
Non-deterministic Fuzzification Using
Multilattices

Thesis submitted to

COCHIN UNIVERSITY OF SCIENCE AND

TECHNOLOGY

for the award of the degree of

DOCTOR OF PHILOSOPHY

under the Faculty of Science by

Gireesan K. K.

Department of Mathematics

Cochin University of Science and Technology

Kochi - 682 022, Kerala, India

September 2015



Non-deterministic Fuzzification Using Multilattices

Author:

Gireesan K. K.

Department of Mathematics

Cochin University of Science and Technology

Kochi - 682 022, Kerala, India

Email: gireesankk@gmail.com

Supervisor:

Dr. T. Thrivikraman

Formerly Professor

Department of Mathematics

Cochin University of Science and Technology

Kochi - 682 022, Kerala, India.

Email: thekkedathumana@gmail.com

September 2015



Certificate

This is to certify that the thesis entitled ‘Non-deterministic

Fuzzification Using Multilattices’ submitted to the Cochin Uni-

versity of Science and Technology by Mr. Gireesan K.K. for the

award of the degree of Doctor of Philosophy under the Faculty of

Science is a bonafide record of studies carried out by him under my

supervision in the Department of Mathematics, Cochin University

of Science and Technology. This report has not been submitted

previously for considering the award of any degree, fellowship or

similar titles elsewhere.

Dr. T.Thrivikraman
(Supervising Guide)
Formerly Professor
Department of Mathematics
Cochin University of Science
and Technology
Kochi - 682 022, Kerala

Cochin-22
18-9-2015.



Declaration

I, Gireesan K. K., hereby declare that this thesis entitled ‘Non-

deterministic Fuzzification Using Multilattices’ contains no

material which had been accepted for any other Degree, Diploma

or similar titles in any University or institution and that to the

best of my knowledge and belief, it contains no material previously

published by any person except where due references are made in

the text of the thesis.

Gireesan K.K.
Research Scholar

Registration No. 3399
Department of Mathematics

Cochin University of Science and Technology
Cochin-682 022, Kerala.

Cochin-22
18-09-2015.



Acknowledgements

I would like to set down my deep felt sense of indebtedness and

gratitude to the following persons but for whose help and support I

could never have accomplished this task.

I feel that words are insufficient to express my obligation to my

supervising guide, Dr. T. Thrivikraman, Professor(Rtd.), Depart-

ment of Mathematics, CUSAT, a man of immense knowledge and

unflagging energy who stood by me as a constant source of help,

support and motivation from the beginning to the end this venture.

Dr. A. Krishnamoorthy, Emeritus Professor, Department of

Mathematics, CUSAT, the other member of the doctoral committee

also deserves my gratitude for the encouragement and inspiration

he gave me during the research activity and the submission of the

thesis.

Let me register my sincere feeling of obligation and gratitude to

Dr. P. G. Romeo, Dr. M. Jathavedan, Dr. M. K. Ganapathy,

Dr. R. S. Chakravarthy, Dr. M. N. Narayanan Namboodiri, Dr.

A. Vijayakumar, Dr. B. Lakshmi and all the teaching and Non-

teaching staff of the Department of Mathematics, CUSAT for their

generous help and wholehearted co-operation which enabled me to

bring my research study to a successful finish. I am also grateful to

the faculties of the department of Mathematics Dr. Noufel and Dr.

Ambily for their timely help.

I am thankful to my fellow Research Scholars Dr. Varghese

Jacob, Dr. Sreenivasan C. Dr. Manikandan, Mr. Didimos, Mr.



Pravas, Ms. Dhanya Shajin, Mr. Shinoj K. M., Ms. Savitha K.

S., Ms. Jaya S., Ms. Seethu Varghese, Ms. Akhila, Ms. Smisha,

Mr. Mahesh who always offered me help and support without any

reservations.

I would like to acknowledge my indebtedness to Dr. Kiran Ku-

mar, Mr. Manjunath, Mr Tijo James, Mr. Satheesh Kumar and

Mr. Arun Kumar C. S. whose timely help and encouragement was

extremely valuable to me in the last phase of the enterprise, the

submission of the thesis.

Let me record my gratitude to my friend Dr. Sabu Sebastian

who was an unfailing source of support and guidance all along the

pursuit of my studies and the preparatrion of the thesis.

I am extremely grateful to Dr. Syamprakash, Principal, Govt.

College of Engineering, Kannur for his understanding and positive

stand in granting me the leave I required for the timely submission

of the thesis.

With a deep sense of gratitude I remember my colleagues of

Mathematics Prof. Johny George, Mr. Eswaran Namboodiri, Mr.

Vinodan P. K. and Mr. Sivadas P. V., whose support and inspi-

ration was of great worth to me in attaining my goal as Research

Scholar.

I am extremely grateful to my parents, brothers and sisters for

their support and care given to me during this prolonged venture.

A special thanks to my Valyamma whose spiritual support was a

constant source of strength and inspiration.

Last but not the least, my sincere love and gratitude to my wife

and children who stood by me patiently throughout giving me all

support and encouragement.



From the bottom of my heart I thank one and all who have di-

rectly or indirectly lent me a hand in this venture.

Gireesan K. K.





Contents

1 Introduction 1

1.1 Summary of the thesis . . . . . . . . . . . . . 2

2 Preliminaries 5

2.1 Lattices . . . . . . . . . . . . . . . . . . . . . 5

2.2 Multilattices . . . . . . . . . . . . . . . . . . . 8

2.3 Fuzzy sets . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Zadeh’s extension of functions . . . . . 12

2.3.2 L−fuzzy sets . . . . . . . . . . . . . . 13

2.4 Fuzzy topology . . . . . . . . . . . . . . . . . 14

2.5 L-fuzzy lattice . . . . . . . . . . . . . . . . . . 16

2.6 Lattice matrix . . . . . . . . . . . . . . . . . . 17

3 nd-M-Fuzzy Topological Spaces 19

3.1 nd- M-fuzzy subsets . . . . . . . . . . . . . . . 19

i



3.2 nd-M-fuzzy extensions of functions . . . . . . 26

3.3 nd-M-fuzzy topological spaces . . . . . . . . . 31

3.4 nd-M-fuzzy continuous maps . . . . . . . . . . 41

4 nd-M-Fuzzy Lattice 45

4.1 nd-M-fuzzy relation . . . . . . . . . . . . . . . 46

4.2 nd-M-fuzzy lattice . . . . . . . . . . . . . . . 47

4.3 nd−M− fuzzy lattices as nd−M− fuzzy relations 53

4.4 Relation between two types of nd-M-fuzzy lat-

tices . . . . . . . . . . . . . . . . . . . . . . . 57

5 Strong nd-M-Fuzzy Lattice 61

5.1 nd-M fuzzy -meet semilattice . . . . . . . . . . 61

5.2 nd-M-fuzzy join-semilattice . . . . . . . . . . . 64

5.3 nd−M−fuzzy∗ join-semilattice and nd−M−

fuzzy∗ meet-semilattice . . . . . . . . . . . . 67

5.4 nd-M-fuzzy* lattice . . . . . . . . . . . . . . . 69

5.5 Strong nd-M-fuzzy lattice . . . . . . . . . . . 70

6 Matrices over Multilattices 77

6.1 Definition and some properties . . . . . . . . . 78

6.2 Orthogonal Matrices . . . . . . . . . . . . . . 83

Bibliography 87



Notations used

≤ Partial order relation

∀ For every (universal quantifier)

∃ There exist
∑

Summation

∨ Join

∧ Meet

∨L Join operation on a lattice

∧ Meet operation on a lattice

∨M Join operation on a multilattice

∧M Meet operation on a multilattice
∨

Multisuprimum of arbitrary collection of sets
∧

Multiinfimum of arbitrary collection of sets
⋃

Set union
⋂

Set intersection

A,B,C Arbitrary sets (crisp/fuzzy/nd-M-fuzzy subsets)

or matrix (lattice or multilattice)

A = B Equality of nd-M-fuzzy sets or equality of two matrices

A ⊆ B Set inclusion

A ⊑EM B Inclusion by Egli-Milner ordering

A0 Interior of A

A Closure of A

Ac or A
′

Complement of A

A(x) or µ(x) Membership grade of x in A

Aα α level of A

µα α level of µ



X, Y, Z Universal set

I, J and K Indexing Set

i, j, k Elements in I, J, K respectively

L Complete lattice

M Complete and consistent Multilattice

LX Set of all L-fuzzy subset of X

(2M)X Set of all nd-M-fuzzy subset of X

Ln Set of all lattice matrices of order n

Mn Set of all multilattice matrices of order n

τ, υ, ν Fuzzy topology/ nd-M-fuzzy topologies

AT Transpose of a matrix.

(aij) or (A)ij (i, j)th element of A

τα α level of τ

R nd-M-Fuzzy relation



Chapter 1

Introduction

The fuzzification of crisp concepts is an important topic which

attracts the attention of a number of researchers. There are ap-

proaches which are based either on the structure of lattice or more

restrictive structures. Zadeh [51] defined [0, 1] valued fuzzy sets,

Goguen[16] generalised them to the L-valued fuzzy sets, where L

has the structure of a lattice. Rosenfeld [38] started the pioneer

work in the domain of fuzzification of the algebraic objects. Also

C. L. Chang [11] introduced the concept of fuzzy topological space

and R. Lowen [28] introduced a more natural definition of fuzzy

topological space.

Weakening the structure of the underlying set of membership

functions for fuzzification has been studied extensively in recent

years. One can find some attempts aiming at weakening the re-

strictions imposed on a lattice namely “the existence of least upper

bounds and greatest lower bounds” relaxed to the existence of min-

1



2 Introduction

imal upper bounds and maximal lower bounds. In this direction we

have a structure of a multilattice.

In 1954M. Benado introduced the notion of a multilattice which

generalize a lattice by replacing the axiom of existence of a l.u.b for

two elements by that of a set of minimal upper bounds and dually.

But in L-fuzzy sets introduced by Goguen where L is a lattice, the

membership function gives unique values in L for each element of

its domain. Here we are fuzzifying a crisp concept through a mem-

bership function, the membership function gives a set of values to

each element of its domain. We call this type of membership func-

tion as non- deterministic (nd, for short). Thus we introduce the

non-deterministic-M-fuzzy set in terms of non-deterministic mem-

bership functions, where M has the structure of a complete and

consistent multilattice [21].

1.1 Summary of the thesis

The main objective of the Thesis is to study the extension of lattice

theoretic works using mutilattices. In this thesis we study the non

deterministic fuzzification using multilattices. The structure of the

thesis is divided into five chapters. A brief chapter wise description

is given below.

Chapter 2 contains brief outline of preliminary results for this

thesis. So in that chapter we present a short summary of elementary

notions of lattices [5], multilattices [4, 8, 12], L-fuzzy subsets and

properties [18], L-fuzzy topological spaces [27], L-fuzzy lattice [2],
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strong L-fuzzy lattice [39] and lattice matrix [50]. All results here

are quoted from existing literature.

Chapter 3 introduces the concept of nd−M-fuzzy subsets. Then

we define the union, intersection, complementation and distribu-

tivity in nd−M−fuzzy subsets and also we define nd−M−fuzzy

extensions of functions. Then we introduced nd −M−fuzzy topo-

logical spaces. Also defined interior and closure of nd −M−fuzzy

topological spaces along with some properties and define the no-

tion of nd −M−closure operator and nd −M−interior operators.

Then we discussed the continuous mappings on nd − M− fuzzy

topological spaces .

The notion of L-fuzzy lattice was introduced by Tepavčević and

Goran Trajakoviski [2]. Chapter 4 extends the concepts of L-fuzzy

lattices to nd −M−fuzzy lattices, where M has the structure of

a complete and consistent multilattice along with the Egli-Milner

[21] ordering of subsets. As in the L-fuzzy lattice [2] here we intro-

duced two types of nd −M− fuzzy lattice. The first is obtained

by assigning a singleton set or set of values to each element of the

carrier of the bounded lattice. The second type is obtained by non-

deterministic fuzzy relation of the order in a crisp relation. Then

we define the relation between the two approaches and we prove

that these two types of approaches are equivalent.

The fifth chapter introduces the concept of strong nd − M-

fuzzy lattice which is the extension of strong L-fuzzy lattice [39].

Before introducing nd − M-fuzzy lattice, first we introduce the

concept of nd − M-fuzzy meet(join)-semilattices and nd − M −

fuzzy∗meet(join) - semilattices.



4 Introduction

In chapter six we introduces the matrices over a multilattice. We

develop this concept on the basis of lattice matrices [50]. In lattice

matrices the entries are elements from a complete distributive lat-

tice. But here we use set of elements to each entries of the matrix

from a complete consistent and distributive multilatice M . Later

we define algebraic operations and properties of these matrices.



Chapter 2

Preliminaries

In this chapter we discuss some basic concepts needed for the study

of nd −M− fuzzy subsets and related concepts. We develop the

concept of nd−M−fuzzy sets on the platform of fuzzy set theory.

2.1 Lattices

One of the important concepts in all mathematics is that of a rela-

tion. The particular interests are for equivalence relation, functions

and order relations. An order relation, denoted by ≤ on a set X

is called a partial order relation if it is reflexive (x ≤ x for every

x ∈ X), antisymmetric (that is if x and y are such that x ≤ y,

y ≤ x then x = y, for every x, y ∈ X) and transitive (that is if

x, y and z such that x ≤ y, y ≤ z then x ≤ z, for every x, y and

z ∈ X). A partially ordered set (or poset) is a set in which a partial

order relation is defined on it. The diagrammatic representation of

5



6 Preliminaries

a finite poset is called a Hasse diagram.

