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Chapter 1

Introduction

1.1. Queueing theory

All of us have experienced the annoyance of having to wait in line. Queueing is
quite common in many fields, as there is more demand for service than availability
of facility for service. Over the years, the subject found its applications in areas like
telecommunications, Traffic flow, Computer systems, ATM facilities, Computing etc.
and forced researchers study Queueing models extensively. Queueing theory was de-
veloped to provide models to predict the behaviour of systems that attempt to provide
service for randomly arising demands in a natural way. The first problem of queueing
theory arose in telephone calls and Erlang was the first who treated congestion problems
in the beginning of 20" century.

The basic characterics of a queueing system are the following:



Arrival pattern of customers.

It describes the way customers arrive and join a queuing system. Arrival pattern is
often random with two adjacent arrivals generally spaced by random intervals called the
inter-arrival time. The arrival pattern is described by means of a probability distribution
of the inter-arrival time. Arrival may also occur in batches instead of one at a time.

If the queue is too long a customer may decide not to enter it upon arrival. This
customer behaviour is called balking. A customer may enter the queue, but after some
time lose patience and decide to leave. This is known as reneging. Another case is,
when there is more than one queue, customers have the tendency to switch from one to

another which is called jockeying.

Service Pattern.
This describes the manner in which the service is rendered. As in case of arrivals,
the service also is provided in single or in batches. The probability distribution of the

service time describes the service pattern.

Queue discipline.

Queue discipline refers to the rule in which customers are selected for service when
a queue has formed. Some of the most commonly used disciplines are first come first
served (FCFES), last come first served (LCFS), random service selection (RSS) i.e., se-
lection for service in random order independent of the time of arrival; there are cases in
which customers are given priorities upon entering the system, those with higher priority

are selected first.



System capacity.

A queuing system can be finite or infinite. In certain queuing process there is a
limitation on the length of the queue i.e., customers are not allowed to enter if the queue
has reached a certain length. These are called finite queuing systems. If there is no

restriction on the length of the queue then it is called an infinite capacity queuing system.

Number of service channels.
A queuing system can be single or a multiserver system. In a multiserver queuing

system there are several parallel servers to serve a single line/several waiting lines.

Number of service stages.

A queuing system may have only a single stage of service. But as an example of
a service with several stages of service, consider the physical examination procedure,
where each patient proceeds through various stages of medical examination, like throat

check up, eye test, blood test etc.

1.2. Basic Concepts

Here we give a brief description of the modelling tools/techniques applied in the
thesis. For more details on these topics one can refer Karlin and Taylor [10] or Latouche

and Ramaswami [16].

1.2.1. Stochastic process. A family of random variables {X(f),t € T}, where T
is an index set, is called a stochastic process. The index ¢ is often referred to as time.
When T is a countable set, {X(¢),¢ € T} is said to be a discrete-time process, whereas

if T is an interval of the real line, it is called a continuous-time process. For instance,
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{X,,n=0,1,...} 1s a discrete time stochastic process indexed by the set of non negative
integers, while {X(¢), > 0} is a continuous time process indexed by non negative real

numbers.

1.2.2. Markov Process.
A Markov process is a stochastic process {X(¢), t € T} that satisfies the condition
PriX(ty) < x,/X(ty-1) = X1, .., X(01) = 21} = Pr{X(8,) < X,/ X(t0-1) = X1},
for any set of n time points t; < t, < ... < ¢, in the index set or the time range of the
process and xi, x5, ..., x, are elements of the state space. That is the stochastic process
{X(#), t € T} that changes states according to a transition rule that only depends on the

current state but not the past is called a Markov process.

1.2.3. Exponential distribution.
A continuous random variable X is said to follow exponential distribution with pa-

rameter y if its probability density function is given by

pue ™ x>0
fOsp) =
0 x<0

and u > 0. One of the most important properties of the exponential distribution is the
memoryless property: Pr(X > x+y/X > x) = P(X > y) for x,y > 0. In making a
mathematical model for a real life phenomenon we often assume that certain random

variables associated with the problem under study are exponentially distributed.

1.2.4. Renewal Process.
A counting process {N(¢), t > 0} with independently and identically distributed inter-

arrival times is called a renewal process. Consider a renewal process {N(¢),t > 0} having
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inter arrival times X;, X5, ... with distribution function F. Let S, = >, X;,n > 1; S = 0.
i=1

Then we have N(f) = max{n : S, < t} and the distribution of N(¥) is given by Pr{N(t) =

n} = F,(t) — F,.1(t) where F, is the n-fold convolution of F with itself. The Poisson

process is a renewal process where F' is an exponential distribution.

1.2.5. Poisson Process.
A Poisson process {X(?), t > 0} is a renewal process having rate A if
(i) X(0) =0.
(i1) The process has stationary and independent increments.
(iii) P{X(h) = 1} = M + o(h).

(iv) P{X(h) > 2} = o(h).

It follows from the definition that for all s, ¢ > O,

P{(X(t + ) — X(s5)) = n} = e‘“%,n =0,1,....

For a Poisson process having parameter A the inter arrival time has an exponential dis-

tribution with mean 1/A.

1.2.6. Continuous-time Phase type (PH) distributions.

Consider a Markov process on the states {1, 2, ..., m+ 1} with infinitesimal generator
T T°

matrix Q = where the m X m matrix T satisfies T; <Ofor1 <i<mandT;; >0
0 O

fori # j; 79 is an m x 1 column matrix such that Te + T° = 0, where e is a column

matrix of 1’s of appropriate order. Let the initial probability vector of Q be (@, @,+1),
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where « is a 1 X m dimensional row vector and «,,, 1S a scalar such that ce + a,,,; = 1.
Also assume that the states 1,2, ...,m are all transient so that absorption in to the state
m + 1 from any initial state is certain. For eventual absorption into the absorbing state,
starting from every initial state, it is necessary and sufficient that 7" is non singular.

The probability distribution F(-) of time until absorption in the state m + 1 corre-

sponding to the initial probability vector (@, @,,;) is given by F(x) = 1 — ae'"™e, x > 0.

Definition 1.2.1. A probability distribution F(-) is a distribution of phase type(PH-
distribution) if and only if it is the distribution of time until absorption of a finite Markov

process described above. The pair (@, T') is called a representation of F(-).

For PH-distribution F'(-) with representation (a, T),

(i) The distribution F(-) has a jump at x = 0 of magnitude @, .
(i) The corresponding probability density function f(-) is givenby f(x) = a exp(Tx)T°.

(iii) The Laplace-Stieltjes transform f© of F(-) is given by

F(s) = @y + a(sI = T)™'T°, for Re(s) > 0.

(iv) The moments about origin are given by u; = (- D¥k!(aT *e) for k > 0.

When m = 1 and T = [—A], the underlying PH-distribution is exponential.

1.2.7. PH-renewal process.
A renewal process whose inter-renewal times have a PH distribution is called a

PH-renewal process. To construct a PH-renewal process we consider a continuous
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time Markov chain with state space {1,2,...,m + 1} having infinitesimal generator

T T°
0 = . The m X m matrix T is taken to be nonsingular so that absorption to

0 O
the state m + 1 occurs with probability 1 from any initial state. Let (@, 0) be the initial

probability vector. When absorption occurs in the above chain we say a renewal has
occurred. Then the process immediately starts anew in one of the states {1,2,...,m} ac-
cording to the probability vector a. Continuation of this process gives a non terminating

stochastic process called PH-renewal process.

1.3.

1.3.1. Level Independent Quasi-Birth — Death (LIQBD) process.

A level independent quasi birth and death process is a Markov process on the state

space S ={(i,j):i>0,j=1,2,...,m} and with infinitesimal generator matrix Q given
by )
By Ay
B Ay A
Ay A Ay
0= A, A A (1.3.1)

The above matrix is obtained by partitioning the state space S as S = [J; A; where

A; =1, j)/j=1,2,...,m}. The states in A; are said to be in level i. The states within
7



the levels are called phases. The matrix B, denotes the transition rates within level 0,
matrix B; denotes the transition rates from level 1 to level 0. A,,A; and A, denote

transition rates from level i to (i — 1), i and (i + 1) respectively.

1.3.2. Matrix Analytic Method.

Even though the Queueing models such as M/M/1, M/M/oo and G/G1 are well
studied and are well tractable using the methods like Method of generating functions,
Laplace Transforms etc., they fail to provide numerical tractability analysis of such
queueing models especially when we assume the distribution of inter-arrival time or
service time is to be not non-exponential.

Matrix analytic approach to stochastic models was introduced by M.F Neuts to pro-
vide an algorithmic analysis for queueing models. The following brief discussion gives
an account of the method of solving an LIQBD using the matrix geometric method. For
a detailed description, we refer to Neuts [17], Latouche and Ramaswami [16].

Let x = (xo, X1, X2, .. .), be the steady state vector, where x;’s are partitioned as x; =
(x(i,0), x(7, 1), x(i, 2), . . ., x(i, m)), m being the number of phases with in levels.

Let x; = xoR', i > 1. Then from xQ = 0 we get

xOAO + x1A1 + A, =0
XoAg + XgRA| + )C()RZAQ =0

xo(Ag + RA; + R?A,) = 0.

Choose R such that R?A, + RA; + A, = 0.



Also we have xyBy + x; By = 0, which gives

XoBo + xoRB;| = 0

i.e., xo(By+RB;)=0.

First we take x( as the steady state vector of By + RB;. Then x;, for i > 1 can be found
using the formulae; x; = xR’ for i > 1. Now the steady state probability distribution of
the system is obtained by dividing each x;, with the normalizing constant [xy+x;+...]e =
xo(I = R)le.

The above discussion leads to the following theorem.

Theorem 1.3.1. The process represented by matrix Q is positive recurrent if and only if

the minimal non negative solution R of the matrix quadratic equation

R’A,+RA; +Ag =0 (1.3.2)

has spectral radius less than 1 and the finite system of equations

.X()(Bo + RB]) = 0,

xo(I-R)le=1

has a unique solution xy. If the matrix A = Ao+ Ay + A, is irreducible, then sp(R) < 1 if
and only if tApe < mAse, where 1 is the stationary probability vector of A = Ag+A1 +A,.
The stationary probability vector x = (xo, X1, . ..) of Q is given by x; = xoR' fori > 1.

To find the solution R of equation (1.3.2), we use the iterative procedure.

9



1.3.3. Level Dependent Quasi Birth Death (LDQBD) Process.

A level dependent Quasi-Birth — Death process is a Markov process on a state space

S ={G)),i>0,J=1,2,...,n} with infinitesimal generator matrix Q given by
Ay Ao
Ay A Ao
An Ap Ap
P = Ay Az Ao . (1.3.3)

The state space S is partitioned in to different levels i where level i is given by A; =
{GG,))/i =0,j =1,2,...,n}. Here the transitions take place only to the adjacent levels
for i > 1. But the transition rate depends on the level i, unlike in the LIQBD, and
therefore the spatial homogeneity of the associated process is lost.

A special class of LDQBD’s is those which arise in retrial queueing models (when

the retrial rate at any instant depends on the number of customers in the orbit).

1.3.4. Neuts-Rao Truncation method.

Since the repeating structure is lost in LDQBD, its analysis is much more involved.
However Neuts and Rao [19] suggested a truncation procedure using which certain class
of LDQBD’s which include retrial models can be made to have a repeating structure

from a certain level N, where N is sufficiently large. For giving a brief idea of their
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method, we assume that n; = m for every i > N so that each level > N contains the same
number of states. Note that this is the case in most of the retrial queueing models. To
apply Nuets-Rao Truncation, we take Ay; = Ay, Az = Ay and Ag; = Aoy forall i > N.
In the case of the retrial queues this is equivalent to assuming that retrial rate remains
constant whenever the number of orbital customers exceeds a certain limit N.

Define Ay = Aoy + Ay + Ay and iy = (n(0,0), 5 (0, 1), 7x(0, 2), . .., 7n(0, m))
be the steady state vector of the matrix Ay. Then the relations myAy = 0 together with
nmye = 1 when solved give the various components of y. The truncated system is stable
if and only if myA,ye > myAgne and the original system is stable if l}l_{g %‘;’;i <1.

Having described the tools for analysis, we move on to provide a review of the work

done in the theme of the present thesis.

1.4. Review of related works

An n component system is called a k-out-of-n system if at least k components are
in operational state. Application of such systems can be seen in many real-world phe-
nomena. For instance almost all our machines, of different complexity, are subjected to
failure. One would expect a machine to work as a whole, even if some of its components
have failed. The best example is that of an aircraft engine. A thorough reliability check is
required to ensure the safety of passengers even in some unforeseen situations. Consid-
ering another example, once can’t expect to run a good emergency service like a hospital
meeting minimum requirements. We would expect a hospital to run even if some of its

doctors/nurses/other staff is on leave. However, keeping these extra resources could be
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costly and not even feasible in some cases: it may not be possible to keep an extra engine
in an aircraft. A probabilistic study of a real world system, as k-out-of-n system, often
helps to develop an optimal strategy for maintaining high system reliability.

A k-out-of-n system further be classified as follows:

The system is called ‘COLD’ if the operational components do not fail while the
system is in down state. It is called ‘HOT’ if operational components continue to dete-
riorate at the same rate while the system is down as when it is up. The system is called
‘WARM’ if the deterioration rate while the system is up differs from that when it is
down. An extensive study of k-out-of-n systems can be seen in Krishnamoorthy et al.
[15], Chakravarthy, Krishnamoorthy and Ushakumari [6].

In today’s world, due to collaboration between different companies in different coun-
tries and also due to some government policies for reducing unnecessary additional use
of global resources for a better tomorrow, sharing of resources between national/multi-
national companies have become more common. For example, a mobile tower may be
shared by different telecom companies. A transporting system may choose deliver goods
along with passengers for additional income. A car service station may choose to serve
customers other than those of its main dealer. However, a system entertaining customers
other than its main customers may lead to dissatisfaction of its own customers, which
may be very costly in some situations. For example, it is hard to imagine an aircraft
overloaded with goods in addition to the passengers. For this reason, studies on k-out-
of-n systems where external customers are also entertained, have gained attention in the

literature. Dudin et al. [9], Krishnamoorthy et al. [12, 13] are among such studies. In
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[9], the external customers are sent to an orbit and where there they can try to access
the idle server. Once selected for service, an external customer is assumed to get a non-
preemptive service. Numerically, they show that providing service to external customers
in this fashion is economical to the system in comparison with the decrease in the reli-
ability caused due to external service. In [12] it is assumed that the external customers,
finding the service station busy on arrival, are directed to a pool of infinite capacity. They
also assume that if the size of the buffer of internal customers is less than L, a pooled cus-
tomer is selected for service with some probability p. In [13], a finite pool and an orbit
of infinite capacity accommodate the external customers in such a manner that external
customers join the orbit with some probability and from there try to enter the pool. The
external customers are selected for service from the pool. The internal customers (failed
components) are served based on an N-policy in the sense that the repair of the failed
components start only on the accumulation of N-components. In addition they assume
that the on-going service of an external customer is not pre-empted on accumulation of
N-failed components. As in [9] and [12, 13] also indicates a decrease in the server idle
probability, and an increase in the overall system revenue.

The first paper that introduced the concept of orbital customers in to reliability is by
Krishnamoorthy and Ushakumari [14]. In that paper, the authors assumed that a failed
component is sent to an orbit, if it finds the server busy. The authors studied the COLD,
HOT, WARM variants of the problem. Ushakumari and Krishnamoorthy [21] general-

ized the above model by assuming arbitrarily distributed service time. Bocharov et al.
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[5] discuss a retrial queueing system with a finite waiting space, where the customers in
the waiting space have priority over customers in the orbit.

A T-policy refers to calling the server to the system after the elapse of a random time
T. Queueing systems where the service is according to a T-policy have been extensively
studied. We refer to Artalejo [2] for some references on such studies. Krishnamoorthy
and Rekha [11], Ushakumari and Krishnamoorthy [22] are among the studies of k-out-
of-n systems where the repair is under 7-policy. In [11], it was assumed that the server
is called to the system either when the random time 7 expires or when the number of
failed components reaches n — k, whichever event occurs first. In [22], it was assumed
that the server is called whenever the maximum of an exponentially distributed duration
T and the sum of N(1 < N < n — k) random variables is realized.

Queues with postponed work was introduced in Deepak et al. [8]; the Doctoral thesis
of Ajayakumar [1] exclusively deals with queues with postponed work. We refer to the
paper Chitra Devi et al. [7] for some references of queues with postponed demand.
The idea of search for customers was introduced by Neuts and Ramalhoto [18]. The
concept of orbital search was introduced by Artalejo et al. [4], where for utilizing the
server idle time in a retrial queueing system, the server makes a search at a service
completion epoch with some probability and picks a customer randomly from the orbit
for the next service. Because of the importance of this notion, this work was followed
by several other contributions. We refer to the paper Artalejo [3], Phung-Duc [20] for

more references on such studies.
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Postponement of work is a common phenomena. This may be to attend a more
important job than the one being processed at present or for a break or due to lack of
quorum (in case of bulk service, or when N-policy for service is applied) and so on.
Queueing systems with postponed work is investigated in Deepak, Joshua and Krish-

namoorthy [8].

1.5. An Outline of the Present Work

This thesis is divided into seven chapters including the present introductory chapter.

In second chapter we study reliability of a k-out-of-n system with a single repair-
man, who also renders service to external customers. We introduce an N-policy, in
which repair of internal customers (failed components) is started only on accumulation
of N failed components. The service to external customers is of pre-emptive nature, in
the sense that their service can be interrupted in between on accumulation of N failed
components. It is assumed that an external customer, who on arrival finds the server
busy with an external customer, joins a queue of infinite capacity; where as an external
customer who finds the server busy with an internal customer leaves the system forever.
The failure times of the components follow an exponential distribution; the arrival of ex-
ternal customers is according to a Poisson process and service times of the internal and
external customers follow non-identical phase type distributions. Using matrix-analytic
methods we discuss system stability and steady state distribution. A special case of the
model where the underlying distributions are all exponential has been considered. Ex-

plicit expression for the stability condition and a product form solution for the steady
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state have been obtained for this case. Several system performance measures have been
obtained explicitly. Analysis of a cost function indicates that N-policy does help to
optimize the system revenue maintaining high system reliability.

In the third chapter we consider two k-out-of-n systems with single server who pro-
vides service to external customers also. Both models assume an N-policy that the repair
of failed components (main customers) start only on the accumulation of N of them.
When not repairing failed components, the server attends external customers (if there is
any) who arrive according to a Poisson process. Once started, the repair of failed com-
ponents is continued until all the components become operational. Service of external
customers is non pre-emptive in nature. When there are at least N failed components in
the system and or when the server is busy with failed components, external customers
are not allowed to join the system. Otherwise, in the first model they are assumed to
join an infinite capacity queue of external customers; whereas in the retrial model, they
join an orbit of infinite capacity. Life time distribution of components, service time
distribution of main and external customers and the inter retrial time distribution of or-
bital customers in the second model are all assumed to follow exponential distributions.
Steady state analysis has been carried out for both models and several important system
performance measures based on the steady state distribution derived. A numerical study
comparing the current models with those in which external customers are not considered
has been carried out. This suggests that rendering service to external customers helps to

utilize the server idle time profitably, without affecting the system reliability.
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In the fourth chapter we study a k-out-of-n system with a single server who offers
service also to external customers according to 7-policy. The server attends external
customers only (if there is any) until the realization of the time 7T'. If there is at least one
failed component present at the moment of realization of time 7', the external customer
in service will get pre-empted and the server is switched on to the service of main cus-
tomers; otherwise the server continues at his present status and the clock T restarts. The
failure times of the components and realization times follow exponential distribution; the
arrival of external customers is according to a Poisson process and service times of the
internal and external customers follow non-identical exponential distributions. Explicit
expression for stability condition has been obtained and steady state analysis has been
carried out. A numerical study of several important performance measures and a com-
parison of the current model with the one in which no external customers are allowed
has been carried out.

The fifth chapter describes a k-out-of-n system with single server extending service
to external customers also. It has a finite buffer of capacity n — k + 1 where the failed
components of the main system wait for service in the order of their arrival and a pool
of external customers with infinite capacity. At the end of a service if there are external
customers in the pool, the system operates as follows: if the queue in the buffer is empty
an external customer from the pool is transferred to the buffer with probability 1 and
immediately starts its service; if the queue size in the buffer (transition level) is less
than L, a pre-assigned number (1 < L < n — k + 1), then again an external customer

from the pool is transferred to the head of the queue in the buffer with probability p and
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immediately starts service; if there are between L and n — k + 1 failed components in
the buffer, the customer at the head of the queue in the buffer enters in to the service
process. We assume that if an external customer on arrival finds a busy server with main
customers, he joins the pool with probability y, 0 <y < 1. When no external customers
are present, the server attends main customers if there is any. Inter arrival times of failed
components of the main system and external customers follow exponential distribution
with different parameters. The service process of main customers and external customers
has the same phase type distribution. Explicit expression for stability condition has been
obtained and the steady state distribution and several important performance measures
have been studied numerically. A numerical comparison of the current model with those
in which no external customers are allowed has been carried out.

In Chapter 6 we study a retrial model discussed in chapter 2 with the assumption that
at service completion epochs of external customers or at the moment of service comple-
tion of last main customer from the time of start of service of main customers, the server
makes a search and selects an external customer (if any) randomly from the orbit for the
next service with a given probability. Arrival process of failed components has inter-
arrival times exponentially distributed and that of external customers is according to a
Poisson process. Service time of both main and external customers are exponentially
distributed with different parameters and are also independent. Stability of this model
has been discussed and the analysis of the steady state distribution and several perfor-

mance measures has been carried out numerically. Also the current model is compared
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numerically with a k-out-of-n system with repair in which no external customers are
allowed.

In the seventh chapter we study reliability of a k-out-of-n system with a single server
which provides an essential and several inessential (by mistake) service with given prob-
abilities. Contrary to assumptions on models in previous chapters, here no external cus-
tomers are provided service. The essential service time and the components life time
follow exponential distribution of different parameters and the duration of service in the
inessential states has a phase type distribution. The effect of inessential service to the
failed components on the system reliability has been studied. Several important perfor-

mance measures have been studied numerically.
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Chapter 2

Reliability of a k-out-of-n system with repair by
a single server extending service to external

customers with pre-emption

Abstract

In this chapter we study the reliability of a k-out-of-n system, with a single techni-
cian, who also renders service to external customers besides repairing the failed com-
ponents in the system. For optimizing the revenue from external service without com-

promising the system reliability, we introduce the N-policy, in which the repair of the

0

This Chapter is published in Electronic Journal “Reliability:Theory and Applications” (Gnedenko fo-
rum, Volume 11, June 2016,pp 61-93)
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internal customers (failed components) starts only on accumulation of N failed compo-
nents. The service to external customers is of preemptive nature, in the sense that their
service can be interrupted on accumulation of N failed components. It is assumed that
an external customer, who finds the server busy with an external customer on his/her
arrival, joins a queue of infinite capacity; whereas an external customer who finds the
server busy with an internal customer leaves the system forever. The failure times of
the components follow an exponential distribution; the arrival of external customers is
according to a Poisson process and the service times of the internal and external cus-
tomers follow non-identical phase-type distributions. Using matrix-analytic methods,
we discuss the system stability and steady state distribution. A special case of the model
where the underlying distributions are all exponential has been considered for studying
the effect of the service to external customers and the N-policy on the system reliability.
Explicit expression for the stability condition and a product form solution for the steady
state have been obtained for this case. Also several system performance measures have
been obtained explicitly. Analysis of a cost function indicates that N-policy does help to

optimize the system revenue maintaining high system reliability.

2.1. Introduction

In the present chapter, we study a k-out-of-n system, where the sever offers service
to external customers for additional income. For optimizing the revenue by way of pro-

viding external service, maintaining a high system reliability, we introduce an N-policy
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in which the service of the failed components starts on accumulation of N failed com-
ponents. The service to the external customers is of preemptive nature in the sense that
their service may be interrupted in between on accumulation of N failed components.
The external customers join a queue of infinite capacity on finding a busy server. The
current study differs from that in [13] in that, here the pool (waiting space) of external
customers is of infinite capacity and here there is no orbit of retrying customers. Also
in contrast to [13], the service of external customers is of preemptive in nature here.
It may seem that the model under discussion has stronger assumptions than [13]; but
the objective here is to check whether we can get more details of the system, like its
stability condition, steady state probability distribution etc. by strengthening some as-
sumptions. It turns out that, our objective is achieved, in the sense that an explicit steady
state distribution of the underlying Markov chain has been obtained.

