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Chapter 1

Introduction

1.1. Queueing theory

All of us have experienced the annoyance of having to wait in line. Queueing is

quite common in many fields, as there is more demand for service than availability

of facility for service. Over the years, the subject found its applications in areas like

telecommunications, Traffic flow, Computer systems, ATM facilities, Computing etc.

and forced researchers study Queueing models extensively. Queueing theory was de-

veloped to provide models to predict the behaviour of systems that attempt to provide

service for randomly arising demands in a natural way. The first problem of queueing

theory arose in telephone calls and Erlang was the first who treated congestion problems

in the beginning of 20th century.

The basic characterics of a queueing system are the following:
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Arrival pattern of customers.

It describes the way customers arrive and join a queuing system. Arrival pattern is

often random with two adjacent arrivals generally spaced by random intervals called the

inter-arrival time. The arrival pattern is described by means of a probability distribution

of the inter-arrival time. Arrival may also occur in batches instead of one at a time.

If the queue is too long a customer may decide not to enter it upon arrival. This

customer behaviour is called balking. A customer may enter the queue, but after some

time lose patience and decide to leave. This is known as reneging. Another case is,

when there is more than one queue, customers have the tendency to switch from one to

another which is called jockeying.

Service Pattern.

This describes the manner in which the service is rendered. As in case of arrivals,

the service also is provided in single or in batches. The probability distribution of the

service time describes the service pattern.

Queue discipline.

Queue discipline refers to the rule in which customers are selected for service when

a queue has formed. Some of the most commonly used disciplines are first come first

served (FCFS), last come first served (LCFS), random service selection (RSS) i.e., se-

lection for service in random order independent of the time of arrival; there are cases in

which customers are given priorities upon entering the system, those with higher priority

are selected first.
2



System capacity.

A queuing system can be finite or infinite. In certain queuing process there is a

limitation on the length of the queue i.e., customers are not allowed to enter if the queue

has reached a certain length. These are called finite queuing systems. If there is no

restriction on the length of the queue then it is called an infinite capacity queuing system.

Number of service channels.

A queuing system can be single or a multiserver system. In a multiserver queuing

system there are several parallel servers to serve a single line/several waiting lines.

Number of service stages.

A queuing system may have only a single stage of service. But as an example of

a service with several stages of service, consider the physical examination procedure,

where each patient proceeds through various stages of medical examination, like throat

check up, eye test, blood test etc.

1.2. Basic Concepts

Here we give a brief description of the modelling tools/techniques applied in the

thesis. For more details on these topics one can refer Karlin and Taylor [10] or Latouche

and Ramaswami [16].

1.2.1. Stochastic process. A family of random variables {X(t), t ∈ T }, where T

is an index set, is called a stochastic process. The index t is often referred to as time.

When T is a countable set, {X(t), t ∈ T } is said to be a discrete-time process, whereas

if T is an interval of the real line, it is called a continuous-time process. For instance,
3



{Xn, n = 0, 1, . . .} is a discrete time stochastic process indexed by the set of non negative

integers, while {X(t), t ≥ 0} is a continuous time process indexed by non negative real

numbers.

1.2.2. Markov Process.

A Markov process is a stochastic process {X(t), t ∈ T } that satisfies the condition

Pr{X(tn) ≤ xn/X(tn−1) = xn−1, . . . , X(t1) = x1} = Pr{X(tn) ≤ xn/X(tn−1) = xn−1},

for any set of n time points t1 < t2 < . . . < tn in the index set or the time range of the

process and x1, x2, . . . , xn are elements of the state space. That is the stochastic process

{X(t), t ∈ T } that changes states according to a transition rule that only depends on the

current state but not the past is called a Markov process.

1.2.3. Exponential distribution.

A continuous random variable X is said to follow exponential distribution with pa-

rameter µ if its probability density function is given by

f (x; µ) =


µe−µx x ≥ 0

0 x < 0

and µ > 0. One of the most important properties of the exponential distribution is the

memoryless property: Pr(X > x + y/X > x) = P(X > y) for x, y ≥ 0. In making a

mathematical model for a real life phenomenon we often assume that certain random

variables associated with the problem under study are exponentially distributed.

1.2.4. Renewal Process.

A counting process {N(t), t ≥ 0} with independently and identically distributed inter-

arrival times is called a renewal process. Consider a renewal process {N(t), t ≥ 0} having
4



inter arrival times X1, X2, . . . with distribution function F. Let S n =
n∑

i=1
Xi, n ≥ 1; S 0 = 0.

Then we have N(t) = max{n : S n ≤ t} and the distribution of N(t) is given by Pr{N(t) =

n} = Fn(t) − Fn+1(t) where Fn is the n-fold convolution of F with itself. The Poisson

process is a renewal process where F is an exponential distribution.

1.2.5. Poisson Process.

A Poisson process {X(t), t ≥ 0} is a renewal process having rate λ if

(i) X(0) = 0.

(ii) The process has stationary and independent increments.

(iii) P{X(h) = 1} = λh + o(h).

(iv) P{X(h) ≥ 2} = o(h).

It follows from the definition that for all s, t ≥ 0,

P{(X(t + s) − X(s)) = n} = e−λt (λt)n

n!
, n = 0, 1, . . . .

For a Poisson process having parameter λ the inter arrival time has an exponential dis-

tribution with mean 1/λ.

1.2.6. Continuous-time Phase type (PH) distributions.

Consider a Markov process on the states {1, 2, . . . ,m+1}with infinitesimal generator

matrix Q =


T T 0

0 0

 where the m×m matrix T satisfies Tii < 0 for 1 ≤ i ≤ m and Ti j ≥ 0

for i , j; T 0 is an m × 1 column matrix such that Teee + T 0 = 0, where eee is a column

matrix of 1’s of appropriate order. Let the initial probability vector of Q be (α, αm+1),
5



where α is a 1 ×m dimensional row vector and αm+1 is a scalar such that αeee + αm+1 = 1.

Also assume that the states 1, 2, . . . ,m are all transient so that absorption in to the state

m + 1 from any initial state is certain. For eventual absorption into the absorbing state,

starting from every initial state, it is necessary and sufficient that T is non singular.

The probability distribution F(·) of time until absorption in the state m + 1 corre-

sponding to the initial probability vector (α, αm+1) is given by F(x) = 1 − αe(T x)eee, x ≥ 0.

Definition 1.2.1. A probability distribution F(·) is a distribution of phase type(PH-

distribution) if and only if it is the distribution of time until absorption of a finite Markov

process described above. The pair (α,T ) is called a representation of F(·).

For PH-distribution F(·) with representation (α,T ),

(i) The distribution F(·) has a jump at x = 0 of magnitude αm+1.

(ii) The corresponding probability density function f (·) is givenby f (x) = α exp(T x)T 0.

(iii) The Laplace-Stieltjes transform f (s) of F(·) is given by

F(s) = αm+1 + α(sI − T )−1T 0, for Re(s) ≥ 0.

(iv) The moments about origin are given by µ′k = (−1)kk!(αT−keee) for k ≥ 0.

When m = 1 and T = [−λ], the underlying PH-distribution is exponential.

1.2.7. PH-renewal process.

A renewal process whose inter-renewal times have a PH distribution is called a

PH-renewal process. To construct a PH-renewal process we consider a continuous
6



time Markov chain with state space {1, 2, . . . ,m + 1} having infinitesimal generator

Q =


T T 0

0 0

. The m × m matrix T is taken to be nonsingular so that absorption to

the state m + 1 occurs with probability 1 from any initial state. Let (α, 0) be the initial

probability vector. When absorption occurs in the above chain we say a renewal has

occurred. Then the process immediately starts anew in one of the states {1, 2, . . . ,m} ac-

cording to the probability vector α. Continuation of this process gives a non terminating

stochastic process called PH-renewal process.

1.3.

1.3.1. Level Independent Quasi-Birth – Death (LIQBD) process.

A level independent quasi birth and death process is a Markov process on the state

space S = {(i, j) : i ≥ 0, j = 1, 2, . . . ,m} and with infinitesimal generator matrix Q given

by

Q =



B0 A0

B1 A1 A0

A2 A1 A0

A2 A1 A0

· · · · · · · · ·

· · · · · · · · ·

· · · · · ·



(1.3.1)

The above matrix is obtained by partitioning the state space S as S =
⋃

i ∆i where

∆i = {(i, j)/ j = 1, 2, . . . ,m}. The states in ∆i are said to be in level i. The states within
7



the levels are called phases. The matrix B0 denotes the transition rates within level 0,

matrix B1 denotes the transition rates from level 1 to level 0. A2, A1 and A0 denote

transition rates from level i to (i − 1), i and (i + 1) respectively.

1.3.2. Matrix Analytic Method.

Even though the Queueing models such as M/M/1,M/M/∞ and G/G1 are well

studied and are well tractable using the methods like Method of generating functions,

Laplace Transforms etc., they fail to provide numerical tractability analysis of such

queueing models especially when we assume the distribution of inter-arrival time or

service time is to be not non-exponential.

Matrix analytic approach to stochastic models was introduced by M.F Neuts to pro-

vide an algorithmic analysis for queueing models. The following brief discussion gives

an account of the method of solving an LIQBD using the matrix geometric method. For

a detailed description, we refer to Neuts [17], Latouche and Ramaswami [16].

Let x = (x0, x1, x2, . . .), be the steady state vector, where xi’s are partitioned as xi =

(x(i, 0), x(i, 1), x(i, 2), . . . , x(i,m)),m being the number of phases with in levels.

Let xixixi = x0Ri, i ≥ 1. Then from xQ = 0 we get

x0A0 + x1A1 + x2A2 = 0

x0A0 + x0RA1 + x0R2A2 = 0

x0(A0 + RA1 + R2A2) = 0.

Choose R such that R2A2 + RA1 + A0 = 0.

8



Also we have x0B0 + x1B1 = 0, which gives

x0B0 + x0RB1 = 0

i.e., x0(B0 + RB1) = 0.

First we take x0 as the steady state vector of B0 + RB1. Then xi, for i ≥ 1 can be found

using the formulae; xi = x0Ri for i ≥ 1. Now the steady state probability distribution of

the system is obtained by dividing each xi, with the normalizing constant [x0+x1+. . .]eee =

x0(I − R)−1eee.

