by

solving the corresponding metric (1.4) and is given by, r = 2M .

In 1918, Reissner and Nordström [4, 5] independently considered an

electro-vacuum solution of the Einstein field equation (1.2) and obtained a

black hole solution, which is spherically symmetric and electrically charged.

It is usually referred to as the Reissner-Nordström black hole (RN). This

RN black hole solution can be obtained by considering the Einstein field

equation coupled to Maxwell’s equations. Hence the energy momentum

tensor Tµν of (1.2) is given by,

Tµν = FµλF
λ
ν −

1

4
gµνFρλF

ρλ , (1.5)

where ∇µFµν = 0. Solving these equations, one arrives at the Reissner-

Nordström black hole metric as,

ds2 = −f(r)dt2 − dr2

f(r)
+ r2dθ2 + r2 sin2 θdφ2 , (1.6)

where,

f(r) = 1− 2M

r
+
Q2

r2
, (1.7)

and M and Q are mass and charge of the RN black hole respectively. Now

the event horizon of the RN black hole is obtained by solving for f(r) = 0,

and is given by,

r± = M ±
√
M2 −Q2, (1.8)

where r+ is the outer horizon and r− denotes the Cauchy horizon.
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Not much studies have been done in the direction of black hole solution

until Roy Kerr found a solution to Einstein field equation in vacuum in

1963, about four decades later. He found an uncharged rotating black hole

solution named as Kerr black hole solution [6]. Kerr black hole metric with

a nonzero angular momentum can be written as,

ds2 = − ∆− a2sin2θ

ρ2
dt2 − 2a

2Mrsin2θ

ρ2
dtdφ

+
(r2 + a2)2 − a2∆sin2θ

ρ2
sin2θdφ2

+
ρ2

∆
dr2 + ρ2dθ2 , (1.9)

where M and a are mass of the black hole and angular momentum respec-

tively and,

∆ = r2 − 2Mr + a2 , (1.10)

ρ2 = r2 + a2cos2θ . (1.11)

Kerr black hole can be considered as the generalization of Schwarzschild

black hole or in other words Kerr solution reduces to Schwarzschild solu-

tion when the angular momentum reduces to zero. From the metric, its

event horizons are at,

r± = M ±
√
M2 − a2 . (1.12)

An electrically charged rotating black hole solution was obtained by

solving electro-vacuum field equations in 1965 by Newman [7]. By adding

electric charge to Kerr black hole, one can obtain a new solution known as

Kerr-Newman black hole solution. The Kerr-Newman black hole space-

time is similar to the Kerr black hole space-time except in the definition

of ∆, given by,

∆ = r2 − 2Mr + a2 +Q2 . (1.13)
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Like the Kerr black hole, one can obtain the event horizons at,

r± = M ±
√
M2 −Q2 − a2 . (1.14)

It is interesting to note that the Kerr-Newman black holes are the largest

family of black holes in four dimensional space-time.

1.2 Modified theories of gravity and Black

holes

There is no wonder that Einstein’s general relativity, which gives an accu-

rate model for describing macroscopic gravitational interactions and the

framework of relativistic quantum field theory (QFT), upon which the

standard model of particle physics is built, are among the most successful

achievements in the history of science. Decade long efforts to incorporate

these two into a unified theory led us to the conclusion that for such a

theory one has to change the view of the universe at the fundamental level.

When one views this problem on the theoretical side, it can be inferred

that in the weak field regime, the characteristic energies are low and quan-

tum effects do not come in to play. But, when the energy increases, at

some point quantum mechanics will come in to play and as a result quan-

tum effects starts to dominate. As we know that general relativity is a

classical theory of gravity that does not incorporate the effects of quantum

mechanics, hence it is impossible to explain what was going on at energies

as high as the Planck energy or at distances as small as the Planck length.

On the other hand, on the observational side, there are many regions of

the sky where the mass content expected from general theory relativity

exceeds the mass estimated from astronomical observations. It is believed

that such discrepancies can be accounted by considering the presence of

an unknown form of mass, known as dark matter. Its presence is evident
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from many observations, including motions of galaxies and gravitational

lensing. So the general relativity prediction fails and hence the gravity

laws should be modified. Another discrepancy in the case of general rel-

ativity is regarding the universe at large scales. Observations of distance

versus redshift for type Ia supernovae indicate that the universe is now

expanding in an accelerated fashion. It is confirmed by the measurements

done on cosmic microwave background radiation (CMBR). This acceler-

ated expansion of the universe demands a positive cosmological constant

to exist. The measured value of cosmological constant is many orders of

magnitude (∼ 10−120) smaller than the estimated value in quantum field

theoretic calculations. This difference can not be incorporated in Ein-

stein’s general relativity. These issues related to general relativity point

towards the incompleteness in our understanding of either matter or grav-

ity, or both. So there might be some unknown entity of matter that is

remaining hidden, that makes the theory of general relativity incomplete.

Perhaps we have to change our understanding of both matter and gravity.

These thoughts act as the main motivation for many investigations in the-

oretical high-energy physics going on now. Modified theories of gravities

are among these efforts which shed light in to such a development. In the

history of modified theories of gravity, a number of models were proposed,

which includes Lovelock gravity, Einstein-Yang-Mills theory, f(R) theo-

ries, Massive gravity, Hořava gravity, etc [8, 9]. Our investigations will

involve Hořava Gravity and Massive gravity. This thesis is based on the

studies of the black hole solutions and the resulting physics in these two

models.

1.2.1 Hořava-Lifshitz gravity

Hořava gravity attempts to create a renormalizable theory of gravity by

giving up Lorentz invariance. The model, proposed in 2009, rapidly gained
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a large amount of interest. Here, we review the theory and the associated

literature regarding Hořava gravity. Hořava gravity is a non-relativistic

modification to general theory of relativity, proposed by Petr Hořava in

2009 [10–12] in which the construction of the theory is based on the ob-

servations on a class of models known in the condensed matter physics

referred to as the Lifshitz scalar field theory. The first ingredient in the

discussions regrading Hořava gravity is its anisotropic scaling relation,

x→ bx, t→ bzt; (1.15)

where b is a constant and the degree of anisotropy characterized by z, the

dynamical critical exponent. It measures the degree of anisotropy between

space and time coordinates and it takes the value z = 1 in relativistic the-

ories. Hořava’s theory is based on the basic assumption that the Lorentz

symmetry is fundamentally broken at high scales of energy and restores

only in the infrared (IR) limit. Since Hořava gravity theory gained the

basic ideas from Lifshitz scalar field theory, one can easily arrive at dif-

ferent properties of the theory. Among them, one is when z > 1, this

model does not respect Lorentz symmetry which requires space and time

to have the same dimension. Second, when z = d, where d is the dimen-

sion of space-time, the scalar field itself is dimensionless. This indicates

that the theory might be UV complete. It is important to note that these

properties are not based on any symmetry of the action, but the solutions

of the theory respect this scaling. This relation clearly singles out time

coordinate, which not only breaks diffeomorphism invariance (which can

be seen as a statement of coordinate independence) but forces a further

distinction between space and time absent in relativistic physics. From

the experimental tests conducted on Lorentz invariance it becomes evident

that, it is not necessary to consider Lorenz invariance as a fundamental

principle of nature, and hence it is not a problem to effectively consider

the violation of Lorentz invariance at scales of our interest. For the time
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being we leave z as unspecified, but later we will choose it appropriately

such that gravitational coupling is dimensionless. Hořava defined the new

theory of gravity, Hořava-Lifshitz gravity, by a path integral,∫
Dgij DNiDN exp{iS} . (1.16)

Here Dgij DNiDN denotes the path integral measure and S is the most

general action compatible with the requirements of gauge symmetry. He

has used the ADM formalism in which the four dimensional metric of

general relativity is parametrized as,

ds2
4 = −N2dt2 + gij(dx

i −N idt)(dxj −N jdt) , (1.17)

where N and N i denote the lapse and shift functions, respectively. In the

UV region, the action of Hořava-Lifshitz theory can be written [10] as,

S =
1

16πG

∫
dt d3x

√
gN{(KijK

ij − λK2)− 1

k4
W

CijC
ij} . (1.18)

Here the first two terms represent the kinetic term and the last term is the

potential term. As well as G is Newton’s gravitational constant, R is the

curvature scalar and Kij is the extrinsic curvature that takes the form,

Kij =
1

2N
(ġij −∇iNj −∇jNi) , (1.19)

here the dot denotes differentiation with respect to the time coordinate t.

Considering the potential term in (1.18), Cij represents the Cotton tensor

and it has the form,

Cij = εikl∇k
(
Rjl −

1

4
R δjl

)
= εikl∇kRjl −

1

4
εikj∂kR, (1.20)

where κ2, µ, ω, λ and Λ are constants. Varying the action with respect

to lapse and shift functions will yield equation of motion of the system,

and solving that will add further information to the theory.
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The previous discussion of Hořava-Lifshitz is based on UV action of

the theory. Now we will consider the full action containing the description

of theory in UV and IR regions. In this scenario, the detailed balance

principle restricts the action to take the form [11],

S =

∫
dtd3x

√
gN{(KijK

ij − λK2)− 1

k4
W

CijC
ij

+
µ

k2
W

εijkRil∇jRlk −
µ2

4
RijR

ij

+
µ2

4(1− 3λ)
(
1− 4λ

4
R2 + ΛWR− 3Λ2

W )}, (1.21)

with the emergent speed of light and cosmological constant term can be

extracted as,

c =
µ

2

√
ΛW

1− 3λ
, Λ =

3

2
ΛW . (1.22)

In this thesis, we will explore some of the black hole solutions existing

in Hořava-Lifshitz gravity and will study their thermodynamics, spec-

troscopy as well as their thermodynamic geometry aspects.

1.2.2 Massive gravity

We know that general relativity describes nonlinear self interactions of a

massless spin 2 excitations. A most natural way of modifications of general

theory of relativity would be by adding a mass term for the spin 2 field.

As a result, the modified theory would explain the nonlinear interactions

of a massive spin 2 field, and this theory is known as Massive gravity. In

1939, Fierz and Pauli [13] considered the modification by adding mass to

a linearized theory of gravity. The proposed theory was unique in such a

way that there were only a single way to add mass term so that the theory

becomes physically significant. Later in two independent articles, van Dam

and Veltman as well as Zakharov claimed that Fierz-Pauli theory does not
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converge to Einstein’s theory in the zero mass limit [14, 15]. Later in 1972,

Vainshtein introduced a new mechanism to overturn the above mentioned

vDVZ discontinuity [16]. In this mechanism he considered the full non

linear formulation of massive gravity and as a result in the zero mass limit

Einstein’s original equations are retrieved. In the same year, Boulware

and Deser proved that any non linear massive gravity theory which uses

the Vainshtein’s mechanism contain a ‘ghost’ [17, 18], known as the BD

ghost. The presence of BD ghost remained as an unsolved problem until

2010, when de Rham, Gabadadze and Tolley (dRGT) proposed the first

non linear completion of the FP theory free of BD ghost instability [19, 20].

They showed that the potential to be ghost free up to the quartic order

in perturbation and to all orders in decoupling limit, and as a result of

this, many extensions of this theory have been made [21–28]. Besides these

extensions, alternative theories with massive graviton have also been under

rigorous investigations. These theories include the DGP model [29, 30],

Kaluza-Klein models [31, 32], New massive gravity [33] and Topological

Massive gravity [34, 35].

dRGT massive gravity

The dRGT massive gravity model can be described using the action [19,

20],

S =

∫
dDx

[
M2
pl

2

√
−g
(
R +m2U(g,H)

)]
, (1.23)

where the first term is the usual Einstein-Hilbert action and the second

term is arising from the contributions of mass of the graviton m, and

from the nonlinear higher derivative term U corresponding to the massive

graviton. It is given by

U = U2 + α3U3 + α4U4, (1.24)
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where,

U2 = [K]2 − [K2]

U3 = [K]3 − [K][K2] + 2[K3]

U4 = [K]4 − 6[K]2[K2] + 8[K3][K]− 6[K4]. (1.25)

In the above set of equations, the tensor Kµ
ν is defined as,

Kµ
ν = δµν −

√
∂µφα∂νφβfαβ, (1.26)

where φα and φβ are the corresponding Stuc̈kelberg field and fαβ is a fixed

symmetric tensor usually called as the reference metric.

In the unitary gauge, defined as φa = xa, the term hµν = gµν − ηµν is

the gravitational analogue of the Proca field of massive electrodynamics

[36]. By introducing the Stückelberg field φa, which can be considered

as background field plus a pion contribution, φa = xa + πa [37], and

replacing the Minkowski metric by,

gµν = ∂µφ
a∂νφ

bηab +Hµν ,

where Hµν is the covariantized metric perturbation, one can restore the

diffeomorphism invariance. As given in [36, 37], two new coefficients α

and β are introduced which relate the coefficients α3 and α4 in (1.24) by,

α3 = −(−α + 1)

3
, (1.27)

and

α4 =
−β
2

+
(−α + 1)

12
. (1.28)

In empty space, the equation of motion is given as,

Gµν +m2Xµν = 0, (1.29)
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where Xµν is the effective energy-momentum tensor contributed by the

graviton mass m, which is given by,

Xµν = −1

2

[
Kgµν −Kµν + α

(
K2
µν −KKµν +

1

2
gµν([K]2 − [K2])

)
+6β

(
K3
µν −KK2

µν +
1

2
Kµν([K]2 − [K2])

−1

6
gµν([K]3 −3[K][K2] + 2[K3])

)]
. (1.30)

Now applying the Bianchi identity, ∇µGµν = 0 in (1.29), we arrive at the

constraint equation,

m2∇µXµν = 0. (1.31)

As given in [36–38], we concentrate on a particular family of the ghost-free

theory, for that we will assume,

β = −α
2

6
. (1.32)

For this particular choice, (1.31) is automatically satisfied for a certain

and time-independent metrics in spherical polar coordinates. Using (1.29),

(1.30) and (1.31), a spherically symmetric and time independent metric

in de Sitter space can be obtained, by choosing,

m2Xµν = λgµν , (1.33)

where λ is a constant. Here, in this thesis we will explore the solutions of

this dRGT model of massive gravity.

New massive gravity

Independently of the previously discussed massive gravity models in four

dimensions, there has been interest in developing a three dimensional the-

ory of massive gravity. Such a theory developed is referred to as New
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Massive Gravity (NMG). This three dimensional higher derivative grav-

ity model was proposed by Bergshoeff, Hohm and Townsend in 2009 [33].

Their action can be written as a higher curvature term in addition to the

usual Einstein-Hilbert action,

SNMG = SEH + SFOT , (1.34)

SEH =
1

16πG

∫
d3x
√
−g (R− 2λ) , (1.35)

SFOT = − 1

16πGm2

∫
d3x
√
−g
(
RµνR

µν − 3

8
R2
)
, (1.36)

where m2 is a mass parameter with the dimension of mass and G is a

three dimensional Newton constant. The equation of motion is given by,

Gµν + λgµν −
1

2m2
Kµν = 0 , (1.37)

where Gµν is the Einstein tensor given by

Gµν = Rµν −
1

2
gµνR ,

and

Kµν = 2�Rµν −
1

2
∇µ∇νR−

�R
2
gµν + 4RµρνσR

ρσ

− 3R

2
Rµν −R2

ρσgµν +
3R2

8
gµν . (1.38)

From the analysis of the above discussed action and equations of motion,

the non existence of BD ghost was proved. As a result NMG is a com-

pletely consistent ghost free theory of a fully interacting massive graviton

in three dimensions. These peculiarities of the theory gained reputation

to NMG from the scientific community as having interesting features [39].

We will explore the thermodynamics, spectroscopy and geometrothermo-

dynamics of black hole solutions in this massive gravity model by keeping

in mind the fact that the lower dimensional theory and the black hole

solutions usually provide an interesting playground to obtain a simplified

insight into the thermodynamic properties of black holes.
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1.3 Black Hole Thermodynamics

From the discovery of Hawking radiation [40], black holes are believed to

be thermodynamic systems which have a characteristic temperature which

is directly related to the event horizon of the black hole. Classically black

holes can be thought of as an end stage of a massive star with zero tem-

perature. But these thoughts got reverted after Bekenstein’s suggestion

[41] that black holes possesses entropy and this entropy is proportional to

area of its event horizon and Hawking’s path breaking discovery that the

black hole radiates thermally [41–43]. Initially the idea that the black hole

is associated with an entropy got noticed when the event horizon surface

area exhibiting a remarkable tendency to increase when undergoing any

transformation as noticed by Floyd and Penrose [44] and it was supported

by Christodoulou’s [45] observations. Here we will discuss the thermody-

namic properties of black holes, beginning from the discovery of black hole

mechanics.

In 1973 Bardeen, Carter and Hawking introduced the four laws of black

hole mechanics [46] which are analogues to the ordinary laws in classical

thermodynamics.

• Zeroth Law: The event horizon is described by a surface gravity κ

which is constant over the horizon of a stationary black hole.

This is analogous to the zeroth law in ordinary thermodynamics,

which states that the temperature is constant throughout a body in

thermal equilibrium. Hence it can be noted here that the surface

gravity is analogous to temperature. The surface gravity(κ) is the

gravitational acceleration experienced at its surface and is related to

the physical temperature of the black hole by,

TH =
κ

2π
. (1.39)
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As an example let us consider the Schwarzschild black hole, where

κ = 1/4GM , then the Hawking temperature becomes,

TH =
~

8πGkBM
≈ 6.2× 10−8 M�

M
K . (1.40)

From this it is obvious that, the Hawking temperature associated

with Schwarzschild black hole where mass of the black hole is suffi-

ciently high, is negligibly small. So one can say that the Hawking

radiation does not play any significant role in the case of large-sized

black holes, whereas it is prominent in the case of mini black holes

which might have been formed in the primordial stages of the uni-

verse.

• First Law: For perturbations of stationary black holes, the change in

energy (dE) is related to changes in area (A), angular momentum

(J), and electric charge (Q):

dE =
κ

8π
dA+ ΩdJ + ΦdQ . (1.41)

It is quite evident that the above equation is analogous to the first

law of thermodynamics in classical thermodynamics, which is given

as,

dE = TdS + “work terms” . (1.42)

Comparing the above two relations, the entropy of the black hole

can be represented as a quarter of the area of the event horizon of

the black hole under consideration, hence,

SBH =
A

4
. (1.43)

From thermodynamic relationship among mass, temperature and

entropy, Hawking was able to confirm Bekenstein’s conjecture: the
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black hole entropy is proportional to the area of its event horizon

divided by the Planck area, and established the constant of pro-

portionality as 1/4, i.e, SBH = kA
4`2P

, where A is the area of the

event horizon, k is Boltzmann’s constant, and `P =
√
G~/c3 is the

Planck length. Usually the entropy SBH is referred to as Bekenstein-

Hawking entropy.