This chapter is arranged as follows: In section 2.2, we perform the Stochastic Mod-
eling of the above problem and in section 2.3, we perform the steady state analysis of
the underlying Markov chain after finding a necessary and sufficient condition for the
stability of the system. Section 2.4, discusses a special case of the model discussed in
Section 2.2, where the service time distributions are assumed to follow exponential dis-
tribution. In section 2.5 we conduct a numerical study of the model discussed in Section
2.4 and compares it with a model in which no external customers are allowed. Section

7.3 concludes the discussion.

22



2.2. Modeling and Analysis

In this chapter we study the reliability of a k-out-of-n system with repair by a single
repair facility which also provides service to external customers. The system consists of

two parts.

(1) A main queue consisting of customers (failed components of the k-out-of-n system)
and

(2) A queue of external customers.

A k-out-of-n system is in the up state (working state) as long as at least k components

are in operational state. Otherwise the system is in the down state.

The arrival process.
Arrival of main customers have inter-occurrence time exponentially distributed with

parameter A; when the number of operational components of the k-out-of-n system is i.

By taking A; = % we notice that the failure rate is a constant A. Arrival of external cus-
tomers have inter-occurrence time exponentially distributed with parameter L. Arrival
of external customers is temporarily halted while serving the main customers (the failed

components of the k-out -of-n system).

The service process.
Commencement of service to the failed components of the main system is governed
by the N-policy, that is at the epoch the system starts with all components operational,

the server starts attending one by one the customers from the queue of external customers
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(if there is any waiting). At the epoch when the accumulated number of failed compo-
nents of the main system reaches N, the external customer in service will get pre-empted
and the server is switched on to the service of main customers. Service times of main
customers and external customers follow phase-type distributions with representations

(a,§) and (B, T) of orders m; and m respectively.

Objective.
To maximize the reliability of a k-out-of-n system with repair by a single server, who

provides service to external customers also, based on N-policy.

The Markov Chain.
Let X (¢) denotes at time ¢ number of external customers in the system including the
one getting service (if any) ,

X, (1) denotes the server status at time ¢ defined as;

0, 1if the server is idle or serving an external customer
X(1) =

1, if the server is busy with a failed component.

X;(1) denotes number of main customers in the system at time ¢ including the one getting
service (if any). X4(¢) denotes the phase of the service process.

Let X(1) = (X(1), X»(1), X53(1), X4(1)) then {X(¢), t > 0} is a continuous time Markov chain
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on the state space whose levels are designated

l(O) = {(07()’.]1)/0 < jl < N — 1} U {(Oa 17j1’j2)/1 < jl < n_k+ 1a1 < j2 < ml}?
Q) =10Vl 1),
1(,0) ={(1,0, j1,j2)/0 < j1 <N = 1,1 < jo < myp}

l(la 1) = {(la 1’]1’]2)/1 S]l Sn_k+ 151 S]Z S’/nl}

In the sequel,

(i) I, denotes the identity matrix of order n;
(i1) I denotes an identity matrix of appropriate size;
(ii1) e, denotes a n X 1 column matrix of 1’s
(iv) e denotes a column matrix of 1’s of appropriate order;

(v) E, denotes a square matrix of order n defined as

-1, ifi=j1<i<n

E.))=91, ifj=i+l;1<i<n-1

0, otherwise

(vi) E;, = Transpose of E,
(vii) r,(i) denotes a 1 X n row matrix whose i entry is 1 and all other entries are zeros
(viii) C,(i) = Transpose of r,(i)

(ix) ® denotes Kronecker product of matrices
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(x) S%=-Se, T = —Te.
The infinitesimal generator matrix of {X(¢)} is given by

Ay Ag
A, A Ao
Ay A A _ |Aw Aa
0= ,where A, =

AwlO Awll

Ao = MEx = My, Agi = [Cy(N) ® 1y it (N1 @ A, Ao = [Coges1 (1D ® ry(1)] ® S,

le =11 ®S + (E;z—k+1 + In—k+1) ® (SOCL’)

+ [En—k+l + Cn—k+l(n —k+ 1) ® rn—k+l(n - k+ 1)] ® )&Iml;

Aoy Ao

|
A An

Ao = Ey ® My + Iy ® (T = My ) Aot = [Cv(N) ® st (V)] © (hey@);

A = [Crami (D)@ ry(1)] ® (Soﬁ), Ay = A"11;

_ |wedp of _ |IyeT® 0 Iy®(\,,) 0
Ao = , Ay = » Ag = ;
0 0 0 0 0 0
Iy®(TB) 0
A, =
0 0
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2.3. Steady State Analysis

2.3.1. Stability condition.
Let A = Ay + A; + A, and 7 be the steady state vector of A. That is r satisfies the

equations

nA =0 and (2.3.1)

me=1. (2.3.2)
Partitioning r as r = (mg, 1y ), equation (2.3.1) gives

7o | En ® My, + Iy ® (T + T'B)| + mAy = 0 (2.3.3)

moAo + A =0. (2.3.4)

From equation (2.3.4), m = —moAp 1 Aj}.

Substituting in equation (2.3.3), we get
Mo | Ey ® My, + Iy ® (T + TB)| - moAo1 A7) Arg = 0 (2.3.5)
We notice that Ajy = (—Aj1e)(ry(1) ® B) and therefore —A[[ Ao = e(ry(1) ® B)

~ApiAT} Al = (Cy(N) ® hey,) (rv(1) ® B)

= (Cn(N)® ry(1)) ® (hey, B)- (2.3.6)
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Thus equation (2.3.5) reduce to
7o | En ® My, + (Cy(N) ® (1)) @ (e B) + Iy ® (T + T°B)| = 0. (2.3.7)

Further partitioning oy = (70,0, 70,15 - - - » To.n—1), €quation (2.3.7) give rise to the follow-

ing set equations

700 (T + T°B = My, ) + oy-1hew8 = 0 (2.3.8)

70 My + 701 (T + TB = M,y,) =0,0 < i <N - 1. (2.3.9)

Postmultiply both sides of equation (2.3.8) and (2.3.9) by the column vector e, we get

700 (T + T°B = My, + hew, f) = 0 (2.3.10)

o€ = 71'(),,'_,.18,0 <i<N-1 (2311)

And equation (2.3.10) gives

Moo = an (2.3.12)

where 7 is the steady state vector of the generator matrix 7 + T°8 — Al,,, + Ae,,,8 and ‘@’
is a constant.

Now equation (2.3.9) gives

7o; = (~1akin (T + T8 = M,,) O <i <N -1, (2.3.13)
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Equation (2.3.13) determines the vector 7y up to the multiplicative constant.

It follows from equations (2.3.11) and (2.3.13) that

TApe = Xﬂo e

= AaN

N-1
7rA2e = Z 7T0’l'T0
i=0
N-1

=a )y (~D)nip(T + T8 - M,,) T,
i=0

Here mAje < wA,e becomes

N-1 .
Nk < Z(-l)"w’n (T +7°-\,,) T

i=0

This leads to the following theorem for the stability of the system.

Theorem 2.3.1. The Markov chain {X(t)} is stable if and only if

N-1

NL< 3 (=¥ (T + T8~ My,)  T°
i=0

2.3.2. Steady State Vector.

The steady state vector x is partitioned as x = (x, x1, X2, . . .) satisfies the equations

)C()A~1 + X1A~2 =0
XOXO + x1A1 + A, =0

X Ao + Xj1A1 + X024, = 0,0 > 1.
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Matrix theoretic approach (See Neuts [17]) gives
xi=xR™ i1 (2.3.14)
where R is the minimal non negative solution of the matrix quadratic equation
R*A; + RA, + Ay = 0. (2.3.15)

It then follows that

X1 = —xpAg(A; + RA,)™ (2.3.16)

and that x, satisfies the system of equations
xo (A1 — Ao (A; + RAY)™ Ay) = 0, (2.3.17)

From the structure of the matrix Ay, it follows that the R matrix has the form

R R
R= (2.3.18)

0 O

where R, is a square matrix of order Nm and R; is a matrix of order Nmo X (n—k+ 1)m;.

o R? RR,
0 0
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Equation (2.3.15) then reduces to the following equations

R} (Iy ® T°B) + RiAoy + RyA o + Iy @ My, = 0 (2.3.19)
R1A01 + R2A11 =0 (2320)
Equation (2.3.20) gives R, = —R1A01Af11 (2.3.21)

which when substituted in Equation (2.3.19) gives

R} (Iy ® T°B) + R1Ago — R1Ag1 ATl Ao + My, =0

i.e., R% (IN ® Toﬁ) + R (A()() - A()lAIllAl()) + )_‘«INmO =0.
Using equation (2.3.6), the above equation can be rewritten as
R} (Iy ® T°B) + Ry [Ago + (Cy(N) ® ry(1)) ® (heyu8)] + Moy, = 0. (2.3.22)

Solving equation (2.3.22), we get R; and hence the steady state vector of {X(#)}. For
Solving equation (2.3.22) we use Logarithmic reduction algorithm (refer Latouche and

Ramaswami [16]).

2.4. A Special Case

We now concentrate on a special case of the problem discussed in Section 2.2 where
the service time distributions of main and external customers follow exponential dis-

tributions with parameters p and u respectively. As expected, this resulted in arriving
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at explicit expression for the stability condition, steady state distribution and several

performance measures.

2.4.1. The Markov Chain Model.
With X (¢), X»(#) and X;3(¢) having same definition as in section 2.2, X (1) = (X1(0), Xx(1), X5(1))

is a continuous time Markov chain on the state space
{150, jlj1 20,0 < o < N-1U{(1, L, j)lj1 20,0 < jo <m—k+1}.

Arranging the states lexicographically and then partitioning the state space into levels
i, where each level i corresponds to the collection of states with number of external
customers in the system including the one getting service (if any) at time ¢ as i. We get

the infinitesimal generator of the above chain as

Fi Fy

F, F, F,
0= F» F, F, (2.4.1)

The entries of the matrix are described below.

The transition from level i to level i + 1 is represented by the matrix

7\] N 0N xn—k+1
F() =

Op—tes v On—ka 1)x(n—k+1)
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The transition from level i to level i — 1 is represented by the matrix

/—_UN 0N><n—k+1
F2 =

O(n—k+1)><N 0(n—k+l)><(n—k+l)

The transition within level O to level O is represented by the matrix

where B; = MEy — My

By isa N X (n — k + 1) matrix whose (N, N)" entry is A and all other entries are zeroes.
Bsis a(n—k+ 1) x N matrix whose (1, 1) entry is u and all other entries are zeroes.
By =ME, 1 +uE!  +AC g —k+ 1) @1, 4 (n—k+1).
The transitions within level i, i > 1, is represented by matrix

D, B,
F1:

B; B,

where D = AEy — (X + )l y.

2.4.2. Steady State Analysis.

First we derive the condition for stability of the system.

2.4.2.1. Stability condition.

Consider the generator matrix
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H, H
F:F0+F1+F2: ,

H; B,
where H; = AEy.
H, is a N x (n—k+ 1) matrix whose (N, N)" entry is A and all other entries are zeroes.
Hsisa (n—k+ 1) x N matrix whose (1, 1) entry is u and all other entries are zeroes.
The stationary probability vector = (TT0.0)s T0.1)s * ** s TTON=1)s (11" ** s TTAN) * " * »
T.n-k+1y) Of the generator matrix A satisfies the equations [IF =0andTle = 1.

IIF =0 gives the following equations

Ty =To0,1 <i<N-1 and

a’i;['((),()), where a; = Z O\./,U)J,l = 1, 2, ...N

—_— _ j:]
Ty =

ﬁiﬁﬁ((),o), where,Bi: Z ()\//.l)j,i:N+l,...l’l—k+l

Jj=1-N+1

The normalizing condition Ile = 1 gives 7 ) = (p%w, where

(’uN—Z _ XN—Z) A A (Iun—k+1—N _ xn—k+1—N)
(- )\)’UN N+ ﬂ”_k“_N(/J -\

=N+

and

L= (N = (V= DY) (2 - V2)
- N =)

v

Thus we arrive at the following
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Theorem 2.4.1. The process (X (1), t = 0} is positive recurrent if and only if A< M.

Proof. 1tis well known (see Neuts [17]) that the Markov chain with infinitesimal
generator Q is stable if and only if 7Fpe < TF5e, that is if and only if the left drift rate
exceeds that to the right.

We have nFye = NXE(O,O) and 7Fe = Num o). Thus {(X(1),t > 0} is positive recurrent if

and only if <L |

2.4.2.2. Steady State Distribution.

Here using the steady state vector I1 of the generator matrix F, we proceed construct
the steady state vector X = (X(0), X(1), X(2), ...) of the Markov chain {X(¢),7 > 0} by
defining, )?(i) =n (%)l ﬁ, for i > 0, where 7 is a positive constant to be found out.

First we will prove that X satisfies the equation X é = 0. For this, notice that we can

decompose the infinitesimal generator matrix é as é = Ql + Qz, where

F
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and

-Fy Fy

where each entry is a square matrix of order N + n — k + 1 listed as:

~M+ DIy Oysnisn

1

O—tryxh On—tes 1yxc(n—tc+ 1)

Since ITF = 0 and 55(1') = n( )l ﬁ, we have

RII>|

X0, = 0. (2.4.2)
Now,
X0, = | X(0)(~Fo) + X(1)F2, X(0)Fo + X()F} + X(2)F2, X(1)Fy + X()F; + X(3)Fy,--- |.

Notice that (—Fy) + %Fz = 0and
y nY y n
F0+[:]F_1+(:) F2:F0+[:][F_1+ :FQ)
Ju J Ju J
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which leads us to X(0)(—=Fp) + X(1)F, = 0 and

X()Fo+ X(i+ DF, + X(i + )F, = [%] X(0)

— 2
Fo+ §F1 + [i) F,
u T

=0,i=0,1,2,3,....

Hence X0, =0. (2.4.3)

From (2.4.2) and (2.4.3), we have XQ; + X0, = 0, which implies that X0 = 0.
Finally, Xe=1 gives the unknown constant n = (1 - %)
Hence, X = (X(0).X(1).X(2)--+), where X(i) = (1 - %)(%)ﬁ is the steady state

vector for the matrix Q and we have the following theorem;

Theorem 2.4.2. Let I1 = (ﬂﬁ(o’o),ﬂﬁ(o’]), ce aﬁ(O,N—l)aﬁ(l,lﬁ s ,;IT(LN), . 'Fﬁ(l,n_k_'_l)) be the

steady state vector for the matrix F, where

7Td(O,i) = %(0,0), 1<i<N-1 and

01,-'7?(0,0), with a; = Z()\./,Ll)J,l =1,2,...N
T = =

BRoos forBi= S OMJwi=N+1l,..n—k+1
Jj=1-N+1

Further mg) = ﬁ, where

37



¢=N+ = o [N (g — )

(=) (% = V= DY)+ g (V2 = 12)
) PN =0 '

N-2 _ yN-2 n—k+1-N _ yn—k+1-N
e )

\j

Then X = (X(O), )?(1), )?(2) --+), where f(i) = (1 - )1'7? is the steady state probabil-

I

I

RII>|

ity vector for the Markov chain {)N((t), t >0}

2.4.3. Performance Measures.

Here we derive certain important performance measures of the system under study.

2.4.3.1. Busy period of the server with the failed components of the
main system.

The busy period of the server with failed components starts the instant when N failed
components accumulate and it ends when no failed components are left in the system.
Let Ty(i), for i > 0, denote the server busy period with failed components, which starts
with i external customers in the system. Note that, the number of external customers
does not affect the busy period of the server with the failed components. Hence, T (i) =
Ty, fori > 0. For analyzing the time 7'y, we consider the Markov chain {Y(7)} with state

space {0,1,2,...,N,N+ 1,...,n—k + 1} and infinitesimal generator given by:

0 0
By = ,  where
—BN€ BN
By = Mg + UE, 4.
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Note that Y(#) denotes the number of failed components of the main system and Y(¢) = 0
is considered as an absorbing state; so that the busy period Ty is the time until absorption
in the Markov chain {Y(#)}, assuming that it starts at the state N. Hence, the busy period
Ty has a phase type distribution with representation (w, By), where the probability vector
w=1(00,...,0,1,0,...,0), with 1 appearing in the Nt position. The expected value of
Ty is therefore given by ETy = —a)(BI‘\,1 )e where e is a column vector with n — k + 1
elements all equal to 1. Now for finding E7y, let us partition the column vector (/B\I‘\,l )e as

(ti»t2s . . . s tais1)!. Then the identity EN(EJ‘V] Ye = e leads us to the following equations:

—(A +,Ll)l1 + My =1

utig— M+ wt;+ My =1, for2<i<n-—k

Mby_j — pby gy = 1.

The above equations give

n—k—i

1 .
=t =2 QLI =00/ 1<i<n—k

1 n—k .
ik — bn—k+1 = ,L_z and —put = ZO\/#)]-

J=0

Hence
1 n—k—-N+1 n—k
ETy=—-ty=—|N Z M) + n—k+1-=Hh/u|. (2.4.4)
H j=0 Jj=n—k—N+2
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The expected value of the busy period of the server with failed components, which starts

with an arbitrary number of external customers is given by

[ee)

Ey=ETy ) %(j1,0,N - 1)

Jj1=0
n—k—N+1 n—k
Mpy + —k+1- )/ |. 2.4.5
e W Z (M) M_kZ_N+2<n + 1= HO/m) (24.5)

We sum up the above results in

Theorem 2.4.3. The busy period of the server with the repair of the components of the
k-out-of-n system has phase type distribution with representation (w, By). The expected

length of the busy period is given by (2.4.5).

2.4.3.2. Expected number of pre-emptions of an external customer
who is taken for service.

Consider the Markov process X,(f) = (N,(1), J(2)), where N,(¢) is the number of
pre-emptions occurred upto time ¢ (measured from the time he is taken for service) of
a particular external customer who is taken for service and J(¢) is the number of failed

components of the main system. Then X ,(¢) has the state space
(i) [ =0.1.2,....0 < jo < N =1} U (A}
where A is an absorbing state which denotes the service completion of the external cus-

tomer. The infinitesimal generator of this process is
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S
el

2
o

‘|, where T° = uey

T: )\EN —ﬁIN

and Zo is an N X N matrix whose (N, 1) entry is A.

If py, is the probability for k pre-emptions of an external customer who starts service
o ~ = N—i _

with i failed components, then py, = (—T‘ITO) =1- (f) ,0<i< N-1and for

k>1,

((—T-IA‘O)"(—T-ITO))
(7 ) (mu)w l)(l_(xiﬁ)N)
) (-

Expected number of pre-emptions of an external customer, starting service with i failed

Eon -2 )

Pk;

components
-1
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2.4.3.3. Expected waiting time of an external customer.

For computing the expected waiting time of an external customer who joins as
the " customer in the queue of external customers, we consider the Markov process
X, = (Ji(0),S(r), Jo(1)), where J(¢) is the rank of the external customer, S(f) = 0
if the server is busy with external customers and S () = 1 if the server is busy with
a main customer. J,(f) is the number of main customers in the system. The rank
J1(¢) of an external customer is assumed to be ‘I’ if it finds / — 1 external customers
ahead of it. The rank of an external customer may decrease by 1 if an external cus-
tomer ahead of it leaves the system after completing the service. Now consider the
Markov process X,,(f) for a tagged external customer who finds / — 1 external cus-
tomers ahead of it while joining the system. The state space for this process is given
by {x} U {{1,2,...,} x {0} x{0,1,...,N =1} U {1} x{1,2,...,n — k + 1})}, where * is

an absorbing state, which denotes the service completion of the tagged customer. The

0
infinitesimal generator Q,, of this process is Q,, = , where

WY W,

wii

Wi Wi

_ Wi W
W, = 23 Wi3

War Wi
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with Wli:F1+F();1Si§l
wy =Fp1<i<l|

w? = C(1) ® (Fre)

The waiting time of the tagged customer is the time until absorption in the Markov
process X,,(t). Let E(vi,)(l) denote the expected waiting time of a tagged customer who
joins the system with rank /, who finds ‘i’ failed components. Defining the row vector 0;
as 0; = 11(1) ® rysnis1(i +1),0 <i < N—1. Then E\)(I) = —6;W;'e,0 <i < N — 1.

Let Ey(]) be the N x 1 column matrix whose (i, 1) entry is Eg,_l) (0). Taking the proba-
bility that an external customer see i external customers, j failed components and server
busy with external customers on its arrival as (1 - %) (%)l (plT\u’ the expected waiting time

of an arbitrary external customers is given by
(R 1
> [1 - :] (:) —— > EJG+ D).
Py HI\M) =V 0
2.4.4. Other Performance measures.

(1) Fraction of time the system is down is given by,

00 \—k+2-N (/JN _ )\N)
Piown = x(j,I,n—k+1)= .
o = 2 X P (=) - )

J1=0

(2) System reliability defined as the probability that at least kK components are opera-

tional
}\‘n—k+2—N(ﬂN _ )\‘N)
=W —w)

Prelzl_Pdownzl_
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(3) Average number of external units waiting in the queue is given by,

0 n—k+1 o0 N-1
Z Z Xijijn + Z(h -1 Z X(j1.0.j5)
e

j1=0 J1=2 J3=1

~.

Il
>|

ll— =
a—Lr He-vy)

(4) Average number of failed components of the main system,

N—-1 (&S] n—k+1 (o]
Nyair = Z J3 (Z X ,o,js>) + Z J3 [Z X(.n,l,.m]
J3=0

J3=0 J1=0 Jj1=0

N—-

1 [NV " M =0 (R
‘<cp—w>{ 2 Z (]Z(x/m]] W=, [Z S

i=

(5) Average number of failed components waiting when the server is busy with external

customers

= Z J3 [Z x(jl,o,j.s)]

J3=0 J1
_ N(N - DA
2u(p — )

(6) Expected number of external customers joining the system,

o N-1
b3 =\ Z [Z x(j.,o,]s)]
J1=0\j3=0

(-
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(7) Expected number of external customers, on arrival, getting service directly

N-1
=M ) X003
Jj3=0
-\
_ N(,u )'
(@-wv)

(8) Fraction of time the server is busy with external customers,

oo (N-1 N - X
Pex‘busy = Z (Z x(jl,O,j3)) = ﬁ(cp _ \V)

J1=1\j3=0

(9) Probability that the server is found idle,

N-1 _ =
(T

Pigie = ) X00j) = No0——.
j;( P - w)

(10) Probability that the server is found busy,

)

Pp=1—Pu=1—Ne .
o @ i — W)

(11) Expected loss rate of external customers,

o n—k+1 _ N
04 = XZ ( Z X(jl,1,13>] = x(l T (- \lf))'

J3=1

(12) Expected service completion rate of external customers,
oo N-1
05 = u Z Z X(j1,0,73)
j1=0 j3=0
__Nu
TR}




(13) Expected number of external customers in the system when the server is busy with
external customers

00 N-1 NX
O = j 0| = ——————.
6 Z Ji {Z x(}lilﬁ)) - }\)(Cp —v)

J1=0 J3=0

2.4.5. Another Special case.

Next we consider second special case of the problem discussed in section 4.1, where
we take N = 1; that is the case where no special policy has been applied for providing
service to external customers. Notice that in this case, at most importance is given to
the failed components and an external customer can get service only when there are no
failed components in the system. Further, an ongoing external customer’s service may
be pre-empted if a component of the system fails during the service of the former. Since
in this case, knowing the number of external as well as the failed components is enough
for determining the server status, the Markov chain becomes X\(t) = (X1(), X5(2)), with

state space S = {(j1, j2)Ij1 20,0 < j, < n—k+ 1} and infinitesimal generator

A A

A, A A
0= A, Ay A , where
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Al = ME 2 + MNCpsa(n =k +2) ® 1y_pin(n — k +2)

+ E o+ (= WNCn(1) ® Fypra(1):

Ao is a (n —k + 2) X (n— k + 2) matrix whose (1, 1) entry is ) and all other entries are
Zeroes;
Xz isa(n—k+2)X(n—-k+ 2) matrix whose (1, 1) entry is u and all other entries are

ZErocs;

Ay = Ay = TIC,_2(1) ® Fypesa(1).