The above discussion leads to the following theorem.

Theorem 1.3.1. The process represented by matrix Q is positive recurrent if and only if

the minimal non negative solution R of the matrix quadratic equation

R2A2 + RA1 + A0 = 0 (1.3.2)

has spectral radius less than 1 and the finite system of equations

x0(B0 + RB1) = 0,

x0(I − R)−1eee = 1

has a unique solution x0. If the matrix A = A0 + A1 + A2 is irreducible, then sp(R) < 1 if

and only if πA0eee < πA2eee, where π is the stationary probability vector of A = A0 +A1 +A2.

The stationary probability vector x = (x0, x1, . . .) of Q is given by xi = x0Ri for i ≥ 1.

To find the solution R of equation (1.3.2), we use the iterative procedure.

9



1.3.3. Level Dependent Quasi Birth Death (LDQBD) Process.

A level dependent Quasi-Birth – Death process is a Markov process on a state space

S = {(i, j), i ≥ 0, J = 1, 2, . . . , n} with infinitesimal generator matrix Q given by

P =



A10 A00

A21 A11 A01

A22 A12 A02

A23 A13 A03

· · · · · · · · ·

· · · · · · · · ·

· · · · · ·



. (1.3.3)

The state space S is partitioned in to different levels i where level i is given by ∆i =

{(i, j)/i ≥ 0, j = 1, 2, . . . , n}. Here the transitions take place only to the adjacent levels

for i ≥ 1. But the transition rate depends on the level i, unlike in the LIQBD, and

therefore the spatial homogeneity of the associated process is lost.

A special class of LDQBD’s is those which arise in retrial queueing models (when

the retrial rate at any instant depends on the number of customers in the orbit).

1.3.4. Neuts-Rao Truncation method.

Since the repeating structure is lost in LDQBD, its analysis is much more involved.

However Neuts and Rao [19] suggested a truncation procedure using which certain class

of LDQBD’s which include retrial models can be made to have a repeating structure

from a certain level N th, where N is sufficiently large. For giving a brief idea of their
10



method, we assume that ni = m for every i ≥ N so that each level ≥ N contains the same

number of states. Note that this is the case in most of the retrial queueing models. To

apply Nuets-Rao Truncation, we take A1i = A1N , A2i = A2N and A0i = A0N for all i ≥ N.

In the case of the retrial queues this is equivalent to assuming that retrial rate remains

constant whenever the number of orbital customers exceeds a certain limit N.

Define AN = A0N + A1N + A2N and πN = (πN(0, 0), πN(0, 1), πN(0, 2), . . . , πN(0,m))

be the steady state vector of the matrix AN . Then the relations πN AN = 0 together with

πNeee = 1 when solved give the various components of πN . The truncated system is stable

if and only if πN A2Neee > πN A0Neee and the original system is stable if lim
n→∞

πA0Neee
πA2Neee < 1.

Having described the tools for analysis, we move on to provide a review of the work

done in the theme of the present thesis.

1.4. Review of related works

An n component system is called a k-out-of-n system if at least k components are

in operational state. Application of such systems can be seen in many real-world phe-

nomena. For instance almost all our machines, of different complexity, are subjected to

failure. One would expect a machine to work as a whole, even if some of its components

have failed. The best example is that of an aircraft engine. A thorough reliability check is

required to ensure the safety of passengers even in some unforeseen situations. Consid-

ering another example, once can’t expect to run a good emergency service like a hospital

meeting minimum requirements. We would expect a hospital to run even if some of its

doctors/nurses/other staff is on leave. However, keeping these extra resources could be
11



costly and not even feasible in some cases: it may not be possible to keep an extra engine

in an aircraft. A probabilistic study of a real world system, as k-out-of-n system, often

helps to develop an optimal strategy for maintaining high system reliability.

A k-out-of-n system further be classified as follows:

The system is called ‘COLD’ if the operational components do not fail while the

system is in down state. It is called ‘HOT’ if operational components continue to dete-

riorate at the same rate while the system is down as when it is up. The system is called

‘WARM’ if the deterioration rate while the system is up differs from that when it is

down. An extensive study of k-out-of-n systems can be seen in Krishnamoorthy et al.

[15], Chakravarthy, Krishnamoorthy and Ushakumari [6].

In today’s world, due to collaboration between different companies in different coun-

tries and also due to some government policies for reducing unnecessary additional use

of global resources for a better tomorrow, sharing of resources between national/multi-

national companies have become more common. For example, a mobile tower may be

shared by different telecom companies. A transporting system may choose deliver goods

along with passengers for additional income. A car service station may choose to serve

customers other than those of its main dealer. However, a system entertaining customers

other than its main customers may lead to dissatisfaction of its own customers, which

may be very costly in some situations. For example, it is hard to imagine an aircraft

overloaded with goods in addition to the passengers. For this reason, studies on k-out-

of-n systems where external customers are also entertained, have gained attention in the

literature. Dudin et al. [9], Krishnamoorthy et al. [12, 13] are among such studies. In
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[9], the external customers are sent to an orbit and where there they can try to access

the idle server. Once selected for service, an external customer is assumed to get a non-

preemptive service. Numerically, they show that providing service to external customers

in this fashion is economical to the system in comparison with the decrease in the reli-

ability caused due to external service. In [12] it is assumed that the external customers,

finding the service station busy on arrival, are directed to a pool of infinite capacity. They

also assume that if the size of the buffer of internal customers is less than L, a pooled cus-

tomer is selected for service with some probability p. In [13], a finite pool and an orbit

of infinite capacity accommodate the external customers in such a manner that external

customers join the orbit with some probability and from there try to enter the pool. The

external customers are selected for service from the pool. The internal customers (failed

components) are served based on an N-policy in the sense that the repair of the failed

components start only on the accumulation of N-components. In addition they assume

that the on-going service of an external customer is not pre-empted on accumulation of

N-failed components. As in [9] and [12, 13] also indicates a decrease in the server idle

probability, and an increase in the overall system revenue.

The first paper that introduced the concept of orbital customers in to reliability is by

Krishnamoorthy and Ushakumari [14]. In that paper, the authors assumed that a failed

component is sent to an orbit, if it finds the server busy. The authors studied the COLD,

HOT, WARM variants of the problem. Ushakumari and Krishnamoorthy [21] general-

ized the above model by assuming arbitrarily distributed service time. Bocharov et al.
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[5] discuss a retrial queueing system with a finite waiting space, where the customers in

the waiting space have priority over customers in the orbit.

A T -policy refers to calling the server to the system after the elapse of a random time

T . Queueing systems where the service is according to a T -policy have been extensively

studied. We refer to Artalejo [2] for some references on such studies. Krishnamoorthy

and Rekha [11], Ushakumari and Krishnamoorthy [22] are among the studies of k-out-

of-n systems where the repair is under T -policy. In [11], it was assumed that the server

is called to the system either when the random time T expires or when the number of

failed components reaches n − k, whichever event occurs first. In [22], it was assumed

that the server is called whenever the maximum of an exponentially distributed duration

T and the sum of N(1 ≤ N ≤ n − k) random variables is realized.

Queues with postponed work was introduced in Deepak et al. [8]; the Doctoral thesis

of Ajayakumar [1] exclusively deals with queues with postponed work. We refer to the

paper Chitra Devi et al. [7] for some references of queues with postponed demand.

The idea of search for customers was introduced by Neuts and Ramalhoto [18]. The

concept of orbital search was introduced by Artalejo et al. [4], where for utilizing the

server idle time in a retrial queueing system, the server makes a search at a service

completion epoch with some probability and picks a customer randomly from the orbit

for the next service. Because of the importance of this notion, this work was followed

by several other contributions. We refer to the paper Artalejo [3], Phung-Duc [20] for

more references on such studies.

14



Postponement of work is a common phenomena. This may be to attend a more

important job than the one being processed at present or for a break or due to lack of

quorum (in case of bulk service, or when N-policy for service is applied) and so on.

Queueing systems with postponed work is investigated in Deepak, Joshua and Krish-

namoorthy [8].

1.5. An Outline of the Present Work

This thesis is divided into seven chapters including the present introductory chapter.

In second chapter we study reliability of a k-out-of-n system with a single repair-

man, who also renders service to external customers. We introduce an N-policy, in

which repair of internal customers (failed components) is started only on accumulation

of N failed components. The service to external customers is of pre-emptive nature, in

the sense that their service can be interrupted in between on accumulation of N failed

components. It is assumed that an external customer, who on arrival finds the server

busy with an external customer, joins a queue of infinite capacity; where as an external

customer who finds the server busy with an internal customer leaves the system forever.

The failure times of the components follow an exponential distribution; the arrival of ex-

ternal customers is according to a Poisson process and service times of the internal and

external customers follow non-identical phase type distributions. Using matrix-analytic

methods we discuss system stability and steady state distribution. A special case of the

model where the underlying distributions are all exponential has been considered. Ex-

plicit expression for the stability condition and a product form solution for the steady
15



state have been obtained for this case. Several system performance measures have been

obtained explicitly. Analysis of a cost function indicates that N-policy does help to

optimize the system revenue maintaining high system reliability.

In the third chapter we consider two k-out-of-n systems with single server who pro-

vides service to external customers also. Both models assume an N-policy that the repair

of failed components (main customers) start only on the accumulation of N of them.

When not repairing failed components, the server attends external customers (if there is

any) who arrive according to a Poisson process. Once started, the repair of failed com-

ponents is continued until all the components become operational. Service of external

customers is non pre-emptive in nature. When there are at least N failed components in

the system and or when the server is busy with failed components, external customers

are not allowed to join the system. Otherwise, in the first model they are assumed to

join an infinite capacity queue of external customers; whereas in the retrial model, they

join an orbit of infinite capacity. Life time distribution of components, service time

distribution of main and external customers and the inter retrial time distribution of or-

bital customers in the second model are all assumed to follow exponential distributions.