A lattice is a partially ordered set in which any two elements

have a unique supremum (the elements least upper bound; called

their join) and an infimum (greatest lower bound; called their

meet). A subset A of L is called a sublattice of L if for each

x, y ∈ A, x ∧ y ∈ A and x ∨ y ∈ A . An element 0 in L is called

a lower bound ( or least element) of L if 0 ≤ x, for every x ∈ L.

An element 1 in L is called a upper bound (or greatest element) of

L if x ≤ 1 for every x ∈ L.ies. Since the two definitions are equiv-

alent, lattice theory draws on both order theory and the universal

algebra.

Definition 2.1.1. [5, 17] A poset (L,≤) is a lattice if for any

two elements a and b of L, a ∨ b = sup(a, b) and a ∧ b = inf(a, b)

exist. A subset A of L is called a sub lattice of L if for each x, y ∈ A,

x∧y ∈ A and x∨y ∈ A . An element 0 in L is called a lower bound

( or least element) of L if 0 ≤ x, for every x ∈ L. An element 1 in

L is called a upper bound (or greatest element) of L if x ≤ 1 for

every x ∈ L.

An algebraic structure (L,∨,∧) consisting of a set L and two

binary operations ∨ and ∧ on L is a Lattice if the follwing axiomatic

identities hold for all elements a, b, c of L.

1. Commutative laws:

a ∨ b = b ∨ a

a ∧ b = b ∧ a
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2. Associative laws:

a ∨ (b ∨ c) = (a ∨ b) ∨ c

a ∧ (b ∧ c) = (a ∧ b) ∧ c

3. Absorption laws:

a ∨ (a ∧ b) = b

a ∧ (a ∨ b) = b

The following two identities are also usually regarded as axioms,

even though they follow from the two absorption laws taken to-

gether,

Idempotent laws: a ∨ a = a and a ∧ a = a

These axioms assert that both (L,∨) and (L,∧) are respectively

join-semi lattices and meet-semilattices.

Definition 2.1.1. A bounded lattice is an algebraic structure

of the form (L,∨,∧, 1, 0) such that (L,∨,∧) is a lattice, and 0 (the

lattice’s bottom) is the identity element for the the join operation

∨ and 1 (the lattice’s top) is the identity element for the meet

operation ∧.

Definition 2.1.2. A poset is called a complete lattice if all

its subsets have a join and a meet.

Remark 2.1.1. Every complete lattice is a bounded lattice.

Definition 2.1.3. A lattice (L,∨,∧) is called distributive
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lattice if for all a, b, c ∈ L, one of the following is satisfied.

1. a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

2. a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

Definition 2.1.2. [5, 17] A sublattice of a lattice L is a non-

empty subset of L which is a lattice with the same meet and join

operations as L. That is , if L is a lattice and M 6= ∅ is a subset

of L such that for every pair of elements a, b ∈ M both a ∧ b and

a ∨ b are in M , then M is a sublattice of L.

Definition 2.1.3. Let L be a lattice with 0, an element x of L

is called an atom if 0 < x and there exists no element y of L such

that 0 < y < x.

Definition 2.1.4. Let L be a lattice with 0 and 1, an element

x of L is called a co-atom if for all y ∈ L with x < y < 1⇒ x = y

Definition 2.1.5. A complemented lattice is a bounded

lattice (with least element 0 and greatest element 1) in which every

element a has a complement, i.e., an element b such that a ∨ b =

1 and a ∧ b = 0.

2.2 Multilattices

Given (M,≤) is a partially ordered set and B ⊆M , multisupremum

of B is a minimal element of the set of upper bounds of B and

multisup(B) denote the Multisuprema of B. Dually we define the

multiinfima.
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Definition 2.2.1. [12] A poset (M,≤) be an ordered multi-

lattice if and only if it satisfies the condition that for all a, b, x with

a ≤ x and b ≤ x, there exist z ∈ multisup {a, b} such that z ≤ x.

When comparing with lattices, we see that least upper bound

(which is a unique element) is replaced by the non empty set of all

minimal (instead of least)upper bounds and dually.

Definition 2.2.2. [20] A multilattice is distributive if for each

a, b, c ∈ P , the conditions (a∨ b)∩ (a∨ c) 6= ∅ and (a∧ b)∩ (a∧ c) 6=

∅ ⇒ b = c (where ∩ - is the usual set intersection and ∪- is the

usual set unions).

Similarly to lattice theory, if we define a ∨ b = Multisup{a, b}

and a∧ b = multiinf{a, b}, then (M,∧,∨) be a algebraic multilat-

tice and if we define a ≤ b if and only if a∨ b = {b} and a∧ b = {a}

it is possible to obtain the order version of multilattice.

Definition 2.2.3. A complete multilattice is a partially or-

dered set (M,≤) such that every subset X ⊆ M the set of upper

bounds of X has minimal (maximal) element, which are called mul-

tisuprema (multiinfima), that is for any subset A of X , multiinf(A)

and Multisup(A) exists and non empty.

Definition 2.2.4. A poset (M,≤) is said to be a multisemi-

lattice if it satisfies that for all a, b, x ∈M with a ≤ x, b ≤ x, there

exist z ∈ multisup { a, b} such that z ≤ x and dually.

Definition 2.2.5. Let (M, ≤) be a poset. The element a ∈M
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is called a greatest element of M if all other element are smaller.

That is a ≥ x for every x ∈M . Similarly b ∈M is called a smallest

element of M if b ≤ x for every x ∈M

If a multi-lattice has a greatest element and smallest element, then

(M, ≤) is said to be bounded. Normally greatest element is taken

as 1 and smallest element is taken as 0.

Definition 2.2.6. A multilattice M with 0 and 1 is called

complemented if for each x ∈ M , there is at least one element y

such that x ∧ y = {0} and x ∨ y = {1}.

Remark 2.2.1. Let M be complete distributive multilattice.

Then every element in M has exactly one complement in M . For, if

a ∈M has two complements say a1 and a2 in M . Then a∨a1 = {1}

and a∧ a1 = {0}, a∨ a2 = {1} and a∧ a2 = {0} then (a∨ a1)∩ (a∨

a2) = {1} ∩ {1} = {1} 6= φ, and (a ∧ a1) ∩ (a ∧ a2) = {0} ∩ {0} =

{0} 6= φ. Therefore a1 = a2, two complements are equal.

Note that as by assumption our sets will not necessary have a

supremum but a set of multisuprema. Then we are going to or-

dering between subsets of posets. Here we are considering three

different orderings, the Hoare ordering, the Smyth ordering and

the Egli-Milner ordering.

Definition 2.2.7. [21] consider A,B ⊆ 2M , then

(i) A ⊑H B if and only if for all a ∈ A exists b ∈ B such that
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a ≤ b

(ii) A ⊑S B if and only if for all b ∈ B there exists a ∈ A such

that a ≤ b

(iii) A ⊑EM B if and only if A ⊑H B and A ⊑S B.

Definition 2.2.8. [40] (M,∧,∨) - be a algebraic multilattice.

Let x ∈M and A and B be subsets of M , then

x ∧A = ∪ {(x ∧ a)/a ∈ A}

x ∨A = ∪ {(x ∨ a)/a ∈ A}

Also A ∧ B = ∪ {(a ∧ b)/a ∈ A, b ∈ B}

A ∨ B = ∪ {(a ∨ b)/a ∈ A, b ∈ B}.

Definition 2.2.9. [21] A multilatticeM is said to be consistent

if the following set of inequalities holds for all A ⊂M

LB(A) ⊑EM multiinf(A)

Multisup(A)⊑EM UB(A)

Where LB(A) and UB(A) are the lower bound of A and upper

bound of A respectively.

Note 1. A multilattice should not contain infinite sets of

mutually incomparable elements.

2.3 Fuzzy sets

In 1965 L. A Zadeh introduced the concept of fuzzy sets. He used

the interval [0, 1] for describing the vagueness mathematically and
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used membership values in [0, 1] for solving such problems to each

member of a given set.

Definition 2.3.1. [18] Let X be a non empty set. A fuzzy set

A of X is a mapping A : X → [0, 1], that is

A = {(x, µA(x)) : µA(x) is the membership grade of x in A, x ∈

A}

Let µA and µB be membership functions of the fuzzy subsets A

and B respectively. The set of all fuzzy sets on X is denoted by

F(X)

1. A = B ⇔ µA(x) = µB(x), ∀x ∈ X .

2. A ⊆ B ⇔ µA(x) ≤ µB(x), ∀x ∈ X .

3. µA∪B(x) = max{µA(x), µB(x)}, ∀x ∈ X .

4. µA∩B(x) = min{µA(x), µB(x)}, ∀x ∈ X .

5. µA′(x) = 1−µA(x), ∀x ∈ X where A′ is the fuzzy complement

of A.

2.3.1 Zadeh’s extension of functions

Let µA(x) and µf(A)(y) be denoted by A(x) and f(A)(y) respec-

tively, where f : X → Y be a crisp function.

Definition 2.3.2. [18] Let f : X → Y be a crisp function.

The fuzzy extension of f and the inverse of the extension are f :
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F(X)→ F(Y ) and f−1 : F(Y )→ F(X) defined by

f(A)(y) =
∨

y=f(x)

A(x) , A ∈ F(X), y ∈ Y

and

f−1(B)(x) = B(f(x)), B ∈ F(Y ), x ∈ X.

Theorem 2.3.3. Let f be a function from X to Y then

1. (f−1(B))′ = f−1(B′) for any fuzzy set B in Y ;

2. (f(A))′ ⊆ f(A′) for any fuzzy set A in X ;

3. B1 ⊆ B2 ⇒ f−1(B1) ⊆ f−1(B2) where B1 ,B2 are any fuzzy

set in Y ;

4. A1 ⊆ A2 ⇒ f(A1) ⊆ f(A2) where A1 ,A2 are any fuzzy set in

X ;

5. A ⊆ f−1(f(A)) for any fuzzy set A in X ;

6. f(f−1(B)) ⊆ B, for any fuzzy set B in Y .

2.3.2 L−fuzzy sets

Definition 2.3.4. L-fuzzy set is the generalisation of Zadeh’s

definition of fuzzy sets. Let X be a non-empty ordinary set and L

be any lattice . An L-fuzzy set on X is a mapping A : X → L, The

family of all the L-fuzzy set on X is denoted by LX consisting of

all the mappings from X to L.
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The algebraic operations on LX are defined by ∀x, y ∈ X,A,B ∈

LX

µA∪B(x) = µA(x) ∨ µB(x)

µA∩B(x) = µA(x) ∧ µB(x).

Definition 2.3.5. Let X be a non-empty set and L be a

complete lattice. Let α ∈ L and A ∈ LX . Then the α-level of A is

a crisp set defined by

Aα = {x ∈ X : A(x) ≥ α}

.

2.4 Fuzzy topology

Definition 2.4.1. [11, 27] Let X be non empty set, L a F-

lattice, τ ⊆ LX , τ is called a L-fuzzy topology on X , and (LX , τ)

is called an L-fuzzy topological space, if τ satisfying the following

conditions:

1. 0, 1 ∈ τ.

2. if µ, γ ∈ τ then µ ∧ γ ∈ τ.

3. if µi ∈ τ for each i ∈ Γ, then
∨

i∈Γ µi ∈ τ.

Where 0 represents null set and 1 represents full set.

A fuzzy set A ∈ τ is called τ − closed if and only if its comple-

ment is A′ is τ − open.
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Remark 2.4.1. 1. The element in τ are τ−open fuzzy sets

in X .

2. A fuzzy set A ∈ τ is called τ − closed if and only if its com-

plement A′ is τ − open.

3. The collection of all constant fuzzy sets in X is a fuzzy topol-

ogy on X .

4. Let A ∈ LX , then interior of A is the join of all the open sets

contained in A.

5. Let A ∈ LX , then closure of A is the meet of all closed subsets

containing A.

Definition 2.4.1. Let (LX , τ) and (LY , ν) be L−fuzzy topo-

logical spaces
−→
f : LX → LY be an L−fuzzy mapping, we say

−→
f

is an L−fuzzy continuous mapping from (LX , τ) to (LY , ν) if its

reverse mapping
←−
f : LY → LX maps every open subsets in (LY , ν)

as an open set in (LX , τ). i.e., ∀ v ∈ ν,
←−
f (v) ∈ τ.

Theorem 2.4.2. Let (X, τ) and (Y, ν) be fuzzy topological

spaces and let f be a function from X into Y . Then, f is fuzzy

continuous if and only if
←−
f (C) is closed in X in X, for each closed

fuzzy set C in Y .

Proposition 2.4.1. If f : (X, τ) −→ (Y, ν) and g : (Y, ν) −→

(Z, υ) are fuzzy continuous, then g ◦ f : (X, τ) −→ (Z, υ) is fuzzy

continuous.
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2.5 L-fuzzy lattice

Definition 2.5.1. [2] Let X be a lattice and (L,∨L,∧L) is a

complete lattice with 0L and 1L. Let µ be a L-fuzzy set defined on

X . The p cut (p ∈ L) of µ is defined by µp = {x ∈ X : µ(x) ≥ p},

A fuzzy set µ defined on L is a fuzzy sub lattice of L, if

µ(x ∧ y) ∧ µ(x ∨ y) ≥ min(µ(x), µ(y)) x, y ∈ X

µ(x ∧ y) ∧ µ(x ∨ y) ≥ µ(x) ∧ µ(y)

Note 2. µ ∈ LX is a L-fuzzy sub lattice of X if and only if µp

is a sublattice of X for each p ∈ L.