LetA = XO + X] + XQ; then
X = MEji2 + NCypin(n — k +2) ® 1yjin(n — k + 2) + ME, 2 + pCpii2(1) ® rpgia(1)

The stationary probability vector I = (;T\(O,O)’;T\(O,l)a .. .71'\((),1\/_1),71'\(1’1), . .71'\(1’1\/), .. .;(\(l’n_k_'_l))

L= — i .
of the generator matrix A is given by 7y ;) = (%) oo, i=1,2,...n—k+ 1, where

,Lln_k+1 (,Ll _ )\‘)

o0 = (ur—k+2 = ke2)”

Here again, from the condition TAge < TTAse, it can be easily verified that the necessary
and sufficient condition for the stability of the Markov chain jf\(t) ish < u.

Applying the same technique as in section 4.2.2, we can easily prove that the vector
X = (Y(O),f(l),f@), .. .), with X\(i) = (1 — %)(%)l ﬁ, is the steady state probability

vector for the matrix @
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Performance Measures for the case N = 1

(1) Fraction of time the system is down,

[e0)

Paoun = ) 21, Ln—k+1) =

J1=0

)n”_kﬂ (/l _ )\)
(/Jn—k+2 _ )\n—k+2) :

(2) System reliability,

(o9

Prelzl_Pdown:I_Zx(jlal,n_k-i-l):

J1=0

u (/J"—k” _ )x"_kﬂ)

(ﬂn—k+2 _ }\n—k+2) '

(3) Average number of customers waiting in the queue,

o0 00 n—k+1
Ny= D Xgon+ )b ( 2 x(jis 1,1'3)]

J1=2 J1=0 J3=1

I R S
= (ﬁ ~ )_\,) (lun—k+2 _ )\‘n—k+2)

(XJZ . x(ﬂn—kﬂ _ kn—k+1)}

/:1 LR (=)

(4) Average number of failed components,

B A ’un—k+2

T (= ) (R — k)

Z X(ji1.j3)

J1=0

n—k+1
Nyaip = Z J3
J3=1

(5) Expected number of external customers joining the system in unit time,

o Xﬂn—kﬂ(ﬂ _ )\‘)
93 =\ Z X(j1,0,0) = ('u,,_k+2 _ Nz—k-*—z)'

J1=0
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(6) Expected number of external customers, on arrival, getting service directly

= 1X(0,0,0)

_ @M =
- Oln—k+2_xn—k+2) :

(7) Fraction of time the server is busy with external customers,

(o0

Pex.busy = E X(j1,0,0)

J1=0

Xﬂn—kﬂ (/J _ )\)
= (r—+2 — pnke2)”

(8) Probability that the server is idle,

@=h) _p =2

Pigie = X0,0,j;) = ——= )
3 u (ﬂn—k+2 _ )\’n—k+2)

(9) Probability that the server is found busy,

E=h)_p =)
l_l (,u”"‘+2 — )\n—k+2) ’

Pbusyzl_Pidlezl_

(10) Expected loss rate of external customers,

& n—k+1 _u lJn—k+1 _)\‘n—k+1
0u = XZ [ Z x(fl’l’f?)] = A (l(ln—k+2 _ }\’n—k+2))'

J1=0\ j3=1

49



(11) Expected service completion rate of external customers,

& n—k+1
- _ P =M
05 = 1 Z X100 = ’u(/_ln—k+2 — kY’

j1=0

(12) Expected number of external customers in the system when the server is busy with

external customers

3] n—k+1
. T KT (-
06 = Z J1X(j1,0,00 = )\'('un—k+2 _ )\n—k+2)'

J1=0

2.5. Numerical illustrations

Here, we perform a numerical study on the effect of the N-policy on the system
performance. Unless otherwise stated, the parameter values for the numerical study are

the following: A = 3.2, u = 5.5, 71 = 8.

2.5.1. Effect of the N-policy on the probability that server is busy
with external customers.

While studying a k-out-of-n system, where the server provides service to external
customers also, the main purpose of N-policy is to provide improved attention to exter-
nal customers for optimizing the system revenue. According to the N-policy considered
here, the moment the number of failed components of the main system reaches N, the
external customer’s service (‘if there is any’) is pre-empted to attend the failed compo-
nents. Hence, an increase in the value of N will extend the time during which external

customers can get service and so it is expected that the probability that the server is
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busy with external customers increases with an increase in the value of N. The column
wise increase in Table 2.1 supports this intuition. The high service rate for the external
customers, as compared to their arrival rate can be considered as the reason for the slow
increase in the above probability. The row wise decrease in Table 2.1 points to the de-
crease in the probability that the server is busy with external customers with an increase
in the total number of components in the system. We have the following reasoning for
this behavior: With an increase in the total number of components 7 in the system, there
can be more number of failed components in the system for a fixed N, which leads to an
increase in the probability that the server is attending failed components, resulting in a
decrease in the probability P, .. A closer scrutiny of Table 2.1 shows that, by increas-
ing the policy level N with an increase in the number of components n, the same value
for the fraction P, s, can be achieved as that when »n has a lesser value. For example,
whenn =45and N =7, P,y pusy = 0.10915 and P, p,5y = 0.10909, when n = 60 with the
same N. Now with n = 60 and when N is increased to 25, we see that P, 4, = 0.10915.
This suggests that, when n increases, the N-policy level can be adjusted in favor of the
external customers, which was our objective while introducing the N policy. However,
when N increases, it is probable that the server spends more time for failed components,
once he starts attending them, which leads to a loss of the external customers who finds
the server busy with internal customers. In Table 2.1, one can see that the probability
P, pusy has a lesser value when n = 60, N = 30 than in the case when n = 45, N = 15,
which points to the loss of external customers. Another challenge here is that, while

increasing the N-policy level, the system reliability is not affected significantly.
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Table 2.1. Dependence of the probability P, 4., on the N -policy level

—_— =
N e TSI SR

12
15
18
21
22
23
24
25
26
27
28
29
30
31

n=45
0.10910
0.10910
0.10912
0.10914
0.10915
0.10922
0.10925
0.10929
0.10952
0.11002
0.11118
0.11185
0.11275
0.11397
0.11562

n =150
0.10909
0.10910
0.10910
0.10910
0.10910
0.10912
0.10912
0.10913
0.10918
0.10928
0.10952
0.10965
0.10982
0.11006
0.11037
0.11078
0.11134
0.11209
0.11310
0.11448
0.11638

n=>55
0.10909
0.10909
0.10909
0.10909
0.10909
0.10910
0.10910
0.10910
0.10911
0.10913
0.10918
0.10921
0.10925
0.10929
0.10935
0.10944
0.10955
0.10970
0.10989
0.11016
0.11051

n =60
0.10909
0.10909
0.10909
0.10909
0.10909
0.10909
0.10909
0.10910
0.10910
0.10910
0.10911
0.10912
0.10913
0.10914
0.10915
0.10917
0.10919
0.10922
0.10926
0.10932
0.10939

0.117

0.116

0.115

0.114

0.113

0.112

0.111

0.11

0.109

0.108

20

40

60

— n=45
— =50

n=55
— n=60

2.5.2. Effect of the N-policy on the system reliability.

In the previous section, we discussed how N-policy helps in longer duration of atten-

tion to external customers and the challenge there is the possibility of a decrease in the

system reliability. Here we discuss how the N-policy level affects the system reliability

P,.;. We study two cases with ﬁ < 1 and % > 1 respectively, results of which are given

in Table 2.2(a) and (b) respectively. While studying the impact of the N-policy on the
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system reliability, a decrease in P,,; is expected with an increase in value of N. Hence,
the purpose of the Tables 2.2(a) and (b) is to show the magnitude of this impact. Table
2.2(a) shows that when ﬁ < 1, n = 45 and when N increased from 3 to 25, there is a
decrease in reliability of magnitude equal to 0.02. As the total number of components
n increases, the magnitude of decrease in reliability reduces. This is because, when n
increases, k being fixed, n — k + 1 increases; as a result, once the server starts attend-
ing the failed components on accumulation of N of them, he spends more time for the
failed components, which maintains a high system reliability even when N increases.
In Table 2.1 we have seen that as n increases, the probability P, s, decreases and that
increasing the N-policy level can remedy this to some extent; Table 2.2(a) shows that the
reliability of the system is not much affected by increasing the N-policy level. However,
the magnitude of drop in the system reliability increases with the increase in N-policy
level. Table 2.2(b) studies the system reliability when the failure rate of the components
M\ is larger than their repair rate u. As expected, there is a drop in the system reliability

compared to the case A < p. Other behaviour of the system reliability are similar to that

in Table 2.2(a).
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Table 2.2. (a): Dependence of the system reliability on the N-policy

level in the A < prcase A = 4

N n =45 n =50 n=>55 n =60 n =065

I 0.999930799 0.999985933 0.999997139 0.999999404 0.999999881
3 0.999901652 0.999979973 0.999995947 0.999999166 0.999999821
S 0.999855518 0.999970615 0.999994040 0.999998808 0.999999762
9 0.999660194 0.999930918 0.999985933 0.999997139 0.999999404
13 0.999121249 0.999821544 0.999963701 0.999992609 0.999998510
17 0.997560024 0.999506116 0.999899626 0.999979556 0.999995828
21 0.992828071 0.998562694 0.999708474 0.999940693 0.999987960
25 0977587163 0.995647013 0.999122441 0.999821782 0.999963760
26 0.994222760 0.998838782 0.999764323 0.999952078
29 0.986251056 0.997281969 0.999450147 0.999888241
31 0.974976659 0.995165646 0.999026358 0.999802291
34 0.984254420 0.996900022 0.999531090
35 0.978649259 0.995844364 0.999373376
38 0.989870846 0.998496175
39 0.986294508 0.979825020
40 0.981382251 0.972903130
41 0.996356070
45 0.987866700
46 0.983495116
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Table 2.2. (b): Dependence of the system reliability on the N-policy

level inthe A > y case A = 6

N n =45 n =50 n=>55 n =60 n =065
1 0.907874525 0.911180377 0.913196325 0.914452970 0.915247083
3 0.907009840 0.910661936 0.912876606 0.914252222 0.915119767
5 0.906079888 0.910108566 0.912536800 0.914039671 0.914985061
9 0.904014528 0.908894181 0.911796451 0.913578153 0.914693415
11 0.902873158 0.908231616 0.911395609 0.913329482 0.914536774
13 0.901655436 0.907531500 0.910974264 0.913069129 0.914373279
17 0.898979187 0.906016290 0.910070777 0.912513614 0.914025128
21 0.895960152 0.904344857 0.909087002 0.911913455 0.913650930
25 0.892570674 0.902514517 0.908024848 0.911270797 0.913252294
26 0.902032018 0.907747209 0.911103785 0.913149118
29 0.900522947 0.906886399 0.910588324 0.912831187
31 0.89946568 0.906289339 0.910232842 0.912612915
34 0.905359924 0.909682870 0.912276387
35 0.905041218 0.909495234 0.912169460
38 0.908919990 0.911812007
39 0.908724248 0.911693335
40 0.908526540 0.911573648
41 0.908326924 0.911453009
45 0.910961330
46 0.910836279
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2.5.3. Cost analysis.

In sections 1.5.1 and 1.5.2, we have seen that by increasing N, we can provide unin-
terrupted service over a long duration to more external customers and without compro-
mising the system reliability significantly. However, the magnitude of decrease in the
system reliability increases with N. Hence, it is worth finding whether there exists an
optimal value for the N-policy level. For this, we construct the following cost function.
Let C; be the cost per unit time incurred if the system is down; C,, the holding cost
per unit time per external customer in the queue; Cj is the cost incurred towards set up
(instantaneous) of the server to serve main customers; C4 be the cost due to loss of an
external customer, Cs, be the holding cost per unit time of one failed component and Cg

be the cost per unit idle time.
e G
Expected Cost per unit time = C; - Py, +Cy - Ny+Cy 04+ Cs - Ny + . +Cgs- Pige.
B

Table 2.3 studies the variation of cost function as N varies. We study the cost function
for different failure rates of the components. In all the 4 cases studied, for the various
costs assumed, we get a concave nature for the cost curve, which gives an optimal value
for N. Table 2.3 shows that when A < y, the optimal values for N are 5,6 and 6 when A
equal to 4, 4.5 and 5 respectively; whereas when A = 6 > 5.5 = u, we get a much higher
optimal value 18 for N. This is as expected, since when A is greater than u, there will be
a heavier traffic of failed components so that the server has to spend more time attending
the failed components. Hence, the policy level N needs to be increased to a much higher

value than in the A < y situation, for the system to earn maximum profit. Also note that
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the optimal value of the cost function is much higher in the A > u case, when compared

to the opposite situation.

Table 2.3. Variation in the cost function n = 50, k = 20, C; = 2000,
C, = 1000, C5 = 1600, C4 = 1000, C5 = 500, Cs = 100

A=4 1=45 r=5  1=6
10139.47 10923.82 12783.28 19330.75
8910.199 9663.817 11496.69 17827.49
8480.626 9199.57 10981.16 17095.61 X
8370.844 9038382 1076471 1667158 s |

839062 9024.268 10694.5 16401.28 — s
8500.631 9092.232 10706.09 16218.57 | M ks
8652.372 9210.307 10767.47 16090.46 50

0474447 9919.942 11245.17 15847.97
9939.594 10337.5 1154235 15805.31 i @ A @
1041693 10769  11849.9 15786.79
10657.6 1098645 12003.95 15783.35
10898.62 11203.53 1215671 15782.6
1113936 1141923 12307.2 15783.87
11379.19 11632.57 12454.51 15786.61
12085.88 12248.03 12868.57 15799.16
12313.97 12441.01 1299422 15803.64
12536.01 12625.49 13111.97 15807.79

25000

— =4

—)=6

o ® N0 kw2

N NN = m =
A LW O O 0 9 O

[\
(V)]

2.5.4. Comparison with a k-out-n system where no external customers
are serviced.

Here we compare the model discussed above with another model where no ex-
ternal customers are allowed but N-policy is maintained. Notice that because of the
assumption of the preemption of service of an external customer on accumulation of
N failed components, the two systems will have the same reliability. The nature of

the steady state distribution obtained in Theorem 2.4.2 further substantiates this claim.
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Hence, it can be concluded that the external customers when allowed as in this study,
utilizes the server idle time without affecting the performance of the k-out-of-n system.
In Table 2.4, we present the results of the numerical study conducted for comparing the
increase in the server busy probability, when external customers are allowed. In that Ta-
ble, case 1 refers to the model discussed above and case 2 stands for k-out-of-n system
where no external customers are allowed. Table 2.4 shows that when external customers

are allowed, there is an increase, of magnitude 0.11, in the server busy probability.
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Chapter 3

Reliability of a k-out-of-n system with a single
server extending non-preemptive service to

external customers

3.1. Introduction

In the previous chapter we analysed a k-out-of-n system with repair of failed compo-
nents under N-policy. The repair facility is also extended to external customers. How-
ever, we assumed pre-emption of service to external customers as soon as N failed
components of the k-out-of-n system accumulated in a new cycle. In this chapter the

pre-emption part is done away with. As a consequence the reliability of the k-out-of-n

OThis Chapter is to be published as two papers titled: 1.Reliability of a k-out-of-n system with a single
server extending non-preemptive service to external customers-Part I and 2. Reliability of a k-out-of-n
system with a single server extending non-preemptive service to external customers-Part II in Electronic
Journal “Reliability:Theory and Applications” (Gnedenko forum, September 2016)
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system decreases if we retain the same N value that provided high system reliability in
the previous chapter.

In this chapter, we consider two variants of the model in section 2.4 of chapter 2.
In both models, we assume N-policy for starting repair of failed components. However,
the priority given to main customers is reduced by assuming that an ongoing service of
an external customer is not preempted when the number of failed components reaches
N. This can be a serious compromise on the reliability of the k-out-of-n system. As in
section 2.4 of chapter 2, it has been assumed that an external customer, arriving when
the server is busy with service of main customers and/or when there are at least N failed
components in the system, is not allowed to join the system. In the first model the
external customer joins a queue of infinite capacity; where as in the second model it

joins an orbit of infinite capacity and retries for service from there.

3.2. The queueing model

Here we consider a k-out-of-n system with a single server, offering service to exter-
nal customers also. Commencement of service to failed components of the main system
is governed by N-policy. That is at the epoch the system starts with all components
operational, the server starts attending one by one the external customers (if there is
any).When the number of failed components in the system is > N, the server in service
of external customer (if there is any) is switched on to the service of the main cus-
tomers after completing the ongoing service of the external customer. Arrival of main
customers and external customers have inter occurrence times exponentially distributed
with parameters A and A respectively. External customers are not allowed to join the
system when the server is busy with main customers or when there is > N failed com-

ponents. An external customer, who on arrival finds an idle server is directly taken for
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service. Service times of main and external customers follow exponential distribution

with parameters u and j respectively.

3.2.1. The Markov Chain. Let X;(¢) = number of external customers in the sys-
tem including the one getting service (if any) at time ¢,

X,(#) = number of main customers in the system including the one getting service (if
any) at time ¢,

0, if the server is idle or is busy with external customers
S@) =

1, if the server is idle or is busy with main customers.

Let X(1) = (Xi1(2), S (1), X2(?)) then X = {X(¢),# > 0} is a continuous time Markov
chain on the state space
S ={(0,0,)/0 < jo <N - 13U {(j1,0,2)/j1 2 1,LO< o <n—k+ 1}
UL, 1, j2)/j1 20,1 < job <n—k+1}.

Arranging the states lexicographically and partitioning the state space into levels i, where
each level i corresponds to the collection of the states with number of external customers

in the system at any time ¢ equal to i, we get an infinitesimal generator of the above chain

as ]
Ao Ao
Ay A A
Ay A Ay
Q:
A, A A
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In order to describe the entries in the above matrix we introduce some notations below.

(i) I,, denotes an identity matrix of order m and I denotes an identity matrix of appro-
priate order.

(i1) e, denotes a m X 1 column matrix of 1s and ¢ denotes a column matrix of 1s of
appropriate order.

(iii) E,, denotes a square matrix of order m defined as

-1 ifj=i1<i<m
En(i.))=1 ifj=i+1,1<i<m-1

0 otherwise

(iv) E;, = Transpose (E,,)
(v) rn(i) denotes a 1 X n row matrix whose ith entry is 1 and all other entries are zeros
(vi) ¢,,(i) = Transpose (7,,(i))

(vil) ® denotes Kronecker product of matrices.

The transition within level O is represented by the matrix

B, = AEy — Aly
B, is a Nx (n—k+ 1) matrix whose (N, N)™ entry is A and all other entries are zeroes.

By isa N x (n—k+ 1) matrix whose (1, 1) entry is ¢ and all other entries are zeroes.
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By = AE, ki1 + Ayt (N =k + D)@ 1y jpi(n —k + 1) + uE;

n—k+1°

The transition from level O to level 1 is represented by the matrix

Aly ONx(2n-2k+3-N)
Ago =

Op-k+1)xN  O(m—k+1)x(2n-2k+3-N)-

Transition from level 1 to 0 is represented by the matrix

aly 0
Az = o0 H| where H=100, 1> nvuv-1) Blouiso-n)-
EO(n—k+1)><N 0‘

Transition within level 1 is represented by the matrix

Hll H12 0

Ai=| 0 Hy 0] where

H;y 0 By
Hyy =By, —uly,Hyjy = Acn(N) ® 1y—g2-n(1),
Hy, = AE, jo-n + ACh—gs2-NN =k +2 = N) ® ryjro-N(n =k +2 = N) — ul,_gi2-n.

Hs; is an (n — k + 1) X N matrix whose (1, 1)" entry is pu.

Aly ONx(@n-2k+3-N
A() =

On-2k+3-NxN O @n—2k+3-N)x(2n-2k+3-N)
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aly 0 0

Ay = 0 Otnicrr-Nyxn—ksa—n)  H |-

| Ottt 1N 0 O]

where H = 0, 0 mxvety Bz |

3.3. Steady state analysis

3.3.1. Stability condition. Consider the generator matrix A = Ay + A} + A,

AEy Hp 0

A=| 0 Hy Fy

F3i 0 By

F23 = Opprr-myxv-1y  Blpeisa-n |

F31 = pcy_g+1(1) ® ry(1).

Let ¢ = ({, {1, {>) be the steady state vector of the generator matrix A, where

o = (£0.0):£0,1)5 - - - » Lon-1)) {1 = (Lonys LON+1)s - - > C0n—k+1))s

O = (a1, L2+ Cn—ks))-

The Markov chain {X(¢), t > 0} is stable if and only if {Age < {Aze

(see Neuts [17]).
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It follows that fAge = Alye and (Ase = fi(lpe + ¢ e). Therefore the stability condition

becomes
1
:L <1 (3.3.1)
u (oe + &1e)
It follows from the relation A = O that
QoAEN + (HF3 =0, (3.3.2)
SoHia + {1Hx =0, (3.3.3)
{1Fxs + 5By = 0. (3.3.4)
From (3.3.4), it follows that
&= ~LF»B; (3.3.5)
Substituting this in (3.3.2) we get
{oAEy — {1F»3B;'F3, = 0. (3.3.6)
Aoe = (=01 F23B;' F31)(—Ey'e). (3.3.7)

Notice that the first column of the matrix F3; is —Bse and all other columns of it are
zero columns. This implies that the first column of the matrix B;‘F 31 1s —e and its all
other columns are zero columns. Hence the first column of the matrix —F 23BZIF 31 1S (e
and all other columns are zero columns. The first entry of the row matrix =, F 23B;1F 31

is thus pdye and its all other entries are zeros. It can be seen that the first entry of the
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column matrix —E;'e is N. These two facts together tell us that (—¢; Fo3 B, F31)(—E}'e)
is Nulye. Thus, equation (3.3.7) becomes
Adoe = Nudie.

Adding Nu{ye on both sides of the above equation, we get

(A + Nu)loe = Nu(foe + {1e),

which implies
doe _ _Nu
(oe + 1) (A+Np)

Hence the stability condition (3.3.1) becomes

3.3.2. Computation of steady state vector. Let m = (7(0),7(1),7(2),...) the

steady state vector of the Markov chain X where 7(0) = (m,), 7(0,1)), With mg) =

(7 0,0,0) 7T(0,0,1)s + + + » 7T, (0,0,N—l))

and o 1) = (0,1,1)» - - - » T(0,1,n-k+1))- FOT

i > 1,7(i) = (7.0), 7i0)s Ti1))s
0y = (m (1,0,0)s TT(i,0,1)5 + « + » TT (i,O,N—l))»
7 i,0) = (m GON)s TG ON+1)s « «+ 5 7T (i,o,n—k+1)),

iy = (7T(i,1,1),7T(i,1,2), cee ,ﬂ(i,l,n—k+1))-
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Now from 7Q = 0, we can write

mo,0B1 + mo,)Bs + maouly =0,

ﬂ(0,0)Bg + 7T(0,1)B4 + 7~T(1,0)H = O,

Fori>1,

mi-10Ay + maoHiy + manHar + e oily =0,
nioHi + fi0Hxn = 0,
T1yBs + i1.0H = 0.
From (3.3.11), we get, fori > 1

. -
Tioy = —maoHi2(Hy, ).

From (3.3.12), we get

~ -1
i1y = —Ri,00H(By ).

Substituting (3.3.13) in (3.3.14), we get

i1y = 7r(,-+1,0)H12(H2_21)I:I(BZI).

Substituting (3.3.15) in (3.3.10), we get

w10y + w0y Hiy + w10 Hio(Hyy YH(B, Y Hsy + mgiy oyily = 0.
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We notice that the first column of the matrix Hs; is —Bje and all other columns of Hj3;
are zero columns. Hence the first column of the matrix (BZI)HN is —e and its all other
columns are zero columns. This tells us that the first column of the matrix H (B;"H5,
is —ue and all other columns are zeros. But —ue is Hye and hence the first column of
the matrix (H2‘21)FI (BZI)H3 1 1s e and all other columns are zeros. This fact leads us to
conclude that the first column of the matrix H12(H2‘21 YH (BZI)H31 is Hype = Acy(N) and

all other columns are zeros. In other words

Hy2(Hy)H (B, H3; = Aey(N) ® ry(1).