Steady state analysis has been carried out for both models and several important system

performance measures based on the steady state distribution derived. A numerical study

comparing the current models with those in which external customers are not considered

has been carried out. This suggests that rendering service to external customers helps to

utilize the server idle time profitably, without affecting the system reliability.
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In the fourth chapter we study a k-out-of-n system with a single server who offers

service also to external customers according to T -policy. The server attends external

customers only (if there is any) until the realization of the time T . If there is at least one

failed component present at the moment of realization of time T , the external customer

in service will get pre-empted and the server is switched on to the service of main cus-

tomers; otherwise the server continues at his present status and the clock T restarts. The

failure times of the components and realization times follow exponential distribution; the

arrival of external customers is according to a Poisson process and service times of the

internal and external customers follow non-identical exponential distributions. Explicit

expression for stability condition has been obtained and steady state analysis has been

carried out. A numerical study of several important performance measures and a com-

parison of the current model with the one in which no external customers are allowed

has been carried out.

The fifth chapter describes a k-out-of-n system with single server extending service

to external customers also. It has a finite buffer of capacity n − k + 1 where the failed

components of the main system wait for service in the order of their arrival and a pool

of external customers with infinite capacity. At the end of a service if there are external

customers in the pool, the system operates as follows: if the queue in the buffer is empty

an external customer from the pool is transferred to the buffer with probability 1 and

immediately starts its service; if the queue size in the buffer (transition level) is less

than L, a pre-assigned number (1 ≤ L ≤ n − k + 1), then again an external customer

from the pool is transferred to the head of the queue in the buffer with probability p and
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immediately starts service; if there are between L and n − k + 1 failed components in

the buffer, the customer at the head of the queue in the buffer enters in to the service

process. We assume that if an external customer on arrival finds a busy server with main

customers, he joins the pool with probability γ, 0 ≤ γ ≤ 1. When no external customers

are present, the server attends main customers if there is any. Inter arrival times of failed

components of the main system and external customers follow exponential distribution

with different parameters. The service process of main customers and external customers

has the same phase type distribution. Explicit expression for stability condition has been

obtained and the steady state distribution and several important performance measures

have been studied numerically. A numerical comparison of the current model with those

in which no external customers are allowed has been carried out.

In Chapter 6 we study a retrial model discussed in chapter 2 with the assumption that

at service completion epochs of external customers or at the moment of service comple-

tion of last main customer from the time of start of service of main customers, the server

makes a search and selects an external customer (if any) randomly from the orbit for the

next service with a given probability. Arrival process of failed components has inter-

arrival times exponentially distributed and that of external customers is according to a

Poisson process. Service time of both main and external customers are exponentially

distributed with different parameters and are also independent. Stability of this model

has been discussed and the analysis of the steady state distribution and several perfor-

mance measures has been carried out numerically. Also the current model is compared
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numerically with a k-out-of-n system with repair in which no external customers are

allowed.

In the seventh chapter we study reliability of a k-out-of-n system with a single server

which provides an essential and several inessential (by mistake) service with given prob-

abilities. Contrary to assumptions on models in previous chapters, here no external cus-

tomers are provided service. The essential service time and the components life time

follow exponential distribution of different parameters and the duration of service in the

inessential states has a phase type distribution. The effect of inessential service to the

failed components on the system reliability has been studied. Several important perfor-

mance measures have been studied numerically.
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Chapter 2

Reliability of a k-out-of-n system with repair by

a single server extending service to external

customers with pre-emption

Abstract

In this chapter we study the reliability of a k-out-of-n system, with a single techni-

cian, who also renders service to external customers besides repairing the failed com-

ponents in the system. For optimizing the revenue from external service without com-

promising the system reliability, we introduce the N-policy, in which the repair of the

0This Chapter is published in Electronic Journal ”Reliability:Theory and Applications” (Gnedenko fo-
rum, Volume 11, June 2016,pp 61-93)
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internal customers (failed components) starts only on accumulation of N failed compo-

nents. The service to external customers is of preemptive nature, in the sense that their

service can be interrupted on accumulation of N failed components. It is assumed that

an external customer, who finds the server busy with an external customer on his/her

arrival, joins a queue of infinite capacity; whereas an external customer who finds the

server busy with an internal customer leaves the system forever. The failure times of

the components follow an exponential distribution; the arrival of external customers is

according to a Poisson process and the service times of the internal and external cus-

tomers follow non-identical phase-type distributions. Using matrix-analytic methods,

we discuss the system stability and steady state distribution. A special case of the model

where the underlying distributions are all exponential has been considered for studying

the effect of the service to external customers and the N-policy on the system reliability.

Explicit expression for the stability condition and a product form solution for the steady

state have been obtained for this case. Also several system performance measures have

been obtained explicitly. Analysis of a cost function indicates that N-policy does help to

optimize the system revenue maintaining high system reliability.

2.1. Introduction

In the present chapter, we study a k-out-of-n system, where the sever offers service

to external customers for additional income. For optimizing the revenue by way of pro-

viding external service, maintaining a high system reliability, we introduce an N-policy
21



in which the service of the failed components starts on accumulation of N failed com-

ponents. The service to the external customers is of preemptive nature in the sense that

their service may be interrupted in between on accumulation of N failed components.

The external customers join a queue of infinite capacity on finding a busy server. The

current study differs from that in [13] in that, here the pool (waiting space) of external

customers is of infinite capacity and here there is no orbit of retrying customers. Also

in contrast to [13], the service of external customers is of preemptive in nature here.

It may seem that the model under discussion has stronger assumptions than [13]; but

the objective here is to check whether we can get more details of the system, like its

stability condition, steady state probability distribution etc. by strengthening some as-

sumptions. It turns out that, our objective is achieved, in the sense that an explicit steady

state distribution of the underlying Markov chain has been obtained.

This chapter is arranged as follows: In section 2.2, we perform the Stochastic Mod-

eling of the above problem and in section 2.3, we perform the steady state analysis of

the underlying Markov chain after finding a necessary and sufficient condition for the

stability of the system. Section 2.4, discusses a special case of the model discussed in

Section 2.2, where the service time distributions are assumed to follow exponential dis-

tribution. In section 2.5 we conduct a numerical study of the model discussed in Section

2.4 and compares it with a model in which no external customers are allowed. Section

7.3 concludes the discussion.
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2.2. Modeling and Analysis

In this chapter we study the reliability of a k-out-of-n system with repair by a single

repair facility which also provides service to external customers. The system consists of

two parts.

(1) A main queue consisting of customers (failed components of the k-out-of-n system)

and

(2) A queue of external customers.

A k-out-of-n system is in the up state (working state) as long as at least k components

are in operational state. Otherwise the system is in the down state.

The arrival process.

Arrival of main customers have inter-occurrence time exponentially distributed with

parameter λi when the number of operational components of the k-out-of-n system is i.

By taking λi = λ

i we notice that the failure rate is a constant λ. Arrival of external cus-

tomers have inter-occurrence time exponentially distributed with parameter λ. Arrival

of external customers is temporarily halted while serving the main customers (the failed

components of the k-out -of-n system).

The service process.

Commencement of service to the failed components of the main system is governed

by the N-policy, that is at the epoch the system starts with all components operational,

the server starts attending one by one the customers from the queue of external customers
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(if there is any waiting). At the epoch when the accumulated number of failed compo-

nents of the main system reaches N, the external customer in service will get pre-empted

and the server is switched on to the service of main customers. Service times of main

customers and external customers follow phase-type distributions with representations

(α, S ) and (β,T ) of orders m1 and m0 respectively.

Objective.

To maximize the reliability of a k-out-of-n system with repair by a single server, who

provides service to external customers also, based on N-policy.

The Markov Chain.

Let X1(t) denotes at time t number of external customers in the system including the

one getting service (if any) ,

X2(t) denotes the server status at time t defined as;

X2(t) =


0, if the server is idle or serving an external customer

1, if the server is busy with a failed component.

X3(t) denotes number of main customers in the system at time t including the one getting

service (if any). X4(t) denotes the phase of the service process.

Let X(t) = (X1(t), X2(t), X3(t), X4(t)) then {X(t), t ≥ 0} is a continuous time Markov chain
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on the state space whose levels are designated

l(0) = {(0, 0, j1)/0 ≤ j1 ≤ N − 1} ∪ {(0, 1, j1, j2)/1 ≤ j1 ≤ n − k + 1, 1 ≤ j2 ≤ m1},

l(i) = l(i, 0) ∪ l(i, 1),

l(i, 0) = {(i, 0, j1, j2)/0 ≤ j1 ≤ N − 1, 1 ≤ j2 ≤ m0}

l(i, 1) = {(i, 1, j1, j2)/1 ≤ j1 ≤ n − k + 1, 1 ≤ j2 ≤ m1}.

In the sequel,

(i) In denotes the identity matrix of order n;

(ii) I denotes an identity matrix of appropriate size;

(iii) en denotes a n × 1 column matrix of 1’s

(iv) e denotes a column matrix of 1’s of appropriate order;

(v) En denotes a square matrix of order n defined as

En(i, j) =



−1, if i = j; 1 ≤ i ≤ n

1, if j = i + 1; 1 ≤ i ≤ n − 1

0, otherwise

(vi) E′n = Transpose of En

(vii) rn(i) denotes a 1 × n row matrix whose ith entry is 1 and all other entries are zeros

(viii) Cn(i) = Transpose of rn(i)

(ix) ⊗ denotes Kronecker product of matrices
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(x) S 0 = −S e, T 0 = −Te.
The infinitesimal generator matrix of {X(t)} is given by

Q =



Ã1 Ã0

Ã2 A1 A0

A2 A1 A0

· · ·

· · ·

· ·



,where Ã1 =


Ã00 Ã01

Ã10 Ã11



Ã00 = λEN − λIN , Ã01 = [CN(N) ⊗ rn−k+1(N)] ⊗ λα, Ã10 = [Cn−k+1(1) ⊗ rN(1)] ⊗ S 0,

Ã11 = In−k+1 ⊗ S +
(
E′n−k+1 + In−k+1

)
⊗

(
S 0α

)
+ [En−k+1 + Cn−k+1(n − k + 1) ⊗ rn−k+1(n − k + 1)] ⊗ λIm1;

A1 =


A00 A01

A10 A11

 ;

A00 = EN ⊗ λIm0 + IN ⊗
(
T − λIm0

)
, A01 = [CN(N) ⊗ rn−K+1(N)] ⊗ (λem0α);

A10 = [Cn−k+1(1) ⊗ rN(1)] ⊗ (S 0β), A11 = Ã11;

Ã0 =


IN ⊗ (λβ) 0

0 0

 , Ã2 =


IN ⊗ T 0 0

0 0

 , A0 =


IN ⊗ (λIm0) 0

0 0

 ,

A2 =


IN ⊗ (T 0β) 0

0 0


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2.3. Steady State Analysis

2.3.1. Stability condition.

Let A = A0 + A1 + A2 and π be the steady state vector of A. That is π satisfies the

equations

πππA = 0 and (2.3.1)

π eπ eπ e = 1. (2.3.2)

Partitioning πππ as πππ = (π0, π1π0, π1π0, π1), equation (2.3.1) gives

π0π0π0

[
EN ⊗ λIm0 + IN ⊗ (T + T 0β)

]
+ π1π1π1A10 = 0 (2.3.3)

π0π0π0A01 + π1π1π1A11 = 0. (2.3.4)

From equation (2.3.4), π1π1π1 = −π0π0π0A01A−1
11 .