• Second Law: The area of the event horizon is a non-decreasing func-

tion of time,

dA ≥ 0. (1.44)

The second law of black hole thermodynamics is the statement of

Hawking’s area theorem where it states that the change in entropy

of an isolated system will be greater than or equal to zero for a spon-

taneous process, suggesting a link between entropy and the area of a

black hole horizon. However, this theorem violates the second law of

thermodynamics when a black hole emits radiation there must be an

increase in entropy of the surroundings. According to No-Hair theo-

rem, regardless of the specific details of the structure and properties

of a collapsing body, the resulting stationary black hole is described

by a geometry specified by the externally observable parameters,

namely mass, angular momentum and charge. Hence violation of

second law is obvious when some one puts a box of entropy in to the

black hole. In order to make the second law of black hole thermo-

dynamics consistent with second law of classical thermodynamics,

Bekenstein [41, 42] introduced the idea of generalized entropy. The

generalized entropy is defined as

S′ = SBH + Ssurrounding matter . (1.45)

Then one can immediately note down the Generalized Second Law
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(GSL) as,

dS′ ≥ 0 . (1.46)

Through this GSL, the universal behaviour of entropy is validated

in the case of black hole too, where the total entropy of the universe

increases when matter is fallen in to the black hole. As an example,

let us obtain the entropy of Kerr-Newman black hole from the area

law (1.43). The event horizon of KN black hole is given by,

r+ = M +M

√
1− Q2

M2
− J2

M4
. (1.47)

The area of the event horizon can be written as,

A = 4πr2
+ . (1.48)

Now using the Bekenstein-Hawking area law, the entropy of the KN

black hole can be written in terms of its mass, charge and angular

momentum as,

S = 2M2 −Q2 + 2M

√
1− Q2

M2
− J2

M4
. (1.49)

• Third Law: It is not possible to form a black hole with vanishing

surface gravity, i.e., κ = 0 can not be achieved. Stating that κ

cannot go to zero is analogous to the third law of thermodynamics

where, the entropy of a system at absolute zero is a well defined

constant, or absolute zero of temperature is unattainable. This is

often referred to as Nernst’s Heat theorem.

When we look in to this scenario in a pure classical way, black holes in

general relativity obey certain laws which bear a remarkable mathematical
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as well as structural resemblance to the ordinary laws of thermodynam-

ics. This analogy has taken the idea of black hole thermodynamics to

the present level and the same thing drives the present intense activi-

ties in the current field. Thermodynamic properties of black holes have

been studied during all these years. During this period, it became well

known that the black hole space-time can possess phase structures along

with the standard thermodynamic variables like temperature, entropy, etc.

Hence it causes to believe in the existence of a complete analogy between

black hole systems and non-gravitational thermodynamic systems. Var-

ious black hole thermodynamic variables and their properties have been

extensively studied. Thermodynamic stability of a black hole space-time

can be studied by investigating the behaviour of its specific heat or heat

capacity in the corresponding equilibrium phase space. It is well known

that the thermodynamic stability of the system is completely related to

the sign of heat capacity. If the heat capacity is positive, then the black

hole is stable and it is unstable when the heat capacity is negative in sign.

As an example, it is found that, for Schwarzschild black hole the heat

capacity is negative and hence thermodynamically unstable. Phase tran-

sition is an important phenomenon in thermodynamics, so it is natural to

look for the same in black hole thermodynamics. In 1983, Hawking and

Page [47] discovered the phase transition phenomena in the Schwarzschild

AdS background. This became a turning point in the study of black hole

phase transition. As a result of this many studies are done in the same

direction [48–56]. The phase transition is always identified with the sign

change of heat capacity or having infinite discontinuities at the critical

points in the heat capacity variation. Davies [57] argued that the point at

which the specific heat changes from positive to negative values through

an infinite discontinuity marks a phase transition, commonly referred to

as Davies phase transition. No laboratory is yet equipped with the tools
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necessary to probe the formation of a black hole in a phase transition of

thermal space-time [58], although such situations might have existed in

the very early universe. Here, we want to see how far our understanding

of more accessible physical systems can be applied to similar processes in

space-times.

1.4 Area spectrum and Entropy spectrum

of black holes

After the discovery of Hawking effect, it was widely believed that the

studies on black hole physics may shed light to formulating a quantum

theory of gravity. Bekesntein [59] was the first to begin the investigation

in this direction. He started his investigations based on the fact that,

classically, the horizon area of a non-extremal black hole behaves as an

adiabatic invariant quantity. From Ehrenfest’s principle, any classical adi-

abatic invariant quantity corresponds to a quantum variable with discrete

spectrum. As a result of these observations, Bekenstein concluded that

the horizon area of a non-extremal black hole must have a discrete spec-

trum. In order to construct the discrete area levels, Bekenstein found [41]

a lower bound for the increase in the black hole event horizon area as,

(∆A)min = 8π`2P , (1.50)

where `P = (
G~
c3

)1/2 is the Planck length. It is interesting enough to note

that the lower bound of the change in area does not depend on black hole

parameters. Hence it was considered as an evidence for equispaced area

spectrum devoid of black hole parameters of a quantum black hole.

These ideas put forwarded by Bekenstein became the corner stone of

the investigation in the direction of the calculations and derivations of the

area and hence the entropy spectrum of the black hole. Quasinormal mode
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(QNM) frequencies are known as the characteristic sound of the black hole.

Identifying the adiabatic invariant quantity from QNMs, Hod [60] derived

the area as well as entropy spectrum of black hole from QNMs. Hod

showed that in the case of Schwarzschild black hole, if one considers the

real part of the QNM frequency, it acts as an adiabatic invariant quantity

and it relates to the area spectrum of the black hole event horizon. Using

Bohr-Sommerfield quantization rule, given as,

Iadiabatic = n~ , (1.51)

he found that the area spectrum of Schwarzschild black hole is equispaced.

From this area spectrum one can arrive at the entropy spectrum of the

black hole by using the well known Bekenstein-Hawking area law as,

∆Sbh = ln 3 . (1.52)

Later Kunstatter [61] calculated the area spectrum of d-dimensional spher-

ically symmetric black holes by considering the explicit form of the adia-

batic invariant quantity as,

Iadiabatic =

∫
dE

∆ω(E)
, (1.53)

∆ω = ωn+1 − ωn , (1.54)

where E and ω are respectively energy and frequency of the QNM. He

obtained the area spectrum of the black hole by considering (1.51), and

that yields the same spacing obtained by Hod. In this work, Hod and

Kunstatter considered the real part of the QNM frequency to calculate the

area spectrum. Maggiore refined the idea proposed by Hod by providing a

new interpretation [62] where, black hole is found to behave like a damped

harmonic oscillator for which the physical frequency of QNM is determined

by its real and imaginary parts as,

ω =

√
ω2
R + ω2

I . (1.55)
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From this he derived the area spectrum which is consistent with that of the

relation obtained by Bekenstein earlier. These calculations directly affect

the studies on spectroscopic aspects of black holes. As a result, entropy

spectrum of many black holes have been calculated which include the

calculations for a most general black hole [63–65]. Hence it is found that

the quantization of entropy is more fundamental than the quantization of

area.

Recently Majhi and Vagenas [66] proposed a new method to quantize

the entropy. By relating an adiabatic invariant quantity to the Hamilto-

nian of the black hole, obtained an equally spaced entropy spectrum with

its quantum to be equal to the one obtained by Bekenstein. It is note-

worthy that in this proposal one need not relay on QNMs to calculate the

black hole area spectrum. Classically, general relativity gives the picture

of the black hole from which nothing, even light, can escape. This way

of picturing the black hole has been changed when Hawking discovered

the radiation from the black hole as a quantum effect. As a result of

intense research in this field, quantum mechanical tunneling picture was

treated as the source for Hawking radiation, where this picture resembles

that of electron-positron pair creation in a constant electric field. In this

tunneling picture, the black hole horizon can be assumed to oscillate peri-

odically when the particle tunnels in or out. Interestingly, this approach

follows Maggiore’s method in which the perturbed black hole behaves as

damped harmonic oscillator. In this tunneling picture, we begin with the

adiabatic invariant quantity of the form, which is basically the action of

the oscillating horizon,

I =

∫
pidqi , (1.56)

where pi is the corresponding conjugate momentum of the coordinate qi

and i = 0, 1 for which q0 = τ and q1 = rh. Here, τ represents the Eu-

clidean time and rh is the horizon radius. By implementing the Hamilton’s
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equation q̇i =
∂H

∂pi
, where H denotes the Hamiltonian of the system, which

acts as total energy for the black hole case, into (1.56), one can rewrite

the action as,

I =

∫
pidqi =

∫ ∫ H

0

dH ′dτ +

∫ ∫ H

0

dH ′

ṙh
drh = 2

∫ ∫ H

0

dH ′

ṙh
drh .

(1.57)

where ṙh = drh
dτ . In order to calculate the above adiabatic invariant quan-

tity, let us consider a static, spherically symmetric black hole solution, in

general given by,

ds2 = −N(r)2dt2 +
dr2

f(r)
+ r2dΩ2 . (1.58)

One can obtain rh, namely the black hole horizon radius from the relation

N(rh) = f(rh) = 0. To evaluate the integral (1.57), one must find the

oscillating velocity of the black hole horizon. In the tunneling picture,

when a particle tunnels in or out, the black hole horizon will expand or

shrink due to gain and loss of the black hole mass. Since the tunneling

and oscillation happen simultaneously, the tunneling velocity of particle

is equal and opposite to the oscillating velocity of the black hole horizon,

ṙh = −ṙ . (1.59)

In (1.57), τ denotes the Euclidean time, hence one has to Euclideanize the

metric given by (1.58), by introducing the transformation t→ −iτ . Then,

ds2 = N(r)2dτ2 +
dr2

f(r)
+ r2dΩ2 . (1.60)

Now, when a photon travels across the black hole horizon, the radial null

path, often called as radial null geodesic (ds2 = 0 and dΩ2 = 0)is given

by,

ṙ =
dr

dτ
= ±i

√
N (r)2 f (r) , (1.61)
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where the positive sign denotes the outgoing radial null paths and nega-

tive sign represents the incoming radial null paths. Among these we will

consider the outgoing paths for area spectrum calculations, since these

paths are more related to the quantum behaviours under consideration.

Hence the shrinking velocity of the black hole horizon is,

ṙh = −ṙ = −i
√
N (r)2 f (r) . (1.62)

Then, (1.57) is now read off,∫
pidqi = −2i

∫ ∫ H

0

dH ′√
N (r)2 f (r)

dr . (1.63)

To find this adiabatic invariant quantity, one has to execute this integra-

tion by determining N (r)2 and f (r). To perform the τ integration, one

has to consider the periodicity of τ given as
2π

κ
, where κ is the surface

gravity which in turn is given by,

κ =
1

2

√
N ′ (r)2 f (r) . (1.64)

Since we rely on outgoing paths, the integration limit for τ will be, 0 ≤
τ ≤ π

κ . Now from Hawking’s discovery on temperature of the black holes,

we know that temperature of the black hole is proportional to the surface

gravity as,

TH =
~κ
2π

. (1.65)

Along with these findings, one can directly apply Bohr-Sommerfiled quan-

tization rule to this scenario and that will lead to the area spectrum and

eventually the entropy spectrum of the black hole. Many black hole sys-

tems are analyzed using these tunneling picture which is free from QNM

calculations and the results obtained were in good agreement with the

Bekenstein’s original proposal.
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The studies related to this proposal proved that, the proposed adia-

batic invariant quantity Iadiabatic =
∫
pidqi apparently depends on the

choice of coordinates. As a result, the area spectrum as well as the entropy

spectrum spacing changes with respect to the change in coordinate trans-

formations. To account for this discrepancy, Akhmedova [67–71], Jiang

and Han [72] proposed and argued that the closed contour integral
∮
pidqi

is invariant under coordinate transformations and hence the adiabatic in-

variant quantity must be of the covariant form,

I =

∮
pidqi (1.66)

Here the closed contour integral can be considered as a closed path that

goes from qouti (outside the event horizon) to qini (inside the event horizon).

That is,

I =

∮
pidqi =

∫ qouti

qini

pouti dqi +

∫ qini

qouti

pini dqi. (1.67)

Here pini or pouti is the conjugate momentum corresponding to the coordi-

nate qini or qouti , respectively, and i = 0, 1, 2... It is also to be considered

that qin1 = rinh (qout1 = routh ) and qin0
(
qout0

)
= τ where rh is the horizon

radius and τ is the Euclidean time with a periodicity
2π

κ
in which κ is

the surface gravity. Proceeding the tunneling method using this covariant

action, one can arrive at the area spectrum of the black hole. Using this,

the black hole spectroscopy is quantized independently of the choice of

coordinate transformations.

In this thesis, we adopted this method to calculate the area as well as

the entropy spectrum of the black holes in modified theories of gravity.



26 Introduction

1.5 Thermodynamics Geometry and

Geometrothermodynamics

Thermodynamics describes how systems respond to the thermal changes

occurring in their surroundings. The ideas gained by the people about

thermodynamics are codified in terms of four laws. One can apply these

laws to a wide variety of systems in physics which include black holes too!

In spite of the generality of these laws, some aspects of thermodynamics

remain to be uncertain and are not evident in the classical description,

as for example the non-extensive systems in thermodynamics. Answering

these anomalies was a challenging problem for the scientific community.

For this purpose, the ideas of differential geometry is incorporated with

ordinary thermodynamics. Gibbs [73] and Caratheodory [74], followed

by Hermann [75] and later by Mrugala [76, 77], proposed a differential

geometric approach to study the ordinary thermodynamics of different

systems based on the contact manifold of the thermodynamic phase space

T . This space is a (2n+1) dimensional phase space and they are coordina-

tized by the thermodynamic potential Φ along with n extensive variables

Ea and their corresponding n dual intensive variables Ia.

The first attempt to describe the thermodynamic systems in terms of

differential geometry was done by Weinhold [78]. Later in 1979 Ruppeiner

[79] proposed a new way of exploring the thermodynamics of a system us-

ing the Riemannian geometry ideas. In this geometric theory, he included

the theory of fluctuations in to the propositions of equilibrium thermody-

namics. Using this language the thermodynamic equilibrium states that

can be represented as points in a two dimensional manifold and the dis-

tance between these states or between these points, are related to the

thermodynamic fluctuations existing in the systems. These ideas are di-

rectly related to the probability, if the thermodynamic fluctuation between
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different states is less probable, then the distance between these points in

the equilibrium manifold are far apart. So, the line element or the distance

between two equilibrium states can be written as,

ds2 = gijdx
idxj , (1.68)

where gij is the symmetric metric tensor. The Ruppeiner metric defined

on the thermodynamic phase space is written as,

gRij = −∂i∂jS(M,Na) , (1.69)

where S is the entropy, M represents the energy or mass of the system and

Na are other extensive variables which characterizes the thermodynamic

system. Extensive variables in a system should satisfy the definition of

extensivity [145, 146]: Given a system of n particles and a joint physical

observable X(x1, ........, xn) of the individual states of the particles, we say

that X is (asymptotically) extensive if,

lim
n→∞

X(n)

n
<∞ .

The thermodynamic geometry defined through the Ruppeiner metric phys-

ically describes the thermodynamic fluctuation theory in equilibrium man-

ifold. Then it follows that, the thermodynamic interaction of the system

can be studied using the curvature of the thermodynamic geometry. If

the Ruppeiner geometry is flat, then one can arrive at a conclusion that

the underlying system undergoes no thermodynamic interactions at all.

Hence any curvature in the geometry in turn indicates the interaction of

the system. He proved in the case of ideal gas that, if the thermodynamic

curvature vanishes then it corresponds to the absence of thermodynamic

interactions. In Weinhold’s method, he introduced a metric on the space

of equilibrium states whose components are given as the Hessian of the

internal energy of the thermodynamic system under consideration as,

gWij = −∂i∂jM(S,Na) , (1.70)
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similar to the Ruppeiner geometry, here M represents the energy or mass

of the system, S is the entropy and Na are other extensive variables which

constitutes the thermodynamic system. Interestingly, one can conclude

that the Weinhold geometry is conformally related to the Ruppeiner ge-

ometry as,

ds2
R =

1

T
ds2
W , (1.71)

A number of investigations have been done to analyze the thermodynamic

geometry of various thermodynamic systems. The Weinhold and Rup-

peiner geometries have been used to analyze several black hole systems to

explain the thermodynamic interactions as well as abnormalities [80–90].

According to Davies: “The phenomenon which occurs at the critical

values of α and β may be then classified as a second order phase transition.

Such a transition is characterized by continuity of G and its first deriva-

tives, but a discontinuity in the second derivatives, e.g. heat capacity”.

This argument resembles Ehrenfest’s classification scheme (discussion is

included in chapter 4), but it is not treated as the standard definition in

the modern treatments of thermodynamics [91, 92]. On the other hand,

the points where heat capacities diverge or change sign from positive to

negative through a zero are the points where the thermodynamic potential

changes the concavity. At these points the local conditions of equilibrium

fail. Now one can’t expect that by means of the tools of thermodynamic

geometry that apply to ordinary systems would recover the correct re-

sults for black hole thermodynamics (as for any thermodynamic systems

with long-range interactions). This can perhaps explain the ambiguous

results obtained from Weinhold and Ruppeiner metrics [93–96] for black

hole phase transitions. Geometrothermodynamics (GTD) [97–99] is the

latest attempt in this direction. This new method describes the phase

transitions of a thermodynamic system by incorporating the ideas of dif-

ferential geometry and Legendre invariance. Then it is proposed that [100]
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from the the GTD program, one which has been shown in the literature

to apply to the case of black holes [98, 101–103], could be the exact one

to account for the transitions that emerge in the case of “non-extensive”

systems (thermodynamics is ensemble dependent). In GTD the main re-

quirement for defining a Riemannian metric on the thermodynamic phase

space is that it must satisfy the condition of Legendre invariance. So we

have many possibilities of constructing such a metric with these salient

features. In general the Legendre invariant metrics found so far can be

classified in to three classes each can be used to describe thermodynamic

systems with particular phase transitions [104]. Here we are consider-

ing systems with second order phase transitions. In GTD method one

can consider the curvature singularities as the phase transition points and

hence the system interactions can be explained well. The order of phase

transition can be determined using the GTD program since they are found

in agreement with Davies’ phase transitions structure [105].

The main constituent of GTD is a (2n+ 1) dimensional manifold, usu-

ally referred to as thermodynamic phase space (T ). Let the thermody-

namic phase space T be coordinatized by the thermodynamic potential Φ,

extensive variables Ea, and their dual intensive variables Ia (a = 1, ..., n).

Let the fundamental Gibbs 1-form be defined on T as,

Θ = dΦ− δabIadEb, (1.72)

where δab = diag(1, 1, ..., 1). The pair (T ,Θ) is called a contact manifold

[75] if the phase space T is differentiable and Θ satisfying the condition

Θ ∧ (dΘ)n 6= 0. Now let us consider the Riemannian metric on the ther-

modynamic phase space T as,

G = (dΦ− δabIadEb)2 + (δabE
aIb) (δcddE

cdId). (1.73)

This metric is non-degenerate and are invariant with respect to the Leg-



30 Introduction

endre transformations defined by [106, 107],

{Φ, Ea, Ia} −→ {Φ̃, Ẽa, Ĩa} , (1.74)

Φ = Φ̃− δklẼkĨ l , Ei = −Ĩi, Ej = Ẽj , Ii = Ẽi, Ij = Ĩj , (1.75)

where i ∪ j is any disjoint decomposition of the set of indices {1, ..., n}
and k, l = 1, ..., i. In particular, for i = {1, ..., n} and i = ∅ we obtain the

total Legendre transformation and the identity, respectively. We say that

the set (T ,Θ, G) defines a Legendre invariant manifold with a contact

Riemannian structure.