Now equation (3.3.16) becomes

T Ay + maoHii + w0 Aen(N) ® ry(1) + g1 ofily = 0.

That is

7T(,'_1’())/_7.IN + ﬂ(i,O)Hll + 7T(,'+1’())(/1CN(N) ® I’N(l) + ﬁIN) =0. (3317)

Now from equation (3.3.9), we can write

JT(()’I) = —ﬂ(O’O)Bz(BZI) - 7~T(1’0)H(BZI). (3318)

However, from equation (3.3.13), we have

Fa0) = —mioH(Hs). (3.3.19)
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Hence equation (3.3.18) becomes

mon) = —7o0nBa(By") + oo Hia(Hy )H(B;). (3.3.20)

Substituting (3.3.20) in (3.3.8), we get

JT(O’())Bl + (—71'(0’0)32(321) + JT(L())HQ(HZ_ZI)H(BZI))B3 + ﬂ(l,O)ﬁIN =0. (3321)

Since the first column of the matrix B; is —Bse, a similar reasoning as for equation

(3.3.16) leads us to write:

— By(B;")B3 = Acy(N) ® ry(1).

Hy»(Hy, )H(B;")Bs = Acy(N) ® ry(1).

Hence equation (3.3.21) becomes

7T(0’0)(Bl + /lCN(N) ® }"N(l)) + ﬂ(l,o)(/lcN(N) ® rN(l) + ﬁIN) =0. (3322)

Equations (3.3.17) and (3.3.22) shows that the vector & = (7(0,0), 7(1.0), T(2,0) - - -) satisfies

the relation 7Q = 0, where Q is a generator matrix defined as

2
R IS
B
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o
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70



In the above, A~10 = By + Acy(N) ® ry(1), AO = ;IIN,Al = Hy; and A~2 = Acy(N) ®
ry(1) + fly. Hence the vector 7 is a constant multiple of the steady state vector 7 =
(7(0), (1), . ..) of the generator matrix Q. The vector T can be obtained by applying the

matrix analytic methods (see Neuts [17]) as
(i) = T(O)R', i>0, (3.3.23)
where the matrix R is the minimal non-negative solution of the matrix quadratic equa-

tion:

Ao+ RA, + R’A, = 0. (3.3.24)

Equation (3.3.23) implies

7(0,0) = K7(0),

7(i,0) = 7(0,0)R", i>0.

Now the vector 7 is obtained up to a constant K as & = K, the other component vectors
Rioyi > 1,mG1),i > 0 of m can be obtained from the equations (3.3.13), (3.3.14) and
(3.3.20), up to the constant K, which is finally obtained from the normalizing condition

me = 1.

3.4. Performance measures

3.4.1. Busy period of the server with the failed components of the
main system. Let 7; denote the server busy period with failed components which
starts with i failed components and with j external customers in the system. Consider the

absorbing Markov chain Y = {Y(¢), t > 0}, where Y () is the number of failed components
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of the main system, with the state space {0, 1,2,...,N,N +1,...,n —k+ 1} and having

infinitesimal matrix given by

. 0 0
Hpr = 5
—Hpre Hpp
where Hpr = AE, 1 + ACpgi(n —k + 1) @ g1 + HE ;|-

Note that Y(¢) = O is an absorbing state. 7; is the time until absorption in the Markov
chain {¥(7)} assuming that it starts at the state i. The expected value ET; of T; is therefore

the ith entry of the column matrix —ng}pe as given by (Krishnamoorthy et al. [13]):

1 n—k+1-i 1 n—k 1
ETi=—|i > Y+ > (—k+1- )&y
H =0 H j=n—k+2—i H

We notice that once the service of failed components starts, the external customers has

no effect on it. Define

Pf(N) = ToonN-1) T Z TT(j,0,N) and
=1

Pf(i):Zﬂ(j,O,i) forN<i<n-k+1

J=1

P (i) will then denote the system steady state probability just before starting service to
failed components with i number of failed components. The expected length of the busy

period of the server with failed components is then given by

n—k+1
> P/G)ET,
Ey= =N

n—k+1

2. Pr(d)

i=N
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3.4.2. Other performance measures.

(1) Fraction of time the system is down,

[e) o0
Paown = Z T ,0n—k+1) T Z Ty 1 n—k+1)-
J1=0 J1=0

(2) System reliability, P,y = 1 = Pgpn-

(3) Average number of external customers waiting in the queue,

n—k+1 n—k+1
Ny = Z Ji [ Z i, 11;)) + Z(h - 1)[ Z ﬂ(jl,o,jg)}
J3=0 J3=0

(4) Average number of failed components of the main system,
n—k+1 n—k+1
Niait = Z J3 {Z TG 0]3)] Z J3 (Z T, 1J%)]
J3=0 J J1=0

(5) Average number of failed components waiting when server is busy with exter-

nal customers

n—k+1
= Z J3 [Zﬂ(hoh)]

Jj3=0 J1

(6) Expected number of external customers joining the system,

{i [Z WM] . Zﬂmm}

J3=0

(7) Expected number of external customers on its arrival gets service directly

N-1
= Z T(0.0.j3)-
j3=0
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(8) Fraction of time the server is busy with external customers,

oo (n—k+1
Pext,busy = Z [ Z 7[(/1,0,/3)] .
J1=1\ j3=0
(9) Probability that server is found idle,
N-1
Pigie = Z 70,0, = N70,0,0)-
Jj3=0
(10) Probability that the server is found busy,
N-1
Pousy = 1 = Z T0.0.j5) = 1 = N7,0,0)-
Jj3=0
(11) Expected loss rate of external customers,
oo (n—k+1 o (n—k+1
J1=0\ j3=1 ji=1\ jz=N
(12) Expected service completion rate of external customers,
oo (n—k+1
b5 = [ Z [ Z ﬂ(jl,o,m] :

J1=0\ j3=0

(13) Expected number of external customers when server is busy with external cus-

tomers,

00 n—k+1
06 = Zjl Z Tjr.0.js) | -
J3=0

j1=0
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3.5. Numerical Study of the Performance of the System

3.5.1. The Effect of N Policy on the Server Busy Probability. The main
purpose of introducing N-policy while studying a k-out-of-n system with a single server
offering service to external customers, in a non pre-emptive nature, was optimization of
the system revenue, by utilizing the server idle time, without compromising the reliabil-
ity of the system much. From Tables 3.1 and 3.2, it follows that there is an increase in
the server busy probability, when external customers are allowed. 3.3 tells that there is
an increase in the fraction of time that the server is busy with external customers with
an increase in N. Hence, it can be concluded that the N-policy has helped in improving
the attention towards external customers slightly. Now, we want to check whether the

introduction of the N-policy has badly affected the system reliability.

3.5.2. The effect of N policy on system reliability. We study two cases
A< pand A > u . We expected a decrease in P,,; with an increase in N. This is because
as N increases, the server spends more time for external customers, which we thought
might cause a decrease in the system reliability. This was verified from Table 3.4, where
we assumed A4 < u. However, Table 3.4 shows very high system reliability over 95
%. The magnitude of decrease in reliability was found lesser when the total number
of components n was high. In short Table 3.4 shows that reliability of the system is
not much affected by increasing N-policy level. In Table 3.5 where it was assumed
that the component failure rate A is greater than their service rate y, it was again found
that P,.; decreases with increase in N and that the magnitude of decrease is not high.
More importantly, the reliability of the system was found less than 91.5 %. To check

whether this was actually due to the introduction of external customers, we compared the
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system reliability of the current model with that of a k-out-of-n system where no external
customers are entertained. Table 6 shows that allowing external customers in the system
has only a narrow effect on the system reliability and the decrease in reliability is actually

due to the assumption 4 > u .

3.5.3. Analysis of a Cost function. Table 3.1 shows that as N increases, even
though the server busy probability increases first, it decreases as N crosses some value.
Note that the overall server busy probability is the sum of the server busy probability
with external customers and the server busy probability with main customers. Table 3.3
shows that the fraction of time server remaining busy with external customers is ever
increasing with N. Now as N increases, there is a decrease in the server busy probability
with main customers. Hence, the above said behavior of the overall server busy proba-
bility can be concluded to be due to the conflicting nature of the two entities constituting
it. This behavior of the server busy probability lead us to construct a cost function in the

hope of finding an optimal value for the N-policy level defined as follows:

C
Expected cost per unit time = C;-Pyoyn + C2-N, + C4-04 + Cs- Ny + E—3 + C¢- Pigie

H

In the above, C; denote the cost per unit time incurred if the system is down, C, denote
the holding cost per unit time per external customer in the queue, C; denote the cost in-
curred for starting failed components service, C, denote the cost due to loss of 1 external
customer, Cs denote the holding cost per unit time of one failed component, C¢ denote
the cost per unit time if the server is idle. We study the cost function for various failure
rates of the components, which is presented in Table 3.7. In all the 4 cases studied, we

obtained an optimal value for N.
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Table 3.1. Variation in the server busy probability when external cus-
tomers are allowed k =20, A =4, A=32,u=55u=38

N

n=4>5 n=>50 n=>55 n =060 n==65

O ~J DN W =

—_—
—

15
17
19
21
23
25

0.823494 0.823522 0.823528 0.823529 0.823529

0.829935 0.829973 0.829981 0.829983 0.831354 [ (4

0.832187 0.832243 0.832254 0.832256 0.832891 | os3
0.833255 0.833338 0.833355 0.833358 0.833717 | oo
0.833839 0.833968 0.833994  0.834  0.83423 | o8-
0.834162 0.834367 0.834408 0.834417 0.834577 | wore | \‘
0.834295 0.834627 0.834695 0.834708 0.834827 0-824%—

0.834239 0.834789 0.8349  0.834923 0.835093 0 10 w0 0

—4—n=45
=fi—n=50

n=55
——n=60

—fe—nN=65

0.833936 0.834861 0.835047 0.835085 0.835224
0.833252 0.834829 0.835146 0.835211 0.835329
0.831922 0.834652 0.835196 0.835306 0.835413
0.829445 0.834239 0.835184 0.835375 0.83548
0.824871 0.833426 0.83508 0.835412 0.83553

Table 3.2. Variation in the server busy probability when external cus-
tomers are not allowed k = 20, A =4, u = 5.5

n=45 n=50 n=55 n=60 n=65

\D\]LI]UJ»—AZ

—_—
—

15
17
19
21
23

0.72722 0.72726 0.72727 0.72727 0.72727

07272 072726 072727 0.72727 0.72727 | are -
072717 0.72725 072727 0.72727 0.72727 | o7 mﬁ

072711 072724 0.72727 0.72727 072727 | ons N T
072703 072722 0.72726 0.72727 072727 | o722 \ -
072688 0.72719 0.72726 0.72727 0.72727 | °7 | e

0.72663 0.72714 0.72725 0.72727 0.72727 | *7* * ——n=55
0.72622 0.72706 0.72723 0.72726 0.72727 | *7*° ' |

0.7255 0.72691 0.7272 0.72726 0.72727
0.72425 0.72666 0.72715 0.72725 0.72727
0.72206 0.72623 0.72706 0.72723 0.72726
0.71814 0.72546 0.72691 0.7272 0.72726
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Table 3.3. Effect of the N-policy level on the fraction of time server is
busy with external customers with k = 20,4 = 4,4 =32, u=5.5,i=8

n=40

n=45

n=50

n=55

n=60

@OO\]O\UI#UJ[\)»—Z

—_
- O

W W W N NN N N = e e e e
N W = O 3 L W = O 3 DN B~ W N

0.096351
0.100557
0.102853
0.104255
0.105198
0.105882
0.106413
0.106853
0.107241
0.107605
0.107968
0.108354
0.108786
0.109291
0.109905
0.111651
0.114606

0.096276
0.100464
0.10274

0.104117
0.105028
0.105672
0.106153
0.106528
0.106832
0.107088
0.107313
0.107517
0.107711
0.107904
0.108106
0.108581
0.109249
0.110301
0.112079
0.115216

0.096261
0.100445
0.102717
0.104089
0.104993
0.105629
0.1061
0.106462
0.106749
0.106984
0.10718
0.107348
0.107495
0.107626
0.107747
0.107976
0.108092
0.108216
0.10851
0.108928
0.110699
0.112652
0.116153

0.096257
0.100441
0.102712
0.104083
0.104986
0.105621
0.106089
0.106449
0.106733
0.106963
0.107153
0.107314
0.107451
0.10757
0.107675
0.107854
0.108008
0.108153
0.108308
0.1085
0.108771
0.109196
0.10991
0.111158
0.113399

0.096257
0.10044

0.102711
0.104082
0.104985
0.105619
0.106087
0.106446
0.106729
0.106958
0.107148
0.107307
0.107442
0.107559
0.10766

0.107829
0.107966
0.10808

0.108182
0.108281
0.108387
0.108516
0.108697
0.108978
0.109446
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Table 3.4. Variation in the system reliability with increase in N (4 < u
case) k =20,A=4,1=32,u=55j1=8

n=40

n=45

n=50

=60

Il
N
(9)]

O 0 9N Nk WN =2

—_
— O

AW W LW LW W NN NN = e e
— O J W W= O N W= 0N BB W

0.99963
0.99957
0.99948
0.99937
0.99924
0.99907
0.99885
0.99856
0.9982

0.99778
0.99712
0.99633
0.9953

0.99395
0.99217
0.98668
0.97689
0.95915

0.99993
0.99991
0.99989
0.99987
0.99985
0.99981
0.99977
0.99971
0.99964
0.99954
0.99942
0.99926
0.99905
0.99878
0.99843
0.99736
0.9955

0.99223
0.98638
0.97578

0.99998
0.99998
0.99998
0.99997
0.99997
0.99996
0.99995
0.99994
0.99993
0.99991
0.99988
0.99985
0.99981
0.99975
0.99968
0.99947
0.99909
0.99844
0.9973

0.99528
0.99165
0.98509
0.97315

n
1
1
1
1
1
1
1
1
1
1

1

0.99999
0.99999
0.99999
0.99999
0.99998
0.99996
0.99994
0.99989
0.99981
0.99966
0.9994

0.99894
0.99862

)—Ly—ti—k)—i;ﬂ)—k;—t)—k;—t)—k)—t;ﬂ)—ﬂyﬂ)—kb

1

0.99999
0.99999
0.99998
0.99996
0.99993
0.99988
0.99979
0.99962
0.99932
0.99878
0.99781
0.99604

1.005

0.995 A

0.99
0.985
0.98
0.8975
0.97
0.865
0.96
0.955

40

——n=40
——n=45

n=50
—=n=55
=t=n=60

n=65
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Table 3.5. Variation in the system reliability with increase in N (4 > u
case) A= 6,4 =55,1=32,i=38

n=40 n=50 n=>55 n=60

0.90191 | 091106 | 0.91312 | 0.91441
0.90118 | 0.91081 | 0.91297 | 0.91431
0.90041 | 0.91055 | 0.91281 | 0.91421
0.89961 | 0.91028 | 0.91264 | 0.91411
0.89876 | 0.91 0.91247 | 0914

0.89758 | 0.90971 | 0.91229 | 0.91389
0.89696 | 0.90941 | 0.91211 | 0.91377
0.896 0.9091 | 091192 | 0.91366
0.895 0.90878 | 0.91173 | 0.91354
0.89396 | 0.90845 | 0.91153 | 0.91341
0.89287 | 0.90812 | 0.91133 | 0.91329
0.89174 | 0.90777 | 091112 | 0.91316
0.89055 | 0.90741 | 0.9109 | 0.91303
0.88932 | 0.90705 | 0.91068 | 0.91289
0.88804 | 0.90667 | 0.91046 | 0.91275
0.8867 | 0.90628 | 0.91 0.91261
0.88531 | 0.90589 | 0.90951 | 0.91247
0.88386 | 0.90548 | 0.90901 | 0.91232
0.88235 | 0.90507 | 0.90848 | 0.91217
0.88079 | 0.90464 | 0.90794 | 0.91186
0.87916 | 0.90421 | 0.90738 | 0.91155
0.90331 | 0.90679 | 0.91122
0.90237 | 0.9062 | 0.91088
0.90139 | 0.90558 | 0.91053
0.90036 | 0.90494 | 0.91018
0.8993 | 0.90462 | 0.90981
0.90944
0.90905
0.90866
0.90827

O 00 N N kW=7

—
- O

W W W W W N NN NN = == = e =
O J L W = O J D W = O 00 3 &N Lt & W PN

o
_
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Table 3.6. Variation in the system reliability with increase in N (case
when no external customers are allowed) k = 20,4 = 6,u = 5.5

N | n=40 n=45 n=50 n=55 n=60 n=65

1 10.902225375 | 0.907874465 | 0.911180377 | 0.913196206 | 0.914452851 | 0.915246844
3 10.900740206 | 0.90700978 | 0.910661995 | 0.912876785 | 0.914252281 | 0.915119886
5 10.899092674 | 0.906079888 | 0.910108447 | 0.912536681 | 0.914039791 | 0.914984941
7 10.897301137 | 0.905082345 | 0.909519434 | 0.91217649 | 0.913814664 | 0.914842606
9 10.895354867 | 0.904014587 | 0.908894181 | 0.911796391 | 0.913578033 | 0.914693356
11 {0.893241525 | 0.902873158 | 0.908231676 | 0.911395431 | 0.913329422 | 0.914536655
13 | 0.890948415 | 0.901655376 | 0.907531381 | 0.910974264 | 0.913069129 | 0.914373219
15| 0.888461053 | 0.900358438 | 0.906793237 | 0.910532713 | 0.912796974 | 0.914202273
17 | 0.885763168 | 0.898979008 | 0.906016231 | 0.910070777 | 0.912513793 | 0.914025187
19 | 0.882836878 | 0.897513986 | 0.905200183 | 0.909588754 | 0.912219048 | 0.913841009
21 0.895959914 | 0.904344797 | 0.909087062 | 0.911913395 | 0.91365093
23 0.894313395 | 0.903449655 | 0.908565581 | 0.911597252 | 0.913454473
25 0.892570376 | 0.902514458 | 0.908024669 | 0.911270797 | 0.913252354
27 0.901538968 | 0.907464802 | 0.910934329 | 0.913044453
29 0.900522768 | 0.90688622 | 0.910588205 | 0.912831426
31 0.899465442 | 0.90628922 | 0.910232782 | 0.912613034
33 0.905673981 | 0.90986824 | 0.912389636
35 0.905041099 | 0.909495115 | 0.912161767
37 0.909113765 | 0.911929727
39 0.908724129 | 0.911693275
41 0.908326745 | 0.911452949
43 0.911208868
45 0.910961211
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Table 3.7. Analysis of a cost function for finding optimal N value n =
50,k =20, u = 55,41 =232,a=38,C; =2000, C, =20, C3 = 800,
C4 = 1000, Cs = 10, Cg = 200

=4 A=45 A=5 L=06

\O\]Ulb)»—dz

[a—
—

15
17
18
19
21
23
25
27
29
31

4925.877 4937.695 5079.029 5226.181
4710.059 4856.852 5057.425 5221.212
4630.354 4825.835 5050.332 5218.775
4591.702 4812.151 5048.243 5216.965

4571.3  4806.745 5048.411 5215313 [ oo

4561.086 4806.248 5049.849 5213.713 | F

4558.217 4809.556 5052.345 5212.268 o .
4563.915 4817.604 5056.578 5211.373 5000 A

4588216 4835444 5064.896 5211.922 | oo o

2000

4605.19 4846.938 5070.21 5212.65 1000
4624.185 4859.68 5076.196 5213.701 ’

4670.646 4890.628 5091.4  5217.34
4735.585 4934.206 5114.597 5224.719
4837.829 5004.721 5155.522 5240.069
5032.125 5144.138 5241.815 5274.736
5546.901 5525.659 5482.957 5371.341
8780.95 7911.995 6932.789 5918.758
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3.6. The retrial model

Here we consider a variant of the model discussed in section 3.2 by assuming that
an arriving external customer either gets immediate service if it finds the server is idle at
that time or joins an orbit of infinite capacity, if the server is busy with external customers
with < N — 1 failed components of the k-out-of-n system. As in the model discussed
in section 3.2, the external customers are not allowed to join the orbit when the server
is busy with failed components of the system. An orbital customer retries for service
with inter-retrial time following an exponential distribution with parameter 6. All other
assumptions and parameters remain the same as in model discussed in section 3.2. In
this situation the system can be modeled as follows. Let X;(#) = the number of external
customers in the orbit at time ¢ and
X,(t) = the number of failed components of the k-out-of-n system, including the one

getting service (if any) at time .

0, If the server is idle
Define S() =11, If the server is busy with an external customer

2, If the server is busy with a main customer

Now, X (1) = (X;(¢), S (¢), X»(¢)) forms a continuous time Markov chain on the state space

S =1{(1,0,/2)/j1 20,0 < jo <N - 1}U{(j1, Lj)/j120,0<jp<n—-k+1}

G2, /i 20,1 < jo <n—k+1).
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Arranging the states lexicographically and partitioning the state space into levels i, where
each level i corresponds to the collection of states with number of external customers in

the orbit at any time 7 equal to i, we get an infinitesimal generator of the above chain as

AIO AO

A21 All AO
A22 A12 AO

Azp A]p AO

The entries of Q are described as below: For i > 0, the transition within level i is
represented by the matrix
b(;’; Dy 0 Dy
Dy Dy Dy 0

0 0 D3z Dy

Dy 0 0 Dy

where
D\) = AEy — Aly — i0ly, D> = Ay,

Dy = Aey(N) ® 1y—i+1(N), Doy = ply,
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Dy, = D) - aly,

Dy3 = Acn(N) ® ry—gsa-n(1),
D33 = AE, oy +Acn —k+2 = N)®rpip2-m(n—k+2—=N) —ul, 112 n,
D34 =0, psa-nxv-1) Alin—isa-n |

Dyy = AE, 1 + AChgri(n =k + 1) @ 1ygri(n —k + 1) + puE,

n—k+1>

D4y = pcypi1(1) @ ry(1).
For i > 0O the transition from level i to i + 1 is represented by the matrix

Ovxwv 0 0 O

Ao=| 0 AUy o 0]

0O 0 00

For i > 1, the transition from level i to i — 1 is represented by the matrix

0 i6ly 0 0O
AZi: .

0 0 00

3.7. Steady state analysis of the retrial model

3.7.1. Stability condition. For finding the stability condition for the system study
,we apply Neuts Rao truncation by assuming A;; = Ay and Ay = Ayy forall i > M.

Then the generator matrix of the truncated system will look like:
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AIO AO
Axi A Ay

A22 A12 AO

Aoy A Ao

A2M AlM AO

Define AM = AO + AlM + AZM ; then

(M) (M)
D11 D12 0D,4
Dy Dy Dy 0

0 0 D33 Dy

| Dy 0 0 Da
where DY) = (1 + Mo)Iy,
Dy = AEy — pily.
Let my = (mp(0), a0 (1), 70 (1), mps(2)), where
iy (0) = (mp(0,0), (0, 1), ..., 1y (O, N — 1)),

ay(l) = (my(1,0),...,7(1,N = 1)),
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ay(l) = (ry(1,N),...,7y(l,n -k + 1)),

au(2) = (ry(2,1), ..., 72, n =k + 1)).

be the steady state vector of the generator matrix A,,. Then the relation ) A, = 0 gives

rise to the following equations:

i (0)DY + 3 (1)Day + 7y (2)Dyy = 0, (3.7.1)
7 (0)DE + 7y (1)Dyy = 0, (3.7.2)
7p(1)Doys + 7y (1) D33 = 0, (3.7.3)

JTM(O)D14 + ﬁ'M(l)D34 + 7TM(2)D44 =0. (374)

It follows from equation (3.7.4) that

7p(2) = =7ty (0)D14(Dag) ™" = 7p(1)D34(Dag) ™" (3.7.5)

Substituting for my,(2) in equation (3.7.1), we get

()DL + 7 (1)D2y = 73(0)D14(Daa) ™' Day = Zp(1)D34(Daa) ' Day = 0. (3.7.6)

It follows from equation (3.7.3) that

(1) = —tu(1)Da(D33). (3.7.7)
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Substituting for 77),(1) in equation (3.7.6), we get

ﬂM(O)D(ﬂ/D + My (1)Dyy — mp(0)D1a(Das) ™' Dy
(3.7.8)

+ 7y (1)Da3(D33) ' D34(Dag) ' Dyy = 0.