Substituting in equation (2.3.3), we get

π0π0π0

[
EN ⊗ λIm0 + IN ⊗ (T + T 0β)

]
− π0π0π0A01A−1

11 A10 = 0 (2.3.5)

We notice that A10 = (−A11e)(rN(1) ⊗ β) and therefore −A−1
11 A10 = e(rN(1) ⊗ β)

−A01A−1
11 A10 =

(
CN(N) ⊗ λem0

)
(rN(1) ⊗ β)

= (CN(N) ⊗ rN(1)) ⊗ (λem0 β). (2.3.6)
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Thus equation (2.3.5) reduce to

π0π0π0

[
EN ⊗ λIm0 + (CN(N) ⊗ rN(1)) ⊗ (λem0β) + IN ⊗ (T + T 0β)

]
= 0. (2.3.7)

Further partitioning π0π0π0 = (π0,0, π0,1, . . . , π0,N−1), equation (2.3.7) give rise to the follow-

ing set equations

π0,0

(
T + T 0β − λIm1

)
+ π0,N−1λem0β = 0 (2.3.8)

π0,iλIm0 + π0,i+1

(
T + T 0β − λIm0

)
= 0, 0 ≤ i ≤ N − 1. (2.3.9)

Postmultiply both sides of equation (2.3.8) and (2.3.9) by the column vector e, we get

π0,0

(
T + T 0β − λIm0 + λem0 β

)
= 0 (2.3.10)

π0,ieee = π0,i+1eee, 0 ≤ i ≤ N − 1. (2.3.11)

And equation (2.3.10) gives

π0,0 = aη (2.3.12)

where η is the steady state vector of the generator matrix T + T 0β− λIm0 + λem0β and ‘a’

is a constant.

Now equation (2.3.9) gives

π0,i = (−1)iaλiη
(
T + T 0β − λIm0

)−i
, 0 ≤ i ≤ N − 1. (2.3.13)
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Equation (2.3.13) determines the vector π0 up to the multiplicative constant.

It follows from equations (2.3.11) and (2.3.13) that

πππA0eee = λπ0 eπ0 eπ0 e

= λ aN

πππA2eee =

N−1∑
i=0

π0,iT 0

= a
N−1∑
i=0

(−1)i
λ

iη
(
T + T 0β − λIm0

)−i
T 0.

Here πππA0eee < πππA2eee becomes

Nλ <
N−1∑
i=0

(−1)i
λ

iη
(
T + T 0β − λIm0

)−i
T 0.

This leads to the following theorem for the stability of the system.

Theorem 2.3.1. The Markov chain {X(t)} is stable if and only if

Nλ <
N−1∑
i=0

(−1)i
λ

iη
(
T + T 0β − λIm0

)−i
T 0.

2.3.2. Steady State Vector.

The steady state vector xxx is partitioned as xxx = (x0, x1, x2, . . .) satisfies the equations

x0Ã1 + x1Ã2 = 0

x0Ã0 + x1A1 + x2A2 = 0

xiA0 + xi+1A1 + xi+2A2 = 0, i ≥ 1.
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Matrix theoretic approach (See Neuts [17]) gives

xi = x1Ri−1, i ≥ 1 (2.3.14)

where R is the minimal non negative solution of the matrix quadratic equation

R2A2 + RA1 + A0 = 0. (2.3.15)

It then follows that

x1 = −x0Ã0(A1 + RA2)−1 (2.3.16)

and that x0 satisfies the system of equations

x0

(
Ã1 − Ã0 (A1 + RA2)−1 Ã2

)
= 0. (2.3.17)

From the structure of the matrix A0, it follows that the R matrix has the form

R =

R1 R2

0 0

 (2.3.18)

where R1 is a square matrix of order Nm0 and R2 is a matrix of order Nm0× (n−k+1)m1.

R2 =

R
2
1 R1R2

0 0


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Equation (2.3.15) then reduces to the following equations

R2
1

(
IN ⊗ T 0β

)
+ R1A00 + R2A10 + IN ⊗ λIm0 = 0 (2.3.19)

R1A01 + R2A11 = 0 (2.3.20)

Equation (2.3.20) gives R2 = −R1A01A−1
11 (2.3.21)

which when substituted in Equation (2.3.19) gives

R2
1

(
IN ⊗ T 0β

)
+ R1A00 − R1A01A−1

11 A10 + λINm0 = 0

i.e., R2
1

(
IN ⊗ T 0β

)
+ R1

(
A00 − A01A−1

11 A10

)
+ λINm0 = 0.

Using equation (2.3.6), the above equation can be rewritten as

R2
1

(
IN ⊗ T 0β

)
+ R1

[
A00 + (CN(N) ⊗ rN(1)) ⊗ (λem0β)

]
+ λINm0 = 0. (2.3.22)

Solving equation (2.3.22), we get R1 and hence the steady state vector of {X(t)}. For

Solving equation (2.3.22) we use Logarithmic reduction algorithm (refer Latouche and

Ramaswami [16]).

2.4. A Special Case

We now concentrate on a special case of the problem discussed in Section 2.2 where

the service time distributions of main and external customers follow exponential dis-

tributions with parameters µ and µ respectively. As expected, this resulted in arriving
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at explicit expression for the stability condition, steady state distribution and several

performance measures.

2.4.1. The Markov Chain Model.

With X1(t), X2(t) and X3(t) having same definition as in section 2.2, X̃(t) = (X1(t), X2(t), X3(t))

is a continuous time Markov chain on the state space

{( j1, 0, j2)| j1 ≥ 0; 0 ≤ j2 ≤ N − 1} ∪ {( j1, 1, j2)| j1 ≥ 0; 0 ≤ j2 ≤ n − k + 1}.

Arranging the states lexicographically and then partitioning the state space into levels

i, where each level i corresponds to the collection of states with number of external

customers in the system including the one getting service (if any) at time t as i. We get

the infinitesimal generator of the above chain as

Q̃ =



F10 F0

F2 F1 F0

F2 F1 F0

· · · · · · · · ·

· · · · · · · · ·


(2.4.1)

The entries of the matrix are described below.

The transition from level i to level i + 1 is represented by the matrix

F0 =


λIN 0N×n−k+1

0(n−k+1)×N 0(n−k+1)×(n−k+1)

 .
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The transition from level i to level i − 1 is represented by the matrix

F2 =


µIN 0N×n−k+1

0(n−k+1)×N 0(n−k+1)×(n−k+1)

 .
The transition within level 0 to level 0 is represented by the matrix

F10 =


B1 B2

B3 B4


where B1 = λEN − λIN;

B2 is a N × (n − k + 1) matrix whose (N,N)th entry is λ and all other entries are zeroes.

B3 is a (n − k + 1) × N matrix whose (1, 1)th entry is µ and all other entries are zeroes.

B4 = λEn−k+1 + µE′n−k+1 + λCn−k+1(n − k + 1) ⊗ rn−k+1(n − k + 1).

The transitions within level i, i ≥ 1, is represented by matrix

F1 =


D1 B2

B3 B4


where D1 = λEN − (λ + µ)IN .

2.4.2. Steady State Analysis.

First we derive the condition for stability of the system.

2.4.2.1. Stability condition.

Consider the generator matrix
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F = F0 + F1 + F2 =


H1 H2

H3 B4

 ,
where H1 = λEN .

H2 is a N×(n−k+1) matrix whose (N,N)th entry is λ and all other entries are zeroes.

H3 is a (n − k + 1) × N matrix whose (1, 1)th entry is µ and all other entries are zeroes.

The stationary probability vector Π̃ =
(̃
π(0,0), π̃(0,1), · · · , π̃(0,N−1), π̃(1,1), · · · , π̃(1,N) · · · ,

π̃(1,n−k+1)
)

of the generator matrix A satisfies the equations Π̃F = 0 and Π̃eee = 1.

Π̃F = 0 gives the following equations

π̃(0,i) = π̃(0,0), 1 ≤ i ≤ N − 1 and

π̃(1,i) =


αĩπ(0,0), where αi =

i∑
j=1

(λ/µ) j, i = 1, 2, . . .N

βĩπ(0,0), where βi =
i∑

j=1−N+1
(λ/µ) j, i = N + 1, . . . n − k + 1

The normalizing condition Π̃e = 1 gives π̃(0,0) = 1
ϕ−ψ

, where

ϕ = N +

(
µN−2 − λN−2

)
λ

(µ − λ)µN

N +
λ
(
µn−k+1−N − λn−k+1−N

)
µn−k+1−N(µ − λ)


and

ψ =
(µ − λ)

(
µN−1 − (N − 1)λN

)
+ λµ

(
µN−2 − λN−2

)
µN−1(µ − λ)

Thus we arrive at the following
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Theorem 2.4.1. The process {X̃(t), t ≥ 0} is positive recurrent if and only if λ < µ.

Proof. It is well known (see Neuts [17]) that the Markov chain with infinitesimal

generator Q̃ is stable if and only if π̃F0e < π̃F2e, that is if and only if the left drift rate

exceeds that to the right.

We have π̃F0e = Nλπ̃(0,0) and π̃F2e = Nµπ̃(0,0). Thus {X̃(t), t ≥ 0} is positive recurrent if

and only if λ < µ. �

2.4.2.2. Steady State Distribution.

Here using the steady state vector Π̃ of the generator matrix F, we proceed construct

the steady state vector X̃ = (X̃(0), X̃(1), X̃(2), . . .) of the Markov chain {X̃(t), t ≥ 0} by

defining, X̃(i) = η
(
λ

µ

)i
Π̃, for i ≥ 0, where η is a positive constant to be found out.