Proposition 2.5.1. A L-fuzzy lattice satisfies the following

results. Let L,∧L,∨L be a lattice andM,∧M ,∨M a complete lattice

with 0L and 1L then the mapping A : M → L is an L-fuzzy lattice

iff both of the following relations hold for all x, y ∈M

1. A(x) ∧L A(y) ≤ A(x ∧M y).

2. A(x) ∧L A(y) ≤ A(x ∧M y).

Definition 2.5.2. [44] Let (M,∧M) be a meet semilattice and

(L,∨L,∧L) is a complete lattice with 0L and 1L. Let µ be a L-fuzzy

set defined on X .Then µ is called an L-fuzzy meet semi lattice of

of M , if all the p (p ∈ L) level sets of µ are sub meet semilattice of

M .
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Definition 2.5.3. Let (M,∨M) be a meet- semilattice and

(L,∨L,∧L) a complete lattice with 0L and 1L. Let µ be a L-fuzzy

set defined on X . Then µ is called an L-fuzzy join- semilattice of

of M, if all the p (p ∈ L) level sets of µ are sub join-semilattice of

M .

2.6 Lattice matrix

Definition 2.6.1. [50] Let L be a distributive lattice with 0L

and 1L and let a + b = sup(a, b) and a.b = inf(a, b). Then Ln

represents the set of all n× n matrices over a lattice L.

The algebraic operations in Ln are defined in terms of suprimum

and infimum.

i.e.,

Ln = {A = (aij)/aij ∈ L},

aij is the (ij)th element of A.

Definition 2.6.2. Let A,B ∈ Ln, then

1. A+B = C if and only if cij = aij + bij .

2. A ≤ B if and only if A+B = B, that is aij ≤ bij .

3. A ∧M B = C if and only if cij = aij .bij .

4. A.B = AB = C if and only if cij =
n
∑

k=1

aikbkj.

5. AT = C if and only if cij = aji
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6. For a ∈M , aA = a.A = C if and only if cij = a.aij .

7. I = (aij), where aij = 1 for i = j

= 0 for i 6= j.

8. A0 = I, Ak+1 = AkA

9. O = (oij) where oij = 0 for every i and j.

10. E = (eij) where eij = 1 for every i and j.

Definition 2.6.3. A Ln Matrix A is called a unit if and only

if there is an Ln matrix B such that AB = BA = I and A is called

orthogonal if and only if AAT = ATA = I



Chapter 3

nd-M-Fuzzy Topological

Spaces

In this chapter we introduce new concept of nd−M−fuzzy subset

and nd −M − fuzzy topological space. Also we will study some

concepts in nd−M − fuzzy topological spaces.

3.1 nd- M-fuzzy subsets

Definition 3.1.1. A non deterministic M−Fuzzy subset of X

(or nd-M-fuzzy subset) is a function from X to 2M , where M is a

complete and consistent multilattice. Then the collection of all the

nd−M− fuzzy subsets of X is called nd−M− fuzzy space and is

denoted by (2M)X .

19



20 nd-M-Fuzzy Topological Spaces

Definition 3.1.2. A complete and consistent multilatticeM is

called a nd-F−multi-lattice if M has an order reversing involution
′ : 2M → 2M .

Let X be a non empty ordinary set and M a F− multilattice.

and A ∈ (2M)X . Then A
′
(x) = [A(x)]

′
= ∪{a

′
|a ∈ A(x)}.

If M is a complete and consistent multilattice, then A
′
(x) =

(A(x))
′
= {a

′
|a ∈ A(x)}. Now, ′ : (2M)X → (2M)X , the pseudo

complementary operation on (2M)X , A
′
is the pseudo complemen-

tary set of A in (2M)X .

Definition 3.1.3. Rules of set relations on (2M)X

Let A and B be two nd−M− fuzzy subset of X . Then

1. A = B if A(x) = B(x) for every x ∈ X .

2. A ⊑EM B if A(x) ⊑EM B(x), for every x ∈ X .

3. C = A ∨ B if C(x) = multisup {(A(x), B(x)) |, for every

x ∈ X}

= ∪{a ∨ b | a ∈ A(x), b ∈ B(x)}, for every x ∈ X .

4. D = A ∧ B if D(x) = multiinf {(A(x), B(x)) |, for every

x ∈ X}

= ∪{(a ∧ b) | a ∈ A(x), b ∈ B(x)}, for every x ∈ X .

5. E = X − A if E(x) = {a′ | a ∈ A(x)}, for every x ∈ X .

Note 3. Let A ∈ (2L)X and α ∈ 2L. If A(x) = α for every

x ∈ X , then Ais called constant nd−M-fuzzy subset and is denoted
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by α. But in this thesis we use A = α instead of using α for constant

nd−M− fuzzy subset.

Definition 3.1.4. An nd −M fuzzy subset A is said to be

bounded if for each x ∈ X, there exist K and L such that K ≤

A(x) ≤ L, where K and L depends only on x.

Proposition 3.1.1. Let A,B,C ∈ (2M)X be any bounded

nd−M−fuzzy subset in X , then

1. A ⊑EM A ∨B, B ⊑EM A ∨B

2. A ∧ B ⊑EM A and A ∧ B ⊑EM B.

Proof. 1. we have A∨B = ∪{a∨ b|a ∈ A and b ∈ B}. Then

there exist t1 and t2 belongs to Multisup {L1, L2} such that

t1 ≥ a and t2 ≥ b for all a ∈ A and b ∈ B. Thus

A ⊑S A ∨ B and B ⊑S A ∨ B (3.1)

Also all the elements in A and B are less than or equal to the

Multisup {L1, L2}. Thus

A ⊑H A ∨B and B ⊑H A ∨ B. (3.2)

From 3.1 and 3.2, we have the required result.

2. A ∧ B = ⊔{a ∧ B)/a ∈ A and b ∈ B}. Since A and B

are bounded there exist K1, L1, K2 and L2 such that K1 ≤

A(x) ≤ L1 and K2 ≤ B(x) ≤ L2. Then there exist elements
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z1 and z2 belongs to multiinf {K1, K2} such that z1 ≤ a and

z2 ≤ b for every a ∈ A and b ∈ B. Thus

A ∧B ⊑S A and A ∧B ⊑S B (3.3)

Also every elements in A and B are greater than or equal to

the multiinf {K1, K2}. Thus

A ∧ B ⊑H A and A ∧B ⊑H B (3.4)

hence from 3.3 and 3.4, we have the result.

Example 3.1.1. A ∨ A = A is not generally true.

Let X be the set {p, q, r, s, t} and M be the multilattice given in

the Figure 3.1, the nd−M-fuzzy subset is defined by

A =

(

p q r s t

{a, b} {c} {d} {1} {0}

)

Then

(A ∨ A)(p) = A(p) ∨A(p)

= {a, b} ∨ {a, b}

= (a ∨ a) ∪ (a ∨ b) ∪ (b ∨ a) ∪ (b ∨ b)

= {a} ∪ {c, d} ∪ {c, d} ∪ {b}

= {a, b, c, d}
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1

c d

a b

0

Figure 3.1: The multilattice in Example 3.1.1

thus A ∨A 6= A.

Remark 3.1.1. A ⊑EM B does not implies A ∨ B = B and

A ⊑EM B does not implies A ∧B = A. From the example 3.1.1,

let A = {0, a}, B = {b, 1}, where A and B are constant nd −

M−fuzzy subsets. Then A ⊑EM B but

A ∨ B = {o, a} ∨ {b, 1} = {b, c, d, 1} 6= A

and let A = {0, c}, B = {d, 1} then A ⊑EM B but

A ∧ B = {0, a, b, c} 6= A

Proposition 3.1.2. Let A ∈ (2M)X and for any α ∈ (2L),

then the set Aα = {x ∈ X/α ⊑EM A(x) , α ∈ (2M)} be the α level

of A . If A,B ∈ (2M)X , then for any α, β ∈ (2M)X

1. α ⊑EM β ⇒ Aβ ⊆ Aα.
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2. A ⊑EM B if and only if Aα ⊆ Bα.

3. A = B if and only if Aα = Bα.

Proof. 1. Let α ⊑EM β and x ∈ Aβ, then β ⊑EM A(x)

since α ⊑EM β, we have α ⊑EM A(x)

there fore Aβ ⊆ Aα.

2. A ⊑EM B =⇒ A(x) ⊑EM B(x), for all x ∈ X .

then for every α ∈ 2M and y ∈ Aα =⇒ y ∈ Bα

since α ⊑EM A(y) and A(y) ⊑EM B(y). There fore Aα ⊑EM

Bα.

Conversely assume that Aα ⊑EM Bα, for every α ∈ 2M .

Then for every x ∈ Aα =⇒ x ∈ Bα.

That is α ⊑EM A(x) ⊑EM B(x), for every α ∈ 2M . Hence

A ⊑EM B.

3. A = B if and only if A(x) = B(x) if and only if Aα = Bα, for

every α ∈ 2M .

Proposition 3.1.3. For any family {Ai} of nd −M− fuzzy

subset in X , the De Morgan’s Law does not hold, but if each Ai are

bounded and
∧

Ai ⊑EM Ai , Ai ⊑EM

∨

Ai , for every i ∈ I, then

1. (
∧

Ai)
′
⊑EM

∨

Ai
′

∨

Ai
′

⊑EM (
∧

Ai)
′
.

2. (
∨

Ai)
′
⊑EM

∧

A
′

i
∧

A
′

i ⊑EM (
∨

Ai)
′
.
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Proof. Since
∧

Ai ⊑EM Ai and A
′

i ⊑EM (
∧

Ai)
′
by the order

reversing involution .

So,
∨

A
′

i ⊑EM (
∧

Ai)
′

(3.5)

Similarly, from the fact Ai ⊑EM

∨

Ai, we get (
∨

Ai)
′
) ⊑EM Ai

′

.

That is

(
∨

Ai)
′

⊑EM

∧

A
′

i (3.6)

If we substitute A
′

i for Ai in 3.6, we get (
∨

Ai
′

)
′
⊑EM

∧

(Ai)
′
)′.

Therefore (
∨

Ai
′)

′
⊑EM

∧

(Ai)

So

(
∧

Ai)
′

⊑EM

∨

A
′

i (3.7)

Similarly if we replace Ai
′ for Ai in 3.5, we get

∨

(Ai
′

)
′
⊑EM (

∧

Ai)
′
)
′
.

That is (
∨

Ai) ⊑EM

∧

Ai
′

.

Thus

∧

Ai
′

⊑EM (
∨

Ai)
′

. (3.8)
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3.2 nd-M-fuzzy extensions of functions

Let (2M)X and (2M)Y be Nd−M−fuzzy spaces and f : X → Y be

an ordinary mapping. Based on f : X → Y define nd −M−fuzzy

mapping
−→
f : (2M)X → (2M)Y by

−→
f (A)(y) =

∨

y=f(x){A(x)/x ∈

X} for every A ∈ (2M)X , for every y ∈ (2M)Y .

Similarly
←−
f : (2M)Y → (2M)X by

←−
f (B)(x) = B(f(x)), for every B ∈ (2M)Y , for every x ∈ X.

Theorem 3.2.1. Let (2M)X , (2M)Y be nd−M- fuzzy spaces,

f : X −→ Y an ordinary mapping. Then for every α ∈ 2M and

every A ∈ (2M)X ,
−→
f (αA) = α

−→
f (A)

Proof. For every α ∈ 2M , for every A ∈ (2M)X , for every y ∈ Y ,

we have

−→
f (αA)(y) =

∨

{(αA)(x) : x ∈ X, f(x) = y}

=
∨

{α ∧ (A(x)) : x ∈ X, f(x) = y}

= α ∧
∨

{A(x) : x ∈ X, f(x) = y}

= α ∧ (
−→
f (A)(y))

= α
−→
f (A)(y).

Therefore
−→
f (αA) = α

−→
f (A).

Theorem 3.2.2. Let (2M)X , (2M)Z and (2M)Z be nd −M-
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fuzzy spaces,

f : X −→ Y and g : Y −→ Z be ordinary mappings. Then

1. −→g
−→
f =

−→
gf.

2.
←−
f ←−g =

←−
gf.

Proof. 1. for every A ∈ (2M)X , z ∈ Z, then

−→g
−→
f (A)(x) =

∨

{
−→
f (A)(y) : y ∈ Y, g(y) = z}

=
∨

{
∨

{A(x) : x ∈ X, f(x) = y} : y ∈ Y, g(y) = z}

=
∨

{A(x) : x ∈ X, gf(x) = z}

=
←−
gf(A)(z).

Therefore −→g
−→
f =

−→
gf

2. for every C ∈ (2M)Z , for every x ∈ X , then

←−
f ←−g (C)(x) =←−g (C)(f(x))

= C((gf)(x)

=
←−
gf(C)(x).

Therefore
←−
f ←−g =

←−
gf

Theorem 3.2.3. Let f : X → Y be an arbitrary crisp func-

tion. Then for any Ai ∈ (2M)X and Bi ∈ (2M)Y , i ∈ I, the following

properties of functions obtained by the extension principle hold .
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1. If A1 ⊑EM A2 ⇒
−→
f (A1) ⊑EM

−→
f (A2)

2.
−→
f (
∨

i∈I

Ai) =
∨

i∈I

−→
f (Ai)

3.
−→
f (
∧

i∈I

Ai) ⊑EM

∧

i∈I

−→
f (Ai)

4. B1 ⊑EM B2 ⇒
←−
f (B1) ⊑EM

←−
f (B2)

5.
←−
f (
∨

i∈I

Bi) =
∨

i∈I

←−
f (Bi)

6.
←−
f (
∧

i∈I

Bi) =
∧

i∈I

←−
f (Bi)

Proof.

1.

IfA1 ⊑EM A2 =⇒ A1(x) ⊑EM A2(x), for every x ∈ X

=⇒
∨

y=f(x)

(A1(x))/y = f(x) ⊑EM

∨

y=f(x)

(A2(x)/y = f(x))

=⇒
−→
f (A1)(y) ⊑EM

−→
f (A2(y)), for every y ∈ Y

=⇒
−→
f (A1) ⊑EM

−→
f (A2)
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2.