We notice that the first column of the matrix D4; is —Du4e and its all other columns
are zero columns. Hence the first column of the matrix (D.4)~' D4 is —e and its all other
columns are zero columns. This implies that the first column of the matrix —D;4(D44) "' Dy
is Dyse = Acy(N) and its all other columns are zero columns. In other words —D4(D4)™"
Dy, = Aey(N) ® ry(1). Also, the first column of the matrix Ds4(Dyg)™' D4 is —Dsse and
its all other columns are zero columns. Since —Ds4e = Dsze, the first column of the
matrix (D33)"'D34(D4s) "' Dy, is e and its all other columns are zero columns. Hence it
follows that Dy3(D33) ' D34(D4s) ' Dy is Dyze = Acy(N) ® ry(1). Thus equation (3.7.8)

becomes
T (0)(DYY + Acn(N) ® ry(1)) + my(1)(Da; + Aey(N) ® ry(1)) = 0. (3.7.9)
Adding equations (3.7.2) and (3.7.9), we get

T (0) (DN + Aey(N) @ ry(1) + DY) + iy (1)(Da + Dy + Aey(N) @ ry(1)) = 0. (3.7.10)

Since D(ﬂl) + D(g) = Dy, + D5, = AEy, equation (3.7.10) reduces to

(p(0) + mp(1))(AEN + Aen(N) @ ry(1)) = 0. (3.7.11)
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which implies that m,,(0) + 3,(1) is a constant multiple of the steady state vector %e;\, of

the generator matrix AEy + Acy(N) ® ry(1) and hence,
1 ’
ay(0) + (1) = vNeN.

where v is a constant. Equation (3.7.2) implies that

m(0) = =y (DD

Since (DY) = = o Iv+(3.7.13) gives
Jim 7,(0) =0
and hence
A!fizgoﬂM(l) = vﬁe}\,,
and

lim Amy (e = vA.
M—oo

Again from (3.7.13),

Méry(0)e = —MOry(1)Dyn(DY) e

Since, limy;_,., M 9(D(M)) e = limy e (1%39)

89

ey = ey, (3.7.17) implies that

(3.7.12)

(3.7.13)

(3.7.14)

(3.7.15)

(3.7.16)

(3.7.17)



lim MOmy(0)e = — lim my(1)Dye
M—oo M—oco
1, _
= _VNeN(_/lCN(N) - fte)

= v(% + fi). (3.7.18)

The truncated system is stable if and only if

7TMA()€ < 7TMA2M€, (3719)
TuAoe = Ay (e, (3.7.20)
TyArye = MOry(0)e. (3.7.21)

Making use of equations (3.7.16), (3.7.18), (3.7.20) and (3.7.21), the stability condition

for the truncated system as M — oo is given by
- A
A <v(= +f),
vad < v( N i)
which can be re-arranged as

A Ni
?—IJ_ <1
A2+ Np)

Hence, we conclude that the retrial problem discussed in section 3.6 has the same sta-

bility condition as the queueing problem, which was obtained in section 3.3.1.
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3.7.2. Computation of Steady State Vector. We find the steady state vector
of {X(7),t > 0}, by approximating it with the steady state vector of the truncated sys-
tem.Let 7 = (g, 71, 7, ...) where each ; = (7;(0,0), 7;(0, 1),... ,m;(0,N — 1), 7;(1, 1),
o m(l,n—k+1),m;(2,0), m:(2,1),... ,m(2,n—k+ 1)) be the steady state vector of the
Markov chain {X(¢),t > 0}.

Suppose A;; = Ay and Ay; = Ayy for all i > M. Let my,, = mpy_ R, 7 > 0, then

from 7Q = 0 we get

Ty—1A0 + TyAiy + Ty Aom = 0,
Tm-140 + Ty 1RA y + 7TM—1R2A2M =0,

Ty-1(Ao + RA 1y + R?Asy) = 0.

Choose R such that Ay + RA 1y + R*A,y = 0. We call this R as R),. Also we have

Tyu-2A0 + Ty-1A1m-1 + Aoy = 0,

240 + Ty-1(A1y-1 + RyAay) = 0,

Ty-1 = —T—2Ao(A1y—1 + RyAsy)™'
=my-oRy-1 .

where

Ry—1 = —Ao(A1y-1 + RyAom) .
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Next,

Tpm-3A0 + Ty2A1y—2 + Ty—1Asy-1 = 0,

Ty—3Ao + Ty—2(Arp—2 + Ty—1Aom-1) = 0,
-1

-2 = —Ty—3Ao(A1p—2 + Ry—1(Aopm-1)

= my-3Rm-2.

Where
Ryo = —Ao(A1ys + Ry 1 Asy1) ™"
and so on.
Finally
7T()A1() + 7T1A21 =0
becomes

mo(Ajo + RiAzp) = 0.

For finding r, first we take 7 as the steady state vector of Ay + R;A,;.Then x; for
i > 1 can be found using the recursive formula, m; = m;_|R; for 1 <i < M.
Now the steady state probability distribution of the truncated system is obtained by

dividing each 7r; with the normalizing constant

[mg+m +...]e = [71'0 +m+.. TN +7TM_1(I—RM)_1] e.
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3.7.3. Computation of the matrix R);. Consider the matrix quadratic equation

Ay + RyAy + R12\4A2M =0.

which implies

Ry = —Ao(A1y + RyAoy) ™.

The structure of the Ay matrix implies that the matrix R,, has the form:

0

RMl

0

| O

0 0
Ry Ry
0 0
0 0

0
Ry

0

O .

(3.7.22)

(3.7.23)

(3.7.24)

In other words, the non-zero rows of the R, matrix are those, where the Ay matrix has

at least one nonzero entry. Now,

0

0

0

RynoRun

0
RZ
0

0

M2

0
RynoRus3
0

0

0
RynRuya
0

0

Equation (3.7.22) gives rise to the following equations:

Run D" + RypDay + RyuDay =0,

RinRyiMOIy + Ryyy D1y + RypyDyy + ALy = 0,
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RynDa3 + Ry3sDsz = 0, (3.7.28)
RyDiy + RyzD3g + RyjuDyy = 0. (3729)

From equation (3.7.28), we can write

Ry = —RynDa3(D3)) ™" (3.7.30)

From equation(3.7.29), we can write

Rys = =Ry1 D14(Dag)™" = RyzD3a(Dag) ™" (3.7.31)

Substituting for Ry,; from (3.7.30) in equation (3.7.31), we get

Rys = —Ry1D14(Daa)™" + RynDo3(D33) ™' Daa(Daa) ™ (3.7.32)

Substituting for Ry4 from (3.7.32) in equation (3.7.26), we get

Ry DY + Ry Doy = Rant D1a(Das)”™' Dy

+ Ry2D23(D33) ' D3a(Dag) ' Dy = 0. (3.7.33)

Using the same reasoning, that lead us to equation (3.7.9), equation (3.7.33) becomes

Ryt (D" + Aen(N) ® ry(1)) + Rypa(Day + Acy(N) ® ry(1)) = 0. (3.7.34)
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From (3.7.34), it follows that
Rit = —Rip(Dy1Acy(N) @ ry(D)(DYY + Aey(N) @ ry(1)™".
Substituting for Ry in (3.7.27), we get

— R5(Day + Aey(N) ® ry(D)(DY + Aew(N) ® (1)) M6y
— Run(Day + Aey(N) ® (DYDY + Aew(N) @ ry(1)) ™' Dy

+ RM2D22 + ZIN =0.

That is

Ry (~(Day + Aen ()DL + den(N) ® (1) M6l )

+ Ry (—(Da1 + Aey(N) @ (DYDY + Acy(N) @ ry(1)™)Dia + Dyo)

(3.7.35)

+ Ay =0. (3.7.36)

‘We notice that —(D(ﬂ@ + Acy(N) @ ry(1))e = (D1 + M6Iy)e. and therefore

— (Dyy + Aey(N) @ r(DYDYY + Aew(N) @ ry(1) ™ (D1 + MOlIy)e =

(D21 Acy(N) ® ry(1))e.

Also,

Dyye + (Da; + Aey(N) @ ry(1))e + Ae = 0.
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and hence

(=(Da1 + Aey(N) @ ry(D)DSY + Acy(N) ® ry(1))™ MOy ) e+
(=D + Aey(N) ® iy (DYDY + den(N) @ ry(1)' Dz + D) e (37:38)
+de = 0.

Equation (3.7.38) shows that the matrix R, is the minimal non-negative solution of
the matrix quadratic equation (3.7.36). Once obtaining R, the matrices Ry, Ry3, Ry,
and R4 can be found using equations (3.7.35), (3.7.30) and (3.7.31) respectively. Hence

the matrix R;, can be found. From the form of the matrix D(11 ), we notice that,

— (D" + Acy(N) ® ry(1))
= M6l — (/IEN — AUy + Acy(N) ® rN(l))

= MQ(IN - MLQ(/lEN - /_lIN + /lcN(N)®rN(1)))

and hence
— (D" + Acy(N) ® rN(l))
1 -1
M@ (IN— —(/IEN /lIN+/1CN(N)®I”N(1)))
! Iy + ! —(AEy — Ay + Aey(N) @ ry(1)) +
- c r ..
M@ N+ AEN N N N
Therefore

lim (~D" + Acy(N) ® ry(1))™' Mély) = Iy.
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and

lim (~(D}}" + Acy(V) ® (1)) ' Di2) = 0.

Hence as M — oo equation (3.7.36) becomes
R3,5(Dyy + Acy(N) ® ry(1)) + RypaDyy + Aly = 0. (3.7.39)

We identify D,; + dcy(N) ® ry(1) as As, Dy, as A; and Aly as A,, which were defined
in section 3.3.2. Hence equation (3.7.39) is the same as equation (3.3.24) of section
3.3.2. That is the matrix Ry, tends to the matrix R, the minimal non-negative solution of

(3.3.24), as M — oo. This fact can be utilized in determining the truncation level M.

3.8. System Performance Measures

The following system performance measures were calculated numerically.

(1) Fraction of time the system is down,

(o0

Paown = Y (0, (Ln=k+ 1)+ 7;,2n—k +1)).

J1=0
(2) System reliability, P,,; = 1 — Py
= 1= (m(n—k+ D +m,@2n-k+1).
J1=0
(3) Average number of external customers in the orbit,

o0 n—k+1 00 n—k+1
Nowic = Dt ( > njl(l,m] W [ > n,1<2,13>).

Jj1=0 J3=l1 J1=0 J3=0
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(4) Average number of failed components in the system,

n—k+1 00 n—k+1 ( oo
Nyar = D Js [Z 73, (0, ,-3)}+ > (Z nﬁ(z,js)).

J3=0 J1=0 ;=1 \j1=0

(5) Average number of failed components waiting when server is busy with exter-

nal customers
n—k+1 00
= > 13[ 73,0, mJ.
J3=0 J1=1

(6) Expected rate at which external customers joining the system

oo (n—k+1 N-1
- A{Z [ PR jg)] + > w0, j3)} .
Ni=L\ j3=0 J3=0

(7) Expected number of external customers on its arrival gets service directly,
N-1
= > (0, js).
J3=0
(8) Fraction of time server is busy with external customers,
oo (n—k+1
Pext,buxy = Z [ Z 7Tj1(0, ]3)} .
J1=1\ jz=0
(9) Probability that the server is found idle,
N-1
Pigie = Zﬂo(O, J3) = Nmo(0, 0).
Jj3=0
(10) Probability that the server is found busy,
N-1

Ppuyy = 1= ) 79(0, j3) = 1 = Nmo(0, 0).

J3=0
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(11) Expected loss rate of external customers
oo (n—k+1 oo (n—k+1
0; = A{Z [ > njl(l,js)) > [ > :rjl(o,j,z)]}.
J1=0\ j3=1 J1=1\ j3=N
(12) Expected service completion rate of external customers,

oo (n—k+1
Os :ﬂZ(Z ﬂj](O’Jé)]-

J1=0\ j3=0

(13) Expected number of external customers when server is busy with external cus-

tomers
0 n—k+1
06 = Zjl [ Z ﬂj1(0,13)]~
J1=0 J3=0

(14) Expected successful retrial rate

N-1
=6-> (Z 75,0, k)].

J1=1\j3=0

3.9. Numerical study of the performance of the system

3.9.1. The effect of N policy on the server busy probability. A compar-

ison of Tables 3.1 and 3.8 shows that the models discussed in section 3.2 and its variant

where external customers are sent to the orbit, which was discussed in section 3.6 have

similar behavior as far as the server busy probability is considered. Comparison of Ta-

bles 3.3 and 3.9 also points to the same for the fraction of time server remains busy

with external customers. Tables 3.4 and 3.10 indicate that the two models have similar

reliability.
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Table 3.8. Variation in the server busy probability when external cus-
tomers are allowed k =20, A =4, A =32, u=55u=8,60=>5.

n=45

n=>50

n=>55

n =60

n==65

0.82349
0.82995
0.83222
0.83328
0.83385
0.83417
0.8343
0.83424
0.83394
0.83325
0.83192
0.82945

0.82352
0.82999
0.83228
0.83336
0.83398
0.83437
0.83463
0.83479
0.83486
0.83483
0.83465
0.83424

0.82353

0.83

0.83229
0.83338
0.83401
0.83442
0.8347
0.8349
0.83505
0.83515
0.8352
0.83518

0.82353
0.83
0.83229
0.83338
0.83401
0.83442
0.83471
0.83493
0.83509
0.83521
0.83531
0.83538

0.82353
0.83
0.83229
0.83338
0.83401
0.83443
0.83472
0.83493
0.8351
0.83523
0.83533
0.83541

0.838
0.836

0.828
0.826

0.822

0.834
0.832 +

0.83

0.824

10

20

30

—l—-n=45
n=50
=55
—t=n=60
n=65

Table 3.9. Effect of the N-policy level on the fraction of time server is
busy with external customers k = 20,4 = 4,4 = 32,u = 32,1 = 8,

0=5

n=40

n=45

n=50

n=55

n=60

W W
:\O\] —|Z

13
15
17
19
21
23
25
27
29
31
33
35
37
39
41

0.09635
0.10287
0.10523
0.10644
0.10725
0.10798
0.10879
0.10991
0.11461
0.11983

0.09628
0.10276
0.10506
0.10618
0.10685
0.10732
0.10772
0.10811
0.10858
0.10925
0.1103

0.11208
0.11522

0.09626
0.10273
0.10503
0.10612
0.10676
0.10719
0.1075

0.10775
0.10798
0.10822
0.10851
0.10893
0.10959
0.1107

0.11265
0.11615

0.09626
0.10273
0.10502
0.10611
0.10675
0.10716
0.10746
0.10768
0.10786
0.10801
0.10815
0.10831
0.1085

0.10877
0.1092

0.10991
0.11116
0.1134

0.09626
0.10273
0.10502
0.10611
0.10674
0.10716
0.10745
0.10766
0.10783
0.10797
0.10808
0.10818
0.10828
0.10839
0.10852
0.1087

0.10898
0.10945
0.11026
0.11172
0.11435

20

30

40

50

=40
——n=45

n=50
—=<—n=55

—+—n=60
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Table 3.10. Variation in the system reliability with increase in N k =
20,1=4,1=32,u=551=8,0=5

N [n=40 |[n=45 |n=50 |n=55 |n=60

1 0.99963 [ 0.99993 [ 0.99998 | 1 1

3 10.99948 | 0.99989 | 0.99998 | 1 1

5 10.99924 | 0.99985 | 0.99997 | 0.99999 | 1 llwm -

7 10.99885 | 0.99977 | 0.99995 | 0.99999 | 1 -

9 |0.9982 |0.99964 | 0.99993 | 0.99998 | 1 R N
11 0.99712 | 0.99942 | 0.99988 | 0.99998 | 1 Ll a5
131 0.9953 | 0.99905 | 0.99981 | 0.99996 | 0.99999 | | *** |1 1250
151 0.99217 | 0.99843 | 0.99968 | 0.99994 | 0.99999 || ** | | ——n=ss
17 | 0.9769 | 0.99736 | 0.99947 | 0.99989 | 0.99998 | | °°7 ”f
19 0.9955 | 0.99909 | 0.99982 | 0.99996 | | o097 L

21 0.99223 | 0.99844 | 0.99968 | 0.99994 || os6s e

23 0.98638 | 0.9973 | 0.99945 | 0.99989 o 0 4 &

25 0.97578 | 0.99528 | 0.99905 | 0.99981

27 0.99165 | 0.99833 | 0.99966

29 0.98509 | 0.99705 | 0.9994

31 0.97315 | 0.99475 | 0.99894

33 0.99058 | 0.99812

35 0.98297 | 0.99663

37 0.99393

39 0.989

3.9.2. Cost Analysis. As in the case of the queueing model discussed in section
3.2, for finding an optimal value for the N-policy level, we analyzed a cost function
for the retrial model also. For defining the cost function, let C; be the cost per unit
time incurred if the system is down, C, be the holding cost per unit time per external
customer in the orbit, Cj is the cost incurred for starting failed components service after
accumulation of N of them, C, be the cost due to loss of 1 external customer, Cs be the
holding cost per unit time of one failed component, C¢ be the cost per unit time if the

server is idle. We define the cost function as:
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C
Expected cost per unit time = C, P, + Co-Noppis + C4-04 + Cs5-N gy + E—3 + Cy-Pidle.
A

where Ej is found exactly in the same lines as in section 3.4.1.

Our numerical study, as presented in Table 3.11, show that an optimal value for N
can be found for different parameter choices and also that this optimal value happens
to be a much smaller value like N = 6. This shows the care needed in selecting the
N-policy level.

Table 3.11. Analysis of a cost function n = 50,4 = 3.2,u = 5.5,/i =
8,0 =5C; =2000,C, = 1000,C3 = 800,C4 = 1000,Cs = 10, Cq

200,60 =5

1=4

A=45

=35

O 0 1NN B W=7

| NS T NS I NS I NS I O R e e e e
O JNW—~= OJWnNHhWND~O

98]
—_—

6235.23047
6137.3877
6109.98389
6102.75391
6102.27734
6104.71094
6108.70947
6113.67188
6119.2749
6125.32666
6131.69824
6138.31006
6145.10449
6152.04492
6159.104
6173.53564
6188.38672
6203.78809
6220.13477
6238.73828
6266.49854
6356.05566
7073.24658

6440.20947
6343.84668
6317.7207
6311.82178
6312.30322
6315.28613
6319.521
6324.50439
6329.98047
6335.80176
6341.87891
6348.14307
6354.55762
6361.09961
6367.74854
6381.33594
6395.33936
6409.88037
6417.44531
6443.09375
6471.54688
6571.71631
7340.11523

6671.65918
6576.75928
6551.88965
6547.30566
6548.71436
6552.17676
6556.51709
6561.33057
6566.44873
6571.76465
6577.22021
6582.78711
6588.43018
6594.13086
6599.88428
6611.51611
6623.31689
6635.37354
6647.98535
6662.8042

6690.0752

6799.88672
7618.78223

102







Chapter 4

Reliability of a k-out-of-n system with a repair
facility extending service to external customers

— The T'-policy

4.1. Introduction

In the previous chapers we concentrated elaborately as N-policy, both under pre-
emptive and non pre-emptive priority basis. The pre-emptive priority to serve the failed
components produced quite high reliability. There was a mild reduction in this under
nonpre-emptive nature set up. We also considered the case of providing service only to
the main system. Of course, under this policy the reliability can be brought to as high
as .9999.... Neverthless, the server stays idle for a long time. The utilization of this idle

time is equally important. This leads us to wonder the intension of the repair facility
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to external customers. As a consequence revenue could be generated without serious
compromise in the main system reliability.

In this chapter, we study a k-out-of-n system where server offers service to external
customers on a time-based policy, namely the T-policy. Under this policy, the server
starts attending the failed components, if any present (main customers), only on the re-
alization of a random time 7. Priority is given to the main customers in the sense that, if
the realization of T happens in the middle of an external customer’s service, the ongoing
service is preempted to start serving the main customers. Also, once the server starts
attending the main customers, it continues to do so that until every component becomes
operational. At the end of a cycle (the epoch at which no component of the main system
is in breakdown state), a clock starts ticking. This clock has a random duration 7', on
realisation of which the repair facility is turned to repair of failed components, if any, of
the main syatem. The pre-emptive rule is adopted.

The motivation for the present study comes from the real world scenarios of time-
based resources sharing like those of spectrum-sharing, inventory-sharing etc.

This chapter is arranged as follows. In section 4.2 a queueing model is described
for studying the problem discussed. In section 4.3, we conduct the steady state analysis
of the system and give a product form solution for the steady state distribution. Several
important system performance measures have been derived in section 4.4. In section 4.5
we present results from a numerical study on the behavior of the system performance

measures as different system parameters are varied.
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4.2. The queueing model

We consider a k-out-of-n system with a single server, offering service to external
customers also. Commencement of service to failed components of the main system is
governed by T-policy. ie, at the epoch the system starts with all components operational,
the server starts attending external customers (if any present). The server starts the ser-
vice of the failed components of the main system only at the moment of the realization
of the random time 7 (if there is at least one failed component). If the time T is real-
ized in the middle of an external customer’s service and if there exists at least one failed
component, the external customer in service is pre-empted and the server is switched on
to the service of main customers. The preempted external customer goes to the queue of
external customers. If there are no main customers present at the moment of realization
of the time 7', the server continues at his present status and the time 7T restarts. The ran-
dom time 7 is assumed to follow an exponential distribution with parameter §. The life
time of a component of the k-out-of-n system follows an exponential distribution with
parameter % when i components are operational. This assumption ensures decreasing
failure rate of the entire system with increase in number of oprational units. Hence the
inter-arrival time of failed components follows an exponential distribution with param-
eter A. Arrival of external customers has inter-occurrence time exponentially distributed
with parameter ). External customers, arriving when the server is busy with main cus-
tomers, are not allowed to join the system. Only those external customers who arrive
during the service of an external customer, join the queue of such customers (of infinite

capacity). An external customer, who finds the server idle on its arrival, is directly taken
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for service. Service times of main customers and external customers follow exponential

distributions with parameters u and p, respectively.

Notations. In the following sequel,

(1) I, denotes identity matrix of order n;
(i1) I denotes an identity matrix of appropriate size;
(iii) e, denotes a n X 1 column matrix of 1’s;
(iv) e denotes a column matrix of 1’s of appropriate order;

(v) E, denotes a square matrix of order n defined as

-1, ifi=j 1<i<n
E.(i,)) =11, ifj=i+1,1<i<n-1

0; otherwise.

(vi) E;, = Transpose of E,

(vii) r,(i) denotes a 1 X n row matrix whose i entry is 1 and all other entries are zeroes
(viii) ¢,(i) = Transpose r,(i)

(ix) ® denotes Kronecker product of matrices.

(x) O stands for zero matrix of appropriate order.

4.2.1. The Markov Chain. Let X,(¢) = number of external customers in the sys-
tem including the one getting service (if any) at time .
X,(#) = number of main customers in the system including the one getting service (if

any) at time t.
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If X;(r) = X5(r) = 0, then an external customer arriving at time 7 is taken for service.

Define

0, if the server is idle or the server is busy with external customers
S@) =

1, if the server is busy with main customers.

Let X(7) = (X1(1),S(¢), X5(1)); then {X(¢), t > 0} is a continuous time Markov chain on

the state space

S = {(0a09j2)a()§j2 Sn_k+ 1}U{(j190’j2)9j1 > 17OS j2 Sn_k+ l}U

{(1,1,/2),j1 20,1 < jo <n—k+1}.

Arranging the states lexicographically and partitioning the state space into levels i, where
each level i corresponding to the collection of states with number of external customers

in the system at any time ¢ as i, we get an infinitesimal generator of the above chain as

A Ao

Ay A, A
A, A, A

Ay A A

The entries of which are described below.
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The transition within level O is represented by the matrix

where

By = ME,_js2 + hCppn(n —k +2) ® 1ypo(n — k + 2) — (X + 012 + 6Cu_js2(1) ® 1ypya(1)

01x(n—k+1)

B,
Ol js1

Bsyisa (n—k+ 1) X (n — k + 2) matrix whose (1, 1) entry is  and all other entries are
zeroes.