The space of thermodynamic equilibrium states is an n−dimensional

Riemannian submanifold, known as equilibrium manifold, E ⊂ T induced

by a smooth mapping ϕ : E −→ T , i.e. ϕ : (Ea) −→ (Φ, Ea, Ia) with

Φ = Φ(Ea) such that,

ϕ∗(Θ) = 0 , ϕ∗(G) = g = Φ
∂2Φ

∂Ea∂Eb
dEadEb , (1.76)

where ϕ∗ represents the pullback of ϕ and g is the Riemannian metric

induced on E . This implies the relationships,

dΦ = δabI
adEb ,

∂Φ

∂Ea
= δabI

b , (1.77)

which correspond to the first law of thermodynamics and the standard

conditions for thermodynamic equilibrium, respectively [91]. The metric

g on E is Legendre invariant because it is induced by a smooth mapping

from the Legendre invariant metric G of T . To distinguish between the

thermodynamic systems in the space of equilibrium states E , one must

specify the fundamental equation, which contained in the embedded map-

ping, {Φ, Ea, Ia} −→ {Φ̃, Ẽa, Ĩa} through the relation Φ = Φ(Ea). All

geometric properties of the equilibrium manifold are determined by this

fundamental equation. This construction is complimented with the second
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law of thermodynamics through the convexity condition [108, 109],

∂2Φ

∂Ea∂Eb
≥ 0 . (1.78)

In general, the thermodynamic potential must satisfy the homogeneity

condition, Φ(λEa) = λβΦ(Ea) for constant parameters λ and β. Using

the first law of thermodynamics, it can easily be shown by differentiating

this condition with respect to λ, that this homogeneity is equivalent to

the relationships,

β Φ(Ea) = δabI
bEa , (1− β) δabI

adEb + δabE
adIb = 0 , (1.79)

which are known as Euler’s identity and Gibbs-Duhem relation, respec-

tively. It is interesting to be note that the metric g given in (1.76) is not

the unique Legendre invariant choice, instead there exist an infinite num-

ber of Legendre invariant metrics on E . Hence the general GTD metric

defined on the equilibrium manifold can be written from the pull back ϕ∗

to the metric (1.73) as,

gGTD = ϕ∗(G) =

(
Ec

∂Φ

∂Ec

)(
ηabδ

bc ∂2Φ

∂Ec∂Ed
dEadEd

)
, (1.80)

which depends only on the fundamental potential Φ = Φ(Ea), where

ηab=diag(-1,1,1,..,1) .

One can study the equilibrium space of different black hole systems us-

ing the GTD formalism where one can construct a thermodynamic metric

from (1.80) using different thermodynamic potential corresponding to the

same system. Like Ruppeiner and Weinhold constructions, the thermody-

namic interaction can be reflected from the curvature of the above defined

metric. So the curvature reproduces the main thermodynamic properties

of the system. The free of singularities in thermodynamic curvature de-

scribed in GTD is interpreted as a consequence of the non-existence of
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singular points at the level of the heat capacity, indicating that no (sec-

ond order) phase transitions occur. It turns out that these results coincide

with the predictions of ordinary black hole thermodynamics as proposed

by Davies [57]. On the other hand, the existence of singular point or the

infinite discontinuities in the level of heat capacity represents the possi-

bility of second order phase transition. This information is coded on the

curvature of the corresponding GTD metric used to describe the system.

1.6 Outline of the thesis

In this thesis we study the thermodynamics, spectroscopy and geometrother-

modynamics of different black holes in modified theories of gravity, partic-

ularly in Hořava-Lifshotz gravity and Massive gravity. In Chapter 2, we

discuss the thermodynamics of different black hole solutions in these the-

ories like Kehagias-Sfetsos, Lü-Mei-Pope, Park solution, dRGT black hole

and (2+1) BTZ black hole. Their thermodynamic properties have been

analyzed in detail with a special emphasis on phase transitions shown by

these black holes.

The entropy spectrum of these black hole solution have been analyzed

in Chapter 3 by adopting the method suggested by Majhi, Vagenas,

Jiang and Han by incorporating the ideas form adiabatic invariance, tun-

neling mechanism, Bohr-Sommerfeld quantization rule and near horizon

approximations.

Chapter 4 is devoted for the discussion of the new geometric ap-

proach, geometrothermodynamics, as applied for the case of black holes

mentioned earlier. Phase transition structure of these black holes and ab-

normal behaviours exhibited by different thermodynamic potentials are

studied here.

Chapter 5, is devoted to the conclusions of the present work.
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Thermodynamic properties of Black holes have been studied intensely

since Bekenstein’s work [41] appeared in 1973. In that study, Bekenstein

proposed a conjecture between entropy and black hole event horizon area

that the black hole entropy is proportional to the area of its event horizon

divided by the Planck area. Now the subject has grown very rich. In

this chapter we discuss the thermodynamic properties of black hole solu-

tions explicitly in both Hořava-Lifshitz gravity and Massive gravity, with

a special emphasis on phase transitions exhibited by black hole solutions

in these gravity models. Studying the variation of temperature, mass and

heat capacity of these black hole systems will add informations to the un-

derstandings of these theories. According to the ideas of Davies’ phase

transition picture [57], the transition from a positive heat capacity phase

to a negative heat capacity phase or vice versa indicates a thermodynamic

phase transition. Here we will consider different black hole solutions in

these theories and will explore their phase transition behaviour.

33
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2.1 Black holes in Hořava-Lifshitz gravity

Recently, a field theoretic model that can be interpreted as a complete

theory of gravity in the ultraviolet (UV) limit was recently proposed by

Hořava [10–12]. The model is renormalizable and non-relativistic in the

UV regime. Moreover, in the infrared (IR) limit it can be reduced to

Einstein’s general theory of relativity with a cosmological constant. Due

to the intense study in this field, different black hole solutions have been

proposed and analyzed. In this chapter, we will discuss three kinds of

black hole solutions, namely Kehagias-Sfetsos (KS) [110] black hole, Lü-

Mei-Pope (LMP) [111] black hole and Park black hole [112].

Kehagias-Sfetsos black hole

In Hořava-Lifshitz gravity theory, Hořava used the idea of ADM formalism

and arrived at the action as,

S =

∫
dt d3x

√
gN
{ 2

κ2

(
KijK

ij − λK2
)
− κ2

2w4
CijC

ij

+
κ2µ

2w2
εijkR

(3)
i` ∇jR

(3)`
k −

κ2µ2

8
R

(3)
ij R

(3)ij

+
κ2µ2

8(1− 3λ)

(
1− 4λ

4
(R(3))2 + ΛWR

(3) − 3Λ2
W

)
+ µ4R(3)

}
.

We will now consider the limit of this theory as ΛW → 0 . In this particular

limit, the theory will reduce to,

S =

∫
dt d3x

√
gN
{ 2

κ2

(
KijK

ij − λK2
)
− κ2

2w4
CijC

ij

+
κ2µ

2w2
εijkR

(3)
i` ∇jR

(3)`
k −

κ2µ2

8
R

(3)
ij R

(3)ij

+
κ2µ2

8(1− 3λ)

1− 4λ

4
(R(3))2 + µ4R(3)

}
. (2.1)
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For spherically symmetric, static solution of HL gravity, let us consider

the line element,

ds2 = −N(r)2dt2 +
dr2

f(r)
+ r2dΩ2 . (2.2)

Substituting this metric ansatz in (2.1) and after angular integration, the

Lagrangian will reduce to,

L̃ =
κ2µ2N

8 (1− 3λ)
√
f

{λ− 1

2
f ′2 +

(2λ− 1) (f − 1)2

r2

−2λ (f − 1)

r
f ′ − 2ω

(
1− f − rf ′

)}
, (2.3)

where,

ω =
8µ2 (3λ− 1)

κ2
. (2.4)

Now the equations of motions are,

(2λ− 1)
(f − 1)2

r2
− 2λ

f − 1

r
f ′ +

λ− 1

2
f ′2 − 2ω(1− f − rf ′) = 0 ,(

log
N√
f

)′{
(λ− 1)f ′ − 2λ

f − 1

r
+ 2ωr

}
+

(λ− 1)

(
f ′′ − 2(f − 1)

r2

)
= 0 . (2.5)

For the λ = 1 (ω = 16µ2κ2) case, by solving the field equations, one can

obtain the asymptotically flat, space-time,

N2 = fKS = 1 + ωr2 −
√
r(ω2r3 + 4ωM) , (2.6)

where M is an integration constant. The black hole described by the met-

ric function (2.6) is called the Kehagias-Sfetsos (KS) black hole solution

[110].

Now we will investigate the thermodynamic properties of KS black

hole. From the condition fKS(r±) = 0, the outer and inner horizons are
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given by,

r± = M ±
√
M2 − 1

2ω
. (2.7)

By considering r+ from (2.7), we can establish a connection between mass

of the black hole and its horizon radius as,

M =
r+

2
+

1

4ωr+
. (2.8)

By employing the Bekenstein-Hawking area law, we can write entropy S

as,

S =
A

4
= πr2

+ . (2.9)

and hence,

r+ =

√
S

π
. (2.10)

Therefore, we can rewrite the mass-horizon radius (2.8) as,

M =
1

4ω

√
π

S
+

1

2

√
S

π
. (2.11)

Now from the classical thermodynamic relations, temperature and specific

heat are defined respectively as,

T =

(
∂M

∂S

)
, (2.12)

C = T

(
∂S

∂T

)
. (2.13)

Then, from these equations, we can have the black hole temperature as,

T =
1

4
√
πS
−
√
π

8ωS
3
2

. (2.14)

and the heat capacity of the black hole as,

C = −
(

4ωS2 − 2πS

2ωS − 3π

)
. (2.15)
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Figure 2.1: Variation of temperature with entropy of KS black hole for
different values of ω.
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Figure 2.2: Variation of specific heat with entropy of KS black hole for
different values of ω. (variation of specific heat for the smaller values of
entropy is shown in the box at top right corner.)
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In fig.(2.1), variation of temperature with respect to entropy is plotted

while in fig.(2.2), the variation of heat capacity with respect to entropy

for the different values of ω is plotted. From fig.(2.1), we can note that

for each values of the system parameter ω, temperature exhibits anoma-

lous behaviour by entering in to a negative temperature region for small

values of entropy. On the other hand temperature become positive for

S > 3π
2ω . Studying the heat capacity of the system will give information

about the phase transition structure of the system. In fig.(2.2), there is

a discontinuity in the plot, which shows that black hole may undergo a

phase transition. Heat capacity is an important thermodynamic quan-

tity because from that we can tell about the stability of the black hole.

From (2.15) it is evident that the heat capacity is positive for a range
π
2ω < S < 3π

2ω . Hence, a KS black hole is stable for this range of values of S

and for the rest of entropy values, i.e., S > 3π
2ω , the black hole is unstable.

We have studied the thermodynamic properties of KS black hole in

Hořava-Lifshitz gravity and found that they are thermodynamically sta-

ble for a certain range of values of the entropy. From the behaviour of

heat capacity of the black hole, it is interesting to note that the black

hole undergoes an infinite discontinuity transition from thermodynami-

cally stable phase to unstable phase as we probe for different values of

entropy. The order of this phase transition can not be confirm using this

thermodynamic approach.

Lü-Mei-Pope black hole

The action of the theory given in (2.1) can be rewritten as,

S =

∫
dtd3x (L0 + L1) , (2.16)

L0 =
√
gN

{
2

κ2
(KijK

ij − λK2) +
κ2µ2(ΛWR− 3Λ2

W )

8(1− 3λ)

}
, (2.17)
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L1 =
√
gN
{κ2µ2(1− 4λ)

32(1− 3λ)
R2− κ2

2w4

(
Cij −

µw2

2
Rij

)(
Cij − µw2

2
Rij
)}

,

(2.18)

where λ , κ , µ , w and ΛW are usual constant parameters in the theory, and

Cij is the Cotton tensor. We now consider the equations of motion for

the action (2.18). Different equation of motion describing the system is

obtained by varying this action with respect to N , δN i and δgij . As the

first case, let us consider the equation following from the variation of N ,

given as,

2

κ2
(KijK

ij − λK2)−
κ2µ2(ΛWR− 3Λ2

W )

8(1− 3λ)

−κ
2µ2(1− 4λ)

32(1− 3λ)
R2 +

κ2

2w4
ZijZ

ij = 0 , (2.19)

where,

Zij ≡ Cij −
µw2

2
Rij . (2.20)

The variation δN i implies,

∇k(Kk` − λKgk`) = 0 . (2.21)

The equations of motion due to the variation of δgij are more complicated;

they are given by,

2

κ2
E

(1)
ij −

2λ

κ2
E

(2)
ij +

κ2µ2ΛW
8(1− 3λ)

E
(3)
ij +

κ2µ2(1− 4λ)

32(1− 3λ)
E

(4)
ij

−µκ
2

4w2
E

(5)
ij −

κ2

2w4
E

(6)
ij = 0 , (2.22)
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where

E
(1)
ij = Ni∇kKk

j +Nj∇kKk
i −Kk

i∇jNk −Kk
j∇iNk −Nk∇kKij

−2NKikKj
k − 1

2
NKk`Kk` gij +NKKij + K̇ij ,

E
(2)
ij =

1

2
NK2gij +Ni∂jK +Nj∂iK −Nk(∂kK)gij + K̇ gij ,

E
(3)
ij = N(Rij −

1

2
Rgij +

3

2
ΛW gij)− (∇i∇j − gij∇k∇k)N ,

E
(4)
ij = NR(2Rij −

1

2
Rgij)− 2

(
∇i∇j − gij∇k∇k

)
(NR) ,

E
(5)
ij = ∇k

[
∇j(NZk i) +∇i(NZk j)

]
−∇k∇k(NZij)−∇k∇`(NZk`)gij ,

E
(6)
ij = −1

2
NZk`Z

k`gij + 2NZikZ
k
j −N(ZikC

k
j + ZjkC

k
i ) +NZk`C

k`gij

−1

2
∇k
[
Nεmk`(ZmiRj` + ZmjRi`)

]
+

1

2
Rn`∇n

[
Nεmk`(Zmigkj + Zmjgki)

]
−1

2
∇n
[
NZ n

m ε
mk`(gkiRj` + gkjRi`)

]
−1

2
∇n∇n∇k

[
Nεmk`(Zmigj` + Zmjgi`)

]
+

1

2
∇n
[
∇i∇k(NZ n

m ε
mk`)gj` +∇j∇k(NZ n

m ε
mk`)gi`

]
+

1

2
∇`
[
∇i∇k(NZmjεmk`) +∇j∇k(NZmiεmk`)

]
−∇n∇`∇k(NZ n

m ε
mk`)gij . (2.23)

Now we will look for a static and spherically symmetric solution with the

metric,

ds2 = f(r)dt2 − dr2

f(r)
− r2dΩ2 . (2.24)

In the present study we are interested in the solution with the choice λ = 1

in (2.18). This will lead to the Lü-Mei-Pope (LMP) black hole solution

[111], given by,

f(r) = k − ΛW r
2 −A

√
r

−ΛW
. (2.25)
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where A is an integration constant and is related to the black hole mass as

A = aM. It is interesting to note that this solution (2.25) is asymptotically

AdS4.

We will dig in to the details of the thermodynamic properties of this

system. From the first law of black hole mechanics [46], when a black

hole undergoes a change, from a stationary state to another, the change

in mass of the black hole is given by,

dM =
κ

8π
dA+ Ω dJ + Φ dQ . (2.26)

Comparing this with the first law of thermodynamics,

dM = T dS + Ω dJ + Φ dQ, (2.27)

one can easily establish the analogy between black hole mechanics and

the first law of thermodynamics. We know that Hořava-Lifshitz theory

does not possess the full diffeomorphism invariance of general relativity

but only a subset in the form of local Galilean invariance. This subset

is manifest in the Arnowitt, Deser and Misner (ADM) slicing. Here we

have considered the ADM decomposition of the four dimensional metric.

Then for a non-rotating uncharged black hole, the entropy can be written

as [113],

S =

∫
dM

T
=

∫
1

TH

∂H

∂rh
drh, (2.28)

where H denotes the enthalpy and rh denotes the horizon radius. The

Hawking temperature can be determined from,

TH =
κ

2π
=

1

4π
f ′(r)

∣∣∣∣
r=rh

, (2.29)

and,

TH =

(
∂H

∂S

)
P

, (2.30)
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where P is the pressure and it is related to the Hawking temperature and

entropy as,

P =
1

2
THS. (2.31)

Hence the volume of the black hole is given by,

V =

(
∂H

∂P

)
S

. (2.32)

The heat capacity at constant pressure and at constant volume can be

obtained respectively as,

CP = T

(
∂S

∂T

)
P

, (2.33)

and,

CV = CP + V
∂P

∂T
. (2.34)

Using these relations we can calculate the thermodynamic quantities of the

LMP black holes in arbitrary space curvature. In the cases of spherical

(k = 1) and flat spaces (k = 0), detailed studies are done in [114]. And

it is noted that, in both cases the black hole doesn’t show any kind of

phase transition behaviors. Hence we are interested in the LMP black

hole solution in Hyperbolic space (k = −1). In this case, (2.25) can be

reduced to,
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Figure 2.3: 3D Plot of Mass of the LMP black hole with rh and ΛW as
varying parameters.

f(r) = −1− ΛW r
2 −A

√
r

−ΛW
. (2.35)

The event horizon can be obtained from f(rh) = 0, and from that one can

easily arrive at the black hole mass-event horizon radius relation as,

M =
1

a

√
−ΛW
rh

(
−1− ΛW r

2
h

)
. (2.36)

In fig.(2.3) we draw the 3D plot of variation of black hole mass with respect

to black hole horizon radius for different cosmological constant term (ΛW ).

From this figure it can be easily seen that the black hole mass increases

with increase in the magnitude of the cosmological constant.
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Figure 2.4: 3D Plots of temperature of the LMP black hole with rh and
ΛW as varying parameters.

Black hole entropy can be obtained from (2.28) as,

S =
8π
√
−ΛW
a

. (2.37)

From (2.29) we can derive the Hawking temperature as,

TH =

(
1− 3ΛW r

2
h

)
8πrh

. (2.38)

3D plot of Hawking temperature with respect to black hole horizon ra-

dius for varying cosmological constant term is depicted in fig.(2.4). Here

also the temperature increases with the magnitude of the cosmological

constant. From (2.31), black hole pressure can be found as

P =
21rh

(
1− 3ΛW r

2
h

)
64

. (2.39)
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From the above expression, it is obvious that for any negative value of

the cosmological constant term ΛW , the pressure is found to be positive.

Using (2.32), black hole volume is given by,

V =
32
√
−ΛW

21a r
3/2
h

(
1− 3ΛW r

2
h

)(
1− 9ΛW r

2
h

) . (2.40)

Figure 2.5: 3D Plots of heat capacity of the LMP black hole with rh and
ΛW as varying parameters.