−→
f (
∨

i∈I

Ai)(y) =
∨

y=f(x)

(
∨

i∈I

Ai(x) : x ∈ X, y =
−→
f (x))

=
∨

(
∨

i∈I

Ai(x) : x ∈ X, y =
−→
f (x))

=
∨

i∈I

(
∨

y=f(x)

Ai(x) : x ∈ X, y =
−→
f (x))

=
∨

i∈I

(
−→
f (Ai)(y) : y =

−→
f (x))

=
∨

i∈I

−→
f (Ai)(y)

Thus
−→
f (
∨

i∈I

Ai) =
∨

i∈I

−→
f (Ai).

3.

−→
f (
∧

i∈I

Ai)(y) =
∨

y=f(x)

(
∧

i∈I

(Ai(x)/x ∈ X, y = f(x))

⊑EM

∧

i∈I

(
∨

y=f(x)

Ai(x)/x ∈ X, y =
−→
f (x))

=
∧

i∈I

(
−→
f (Ai(y))

Thus
−→
f (∧i∈IAi) = ∧i∈I

−→
f (Ai).

4. B1 ⊑EM B2 −→ B1(y) ⊑EM B2(y), for every y ∈ Y .
←−
f (B1)(x) =

B1(f(x)) ⊑EM B2(f(x)) =
←−
f (B2)(x), for every x ∈ X .

There for
←−
f (B1) ⊑EM

←−
f (B2).
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5. for every x ∈ X , we have

←−
f (
∨

i∈I

Bi)(x) = (
∨

i∈I

Bi)f(x)

=
∨

i∈I

Bi(f(x))

=
∨

i∈I

(
←−
f (Bi))(x)

= (
∨

i∈I

←−
f (Bi))(x)

Hence
←−
f (
∨

i∈I

Bi) =
∨

i∈I

←−
f (Bi)

6.

←−
f (
∧

i∈I

(Bi)(x) = (
∧

i∈I

(Bi)(f(x))

=
∧

i∈I

(Bi(f(x))

=
∧

i∈I

←−
f (Bi)(x)

Hence
←−
f (
∧

i∈I

Bi) =
∧

i∈I

←−
f (Bi)
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3.3 nd-M-fuzzy topological spaces

Definition 3.3.1. Let X be a non empty set and M be a

complete and consistent F- multilattice. Let τ ⊆ (2M)X . Then τ is

called a non-deterministic M fuzzy topology on X if it satisfies the

following conditions.

1. {0}, {1} ∈ τ

2. If A,B ∈ τ , then A ∧B ∈ τ

3. Let {Ai, i ∈ I} ⊂ τ , where I is an index set, then ∨
i∈I

Ai ∈ τ .

where{0} ∈ τ means the empty set and {1} means the whole set

X . Then the pair ((2M)X , τ) is called a non deterministic M−fuzzy

topological space.

The elements in τ are called open elements and the elements

in the complement of τ are called closed elements, and the set of

complements of open sets is denoted by τ
′

Example 3.3.1. 1. Every L− fuzzy topological space is a

nd−M−fuzzy topological spaces where L = M is a complete

distributive lattice.

2. Take τ = {α : α ∈ 2M} ⊂ (2M)X is a nd-M fuzzy topological

space, where α denote the constant nd − M fuzzy subset.

That is every element in X has the membership values α.



32 nd-M-Fuzzy Topological Spaces

1

c d

a b

0

f ge

Figure 3.2: The multilattice in Example 3.3.1

3. Let X be any non empty set and M be a multi-lattice given

in the Figure 3.2.

Let τ = {{0}, {1}, {a}, {b}, {a, b}, {c, d}, {a, c, d}, {0, a}, {0, b}, {0, a, b},

{a, b, c, d}, {0, a, b, c, d}, {0, a, b, c, d, 1}, {0, a, c, d}, {0, a, c, d, 1}}Where

each sets in τ are constant nd−M fuzzy subsets of X .

Then τ forms a nd-M-fuzzy topology on X

Definition 3.3.2. nd-M-Pseudo interior and nd-M-pseudo clo-

sure

For any nd−M−fuzzy subset, we define

1. The nd-M-Pseudo interior of A as the join of all the open

nd-M-fuzzy subsets contained in A denoted by Ao, that is

Ao = ∨{B ∈ τ | B ≤ A}

2. The nd-M-Pseudo closure of A as the meet of all the closed

nd − M-fuzzy subsets containing A, denoted by A, that is
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A = ∧{B ∈ τ
′
| A ≤ B}

In the above example, The nd-M-Pseudo τ -closed subsets are

τ ′ = {{0}, {1}, {e, g}, {e, f}, {e}, {e, g, 1}, {e, f, 1}, {e, g, f, 1}, {e, g, f},

{0, e, f, g, 1}, {0, 1, e, g}}.

1. Let A = {0, a, c} . Then

A0 = ∨{B/B ⊑EM A}

= ∨{{0}, {0, a}}

= {o} ∨ {0, a}

= (0 ∨ 0) ∪ (a ∨ a)

= {0} ∪ {a}

= {0, a}.

2.

A = ∧{B ∈ τ
′

/A ⊑EM B}

= ∧{1}, {e, g, 1}, {e, f, 1}, {0, e, f.1}, {e, f, g, 1}, {0, e, g, f, 1}, {0, 1, e, g}}

= ∧{{0, e, g, f, 1} ∧ {0, e, f, 1}, {e, g, f, 1}, {0, e, g, f, 1}, {0, 1, e, g}}

= ∧{{0, e, f, g, 1} ∧ {e, g, f, 1}, {0, e, f, g, 1}, {0, e, g, 1}}

= ∧{{0, e, f, g, 1} ∧ {0, e, g, f, 1}, {0, 1, e, g}}

= {{0, e, g, f, 1} ∧ {0, 1, e, g}}

= {0, e, f, g, 1}.
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3. from the above example of topological space, let A = {c} ,

then

A0 = ∨{{0}, {a}, {b}, {0, a}, {0, b}, {a, b}, {0, a, b}

= ∨{{a} ∨ {b}, {0, a}, {0, b}, {a, b}, {0, a, b}}

= ∨{{c, d}, {0, a}, {0, b}, {a, b}, {0, a, b}}

= ∨{{c, d}, {a, b}, {0, a, b}}

= {{c, d} ∨ {a, b}, {0, a, b}}

= {{c, d} ∨ {0, a, b}}

= {c, d}.

(A0)0 = ∨{{o}, {a}, {b}, {0, a}, {0, b}, {a, b}, {0, a, b}}

= {c, d}.

∴ (A0)0 = A

but A0 not a Egli- Milner subset of A

4. Now let A = {a} and B = {d} then

A0 = ∨{{a}, {0}} = {a ∨ o} = {a}

and

B0 = ∨{{0}, {b}}, {0, a}, {0, b}, {a, b}, {0, a, b}

={c, d}
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. A0 ∧ B0 = ∪{{a} ∧ {c, d}}

={(a ∧ c) ∪ (a ∧ d)}

= {a}.

Now A ∧ B = {{a} ∧ {d}} = {a ∧ d} = {a} then

(A ∧ B)0 = {a}

(A ∧ B)0 = A0 ∧ B0

Theorem 3.3.3. Let ((2M)X , τ) be an nd-M-fuzzy Topological

space. Then,

1. (a) {0}o = {0} and (b) {1}0 = {1}

2. A0 ⊑EM A or A0 is not compare with A by Egli-Milner or-

dering.

3. (A0)0 = A0

4. Let A0 ⊑EM A and B0 ⊑EM B.If

A ⊑EM B ⇒ A0 ⊑EM B0

.

5. Let A0 ⊑EM A and B0 ⊑EM B.Then (A ∧B)0 = A0 ∧B0

Proof. 1. (a) and (b) are by the definition of nd-M-Pseudo

interior.
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2. nd-M-Pseudo interior of A is the join of all open subsets con-

tained in A. That is interior of A contains the element of Mul-

tisup of elements in the open set contained in A.But we know

that any setA, Multisup(A) ⊑EM UB(A).If the Multisup of

open subset of A is a subset of A ,then A0 ⊑EM A.Otherwise

Multisup of open subset contained in A contains elements not

in A. So that A0 may not be a Egli-Milner subset of A because

some of the elements in A0 is not compare with elements in A.

3. Since (A0)0 is the largest openset contained in A0 and A0 is

itself open ,then A0)0 = A0.

4. Assume A0 ⊑EM A and B0 ⊑EM B.

Given that A0 ⊑EM A . So if A ⊑EM B , We have A0 ⊑EM B.

Thus A0 is an open set contained in B. So A0 ⊑EM B0.

5. (A ∧ B)0 ⊑EM A0 and (A ∧ B)0 ⊑EM B0

. So (A ∧ B)0 ⊑EM A0 ∧ B0.

Since A0 ⊑EM A and B0 ⊑EM B, A0 ∧ B0 ⊆EM A ∧ B,

of which A0 ∧ B0 is an open set contained in A ∧ B; Hence

A0 ∧ B0 must be contained in the largest open set (A ∧ B)0.

Thus A0 ∧B0 ⊑EM (A ∧ B)0

Theorem 3.3.4. Let ((2M)X , τ) be an nd-M-fuzzy topological
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space. Then,

1. (a) {0} = {0} and (b) {1} = {1}.

2. A ⊑EM A or A not compare with A by Egli-Milner ordering.

3. (A) = A

4. Let A ⊑EM A and B ⊑EM B. If A ⊑EM B ⇒ A ⊑EM B.

5. If A ⊑EM A and B ⊑EM B, then

(A ∨ B) ⊑EM A ∨ B and A ∨ B ⊑EM (A ∨B.

Proof. 1. (a) and (b) are by the definition of nd-M-Pseudo

closure.

2. A is the meet all the closed supersets containing A. That

is, nd-M-Pseudo closure of A contains the elements of mul-

tiinf of closed superset of A. But we know that for any set

A LB(A) ⊑EM multiinf(A). If the multiinfmum of all the

supersets containing A contains all the elements in A ,then

A ⊑EM A . Otherwise multiinf of closed superset containing

A contains elements not in A, which are not comparable with

the elements in A. So that A is not a Egli-Milner subset of A.

3. since A is the smallest closed set containing A and A itself is

closed, then (A) = A

4. Given that A ⊑EM A and B ⊑EM B. Since B ⊑EM B, if

A ⊑EM B, we have A ⊑EM B, since B is closed, we must

have A ⊑EM B.
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5. A ⊑EM (A ∨ B and B ⊑EM (A ∨B, so A∨B ⊑EM (A ∨B) .

Also since A and B are closed set containing A and B, respec-

tively ;A ∨B is a closed set containing (A∨B). As (A ∨B).

is the smallest closed set containing A∨B, hence (A ∨ B) ⊑EM

A ∨ B.

Definition 3.3.5. nd−M−fuzzy boundary

The boundary of a nd−M fuzzy subset of A is defined as

∂A = A ∧ (A
′

)

Example 3.3.2. From above example, the boundary of the

set A = {0, a, c} is given by

∂A = {0, e, f, g, 1} ∧ {a, b, c, d, f, g} ={0, a, b, c, f, g}

From the above theorems and we can introduce the two con-

cepts, which are the new directions in defining a new nd−M−fuzzy

topology.

Definition 3.3.6. nd-M-closure operator

An operator c : (2M)X → (2M)X is a non deterministic-M- closure

operator (nd−M Closure operator) if the following conditions are

satisfied.

1. c({0}) = {0}

2. A ⊑EM c(A), for all A ∈ (2M)X
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3. c(A ∨ B) ⊑EM c(A) ∨ c(B)

4. (c(A) ∨ c(B)) ⊑EM c(A ∨B)

5. c(c(A)) = c(A), for all A ∈ (2M)X

Definition 3.3.7. nd−M−interior operator

An operator i : (2M)X → (2M)X is a non deterministic interior

operator (nd-M-interior operator) if the following conditions are

satisfied.

1. i({1}) = {1}

2. i(A) ⊑EM A, for all A ∈ (2M)X

3. i(A ∧ B) ⊑EM i(A) ∧ i(B)

4. i(A) ∧ i(B) ⊑EM i(A ∧B)

5. i(i(A)) = A,for all A ∈ (2L)X .

We know that the interior operator corresponds to one fuzzy

topology and each closure operator corresponds to one fuzzy topol-

ogy [27]. In the similar way we have each nd−interior operator cor-

responds to one nd−M−fuzzy topology and each nd−closure oper-

ator corresponds to one nd−M−fuzzy topology. That is, in general,



40 nd-M-Fuzzy Topological Spaces

if we define two operators, nd−closure and nd− interior,separately

they will define two nd−M−fuzzy topologies.

Let X be a non-empty set and let I = {{1}, {0}} and D = {A |

A ∈ (2M)X}. Then I and D are both nd−M−fuzzy topologies on

X such that for any nd−M− fuzzy topology τ on X , I ≤ τ ≤ D

Where ≤ means the ordering of topologies on X .

Let ((2M)X , τ) be a nd−M−fuzzy topological space, then

τα = {A | A(x) ≥ α, ∀x ∈ X} is called the α- level of a nd −

M−fuzzy topological spaces X.

If A,B ∈ τα, then it is always not true that α ⊑EM A ∧ B. If

an α-level set satisfying α ⊑EM A ∧ B ,then τα is denoted by τ ∗α

Proposition 3.3.1. Let ((2M)X , τ) be a nd−M−fuzzy topo-

logical space. Then for each α ∈ ((2M)), then τ ∗α together with {0}

form a nd−M−fuzzy topology on X .