First we will prove that X̃ satisfies the equation X̃Q̃ = 0. For this, notice that we can

decompose the infinitesimal generator matrix Q̃ as Q̃ = Q̃1 + Q̃2, where

Q̃1 =



F

F

F

· · ·

· · ·


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and

Q̃2 =



−F0 F0

F2 F1 F0

F2 F1 F0

· · · · · · · · ·

· · · · · · · · ·


,

where each entry is a square matrix of order N + n − k + 1 listed as:

F1 =


−(λ + µ)IN 0N×n−k+1

0(n−k+1)×N 0(n−k+1)×(n−k+1)

 .

Since Π̃F = 0 and X̃(i) = η
(
λ

µ

)i
Π̃, we have

X̃Q̃1 = 0. (2.4.2)

Now,

X̃Q̃2 =
[
X̃(0)(−F0) + X̃(1)F2, X̃(0)F0 + X̃(1)F1 + X̃(2)F2, X̃(1)F0 + X̃(2)F1 + X̃(3)F2, · · ·

]
.

Notice that (−F0) + λ

µ
F2 = 0 and

F0 +

λµ
 F1 +

λµ
2

F2 = F0 +

λµ
 F1 +

λ

µ
F2



36



= F0 −
λ

µ
F2

= 0,

which leads us to X̃(0)(−F0) + X̃(1)F2 = 0 and

X̃(i)F0 + X̃(i + 1)F1 + X̃(i + 1)F2 =

λµ
i

X̃(0)

F0 +
λ

µ
F1 +

λµ
2

F2


= 0, i = 0, 1, 2, 3, . . . .

Hence X̃Q2 = 0. (2.4.3)

From (2.4.2) and (2.4.3), we have X̃Q̃1 + X̃Q̃2 = 0, which implies that X̃Q̃ = 0.

Finally, X̃e = 1 gives the unknown constant η =
(
1 − λ

µ

)
.

Hence, X̃ = (X̃(0), X̃(1), X̃(2) · · · ), where X̃(i) =
(
1 − λ

µ

) (
λ

µ

)i
Π̃ is the steady state

vector for the matrix Q̃ and we have the following theorem;

Theorem 2.4.2. Let Π̃ =
(̃
π(0,0), π̃(0,1), · · · , π̃(0,N−1), π̃(1,1), · · · , π̃(1,N), · · · π̃(1,n−k+1)

)
be the

steady state vector for the matrix F, where

π̃(0,i) = π̃(0,0), 1 ≤ i ≤ N − 1 and

π̃(1,i) =


αĩπ(0,0), with αi =

i∑
j=1

(λ/µ) j, i = 1, 2, . . .N

βĩπ(0,0), for βi =
i∑

j=1−N+1
(λ/µ) j, i = N + 1, . . . n − k + 1

.

Further π̃(0,0) = 1
ϕ−ψ

, where
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ϕ = N +

(
µN−2 − λN−2

)
λ

(µ − λ)µN

N +
λ
(
µn−k+1−N − λn−k+1−N

)
µn−k+1−N(µ − λ)

 and

ψ =
(µ − λ)

(
µN−1 − (N − 1)λN

)
+ λµ

(
µN−2 − λN−2

)
µN−1(µ − λ)

.

Then X̃ = (X̃(0), X̃(1), X̃(2) · · · ), where X̃(i) =
(
1 − λ

µ

) (
λ

µ

)i
π̃ is the steady state probabil-

ity vector for the Markov chain {X̃(t), t ≥ 0}.

2.4.3. Performance Measures.

Here we derive certain important performance measures of the system under study.

2.4.3.1. Busy period of the server with the failed components of the

main system.

The busy period of the server with failed components starts the instant when N failed

components accumulate and it ends when no failed components are left in the system.

Let TN(i), for i ≥ 0, denote the server busy period with failed components, which starts

with i external customers in the system. Note that, the number of external customers

does not affect the busy period of the server with the failed components. Hence, TN(i) =

TN , for i ≥ 0. For analyzing the time TN , we consider the Markov chain {Y(t)} with state

space {0, 1, 2, . . . ,N,N + 1, . . . , n − k + 1} and infinitesimal generator given by:

BN =


0 0

−B̂Ne B̂N

 , where

B̂N = λEn−k+1 + µE′n−k+1.

38



Note that Y(t) denotes the number of failed components of the main system and Y(t) = 0

is considered as an absorbing state; so that the busy period TN is the time until absorption

in the Markov chain {Y(t)}, assuming that it starts at the state N. Hence, the busy period

TN has a phase type distribution with representation (ω, B̂N), where the probability vector

ω = (0, . . . , 0, 1, 0, . . . , 0), with 1 appearing in the N th position. The expected value of

TN is therefore given by ETN = −ω(B−1
N )eee where eee is a column vector with n − k + 1

elements all equal to 1. Now for finding ETN , let us partition the column vector (B̂−1
N )eee as

(t1, t2, . . . , tn−k+1)T . Then the identity B̂N(B̂−1
N )eee = eee leads us to the following equations:

−(λ + µ)t1 + λt2 = 1

µti−1 − (λ + µ)ti + λti+1 = 1, for 2 ≤ i ≤ n − k

µtn−k − µtn−k+1 = 1.

The above equations give

ti − ti+1 =
1
µ

n−k−i∑
j = 0(λ/µ) j, 1 ≤ i ≤ n − k

tn−k − tn−k+1 =
1
µ

and − µt1 =

n−k∑
j=0

(λ/µ) j.

Hence

ETN = −tN =
1
µ

N
n−k−N+1∑

j=0

(λ/µ) j +

n−k∑
j=n−k−N+2

(n − k + 1 − j)(λ/µ) j

 . (2.4.4)
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The expected value of the busy period of the server with failed components, which starts

with an arbitrary number of external customers is given by

EB = ETN

∞∑
j1=0

x̃( j1, 0,N − 1)

=
1

(ϕ − ψ)
1
µ

N
n−k−N+1∑

j=0

(λ/µ) j +

n−k∑
j=n−k−N+2

(n − k + 1 − j)(λ/µ) j

 . (2.4.5)

We sum up the above results in

Theorem 2.4.3. The busy period of the server with the repair of the components of the

k-out-of-n system has phase type distribution with representation (ω, B̂N). The expected

length of the busy period is given by (2.4.5).

2.4.3.2. Expected number of pre-emptions of an external customer

who is taken for service.

Consider the Markov process Xp(t) = (Np(t), J(t)), where Np(t) is the number of

pre-emptions occurred upto time t (measured from the time he is taken for service) of

a particular external customer who is taken for service and J(t) is the number of failed

components of the main system. Then Xp(t) has the state space

{
( j1, j2)

/
j1 = 0, 1, 2, . . . , 0 ≤ j2 ≤ N − 1

}
∪ {∆}

where ∆ is an absorbing state which denotes the service completion of the external cus-

tomer. The infinitesimal generator of this process is
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Q =



0 0 0 0 · · · · · · · · ·

T̃ 0 T̃ Â0 0 · · · · · · · · ·

T̃ 0 0 T̃ Â0 · · · · · · · · ·

T̃ 0 0 0 T̃ Â0 · · · · · ·

· · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · ·



, where T̃ 0 = µeN

T̃ = λEN − µIN

and Â0 is an N × N matrix whose (N, 1)th entry is λ.

If pki is the probability for k pre-emptions of an external customer who starts service

with i failed components, then p0i =
(
−T̃−1T̃ 0

)
i

= 1 −
(
λ

λ+µ

)N−i
, 0 ≤ i ≤ N − 1 and for

k ≥ 1,

pki =

((
−T̃−1Â0

)k (
−T̃−1T̃ 0

))
=

(
λ

λ + µ

)N−i (
λ

λ + µ

)N(k−1) 1 − (
λ

λ + µ

)N
=

(
λ

λ + µ

)Nk−i 1 − (
λ

λ + µ

)N .
Expected number of pre-emptions of an external customer, starting service with i failed

components

=

∞∑
k=0

kpki =

1 − (
λ

λ + µ

)N−1 (
λ

λ + µ

)N−i

.
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2.4.3.3. Expected waiting time of an external customer.

For computing the expected waiting time of an external customer who joins as

the rth customer in the queue of external customers, we consider the Markov process

Xw(t) = (J1(t), S (t), J2(t)), where J1(t) is the rank of the external customer, S (t) = 0

if the server is busy with external customers and S (t) = 1 if the server is busy with

a main customer. J2(t) is the number of main customers in the system. The rank

J1(t) of an external customer is assumed to be ‘l’ if it finds l − 1 external customers

ahead of it. The rank of an external customer may decrease by 1 if an external cus-

tomer ahead of it leaves the system after completing the service. Now consider the

Markov process Xw(t) for a tagged external customer who finds l − 1 external cus-

tomers ahead of it while joining the system. The state space for this process is given

by {∗} ∪ {{1, 2, . . . , l} × ({0} × {0, 1, . . . ,N − 1} ∪ {1} × {1, 2, . . . , n − k + 1})}, where ∗ is

an absorbing state, which denotes the service completion of the tagged customer. The

infinitesimal generator Qw of this process is Qw =

 0 0

W0
l Wl

, where

Wl =



w11

w22 w12

w23 w13

w2l w1l


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with w1i = F1 + F0; 1 ≤ i ≤ l

w2i = F2; 1 ≤ i ≤ l

w0
l = Cl(1) ⊗ (F2e)

The waiting time of the tagged customer is the time until absorption in the Markov

process Xw(t). Let E(i)
W (l) denote the expected waiting time of a tagged customer who

joins the system with rank l, who finds ‘i’ failed components. Defining the row vector θ̃i

as θ̃i = rl(l) ⊗ rN+n−k+1(i + 1), 0 ≤ i ≤ N − 1. Then E(i)
W (l) = −θ̃iW−1

l e, 0 ≤ i ≤ N − 1.