Using (2.33) and (2.34), the heat capacity at constant pressure and at

constant volume are respectively determined as,

CP =
4π
√
−ΛW rh
a

(
3ΛW r

2
h − 1

)(
3ΛW r

2
h + 1

) (2.41)

and

CV =
8π
√
−ΛW rh
a

(
3ΛW r

2
h − 1

)(
3ΛW r

2
h + 1

) (2.42)
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In fig.(2.5) we draw the 3D variations of heat capacity at constant pressure

with respect to horizon radius and for varying cosmological constant term.

From the figure, it is evident that the black hole has both positive and

negative values in certain parametric regions. It is also clear from the

figure that, heat capacity has a divergent point. According to Davies

[57], phase transitions take place at those points where the heat capacity

diverges. So LMP black hole undergoes a phase transition in this case. By

investigating the free energy of the black hole we can get further details

of the phase transition picture.

-80 -60 -40 -20
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Figure 2.6: Parametric plot of free energy and temperature for ΛW = −1,
a = 1

Free energy of the black hole is given by,

F = M − TS. (2.43)

Using (2.36), (2.37) and (2.38), the free energy of LMP black hole is
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obtained as,

F =
1

a

√
−ΛW
rh

(
2(1− ΛW r

2
h)(1− 9ΛW r

2
h) + (3ΛW r

2
h − 1)2

2(9ΛW r
2
h − 1)

)
. (2.44)

From above equation one can infer that, free energy is negative for both

large and small black holes. Small black holes exhibits negative specific

heat and negative free energy, indicating their instability to both per-

turbative and non-perturbative fluctuations. On the other hand, large

black hole have positive specific heat and negative free energy indicating

their instability to thermal fluctuations. Now one can plot the parametric

variation of free energy and temperature using (2.44) and (2.38). From

fig.(2.6), it is evident that there is a cusp like double point (at T = 0.135,

where rh = 0.5742). This indicates the existence of phase transition. For

one of the branches, the free energy decreases and reaches the temperature

which corresponds to the minimum free energy. Thereafter, free energy

increases with a different slope.
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Figure 2.7: Isotherm P − V diagram

For LMP black hole case, since we have defined and calculated pres-

sure and volume, let us connect them through the equation of state and

will check whether they have any resemblance with usual thermodynamic

systems. An equation of state in general is a thermodynamic equation

describing the state of matter under a given set of physical conditions.

It is a constitutive equation which provides a mathematical relationship

between two or more state functions associated with the matter, such as

temperature, pressure, volume, or internal energy and black hole equation

of state can be obtained from (2.39), (2.40) and (2.38) as,

PV
4
3 =

4πT

3

√
32

63

−ΛW
a2

. (2.45)

Here, P is the the pressure, V is the thermodynamic volume and T is

the black hole temperature. Now, we plot the isotherm P − V diagram in

fig.(2.7). From (2.45) and the corresponding fig.(2.7) we can conclude that
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the behaviour resembles the adiabatic expansion of an ideal gas. Hence

no critical point can be found and there would be no P −V criticality. We

have systematically analyzed the thermodynamics and phase transition

structure of the LMP black hole. From this thermodynamic study, ab-

sence of any discontinuity in entropy-temperature relationship eliminates

the presence of any first order transition. Whereas the heat capacity of

the system is found to be diverging, thereby indicating the presence of a

phase transition. But the exact order of phase transition is not revealed.

Further studies are needed to get the exact picture. We will address these

issues in chapter 4 by analysing the black hole system using geometrother-

modynamics formalism.

Park black hole

In this section, we consider the black hole solutions in the generalized

model with the IR modification term µ4R(3) but with an “arbitrary” cos-

mological constant in the Hořava gravity. These solutions are analogues

to the Schwarzschild-(A)dS solutions in Einstein’s general relativity which

have been absent in the original Hořava model. By introducing an IR

modification term, the modified action can be written as,

S =

∫
dtd3x

√
gN [

2

κ

(
KijK

ij − λK2
)
− κ2

2ν4
CijC

ij

+
κ2µ

2ν2
εijkR

(3)
il ∇jR

(3)l
k − κ2µ2

8
R

(3)
ij R

(3)ij +
κ2µ2ω

8(3λ− 1)
R(3)

+
κ2µ2

8(3λ− 1)

(
4λ− 1

4
(R(3))2 − ΛWR

(3) + 3Λ2
W

)
, (2.46)

where Kij and Cij are the extrinsic curvature and the Cotton tensor, re-

spectively. In the action, κ, ν, µ, λ,ΛW , ω are constant parameters. The

last term in (2.46) represents a soft violation of the detailed balance con-

dition [10]. For static and spherically symmetric solution, substituting the
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metric ansatz as,

ds2 = −N(r)2dt2 +
dr2

f(r)
+ r2

(
dθ2 + sin2 θdφ2

)
, (2.47)

in the action (2.46) and after angular integration, we obtain the La-

grangian as,

L =
κ2µ2

8(1− 3λ)

N√
f

[(2λ− 1)
(f − 1)2

r2
− 2λ

f − 1

r
f ′

+
λ− 1

2
f ′2 − 2(ω − ΛW )(1− f − rf ′)− 3Λ2

W r
2]. (2.48)

Kehagias and Sfetsos [110] obtained only the asymptotically flat solution

(with ΛW = 0) while Mu-In Park [112] considered an arbitrary ΛW and

obtained a general solution. The equation of motion of this system can

be calculated by varying the lapse function, N ,

(2λ− 1)
(f − 1)2

r2
− 2λ

f − 1

r
f ′ +

λ− 1

2
f ′2

−2(ω − ΛW )(1− f − rf ′)− 3Λ2
W r

2 = 0, (2.49)

and by varying f ,(
N√
f

)′(
(λ− 1)f ′ − 2λ

f − 1

r
+ 2(ω − ΛW )r

)
+(λ− 1)

N√
f

(
f ′′ − 2(f − 1)

r2

)
= 0. (2.50)

By choosing λ = 1 and solving these field equations, we arrive at the Park

solution [112],

N2 = fPark = 1 + (ω − ΛW )r2 −
√
r[ω(ω − 2ΛW )r3 + β], (2.51)

where β is an integration constant which is related to the black hole mass.

Now let us consider the asymptotically dS case of Park solution. In this
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case, the action is given by an analytic continuation [111] of the action

given in (2.46) ,

µ→ iµ, ν2 → −iν2, ω → −ω. (2.52)

From (2.51), for r � [β/|ω(ω − 2ΛW )|]1/3, i.e., considering assymptoti-

cally de Sitter case with ΛW > 0 and ω < 0, we can arrive at,

f = 1− ΛW
2

∣∣∣∣ΛWω
∣∣∣∣ r2 − 2M√

1 + 2|ΛW /ω|
1

r
+O(r−4). (2.53)

When we compare (4.3) with the Schwarzschild-dS solution

f = 1− ΛW
2
r2 − 2M

r
, (2.54)

we can see that it agrees up to some numerical factor corrections. In the

coming sections we will investigate more about this agreement.

In order to explore the thermodynamics of Park black hole, let us

consider (4.3). In general dS solution has two horizons. Larger one, r++

corresponding to the cosmological horizon and the smaller one, r+ for the

black hole horizon. By considering this black hole horizon, we can arrive

at a relation which connects mass and horizon radius of the black hole,

M =
1 + 2(ω − ΛW )r2

+ + Λ2
W r

4
+

4ωr+
. (2.55)

Then from the usual definition of temperature in thermodynamics, we can

obtain the temperature of the black hole with ΛW > 0 and ω < 0 as,

T =
3Λ2

W r
4
+ + 2(ω − ΛW )r2

+ − 1

8πr+(1 + (ω − ΛW )r2
+)

. (2.56)
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Figure 2.8: Variation of temperature with horizon radius for different
values of ω with ΛW = 0.0001.

We have plotted the variation of black hole temperature against the

horizon radius in fig.(2.8). From this plot it is evident that there is an

infinite discontinuity in temperature. It occurs at,

r̃+ =
1√

ΛW − ω
. (2.57)
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Figure 2.9: Variation of specific heat with horizon radius for different
values of ω with ΛW = 0.0001.

Interestingly for the region r+< r̃+, the temperature is found to be

negative. The heat capacity of the black hole is given by,

C =
1

128π3r4
+((ΛW − ω)r2

+ − 1)3
[(ΛW r

2
+ − 1)3(9Λ2

W r
4
+ − 1)

+ 3r2
+(1 + ΛW r

2
+(8− 6ΛW r

2
+ − 3Λ3

W r
6
+))ω

− 12r4
+(1 + ΛW r

2
+)ω2 + 4r6

+ω
3]. (2.58)

Variation of heat capacity with respect to the black hole horizon r+ for

different values of coupling parameters are plotted in fig.(2.9). From this

we can see that specific heat undergoes a transition from negative values to

positive values or in other words black hole changes from a thermodynami-

cally unstable phase to a thermodynamically stable phase. By looking and

comparing the two figures, fig.(2.8) and fig.(2.9), we can straightaway say

that in the region where temperature shows the anomalous behaviour due

to its negative values, the black hole is found to be thermodynamically
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unstable as its heat capacity is negative. Now for a Schwarzschild-dS black

hole, from (2.54) we can write the event horizon, defined by f(r+) = 0,

as,

r+ −
ΛW
2
r3

+ − 2M = 0. (2.59)

From this the mass of the black hole can be written as,

M =
r+

2
− ΛW r

3
+. (2.60)

Employing the Bekenstein-Hawking area law,

S =
A

4
= πr2

+, (2.61)

we can rewrite the mass-horizon relation (2.60) as,

M =
1

2

√
S

π
− ΛW

(
S

π

)3/2

. (2.62)

Figure 2.10: Variation of temperature with entropy for SdS black hole.
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Using the definition of temperature as T =

(
∂M

∂S

)
and that of heat

capacity as C = T

(
∂S

∂T

)
, we can arrive at,

T =
1

4
√
πS
− 3ΛW

√
S

2π3/2
, (2.63)

and,

C =
π2

3ΛWπ + 18Λ2
WS
− 3ΛW

√
S

2π3/2
− π

3ΛW
. (2.64)

Figure 2.11: Variation of specific heat with entropy for SdS black hole.

Variation of temperature with respect to entropy is plotted in fig.(2.10)

while in fig.(2.11) the variation of heat capacity with entropy is plotted.

From fig.(2.11) it is evident that Schwarzschild-dS black hole is thermo-

dynamically unstable for all range of entropy values.

Now let us investigate a peculiar behavior of Park black hole. As ex-

plained in [112], for a black hole horizon to exist and curvature singularity
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at r = 0 is not naked, one has to consider another constraint on mass

parameter that can be obtained from (2.55) and is given by,

M ≤ (2ΛW − ω)

4
r3

+. (2.65)

Or we can say that, M<
(2ΛW − ω)

4
r3

+ for all r+ except for r+ = r̃+. It

can verified using fig.4.8 that at r̃+ mass of the black hole meets the upper

bound. Now let us investigate the thermodynamics of the black hole which

mass bound

1 2 3 4 5 6
S

-2

-1

1

2

3

4

M,m

Figure 2.12: Variation of mass of the Park black hole with entropy. Change
in mass bound value with entropy is depicted using dotted lines.

has a mass given by the upper mass bound value given in (2.65) i.e.,

Mbound =
(2ΛW − ω)

4
r3

+. (2.66)

Using Bekenstein-Hawking area law, we can rewrite (2.66) as,

Mbound =
(2ΛW − ω)

4

(
S

π

)3/2

. (2.67)
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From the usual definition of temperature and that of heat capacity, we

can arrive at,

T =
3(2ΛW − ω)

√
S

8π3/2
, (2.68)

and

C = 2S. (2.69)

Since the heat capacity is positive, the black hole having a mass given

by (2.66) is thermodynamically stable. From this fact we can say that

the occurrence of infinite discontinuity as well as negative temperature

may be due to the existence of a restriction given by (2.65) for the mass

parameter.

We have analyzed the usual thermodynamics of both these cases and

found that there exist many abnormal behaviors like the existence of an

upper mass bound, negative temperature, infinite discontinuity in temper-

ature and heat capacity. Employing the ideas of usual thermodynamics,

it is not possible to explain these peculiar behaviours of the Park black

hole system.

2.2 Black holes in Massive gravity

From the theoretical point of view, massive gravity is the theory of grav-

ity that modifies Einstein’s general relativity by adding a nonzero mass

to the graviton. As we have discussed in the Chapter 1, Massive gravity

has a prolonged history, from early 1930s onwards [13]. The much awaited

breakthrough was achieved when de Rham, Gabadadze, and Tolley pro-

posed [19, 20] and constructed, a theory of massive gravity which is free

from Boulware-Deser ghost [17, 18] by wrapping all the ghostly terms into

a total derivatives that has no contribution to the equations of motion.

In this section, we will discuss black hole solution in two different massive

gravity theories, which are free from any ghosts. Among them first one is
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de Rham, Gabadadze, and Tolley thoery (dRGT) [19, 20] and the other

is New massive gravity (NMG) [33].

2.2.1 dRGT massive gravity

The massive gravity model proposesd by de Rham, Gabadadze, and Tolley

can be described using the action [19, 20],

S =

∫
dDx

[
M2
pl

2

√
−g
(
R +m2U(g,H)

)]
, (2.70)

where the first term is the usual Einstein-Hilbert action and the second

term is arising from the contributions of mass of the graviton m, and

from the nonlinear higher derivative term U corresponding to the massive

graviton. It is given by,

U = U2 + α3U3 + α4U4, (2.71)

where,

U2 = [K]2 − [K2]

U3 = [K]3 − [K][K2] + 2[K3]

U4 = [K]4 − 6[K]2[K2] + 8[K3][K]− 6[K4]. (2.72)

In the above set of equations, the tensor Kµ
ν is defined as,

Kµ
ν = δµν −

√
∂µφα∂νφβfαβ, (2.73)

where φα and φβ are the corresponding Stuc̈kelberg field and fαβ is a fixed

symmetric tensor usually called as the reference metric.

In the unitary gauge, defined as φa = xa, the term hµν = gµν − ηµν is

the gravitational analogue of the Proca field of massive electrodynamics

[36]. By introducing the Stückelberg field φa, which can be considered
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as background field plus a pion contribution, φa = xa + πa [37], and

replacing the Minkowski metric by,

gµν = ∂µφ
a∂νφ

bηab +Hµν ,

where Hµν is the covariantized metric perturbation, one can restore the

diffeomorphism invariance. As given in [36, 37], two new coefficients α

and β are introduced which relate the coefficients α3 and α4 in (2.71) by,

α3 = −(−α + 1)

3
, (2.74)

and

α4 =
−β
2

+
(−α + 1)

12
. (2.75)

In empty space, the equation of motion is given as,

Gµν +m2Xµν = 0, (2.76)

where Xµν is the effective energy-momentum tensor contributed by the

graviton mass m, which is given by,

Xµν = −1

2

[
Kgµν −Kµν + α

(
K2
µν −KKµν +

1

2
gµν([K]2 − [K2])

)
+6β

(
K3
µν −KK2

µν +
1

2
Kµν([K]2 − [K2])

−1

6
gµν([K]3 − 3[K][K2] + 2[K3])

)]
. (2.77)

Now applying the Bianchi identity, ∇µGµν = 0 in (2.76), we arrive at the

constraint equation,

m2∇µXµν = 0. (2.78)

The parameters of the action, namely α and β can be chosen in different

ways so that one ends up with different black hole solutions. Particularly

for the choice β = α2, the space of solution is much wider than the general

case discussed in [115]. As a result, this choice leads to much richer family
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of solutions compared to the general choice of α and β. Here, we con-

centrate on a particular family of the ghost-free theory of massive gravity

[36–38], where,

β = −α
2

6
. (2.79)

For this special choice, introduced in [38], (2.78) is automatically satisfied

for a certain diagonal and time-independent metrics in spherical polar

coordinates. One can consider this as a limitation and these exact analytic

black hole solutions are obtained only for a specific choice of the two

free parameters of massive gravity given by (2.79). But such a choice of

parameters is peculiar because on this background the kinetic terms for

both the vector and scalar fluctuations vanish in the decoupling limit.

Hence one would expect infinitely strong interactions for these modes. To

account for this issue, we would consider these solutions as just as an

example for demonstrating how non-singular solutions could emerge as

well as how their thermodynamic properties and interactions behave in

the presence and absence of the massive parameters.

Now using (2.76), (2.77) and (2.78), a spherically symmetric and time

independent metric in de Sitter space can be obtained, by choosing,

m2Xµν = λgµν , (2.80)

where λ is a constant. The solutions of (2.76) that satisfies the condition

given in (2.80) with a positive but otherwise arbitrary α is given by,

ds2 = −κ2dt2 +

(
α

α + 1
dr ± κ

√
2

3α

α

α + 1
mrdt

)2

+
α2

(α + 1)2
r2dΩ2.

(2.81)

Here κ is a positive integration constant. The solution thus obtained is

free of any singularities. Now by coupling this ghost-free massive gravity

theory to the Maxwell’s theory of electromagnetism, one can obtain the
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Reissner- Nordström solution in dS space as,

ds2 = −dt2 +

(
α̃dr ±

√
rg
α̃

+
2α̃2

3α
m2r2 − Q̃2

α̃4r2
dt

)2

+ α̃2r2dΩ2, (2.82)

here α̃ ≡ α/(α + 1), m is mass of graviton, α is the curvature parameter

and the electromagnetic field is given by,

E =
Q̃

r2
and B = 0. (2.83)

To rewrite the above charged dS solution in arbitrary space-time in the

static slicing, one can make the following transformations for spatial and

temporal coordinates respectively as,

r → r

α̃
, (2.84)

and,

dt→ dt+ f ′(r)dr, (2.85)

where,

f ′(r) ≡ −g01

g00
= ±

√
rg
r + 2

3αm
2r2 + Q̃2

α̃2r2

k − rg
r −

2
3αm

2r2 + Q̃2

α̃2r2

. (2.86)

Once these transformations are performed, one can easily rewrite (2.82)

in a familiar form as,

ds2 = −
(
k −

rg
r
− 2

3α
m2r2 +

Q̃2

α̃2r2

)
dt2

+
dr2

k − rg
r −

2
3αm

2r2 + Q̃2

α̃2r2

+ r2dΩ2. (2.87)

Due to the above transformations, the Stückelberg field becomes,

φ0 = t+ f(r), (2.88)
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φr = r

(
α + 1

α

)
, (2.89)

and electromagnetic field is,

E =
Q̃

α̃r2
and B = 0. (2.90)

where the actual charge should be redefined as Q ≡ Q̃/α̃.