Proof. 1. {0} and {1} ∈ τα

2. Let A,B ∈ τα, then A(x) ≥ α and B(x) ≥ α,

So (A ∧B)(x) ≥ α .Therefore A ∧B ∈ τα.

3. Let Ai ∈ τα for i ∈ I.

So α ⊑EM Ai(x) ,for every i ∈ I and for all x ∈ X .

Then, α ⊑EM Ai(x)

⊑EM

∨

Ai(x)
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⊑EM (
∨

Ai)(x),for every x ∈ X . So
∨

Ai ∈ τ

Hence τ ∗α form a nd- M fuzzy topology on X.

3.4 nd-M-fuzzy continuous maps

Definition 3.4.1. Let ((2M)X , τ) and ((2M)Y , υ) be two nd−

M− fuzzy topological spaces and f : X −→ Y a map. The map
−→
f : (2M)X −→ (2M)Y is a nd-M- fuzzy mapping.We say

−→
f is an

nd-M fuzzy continuous mapping from ((2M)X , τ) −→ ((2M)Y , υ) if

for each B ∈ υ, B ⊑EM

←−
f (B). That is B(f(x)) ⊑EM

←−
f (B)(x),for

every x ∈ X .

Proposition 3.4.1. Let ((2L)X , τ) and ((2M)Y , υ) be two nd−

M− fuzzy topological spaces and f : X −→ Y a map. Then

the map
−→
f : ((2M)X , τ) −→ ((2M)Y , υ) is fuzzy continuous if and

only if , for all α ∈ 2M ,
−→
f : ((2M)X , τα) −→ ((2M)Y , υα) is fuzzy

continuous.

Proof. Suppose
−→
f : ((2M)X , τ) −→ ((2M)Y , υ) is fuzzy contin-

uous map and α ∈ 2M .

Take B ∈ υα, then α ⊑EM B(f(x)) ⊑EM

←−
f (B)(x), for every x ∈ X

Therefore
←−
f (B) is open and so

←−
f (B) ∈ τα.

That is
−→
f : ((2M)X , τα) −→ ((2M)Y , υα) is nd-M- fuzzy continuous.

Conversely suppose
−→
f : ((2M)X , τα) −→ ((2M)Y , υα) is nd-M- fuzzy

continuous.

Let B ∈ υ. If B = 0 , then it is obvious that B ⊑EM

←−
f (B).
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Assume B 6= 0 ,B(f(x)) = λ, for every x ∈ X , Then B ∈ υλ So
←−
f (B) ∈ τλ, by the nd-M-fuzzy continuity of

−→
f : ((2M)X , τλ) −→

((2M)Y , υλ).

Hence λ = B(f(x)) ⊑EM

←−
f (B)(x), for all x ∈ X . Thus B ⊑EM

←−
f (B). Therefore

−→
f : ((2M)X , τ) −→ ((2M)Y , υ) is fuzzy continu-

ous .

Proposition 3.4.2. Let ((2M)X , τ) ((2M)Y , υ) and ((2M)Z , ν)

be three nd−M− fuzzy topological spaces . If
−→
f : ((2M)X , τ) −→

((2L)Y , υ) and −→g : ((2M)Y , υ) −→ ((2M)Z , ν) are nd-M- fuzzy con-

tinuous maps. Then −→g ◦
−→
f : ((2M)X , τ) −→ ((2M)Z , ν) is also

nd-M- fuzzy continuous.

Proof. Obvious.

Definition 3.4.1. A map
−→
f : ((2M)X , τ) −→ ((2M)Y , υ) is

called a nd-M -fuzzy homomorphism if f : X −→ Y is bijective and
−→
f and

←−
f are nd-M-fuzzy continuous. A map

−→
f : ((2M)X , τ) −→

((2L)Y , υ) is said to be fuzzy open if µ ⊑EM

−→
f (µ) for all µ ∈ (2M)X .

A map
−→
f : ((2M)X , τ) −→ ((2L)Y , υ) is said to be nd -M-fuzzy

closed if µ
′
⊑EM

−→
f (µ

′
), where µ ∈ (2M)X .

Proposition 3.4.3. Let ((2M)X , τ) , ((2M)Y , υ) be two nd-

M- fuzzy topological spaces and f : X −→ Y a bijection. Then the

following are equivalent.

1.
−→
f is a nd-M- fuzzy homeomorphism.

2.
−→
f is nd-M-fuzzy continuous and nd-M-fuzzy open.
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3.
−→
f is nd-M-fuzzy continuous and nd-M-fuzzy open.

4. µ ⊑EM

−→
f (µ) and

−→
f (µ) ⊑EM µ for all µ ∈ (2M)X

5. λ ⊑EM

←−
f (λ) and

←−
f (λ) ⊑EM λ for all λ ∈ (2M)Y

Proof. Obvious
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Chapter 4

nd-M-Fuzzy Lattice

The L-fuzzy lattice was introduced by Tepavčević and Goran Tra-

jakoviski [2], where a bounded lattice is fuzzified by using a complete

lattice. They defined two types of fuzzy lattices. The first type of

fuzzy lattices is obtained by fuzzifying the membership of the ele-

ments from the carrier of a crisp lattice and second type of fuzzy

lattices is obtained as a result of fuzzification of the order relation

in a crisp lattice. They arrived at the conclusion that these two

types of fuzzy lattices are equivalent.

In this chapter first we discuss nd − M-fuzzy order relation.

Then we extend the idea of L-fuzzy lattice[2] to the nd−M-fuzzy

lattice using Egli-Miler ordering of subsets. Here we fuzzified a

bounded lattice by using a complete and consistent multilattice M .

As in the L-fuzzy lattice, we defined two types of non-deterministic

M-fuzzy lattice. The first is obtained by assigning single or set of

values to each element of the carrier of the bounded lattice. The

45
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second type is obtained by non-deterministic fuzzyfication of the

order relation in a lattice.We arrived at the conclusion that these

type of approaches are equivalent.

4.1 nd-M-fuzzy relation

Definition 4.1.1. Let (M,∧,∨) be a complete and consistent

multilattice with bottom element 0M and top element 1M . Let X

be a non-empty set. Then any mapping R̄ : X × X → 2M is

a non − deterministic M − valued fuzzy relation on X called

nd−M−fuzzy relation on X .

Definition 4.1.2. For α ∈ 2M an α− level of R̄ is a mapping

R̄α : X ×X → {0, 1}, such that R̄(x, y) = 1 if and only if α ⊑EM

R̄(x, y). Then

Rα = {(x, y) : α ⊑EM R̄(x, y)}

is the corresponding level set of R̄ ,which is a crisp relation on X

called α level of R̄.

Definition 4.1.3. An nd−M−fuzzy relation is

1. nd−M − reflexive if R(x, x) = {1} for every x ∈ X .

2. Weakly − nd−M − reflexive if

R(x, y) ⊑EM R(x, x) and R(y, x) ⊑EM R(x, x) ∀ x, y ∈ X
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3. nd−M − anti− symmetric if

R(x, y) ∧M R(y, x) = {0} ∀ x, y ∈ X with x 6= y

4. nd−M − transitive if

R(x, y) ∧ R(y, x) ⊑EM R(x, z) ∀ x, y, z ∈ X

.

An nd − M− valued relation R on X is an nd − M−fuzzy

ordering relation on X if it is an nd−M−reflexive nd−M− anti-

symmetric and nd−M−transitive.

Definition 4.1.4. Let (L,∧L,∨L, 0, 1) be a bounded lattice

and (M,∧M ,∨M) be a non-trivial complete and consistent multi-

lattice. Let µ be a nd−M− fuzzy subset defined on L, denoted by

µ ∈ (2M)L.

For µ ∈ (2M)L and α ∈ 2M , then the α− level of µ is defined by

µα = {x ∈ L : α ⊑EM µ(x)}

4.2 nd-M-fuzzy lattice

Definition 4.2.1. An nd-M fuzzy subset µ ∈ (2M)L is a nd−

M−fuzzy sub lattice of L if α ⊑EM µ(x)∧M µ(y) for every x, y ∈ µα

and µα is a sub lattice of L for each α ∈ 2M .
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Figure 4.1: The valuated lattice L, the valuating multilattice M
and the α-level µα where α = {p} in Example 4.2.1

Example 4.2.1. 1. For any L-fuzzy lattice is nd − M−

fuzzy lattice.

2. Choose α ∈ 2M such that α ∧ α = α, define µ : L → 2M by

µ(x) = α ∀ x ∈ L. Then µ is a nd−M− fuzzy lattice.

3. Let (L,∧L,∨L) be a lattice and (M,∧M ,∨M) be a multilattice

with 0M , 1M where L = {0L, a, b, c, d, e, f, g, h, 1L} and M =

{0M , p, q, r, s, 1M}.
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Let

L̄ =

(

0 a b c d

{p} {p} {q} {p, q} {p}

e f g h 1

{p, q} {s} {r, s} {s} 1M

)

is an nd−M− fuzzy lattice.

If α = {p} then Lα = {a, d, e, f, g, h, 1}.

Theorem 4.2.2. Let µ is an nd-M fuzzy subset defined on L

and µα, α ∈ 2M is a α level set of µ.Assume that µα satisfies α ⊑EM

µ(x) ∧ µ(y) for every x, y ∈ µα. Then µ is called a nd −M−fuzzy

sub lattice of L (or simply nd −M−fuzzy lattice of L) if and only

if for all x, y ∈ L,

multiinf{µ(x), µ(y)} ⊑EM multiinf{µ(x ∧L y), µ(x ∨L y)}

That is,

µ(x) ∧M µ(y) ⊑EM µ(x ∧L y) ∧M µ(x ∨L y)

.

Proof. Let µ is an nd-M fuzzy subset and

µα = {x ∈ L : α ⊑EM µ(x)}

. Assume that µα satisfies α ⊑EM µ(x)∧M µ(y), for every x, y ∈ µα
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Let T = µ(x) ∧M µ(y), Then T ⊑EM µ(x) and T ⊑EM µ(y)

That is x, y ∈ µT .

But by the assumption,µT is a sub lattice of L,then x ∧L y and

x ∨L y belongs to µT and so T ⊑EM x ∨L y and T ⊑EM x ∧M y

Since x∧Ly and x∨Ly belongs to µT , T ⊑EM µ(x∨Ly)∧Mµ(x∧Ly).

Therefore T = µ(x) ∧M µ(y) ⊑EM µ(x ∨L y) ∧M µ(x ∧L y)

µ(x) ∧M µ(y) ⊑EM µ(x ∨L y) ∧M µ(x ∧L y)

conversely assume that µ satisfies

µ(x) ∧M µ(y) ⊑EM µ(x ∨L y) ∧M µ(x ∧L y)

Let T is an arbitrary element of 2M . For every x, y ∈ µT , Then

T ⊑EM µ(x) and T ⊑EM µ(y). Hence T ⊑EM µ(x) ∧M µ(y)

But our assumption ,we have

T ⊑EM µ(x) ∧M µ(y) ⊑EM µ(x ∧L y) ∧M µ(x ∨L y).

Hence T ⊑EM µ(x ∧L y) and T ⊑EM µ(x ∨L y).

Hence x ∨L y ∈ µT and x ∧L y ∈ µT and thus µT is a sublattice of

L. Therefore µ is an nd-M fuzzy lattice.

An nd−M− fuzzy lattice satisfies the following proposition.

Theorem 4.2.3. Let L̄ : L→ 2M be an nd−M− fuzzy lattice

and let α, β ∈ 2M . If α ⊑EM β then L̄β is an nd−M− sub lattice

of L̄α.

Proof. Let x ∈ L̄β , Then β ⊑EM L̄(x). So if α ⊑EM β,then

α ⊑EM L̄(x). There for x ∈ Lα. So L̄β ⊆ L̄α. Thus the collection

of all level sets is closed under intersection and contains the greatest

element.
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Theorem 4.2.4. Let (L,∧L,∨L) be a lattice (M,∧M ,∨M) be

a complete and consistent multilattice with 0M and 1M . Then the

mapping L̄ : L → 2M is an nd −M− fuzzy lattice if and only if

both of the following relations hold for all x, y ∈ L

1. L̄(x) ∧M L̄(Y ) ⊑EM L̄(x ∧L y)

2. L̄(x) ∧M L̄(Y ) ⊑EM L̄(x ∨L y)

The following gives an idea of how to construct an nd −M−

fuzzy lattice having a family of lattice as its family of level sets [2].

Let P1 and P2 be two posets with disjoint underlying sets. The

disjoint union of posets P1 and P2 is the poset (P1 ∪ P2,≤) where

≤ is defined by x ≤ y if and only if x, y ∈ P1 and x ≤ y in P1

or x, y ∈ P2 and x ≤ y in P2 or x ∈ P1 and y ∈ P2.

The linear sum of Posets P1 and P2 is the poset (P1∪P2,≤),denoted

by (P1 ⊕ P2) where ≤ is defined by

x, y ∈ P1 and x ≤ y in P1

x ≤ y if and only if or x, y ∈ P2 and x ≤ y in P2

or x ∈ P1, y ∈ P2.

Theorem 4.2.5. Let F be a collection of lattices with disjoint

elements. Then there exists an nd −M− fuzzy lattice whose non-

trivial α-levels are exactly the lattices from F .

Proof. Let F be a collection of lattices (Li,∧i,∨i) with disjoint

elements. bottom 0i and top element 1i, (i ∈ I). Our aim is to find

a nd −M− fuzzy lattice using the collection of lattices, which is

obtained in the following manner.
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Let {0M , 1M} ∪ {pi, qi : i ∈ I} be the elements of the multilattice

M where the order is defined by pi ≥ qi ∀ i.

p1 ≥ q2, p2 ≥ q1

, where pi,’s are co atoms and qi’s are atoms.