Let EW(l) be the N × 1 column matrix whose (i, 1)th entry is E(i−1)
W (l). Taking the proba-

bility that an external customer see i external customers, j failed components and server

busy with external customers on its arrival as
(
1 − λ

µ

) (
λ

µ

)i 1
ϕ−ψ

, the expected waiting time

of an arbitrary external customers is given by

∞∑
i=0

1 − λµ
 λµ

i
1

ϕ − ψ

N−1∑
j=0

E( j)
W (i + 1).

2.4.4. Other Performance measures.

(1) Fraction of time the system is down is given by,

Pdown =

∞∑
j1=0

x( j1, 1, n − k + 1) =
λn−k+2−N

(
µN − λN

)
µn−k+1(µ − λ)(ϕ − ψ)

.

(2) System reliability defined as the probability that at least k components are opera-

tional

Prel = 1 − Pdown = 1 −
λn−k+2−N(µN − λN)
µn−k+1(µ − λ)(ϕ − ψ)

.
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(3) Average number of external units waiting in the queue is given by,

Nq =

∞∑
j1=0

j1

n−k+1∑
j3=1

X( j1,1, j3) +

∞∑
j1=2

( j1 − 1)
N−1∑
j3=1

X( j1,0, j3)

= λ

 1

µ − λ
−

N
µ(ϕ − ψ)


(4) Average number of failed components of the main system,

N f ail =

N−1∑
j3=0

J3

 ∞∑
j1=0

X( j1,0, j3)

 +

n−k+1∑
j3=0

j3

 ∞∑
j1=0

X( j1,1, j3)


=

1
(ϕ − ψ)

N(N − 1)
2

+

N−1∑
i=1

i

 i∑
j=1

(λ/µ) j

 +
λ(µN − λN)
µN(µ − λ)

n−k+1∑
i=N

i(λ/µ)i−N




(5) Average number of failed components waiting when the server is busy with external

customers

=

N−1∑
j3=0

j3

 ∞∑
j1=1

x( j1,0, j3)


=

N(N − 1)λ
2µ(ϕ − ψ)

(6) Expected number of external customers joining the system,

θ3 = λ

∞∑
j1=0

N−1∑
j3=0

x( j1,0, j3)


= N

λ

(ϕ − ψ)
.
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(7) Expected number of external customers, on arrival, getting service directly

= µ

N−1∑
j3=0

x(0,0, j3)

= N
(µ − λ)
(ϕ − ψ)

.

(8) Fraction of time the server is busy with external customers,

Pex.busy =

∞∑
j1=1

N−1∑
j3=0

x( j1,0, j3)

 =
N · λ

µ(ϕ − ψ)
.

(9) Probability that the server is found idle,

Pidle =

N−1∑
j3=0

x(0,0, j3) = N
(µ − λ)
µ(ϕ − ψ)

.

(10) Probability that the server is found busy,

Pbusy = 1 − Pidle = 1 − N
(µ − λ)
µ(ϕ − ψ)

.

(11) Expected loss rate of external customers,

θ4 = λ

∞∑
j1=0

n−k+1∑
j3=1

x( j1,1, j3)

 = λ

(
1 −

N
(ϕ − ψ)

)
.

(12) Expected service completion rate of external customers,

θ5 = µ

∞∑
j1=0

N−1∑
j3=0

x( j1,0, j3)

=
Nµ

(ϕ − ψ)
.
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(13) Expected number of external customers in the system when the server is busy with

external customers

θ6 =

∞∑
j1=0

j1

N−1∑
j3=0

x( j1,0, j3)

 =
Nλ

(µ − λ)(ϕ − ψ)
.

2.4.5. Another Special case.

Next we consider second special case of the problem discussed in section 4.1, where

we take N = 1; that is the case where no special policy has been applied for providing

service to external customers. Notice that in this case, at most importance is given to

the failed components and an external customer can get service only when there are no

failed components in the system. Further, an ongoing external customer’s service may

be pre-empted if a component of the system fails during the service of the former. Since

in this case, knowing the number of external as well as the failed components is enough

for determining the server status, the Markov chain becomes X̂(t) = (X1(t), X3(t)), with

state space S̃ = {( j1, j2)| j1 ≥ 0, 0 ≤ j2 ≤ n − k + 1} and infinitesimal generator

Q̂ =



Ã10 Ã0

Ã2 Ã1 Ã0

Ã2 Ã1 Ã0

· · · · · · · · ·

· · · · · · · · ·


,where
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Ã10 = λEn−k+2 + λCn−k+2(n − k + 2) ⊗ rn−k+2(n − k + 2)

+ µE′n−k+2 + (µ − λ)Cn−k+2(1) ⊗ rn−k+2(1);

Ã0 is a (n − k + 2) × (n − k + 2) matrix whose (1, 1) entry is λ and all other entries are

zeroes;

Ã2 is a (n − k + 2) × (n − k + 2) matrix whose (1, 1) entry is µ and all other entries are

zeroes;

Ã1 = Ã10 − µCn−k+2(1) ⊗ rn−k+2(1).

Let Ã = Ã0 + Ã1 + Ã2; then

Ã = λEn−k+2 + λCn−k+2(n − k + 2) ⊗ rn−k+2(n − k + 2) + µEn−k+2 + µCn−k+2(1) ⊗ rn−k+2(1)

The stationary probability vector Π̂ =
(̂
π(0,0), π̂(0,1), . . . π̂(0,N−1), π̂(1,1), . . . π̂(1,N), . . . π̂(1,n−k+1)

)
of the generator matrix Ã is given by π̂(1,i) =

(
λ

µ

)i
π̂(0,0), i = 1, 2, . . . n − k + 1, where

π̂(0,0) =
µn−k+1(µ − λ)(
µn−k+2 − λn−k+2) .

Here again, from the condition π̂Ã0e < π̂Ã2e, it can be easily verified that the necessary

and sufficient condition for the stability of the Markov chain X̂(t) is λ < µ.

Applying the same technique as in section 4.2.2, we can easily prove that the vector

X̂ =
(
X̂(0), X̂(1), X̂(2), . . .

)
, with X̂(i) =

(
1 − λ

µ

) (
λ

µ

)i
Π̂, is the steady state probability

vector for the matrix Q̂.
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Performance Measures for the case N = 1

(1) Fraction of time the system is down,

Pdown =

∞∑
j1=0

x( j1, 1, n − k + 1) =
λn−k+1 (µ − λ)(
µn−k+2 − λn−k+2) .

(2) System reliability,

Prel = 1 − Pdown = 1 −
∞∑

j1=0

x( j1, 1, n − k + 1) =
µ
(
µn−k+1 − λn−k+1

)(
µn−k+2 − λn−k+2) .

(3) Average number of customers waiting in the queue,

Nq =

∞∑
j1=2

X( j1,0,1) +

∞∑
j1=0

j1

n−k+1∑
j3=1

x( j1, 1, j3)


=

µ

(µ − λ)

µn−k+1(µ − λ)(
µn−k+2 − λn−k+2)


λµ

2

+
λ
(
µn−k+1 − λn−k+1

)
µn−k+1(µ − λ)


(4) Average number of failed components,

N f ail =

n−k+1∑
j3=1

J3

 ∞∑
j1=0

X( j1,1, j3)

 =
λµn−k+2

(µ − λ)
(
µn−k+2 − λn−k+2) .

(5) Expected number of external customers joining the system in unit time,

θ3 = λ

∞∑
j1=0

x( j1,0,0) =
λµn−k+1(µ − λ)(
µn−k+2 − λn−k+2) .
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(6) Expected number of external customers, on arrival, getting service directly

= µx(0,0,0)

=
(µ − λ)µn−k+1(µ − λ)(
µn−k+2 − λn−k+2) .

(7) Fraction of time the server is busy with external customers,

Pex.busy =

∞∑
j1=0

x( j1,0,0)

=
λµn−k+1(µ − λ)(
µn−k+2 − λn−k+2) .

(8) Probability that the server is idle,

Pidle = x(0,0, j3) =
(µ − λ)
µ

µn−k+1(µ − λ)(
µn−k+2 − λn−k+2) .

(9) Probability that the server is found busy,

Pbusy = 1 − Pidle = 1 −
(µ − λ)
µ

µn−k+1(µ − λ)(
µn−k+2 − λn−k+2) .

(10) Expected loss rate of external customers,

θ4 = λ

∞∑
j1=0

n−k+1∑
j3=1

x( j1,1, j3)

 = λ
µ
(
µn−k+1 − λn−k+1

)(
µn−k+2 − λn−k+2) .
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(11) Expected service completion rate of external customers,

θ5 = µ

∞∑
j1=0

x( j1,0,0) = µ
µn−k+1(µ − λ)(
µn−k+2 − λn−k+2) .

(12) Expected number of external customers in the system when the server is busy with

external customers

θ6 =

∞∑
j1=0

j1x( j1,0,0) = λ
µn−k+1(µ − λ)(
µn−k+2 − λn−k+2) .

2.5. Numerical illustrations

Here, we perform a numerical study on the effect of the N-policy on the system

performance. Unless otherwise stated, the parameter values for the numerical study are

the following: λ = 3.2, µ = 5.5, µ = 8.

2.5.1. Effect of the N-policy on the probability that server is busy

with external customers.

While studying a k-out-of-n system, where the server provides service to external

customers also, the main purpose of N-policy is to provide improved attention to exter-

nal customers for optimizing the system revenue. According to the N-policy considered

here, the moment the number of failed components of the main system reaches N, the

external customer’s service (‘if there is any’) is pre-empted to attend the failed compo-

nents. Hence, an increase in the value of N will extend the time during which external

customers can get service and so it is expected that the probability that the server is
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busy with external customers increases with an increase in the value of N. The column

wise increase in Table 2.1 supports this intuition. The high service rate for the external

customers, as compared to their arrival rate can be considered as the reason for the slow

increase in the above probability. The row wise decrease in Table 2.1 points to the de-

crease in the probability that the server is busy with external customers with an increase

in the total number of components in the system. We have the following reasoning for

this behavior: With an increase in the total number of components n in the system, there

can be more number of failed components in the system for a fixed N, which leads to an

increase in the probability that the server is attending failed components, resulting in a

decrease in the probability Pex.busy. A closer scrutiny of Table 2.1 shows that, by increas-

ing the policy level N with an increase in the number of components n, the same value

for the fraction Pex.busy can be achieved as that when n has a lesser value. For example,

when n = 45 and N = 7, Pex.busy = 0.10915 and Pex.busy = 0.10909, when n = 60 with the

same N. Now with n = 60 and when N is increased to 25, we see that Pex.busy = 0.10915.