Using (2.87) and solving for f(r) = 0 at the horizon limit and incor-

porating the Bekenstein-Hawking area law, S =
A

4
, one can easily obtain

the mass of the black hole as,

M =
3π2Q2α + α̃S

(
3kπα− 2m2S

)
6α̃2π3/2

√
Sα

. (2.91)

From the first law of thermodynamics, δM = TδS + ΦδQ, temperature T

can be calculated as,

T =
α̃S
(
kπα− 2m2S

)
− π2Q2α

4α̃2π3/2S3/2α
. (2.92)

Using the classical thermodynamic relation C = T

(
∂S

∂T

)
, one can obtain

the heat capacity of the black hole as,

C =
2S
(
π2Q2α + α̃S(2m2S − kπα)

)
α̃2S(kπα + 2m2S)− 3π2Q2α

. (2.93)

It is interesting to note that, the charged black hole solution in massive

gravity (2.87) with m as the mass of the graviton can behave as Reissner-

Nordström solution in de-Sitter and anti de-Sitter space-time in massive

gravity with respect to the choice of curvature parameter α. We can see

that (2.87) will reduce to RNdS solution in massive gravity for α > 0, for

α < 0 we can obtain RNAdS solution and the RN solution in Einstein’s

general relativity for mass of the graviton m = 0.
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Before going in to the details of phase transition structure of charged

black holes in massive gravity, let us consider the physics of the curvature

parameter α in details. From the black hole space-time metric (2.87), and

comparing it with the charged dS or AdS black hole in Einstein’s gravity

theory, one can easily identify the cosmological constant term in massive

gravity as,

Λ =
m2

α
. (2.94)

We know that in most of the black hole thermodynamic studies, the cosmo-

logical constant is treated as a fixed parameter. But it has been suggested

that it is better to treat Λ as a thermodynamic variable [116–118]. In

many studies, this cosmological constant is treated as the thermodynamic

variable, the pressure [119, 120]. Accordingly the cosmological constant

generated pressure can be written as,

P = − Λ

8πG
. (2.95)

From (2.94), one can rewrite the pressure generated by cosmological con-

stant in massive gravity as,

P = − m2

8πα
. (2.96)

Hence the choice of curvature parameter α will determine whether the

space-time is de Sitter or anti de Sitter. The presence of negative pres-

sure, by choosing the curvature parameter as positive, point towards the

accelerated expansion of the present universe. Further studies in this di-

rection may lead to a better understanding of this phenomenon.

Charged de-Sitter black hole in massive gravity

Let us consider the case where the curvature parameter is taken to be

positive (α > 0), then the black hole solution given by (2.87) reduces to
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charged de-Sitter solution in massive gravity (RNdS). Now the variation of

temperature and specific heat with entropy of RNdS black hole is plotted

for different space-time curvature in figs.(2.13) and (2.14).

Figure 2.13: 3D Variation of temperature against entropy and charge for
de-Sitter black holes for flat, spherical and hyperbolic topology of space-
time in massive gravity

From fig.(2.13) we can see that for the flat case (k = 0), the temper-

ature is always negative, and hence has no curiosity. For the spherically

symmetric space-time case (k = 1), the temperature initially enters in

to a physically insignificant region (with negative temperature) and lies

in a positive region for intermediate sized black holes. For black holes

with larger horizon radius it again goes to the negative temperature re-

gions. For the hyperbolic space-time case (k = −1), the behaviour exactly

resembles that of flat space-time. So for the RNdS case in massive grav-
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ity for spherically symmetric space-time, there exists a window at which

the black hole has positive temperatures and hence lies in a physically

significant region.

Figure 2.14: 3D Variation of heat capacity against entropy and charge for
de-Sitter black holes for flat, spherical and hyperbolic topology of space-
time in massive gravity

The variation of heat capacity depicted in fig.(2.14) shows that, black

hole undergoes phase transitions for all the cases, k = 0, 1,−1. For flat

and hyperbolic space-time cases, the black hole lies in a thermodynami-

cally unstable phase and undergoes an infinite discontinuity and become

thermodynamically stable. Similarly for spherically symmetric space-time,

the black hole goes from a thermodynamically stable region to an unstable

region.
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Charged anti de-Sitter black hole in massive gravity

In this section we will consider the case in which the curvature parameter is

taken as negative (α < 0). For this case the the black hole solution (2.87)

reduces to charged anti de Sitter solution in massive gravity (RNAdS).

Here also variation of temperature and specific heat against entropy for

different space-time cases are depicted in figs.(2.15) and (2.16).

Figure 2.15: 3D Variation of temperature against entropy and charge for
anti de-Sitter black holes for flat, spherical and hyperbolic topology of
space-time in massive gravity

Temperature variation in fig.(2.15), implies that for each space-time

cases, the black hole changes from a negative temperature region to a re-

gion where temperature become positive. But for the spherically symmet-

ric space-time case, the temperature goes to a maximum positive value and

falls down to lower values. Hence a temperature window-like behaviour
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is shown by these black holes too. From the fig.(2.16) we can infer that

the for the flat case, the specific heat goes from negative values to positive

values and hence the black hole system changes from a thermodynamically

unstable phase to a stable phase without any phase transitions.

Figure 2.16: 3D Variation of heat capacity against entropy and charge
for anti de-Sitter black holes for flat, spherical and hyperbolic topology of
space-time in massive gravity

This behaviour exactly resembles that of RNdS black holes. This re-

semblance exists in the hyperbolic space-time case too. For the spherically

symmetric case, the black hole initially lies in a thermodynamically un-

stable phase and transit to a stable phase. Later it undergoes a phase

transition in which the stable black hole becomes an unstable one.
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Charged black holes in Einstein’s general relativity

Now let us consider the situation that the graviton has no mass (m = 0),

then the black hole system given by (2.87) will reduce to a charged black

hole solution in Einstein’s general relativity, i.e., Reissner-Nordström black

hole solution. For m = 0 case, one can write down the metric f(r) from

(2.87) as,

f(r) = k −
rg
r

+
Q̃2

α̃2r2
. (2.97)

Figure 2.17: 3D Variation of temperature against entropy and charge for
black holes in Einstein’s general relativity for flat, spherical and hyperbolic
topology of space-time

It is evident from the above equation that, it exactly matches with the

Reissner-Nordström black hole solution in Einstein’s general relativity.

Solving the above equation (2.97), and using the relation Q ≡ Q̃/α̃, one
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can easily write the mass of the black hole as,

M =
πQ2 + kS

2
√
π
√
S
. (2.98)

From the usual thermodynamic relations T = ∂M
∂S and C = T ∂S

∂T one can

write temperature and heat capacity respectively as,

T =
−πQ2 + kS

4
√
πS3/2

, (2.99)

and

C =
2S(−πQ2 + kS)

3πQ2 − kS
. (2.100)

Figure 2.18: 3D Variation of heat capacity against entropy and charge for
black holes in Einstein’s general relativity for flat, spherical and hyperbolic
topology of space-time
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The variations of both temperature and heat capacity are plotted.

From the figs.(2.17) and (2.18), we can see that for flat case (k = 0) as

well as for the hyperbolic (k = −1) case temperature always lies in the

negative value region and hence in physically insignificant situation. Now

for the spherically symmetric space-time case (k = 1), black hole initially

lies in a negative temperature region and as the black hole horizon radius

increases it attains a maximum temperature value. After the maximum

value of temperature is attained it lies in the positive temperature region

itself. We can see that when mass of the graviton becomes zero, it exactly

reproduces the results of RN black holes. So the limiting case of RNdS

or RNAdS black hole in massive gravity coincides with RN solution in

Einstein’s theory and their thermodynamic behaviour gives the proof for

the same.

We have analysed the thermodynamic behaviour of charged dS and

AdS black holes in dRGT massive gravity in different space-time curvature

using both analytical and graphical methods. The analysis showed that

these black holes undergo phase transitions by changing the heat capacity

signs.

2.2.2 New massive gravity

BTZ black hole

After the investigations on general relativity in three dimensional space-

time by Deser, Jackiw, ’t Hooft and Witten [121–124], (2+1) models

gained much attention. In the history of research they are used as a

laboratory tool to provide a fundamental platform to perform the studies

on thermodynamic aspects of the gravitational system, though it has been

widely believed that these models are physically unrealistic. Black hole

solution to this lower dimensional gravitation theory came as a surprise

when Bañados, Teitelboim and Zanelli obtained the BTZ solution in 1992
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[125]. (2+1) black holes are now known as the toy model black holes. Here

we will discuss the (2+1) black hole solutions in New massive gravity.

Three dimensional higher derivative gravity model, the New Massive

Gravity (NMG), was proposed by Bergshoeff, Hohm and Townsend in

2009 [33]. The action can be written as a higher curvature term added to

the usual Einstein-Hilbert action,

SNMG = SEH + SR, (2.101)

SEH =
1

16πG

∫
d3x
√
−g (R− 2λ) , (2.102)

SR = − 1

16πGm2

∫
d3x
√
−g
(
RµνR

µν − 3

8
R2
)
, (2.103)

where m2 is a mass parameter with mass dimension and G is a three

dimensional Newton constant. The equation of motion is given by,

Gµν + λgµν −
1

2m2
Kµν = 0 , (2.104)

where Gµν is the Einstein tensor given by,

Gµν = Rµν −
1

2
gµνR

and,

Kµν = 2�Rµν −
1

2
∇µ∇νR−

�R
2
gµν + 4RµρνσR

ρσ

− 3R

2
Rµν −R2

ρσgµν +
3R2

8
gµν . (2.105)

Now let us choose the parameters in such a way that, one can obtain the

BTZ black hole solution [126]. For that, we write

m2 =
Λ2

4(−λ+ Λ)
, Λ = − 1

l2
, (2.106)

where Λ is the cosmological constant. From this, the BTZ solution can be

extracted as ,

ds2
BTZ = −f(r)dt2 +

dr2

f(r)
+ r2dφ2, (2.107)
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f(r) = −M +
r2

`2
, (2.108)

where M is the integration constant corresponding to the ADM mass.

Horizon radius r+ can be determined using the condition, f(r+) = 0.

Then the horizon is located at,

r+ = l
√
M. (2.109)

Now one can calculate the thermodynamic quantities using the above re-

lations. ADM mass of the black hole can be written as,

M =
r2

+

l2
. (2.110)

Hawking temperature is obtained from the relation, T = κ
2π , as,

TH =

√
M

2πl
. (2.111)

From the ADM mass, entropy of the BTZ black hole can be calculated

using either Cardy formula or Wald’s formula. We adopt Wald’s method

to calculate the entropy as,

S = 2π

∮
h

dx
√
γ

δL
δRµνρσ

εµνερσ, (2.112)

where h is the spatial cross section of the event horizon, γ is the determi-

nant of the induced metric on h, L is the Lagrangian in the action (2.103)

and εµν is the binormal to h. So we obtain entropy as,

S =
πr+

2G

(
1− 1

2m2l2

)
. (2.113)

It is interesting to note that the entropy (2.113) is simply Bekenstein-

Hawking entropy renormalized by a factor. From the above relation one

can conclude that in order to get a non-zero central charge we need to

rely on the condition m2l2 ≥ 1/2. We will explore this condition in details
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in the preceding sections. The thermodynamic quantities of the BTZ

black hole, heat capacity and on shell free energy can be calculated using

Abott-Deser-Tekin (ADT) approach [127–129]. Using this method one

can obtain, on shell free energy as,

Fon
bh = −M

8G

(
1− 1

2m2l2

)
, (2.114)

thermodynamic energy as,

E =
M

8G

(
1− 1

2m2l2

)
, (2.115)

and the heat capacity as,

C =
∂E

∂T
=
πl
√
M

2G

(
1− 1

2m2l2

)
. (2.116)
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Figure 2.19: Variation of heat capacity of the BTZ black hole against the
changes in mass of the graviton with l = 1, G = 1 and M = 1.

In order to investigate the thermodynamic stability of the black hole

space-time, we will further explore the above equation. Therefore, we
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have plotted the variation of heat capacity with entropy of the BTZ black

hole in fig.(2.19). From this figure it is evident that, there exists a point

where the heat capacity changes sign continuously, showing a transition

between thermodynamically stable and unstable phases. We can see that

there exists one such point, where heat capacity changes from thermody-

namically unstable phase to stable phase in a continuous manner rather

than in a usual discontinuous way as seen in many cases where black hole

exhibits phase transition. From (4.11), the BTZ black hole is stable when

m2l2 ≥ 1
2 and unstable when 0 < m2l2 < 1

2 .

We know that, the Banados-Teitelboim-Zanelli (BTZ) black hole sys-

tem [126] , there are two distinct solutions, the BTZ black hole of M ≥ 0

and the thermal soliton of the global AdS3 whose mass is M = −1 [130–

132]. Since we have already considered the black hole case, we will dig in

to the thermodynamics of thermal soliton of the global AdS3 with mass,

M = −1. In this case, the free energy of the thermal solitons can be

calculated as,

Fon
sol = − 1

8G

(
1− 1

2m2l2

)
, (2.117)

In order to analyze the phase transition between BTZ black hole and

thermal soliton, let us plot the free energies of both black hole and soliton

as a function of temperature. The variation of the same is plotted in

fig.(2.20).
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Figure 2.20: variation of free energy of BTZ black hole and thermal soli-
tons in AdS3 against the changes in temperature. The solid line represent
the behaviour of BTZ black hole, while the dashed line represents the
thermal soliton case.

From the figures it is evident that the BTZ black hole undergoes a

phase transition to thermal soliton of the global AdS3 at the critical tem-

perature given by,

Tc =
1

2πl
(2.118)

From fig.(2.20), a phase transition may occur at T = Tc between BTZ

black hole and thermal AdS3 soliton. From the same figure we can see

that, for T < Tc, free energy of thermal soliton is lower than that of the

black hole. So it can be inferred that the thermal soliton is more probable

below the critical temperature. On the other hand for T > Tc, the BTZ

black hole is more probable than the thermal soliton.

Here we have analyzed the thermodynamic behaviour and phase tran-

sition structure of BTZ black hole in New massive gravity and found that

the there exists a phase transition from BTZ black hole to a thermal soli-

ton. Analysing the heat capacity behaviour indicates that the system

undergoes a transition from thermodynamically stable phase to unsta-



76
Thermodynamics of black holes in

modified theories of gravity

ble phase in a continuous manner. Further studies are needed to exactly

identify the order of transition and other thermodynamic details.

2.3 Discussion and conclusion

In this chapter we have investigated the thermodynamics of black holes in

modified theories of gravity, mainly concentrating on Hořava-Lifshitz grav-

ity and Massive gravity. Different black hole solutions in these modified

theories have been considered, that include Kehagias-Sfetsos black hole,

Lü-Mei-Pope black hole, Park black hole, charged dRGT black hole and

BTZ black hole. The thermodynamic behaviour of these black hole sys-

tems are studied analytically as well as graphically with a great emphasis

on the phase transition structure existing among them. According to or-

dinary thermodynamics, heat capacity of the black hole is directly related

to thermodynamic stability of black holes and phase transition. Positive

heat capacity indicates the thermodynamically stable phase where as the

negative heat capacity indicates the unstable phase. Any transition be-

tween these phases can be termed as thermodynamic phase transition.

For the KS black hole, it is found that they are thermodynamically stable

for a certain range of values of the entropy as well as the black hole sys-

tem undergoes a phase transition from thermodynamically stable phase

to unstable phase as we observe the heat capacity variation with respect

to entropy and found that there is an infinite discontinuity at the tran-

sition point. In the case of LMP black hole, from our thermodynamic

study in different space-time cases, the heat capacity of the system is

found to be diverging, thereby indicating the presence of a phase transi-

tion. Even though there exists phase transition, the exact order of the

transition remains undetermined. In these two cases, the possibility of

first order phase transition has been ruled out due to the non existence of
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any infinity discontinuity in temperature. Park black hole studies showed

that the system exhibits a number of abnormal thermodynamic behaviors

like the existence of an upper mass bound, negative temperature, infinite

discontinuity in temperature and heat capacity. Heat capacity divergence

points out the existence of phase transition in the system. But exactly

determining the order of this transition remained as an unsolved problem.

Whereas in the case of Massive gravity black holes too, the same problem

remains as unsolved. In the case of charged dRGT black holes, the system

undergoes a phase transition by changing the sign of heat capacity. In this

case one expects that thermodynamics of black holes would be the same as

in general relativity, taking into account that massive gravity differs from

general relativity by a non-derivative coupling to a fiducial metric 1. But

our studies show that, even though the results agree with general relativity

when massive parameter tends to zero, there are significant changes in the

phase transition structure. For the (2+1) black hole case in New massive

gravity, the BTZ black hole undergoes a phase transition to thermal AdS3

soliton. Whereas its heat capacity also shows phase transition by showing

changes in the sign heat capacity in a continuous manner.

Ordinary thermodynamic studies in all these cases are found to be

inadequate to exactly determine the order of the phase transition existing

in these systems. Hence our study points in the direction of considering

a new method to be incorporated into the classical thermodynamics to

answer these puzzling scenarios as well as to well explain these typical

behaviours of certain thermodynamic quantities.

1The covariant formulation of the dRGT theory has a physical metric and four
Stuc̈kelberg scalar fields. The pullback of the metric in the space of Stuc̈kelberg scalar
fields into the physical spacetime is called the fiducial metric.
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From the discovery of Einstein’s general relativity, black hole gained at-

tention of the entire scientific community. Rigorous studies are done in

the direction of exploring different aspects of black hole dynamics. But

the calculation of entropy of the black hole in semiclassical and quantum

regime remains as a puzzling scenario. We will address a closely related

problem, calculation of the entropy spectrum of these black holes in mod-

ified theories of gravity, particulrly in Hořava-Lifshitz gravity and massive

gravity. Eventhough many black hole solutions have been proposed in

these theories, we will restrcit our discussion to Kehagias-Sfetsos black

hole solution and BTZ black hole solution.

3.1 Entropy spectrum of Kehagias-Sfetsos

black hole in Hořava gravity

As a renormalizable theory of gravity, Hořava-Lifshitz gravity, is an ultra-

violet completion of general relativity and it reduces to Einstein’s gravity

with a nonvanishing cosmological constant in IR limit. Kehagias and

Sfetsos obtained a static spherically symmetric black hole solution in the

IR modified Hořava-Lifshitz theory. In this part of our work, entropy

79
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of the KS black hole is quantized via the adiabatic invariance and the

Bohr-Sommerfeld quantization rule. As we discussed in the introduction

chapter, considering the properties of black hole such as adiabaticity and

oscillating velocity of black hole horizon, one can write the action as pro-

posed in Jiang-Han [72] method as,

I =

∮
pidqi =

∫ qouti

qini

pouti dqi +

∫ qini

qouti

pini dqi, (3.1)

where pini or pouti is the conjugate momentum and qini or qouti are the

corresponding coordinates and i = 0, 1, 2.... It is also to be considered

that qin1 = rinh (qout1 = routh ) and qin0
(
qout0

)
= τ where rh is the horizon

radius and τ is the Euclidean time with a periodicity 2π
κ in which κ is the

surface gravity which is given by,

κ =
1

2

df(r)

dr

∣∣∣∣
rh

. (3.2)

Considering the Hamilton’s equation q̇i = ∂H
∂pi

, where H is the Hamiltonian

of the system, the integral given by (3.1), adiabatic covariant action can be

evaluated by considering the contour integration over a closed path from

qouti (outside the event horizon) to qini (inside the event horizon). Thus

action given by (3.1) can be rewritten as,∫ qini

qouti

pini dqi =

∫ τ in

τout

∫ H

0

dH ′dτ +

∫ rinh

routh

∫ H

0

dH ′

ṙh
drh

= 2

∫ rinh

routh

∫ H

0

dH ′

ṙh
drh . (3.3)

where rout and rin represent the horizon location before and after shrinking

and ṙh = drh
dτ is the oscillating velocity of black hole horizon. From the

tunneling picture, when a particle tunnels in or out, the black hole horizon

will shrink or expand due to the loss or gain of black hole mass [133]. Since
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the tunneling and oscillation take place at the same time, one can write

[134],

ṙh = −ṙ . (3.4)

where ṙ is the velocity of the tunneling particle. Since the two contour

integrals in the (3.1) are equal we can simplify it as,∮
pidqi = 4

∫ rin

rout

∫ H

0

dH ′

ṙh
drh . (3.5)

To evaluate this adiabatic invariant quantity for the black hole, let us

consider a general class of static and spherically symmetric space-time of

the form,

ds2 = −N(r)2dt2 +
dr2

f(r)
+ r2dΩ2 , (3.6)

where the horizon r = rh is given by N(r)2 = f(r) = 0. To euclideanize

this metric, we consider the transformation in time coordinate t → −iτ .