Let L be a poset defined by

L = 0L⊕
⋃

i∈I

Li⊕1L, where 0L and 1L are the one element lattices,

⊕ is a linear sum and
⋃

is disjoint union of posets. Clearly L is a

lattice. Where define the mapping L̄ : L→ 2M by

L̄{x} = {pi, qi} iff x ∈ Li, i ∈ I and L̄{0L} = {0M}, L̄{1L} = {1M}

Then for each α ∈ 2M , it is clear that all the non-trivial α-levels

of L̄ are exactly the lattices from F .

Example 4.2.2. Let F consists of three lattices L1, L2 and

L3. Then construct M and L according to the previous theorem.

Then the required nd−M− fuzzy lattices given by the mapping

L̄ =

(

a b c d e f

{p1, q1} {p1, q1} {p1, q3} {p2, q2} {p2, q3} {p2, q3}

g h i 0L 1L

{p2, q2} {p3, q3} {p3, q3} 0M 1M

)



nd-M-fuzzy lattice 53

c

b

a

d

e f

g

h

i

0L

c

b

a

1L

i

hd

f

g

e

0M

q1

p1

1M

p3

q3q2

p2

Figure 4.2: The lattices and the multilattice in Example 4.2.2

4.3 nd −M− fuzzy lattices as nd −M−

fuzzy relations

In the previous section we defined nd−M− fuzzy lattices as nd−

M− fuzzy algebraic structures. In this section, we introduce an-

other approaches to nd-M- fuzzy lattices (via) nd−M− fuzzification

of the order relation.

Let (M,≤) is a complete multi lattice with bottom element 0M

and top element 1M and let O be the one element lattice (which

is also a multi lattice). Let M ′ = O ⊕ M . Clearly (M ′,≤) is a
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complete multi lattice with bottom element 0M and top element

1M . Let R̄ : L2 → 2M
′

be an nd−M− fuzzy relation.

Let Nα is the set defined by

Nα = {x ∈ L : α ⊑EM R(x, x)}

Now we have the definition of a nd-M-fuzzy lattice (as an nd-M-

fuzzy relation

Definition 4.3.1. Let L be a non-empty set and M ′ = O ⊕

M be a complete and consistent multilattice, then the pair (L, R̄)

where R̄ : L2 → 2M
′

is an nd −M− fuzzy relation, is called an

nd −M− valued fuzzy lattice if (L,R0M ) is a lattice and all the

α-levels of R̄, α ∈ 2M , satisfies α ⊑EM R̄(x1, y1)∧ R̄(x2, y2) , where

(x1, y1), (x2, y2) ∈ Rα and also Rα are sub lattice of it.

Note 4. We know that {0M} level of R equal to L2 which is

not an nd-M-fuzzy ordering relation and thus neither a nd-M-fuzzy

lattice.Our aim is to find a nd-M-fuzzy sublattice of L,that is why

we introduce the artificial element {0L}.

The next theorem gives the necessary and sufficient conditions

under which an nd−M− fuzzy relation is an nd−M−fuzzy lattice.

Theorem 4.3.2. Let L be a non-empty set and M complete

and consistent multilattice. Then M ′ = O ⊕M be a complete and

consistent multi lattice with the least element 0 and a unique atom

0M . Then the mapping

R̄ : L2 → 2M
′

is an nd−M− fuzzy lattice if and only if the following
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holds

1. R̄ is a weak nd−M− fuzzy ordering relation.

2. For all x, y ∈ L there exist S ∈ L such that for all α ∈

{0M} ∪ {α ∈ 2M/x, y ∈ Nα} the following holds .

α ⊑EM R̄(x, S), α ⊑EM R̄(y, S) and the following holds for

all s ∈ L:

(α ⊑EM R̄(x, s)) ∧M (α ⊑EM R̄(y, s))⇒ α ⊑EM R̄(S, s) .

3. for all x, y ∈ L there exist I ∈ L such that for all

α ∈ {0L} ∪ {α ∈ 2M/x, y ∈ Nα}

the following holds

(α ⊑EM R̄(I, x)),(α ⊑EM R̄(I, y)) and the following holds for

all i ∈ L:

(α ⊑EM R̄(i, x)) ∧M (α ⊑EM R̄(i, y))⇒ α ⊑EM R̄(i, I)

.

Proof. Assume that R̄ : L2 → 2M
′

be an nd−M− fuzzy lattice.

Let α = {0M}. Then (L, R̄{0M}) is a lattice and for each α ∈ 2M ,R̄

satisfies α ⊑EM R̄(x1, y1)∧M R̄(x2, y2), where (x1, y1), (x2, y2) ∈ Rα

and also Rα are sub lattice of it. This means that for any pair of

elements x, y ∈ L , (x ∨L y) and (x ∧L y) exists. Let x ∨L y = S

and x∧L y = I, therefore the relations in 2 to 3 holds for α = {0M}.
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Suppose that α ∈ 2M , x, y ∈ Nα.

Since Rα is a sublattice of R{0M}, we have that supremum and in-

fimum for elements x and y in lattices (Nα, R̄α) and (L, R̄{0M}) are

the same.

Then α ⊑EM R̄(x, S) and α ⊑EM R̄(y, S), then for all s ∈ L , the

conditions in 2 and 3 holds.

since (L, R̄{0M} is a lattice and for each α levels of R̄ satisfies

α ⊑EM R̄(x1, y1) ∧M R̄(x2, y2) , where (x1, y1), (x2, y2) ∈ Rα and

also Rα are sub lattice of it,they are ordering relations on subsets,

that is all levels of R̄ is an nd-M- weak ordering relations on L ,

condition 1 is satisfied.

Conversely suppose that the mapping R̄ : L2 → 2M
′

, satisfies the

conditions 1 to 3.

By weak reflexivity and condition 2, we have R̄(x, y) ⊑EM R̄(x, x)

and R̄(y, x) ⊑EM R̄(x, x) ,for every x, y ∈ L. Since {0M} ⊑EM

R̄(x, S). we have that R̄{0M}(x, x) = {1} for all x.

This follows that R̄{0M} is an ordering relation and by condition

2 and 3 (L, R̄0M ) is a lattice. Also from 2 and 3 ,we have α ⊑EM

R̄(x, y)∧M R̄(x, y) whenever α ⊑EM R̄(x1, y1) and α ⊑EM R̄(x2, y2).Also

we see that α level R̄α is an ordering relation on Nα. Thus (N, R̄α)

is a lattice and it is a sublattice of (L, R̄0M ).
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4.4 Relation between two types of nd-

M-fuzzy lattices

Theorem 4.4.1. Let (L,∧L,∨L) is a lattice and (M,∧M ,∨M)

be a complete multilattice with 0M and 1M . Then M ′ = O⊕M be

a complete multi lattice. Let L̄ : L → 2M be an nd −M− fuzzy

lattice satisfying α ⊑EM L̄(x) ∧M L̄(y), for every x, y ∈ Lα. Then

the mapping R̄ : L2 → 2M
′

is defined by

R̄(x, y) = L̄(x) ∧M L̄(y) if x ≤ y

= {0M} otherwise

is an nd − M− fuzzy lattice (as an Nd − M− fuzzy relation ).

Moreover ,Lα and (Nα, R̄α) ,for α ∈ 2M are the same sub lattice of

M.

Proof. Let L̄ : L −→ 2M be an nd -M -fuzzy lattice, then for

each α ∈ 2M ,L̄ satisfies α ⊑EM L̄(x) ∧M L̄(y) for all x, y ∈ L̄α. If

α = {0M}, then {0M} ⊑EM L̄(x) for every x ∈ L. Hence oM ⊑EM

L̄)(x) ∧M L̄(y) and so 0M ⊑EM R{0M}. That is R̄{oM}(x, y) = 1 for

all x ≤ y. If R̄{oM}(x, y) = 0, we have that (L, R̄{oM}) is the same

lattice as (L,∧L,∨L).

Now let α ∈ 2M . If x ∈ L̄α if and only if α ⊑EM L̄(x) if and only if

α ⊑EM R̄(x.x) if and only if x ∈ Nα. Hence for all α ∈ 2M , the sets

L̄α and Nα are equal. Now let x.y ∈ L̄α x ≤ y, then α ⊑EM L̄(x)

and α ⊑EM L̄(y), this implies α ⊑EM R̄(x, y).

That is (x, y) ∈ Rα.
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1M

r s

p q

0M

0

Figure 4.3: The multilattice in Example 4.4.1

If (x, y) ∈ Rα, then α ⊑EM R̄(x, y), hence

R̄(x, y) 6= {0} and α ⊑EM R̄(x, y) = L̄(x) ∧M L̄(y) and x ≤ y.

Then we have to prove that the relations R̄α on Lα and ≤ on Lα are

same. Since (Lα,≤) is a lattice, and also it is a sub lattice of (L,≤).

This means that (Nα, R̄α) is a sub lattice of (L, R̄{0M}. Therefore

the mapping R̄ is an nd-M-fuzzy Lattice(nd-M-fuzzy relation).

Example 4.4.1. Consider the example 3.2,the corresponding

nd-M-fuzzy lattice(as a nd-M-fuzzy relation) is mapping R : L2 −→

M
′
given in the table below, where L = {0M , a, b, c, d, f, g, h, 1} and

M
′
is the figure
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nd-M-fuzzy lattice as a nd-M-fuzzy relation from example 4.4.1

R(x, y) 0L a b c d e f g h 1L

0L 0M {p} 0M {0M , p} {p} {0M , p} {p} {p} {p} {p}

a 0M {p} 0M {0M , p} {p} {0M , p} {p} {p} {p} {p}

b 0M 0M 0M {0M , q} 0M {0M , q} {p} {q} {q} {q}

c 0M 0M 0M {0M , p, q} {0M , p} {oM , p, q} {p, q} {p, q} {p, p} {p, p}

d 0M 0M 0M 0M {p} {0M , p} {p} {p} {p} {p}

e 0M 0M 0M 0M 0M {oM , p, q} {p, q} {p, q} {p, q} {p, q}

f 0M 0M 0M 0M 0M 0M {s} {r, p, q} {s} {s}

g 0M 0M 0M 0M 0M 0M 0M {r, s} {p, q, s} {r, s}

h 0M 0M 0M 0M 0M 0M 0M 0M {s} {s}

1L 0M 0M 0M 0M 0M 0M 0M 0M 0M 1M
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Chapter 5

Strong nd-M-Fuzzy Lattice

In the previous chapter we discussed the concept of nd-M-fuzzy

lattice. in this chapter we discuss the nd-M-fuzzy join and meet

semilattices and also we define strong nd-M-fuzzy lattices.

LetA : X −→ 2M be a nd-M fuzzy subset of X, where X is any set

and M is a complete and consistent multilattice. Let α ∈ 2M ,then

the α level of A is defined by Aα = {x ∈ X|α ⊑EM A(x)} .

5.1 nd-M fuzzy -meet semilattice

Definition 5.1.1. Let (L,∧L) be a meet − semilattice and

(M,∧M ,∨M ) be a complete and consistent multi lattice. A mapping

A : L → 2M is called an nd-M-Fuzzy meet-semilattice of L, if

for each α− level sets satisfies , α ⊑EM A(x) ∧M A(y) for every

x, y ∈ Aα and are sub meet-semilattices of L.

Proposition 5.1.1. Let (L,∧L) be a meet-semilattice and

61
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(M,∧M ,∨M ) be a consistent and complete multi-lattice. Assume

that Aα satisfying α ⊑EM A(x) ∧M A(y) for every x, y ∈ Aα .Then

A mapping A : L → 2M is an nd −M- Fuzzy meet-semi lattice of

L if and only if

multi sup (A(x), A(y)) ⊑EM A(x ∧L y) ∀ x, y ∈ L

That is

A(x) ∧M A(y) ⊑EM A(x ∧L y) ∀ x, y ∈ L

Proof. Assume that A : L → 2M is an nd −M- Fuzzy meet-

semilattice of L .Then for each α ∈ 2M , Aα satisfies α ⊑EM A(x)∧M

A(y) for every x, y ∈ 2M and are sub-meet-semilattice of L.

If x, y ∈ L and T = A(x) ∧M A(y) ,then T ⊑EM A(x) and

T ⊑EM A(y).Since AT is a sub-meet-semilattice of L, Then x∧Ly ∈

Aα, for every x, y ∈ AT . Hence T ⊑EM A(x ∧L y) and so

A(x) ∧M A(y) ⊑EM A(x ∧ y).

Conversely assume that A : L→ 2M satisfies the conditions

A(x) ∧M A(y) ⊑EM A(x ∧L y)

Let T be an arbitrary element of 2M . If for every x, y ∈ AT , then

T ⊑EM A(x) and T ⊑EM A(y) .Thus

T ⊑EM A(x) ∧M A(y).

By our assumption we have ,

T ⊑EM A(X) ∧M A(y) ⊑EM A(x ∧L y)

Hence T ⊑EM A(x ∧L y) and x ∧L y ∈ AT . Therefore,AT is a sub-

meet-semilattice of L,and so L is an nd M-fuzzy meet semilattice.
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Lemma 5.1.1. Let L be a meet-semilattice , M be a complete

and consistent multilattice and Aj : L→ 2M be an nd−M- Fuzzy

meet-semilattice(for each j ∈ J), then

1.
∧

j∈J

Aj is an nd−M- Fuzzy meet-semilattice.

2.
∨

j∈J

Aj is an nd-M-fuzzy meet semilattice of L.

Proof. 1. We now show that each
∧

Aj is an nd-M - Fuzzy

meet-semilattice. Since eachAj is an nd-M-fuzzy meet-semilattice,

each Aj satisfies

Aj(x) ∧ Aj(y) ⊑EM Aj(x ∧L y),for all x, y ∈ L.