By =ME, o1 + Ay (n—k+ 1) ®rpp(n—k+ 1) —uE, |

The transition from level i to level i + 1, i > O is represented by the matrix

4 Mn—ks2)xn—k+2)  Om—k+2)x(n—k+1)
0 =

O(n—k+1)><(n—k+2) 0(n—k+l)><(n—k+l)

Transition from level i to7 — 1,7 > 1 is represented by the matrix

A ljl(n—k+2)><(n—k+2) 0(n—k+2)><(n—k+1)
2 =

Om—iryxn—k+2) Ok 1)x(n—k+1)
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Transition within level i is represented by the matrix

A1 = AIO - A2.

4.3. Steady state analysis

4.3.1. Stability condition.

Consider the generator matrix A = Ag + A; + A,

F B,
Then A = , where

B; B,

F =M\E,_js2 + Mepop2(n =k +2) ® ry_psa(n — k +2) — 06,y + 0C—ps2(1) ® rpgsa(1).

Let 1 = (n(0), 7(1)), where 7(0) = (7(0,0),7(0, 1),...,7(0,n -k + 1)), (1) = (x(1, 1),
n(1,2),...,m(1,n — k + 1)) be the steady state vector of the generator matrix A.

The Markov chain {X(¢), t > 0} is stable if and only if w Ape < m Ase. It follows that
7t Age = Mt(0)e and 7 Ase = in(O)e.

Therefore the stability condition becomes

(4.3.1)

=l >
A
—

Though we have the stability condition as given by (4.3.1), for future reference, we

evaluate the steady state vector & as follows:
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The relation w A = 0 gives

n(0)F + n(1)B; = 0 (4.3.2)
7(0)B, + m(1)B, = 0. (4.3.3)
From (4.3.3), it follows that
n(1) = —n(0)B,B;". (4.3.4)

Substituting (4.3.4) in (4.3.2), we get

n(0)F — n(0)B,B;'B; = 0
7(0) (F - B,B;'B3) = 0. (4.3.5)
We notice that the first column of the matrix B; is —Bse and all other columns of Bj

are columns zero. Hence the first column of the matrix is (B;l) B; which is —e and its

all other columns are zero columns. This tells us that the first column of the matrix

-B, (B;l) B3 is Bye = 0 and its all other columns are columns of zeros. Hence
0€n_i+1
—\ A
6 —-(A+6) A
F-B,B;'B; = . ) ) ) (4.3.6)
) —(A+0) A
) -0

d(n—k+2)x(n—k+2)
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Then equation (4.3.5) gives:

. LY o
7(0,1) = (X 6) 7(0,0), i=1,2,....,n—k 4.3.7)
On—k+1 5(Ln_k 0.0) 43.8)
(0, n +1) = A 7(0,0). 3.

Equations (4.3.7) and (4.3.8) gives the component vector m(0) up to a constant (0, 0).
Hence from (4.3.4), the vector n(1) is also obtained up to the constant 7(0,0). The

constant 71(0, 0) can be found using the normalizing condition we = 1.

4.3.2. The steady state probability vector.
Let ¢ = (¢(0),¢(1),9(2),...) be the steady state probability vector of the Markov

chain {X(#),t > 0} where

o) = (¢(1,0,0),6(i,0,1),...,060,0,n—k+1),¢0G, 1,1),...,¢6G, 1,n—k+1)),i > 0.

The relation ¢ Q = 0 then gives rise to:

$(0)A1p + ¢(1)A2 =0 (4.3.9)
o(i— DAy + p(DA; + ¢p(i + 1)A; =0,i > 1. (4.3.10)
‘We notice that
A = iAz (4.3.11)
i

and therefore
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_ ) _ _ _
A() + 2141 + [é] A2 = QAZ + éAl + (ﬁJAO

I T TR I
M (4.3.12)
::(A2 +A1+A0) e
M
A
= :A.
M
Also
A1 = A10 - A2 (4313)

A
implies that Ao+ =A; = Ajp + Ao
u

= Al + A2 + AO
=A. (4.3.14)
Now, if we take
X i
O n(:] m,i>0, (4.3.15)
u

where 7 is the steady state vector of the generator matrix A, which was found in section

3.1 and n a constant, equations (4.3.14) and (4.3.15) helps us to write:

)
p(0)A10 + (1A, = nn [Al() + /:1A2)
=nmA

=0 (4.3.16)

112



=0. (4.3.17)

Hence, equations (4.3.16) and (4.3.17) show that if we take ¢ = (¢(0), #(1), #(2),...) as

in (4.3.15), equations (4.3.9) and (4.3.10) are satisfied. Since me = 1, it follows from

RN Ead

the normalizing condition e = 1 that the unknown constant n = 1 — p, where p =

We state the above discussion in the following theorem.

Theorem 4.3.1. The steady state probability vector ¢ = (¢(0), (1), d(2),...) of the

Markov chain {X(t),t > O} is given in product form as:
. AU
p)=1-p)f=| m,i 20,
7

where m is the steady state probability vector of the generator matrix A = Ag+ Ay + A,.

4.4. Performance measures

4.4.1. Busy period of the server with the failed components of the
main system.

Let T,, denote the server busy period with failed components of the main system
which starts with m failed components and i external customers in the system. We notice

that external customers have no influence on 7, since our repair policy is pre-emptive.
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For analyzing T,,, let Y(¢) be the number of failed components of the k-out-of-n
system. When T, starts, Y(¢) = m; then Y(f) may increase by 1 at the rate A and may
decrease by 1 at the rate .

When Y(t) = 0, T,, gets realized. {Y(¢),t > 0} is a Markov chain with state space

{0,1,2,...,n—k+ 1}, where O is an absorbing state. The infinitesimal generator matrix
of {Y(#)} is given by
0 0
Sy = , Where S = }\'En—k+l + )\,Cn_/ﬁ_l(l’l —k+ 1)
AR

® Fuki(n—k+ 1) +uE,_,, and S’ = -Se.

Busy period T, is the time until absorption in the Markov chain {Y(¢)}, assuming that it
starts at the state m. Hence T, has a phase type distribution with representation (a, S)

where a = r,_;41(m). The expected value of T, is therefore given by

ET, = — (aS’l e)

n—k—

m+1 j n—k J
(5) + (n—k+1—j)(5)].
j=0 H j=n—k—m+2 H

J=n

1
ET, =—|m
U

We recall that the busy period of failed components starts when at least 1 failed compo-
nent is present at the realization epoch of the random time 7. The state of the Markov
chain {X(7),t > 0} just before start of busy period 7, is (i,0, j),i > 0,1 < j<n—-k+ 1.

We take the probability of finding m failed components just before the start of a busy
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period T}, with an arbitrary number of external customers as ¢(m) = 2, ¢(i,0,m). The

i=0

expected value of busy period with failed components, which start with an arbitrary
number of failed components and an arbitrary number of external customers, is then

given by
n—k+1

Zzll p(m)ET,,

n—k+1

2 p(m)

m=1

lig =

4.4.2. Probability that the main system goes to the down state before
the random time 7 is materialized.

Here we derive P (i) the probability of finding i, 0 < i < n—k+ 1 failed components
at the realization epoch of the random time 7'. For this purpose, we consider the Markov
chain {¥(¢), t > 0}, where Y(7) represents the number of failed components. Besides the
states 0, 1,...,n — k + 1, we consider n — k + 2 absorbing states for Y(¢) denoted by
Ao, Ay, ..., A,_rs1, Where absorption to the state A; means that at the realization epoch of
T, there were i failed components in the system. Hence the state space of Y(¢) is given

by {Ag, Ay, ... s Ayi1,0,1, ..., n — k + 1}. Let V denote the collection of non-absorbing

states {0, 1,...,n — k + 1}. The infinitesimal generator matrix of Y()is given by
Ao - ANV
Ay o --- 0 0
U = ,
Apks1 | O --e 0 0
\Y Up -+ U U
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where U; = 6c,j2(i + 1), 0 < i < n—k + 1 is the column matrix, which governs
absorption from Vto A;jand U = MNE,_jyp + Acyjio(n—k+2)® 10—k +2) = 61,112
is the matrix, which governs transitions between the various states in V. Now Pr(i) is
the probability that absorption occurs to the state A; in ¥(¢) and hence, P7(i) = -8U~'U,,
where 8 = r,_t2(1). Therefore, P7(i) is the first entry of the column matrix —U~'U; =
Z = (21,225 - - »Zn-k+2)'- Thatis Py(i) = z;. To compute this for 1 < i < n — k, we notice

that UZ = —U; = —0c,—+2(i + 1), which gives rise to the following equations:

—(A+0)z;+hz1 =0,1<j<i (4.4.1)
—(M +0)zis1 + Azigo = =6 (4.4.2)
~(A+0)zj+hzjs1 =0,i+2<j<n—-k+1

—0Zp-k+2 = 0. (4.4.3)

It follows from equations (4.4.3) that z; = O fori+2 < j < n—k+2 and equation (4.4.2)

gives
)
A+06)

(4.4.4)

Zi+1l =
Iterating backwards, equation (4.4.1) gives

Pr(i) =z = IR R
A N S
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A similar computation gives

n—k+1
and Pr(n—k+1)= (—) .

)2 =
r(© A+0

M+ 9)

4.4.3. Other performance measures.

The measures that are described below refer to system condition in a cycle.

(1) Fraction of time the system is down,

Pd()wn = Z¢(j1’0’n_k+ 1)+Z¢(j1,1,n—k+ 1)

J1=0 J1=0

(2) System reliability,

zl_Pdown

(3) Average number of external customers waiting in the queue,

00 n—k+1 0 n—k+1
Ny=>"Gi=D D ¢Gn0. )+ D it Y. G 1, js).
J1=2 Jj3=0 Jj1=0 Jja=1

(4) Average number of failed components of the main system,

n—k+1 00 n—k+1 00
Nyair = Z J3 Z¢(11,0, J3) + Z J1 Z¢(jl, 1, j3)
J3=0 J1=0 Jj3=1 j1=0

(5) Average number of failed components waiting when the server is busy with external

customers

n—k+1 o
= > i ) #G1,0, j3)

J3=0 Ji=1
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(6) Expected number of external customers joining the system,

oo n—k+1

6 =1, ) 8.0, ja).

J1=0 j3=0
(7) Expected number of external customers on its arrival gets service directly

n—k+1

=F ), 90,0, /)

J3=0

(8) Fraction of time the server is busy with external customers,

o (n—k+1
Pex.busy = Z{ Z ¢(j1’09 ]3))

J1=1\ jz=0
(9) Probability that the server is idle,

n—k+1

Pie= ) #(0,0,n—k+1)
J3=0

(10) Probability that the server is busy,

Pbusy =1- Pidle

(11) Expected loss rate of external customers,

o (n—k+1
6i=1) [ 2. 9. l,ja)]
J1=0\ jz=1
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(12) Expected service completion rate of external customers,

oo (n—k+1
2 =EZ(Z ¢<jl,o,jg>)

J1=0\ j3=0

(13) Expected number of external customers when server is busy with external customers,

00 n—k+1
b= ) i ( > G0, 13)]

J1=1 J3=0

4.5. Numerical study of the performance of the system

We notice that under the T-policy discussed in this chapter, the priority of failed
components begins only on the realization of the random time 7. If T is not realized,
there is possibility of system being found in the down state. Table 4.1 shows that as 9,
the realization rate of the random time 7" decreases, the reliability of the system also
decreases. Due to the preemptive nature of the service to external customers, allowing
them doesn’t affect the reliability further. This fact also follows from the nature of the
steady state distribution given in Theorem 4.3.1, where 7 is the steady state probability
vector of a k-out-of-n system with T-policy and no external customers. In a k-out-of-n
system with 7-policy, the server remains idle if the random time 7 is not realized. Table
4.2 shows that the server idle probability is 0.27 even when 6 = 2. Hence rendering
service to external customers during this idle period might be a good idea for generating
additional income to the system. Table 4.3 justifies this intuition. If the realization rate
is small, for example 6 = 0.005 , Table 4.2 shows that server idle probability is 0.93

(when n = 45), in a system where external customers are not allowed; however when
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external customers are allowed, it follows from Table 4.3 that the server idle probability
is reduced to 0.56. At the same time Table 4.1 show that the system reliability is just
0.1, when 6 = 0.005. Hence finding an optimal value for ¢ seems to be an interesting
problem. For the same, we constructed and analyzed a cost function as follows:

Let C; be the cost per unit time incurred if the system is down, C, be the holding
cost per unit time per external customer in the queue, Cs is the cost incurred for starting
failed components service, C4 be the cost due to loss of 1 external customer, Cs be the
holding cost per unit time of one failed component, C¢ be the cost per unit time if the
server is idle. Now, consider the cost function,

C
Expected cost per unit time = C; - Py, + Co- Ny + Cy - 04 + E—3 + Cs - Nyait + Co * Didie-
S

Table 4.4 shows that an optimal value for ¢ can be obtained for different component

failure rates A = 4,4.5, 5, 6.
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Table 4.4. Variation in costn =45, A =3.2, u = 5.5, u = 8, C; = 2000,
C, = 1000, C; = 1600, C4 = 1000, Cs = 500, Cs = 100, k = 20
S A=4 A=45 A=5 A=6
0.005 2812.05054 2734.50244 2608.92358 1932.0752
0.007 273531641 2643.51587 2492.33667 1740.06384
0.009 2663.59082 2559.8562 2388.50049 1597.91943
0.01 2629.45825 2520.50146 2340.71875 1539.83276 25%°
0.03 2123.09912 1969.05518 1735.47485 1051.33716 2000 s
0.05 1820.06433 1665.29358 1446.2063 912.222778 1500 a5
0.07 1621.95947 1475.9408 1279.27649 848.368347 1000 | AS
0.09 1484.99597 1348.74854 1172.36658 812.769226 <4, e
0.1 143197754 1300.20605 1132.58997 800.651184
03 1122.22144 1012.10541 905.285889 751.959412 o 1 2
0.5 1166.1283 1028.01672 911.207886 770.260803
0.7 1264.1792 1090.52588 950.656372 795.817017
0.9 1371.0564 1162.78784 997.501831 822.161316
1.1 147537793 1235.22021 1045.06689 847.852661
1.3 1574.04211 1304.87305 1091.26477 872.51886
1.5 1666.43896 1370.8844 1135.39673 895.990112
1.7 1752.74353 1433.12891 1177.30688 918.267517
1.9 1833.38123 1491.73572 1217.02124 939.585693
2 1871.72095 1519.74512 1236.07495 949.794006
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Chapter 5

Reliability analysis of a k-out-of-n system with
repair facility extending service to external

customers in a pool of infinite capacity

5.1. The queueing model

We consider a k-out-of-n system with a single server, rendering service to external
customers also. It has a finite buffer of capacity n — k + 1 in which the failed components
of the main system wait for service in the order of their arrival. Also it has a pool of
external customers with infinite capacity.

When no external customers are present, the system behaves like a M/PH/1/n—k+1
queue. At the end of a service if there are external customers in the pool, the system

operates as follows: (i) if the buffer is empty an external customer from the pool is
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transferred to the buffer with probability 1 and immediately starts its service (ii) if the
queue size in the buffer is less than L (1 < L < n -k + 1), a pre-assigned number called
the transition level, an external customer from the pool is transferred to the head of the
queue in the buffer with probability ‘p’ and immediately enters for service (iii) if there
are between L and n — k + 1 failed components in the buffer, the customer at the head
of the queue in the buffer enters in to the service process. We assume that an external
customer who on arrival finds the server busy with main customers, joins the pool with
probability y, 0 <y < 1.

Failure time of components of the main system is assumed to follow an exponential
distribution with parameter % when i components are operational. External customers
arrive according to a Poisson process with parameter ). The service process of main cus-
tomers and external customers has the same phase type distribution with representation
(S, @) of order m.

In the sequel, e denote a column vector of 1’s of appropriate order, I, denotes an
identity matrix of order n, ® stands for Kronecker product of matrices and S is given

by S =-Se.

5.1.1. The Markov Chain.

Let Ji(t) = number of external customers in the pool including the one getting ser-
vice (if any) at time ¢,
J>(#) = number of main customers in the buffer including the one getting service (if any)

at time 7,
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0, 1if the server is idle or the server is busy with external customers
S =

1, if the server is busy with main customers

J3(t) = phase of the service process at time ¢.

Then X(¢) = (J1(¢), S (1), J»(t), J5(1)) is a continuous time Markov chain on the state space
(U I(@) where 1(0) = {(0,0,0)} U{(0, 1, j5,j3)/1 < j, <n—-k+ 1,1 < j3 < m} and for
i=0

i>1

(D) ={@,0, 2, j3)/0 < p<n—k+1,1< jz <mju

{(,1, o j3)/1 S ja<n—k+1,1< j3 <m}.

The infinitesimal generator of this process,

B, B
B, A, A
A, A, A

Q= A, Al A
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where the matrix By is a square matrix of order 1 + m(n — k + 1); the matrices By and B,

are of orders (1 +m(n—k+ 1)) X (m(2n -2k + 3)) and (m(2n -2k +3)) X (1 + m(n—k + 1))

respectively; Ay, A; and A, are square matrices of order (m(2n—2k+3)) X (m(2n—2k+3))
Transition from level from O to 1 is represented by the matrix

XCY 01><(n—k+1)m 0
B1 =

0 0 Lie1 ® YA,

The transition from level i to i + 1,7 > 1, is represented by

_ )_\'I(n—k+2)m 0
0= —
0 ’)/}\'I(n—k+1)m

Transition from level 1 to 0 is represented by

S0 0
B, = 0 L1 ® S

Ot—trymxt Ot Dmx(n—k+1ym

The transition from level i to i — 1, i > 2 is represented by

SO 0 0 0 0
A= 0 I ®pSla 0 L1201 -p)Sla 0
, =
0 0 O(r—k+2-Lymx(n—k+2-Lym 0 Ioks2-1)® S O
_O(n—k+1)m><m Okt mxt-vm O+ Dymx(n—k+2-Lym Ok ymx(L~1ym O(n—k+l)m><(n—k+2—L)m_
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The transition within level O is represented by the square matrix By of order

(1 + (n—k+ 1)m), where

—(A+ 1) A

SO S —(\+yMI, M,
SO S —+yM, M\,

S% S —M+yWI, M,

SO S — YA,
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Letmr = (7'1'(0), )5« -+ 7T(,,_k+1),’7?(1),’7?(2), .. .’7"1:(,,_](.,_1)) be the steady state vector of the
generator matrix A, where g = (7(1), G2y - - - Wimy)s L = 0,1 ..., n —k+ 1 and 7, =
(?Ti(i’l),fﬁ(i,z), .. ,fﬁ:(i,m)), i=1,2,..., n—k+ 1, then the equations nA=0andme =1 gives

the equations

oS + 8% —\,) + 71ySa = 0

71'(,')7\.1,,, + 7T(i+1)(S + pSOQ - )\.Im) +%(,-+2)pS0a/ =0,0<i<L-2

(5.2.1)
ToMy + (S —My) =0, L-1<i<n-k+1
Tn—ighm + Tn-k+1yS = 0.
w61 = p)S°a + Tay(S — M) + (1 — p)S°a =0
moy(1 = p)S°a + TayM,, + T (S — M,y) + Taen(1 — p)SPa=0,2 <i<L-1
(5.2.2)
7@S ' + TetyMy + Ty (S — M) + TS’ =0, L <i<n—k
Tn—k+1)S O + Tn-toMm + Tnts1)S = 0.
On simplification, we can express the equations represented by equ (5.2.1) as
mo(S + 8% — M, +hea =0
moMI, — ea) + msny(S + S%a =M, + hea) =0,0<i<n—k-1 (5.2.3)
TntoM Iy — €@) + Mgy (S + S%a) = 0.
Adding these equations we get
(@) + Tty + - - - + Tniany) (S + 8 %) = 0. (5.2.4)
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This shows that the vector gy + 7y + ... + Tu-k+1) 1S @ constant multiple of the steady

state vector 7 of the generator matrix S + S°a. Let

Ty + Ty + - - - + Tn—k+1) = 67] (5.2.5)

Similarly, on simplification of the equations represented by (5.2.2), we obtain
(717(1) +F7:l"(2) +... +7T'(n—k+l)) S + Sooz) = 0. This 1mphes that 717(1) + F7:l"(2) + ...+ Fﬁ(n—k+l)

is a constant multiple of the steady state vector 1. Since e = 1, we have

Ty + @)+ oo Tpgary = (1 = O)n. (5.2.6)

The stability condition rAype < A,e, that is
(71'(0) +Tay t+...+ 7T(n—k+1)) e + (7?(1) +ﬁ(2) + ... +E(n—k+1))
Y 0
)/?\e < (7‘[(0) +aay t...+ 7T(,,_k+1)) S,

thus becomes

Sh+ (1= 8)yh < onS°. (5.2.7)

If ¥ = 0, that is if the arrival of external customers is blocked while the server is busy

with main customers, the stability condition (5.2.7) becomes

L <ns°. (5.2.8)

133



5.2.2. The steady state probability vector. Let x# = (x(0),n(1),7(2),...) be

the steady state vector of the Markov chain {X(¢), f > o} where

n(0) = (7T(0,0),F7?(0,1),F7?(0,2), cee ,Fﬁ(o,n—kﬂ)) , and
n(i) = (7T(i,0)a7T(i,1)a7T(i,2), ce ,ﬂ(i,n—k+1),ﬁ(o,l),f(o,z), e aﬁ(O,n—k+l)) , here

T = (71'(1',]"1),71'(1',];2),.. -9ﬂ(i,j,m))ai =1,2,... andj: 0,1,....,.n—k+1

andﬁ(,',j) = (’E(i’j’l),ﬂﬁ(i,j’z), . ,?l:(,',j’m)), I = 0, 1,2, ...and ] = 1,2, NN (A k+1.
Let

i+ 1) =nx(DR,i>1,....

Then from 7Q = 0, we get

m(0)Ay + n(1)A; + m(2)A;, =0, (5.2.9)

n(0) (AO +RA, + R2A2) = 0.

Choose R as the minimal non negative solution of Ay + RA; + R?A, = 0. Then from

(5.2.9), we have

71'(1) = —71'(0)31 (A1 + R142)_1

(1) = n(0)w (5.2.10)

where w = —B (A, + RA,)~\.

Also
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n(0)By +m(1)B, =0

ﬂ(O)(BQ +wBy) =0

First take m(0) as the steady state vector of By + wB,, then (1) can be obtained using
(5.2.10). i > 2, m(i) can be found using the recursive formula z(i + 1) = a(1)R’, i > 1.
The steady state probability distribution of the system is obtained by dividing each

n(i) with the normalising constant (7(0) + (1) + ...)e = n1(0)e + 7(1)I - R) ' e

5.3. Performance measures

(1) Fraction of time the system is down,

Pagwn = Y > a(jrn—k+1,1,ja)+ > Y a(ji,n—k+1,0, ja)
J1=0 js=1 J1=0 js=1
(2) System reliability,

P = I - Paown

(3) Average number of external customers waiting in the pool,

n—k+1 m n—k+1 m
Ny = Z(h - 1)(2 Zﬂ(h,h,o 14)] Zh(z Zﬂ(h,h,l,m)

J1=2 72=0 js=1 Jj1=0 =1 ja=1

(4) Average number of failed components in the main system,

Niyair = Z Jz(zzﬂ(h,ho J4)) Z J2 [Zzﬂ(h,]z,l,h))

2= J1=1ja=1 J1=0 ja=1
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(5) Average number of failed components waiting when the server is busy with external

customers

n—k+1 [e) m
- >, jz[ 7(j1, -0, m]
J2=0 J1=1 ja=1

(6) Fraction of time the server is busy with external customers,

oo n—k+1 m

Pecus = D D D71, j2,0, ja)

1=l 2=0 ja=1

(7) Probability that the server is found idle,
Piq. = 1(0,0,0)
(8) Probability that the server is busy,

Pbusy =1- Pidle

(9) Expected loss rate of external customers,

co n—k+1 m

0, :7_\2 Z Zﬂ(jl,jz,l,jzt)

J1=1 jp=0 js=1

(10) Expected number of external customers in the system when server is busy with ex-

ternal customers,

o n—k+1 m
Os = Zjl 2 Zﬂ(jl,]'z,(), Ja)
Jji=1 12=0 js=1
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5.4. Numerical study of the performance of the system

Here, since the service to external customers is of non-preemptive nature, there is a
possibility of system going to the down status while external customers are getting ser-
vice. Hence, we studied the effect of the transition level L on the reliability of the system.
However, Table 5.1 shows that a very high reliability is maintained in the system. The
decrease in reliability as L increases is expected, since the increase in L leads to more
external customers being selected for service. However, Table 5.1 shows that the rate
of decrease in reliability is very slow. We have compared the reliability of the current
system with that of a system, where external customers are not allowed and had found
that they agree up to first 7 decimal places for different values of n. The server busy
probability was found to be 0.4, for a system where no external customers are allowed.
Table 5.2 shows that the server busy probability is above 0.57, when external customers
are allowed. Table 5.3 shows that the fraction of time the server remains busy with ex-
ternal customers P,y pusy 18 > 0.24. The increase in Py 5y as L increases, as shown
by Table 5.3 is expected, since as L increases, external customers obtain service more
frequently. The same reasoning can be attributed to a decrease in the server busy prob-
ability with main customers, which is reflected in the decrease in py,,, with an increase
in L, is noticed in Table 5.2. Though the entire system reliability may be satisfactory,
with external customers getting more frequent service, while L increases, the possible
dissatisfaction caused to the main customers forced us to investigate a cost function in
hope of finding an optimal value for L.