Hence,

ds2 = N(r)2dτ2 +
dr2

f(r)
+ r2dΩ2 . (3.7)

Now we will incorporate the tunneling method to the scenario. In

the case of black holes, since the tunneling across the event horizon oc-

curs radially, only the radial paths will be considered here. Let a photon

travel across the black hole horizon. Then the radial null geodesic can be

obtained by setting ds2 = 0 and dΩ2 = 0 in (3.7). It is then obtained as,

ṙ =
dr

dτ
= ±i

√
N (r)2 f (r) . (3.8)

In the tunneling picture there are both incoming and outgoing paths. In

our discussions we will focus on the outgoing paths. On the other hand

a spherically symmetric black hole solution, Kehagias-Sfetsos black hole
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solution was obtained in the Hořava-Lifshitz gravity theory, given by the

metric,

fKS (r) = 1 + ωr2 −
√
r(ω2r3 + 4ωM). (3.9)

From the above equation it is evident that fKS = N2
KS(r), and thus, from

(3.8) we get

ṙ = +ifKS (r) . (3.10)

The adiabatic invariant will be,∮
pidqi = −4i

∫ rin

rout

∫ H

0

dH ′

fKS (r)
dr . (3.11)

Using the near horizon approximation, fKS (r) can be Taylor expanded to

get,

fKS (r) = fKS (r)

∣∣∣∣
rh

+ (r − rh)
dfKS (r)

dr

∣∣∣∣
rh

+ · · · (3.12)

Since there is a pole at horizon rh, we can consider a contour integral over

a half loop going above the pole from right to left. Using the Cauchy’s

theorem, we can evaluate the integral in (3.11) to obtain,∮
pidqi = 4π

∫ H

0

dH ′

κ
= 2~

∫ H

0

dH ′

T
, (3.13)

where temperature of the black hole is connected with the surface gravity

of the black hole via T = ~κ
2π relation. The Smarr formula [135] expresses

the mass of a black hole in terms of its geometrical and dynamical param-

eters (angular momentum, electromagnetic potential, area, etc). Using

this Smarr formula in the case of KS black hole, one can arrive at,

dH ′ = dM = TdS . (3.14)

Therefore (3.13) can be rewritten as,∮
pidqi = 2~S . (3.15)
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If one imposed an ad hoc Bohr-Sommerfeld quantization rule given by,∮
pidqi = 2πn~, n = 1, 2, 3, · · · (3.16)

one would find the entropy spectrum as,

S = nπ. n = 1, 2, 3, · · · (3.17)

So the black hole entropy is quantized with a spacing of the entropy spec-

trum given by

∆S = S(n+1) − S(n) = π. (3.18)

Thus, we see that both entropy and area spectra of KS black hole

are quantized and are equally spaced and they are independent of the

black hole parameters. Eventhough the values of equispacing obtained

in the present study are different from the values obtained using QNMs

approach for LMP black holes [136] and KS black holes [137] in HL theory,

the equispaced property is maintained and their order of magnitudes are

the same. The exclusion of coordinate dependency in the theory makes

this result more relevant than the other calculations.

3.2 Entropy spectrum of BTZ black hole in

massive gravity

New Massive Gravity (NMG) was proposed by Bergshoeff, Hohm and

Townsend in 2009 [33] as a higher derivative model of gravity in (2+1)

dimensions, and the field equations of this massive gravity theory are

solved by the black hole metrics discovered by Banados, Teitelboim and

Zanellli [126]. These solutions are commonly known as the BTZ solutions,

and is given by,

ds2
BTZ = −f(r)dt2 +

dr2

f(r)
+ r2dφ2, (3.19)
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where,

fBTZ (r) = −M +
r2

`2
, (3.20)

here M is the integration constant that can be directly related to the mass

of the BTZ black hole. As we have discussed and derived the thermody-

namics of the black hole solution in chapter 2, we can write down the

thermodynamic quantities of the black hole solution from (3.20). Then

the ADM mass of the black hole can be written as,

M =
r2

+

l2
.

Hawking temperature is obtained from the relation, T =
κ

2π
, as,

TH =

√
M

2πl
.

From the ADM mass, entropy of the BTZ black hole can be calculated

using Wald’s method as,

S =
πr+

2G

(
1− 1

2m2l2

)
.

Now we will quantize the entropy of the BTZ black hole via the adia-

batic invariance and Bohr-Sommerfeld quantization rule. According to

this method proposed by Jiang and Han, the adiabatic invariant integral

can be written as given in (3.5) as,∮
pidqi = 4

∫ rin

rout

∫ H

0

dH ′

ṙh
drh .

By considering the radial null geodesic path formulation we can arrive at

the oscillating velocity of the black hole horizon as,

ṙh = −ifBTZ (r) . (3.21)
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Hence the adiabatic invariant integral will reduce to,∮
pidqi = −4i

∫ rin

rout

∫ H

0

dH ′

f (r)
dr . (3.22)

Using the near horizon approximation, f(r) can be Taylor expanded as,

f(r) = f(r)rh + (r − rh)
df(r)

dr

∣∣∣∣
rh

+ ....... (3.23)

Since there exists a pole at r = rh one has to consider a contour integral

in such a way that the half loop is going above the pole from right to

left, to evaluate the adiabatic invariant integral (3.22). Using the Cauchy

integral theorem, we can arrive at,∮
pidqi = 4π

∫ H

0

dH ′

κ
= 2~

∫ H

0

dH ′

TH
(3.24)

Now we can write the Smarr formula for the BTZ black hole in new massive

gravity as,

dM = dH = TdS. (3.25)

Then (3.24) becomes, ∮
pidqi = 2~S. (3.26)

The semi classical quantization rule, the Bohr-Sommerfeld quantization

rule, can be written as,∮
pidqi = 2πn~, n = 1, 2, 3, ... (3.27)

Comparing (3.26) and (3.27), one can arrive at the entropy spectrum of

the bTZ black hole,

S = nπ . (3.28)

So the black hole entropy is quantized with a spacing of the entropy spec-

trum given by,

∆S = Sn+1 − Sn = π. (3.29)
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We can see that the entropy spectrum of BTZ black hole in new massive

gravity is quantized. The spectrum is characterized by equally spacing and

it is independent of the black hole parameters of the system. Since 2+1

black hole system and their properties act as the basic tool to enhance

the thermodynamic understanding of the system, we will further extend

this discussion to another class of BTZ black hole solutions existing in

massive gravity theories other than in new massive gravity. The most

interesting cases in this respect are the charged BTZ black hole solution

present in massive gravity. They are the solution to Einstein-Maxwell

massive gravity theory.

Entropy spectrum of charged black hole in

Einstein-Maxwell solution in the context of

massive gravity.

The 3-dimensional action of Einstein-Maxwell massive gravity with an

abelian U(1) gauge field is given by,

S = − 1

16π

∫
d3x
√
−g

[
R− 2Λ + L(F ) +m2

4∑
i

ciUi(g, f)

]
, (3.30)

where R, L(F ) and Λ respectively are , the scalar curvature, an arbi-

trary Lagrangian of electrodynamics and the cosmological constant. The

Maxwell invariant is given as F = FµνF
µν , Faraday tensor as Fµν =

∂µAν − ∂νAµ and the the gauge potential as Aµ. The ci’s are some con-

stants and Ui’s are symmetric polynomials of the eigenvalues of the d× d
matrix Kµ

ν =
√
gµαfαν which can be written as

U1 = [K] , U2 = [K]2 −
[
K2
]
, U3 = [K]3 − 3 [K]

[
K2
]

+ 2
[
K3
]
,

U4 = [K]4 − 6
[
K2
]

[K]2 + 8
[
K3
]

[K] + 3
[
K2
]2 − 6

[
K4
]
.
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Considering (3.30) and employing the variational principle, we can arrive

at the field equations as

Gµν + Λgµν −
1

2
gµνL(F )− 2LFFµρF

ρ
ν +m2χµν = 0, (3.31)

∂µ
(√
−gLFFµν

)
= 0, (3.32)

where χµν is the massive term given by,

χµν = −c1
2

(U1gµν −Kµν)− c2
2

(
U2gµν − 2U1Kµν + 2K2

µν

)
−c3

2
(U3gµν − 3U2Kµν + U1K

2
µν − 6K3

µν)−
c4
2

(U4gµν−4U3Kµν+12U2K
2
µν−24U1K

3
µν + 24K4

µν). (3.33)

In order to obtain the linearly charged three dimensional black hole solu-

tions, consider the metric ansatz as,

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dφ2. (3.34)

To obtain the exact linearly charged BTZ solutions, we would make the

choice of parameters as [138, 139],

fµν = diag(0, 0, c2hij), (3.35)

U1 =
(d− 2) c

r
, U2 = U3 = U4 = 0, (3.36)

L(F) = −F , (3.37)

and as a result of such choice one can arrive at the solution as,

f (r)
BTZ

= −Λr2 −M − 2q2 ln
(r
l

)
+m2rC, (3.38)

where M and q are related to the mass and charge of the black hole

respectively where the m represents the massive term contribution and C

is an integration constant
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Now one can calculate the thermodynamic quantities using the above

metric. Hawking temperature can be calculated from the surface gravity

on the outer horizon r+ as,

T = −Λr+

2π
− q2

2πr+
+
m2C

4π
. (3.39)

For the three dimensional case, entropy of the system takes the form [41,

46, 140–143]

S =
π

2
r+. (3.40)

ADM mass of the black hole can be written as,

M = −Λr2
+ +m2r+C − 2q2 ln

(r+

l

)
. (3.41)

The electric potential Φ can be obtained from the relation Φ =

(
∂M

∂Q

)
S

,

Φ = −q ln
(r+

l

)
(3.42)

Similar to the above section, we will explore and quantize the entropy of

the BTZ black hole via the adiabatic invariance, Bohr-Sommerfeld quan-

tization rule and Cauchy integral theorem. Using these, one can easily

arrive at (3.24), given as,∮
pidqi = 4π

∫ H

0

dH ′

κ
= 2~

∫ H

0

dH ′

TH

Now we can write the Smarr formula for the linearly charged BTZ black

hole as,

dM = dH = TdS − ΦdQ (3.43)

Then (3.24) become,∮
pidqi = 2~S

[
1 +

Φ

2Q
ln

(
A(AΛ− Cm2π)

4

)]
(3.44)
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where A is the circumference of the 2+1 BTZ black hole system. Com-

paring (3.44) and (3.27), one can arrive at the entropy spectrum as,

S =
nπ

2~
[
1 + Φ

2Q ln
(
A(AΛ−Cm2π)

4

)] (3.45)

It is interesting to note that the entropy of the BTZ black holes in Ein-

stein Maxwell massive gravity is quantized. From the above relation it is

evident that the entropy spectrum depends on the value of the black hole

parameters. Considering the absence of electric charge, one can find that

the relation (3.45) reduces to chargeless BTZ black hole case with some

numerical differences given by the relation (3.28).

Another kind of BTZ solutions in massive gravity can be find out

when Einstein-Born-Infeld field is coupled to the context of massive gravity

[139]. These are nonlinearly charged BTZ black hole solutions in massive

gravity, given as

f (r) = −Λr2 −m0 + 2β2r2 (1− Γ) + q2
[
1− 2 ln

( r
2l

(1 + Γ)
)]

+m2Cr,

(3.46)

where β is the nonlinearity parameter which arises from the Born-Infeld

Lagrangian, and Γ is given by the relation Γ =
√

1 + q2

r2β2 . If one uses

the formalism of adiabatic invariance proposed by Majhi and Vagenas to

calculate the entropy spectrum of nonlinearly charged BTZ black hole, it

miserably fails in this attempt. So a new method should be found out in

the case case of nonlinear systems.

3.3 Discussion and conclusion

The black hole spectroscopy is fascinatingly described by combining the

black hole property of adiabaticity and the oscillating velocity of the

black hole horizon through the tunneling mechanism proposed by Majhi
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and Vagenas and later modified by Jiang and Han. Unlike Kunstatter’s

method, there is no need to use quasinormal frequency of the black hole,

instead the oscillating velocity of the black hole horizon has been intro-

duced. To calculate this oscillating velocity of black horizon, we employed

the tunneling framework. As a result, the adiabatic invariant quantity

that is invariant with respect to coordinate transformation is formulated

as
∮
pidqi. In this chapter, we have investigated the quantization of the

entropy of black holes in Hořava-Lifshitz gravity and Massive gravity mod-

els via Jiang and Han’s method. We used KS black hole in Hořava gravity

and different BTZ black hole solutions in massive gravity to study the

black hole spectroscopy in modified theories of gravity. We have found

that the entropy spectrum in all cases are quantized. In the case of KS

black hole, they are equally spaced and does not depend on any of the

black hole parameters. Whereas in the case of chargeless BTZ black hole

in New Massive Gravity case also, the entropy spectrum is quantized,

equally spaced and is independent of black hole parameters. But on the

other hand, in the case of linearly charged BTZ black holes in massive

gravity, the entropy spectrum is quantized and the spectrum depends on

the black hole parameters such as the circumference of the BTZ black

hole. In all these black hole cases, the entropy spectrum of black holes

are found to be equally spaced. Hence we can say that for the modified

theories of gravity, quantization of entropy behaves as more fundamental

than other quantizations like area and circumference [144].
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The application of differential geometric ideas to classical thermodynamics

using a metric on the space of states, pioneered by the works of Weinhold

and Ruppeiner [78, 79], proved it as an alternative way to characterize

the phase transitions. But many puzzling anomalies remain unexplained

in these formulations when one applying them to different known clas-

sical systems. A possible resolution in this direction was suggested by

Hernando Quevedo [97–99] who emphasized the importance of preserving

Legendre invariance in the construction of thermodynamic metrics. This

method gave physically consistent explanations for the anomalies existed

in the thermodynamic systems. The exact phase transition structure of

these systems are described in Davies’ [57] phase transition picture, ge-

ometrothermodynamics is able to reproduce the same. The order of tran-

sition can also be confirmed from the same. As a result of this formalism

one can exactly explain the interactions existing in the system. We have

already noted the phase transitions in black hole systems of modified the-

ories of gravity from the studies regarding the black hole thermodynamic

discussed in chapter 2. But these calculations failed to determine the order

of phase transition. Even though one can eliminate the possibility of first

order phase transition from the non existence of any discontinuity in the

91
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temperature, but infinite discontinuity in heat capacity can be second or

higher orders in nature. Here in GTD method, thermodynamic interaction

can be reflected from the curvature of the metric defined on equilibrium

spaces via the auxiliary metric given in (1.80). If thermodynamic curva-

ture of the system is free of singularities, then GTD interprets it as the

non-existence of any singular points at the level of the heat capacity and

no (second order) phase transitions occur in the system. Also the same

curvature reproduce all the abnormalities existing in the thermodynamic

system. This chapter is devoted for the study of geometrothermodynamics

of black holes and their thermodynamics discussed in chapter 2.

4.1 Geometrothermodynamics of black holes

in Hořava-Lifshitz gravity

Park black hole

Before going in to the details of thermodynamic geometry, let us revisit

the thermodynamics of Park black hole in a slightly different way. In

chapter 2 we have considered Park-de Sitter solution in details. Now let

us construct the Park black hole solution in such a way that both de Sitter

and anti de Sitter Park black hole can be analysed in a single scenario.

From the thermodynamics discussed in chapter 2, we can write down the

Park solution [112] as,

N2 = fPark = 1 + (ω − ΛW )r2 −
√
r[ω(ω − 2ΛW )r3 + β] , (4.1)

where β is an integration constant related to the black hole mass. Now

let us consider (4.1) in a detailed way. For r � [β/|ω(ω − 2ΛW )|]1/3, we

can arrive at two solutions. First one is the asymptotically AdS case with

ΛW < 0 and ω > 0,

f = 1 +
|ΛW |

2

∣∣∣∣ΛWω
∣∣∣∣ r2 − 2M√

1 + 2|ΛW /ω|
1

r
+O(r−4) , (4.2)
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and the second one is the asymptotically dS case with ΛW > 0 and ω < 0,

f = 1− ΛW
2

∣∣∣∣ΛWω
∣∣∣∣ r2 − 2M√

1 + 2|ΛW /ω|
1

r
+O(r−4) . (4.3)

mass bound

1 2 3 4 5 6
S
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-1

1

2

3

4

M,m

Figure 4.1: Plots of mass vs. entropy for the dS black hole with l = 1 and
ω = −2.

Thermodynamics of Park black hole has been studied in [112]. Now we

will further investigate the different behaviors of these potentials. In gen-

eral Park black hole solution has two horizons, one cosmological horizon

and the other black hole horizon. By considering the black hole horizon

r+, mass of the Park black hole can be written as,

M =
1 + 2(ω − ΛW )r2

+ + Λ2
W r

4
+

4ωr+
. (4.4)

Using the Bekenstein-Hawking area law,

S =
A

4
= πr2

+, (4.5)

and the relation,

Λ =
(d− 1)(d− 2)

2l2
, (4.6)
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which connects the radius of curvature l of dS or AdS space with Λ the

cosmological constant (where d is the dimension of space-time), one can

arrive at the mass-entropy relation,

M =
4S2 − 4l2πS + l4π(π + 2Sω)

4 l4π3/2ω
√
S

. (4.7)

Particularly in the dS case, also there exists an upper mass bound given

by,

Mbound =
( 4
l2 − ω)

4

(
S

π

)3/2

. (4.8)

0.5 1.0 1.5 2.0
S

0.35

0.40

0.45

0.50

M

Figure 4.2: Plots of mass vs. entropy for the AdS black hole with l = −1
and ω = 2.

Thermodynamics regarding this upper mass bound is well discussed in

the 2nd chapter. Now other thermodynamic quantities like temperature,

heat capacity and free energy can be obtained from the usual definitions
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of these quantities in ordinary thermodynamics,

T =

(
∂M

∂S

)
,

C = T

(
∂S

∂T

)
,

F = M − T S. (4.9)

0.5 1.0 1.5 2.0
S

-0.4

-0.3

-0.2

-0.1

0.1

0.2

T

Figure 4.3: Plots of temperature vs. entropy for the AdS black hole with
l = −1 and ω = 2.