⊑EM

∧

(Aj(x ∧L y))

⊑EM (
∧

Aj)(x ∧L y)

((
∧

(Aj)(x)) ∧M ((
∧

(Aj)(x)) ⊑EM (
∧

Aj)(x ∧L y).

2. We now show that each
∨

Aj is an nd−M- Fuzzy meet-semi

lattice. Since each Aj is an nd-M-fuzzy meet semi lattice ,each

Aj satisfies
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Aj(x) ∧ Aj(y) ⊑EM Aj(x ∧L y),for all x, y ∈ L.

Now, (
∨

Aj)(x) ∧M (
∨

Aj)(y) = (
∨

Aj(x)) ∧M (
∨

Aj(y)).

⊑EM

∨

(Aj(x) ∧M Aj(y))

⊑EM

∨

(Aj(x ∧L y))

⊑EM (
∨

Aj)(x ∧L y)

((
∨

(Aj)(x)) ∧M ((
∨

(Aj)(x)) ⊑EM (
∨

Aj)(x ∧L y).

5.2 nd-M-fuzzy join-semilattice

Definition 5.2.1. Let (L,∨L) be a joint − semilattice and

(M,∧M ,∨M ) be a complete and consistent multilattice. A mapping

A : L → 2M is called an nd −M- Fuzzy join-semilattice of L, if

each α−level set satisfies α ⊑EM A(x) ∧M A(y) for every x, y ∈ Aα

and are sub join-semilattices of L.

Proposition 5.2.1. Let (L,∨L) be a join − semilattice and

(M,∧M ,∨M ) be a consistent and complete multilattice. Assume

that Aα satisfying α ⊑EM A(x) ∧M A(y) .Then a mapping A :

L → 2M is an nd −M- fuzzy join-semilattice of L if and only if

multi sup (A(x), A(y)) ⊑EM A(x ∨L y) ∀ x, y ∈ L.
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That is

A(x) ∧M A(y) ⊑EM A(x ∨L y) ∀ x, y ∈ L

Proof. Assume that A : L → 2M is an nd − M- Fuzzy join-

semilattice of L. Then for each (α ∈ 2M),Aα satisfies α ⊑EM

A(x) ∧M A(y) for every x, y ∈ 2M and are sub meet-semilattice of

L.

If x, y ∈ L and T = A(x) ∧M A(y), then T ⊑EM A(x) and T ⊑EM

A(y).Since AT is a sub join-semilattice of L, Then x ∨L y ∈ AT ,

for every x, y ∈ AT . Hence T ⊑EM A(x ∨L y) and so

A(x) ∧M A(y) ⊑EM A(x ∧ y).

Conversely assume that A : L→ 2M satisfies the conditions

A(x) ∧M A(y) ⊑EM A(x ∨L y)

Let T be an arbitrary element of 2M . If for every x, y ∈ AT ,

then T ⊑EM A(x) and T ⊑EM A(y). Thus

T ⊑EM A(x) ∧M A(y)

By our assumption we have,

T ⊑EM A(X) ∧M A(y) ⊑EM A(x ∨L y)

Hence T ⊑EM A(x∧L y) and (x∨L y) ∈ AT . Therefore,AT is a sub

join-semilattice of L and so L is an nd-M-fuzzy join-semilattice.

Lemma 5.2.1. Let L be a join-semilattice , M be a complete

and consistent multilattice and Aj : L→ 2M be an nd−M- Fuzzy

join-semilattice(for each j ∈ J), then
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1.
∧

j∈J

Aj is an nd−M- Fuzzy join-semilattice.

2.
∨

j∈J

Aj is an nd-M-fuzzy join semilattice of L.

Proof. 1. We now show that each
∧

Aj is an nd-M - Fuzzy

join-semilattice. Since eachAj is an nd-M-fuzzy join-semilattice,

each Aj satisfies

Aj(x) ∧M Aj(y) ⊑EM Aj(x ∨L y),for all x, y ∈ L.

(
∧

Aj)(x) ∧M (
∧

Aj)(y) = (
∧

Aj(x)) ∧M (
∧

Aj(y))

⊑EM

∧

(Aj(x) ∧M Aj(y))

⊑EM

∧

(Aj(x ∧L y))

⊑EM (
∧

Aj)(x ∨L y)

((
∧

(Aj)(x)) ∧M ((
∧

(Aj)(x)) ⊑EM (
∧

Aj)(x ∨L y).

2. We now show that each
∨

Aj is an nd − M- Fuzzy join-

semilattice. Since each Aj is an nd −M − fuzzy join semi-

lattice, each Aj satisfies

Aj(x) ∧M Aj(y) ⊑EM Aj(x ∨L y),for all x, y ∈ L.

(
∨

Aj)(x) ∧M (
∨

Aj)(y) = (
∨

Aj(x)) ∧M (
∨

Aj(y)).

⊑EM

∨

(Aj(x) ∧M Aj(y))

⊑EM

∨

(Aj(x ∧L y))

⊑EM (
∨

Aj)(x ∨L y)

((
∨

(Aj)(x)) ∧L ((
∨

Aj)(y)) ⊑EM (
∨

Aj)(x ∨L y).
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Note 5. Let (L,∧L,∨L) be a lattice and (M,∧M ,∨M) be a

complete and consistent multilattice. A mapping A : L → 2M is

called an nd−M- Fuzzy lattice if and only if A is both an nd−M-

Fuzzy meet-semilattice and an nd−M- Fuzzy-join-semilattice.

5.3 nd−M−fuzzy∗ join-semilattice and

nd−M − fuzzy∗ meet-semilattice

Definition 5.3.1. Let (L,∨L) be a join semilattice and (M,∧M ,∨M )

be a complete and consistent multilattice. A mapping A : L→ 2M

is called an nd − MFuzzy∗ join semilattice of L if for each β ∈

2M ,The set Aβ = {x ∈ L|A(x) ⊑EM β} satisfies A(x)∨MA(y) ⊑EM

β for every x, y ∈ Aβ and Aβ is a sub- join semilattice of L.

Lemma 5.3.1. Let (L,∨L) be a join semilattice and (M,∧M ,∨M )

be a complete and consistent multilattice .Assume thatAβ satisfies

A(x) ∨M A(y) ⊑EM β for every x, y ∈ Aβ . Then a mapping

A : L→ 2M is an nd−M −Fuzzy∗join semilattice of L if and only

if

A(x ∨L y) ⊑EM A(x) ∨M A(y) ∀ x, y ∈ L

Proof. Assume that A is an nd−M- Fuzzy join semilattice of L.

Then for each β ∈ 2M ,the set Aβ = {x ∈ L|A(x) ⊑EM β} satisfies

A(x) ∨M A(y) ⊑EM β for every x, y ∈ Aβ and Aβ is a sub- join

semilattice of L.
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Let x, y ∈ L and

S = A(x) ∨M A(y)

Then A(x) ⊑EM S and A(y) ⊑EM S and so x, y ∈ AS.

But our assumption AS is a sub-join semilattice of L, for any x, y ∈

AS, A(x ∨L y) ⊑EM S.

Thus A(x ∨L y) ⊑EM A(x) ∨M A(y),for every x, y ∈ L .

conversely assume that, A(x∨L y) ⊑EM A(x)∨M A(y), for all x, y ∈

L

Let S ∈ 2M and A(x) ⊑EM S and A(y) ⊑EM S.

Then A(x) ∨M A(y) ⊑EM S. Then by our assumption, we have

A(x ∨L Y ) ⊑EM A(x) ∨M A(y) ⊑EM S.

Thus A(x ∨L y) ⊑EM S.

That is (x∨L y) ∈ AS. Hence AS is a sub-join-semilattice of L.

Definition 5.3.2. Let (L,∧L) be a meet-semilattice and (M,∧M ,∨M)

be a complete and consistent multilattice. A mapping A : L→ 2M

is called an nd − MFuzzy∗ mee-semilattice of L if for each β ∈

2M ,The set Aβ = {x ∈ L|A(x) ⊑EM β} satisfies A(x)∨MA(y) ⊑EM

β, for every x, y ∈ Aβ and Aβ is a sub- meet-semilattice of L.

Lemma 5.3.2. Let (L,∧L) be a meet-semilattice and (M,∧M ,∨M)

be a complete and consistent multilattice. Assume that Aβ satis-

fies A(x) ∨M A(y) ⊑EM β for every x, y ∈ Aβ. Then a mapping

A : L → 2M is an nd −M − Fuzzy∗meet-semilattice of L if and

only if

A(x ∧L y) ⊑EM A(x) ∨M A(y) ∀ x, y ∈ L
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Proof. Assume that A is an nd − M- Fuzzy meet-semilattice

of L. Then for each β ∈ 2M ,the set Aβ = {x ∈ L|A(x) ⊑EM β}

satisfies A(x) ∨M A(y) ⊑EM β for every x, y ∈ Aβ and Aβ is a sub

meet-semilattice of L. Let x, y ∈ L,and

S = A(x) ∨M A(y)

Then A(x) ⊑EM S and A(y) ⊑EM S and so x, y ∈ AS.

But our assumption AS is a sub meet-semilattice of L,for any x, y ∈

AS,

A(x ∧L y) ⊑EM S.

Thus A(x ∧L y) ⊑EM A(x) ∨M A(y),for every x, y ∈ L.

Conversely assume that,

A(x ∧L y) ⊑EM A(x) ∨M A(y), for all x, y ∈ L

Let S ∈ 2M and A(x) ⊑EM S and A(y) ⊑EM S.

Then A(x) ∨M A(y) ⊑EM S.

Then by our assumption, we have A(x∧LY ) ⊑EM A(x)∨MA(y) ⊑EM

S

. Thus A(x ∨L y) ⊑EM S.

That is (x∨L y) ∈ AS. Hence AS is a sub meet-semilattice of L.

5.4 nd-M-fuzzy* lattice

Definition 5.4.1. Let (L,∧(L),∨L) be a lattice and M be

a complete and consistent multilattice with least element 0M and

the greatest element 1M . A mapping A : L → 2M is called an
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nd−M-fuzzy∗ lattice if

Aβ = {x ∈ L : A(x) ⊑ β}

is a sub lattice of L, for every β ∈ 2M

Theorem 5.4.1. Let L be a lattice and M be a multilattice.

Let A : L→ 2M be a nd-M fuzzy subset. Then

1. A(x1 ∧ x2) ⊑EM A(x1) ∨M A(x2) and A(x1 ∨L x2) ⊑EM

A(x1)∨L A(x2) if and only if A is both nd−M fuzzy∗ meet-

semilattice and nd −M fuzzy∗ join semilattice of L if and

only if

Aβ = {x ∈ L : A(x) ⊑EM β}

is a sub-lattice of L for every β ∈ 2L if and only if A is an

nd-M-fuzzy∗ lattice.

2. A(x1) ∧M A(x2) ⊑EM A(x1 ∧L x2) and

A(x1) ∧M A(x2) ⊑EM A(x1 ∨L x2) if and only if Aα = {x ∈

L : α ⊑EM A(x)} is a sub lattice of L for every α ∈ 2M if and

only if A is both nd-M fuzzy join semilattice and nd-M fuzzy

meet semilattice if and only if A is an nd−M fuzzy Lattice.

5.5 Strong nd-M-fuzzy lattice

Definition 5.5.1. Let (L,∧L,∨L) is a lattice and (M,∧M ,∨M)

is a multilattice with the least element 0M and the greatest element
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1M . The mapping A : L → 2M is called a strong nd −M-fuzzy

lattice if for each α, β ∈ 2M ,the set Aβ
α = {x ∈ L|α ⊑EM x ⊑EM β}

satisfies,

1. α ⊑EM A(x) ∧M A(y) for every x, y ∈ Aα

2. A(x) ∨M A(y) ⊑EM β ,for every x, y ∈ Aα and A(y) ⊑EM β

3. Aβ
α is a sub-lattice of L, for all α, β ∈ 2M .

Theorem 5.5.2. Let (L,∧L,∨L) be a lattice and (M,∧M∨M )

be a complete and consistent multilattice with 0M and 1M . Then

the mapping A : L → 2M is a strong nd −M-fuzzy lattice if and

only if A satisfies the following conditions, for all x, y ∈ L.

1. A(x) ∧M A(y) ⊑EM A(x ∧L y) ⊑EM A(x) ∨M A(y)

2. A(x) ∧M A(y) ⊑EM A(x ∨ y) ⊑EM A(x) ∨M A(y)

Proof. Assume that A : L→ 2M is a strong nd−M-fuzzy lattice

of L.Then for each α, β ∈ 2M , A satisfies

1. α ⊑EM A(x) ∧M A(y) for every x, y ∈ Aα

2. A(x) ∨M A(y) ⊑EM β ,for every x, y ∈ Aα and A(y) ⊑EM β

3. Aβ
α is a sub-lattice of L, for all α, β ∈ 2M .

Let x, y ∈ L, T = A(x) ∧M A(y) and S = A(x) ∨M A(y).

Then T ⊑EM A(x) ⊑EM S and T ⊑EM A(y) ⊑EM S.

Hence x, y ∈ AS
T . That is

T ⊑EM A(x ∧L y) ⊑EM S and T ⊑EM A(x ∨L y) ⊑EM S
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Hence A(x) ∧M A(y) ⊑EM A(x ∧L y) ⊑EM A(x) ∨M A(y)

and A(x) ∧M A(y) ⊑EM A(x ∨L y) ⊑EM A(x) ∨M A(y)..