Let C; be the cost per unit time incurred if the system is down, C, be the holding
cost per unit time per external customer in the pool, C; is the cost incurred for starting
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service of failed components, C,4 be the cost due to loss of 1 external customer, Cs be the
holding cost per unit time of one failed component, C¢ be the cost per unit time when
the server is idle.
Now, consider the cost function,
Expected Cost per unit time = C; - Py, + Co - N, + Cy - 04 + g—; + Cs - Nygi + Ce - idle.
Table 5.4 shows that an optimal value for L can be obtained for different component

failure rates A = 4, 4.5, 5.

Table 5.1. Effect of the Transition level L on the system reliability A < u case

A=4,u=55Nr=32,0=8,y=055m=3

L n=45 n =50 n=>55
1 1 1 1
3 1 1 1
5 1 1 1
7 1 1 1
9 1 1 1
11 1 1 1
13 1 1 1
15 1 1 1
17 1 1 1
19 1 1 1
21 1 1 1
23 0.99999994 1 1
25 0.99999994 1 1
27 1 1
29 1 1
31 1 1
33 1
35 1
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Table 5.2. Effect of L on the server busy probability

A=4,u=55Lr=32,0=8,y=055m=3

n=45

n=>50

n=>55

— O N N W =N

15
17
19
21
23
25
27
29
31
33
35

0.60810256
0.586476922
0.576753855
0.573665261
0.572723567

0.57243067
0.572336793
0.572305799
0.572295308
0.572291672
0.572290421
0.572290003
0.572289705

0.60810256
0.586476922
0.576753855
0.573665261
0.572723567
0.572430611
0.572336733
0.572305799
0.572295308
0.572291672
0.572290421
0.572290003
0.572289824
0.572289705
0.572289705
0.572289467

0.60810256
0.586476922
0.576753855
0.573665261
0.572723567

0.57243067
0.572336793
0.572305799
0.572295308
0.572291672
0.572290421
0.572290003
0.572289824
0.572289765
0.572289705
0.572289705
0.572289705
0.572289646
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Table 5.3. Effect of L on the probability that server is busy with external

customers

h=4,u=55r=32=8vy=055m=3

n=45

n=>50

n=>55

L
1
3
5
7
9
1

1
13
15
17
19
21
23
25
27
29
31
33
35

0.244336635
0.250016034
0.252569616
0.253380775
0.253628808
0.253704965
0.253729612
0.253737718
0.253740489
0.253741443
0.253741801

0.25374189

0.25374189

0.244336635
0.250016123
0.252569586
0.253380775
0.253628045
0.253704935
0.253729612
0.253737718
0.253740489
0.253741443
0.253741771
0.25374186
0.25374192
0.25374195
0.25374195
0.253741831

0.244336635
0.250016034
0.252569616
0.253380775
0.253628075
0.253704965
0.253729613
0.253737718
0.253740489
0.253741443
0.253741801
0.25374189
0.25374192
0.25374195
0.25374195
0.25374195
0.25374198
0.25374192
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Table 5.4. Cost analysis

n=45k=20,A=32,u=55u=28,y=0.55m=3,C; =900000,

C, = 1000, C5 = 2000, C4 = 200, Cs = 500, C¢ = 100

r=4

A=4.5

A=5

— O N B W=

15
17
19
21
23
25

1781.65845
1398.34412
1217.66528
1157.48804
1138.29138
1132.05823
1129.97559
1129.26135
1129.01233
1128.92676
1128.90308
1128.90906
1128.9364

2097.99414
1631.46753
1371.07092
1269.76624
1232.53027
1218.68481
1213.39905
1211.33142
1210.51465
1210.20691
1210.13
1210.19128
1210.3645

2493.99146
1935.72974
1572.30933
1409.78735
1342.26868
1314.16382
1302.21362
1297.0354

1294.7998

1293.92249
1293.76453
1294.10291
1294.83313

3000
2500
2000
1500
1000

500

—_—As4
—A\=4.5
A=5

0 20 40
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Chapter 6

Reliabiity of a k-out-of-n System with a repair
facility rendering service to external customers
in a retrial set up and orbital search under

N-policy

6.1. The queueing model

We consider a k-out-of-n system with a single sever extending service also to ex-
ternal customers according to N-policy. An external customer, who finds an idle server
on its arrival, is immediately taken for service and who finds the server busy with an-
other external customer, joins an orbit of external customers with infinite capacity and

from there retries for service. The service to failed components starts only on the epoch
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of accumulation of N of them. If such an epoch happens in the middle of an external
customer’s service, the external customer in service will get pre-empted and the server
will be switched over to the service of the failed components. The external customer
whose service got preempted is sent back to the orbit. For decreasing the waiting of
the external customers in the orbit and also for effectively utilizing the server idle time,
we apply a search mechanism for selecting customers from the orbit. This works as
follows: at the epoch of service completion of an external customer or at the epoch of
service completion of the last main customer, the server makes a search with probabil-
ity p and selects a customer (if any) randomly from the orbit for the next service. The
search time is assumed to be negligible. Also we assumed that the arrival of external
customers is completely blocked while serving main customers. Arrival of main and
external customers has inter-occurrence times exponentially distributed with parameters
) and A respectively. Service times of main customers and external customers are inde-
pendent exponentially distributed with parameters u and u respectively. The inter-retrial

times are independent exponentially distributed random variables with parameter 6.

6.1.1. The Markov Chain.

Let X,(f) = number of external customers in the orbit including the one getting
service (if any) at time 7.
X>(#) = number of main customers in the system including the one getting service (if
any) at time .

If X,(t) = X5(¢) = 0, then an arriving external customer is taken for service.
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Define

0, if the server is idle

S = 1, if the server is busy with main customers

2, if the server is busy with external customers.
Let X(r) = (Xi(2), S (¢), X5(r)); then {X(¢), t > 0} is a continuous time Markov chain on

the state space

S = {(jla()’jZ)ajl > an < j2 < N - 1}U{(jl91’j2)9jl > 09

0<jp<n-k+1}U{(j1,2,/2),j1 20,0< jpb <N -1}

Arranging the states lexicographically and partitioning the state space into levels i, where
each level i corresponds to the collection of the states with number of external customers

in the system at any time ¢ as i, we get the infinitesimal generator matrix of the above

chain as )
Ao Ao
An A Ao
An Axn Ao
Az Az Ao
0=
Am Am Ao

where Aoy, Ag,Ap and A;y, i = 1,2,3,...m are square matrices of order 2N +n — k +

DXQ2N+n—k+1).
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In the sequel,

(1) I, denotes identity matrix of order n;
(i1) I denotes an identity matrix of appropriate size;
(iii) e, denotes a n X 1 column matrix of 1’s;
(iv) e denotes a column matrix of 1’s of appropriate order;

(v) E, denotes a square matrix of order n defined as

—-1; ifi=j 1<i<n
Ei,))=11; ifj=i+l, 1<i<n-1

0; otherwise.

(vi) E;, = Transpose of E,
(vii) r,(i) denotes a 1 x n row matrix whose i™ entry is 1 and all other entries are zeroes
(viii) ¢,(i) = Transpose of r,()

(ix) ® denotes Kronecker product of matrices.

The structures of these matrices for n = 10, kK = 6 and N = 3 are as follows.

The transition from level ‘0’ to level ‘0’ is represented by the matrix

Hy, Hy, Hj;

A00: H21 H22 0

H3 0 Hi
H11:>\,EN—XIN

Hiy = heny(N) ® Fpgs1(N)
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Hyz = My
Hyy = pcy_ (1) @ ry(1)
Hy = ME,_jp1 + My (n =k + 1)@ rypii(n —k+ 1)+ pE,_, .,

Hyy = uly

Hy; = )\'EN - ()_\,+,L_I)IN

The transition level ‘i’ to level ‘i + 1°,7 > 0 is represented by the matrix

0 0 0

Ao =10 0 0

0 Aen(N)® rgs1(N) My

The transition from level ‘i’ to level ‘i — 1°, i > 1 is represented by the matrix

00 01y

Ap =10 0 pucei1(1)@ry(1)|-

00 PHIN

The transition within level i, i > 1, is represented by the matrix

H" Hpy, Hpj

Ai=|Hy Hy O

»ﬁ31 0 H3; |
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H{) = Hy, — iy
ﬁZl = (1 - p)H»

H = (1 - p)Hs,

6.2. Steady state analysis

6.2.1. Stability condition.
We apply Neuts-Rao truncation for finding the stability condition of the system. For
this we assume that A;; = A,,; and A, = A,p for all i > m. Then the generator matrix of

the truncated system will look like this

Ao Ao

Ap A A
An Ay A
An Az A
Qm:
Am2 Aml AO
AmZ Aml A()
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Define A,, = A() + A, + A

HY Hy HY
Ap = ﬁzl Hy Hjs

_ﬁ31 Hz, Hi |

HY = (h+mb)ly
Hos = pucyi1 (D) ® ry(1)
Hz, = hen(N) @ 11 (N)
Hy; = \Ey — (1 = p)ily.
Let n, = (m1,(0),m,(1),7,(2)), where
7,(0) = (7,(0,0), 7, (0, 1), ... 7, (0O, N — 1))
(1) = (m,(1, 1), ..., 1,(1,n =k + 1))

ﬂm(z) = (7Tm(2a O), 7Tm(2a O)’ ) ﬂ'm(zv N - 1))

be the steady state vector of the generator matrix A,,. Then the relation m,,A,, = 0

implies:

OV H + 7,,(1)Hyy + 70,(2)Hz, = 0 (6.2.1)
7tm(0)H 12 + 7(1)Hap + m,(2)H3y = 0 (6.2.2)
T (OH? + 7,,(1)Has + 7,,(2)Hs3 = 0. (6.2.3)
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From (6.2.2), it follows that,
(1) = =70 Hia(Hy) ™' — () Hap(Hap) ™ (6.2.4)
Substituting for m,,(1) from (6.2.4) in (6.2.1), we obtain,
7n(OVHY = 1, (0 Hia(Ho) ™ Hot = (D Hso(Hoo)™ ot + 70(2)Ha1 = 0. (6.2.5)

We notice that the first column of the matrix ﬁm is —(1 — p)Hy, e and all other columns
are zero columns. Hence the first column of the matrix (sz)‘lﬁm is —(1 — p)e and
all other columns are zero columns. This in turn tells that the first column of the matrix

—-H 12(H22)‘1ﬁ21 is (1—p)icy(N) and all other columns are zero columns. In other words,
~Hpp(Hy) ™' Hoy = (1= pYhen(N) ® ry(1). (6.2.6)
Since Hs, = Hj,, it follows that
~Hy(Hy) ' Hay = (1= phey(V) @ ry(1). (6.2.7)

In the light of equations (6.2.6) and (6.2.7), equation (6.2.5) becomes

7n(0) (HY + (1 = phey(N) @ ry(1)) + 7n(2)

(Ha1 + (1 = pphey(N) ® ry(1)) = 0. (6.2.8)
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Substituting for m,,(1) from (6.2.4) in (6.2.3) and noticing that the first column of the

matrix ﬁ23 is —pH»; e, reasoning as for equation (6.2.8), we can write
7(0) (HY + prey(N) @ ry(1)) + 1,(2) (Has + phen(N) @ ry(1)) = 0. (6.2.9)

We notice that Hi’f) + Hﬁ';) = Hs; + Hy; = MEy. Hence adding equations (6.2.8) and
(6.2.9), we get

(7,(0) + m,(2)) MEN + hey(N) @ ry(1)) = 0. (6.2.10)

Equation (6.2.10) implies that the vector r,,(0) + 7,,(2) is a constant multiple of the

steady state vector ﬁ ey, of the generator matrix AEy + hey(N) ® ry(1) and hence,
1 ’
ﬂm(o) + 7Tm(2) = nNeN (621 1)

where 7 is a constant.

Since H3, = Hj», it follows from equation (6.2.2) that,
(7, (0) + 7,,(2)) Hyp + (1) Hyy = 0. (6.2.12)
Post multiplying equation (6.2.12) with the column vector e, we get
(m,(0) + 7, (2)) Hipe + (1) Hy e = 0. (6.2.13)

We notice that

lee = )\.CN(N) and sze = —,UCn_k+1(1). (6214)
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In the light of equations (6.2.11) and (6.2.14), equation (6.2.13) becomes
% = m,,(1, Dp. (6.2.15)
Now, from equations (6.2.11) and (6.2.12), it follows that
fin(1) = —%e}leg (Hy)™". (6.2.16)
Post multiplying with the column matrix e, equation (6.2.16) gives
7in(1e = —%e}vHU (Hp)'e. (6.2.17)
Since Hy; = hey(N) ® 1y 1(N), we get Lefy Hip = rn w1(N). Now,

n—k—N+1 n—k )\‘j
n—k+1 (V) (H. =—|N -k+1-pl—]| | 6.2.18
it (N)(Hp) e = ( Z ( ) D, —k+ J)(#)] (6.2.18)

Jj= Jj=n—k—N+2

For details on the derivation of equation (6.2.18), one may refer to Krishnamoorthy, see
section 2.4.3 of chapter 2.

Thus equation (6.2.17) becomes

7]7\41 n—k— N+1( ) n—k ‘ ()\,)]
m(1 —k+1- -1 1. 6.2.19
(e = [ JZ =kt 1= (6.2.19)

Jj=n—k—N+2

Now, from the normalizing condition x,,e = 1, we can write

(71n(0) + 7y(2))e + mp(1e = 1
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that is

21 n—k—N+1 A j n—k A J

7+ ”__(N (_) + (n—k+1 —j)(—) =1 (6.2.20)
H j=n—k—-N+2 H

which gives the constant 77 as

ol n—k—-N+1 A j n—k A J
n= [1 +——[N (—) + n—-k+1 —j)(—) . (6.2.21)
Ny —0 M j=n—k-N+2 H

J

Equation (6.2.21) shows that the constant 7 is independent of the retrial rate 6.

Now, from equation (6.2.9) it follows that,
—_ m 1
7(0) = —m,(2) (Hzs + phey(N) @ ry(D) (HY + phey(N) @ ry(1)) . (6.2.22)
From the structure of the matrix Hf;“ + phey(N) ® ry(1), it follows that the non zero

entries of its inverse are given by

-1
(HE + pheyWy @ ry(D) = =——,1<i<N

6.2.23
o ( )

H™ 4 phey(N) @ ry(1)) - = ——P4
(11 N vD)y, (h + mo)y:

.

It then follows from (6.2.23) that as m — oo, the matrix (H{} + phey(N) ® ry(1))
-1

tends to the zero matrix and the matrix mé (H i’;’) + phey(N) ® rN(l)) tends to the iden-

tity matrix Iy. Hence equation (6.2.22) gives

lim n,,(0) =0 (6.2.24)

m—00

and hence equation (6.2.11) implies that
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1
lim x,,(2) = nﬁe;\,. (6.2.25)

Therefore,

lim m0r,,(0) = —n%e;\, (ﬁ33 + phen(N) ® rN(l)). (6.2.26)

m—o00

Since (Hi; + phen(N) ® ry(1)) e = —(1 - p)jie — (1 — p)hey(N), it follows from (6.2.26)

that,
1-pA
lim mér,,(0)e = n(1 — p)u + % (6.2.27)
Now from the structure of the Ay and A,,, matrices, it follows that
TnAge = m,(2)(hen(N) + he) (6.2.28)
TtnAmz € = mon,(0)e + pur,(1)cp—r1(1) + pum,(2)e. (6.2.29)

Hence the stability condition r,,Ape < m,,A,ze for the truncated system becomes
Tn(2)(hey(N) + he) < mbr,(0)e + purt,(1)cais1(1) + prma(2e. (6.2.30)

As m — oo, equations (6.2.25), (6.2.27), (6.2.15), implies that inequality (6.2.30) be-

comes

nh = — nd-ph nph  _
N +nh<n(l —pu+ N + N + npu. (6.2.31)

On simplification, inequality (6.2.31) reduces to

>|
A
=I

(6.2.32)
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which leads to the following theorem
Theorem 6.2.1. The Markov chain {X(t),t > 0} is stable, if and only if A< M.

6.2.2. The steady state vector.
We find the steady state vector of {X(#),t > 0}, by approximating it with the steady

state vector of the truncated system. Let & = (7y, 71, 72, . . .) where each

m; = (m:(0,0), 70, 1), ..., m(0O, N — 1), m(1, 1), ...,

ﬂ'i(l’n —k+ 1)’71-1'(2, 0)77Ti(2, 1)7 .. 77Ti(2’N_ 1))

be the steady state vector of the {X(¢), ¢t > 0}.
Suppose A;; = A1 and Ap = A, for all i > m.

Let 1, = M, R, 7 > 0, then from 7Q = 0 we get

ﬂ'm—lAO + ﬂmAml + 7Tm+lAm2 =0

T (AO +RA,, + R2Am2) = 0.

Choose R as the minimal non negative solution of Ay + RA,,; + R?A,,» = 0. We call this
RasR,.

Also we have
7Tm—2AO + ﬂm—lAm—ll + ﬂ'mAmZ =0
-1
-1 = —Tm_2A0(Ap-11 + RpAm2)

= 7Tm—2Rm— 1s
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where R,,_; = —Ao(Apm-11 + RuAm) .

Further

Tm-3A0 + Tm2Am-—21 + Tp_1Ap_12 =0
-1
T = —Tm_3A0(Ap-21 + Ru-14Am-12)
= 7rm—3Rm—2,

where Ry = —Ag(Ap-ai + Ry_1Ap_12)™".

And so on. Finally mpAgy + m1A12 = 0 = m(Ago + R1A12) = 0.

First we take 7, as the steady state vector of (Agy + R1A2). Then &r; for i > 1 can be
found using the recursive formula, 7; = ;R for 1 <i<m— 1.

Now the steady state probability distribution of the truncated system is obtained by di-

viding each &r; with the normalizing constant

[ro+m+..Je=[np+m +...+ 7,0 +7rm_1(I—Rm)_1]e.

6.2.3. Computation of the matrix R,,.

Consider the matrix quadratic equation

Ag+R,A,, +R2A,, =0, (6.2.33)

which implies

Ry = —Ao (A, + RuAu,) ™" (6.2.34)

The structure of the Ay matrix implies that the matrix R, has the form:
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R,.=10 0 0| (6.2.35)

In other words, the non-zero rows of the R,, matrix are those, where the Ay matrix has at

least one nonzero entry. Now

0 0 0
RE=| o 0 ol (6.2.36)

»Rmszl RmsRmz an_g |

Equation (6.2.33) gives rise to the following equations:

Ry H" + Ry Hoy + Ry Hyy = 0. (6.2.37)
lele + Rm2H22 + )\.CN(N) ® ruke1(N) = 0. (6.2.38)

Ry Ryyym8ly + Ry R,y Hos + R2, pily + Ry His + Ry Has + My = 0. (6.2.39)
From equation (6.2.38), we can write
Ry, = =R Hip (Hp) ™' = hen(N) @ 1y i1 (N) (Hp) ™" (6.2.40)
Substituting for R,,, in equation (6.2.37), we get
Ry H\}) = Ry Hyy (Ha) ™" Hoy = hey(N) ® 1yt (N) ()™ Hoy + Ry Hyy = 0. (6.2.41)

From the discussion that has lead us to equations (6.2.6) and (6.2.7), it follows that
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~hen(N) @ Fyoiet (N) (Hzo) ™ Hoy = (1= p)hen(N) @ ry(1). (6.2.42)

Equations (6.2.6), (6.2.7) and (6.2.42) transform equation (6.2.41) as
Ru, (HY? + (1 = pYhen(N) @ r(1)) + Ry, (Hat) + (1 = pYhen(N) @ ry(1) = 0. (6.2.43)

-1
Denoting the matrix (H{}” + (1 = p)hey(N) ® ry(1))  as W, and hey(N) @ ry(1) as W°

from equation (6.2.43), it follows that

Ry, = =Ry, (Ha1) Wy = (1 = pYWOW,,. (6.2.44)

Using equation (6.2.40), it follows that

Ry, Hys = =R, Hiy (Hy) ™' Hys — hey(N) @ ryia 1 (N) (Ha) ™! Hos. (6.2.45)

We notice that ﬁ21 = (1 — p)H,;, where as ﬁ23 = pH»,. Hence replacing 1 — p by p in

equations (6.2.6), (6.2.7) and (6.2.42), we can write the equations

~Hy2(Hy) ' Hyy = phen(N) ® ry(1). (6.2.46)
—Hy(Hy) ' Hyy = phen(N) @ ry(1). (6.2.47)
AN (N) ® Tyt (N) (Hyp) ™ Haz = phen(N) @ ry(1). (6.2.48)

Equations (6.2.46) to (6.2.48) transform equation (6.2.45) as

Ry, Ho3 = Ry phen(N) @ ry(1) + pheny(N) ® ry(1). (6.2.49)

Substituting for R, from equation (6.2.44), the above equation becomes
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Ry, Hs = (=Ry, (Hat) W, = (1 = p)WW,,) pW° + pW°. (6.2.50)

Substituting for R, from (6.2.44), for Rm2ﬁ23 from (6.2.50), in equation (6.2.39), it

reduces to,

Ru( = Ry (H31) W = (1 = pYWOW,, JmOly
+ R ((=Rons (Hat) Wi = (1 = pYWOW,,) pW° + pW°)
+ RY, piily + (=Ry, (Hs1) Wiy — (1 = p)WOW,) i3
+ Ry Hzs + My =0 (6.2.51)
that is R, (— (Ha) Wm0l — (Ha1) W, pW° + piily)
+ Ry, (—=(1 = pYWOW,mbly — (1 = pYWOW,,pW° + pW° — (Hs,) W, Hys + Hys)

+ (-1 = pWOW, Hys + M) = 0 (6.2.52)

Which is a matrix quadratic equation of the form

R% Ay + Ry, + Ay =0, (6.2.53)

which can be solved for obtaining R,,. The matrix R, can then be obtained from
(6.2.44) and R,,, from (6.2.40).
We notice that

— lim W,, = — lim (B + (1 - phey(V) ® rN(l))‘1 _0.

m—0oo

~ tim W,mély = - lim (H? + (1 = pYhey(N) @ ry(D)) " mbly = Iy

m—o00
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and hence A, = n111_r>130 A, = n111_r>130 (— (ﬁ31) W,,mOly — (ﬁ31) W,.pW° + p,HIN)

= Hy + paly

= (1 = p)uly + puly

= uly. (6.2.54)
A = %ggoiml = nl}_rg)( — (1 = pW'W,,mOIy — (1 — p)W'W,,pW"°

+ pW° — H3 W, Hys + Hss)

= -p)W° + pW° + Hj;

= Hy + WP, (6.2.55)
Ay = lim Ay = lim (=1 = p)WW,Hys + M)

= AMy. (6.2.56)

Hence as m — oo, equation (6.2.53) becomes Rz;fz + RZl + ;1\0 = 0, whose minimal
non-negative solution R satisfies the relation
lim R,,, = R. (6.2.57)

nm—0o0

The relation (6.2.57) can be made use of selecting the truncation level m.