This suggests that, when n increases, the N-policy level can be adjusted in favor of the

external customers, which was our objective while introducing the N policy. However,

when N increases, it is probable that the server spends more time for failed components,

once he starts attending them, which leads to a loss of the external customers who finds

the server busy with internal customers. In Table 2.1, one can see that the probability

Pex.busy has a lesser value when n = 60, N = 30 than in the case when n = 45, N = 15,

which points to the loss of external customers. Another challenge here is that, while

increasing the N-policy level, the system reliability is not affected significantly.
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Table 2.1. Dependence of the probability Pex.busy on the N -policy level

N n = 45 n = 50 n = 55 n = 60
1 0.10910 0.10909 0.10909 0.10909
2 0.10910 0.10910 0.10909 0.10909
3 0.10912 0.10910 0.10909 0.10909
6 0.10914 0.10910 0.10909 0.10909
7 0.10915 0.10910 0.10909 0.10909
10 0.10922 0.10912 0.10910 0.10909
11 0.10925 0.10912 0.10910 0.10909
12 0.10929 0.10913 0.10910 0.10910
15 0.10952 0.10918 0.10911 0.10910
18 0.11002 0.10928 0.10913 0.10910
21 0.11118 0.10952 0.10918 0.10911
22 0.11185 0.10965 0.10921 0.10912
23 0.11275 0.10982 0.10925 0.10913
24 0.11397 0.11006 0.10929 0.10914
25 0.11562 0.11037 0.10935 0.10915
26 0.11078 0.10944 0.10917
27 0.11134 0.10955 0.10919
28 0.11209 0.10970 0.10922
29 0.11310 0.10989 0.10926
30 0.11448 0.11016 0.10932
31 0.11638 0.11051 0.10939

2.5.2. Effect of the N-policy on the system reliability.

In the previous section, we discussed how N-policy helps in longer duration of atten-

tion to external customers and the challenge there is the possibility of a decrease in the

system reliability. Here we discuss how the N-policy level affects the system reliability

Prel. We study two cases with λ

µ
< 1 and λ

µ
> 1 respectively, results of which are given

in Table 2.2(a) and (b) respectively. While studying the impact of the N-policy on the
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system reliability, a decrease in Prel is expected with an increase in value of N. Hence,

the purpose of the Tables 2.2(a) and (b) is to show the magnitude of this impact. Table

2.2(a) shows that when λ

µ
< 1, n = 45 and when N increased from 3 to 25, there is a

decrease in reliability of magnitude equal to 0.02. As the total number of components

n increases, the magnitude of decrease in reliability reduces. This is because, when n

increases, k being fixed, n − k + 1 increases; as a result, once the server starts attend-

ing the failed components on accumulation of N of them, he spends more time for the

failed components, which maintains a high system reliability even when N increases.

In Table 2.1 we have seen that as n increases, the probability Pex.busy decreases and that

increasing the N-policy level can remedy this to some extent; Table 2.2(a) shows that the

reliability of the system is not much affected by increasing the N-policy level. However,

the magnitude of drop in the system reliability increases with the increase in N-policy

level. Table 2.2(b) studies the system reliability when the failure rate of the components

λ is larger than their repair rate µ. As expected, there is a drop in the system reliability

compared to the case λ < µ. Other behaviour of the system reliability are similar to that

in Table 2.2(a).
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Table 2.2. (a): Dependence of the system reliability on the N-policy
level in the λ < µ case λ = 4

N n = 45 n = 50 n = 55 n = 60 n = 65

1 0.999930799 0.999985933 0.999997139 0.999999404 0.999999881

3 0.999901652 0.999979973 0.999995947 0.999999166 0.999999821

5 0.999855518 0.999970615 0.999994040 0.999998808 0.999999762

9 0.999660194 0.999930918 0.999985933 0.999997139 0.999999404

13 0.999121249 0.999821544 0.999963701 0.999992609 0.999998510

17 0.997560024 0.999506116 0.999899626 0.999979556 0.999995828

21 0.992828071 0.998562694 0.999708474 0.999940693 0.999987960

25 0.977587163 0.995647013 0.999122441 0.999821782 0.999963760

26 0.994222760 0.998838782 0.999764323 0.999952078

29 0.986251056 0.997281969 0.999450147 0.999888241

31 0.974976659 0.995165646 0.999026358 0.999802291

34 0.984254420 0.996900022 0.999531090

35 0.978649259 0.995844364 0.999373376

38 0.989870846 0.998496175

39 0.986294508 0.979825020

40 0.981382251 0.972903130

41 0.996356070

45 0.987866700

46 0.983495116
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Table 2.2. (b): Dependence of the system reliability on the N-policy
level in the λ > µ case λ = 6

N n = 45 n = 50 n = 55 n = 60 n = 65

1 0.907874525 0.911180377 0.913196325 0.914452970 0.915247083

3 0.907009840 0.910661936 0.912876606 0.914252222 0.915119767

5 0.906079888 0.910108566 0.912536800 0.914039671 0.914985061

9 0.904014528 0.908894181 0.911796451 0.913578153 0.914693415

11 0.902873158 0.908231616 0.911395609 0.913329482 0.914536774

13 0.901655436 0.907531500 0.910974264 0.913069129 0.914373279

17 0.898979187 0.906016290 0.910070777 0.912513614 0.914025128

21 0.895960152 0.904344857 0.909087002 0.911913455 0.913650930

25 0.892570674 0.902514517 0.908024848 0.911270797 0.913252294

26 0.902032018 0.907747209 0.911103785 0.913149118

29 0.900522947 0.906886399 0.910588324 0.912831187

31 0.89946568 0.906289339 0.910232842 0.912612915

34 0.905359924 0.909682870 0.912276387

35 0.905041218 0.909495234 0.912169460

38 0.908919990 0.911812007

39 0.908724248 0.911693335

40 0.908526540 0.911573648

41 0.908326924 0.911453009

45 0.910961330

46 0.910836279
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2.5.3. Cost analysis.

In sections 1.5.1 and 1.5.2, we have seen that by increasing N, we can provide unin-

terrupted service over a long duration to more external customers and without compro-

mising the system reliability significantly. However, the magnitude of decrease in the

system reliability increases with N. Hence, it is worth finding whether there exists an

optimal value for the N-policy level. For this, we construct the following cost function.

Let C1 be the cost per unit time incurred if the system is down; C2, the holding cost

per unit time per external customer in the queue; C3 is the cost incurred towards set up

(instantaneous) of the server to serve main customers; C4 be the cost due to loss of an

external customer, C5, be the holding cost per unit time of one failed component and C6

be the cost per unit idle time.

Expected Cost per unit time = C1 ·Pdown +C2 ·Nq +C4 ·θ4 +C5 ·N f ail +

(
C3

EB

)
+C6 ·Pidle.

Table 2.3 studies the variation of cost function as N varies. We study the cost function

for different failure rates of the components. In all the 4 cases studied, for the various

costs assumed, we get a concave nature for the cost curve, which gives an optimal value

for N. Table 2.3 shows that when λ < µ, the optimal values for N are 5,6 and 6 when λ

equal to 4, 4.5 and 5 respectively; whereas when λ = 6 > 5.5 = µ, we get a much higher

optimal value 18 for N. This is as expected, since when λ is greater than µ, there will be

a heavier traffic of failed components so that the server has to spend more time attending

the failed components. Hence, the policy level N needs to be increased to a much higher

value than in the λ < µ situation, for the system to earn maximum profit. Also note that
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the optimal value of the cost function is much higher in the λ > µ case, when compared

to the opposite situation.

Table 2.3. Variation in the cost function n = 50, k = 20, C1 = 2000,
C2 = 1000, C3 = 1600, C4 = 1000, C5 = 500, C6 = 100

N λ = 4 λ = 4.5 λ = 5 λ = 6
2 10139.47 10923.82 12783.28 19330.75
3 8910.199 9663.817 11496.69 17827.49
4 8489.626 9199.57 10981.16 17095.61
5 8370.844 9038.382 10764.71 16671.58
6 8396.2 9024.268 10694.5 16401.28
7 8500.631 9092.232 10706.09 16218.57
8 8652.372 9210.307 10767.47 16090.46
12 9474.447 9919.942 11245.17 15847.97
14 9939.594 10337.5 11542.35 15805.31
16 10416.93 10769 11849.9 15786.79
17 10657.6 10986.45 12003.95 15783.35
18 10898.62 11203.53 12156.71 15782.6
19 11139.36 11419.23 12307.2 15783.87
20 11379.19 11632.57 12454.51 15786.61
23 12085.88 12248.03 12868.57 15799.16
24 12313.97 12441.01 12994.22 15803.64
25 12536.01 12625.49 13111.97 15807.79

2.5.4. Comparison with a k-out-n system where no external customers

are serviced.

Here we compare the model discussed above with another model where no ex-

ternal customers are allowed but N-policy is maintained. Notice that because of the

assumption of the preemption of service of an external customer on accumulation of

N failed components, the two systems will have the same reliability. The nature of

the steady state distribution obtained in Theorem 2.4.2 further substantiates this claim.
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Hence, it can be concluded that the external customers when allowed as in this study,

utilizes the server idle time without affecting the performance of the k-out-of-n system.

In Table 2.4, we present the results of the numerical study conducted for comparing the

increase in the server busy probability, when external customers are allowed. In that Ta-

ble, case 1 refers to the model discussed above and case 2 stands for k-out-of-n system

where no external customers are allowed. Table 2.4 shows that when external customers

are allowed, there is an increase, of magnitude 0.11, in the server busy probability.
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Chapter 3

Reliability of a k-out-of-n system with a single

server extending non-preemptive service to

external customers

3.1. Introduction

In the previous chapter we analysed a k-out-of-n system with repair of failed compo-

nents under N-policy. The repair facility is also extended to external customers. How-

ever, we assumed pre-emption of service to external customers as soon as N failed

components of the k-out-of-n system accumulated in a new cycle. In this chapter the

pre-emption part is done away with. As a consequence the reliability of the k-out-of-n

0This Chapter is to be published as two papers titled: 1.Reliability of a k-out-of-n system with a single
server extending non-preemptive service to external customers-Part I and 2. Reliability of a k-out-of-n
system with a single server extending non-preemptive service to external customers-Part II in Electronic
Journal ”Reliability:Theory and Applications” (Gnedenko forum, September 2016)
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system decreases if we retain the same N value that provided high system reliability in

the previous chapter.