Here the temperature of the black hole is obtained as,

T =
12S2 − 4l2πS + l4π(π − 2Sω)

8 l4π3/2S3/2ω
, (4.10)

the heat capacity as,

C =
N

D
, (4.11)

where,

N = 2S(12S2 − 4l2πS + l4π(π − 2Sω)(l2(π + Sω)− 2S),
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and

D = −24S3+4l2S2(7π+3Sω)+2l4πS(−5π+4Sω)+l6π(π2+5πSω−2S2ω2).

and the free energy as,

F =
K

J
, (4.12)

where,

K = −16S3−4l2S2(−6π+Sω)−12l4πS(π+Sω)+l6π(2π2+7πSω+2S2ω2),

and

J = 8l4π3/2
√
Sω(l2(π + Sω)− 2S).

1 2 3 4
S

-1.0

-0.5

0.5

T

Figure 4.4: Plots of temperature vs. entropy for the dS black hole with
l = 1 and ω = −2.

We have plotted the variation of mass against the entropy in figs.4.1

and 4.2 for dS and AdS case respectively. Similarly, in figs.4.4 and 4.3

temperature variations are plotted. For the dS case (fig.4.4), we can see

that there is an infinite discontinuity in temperature and for a certain

range of S values temperature becomes negative also.
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Figure 4.5: Plots of specific heat vs. entropy for the dS black hole with
l = 1 and ω = −2.

These two anomalous behaviors are due to the existence of mass bound

given by (4.8). For the AdS case (fig.4.3) temperature changes continu-

ously without any discontinuities. In figs.4.5 and 4.6 we have plotted

specific heat of Park black hole with entropy, while in figs.4.7 and 4.8,

the variation of free energy against entropy is plotted. From fig.(4.5) we

can see that the Park-dS black hole undergoes a phase transition from

thermodynamically unstable state to a thermodynamically stable state.

In fig.(4.7), free energy changes from positive to negative, supportingly

the black hole changes from unstable to stable state via phase transition.

But for Park-AdS black hole, from fig.(4.6) and fig.(4.8), we can see that

black hole undergoes a continuous transition from initial thermodynami-

cally unstable phase to a stable phase and no phase transition takes place.
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Figure 4.6: Plots of specific heat vs. entropy for the AdS black hole with
l = −1 and ω = 2.

So among Park-dS and Park-AdS black hole, only the dS case shows

a phase transition. Now we will further investigate these abnormalities

shown by the black hole. We are aiming at a good explanation of these

observations in terms of different thermodynamic geometric methods.

Let us start our discussion by employing the newly developed thermo-

dynamic geometry approach geometrothermodynamics to the Park black

holes in Hořava-Lifshitz gravity. Like ordinary thermodynamics, in GTD

it is the fundamental equation from which all the thermodynamic informa-

tion can be derived. In order to incorporate the differential geometry in to

the thermodynamics and to construct a thermodynamic phase space case

we will consider l and ω as the other extensive variables of the present

thermodynamic system. We will first consider Weinhold [78] and then

Ruppeiner [79] way of incorporating differential geometry in to ordinary

thermodynamics. There were detailed discussions of these methods and

many discrepancies have been found out. Here we will try to figure out to

what extend these methods can reproduce the interaction existing in the
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Figure 4.7: Plots of free energy vs. entropy for the dS black hole with
l = 1 and ω = −2.
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Figure 4.8: Plots of free energy vs. entropy for the AdS black hole with
l = −1 and ω = 2.
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system as well as their phase transition structure. Therefore the Weinhold

metric for the Park black hole can be written from the general formula

given in (1.70) as,

gW =

 MSS MSl MSω

MlS Mll Mlω

MωS Mωl Mωω

 ,
where MS = ∂M/∂S, etc. We can arrive at the scalar curvature corre-

sponding to the above Weinhold metric as,

RW =
A(S, l, ω)

3[l2π − 4S]3[8l2πS − 36S2 + l4π(5π − 4ωS)]2
. (4.13)

where A(S, l, ω) is a complicated expression with no physical interest and

having an overall positive sign. From the above expression, RW diverges

at the points S = 0.785 , S = 2.06 for dS case and at S = 1.171 for

AdS case. (From here, through out this section we are choosing l = 1

and ω = −2 for dS case and l = −1 and ω = 2 for the AdS case. Imagi-

nary as well as negative roots are not considered in this discussion). The

point S = 0.785 or r+ = 0.5 corresponds to the infinite discontinuity of

temperature and free energy, and the point at which specific heat becomes

zero. Moreover the mass bound is saturated at this point. But Weinhold’s

metric miserably fails to explain any physical singularities in the AdS case.

Now we will consider the Ruppeiner geometry. Since the Ruppeiner

metric is conformally related to Weinhold metric (1.70) and from the gen-

eral expression given in (1.71), one can obtain the Ruppeiner metric for

the Park black hole case as,

gR =
1

T

 MSS MSl MSω

MlS Mll Mlω

MωS Mωl Mωω

 .
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The curvature of this metric is given by,

RR =
B(S, l, ω)

[l2π − 4S]3[8l2πS − 36S2 + l4π(5π − 4ωS)]2

× 1

[4l2πS−12S2 + l4π(π−2ωS)][−2S + l2(π+ωS)]3
. (4.14)

where B(S, l, ω) is a long complicated expression with less physical interest

and having an overall positive sign. For dS and AdS cases, RR possess

singularities at points S = 0.785, 2.43 and S = 0.906 respectively. The

point, S = 0.785 is well explained by Weinhold’s metric. But the point,

S = 2.43 or r+ = 0.879 is the new one that corresponds to zero value

of temperature and specific heat. For the AdS case, the point S = 0.906

or r+ = 0.537 corresponds to the zeros in mass, temperature and specific

heat.

Like any physical quantity or formalism related to general relativity

not depending on the choice of coordinates, thermodynamics must also

be independent of the choice of coordinates used to describe the system.

Hence Legendre invariance must be preserved in any geometric descrip-

tion. As we have mentioned in the introduction chapter, the main reason

for the less acceptance of Weinhold’s and Ruppeiner’s metrics is that they

are not Legendre invariant. Hence we will consider the newly proposed

geometrothermodynamics formalism, where Legendre invariance is pre-

served, to explain the thermodynamic behavior of these systems.

For geometrothermodynamic calculations of Park black hole, we will

construct a 7-dimensional thermodynamic phase space T which is con-

stituted by the coordinates ZA = {M,S, l, ω, T, ι, ϑ}, where S, l, ω are

extensive variables and T, ι, ϑ are their dual intensive variables. Then the

fundamental Gibbs 1-form defined on T can be written as,

Θ = dM − TdS − ιdl − ϑdω (4.15)

The equilibrium phase space E can be defined as a simple maping ϕ :
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{S, l, ω} → {M(S, l, ω), S, l, ω, T (S, l, ω), ι(S, l, ω), ϑ(S, l, ω). The Quevedo

metric is given from (1.80),

gGTD = (SMS + lMl + ωMω)

 −MSS 0 0

0 Mll Mlω

0 Mωl Mωω

 .
Here the absence of cross terms in GTD metric is justified from the choice

of auxiliary metric (1.80). Partial derivative with respect to the corre-

sponding coordinate are represented by the subscripts. The curvature

scalar corresponding to the above metric is found to be,

RGTD =
D(S, l, ω)

[l2π − 2s]3[4l2πs+ 12s2 + l4π(3π − 2ωs)]2

× 1

[−20l2πs+ 28s2 + l4π(3π − 2ωs)]3
. (4.16)

in which D(S, l, ω) is a complicated expression with less physical interest

and having an overall positive sign. At points S = 0.785 and at S =

0.477 and 2.1 for dS and AdS respectively, the Legendre invariant scalar

curvature becomes zero or shows infinite discontinuities. The point S =

0.785 or r+ = 0.5 is the same point where the phase transition takes place.

To get an exact idea regarding this, we will consider fig.(4.9), which shows

the correspondence between the divergence of scalar curvature RGTD and

specific heat C. It is very interesting to note that the point S = 0.477

or r+ = 0.386 in AdS case corresponds to the point of inflection in the

curves of temperature, specific heat and free energy, where the convex

nature of curve changes to concave nature or vice versa. Similarly the

point S = 2.1 or r+ = 0.817 coincides with the point of free energy curve

where it becomes zero. So using geometrothermodynamics and hence

by constructing the Legendre invariant metric, we are able to reproduce

the behavior of thermodynamic potentials and their interactions. The

correspondence of divergence and zeros of thermodynamic potentials with
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Figure 4.9: Plots scalar curvature vs. entropy for the dS black hole with
l = 1, ω = −2

the divergence of Legendre invariant scalar curvature leads to the complete

understanding of Park black hole thermodynamics.

Here in this chapter, we have investigated the thermodynamics as well

as thermodynamic geometry of Park black hole. We have considered both

dS and AdS cases. We have analyzed the usual thermodynamics of both

these cases and found that there exist many abnormal behaviors like exis-

tence of an upper mass bound, negative temperature, infinite discontinuity

in temperature, heat capacity and free energy, etc. We have incorporated

the geometric ideas in to the usual thermodynamics by means of different

thermodynamic geometric methods. We have analyzed first the thermody-

namic geometry based on Weinhold’s metric and Ruppeiner’s metric and

the GTD. We have found that the corresponding thermodynamic scalar

curvature possesses many singularities, and these singularities are in ac-

cordance with the behaviors of mass, temperature, specific heat and free

energy. As we have mentioned in this work, these two methods depend

entirely on the choice of thermodynamic potential to describe the sys-
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tem. Even though this particular choice gives almost good results, but

the lack of Legendre invariance leads us to consider a much more general

geometrothermodynamic method. The potential independence of the re-

sults or in other words the Legendre invariance is assured in this metric.

When we use GTD to explain the thermodynamics, we find that it pos-

sesses a true curvature singularity. And the singularity corresponds to the

points where the mass bound gets saturated, temperature shows infinite

discontinuity and specific heat also shows infinite discontinuity. Park dS

black holes undergo a second order phase transition from a thermodynam-

ically unstable state to thermodynamically stable state while in the AdS

case, there exists no such behaviors. So GTD reproduces the thermody-

namics of Park black hole irrespective of the choice of the potential used

to describe the system. When we consider the GTD metric, it is found to

be finite and smooth at the regions where the black hole is stable. But

when black hole shows changes from thermodynamically stable to unsta-

ble phase, this metric possesses true singularities, and as mentioned above,

this corresponds to the second order phase transition shown by the black

hole. Here GTD explains the second order phase transition, existence of

negative temperature, point of inflection and the upper mass bound of

Park black hole.

Lü-Mei-Pope black hole

Now we will apply this idea of geometrothermodynamics to the LMP black

hole system to study the phase transition behaviour exhibited by this black

hole and the abnormalities existing in different thermodynamic variables

of the system. It is interesting to note from the thermodynamic stud-

ies of the same system in previous chapters, there exist many anomalous

behaviours, which include the negative temperature and existence of a

temperature window. As in classical thermodynamics, in GTD it is the
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fundamental equation from which all the thermodynamic information can

be extracted. With the choice of extensive variable as, Ei = {S, a}, and

their corresponding intensive variables as Ii = {T,A}. Here mass M

corresponds to the thermodynamic potential. So we are using mass rep-

resentation to explain the LMP black hole system. We have introduced

all the coordinates as, ZA = {M,S, a, T, A}. From this we will construct

a 5-dimensional thermodynamic phase space T . Thus the fundamental

1-form defined on T can be written as,

dΘ = dM − T dS − a dA . (4.17)

The thermodynamic metric on E can be computed from the pullback g =

ϕ∗(G) that yields

gGTD = (SMS + aMa)

[
−MSS 0

0 Maa

]
.

Here subscripts represent partial derivative with respect to the correspond-

ing coordinate. Then the Legendre invariant scalar curvature correspond-

ing to the above metric can be calculated as,

RGTD =
48a2r3

(
35r6Λ3

W − 5r4Λ2
W + 9r2ΛW + 9

)
(r2ΛW + 3) 2 (3r2ΛW + 1) 2 (5r2ΛW − 3) 3

. (4.18)

We have plotted the variation of scalar curvature with entropy in fig.(4.10).

From this figure as well as from the above equation, it can be confirmed

that this scalar curvature diverges at two points, where one of the di-

vergence accords with that of heat capacity given by (2.41). Usual ther-

modynamic as well as geometrothermodynamic calculations were unable

to address the additional singularity exhibited by the scalar curvature.

Hence the geometrothermodynamics exactly reproduces the phase transi-

tion structure of the LMP black hole. Along with this we made a consis-

tency check on the above formalism using classical Ehrenfest scheme.
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Figure 4.10: variation of scalar curvature with horizon radius for ΛW =
−1,a = 1

Ehrenfest Scheme

Infinite discontinuity in the heat capacity of the black hole does not always

indicate a second order phase transition, but it suggests the possibility of

a higher order phase transition. In classical thermodynamics, one can

confirm the first order phase transition by utilizing Clausius-Clapeyron

equations [150, 151]. Similarly a second order transition can be confirmed

by checking whether it satisfies Ehrenfest equations [152] or not. The

original expressions of Ehrenfest equations in classical thermodynamics

are given by, (
∂P

∂T

)
S

=
CP2
− CP1

V T (α2 − α1)
=

∆CP
V T∆α

, (4.19)(
∂P

∂T

)
V

=
α2 − α1

κT2
− κT1

=
∆α

∆κ
, (4.20)

where α =
1

V

(
∂V

∂T

)
P

and κT = − 1

V

(
∂V

∂P

)
T

are the volume expansion

coefficient and isothermal compressibility coefficient respectively. Consid-
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ering the analogy between the thermodynamic variables and black hole

parameters, where pressure (P ) is replaced by the negative of the electro-

static potential difference (−Φ), and volume (V ) is replaced by charge of

the black hole (Q). Thus for black hole thermodynamics, the two Ehren-

fest equations (4.19) and (4.20) become,

−
(
∂Φ

∂T

)
S

=
1

QT

CΦ2
− CΦ1

(α2 − α1)
=

∆CΦ

QT∆α
, (4.21)

−
(
∂Φ

∂T

)
Q

=
α2 − α1

κT2
− κT1

=
∆α

∆κ
, (4.22)

where α =
1

Q

(
∂Q

∂T

)
Φ

and κT = − 1

Q

(
∂Q

∂Φ

)
T

are the volume expansion

coefficient and the isothermal compressibility coefficient of the black hole

system respectively. Here, in the above sets of equations, the subscripts 1

and 2 denote two distinct phases of the system.

In the present study, rather than considering the black hole analogy

of Ehrenfest equation, we will introduce the classical Ehrenfest equation

directly in to the black hole system under consideration. Using (2.37),

(2.38), (2.39) and (2.40), we can arrive at the expressions of specific heat

at constant pressure, volume expansion coefficient and isothermal com-

pressibility coefficient respectively as,

CP =
4π
√
−ΛW rh
a

(
3ΛW r

2
h − 1

)(
3ΛW r

2
h + 1

) , (4.23)

α =
6πrh

1− 3r2
hΛW

, (4.24)

and,

κ =
16

7rh

1

1− 3r2
hΛW

. (4.25)

From these relations, it is interesting to note that both volume expansion

coefficient and isothermal compressibility coefficient have same factor in
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Figure 4.11: variation of volume expansion coefficient with horizon radius
for ΛW = −1,a = 1

the denominator, which implies that both these parameters diverge at the

same point. We have plotted the variation of these coefficients with respect

to the horizon radius (rh) in figs.(4.11) and(4.12) respectively. Now we

will investigate the nature of phase transition at the critical point of LMP

black hole by doing the analytic check of classical Ehrenfest equations

(4.19) and (4.20). The values of temperature, pressure and volume at the

critical point are respectively given by,

Tc =

√
3
√

ΛW
4π

, (4.26)

Pc =
7
√

3

32
√

ΛW
, (4.27)

and,

Vc =
16(−ΛW )5/4

7 4
√

3a
. (4.28)

Now let’s check the validity of Ehrenfest equations at the critical point.

From the definition of volume expansion coefficient α, given by (4.24), we
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obtain,

V α =

(
∂V

∂T

)
P

=

(
∂V

∂S

)
P

(
∂S

∂T

)
P

=

(
∂V

∂S

)
P

(
CP
T

)
(4.29)

then, the R.H.S of first classical Ehrenfest equation (4.19) becomes,

∆CP
TV∆α

=

[(
∂S

∂V

)
P

]
rcri

, (4.30)

where rcri denotes the critical point. Applying the above equation to LMP

black hole system, we obtain,

∆CP
TV∆α

=
21π

24

1

−ΛW
. (4.31)
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Figure 4.12: variation of isothermal compressibility with horizon radius
for ΛW = −1,a = 1

Now the L.H.S of first classical Ehrenfest equation (4.19) becomes,[
−
(
∂P

∂T

)
S

]
rcri

=
21π

24

1

−ΛW
. (4.32)
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From (4.32) and (4.31), we can arrive at the conclusion that both L.H.S

and R.H.S of first Ehrenfest equation are in good agreement at the critical

point rcri. From (4.24) and (4.25), using the thermodynamic identity,(
∂V

∂P

)
T

(
∂P

∂T

)
V

(
∂T

∂V

)
P

= −1, (4.33)

we can obtain,

V κT = −
(
∂V

∂P

)
T

=

(
∂T

∂P

)
V

(
∂V

∂T

)
P

=

(
∂T

∂P

)
V

V α. (4.34)

Now the R.H.S of (4.20) can be obtained as,

∆α

∆κT
=

[(
∂P

∂T

)
V

]
rcri

=
21π

24

1

(−ΛW )
4
3

. (4.35)

Also the L.H.S of (4.20) can be obtained as,[(
∂P

∂T

)
V

]
rcri

=
21π

24

1

(−ΛW )
4
3

. (4.36)

From (4.36) and (4.35), we can obtain the conclusion that second Ehren-

fest equation is satisfied at the critical points. Hence both the Ehrenfest

equations are in good agreement at the critical point. Using (4.31) and

(4.35), the Prigogine-Defay (PD) ratio is

Π =
∆CP∆κT
TV (∆α)2

= 1. (4.37)

This confirms that the phase transition of LMP black hole in Hořava-

Lifshitz gravity is second order in nature.

The complete thermodynamics and phase transition picture of LMP

black holes in Hořava-Lifshitz gravity has been investigated using thermo-

dynamic geometry. We have systematically analyzed the thermodynamics

and phase transition. From this thermodynamic study, absence of any
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discontinuity in entropy-temperature relationship eliminates the presence

of any first order transition. Then, the heat capacity is found to be diverg-

ing, thereby indicating the presence of a phase transition. But the order of

phase transition is not revealed. To further clarify the existence of phase

transition, geometrothermodynamics is applied. In which the critical point

where the heat capacity diverges coincides with the diverging point of Leg-

endre invariant geometrothermodynamic scalar curvature. Hence GTD

metric exactly reproduces the phase transition structure of LMP black

hole and their corresponding thermodynamic interactions. Now we can

confirm that the LMP black hole exhibits second order phase transition

similar to Davies type transition. Hence it will be possible to answer

whether one can have a quantum field theory at a finite temperature by

studying the thermodynamic stability of the black hole, as evident from

the specific heat. However, the black hole configuration must be favourable

over pure thermal radiation in anti-de Sitter space; that is, have dominant

negative free energy. The present black hole solution satisfies these con-

ditions. Hence from this study one can look forward for the implication

on the dual field theory which exists on the boundary of the anti-de Sitter

space.