Conversely assume that A : L −→ 2M satisfies the conditions

A(X) ∧M A(y) ⊑EM A(x ∧L y) ⊑EM A(x) ∨M A(Y ) and

A(X) ∧M A(y) ⊑EM A(x ∨L y) ⊑EM A(x) ∨M A(Y )

for every x, y ∈ AS
T , then

T ⊑EM A(x) ⊑EM S and T ⊑EM A(x) ⊑EM S

Hence T ⊑EM A(x) ∧M A(y) ⊑EM S and T ⊑EM A(x)∨M ⊑EM S

That is, from our assumption,we have

T ⊑EM A(x) ∧M A(y) ⊑EM A(x ∧L y) ⊑EM A(x) ∨M A(y) ⊑EM S

and

T ⊑EM A(x) ∧M A(y) ⊑EM A(x ∨L y) ⊑EM A(x) ∨M A(y) ⊑EM S

Hence T ⊑EM A(x ∧L y) ⊑EM S and T ⊑EM A(x ∨L y) ⊑EM S.

That is x ∧L y ∈ AS
T and x ∨L y ∈ AS

T ,Hence AS
T is a sub lattice of

L and so L is a strong sub lattice of L.

Theorem 5.5.3. Let L be a lattice, M be a complete and

consistent multilattice and Aj : L → 2M be a strong nd − L-fuzzy

lattice, for each j ∈ J , then
∨

j∈J and
∧

j∈J are nd−L-fuzzy lattices.



Strong nd-M-Fuzzy lattice 73

Proof.

((
∨

Aj)(x) ∧M ((
∨

Aj)(y)) = (
∨

Aj(x)) ∧M (
∨

Aj(y))

=
∨

(Aj(x) ∧M Aj(y))

⊑EM

∨

(Aj(x ∧L y))

= (
∨

Aj)(x ∧ y)

=
∨

(Aj(x ∧ y))

⊑EM

∨

((Aj)(x) ∨M Aj(y))

= (
∨

((Aj)(x)) ∨M (
∨

((Aj)(y))

Therefore ((
∨

Aj)(x) ∧M ((
∨

Aj)(y)) ⊑EM

∨

(Aj(x ∧L y))

⊑EM ((
∨

Aj)(x)) ∨M ((∨(Aj)(y)).

Similarly

((
∨

Aj)(x) ∧M (
∨

Aj)(y) = (
∨

Aj)(x)) ∧M (
∨

Aj(y))

=
∨

(Aj)(x) ∧M Aj(y))

⊑EM (
∨

Aj)(x ∨L y)

=
∨

Aj)(x ∨M y)

=
∨

(Aj(x ∨ y))

⊑EM ∨(Aj(x) ∨M AJ(y))

= (
∨

((Aj)(x)) ∨M (
∨

((Aj)(y))

= ((
∨

Aj)(x)) ∨M ((
∨

Aj)(y))
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Therefore

((
∨

Aj)(x)) ∧M ((
∨

Aj)(y)) ⊑EM ((
∨

Aj)(x ∨L Y )

⊑EM ((
∨

Aj)(x)) ∨M ((∨Aj)(y))

Hence the expressions from (1) and (2) together implies (
∨

(Aj) is

a nd−M−fuzzy lattices,

Similarly,

((
∧

Aj)(x)) ∧M ((∧Aj)(y)) = (
∧

Aj(x)) ∧M (
∧

Aj(y))

=
∧

(Aj(x) ∧L Aj(y))

⊑EM

∧

(Aj(x ∧L y))

=⊑EM

∧

Aj(x ∨L y)

=
∧

(Aj(x ∧L y))

⊑EM

∧

(Aj(x) ∨M Aj(y))

⊑EM (
∧

Aj(x)) ∨M (
∧

Aj(y))

= ((
∧

(Aj)(x)) ∨M ((
∧

Aj)(y))

Therefore

((
∧

(Aj)(x)) ∧M ((
∧

Aj)(y)) ⊑EM (
∧

Aj)(x ∧L y)

⊑EM (
∧

Aj)(x)) ∨M ((
∧

Aj)(y))
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similarly

((
∧

Aj)(x)) ∧M ((
∧

Aj)(y)) = (
∧

Aj(x)) ∧M (
∧

Aj(y))

=
∧

(Aj(x) ∧M Aj(y))

⊑EM

∧

(Aj(x ∨L y))

= (
∧

Aj)(x ∨L y))

=
∧

(Aj(x ∨L y)

⊑EM

∧

(Aj(x)) ∨M (Aj(y))

= (
∧

Aj(x)) ∨M (
∧

Aj(y))

= ((
∧

Aj)(x)) ∨M ((
∧

Aj)(y))

Therefore

((
∧

Aj)(x)) ∧M ((
∧

Aj)(y)) ⊑EM (
∧

Aj)(x ∨L y)

⊑EM ((
∧

Aj)(x)) ∨L ((
∧

Aj)(y))

Hence from the expression above we have (∧Aj) is an nd−M−fuzzy

lattices.
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Chapter 6

Matrices over Multilattices

Let M be a complete ,consistent and distributive multilattice with

0 and 1. The multisup(a,b) is denoted by a + b and multiinf(a,b)

is denoted by a.b. Recall that multisuprimum and multiinfimum of

elements are set of elements in M . In a lattice matrix each entries

of a matrix are single elements. Here we are taking a set of elements

to each entry of a matrix from a multilattice M instead of taking

a single elements.As defined in the lattice matrix [50], here we are

defining matrices over a Multilattice along with some basic concepts

and properties of these matrices are studied.

In this chapter we use 0 and 1 for bottom and top element

respectively in a multilattice M instead of using 0M and 1M .
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6.1 Definition and some properties

Definition 6.1.1. Let M be a complete, consistent and dis-

tributive multilattice with 0 and 1.The multisup(a,b) is denoted by

a+ b and multiinf(a,b) is denoted by a.b Let Mn (for n > o) be the

set of n× n matrices over M .

ie,

Mn = {A = (aij)/aij ∈ 2M}

, aij is the (ij)th element of A.

Definition 6.1.2. Let A,B ∈Mn, we define

1. A+B = C if and only if cij = aij + bij

2. A ⊑EM B if and only if aij ⊑EM bij

3. A ∧M B = C if and only if cij = aij .bij

4. A.B = AB = C If and only cij =
n
∑

k=1

aikbkj

5. AT = C if and only if cij = aji

6. For a ∈M , aA = a.A = C if and only if cij = a.aij

7. I = (aij), where aij = {1} for i = j

and = {0} for i 6= j

8. A0 = I ,Ak+1 = Ak.A,
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9. O = (oij) ,where oij = 0 for every i and j.

10. E = (eij), where eij = {1} for every i and j

Example 6.1.1. Consider the multilattice in Figure 3.1. Let

A =

[

{a} {1}

{b} {0}

]

, B =

[

{b} {d}

{a} {1}

]

A +B =

[

{a + b} {1 + d}

{b+ a} {0 + 1}

]

=

[

{c, d} {1}

{c, d} {1}

]

AΛB =

[

{a.b} {1.d}

{b.a} {0.1}

]

=

[

{0} {d}

{0} {0}

]

AB =

[

{0 + a} {a+ 1}

{b+ 0} {b+ 0}

]

=

[

{a} {1}

{b} {b}

]

properties with respect to addition and multiplication:

1. A+ A 6= A

2. A+B = B + A

3. (A+B) + C = A + (B + C)

4. AB 6= BA

5. (AB)C = A(BC)
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6. A.I = I.A = A

7. A.O = O.A = O

8. Ap.Aq = Ap+q

9. (Ap)q = Apq

10. A(B + C) = AB + AC

11. (A+B)C = AC +BC

12. if A ⊑EM B and C ⊑EM D then AC ⊑EM BD

13. Let E = (eij), where eij = {1} for every i and j and

I = (aij), where aij = {1} for i = j and

= {0} for i 6= j

Let A = (aij be any matrix over a multilattice.

Now if I ⊑EM A and A ⊑EM I then I = A .

Also if A ⊑EM E and E ⊑EM A, then E = A.

properties of transposition

1. (A+B)T = AT +BT

2. if A ⊑EM B then AT ⊑EM BT

3. (A ∧M B)T = AT ∧M BT

4. (AT )T = A
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Definition 6.1.3. For α ∈ 2M we shall use the notation

α →֒ (Ak)ij , the ijth entry of Ak

whenever α = ai0i1 .ai1i2 . · · · .aik−1ik ,

where i0 = i and ik = j for some i1, i2, · · · , ik−1

Note 6.

(Ak)ij =
∑

α→֒(Ak)ij

α

Proposition 6.1.1. If α →֒ (Ak)ij, where k ≥ n, then there

are integers m1 ,m2 ,m3 and ν (all of them dependent on α) such

that

0 ≤ m2 ≤ n, m1 + m2 + m3 = k, 1 ≤ γ ≤ n and such that for

each positive integer m:

α ⊑EM (Am1)iγ .(A
m.m2)γγ .(A

m3)γj

Proof. Let α = ai0i1 .ai1i2 . · · · .aik−1ik , Where α ∈ 2M .

Since n ≤ k, Then n ≤ k + 1, two indices among the k+1 indices

i0, i1, · · · , ik must be equal. Let ir = is, where r < s.

Also we can find such r and s such that ir = is, r < s and s−r ≤ n.

So let m1 = r,m2 = s− r,m3 = k − s and ν = ir = is
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Corollary 6.1.4. If α →֒ (Ak)ij where k ≥ n then there are

natural numbers m1, m2, m3 and γ such that m1 + m2 ≤ n ,

0 ≤ m2 ≤ n, 1 ≤ γ ≤ n and such that for each m

α ⊑EM (Am1)iγ .(A
m.m2)γγ .(A

m3)γj

Theorem 6.1.5. If k ≥ n then (Ak)ij ⊑EM multisup(Ak+(p.n!))ij

where p is an arbitrary number.

Proof. suppose α →֒ (Ak)ij.Then by the above proposition ,

there are natural numbers m1, m2, m3 and γ(all of them dependent

on α) such that

0 < m2 ≤ n, m1 +m2 +m3 = k ,1 ≤ γ ≤ n and such that for each

m,

α ⊑EM (Am1)iγ .((A
m.m1)γγ.(A

m2)νj

Hence α ⊑EM (Am1+m.m2+m3)ij

= (Ak+(m−1).m2)ij

Replace (m − 1) by (p.n!/m2) where p is an arbitrary natural

number.

Then α ⊑EM (Ak+(p.n!/m2).m2)ij

= (AK+pn!)ij

Then all α
′
s such that
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∑

α→֒(Ak)ij

α = (Ak)ij

Then
∑

α→֒(Ak)ij

α ⊑EM Multisup(Ak+pn!)ij

This implies (Ak)ij ⊑EM Multisup(Ak+pn!)ij

6.2 Orthogonal Matrices

Definition 6.2.1. A Mn Matrix A is called a unit if and only

if there is an Mn matrix B such that AB = BA = I, and A is

called orthogonal if and only if AAT = ATA = I

Proposition 6.2.1. 1. If CB = E then EB = E

2. If EAB = E then EB = E

3. Assume A ∧M A = A ,If EA = E if and only if I ⊑EM ATA

Proof. 1. For any matrix EB ⊑EM E and C ⊑EM E are

always true. Therefore by the property 12, CB ⊑EM EB.

But CB = E implies E ⊑EM EB. Thus EB ⊑EM E and

E ⊑EM EB,this implies E = B.

2. This proof is a particular case of 1
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3. Let A ∧M A = A .EA = E holds if and only if for each i and

j,

{1} = (EA)ij =
n
∑

k=1

eikakj

=
n
∑

k−1

akj , since eik = {1}

=
n
∑

k=1

akj.akj

=
n
∑

k=1

(AT )jk.Akj

= (AT .A)jj, that is each diagonal entries are {1}.

Hence EA = E holds if and only if I ⊑EM (AT .A) holds.

Note 7. from the above proposition we have ,I ⊑EM ATA =⇒

EA = E, since I ⊑EM ATA =⇒ EI ⊑EM EATA,

that is I ⊑EM ATA implies EATA = E.

Proposition 6.2.2. If A is a unit then A is orthogonal.

Proof. If A is a unit then there is a B such that AB = BA = I

.This implies BTAT = ATBT = I.

Hence E = EAB = EBA = EBTAT = EATBT and there-

fore by above proposition, we have I ⊑EM ATA ,I ⊑EM AAT ,

I ⊑EM BTB, I ⊑EM BBT
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Then to show That ATA ⊑EM I and AAT ⊑EM I

That is to show that ATA ⊑EM BA and AAT ⊑EM AB since

AB = I and BA = I

for this, it is suffices to show that AT ⊑EM B holds.

but I ⊑EM BTB =⇒ AT ⊑EM ATBTB

since ATBT = I and therefore AT ⊑EM B holds.

Therefore ATA ⊑EM I and AAT ⊑EM I.

This implies ATA = I, A is orthogonal.

Definition 6.2.2. 1. A set {S1, S2, ..........., Sn} of subsets

of M is a decomposition of {1} in 2M if and only if
n
∑

k=1

Sk = {1}.

That is Multisup{{S1, S2, ..........., Sn} = {1}

2. A set {S1, S2, ..........., Sn} of subsets of M is said to be or-

thogonal if and only if SiSj = {0}

That is multiinf{SiSj} = 0

3. A set of subsets of M is an orthogonal decomposition of

{ 1 } in 2M if and only if it is orthogonal and a decomposition

of {1} in 2M
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We know that I ⊑EM ATA, I ⊑EM ATA implies EA = E.

Since A is orthogonal AAT = ATA = I implies

AAT ⊑EM I, ATA ⊑EM I I ⊑EM ATA and I ⊑EM AAT .

Also EA = E =⇒ EAT = E

From this the following proposition follows.

Proposition 6.2.3. A Mn is orthogonal if and only if each

row and each column of it is an orthogonal decomposition of {1} in

2M
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