6.3. Performance measures

We now turn to deriving a few important characteristics of the system
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(1) Fraction of time the system is down:
Piown = anl(l,n —k+1).
Jj1=0

(2) System reliability defined as the probability that at least kK components are opera-
tional: P,y =1 — Pipyn-

(3) Average number of external units in the orbit is given by:
00 n—k+1
No = 2]1 Z m; (1, j3) + Z]l {Zﬂjl(() J3)+ Zﬂjl(z ]3)}

=0 j3= J1=2 j3=0 J3=0

(4) Average number of failed components of the main system:
n—k+1
Niair = Z J3 [Z 7;,(0, j3) + Zﬂjl@ J3)] Z J3 {Z (1, ]3)]
J3=0 Ji

(5) Average number of failed components waiting when the server is busy with external

customers:

EFSBE = Z Ja [Z 75, (2, J3)J

J3=0 Ji

(6) Expected number of external customers joining the system:

05 = xi (Z 7;,(0, js) + Z 7,2, m]

Jj3=0 j3=0

(7) Expected number of external customers on arrival getting service directly:

:ﬁi 11(0 J3)-
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(8) Fraction of time the server is busy with external customers:

Pexbusy = i [Z 72, 13))

J3=0
(9) Probability that the server is found idle:

oo N-1

Pige = Z Zn],(O J3)-

J1=0 j3=0
(10) Probability that the server is found busy:

oo N-1

Py = 1 = Pige = I—ZZF/1(0 J3)-

J1=0 j3=0

(11) Expected loss rate of external customers:

oo (n—k+1
94 = )\Z(Z ﬂjl(l,j3)].

J1=0
(12) Expected service completion rate of external customers:

o N-1

Os =), > ™2 o).

J1=0 j3=0

(13) Expected number of external customers when the server is busy with external cus-

tomers:
oo N-1
0= ) i (Z 73,2, j3>] :
J1=0 J3=0

(14) Expected number of successful retrials:

oo N-1

ESR =6- ) > 7,0, j3).

J1=1j3=0
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(15) The effective search rate is given by:

oo N-1 o)
EFSR = pii > > 7,2, j3) + pp ) 7, (1, 1),
J1=0 j3=0 J1=0

6.4. Numerical study of the performance of the system

According to the N-policy considered here, at the epoch when the number of failed
components in the main system reaches N, external customer’s (if any) service is pre-
empted in order to attend the failed components. Due to the pre-emptive nature of ser-
vice to external customers, allowing them does not affect the reliability of the system
further. Table 6.2 shows that, system reliability decreases as the value of N increases.
We want to notice that this is not due to the presence of the external customers; rather
this is because as N increases, it gets late for the server to start attending the failed com-
ponents and also it takes more time for the server to repair all the failed components
accumulated, and in the mean time the system can reach the down status. We have
compared the server busy probability of the system discussed here with that of a system
where external customers are not allowed. Table 6.4 shows that the server busy probabil-
ity is between 0.71 and 0.73, for a system where no external customers are not allowed;
where as the same is between 0.84 and 0.86 when external customers are allowed as can
be found in Table 6.3. Table 6.1 shows that the fraction of the time the server remains
busy with external customers is P, .5, greater than 0.094 and it is increases as the value
of N increases. This is because, as the value of N increases, the external customers gets
more attention from the server. In table 6.3, it can be seen that the server busy probabil-

ity increases initially as N increases and then it begins to decrease after N exceed some

162



value. For explaining this behavior, we notice that the server busy probability P, is
the sum of two probabilities namely the server busy probability with external customers
P, busy and the server busy probability with failed components P,, . Among these,
P\ pusy Increases as N increases, while P, ;,, decreases as N increases. As N exceeds
some value, which depends on the choice of the other parameters also, the magnitude of
decrease in P, 4., exceeding the magnitude of increase in P,y 445 could be the reason
behind the decrease of Py,;,. This points to while N increases, even though the system
reliability maintained as very high with external customers getting frequent service, a
possible dissatisfaction of the main customers forced us to find an optimal value for N.
For this we constructed a cost function as follows

Let C; be the cost per unit time incurred if the system is down, C,, be the holding
cost per unit time per external customer in the orbit, C; is the cost incurred towards set
up (instantaneous) of the server to serve main customers, C4 be the cost due to loss of
an external customer, Cs be the holding cost per unit time of one failed component, Cg

be the cost per unit idle time.

C
Expected cost per unit time = C; - Py, + C2 - No+Cys 04+ Cs - Ny + (E—3) +Ce - Pigie-
B

Table 6.5 gives the variation of the cost function as the N-policy level increases. Ac-
cording to the cost values and the other parameters assumed for Table 6.5, an optimum
value for N happens to be a much smaller value N = 3, which points to the care needed

for selecting N.
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Table 6.2. Effect of N-policy on system reliability

A=4,L=32,u=55u=8,p=06

=

n=45

n=>50

n=>55

n =60

n==65

—_— 0 J N W =

15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45

0.999927512
0.999896646
0.999848127
0.999770224
0.999642789
0.999431372
0.999076188
0.998472273
0.997434139
0.995629668
0.992453277
0.986771345
0.976366401

0.999985278
0.99997896
0.999969125
0.99995327
0.999927402
0.999884427
0.999812424
0.999690175
0.999480784
0.999118984
0.998488724
0.997382045
0.99542129
0.991909087
0.98551929
0.973603964

0.99999702
0.999995708
0.999993742
0.999990463
0.999985218
0.999976516
0.999961853
0.999936998

0.9998945
0.999821067
0.999693513
0.999470294

0.99907738

0.998381615
0.9971416
0.994914472
0.990871668
0.98341167

0.999999404
0.999999106
0.999998748
0.999998093
0.99999702
0.999995232
0.999992251
0.999987185
0.999978542
0.999963582
0.999937654
0.999892354
0.999812663
0.999671817
0.999421954
0.99897635
0.998178065
0.996739745
0.994129002
0.989336848
0.980377853

0.999999881
0.999999821
0.999999762
0.999999583
0.999999404
0.999999046
0.99999845
0.999997377
0.999995649
0.999992609
0.999987304
0.999978125
0.999961913
0.999933302
0.999882519
0.999792159
0.999630749
0.999341249
0.998820186
0.997878492
0.996167362
0.99303767
0.987223387
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Table 6.3. Effect of N-policy on server busy probability

A=4,A=32,u=55u=8,p=06

=

n=4>5

n=>50

n=>55

n =060

n==65

—_— 0 N N W =

15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45

0.857275724
0.858526945
0.858603597
0.858595431
0.858557642
0.85843315
0.858352482
0.858126064
0.85773623
0.857056856
0.855860233
0.853719652
0.849799335

0.857297719
0.858557999
0.858649135
0.858664453
0.85866493
0.858654141
0.858629882
0.858585477
0.858507335
0.858371615
0.85813427
0.857717574
0.856978774
0.855655491
0.85324846
0.848758399

0.857302189
0.858564317
0.858658373
0.85867846
0.858686686
0.858688831
0.85868609
0.858678579
0.858663321
0.858636022
0.858588219
0.858504355
0.858356416
0.858094394
0.857627392
0.856788158
0.855264723
0.852453589

0.857303083
0.858565569
0.858660281
0.858682321
0.858691096
0.858695865
0.858697653
0.858697355
0.858694911
0.858689725
0.858680248
0.85866344
0.858633459
0.858580709
0.858486652
0.858318806
0.858017802
0.857475638
0.856491923
0.85468632
0.851310493

0.857303262
0.858565807
0.85860638
0.858681917
0.85869205
0.858697295
0.858699918
0.858701289
0.858701229
0.858700752
0.858698964
0.858695865
0.858689785
0.858679175
0.858660221
0.858626127
0.858565032
0.858455837
0.85825938
0.857904792
0.85725981
0.856079221
0.853889942
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Table 6.4. Variation in the server busy probability when external cus-
tomers are not allowed

k=20)=4,u=55

N n=45 n=50 n=55 n=60 n=265
0.72722 0.72726 0.72727 0.72727 0.72727
0.7272 0.72726 0.72727 0.72727 0.72727
0.72717 0.72725 0.72727 0.72727 0.72727
0.72711 0.72724 0.72727 0.72727 0.72727
0.72703 0.72722 0.72726 0.72727 0.72727

1 0.72688 0.72719 0.72726 0.72727 0.72727

13 0.72663 0.72714 0.72725 0.72727 0.72727

15 0.72622 0.72706 0.72723 0.72726 0.72727

17 0.7255 0.72691 0.7272 0.72726 0.72727

19 0.72425 0.72666 0.72715 0.72725 0.72727

21 0.72206 0.72623 0.72706 0.72723 0.72726

23 0.71814 0.72546 0.72691 0.7272 0.72726

—_— O J WL W =
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Table 6.5. Variation in cost

A=32,u=551=8,p=0.6,C; =2000,C, = 1000,
Cs = 1600, C4 = 1000, Cs = 500, Cs = 100

=

rA=4

A=45

A=5

A=06

— 0 N N W =

15
17
19
21
23
25

6294.77881
5568.93115
5818.25
6210.08398
6648.28174
7105.86084
7571.48877
8038.32568
8500.26953
8949.75098
9375.36719
9758.08301
10063.5977

7014.58057
6558.06396
6848.77002
7246.75537
7676.01807
8114.13281
8550.64063
8978.31543
9390.24902
9778.28027
10131.4531
10433.8193
10660.3818

8451.76855
8271.66699
8555.66797
8901.53516
9259.15332
9613.13281
9955.93164
10282.1611
10586.7256
10863.8584
11106.3301
11304.4141
11444.3047

13187.4873

13118.4756 16000
13162.373 14000
13227.1445 12000

13297.1064 10000
8000

13367.0576
13434.373
13497.3008
13554.3633
13604.1982
13645.4541
13676.7705
13696.7246

6000
4000
2000

0
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Chapter 7

Reliability of a k-out-of-n system with a repair

facility- Essential and Inessential services

7.1. Introduction

We consider a k-out-of-n system with a single server repair facility. At the epoch the
system starts, all components are in operational state. Service to failed components is
in the order of their arrival. When a component is selected for repair, we assume that,
the server may select it for a service that turns out to be different from what is exactly
needed for it. In other words, each failed component may get selected for an unwanted
service, which we call the inessential service with probability p and with probability
(1 — p), it is taken for desired service, called the essential service. Once the inessential
service process starts, the customer either completes the service there and moves for the

essential service or leaves the system before completing the service in the first part. A
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random clock is assumed to start ticking the moment the inessential service starts, which
decides the event to follow: if the clock realises first (still the inessential service is going
on) the customer leaves the system immediately without going for the essential service.
On the other hand if the inessential service gets completed before the realisation of the
random clock, then the component moves for the essential service immediately.

The arrival process of the failed components has inter-arrival times exponentially
distributed with parameter A. The essential service time of a failed component is ex-
ponentially distributed with parameter u and the service time of failed components in
inessential service has a phase type distribution with representation (a, S) of order m.
We assume that S° = —S e. S be a square matrix of order m with entries y;;, where y;; is
the parameter of the exponentially distributed sojurn time in state i when it moves from
j to i. The random clock time is assumed to be exponentially distributed with parameter

0.

7.2. The Markov Chain

Let N(¢) = at time ¢ number of failed components in the system.

0, if the failed component getting essential service
J) =11, ifafailed component getting i phase of inessential service,

wherei=1,2,...,m

Then {X(7), t > 0} where X(¢) = (N(¢), J(¢)) is a continuous time Markov chain with state

space {(0,0)} U {1,2,...,n—k+ 1} x{0,1,2,...,m}.
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The generator matrix of the Markov chain {X(7),t > 0} is

Ao Bo
B, A

Az

Ao
A

A

Ao

Ay

A = [-Al; By = [(1 = p)A phal; By

—(u+MN) 0

A] =
S0 S -0+ M,
— | 0
Al =
s S -4l,

;Ao

Ao
Ay, A
Ay
B M
oe
= [My1];Ar =

where a = (a1, a2 ...,a,) Witha +ar + ...+ @, = 1.

LetB=(1-p) p)

171

(1 -pu  pua

(1-p)oe poex



since this system is finite, it is stable. Let

n=m0),n),...,1(n—k+1))

with

(i) = (n(i,0),7(i,1),n(i,2),...n(i,m)), | <i<n-k+1

be the steady state probability vector of the system {X(¢),# > 0}. Then it satisfies the
equations tQ =0 and e = 1.

The equation mQ = 0 gives rise to

7(0)Ago + 7(1)B; = 0 (7.2.1)

m(0)By + (1A, + 1(2)A; = 0 (7.2.2)

7(i = DAg + (DA, + (i + 1)A, =0,2<i<n—k (7.2.3)
m(n —k)Ag + n1(n —k + DA, = 0. (7.2.4)

Since Ay = [—A] and B; = A, e, from (7.2.1) it follows that

At(0) = n(1)Az e. (7.2.5)

Since By = AB, equation (7.2.2) becomes

(OB + m(1)A; + 1(2)A, = 0. (7.2.6)
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Using (7.2.5) we can write this equation as

m(1)B1B + n(DA; + m(2)A; = 0.

We notice that B8 = A, and hence equation (7.2.7) beocmes

r(1)(A; + Ay) + 1(2)A, = 0.

Post multiplying equation (7.2.8) with e, we get

n(1)(A; +Ay)e +(2)Ae =0

but (A; + Ay)e = —Age = —he. Hence (7.2.9) becomes

n(1)he = 1(2)Aze.

We notice that A, = A, ef3, which transforms equation (7.2.8) in to

n(1)(A; + Ay) + 1(2)Az e = 0.

Substituting for 7(2)A; e from (7.2.10) in (7.2.11), we get

7(1)(A, + Ay) + n(1)keB = 0.

That is

ﬂ(l)(A] + A, + keﬁ) =0.
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Equation (7.2.12) shows that (1) is a constant multiple of the steady state vector ¢ of

the generator matrix A; + A, + Aef. That is

7(1) = ¢ (7.2.13)

where 7 is a constant.

Equation (7.2.3) for i = 2 gives

n(1)Ao + m(2)A; + n(3)A, = 0. (7.2.14)

Since A, = A, ef3, equation (7.2.14) becomes

(DA + 71(2)A, + 7(3)A, €8 = 0. (7.2.15)

Post multiplying with e, we get

n(1)he + n(2)A, e + n(3)Ae = 0. (7.2.16)

Using (7.2.10) the above equation can be written as

n(2)Ae + 1(2)Ae + 1(3)Ae =0

re., mR2)A +Ay)e=-n(3)Aze

ie., m2)he=n3)Ae. (7.2.17)
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In the light of equation (7.2.17), equation (7.2.15) becomes,

m(DAo + m(2)A, + n(2)hef =0

ie., m(1)Ag+m(2)(A; +LreB)=0

which implies that

71(2) = —n(DAy(A, + LeB)™ .

That is

n(2) = —n@Ay(A; + LeB) . (7.2.18)

Post-multiplying equation (7.2.3) with e and proceeding in the same lines as we derived

equation (7.2.17), we can derive that

n(i+ 1A, e =n(i)he, for3<i<n-—k. (7.2.19)

Equation (7.2.19) then transforms equation (7.2.3) as

n(i — 1)Ag + m()A; + n(i)hef =0,3 <i<n-—k,

which implies that

n(i) = —n(i— DAy(A; +heB) ', 2<i<n—k (7.2.20)

which in turn gives

m(i) = (=) 'ne(Ag(A; + heB) )2 <i<n—k (7.2.21)
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We notice that A; e = —A, e; post-multiplying equation (7.2.4) with e, we get
an—khe=nn—-k+ 1)Ae. (7.2.22)
From equation (7.2.4), we can also write
n(n—k+1) = —n(n—k)Ay(A) " (7.2.23)
Using (7.2.21) fori = n — k, (7.2.23) becomes
an—k+1)= (=1 n@(Ag(A; + LeB)™ Y 1 A0A) . (7.2.24)

Hence, we have the following theorem for the steady state distribution:

Theorem 7.2.1. The steady state distribution ® = (n(0),n(1),...,7(n — k + 1)) of the

Markov chain {X(t),t > 0} is given by

1
n(0) = XU‘PBI
n(l) =ne¢
n(i) = (D) "'ne(Ao(A; +heB) ) 2<i<n—k

=k +1) = (1) n@(Ao(A; +LeB) ) Ag(A))7,

where @ is the steady state vector of the generator matrix A} + A, + Lef and n is a

constant, which can be found from the normalizing condition we = 1.
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7.3. System performance measures

(1) Fraction of time the system is down,

m

Pdownzzﬂ(n_k'i'laj)

J=0

(2) System reliability,

Prel:I_Pdownzl_zﬂ(n_k"'laj)
j=0

(3) Average number of failed components in the system,
n—k+1 m
Nyai = i[z (i, j)) :
=0 \j=0

(4) Expected rate at which failed components are taken for essential service:

n—k+1 n—k+1 m
E., = (1 — p)An(0) + Z (1 = p)un(i,0) + Z (1-p)o (Z (i, j)).
i=2 i=2

1

(5) Expected rate at which failed components are taken for inessential service

i=2 i=2

n—k+1 n—k+1 m
Eines = phr(O) + ) pun(i,0)+ ) pé(z (i, j)].

J=1

(6) Expected rate at which new components were bought:
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(7) Expected rate at which failed components that start with inessential service subse-

quently moves to essential service before clock realisation :

Eine = "il mzrlﬂ(i, j)SO(j - L.
=1 j=2
(8) Fraction of time server is idle:
Pige = (0).
(9) Fraction of time server is busy:
Ppusy = 1 = m(0).

Numerical study of the system performance measures

Notice that if a component is selected for inessential service, it is either replaced
by a new component (if the random clock realises before completion of the inessential
service) or is got repaired (if the inessential service completes before the random clock
realises). Hence a component getting selected for inessential service according to prob-
ability p affects the system reliability only through an increase in the repair time by a
random amount of time (minimum of inessential service time and random clock time).
Table 7.1 shows that very high reliability is maintained in the system, which decreases
slightly as the probability p that a failed component receives an undesired service ini-
tially, increases. The decrease in the average rate at which components directly receive

essential service with an increase in p, as seen in Table 7.2, was expected. So is the
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increase in the rate at which components receive inessential service initially as seen in
Table 7.3, with an increase in p. According to the modelling assumption, if the ran-
dom clock expires during an inessential service, the component receiving the inessential
service is replaced with a new component. Hence, as the probability p increases, more
components will get selected for inessential service, which leads to an increase in the
replacement rate as seen in Table 7.4.

Since the inessential service is not helping the system in any way whatsoever, one
would expect the optimal value for the probability p as to be zero. However in a situation
where the possibility for inessential service can’t be avoided, one would like to know its
harm through some number. For this purpose, we have constructed a cost function as
follows:

Let C be the cost per unit time incurred if the system is down, C,, be the repair cost
per unit time for essential service per failed component, C; is the cost incurred towards
the time loss due to wrong diagnosis with failed components and consequent realisation
of random clock before inessential service completion. Cy is the extra cost incurred
on failed components that start with inessential service subsequently moves to essential

service before clock realisation, Cs be the repair cost per unit time for inessential service

Expected cost per unit time = C| - Py, + Co - E,; + C3- Ecp+Cy- E;ng + Cs - Eiyes.

Table 7.5 presents the variation in cost function as the probability p increases for

different component failure rates. In all the cases studied, the optimum value of p was
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Conclusion

In this thesis, we studied different k-out-of-n systems where the server, besides re-
pairing failed components, renders service to external customers also. Rendering service
to external customers could be an effective way for utilizing the server idle time and
there by earn more profit to the system. However, in the case of a system, where a mini-
mum number of working components is necessary for its operation, the external service
should be carefully managed so that it does not affect the system reliability seriously.

In chapter 2, we adopted an N-policy for managing the external service. Precisely,
we assume that the server starts attending failed components of the main system only
on accumulation of N of them. During this idle period, the server renders service to
external customers (if there is any). This scenario was modeled using a continuous time
Markov chain. Further we make the reasonable assumption that the external service is
pre-emptive in nature on accumulation of N failed components and also that the external
arrivals which finds the server busy with failed system components are blocked from en-
tering the system. These assumptions lead us to a product form solution for the system
steady state distribution, when the underlying distributions are all assumed to be expo-
nential; and for obtaining the same, we used a novel matrix decomposition approach.
Our numerical study of the system performance measures reveals that by introducing N-
policy, we can optimize the system revenue, by rendering service to external customers,
still maintaining high system reliability. Analysis of a cost function has helped us in

finding an optimal value for the N-policy level.
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In chapter 3, we extended the model in chapter 2 by considering a non-preemptive
service for external customers thereby making their service more attractive. We analyzed
two models: one in which the external customers joins a queue and another in which they
move to an orbit of infinite capacity. Our numerical study showed that rendering non-
preemptive service to external customers has not affected the system reliability much,
thereby re-asserting that the same could be an effective idea for utilizing the server idle
time and there by earning more profit to the system. Here also we analyzed a cost
function, which helped us in finding an optimal value for the N-policy level.

In chapter 4, we replaced the N-policy for the service of failed components with a 7-
policy. That is at the epoch the system starts with all components operational, the server
starts attending the external customers (if there is any). The server starts the service of
the failed components only at the moment of the realization of the random time 7 (if
there is at least one failed component). If the time 7 is realized in the middle of an
external customer’s service and if there exists at least one failed component, the external
customer in service is pre-empted and the server is switched over to the service of main
customers. The preempted external customer goes to the queue of external customers.
Our numerical study showed that the realization rate of the random time 7" should be
chosen very carefully since it may severely affect the reliability of the k-out-of-n system.
More precisely if T takes large values with positive probability, reliability is very small
and at the same time the server busy probability is not very high. We have therefore
constructed a cost function for selecting an optimal value for the realization rate of 7.

As in the case of classical queue, the performance of N-policy excels that of 7T-policy.
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In chapter 5, it was assumed that the server selects an external customer from the
pool of external customers for service with probability ‘p’, if the number of failed com-
ponents is less than ‘L’, a pre-assigned number called the transition level. We notice that
in the case of an N-policy (assumed in chapters 2 and 3), the server starts attending the
failed components only on the accumulation of N of them and in the case of T-policy
(assumed in chapter 4) it happens on the realization of time 7. In contrast to these, ac-
cording to the policy adopted in this chapter, even if there is only one failed component
found at an external customers service completion epoch, its repair is started with prob-
ability 1 — p. Hence this policy helps to maintain very high system reliability and at the
same time gives much attention for external customers. Optimal value for L was found
based on a cost function.

Chapter 6 differs from the preceding chapters that it assumes the external customers
are sent to an orbit instead of a queue. We assume an N-policy for starting the service
of failed components and the service of an external customer is preempted and it is sent
back to the orbit at the epoch of accumulation of N failed components. Because of the
assumption of the orbit of external customers, the server goes idle after each service
completion of an external customer. In order to reduce the server idle probability, an
orbital search of external customers was applied. An optimal value for N was found
using a cost function.

Chapter 7 does not assume any external customers in the system; instead here the
reliability of a k-out-of-n system is studied in a setup where a failed component may get

selected for an undesirable service initially, which may be due to some wrong diagnosis
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of the reason for its failure. Each failed component may complete the different stages of
the undesirable service to finally receive the essential service or may get replaced with a
new component. This decision was done on the basis of the elapse of a random clock 7'.
More precisely, if T realizes before the completion of the unwanted service, the failed
component is replaced with a new component. A cost function was studied for selecting
an optimal value for the probability p with which an external customer is selected for
the unwanted service and it was found that zero is its optimal value.

There are several extensions to the work reported in this thesis. For example external
arrivals, wherever considered could be assumed to follow an Markovian Arrival Process
with appropriate representation. D-policy as a control policy could be examined. Here
it is the accumulated work load (D) that is to be considered. Yet another direction of
extension is a multi server system. The extension of the results reported to the case of
more than one essential service is worth examining. This has applications in medicine,

biology and several other fields of activity.
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