The other solution, Kehagias-Sfetsos solution, have been studied in

details using the language differential geometry in [147]. In that work it is

shown that the curvature corresponding to the Legendre invariant metric

for the KS black hole is singular at the phase transition point For the GTD

metric case Legendre invariance is tested by checking the consistency of

taking either the entropy or mass as the thermodynamic potential.
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4.2 Black holes in Massive gravity

dRGT black hole

Now we will investigate the phase transition structure of the charged black

hole solution in massive gravity discussed in Chapter 2. We will apply the

ideas of GTD in to the charged black hole system in massive gravity. For

this, we will construct a 7 dimensional thermodynamic phase space T
using the extensive variables and their dual intensive variables as coordi-

nates. In the dRGT black holes in massive gravity case, coordinates are

given by ZA = {M,S,Q, α, T, φ, a}, where S,Q, α are extensive variables

and T, φ, a are their corresponding dual intensive variables. Now one can

write the Gibbs 1-form as,

Θ = dM − TdS − φdQ− adα. (4.38)

From the usual mapping one can determine the equilibrium manifold E ,

and in E one can define the GTD metric from (1.80) as,

gGTD = (SMS +QMQ + αMα)

 −MSS 0 0

0 MQQ MQα

0 MαQ Mαα

 .
where subscripts represent partial derivative with respect to the corre-

sponding coordinate. Notice that no cross terms of the form gSQ or gSα

which is proportional to MSQ or MSα, appear in the GTD metric defined

above.
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Figure 4.13: 3D Variation of Ricci scalar against entropy and charge de-
Sitter black holes for for flat, spherical and hyperbolic topology of space-
time in massive gravity

This is due to the special choice of the auxiliary metric defined gener-

ally as (1.80). Then, the Legendre invariant scalar curvature correspond-

ing to the above metric is given by,

RGTD =
f(S,Q, α)

(πα (kS − 3πQ2) + 2m2S2)
2

(2m2S2 − 3πα (kS + 3πQ2))
3

(4.39)

where f(S,Q, α) is a complicated expression of less physical interest. Now

we will investigate the thermodynamic behaviour of the black hole system

using the scalar curvature. According to the theory of geometrothermody-

namics, the points of zero scalar curvature as well as the infinite discontinu-

ities will exactly matches with the singular behaviours of thermodynamic

potentials which corresponds to the black hole system.
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Figure 4.14: 3D Variation of Ricci scalar against entropy and charge anti
de-Sitter black holes for for flat, spherical and hyperbolic topology of
space-time in massive gravity

Now let us evaluate different charged black hole system in massive

gravity, as they vary with respect to mass of the graviton, topology of the

solutions and the sign of the curvature parameter.

The variation of Ricci scalar curvature with entropy is depicted in

figs.(4.13) and (4.14). Let us first consider the case in which the curva-

ture parameter, α is taken as positive, then as we have discussed earlier,

the black hole system will behave like charged de-Sitter black hole sys-

tem. From the fig.(4.13) it is evident that, all singular points in the ther-

modynamic parameters like temperature and heat capacity are exactly

reproduced by the Ricci scalar either by vanishing or showing infinite dis-

continuities at the same points. For the second case also Ricci scalar

behaves in a similar manner, where the curvature parameter, α is taken

as negative, and hence the the black hole system becomes a charged anti

de-Sitter black hole system.
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Figure 4.15: 3D Variation of Ricci scalar against entropy and charge de-
Sitter black holes for for flat, spherical and hyperbolic topology of space-
time in Einstein’s gravity

The variation of scalar curvature for this case is plotted in fig.(4.14).

Now let us investigate the geometrothermodynamics and the behaviour

of Legendre invariant scalar curvature of the black hole system, when the

mass of the graviton becomes zero. The corresponding variation of Ricci

scalar is depicted in figs.(4.15) and (4.16).
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Figure 4.16: 3D Variation of Ricci scalar against entropy and charge anti
de-Sitter black holes for for flat, spherical and hyperbolic topology of
space-time in Einstein’s gravity

Here too, the singularities of the Ricci scalar matches with those of

temperature and heat capacity of the RN black hole in Einstein’s general

relativity. It is interesting to note that the GTD results obtained from the

charged black hole solution in massive gravity coincides with the study of

RN black hole previously obtained in [148]. Hence the geometrothermo-

dynamics exactly reproduces the phase transition structure of the charged

black hole solutions in massive gravity.

We have studied the geometrothermodynamics of the charged de-Sitter

and anti de-Sitter black hole solutions in dRGT massive gravity. Phase

transition as well as the singular behaviours in the thermodynamic po-

tentials using GTD method has been discussed. We used the Quevedo

metric or GTD metric to obtain the Legendre invariant Ricci scalar cur-

vature. We analysed the thermodynamic behaviour using both analytical

and graphical methods. The analysis showed that, the singular behaviours
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in the thermodynamic potentials, including the point where heat capacity

diverges, exactly reproduced by the Ricci scalar obtained using the GTD

metric. Hence we can say that, GTD metric exactly reproduces the phase

transition structure of charged black holes in massive gravity and their

corresponding interactions. From this study it is evident that the charged

black holes in massive gravity undergoes second order phase transition.

The order of phase transition that was unrevealed in usual thermodynamic

studies get revealed in this geometric study. One expects that thermody-

namics of black holes would be the same as in general relativity. But our

studies show that, even though the results agrees with general relativity

when massive parameter tends to zero, there are significant changes in

the phase transition structure of the system when m 6= 0. Comparative

studies on analytical and graphical representation of the changes of heat

capacity and Ricci scalar against entropy and massive parameter of the

black hole system reveal the same result. Also the present study shows

that, like all other charged black hole solutions in Einstein’s gravity and in

all modified gravities, there exists a temperature window, where the black

hole temperature lies in a physically significant region with positive tem-

perature. Much attention and rigorous studies are needed to well explain

the existence of temperature windows.

BTZ black holes

Now we will apply the same GTD formalism in BTZ black hole in new

massive gravity. For that, let us consider a 5 dimensional thermodynamic

phase space, constituted by the coordinates Za = {M,S, l, T, α}, where

S, l are extensive variables while T and α are their corresponding dual

intensive variables. From the ideas of equilibrium manifold, one can obtain
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Figure 4.17: Variation of scalar curvature of the BTZ black hole against
the changes in entropy with l = 1, G = 1 and M = 1.

the GTD metric as,

gGTD = (SMS + lMl)

[
−MSS 0

0 Mll

]
.

Now one can calculate the Legendre invariant scalar curvature correspond-

ing to the above hessian metric in mass representation as,

RGTD =
π4l4

(
m2l2 − 2

)4 (
8m2l2 − 15

)
32G4s4 (5m4l4 − 9m2l2 + 6)

2
(4.40)

We will now explore the thermodynamic behaviour of the system as well

as their interactions using this scalar curvature. By plotting the scalar

curvature as a function of entropy, the variation is depicted in fig(4.17).

From this figure it can be inferred that, the particular equilibrium man-

ifold under consideration is a space of negative curvature for any values

of entropy or for any values of horizon radius. Hence the scalar curvature

corresponding to the BTZ black hole does not possess any discontinuities
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or zeros. Then we can say that the BTZ space-time is free of any thermo-

dynamic curvature singularities. As we have already discussed, the non

existence of any discontinuity in the variation of heat capacity implies the

non existence of phase transition (second order). According to GTD for-

malism, the regular variation of curvature scalar indicates that no (second

order) phase transition occurs. This result does not imply that there is

no thermodynamic interactions exists in the case of BTZ black hole, but

no second order phase transitions can occur.

In this work we used the formalism of GTD to construct a thermody-

namic equilibrium phase space to study the thermodynamic behaviour of

the BTZ black hole solution in new massive gravity. This method shows

that the thermodynamic curvature corresponding to BTZ black hole is

non zero and free of singularities, indicating the absence of second order

phase transition. Even though the black hole system shows a continuous

transition from a thermodynamically stable to an unstable phase, it is not

second order in nature.

4.3 Discussion and conclusion

During the last few decades several attempts have been made in order

to incorporate differential geometry ideas in ordinary thermodynamics.

Weinhold and Ruppeiner methods are the corner stone in these studies.

Explorations made on the relation between the phase space and the met-

ric structures in the space of equilibrium states led to the result that

Weinhold’s and Ruppeiner’s thermodynamic metrics are not invariant un-

der Legendre transformations. This result contradicts ordinary equilib-

rium thermodynamics which is obviously Legendre invariant. A consistent

method is proposed recently, named as Geometrothermodynamics which

answers all the discrepancies faced in earlier studies. In this Chapter we
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have analysed the thermodynamic geometry of different black hole solu-

tion in modified theories of gravity, particularly in Hořava-Lifshitz grav-

ity and massive gravity. Different black hole solutions in these theories

are considered, which include Kehagias-Sfetsos black hole, Lü-Mei-Pope

black hole, Park black hole, charged dRGT black hole and BTZ black

hole. Thermodynamic behaviour of these black hole systems are studied

both analytically and graphically with immense stress on the phase tran-

sition structure in chapter 2. From those studies we have concluded that

many solutions exhibit phase transition via change of sign of heat capacity

and many abnormalities in different thermodynamic potentials. Ordinary

thermodynamics was not adequate enough to answer this scenario. In this

chapter we have analysed all these unanswered questions with the help of

geometrothermodynamics. Initially, thermodynamics of Park black hole

solution is studied once again in a slightly different way by incorporat-

ing both de Sitter and anti de Sitter solutions in a single scenario. GTD

formalism is applied to all the black hole case by defining an equilibrium

manifold and thus defining a metric structure. Scalar curvature corre-

sponding to each case is calculated. Within the GTD formalism, scalar

curvature is the geometric object that account for the physics of the sys-

tem. In the black hole systems, the curvature singularities determines the

phase transition structure of the system in such a way that the critical

point where scalar curvature diverges matches with that of phase tran-

sition points. Singularities in these scalar curvature also reproduce the

anomalous behaviours existing in the system. Here the phase transitions

shown by the black hole systems in modified theories of gravity have been

analysed using GTD approach and concluded that they undergo a second

order phase transition. All abnormal behaviours exhibited by each black

holes are well coded on the singularities in the scalar curvature.
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5.1 Conclusion

In this thesis we have obtained some new results both in the context of

thermodynamics and Geometrothermodynamics of black holes in modified

theories of gravity, particularly in Hořava-Lifshitz gravity and Massive

gravity.

In the second chapter after giving a general introduction to different

black hole solution in Hořava-Lifshitz and Massive gravity. Kehagias-

Sfetsos black hole, Lü-Mei-Pope black hole, Park black hole, dRGT black

hole and (2+1) BTZ black hole are extensively explored by studying their

thermodynamic properties with a great emphasize on phase transition

structure of the system. From Davies’s phase transition idea [57], phase

transitions occur in black holes whenever there is a change of sign through

a divergency in heat capacities. This is the most basic and at the same time

the most discussed definition of second order phase transitions in black

holes. By exploring the heat capacity behaviours of KS, LMP, Park and

dRGT black holes, we also conclude that they exhibit phase transitions.

For the Park black hole solution, it is found that there exist different

anomalous behaviours in the form of negative temperature and existence of

mass bound. Whereas in the BTZ black hole case in new massive gravity,

121
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it does not possess any infinite discontinuity in transitions. Ordinary

thermodynamic ideas miserably fail to explain these anomalies.

We have analysed the entropy spectra of these black hole solution in

the third chapter by employing the method suggested by Majhi, Vagenas,

Jiang and Han, in which they have incorporated the ideas form the adi-

abatic invariance, tunneling mechanism, Bohr-Sommerfeld quantization

rule and near horizon approximations. We have found that the entropy

spectrum of KS black hole in Hořava-Lifshitz gravity is equi-spaced and

the spectrum is independent of black hole parameters. Whereas in the case

of charged BTZ solution in massive gravity, the entropy spectrum depends

on the black hole parameters, even though the spectrum is equi-spaced.

We have analyzed the geometric structure of equilibrium manifold for

the above mentioned black holes in modified theories of gravity using

the new approach proposed by Hernando Quevedo [97–99]. By analysing

the Riemannian thermodynamic metric or the GTD metric defined on

the equilibrium manifold, these geometric structures give complete de-

scription of the critical behaviours exhibited by these black hole systems.

Interactions present in the thermodynamic system are reflected from the

curvature of the metric defined on equilibrium spaces. If thermodynamic

curvature is free of singularities or varying regularly, then GTD interprets

it as non-existence of singular points at the level of the heat capacity and

no (second order) phase transitions occur in the system. It is interest-

ing to note that the same scalar curvature of the GTD metric reflects

all abnormalities shown by the system. From the examination of phase

transition structure of all black hole solutions considered in the previous

chapters, we found that scalar curvature exactly reproduce the same as

per the GTD formalism. In Physics certain systems can exhibit negative

temperature behaviour. But most familiar systems cannot achieve nega-

tive temperatures, because adding energy always increases their entropy.
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In some of the black hole cases we examined, it is evident that there are

regions where the temperature becomes negative. In the spin system the

temperature can be negative, due to the upper bound of energy spectrum

[153]. Recently, a number of black hole solutions which have similar up-

per bound of black hole mass have been discovered [154–158]. Park black

hole is one among them. The most important but most difficult question

in this scenario would be, can we have a plausible explanation of why

the standard computation of black hole temperature should fail in these

cases?. Even though GTD can explain the thermodynamic behaviours of

the system, it miserably fails to answer this question.

5.2 Plan of future works

Many questions about the thermodynamic geometry methods and their

application in modified theories of gravity remain open so far and it will

be considered in future attempts. A more generalized thermodynamic

geometry formalism which can exactly give the order of phase transition

is yet to be formulated. Prigogine-Defay (PD) ratio gives the exact order of

transition and we will be looking forward to incorporate these ideas along

with geometrothermodynamics to formulate a unique geometric method

to explain the thermodynamic systems.

Developing such a generic geometric framework will enable us to use

the geometric quantities like curvature, distance, etc to explore further

the thermodynamic relations through different laws and new equation of

states. Then one can directly apply these ideas to different scenarios e.g.

in cosmology. From the Friedmann equations of standard cosmological

model, there are two differential equations for three unknowns, so that to

close the system it is necessary to add an equation. Recent studies show

that one can use GTD to derive the missing equation by considering GTD
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fluid [100, 149]. So generating further cosmological models using GTD

formalism and testing these GTD cosmological models by investigating

whether they reproduce the entire dynamics in all epochs of the evolution

of the Universe, the consistency with observations will be a fascinating

topic of research.

In summary, we expect that this will not be the end of our explo-

ration, instead the beginning of a better and deeper understanding of

thermodynamic geometry of different systems in nature which include the

fascinating black holes.
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[125] M. Bañados, C. Teitelboim, and J. Zanelli,“Black hole in three di-

mensional space time”, Phys. Rev. Lett 69, 1849 (1992).

[126] G. Clement,“Warped AdS3 black holes in new massive gravity”,

Class. Quantum Grav. 26, 105015 (2009).

[127] L. F. Abbott and S. Deser,“Stability of gravity with a cosmological

constant”, Nucl. Phys. B 195, 76 (1982).

[128] S. Deser and B. Tekin,“Gravitational Energy in Quadratic-Curvature

Gravities”, Phys. Rev. Lett. 89, 101101 (2002).

[129] S. Deser and B. Tekin,“Energy in generic higher curvature gravity

theories”, Phys. Rev. D 67, 084009 (2003).

[130] G. T. Horowitz and R. C. Myers,“AdS-CFT correspondence and a

new positive energy conjecture for general relativity”, Phys. Rev. D 59,

026005 (1998).

[131] S. Surya, K. Schleich, and D. M. Witt,“Phase Transitions for Flat

Anti-de Sitter Black Holes”, Phys. Rev. Lett. 86, 5231 (2001).

[132] M. Kleban, M. Porrati, and R. Rabadan,“Poincare recurrences and

topological diversity”, JHEP 0410, 030 (2004).



REFERENCES 137

[133] M. K. Parikh and F. Wilczek,“Hawking radiation as tunneling”,

Phys. Rev. Lett. 85, 24 (2000).

[134] J. Y. Zhang and Z. Zhao,“Discussion on event horizon and quantum

ergosphere of evaporating black holes in a tunneling framework”, Phys.

Rev. D, 83 064028 (2011).

[135] L. Smarr,“Mass Formula for Kerr Black Holes”, Phys. Rev. Lett.

30, 71 (1973).

[136] B. R. Majhi,“Hawking radiation and black hole spectroscopy in

Horava-Lifshitz gravity”, Phys. Lett. B 686, 49 (2010).

[137] M. R. Setare and D. Momeni,“Spacing of the entropy spectrum for

KS Black hole in Horava-Lifshitz gravity”, Mod. Phys. Lett. A. 26, 151

(2011).

[138] R. G. Cai, Y. P. Hu, Q. Y. Pan and Y. L. Zhang,“Thermodynamics

of black holes in massive gravity”, Phys. Rev. D 91, 024032 (2015).

[139] S. H. Hendi, B. Eslam Panah, S. Panahiyan,“Massive charged BTZ

black holes in asymptotically (a)dS spacetimes”, JHEP 05, 029 (2016).

[140] S. W. Hawking,“Gravitational Radiation from Colliding Black

Holes”, Phys. Rev. Lett. 26, 1344 (1971).

2333.

[141] S. W. Hawking and C. J. Hunter,“Gravitational entropy and global

structure”, Phys. Rev. D 59, 044025 (1999).

[142] C. J. Hunter,“Action of instantons with a nut charge”, Phys. Rev.

D 59, 024009 (1999).

[143] S. W. Hawking, C. J. Hunter and D. N. Page,“NUT charge, anti-de

Sitter space, and entropy”, Phys. Rev. D59, 044033 (1999).



138 REFERENCES

[144] B. R. Majhi, Ph. D. thesis,“Quantum tunneling in black holes”,

(2010).

[145] C. Tsallis,“Nonadditive entropy: The concept and its use”, Eur.

Phys. J. A 40, 257-266 (2009).

[146] H. Touchette,“When is a quantity additive, and when is it exten-

sive?”, Physica A 305, 84-88 (2002).

[147] W. Janke, D. A. Johnston and R. Kenna,“Geometrothermodynamics

of the Kehagias-Sfetsos Black Hole”, J. Phys. A 43, 425206 (2010).

[148] M. Akbar, H. Quevedo, K. Saifullah, A. Sanchez and S. Taj, “Ther-

modynamic Geometry Of Charged Rotating BTZ Black Holes”, Phys.

Rev. D 83, 084031 (2011).

[149] H. Quevedo and M. N. Quevedo,“Cosmological Applications of Ge-

ometrothermodynamics”, Gravitaion and Cosmology, 20, 208 (2014).

[150] R. Clausius,“Ueber die bewegende Kraft der Wärme und die Gesetze,
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