In this chapter, we consider two variants of the model in section 2.4 of chapter 2.

In both models, we assume N-policy for starting repair of failed components. However,

the priority given to main customers is reduced by assuming that an ongoing service of

an external customer is not preempted when the number of failed components reaches

N. This can be a serious compromise on the reliability of the k-out-of-n system. As in

section 2.4 of chapter 2, it has been assumed that an external customer, arriving when

the server is busy with service of main customers and/or when there are at least N failed

components in the system, is not allowed to join the system. In the first model the

external customer joins a queue of infinite capacity; where as in the second model it

joins an orbit of infinite capacity and retries for service from there.

3.2. The queueing model

Here we consider a k-out-of-n system with a single server, offering service to exter-

nal customers also. Commencement of service to failed components of the main system

is governed by N-policy. That is at the epoch the system starts with all components

operational, the server starts attending one by one the external customers (if there is

any).When the number of failed components in the system is ≥ N, the server in service

of external customer (if there is any) is switched on to the service of the main cus-

tomers after completing the ongoing service of the external customer. Arrival of main

customers and external customers have inter occurrence times exponentially distributed

with parameters λ and λ̄ respectively. External customers are not allowed to join the

system when the server is busy with main customers or when there is ≥ N failed com-

ponents. An external customer, who on arrival finds an idle server is directly taken for
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service. Service times of main and external customers follow exponential distribution

with parameters µ and µ̄ respectively.

3.2.1. The Markov Chain. Let X1(t) = number of external customers in the sys-

tem including the one getting service (if any) at time t,

X2(t) = number of main customers in the system including the one getting service (if

any) at time t,

S (t) =


0, if the server is idle or is busy with external customers

1, if the server is idle or is busy with main customers.

Let X(t) = (X1(t), S (t), X2(t)) then X = {X(t), t ≥ 0} is a continuous time Markov

chain on the state space

S = {(0, 0, j2)/0 ≤ j2 ≤ N − 1} ∪ {( j1, 0, j2)/ j1 ≥ 1, 0 ≤ j2 ≤ n − k + 1}

∪ {( j1, 1, j2)/ j1 ≥ 0, 1 ≤ j2 ≤ n − k + 1}.

Arranging the states lexicographically and partitioning the state space into levels i, where

each level i corresponds to the collection of the states with number of external customers

in the system at any time t equal to i, we get an infinitesimal generator of the above chain

as

Q =



A10 A00

A20 A1 A0

A2 A1 A0

A2 A1 A0

· · ·

· · ·


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In order to describe the entries in the above matrix we introduce some notations below.

(i) Im denotes an identity matrix of order m and I denotes an identity matrix of appro-

priate order.

(ii) em denotes a m × 1 column matrix of 1s and e denotes a column matrix of 1s of

appropriate order.

(iii) Em denotes a square matrix of order m defined as

Em(i, j) =



−1 if j = i, 1 ≤ i ≤ m

1 if j = i + 1, 1 ≤ i ≤ m − 1

0 otherwise

(iv) E′m = Transpose (Em)

(v) rm(i) denotes a 1 × n row matrix whose ith entry is 1 and all other entries are zeros

(vi) cm(i) = Transpose (rm(i))

(vii) ⊗ denotes Kronecker product of matrices.

The transition within level 0 is represented by the matrix

A10 =


B1 B2

B3 B4

 where

B1 = λEN − λIN

B2 is a N× (n−k+1) matrix whose (N,N)th entry is λ and all other entries are zeroes.

B3 is a N × (n− k + 1) matrix whose (1, 1)th entry is µ and all other entries are zeroes.
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B4 = λEn−k+1 + λcn−k+1(N − k + 1) ⊗ rn−k+1(n − k + 1) + µE′n−k+1.

The transition from level 0 to level 1 is represented by the matrix

A00 =


λIN ON×(2n−2k+3−N)

O(n−k+1)×N O(n−k+1)×(2n−2k+3−N).


Transition from level 1 to 0 is represented by the matrix

A20 =


µIN O

O H

O(n−k+1)×N O


where H =

[
O(n−k+2−N)×(N−1) µI(n−k+2−N).

]

Transition within level 1 is represented by the matrix

A1 =


H11 H12 0

0 H22 0

H31 0 B4


where

H11 = B1 − µIN ,H12 = λcN(N) ⊗ rn−k+2−N(1),

H22 = λEn−k+2−N + λcn−k+2−N(n − k + 2 − N) ⊗ rn−k+2−N(n − k + 2 − N) − µIn−k+2−N .

H31 is an (n − k + 1) × N matrix whose (1, 1)th entry is µ.

A0 =


λIN ON×(2n−2k+3−N

O(2n−2k+3−N)×N O(2n−2k+3−N)×(2n−2k+3−N)

 .
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A2 =


µIN O O

O O(n−k+2−N)×(n−k+2−N) H̃

O(n−k+1)×N O O


.

where H̃ =

[
O(n−k+2−N)×(N−1) µI(n−k+2−N)

]
.

3.3. Steady state analysis

3.3.1. Stability condition. Consider the generator matrix A = A0 + A1 + A2

A =


λEN H12 0

0 H22 F23

F31 0 B4


F23 =

[
O(n−k+2−N)×(N−1) µIn−k+2−N

]
,

F31 = µcn−k+1(1) ⊗ rN(1).

Let ζ = (ζ0, ζ1, ζ2) be the steady state vector of the generator matrix A, where

ζ0 = (ζ(0,0), ζ(0,1), . . . , ζ(0,N−1)), ζ1 = (ζ(0,N), ζ(0,N+1), . . . , ζ(0,n−k+1)),

ζ2 = (ζ(1,1), ζ(1,2), . . . , ζ(1,n−k+1)).

The Markov chain {X(t), t ≥ 0} is stable if and only if ζA0e < ζA2e

(see Neuts [17]).
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It follows that ζA0e = λζ0e and ζA2e = µ(ζ0e+ζ1e). Therefore the stability condition

becomes

λ

µ

ζ0e
(ζ0e + ζ1e)

< 1. (3.3.1)

It follows from the relation ζA = 0 that

ζ0λEN + ζ2F31 = 0, (3.3.2)

ζ0H12 + ζ1H22 = 0, (3.3.3)

ζ1F23 + ζ2B4 = 0. (3.3.4)

From (3.3.4), it follows that

ζ2 = −ζ1F23B−1
4 . (3.3.5)

Substituting this in (3.3.2) we get

ζ0λEN − ζ1F23B−1
4 F31 = 0. (3.3.6)

λζ0e = (−ζ1F23B−1
4 F31)(−E−1

N e). (3.3.7)

Notice that the first column of the matrix F31 is −B4e and all other columns of it are

zero columns. This implies that the first column of the matrix B−1
4 F31 is −e and its all

other columns are zero columns. Hence the first column of the matrix −F23B−1
4 F31 is µe

and all other columns are zero columns. The first entry of the row matrix −ζ1F23B−1
4 F31

is thus µζ1e and its all other entries are zeros. It can be seen that the first entry of the
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column matrix −E−1
N e is N. These two facts together tell us that (−ζ1F23B−1

4 F31)(−E−1
N e)

is Nµζ1e. Thus, equation (3.3.7) becomes

λζ0e = Nµζ1e.

Adding Nµζ0e on both sides of the above equation, we get

(λ + Nµ)ζ0e = Nµ(ζ0e + ζ1e),

which implies

ζ0e
(ζ0e + ζ1e)

=
Nµ

(λ + Nµ)
.

Hence the stability condition (3.3.1) becomes

λ

µ

Nµ
(λ + Nµ)

< 1.

3.3.2. Computation of steady state vector. Let π = (π(0), π(1), π(2), . . .) the

steady state vector of the Markov chain X where π(0) = (π(0,0), π(0,1)), with π(0,0) =

(π(0,0,0), π(0,0,1), . . . , π(0,0,N−1))

and π(0,1) = (π(0,1,1), . . . , π(0,1,n−k+1)). For

i ≥ 1, π(i) = (π(i,0), π̃(i,0), π(i,1)),

π(i,0) = (π(i,0,0), π(i,0,1), . . . , π(i,0,N−1)),

π̃(i,0) = (π(i,0,N), π(i,0,N+1), . . . , π(i,0,n−k+1)),

π(i,1) = (π(i,1,1), π(i,1,2), . . . , π(i,1,n−k+1)).
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Now from πQ = 0, we can write

π(0,0)B1 + π(0,1)B3 + π(1,0)µIN = 0, (3.3.8)

π(0,0)B2 + π(0,1)B4 + π̃(1,0)H = 0, (3.3.9)

For i ≥ 1,

π(i−1,0)λIN + π(i,0)H11 + π(i,1)H31 + π(i+1,0)µIN = 0, (3.3.10)

π(i,0)H12 + π̃(i,0)H22 = 0, (3.3.11)

π(i,1)B4 + π̃(i+1,0)H̃ = 0. (3.3.12)

From (3.3.11), we get, for i ≥ 1

π̃(i,0) = −π(i,0)H12(H−1
22 ). (3.3.13)

From (3.3.12), we get

π(i,1) = −π̃(i+1,0)H̃(B−1
4 ). (3.3.14)

Substituting (3.3.13) in (3.3.14), we get

π(i,1) = π(i+1,0)H12(H−1
22 )H̃(B−1

4 ). (3.3.15)

Substituting (3.3.15) in (3.3.10), we get

π(i−1,0)λIN + π(i,0)H11 + π(i+1,0)H12(H−1
22 )H̃(B−1

4 )H31 + π(i+1,0)µIN = 0. (3.3.16)
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We notice that the first column of the matrix H31 is −B4e and all other columns of H31

are zero columns. Hence the first column of the matrix (B−1
4 )H31 is −e and its all other

columns are zero columns. This tells us that the first column of the matrix H̃(B−1
4 )H31

is −µe and all other columns are zeros. But −µe is H22e and hence the first column of

the matrix (H−1
22 )H̃(B−1

4 )H31 is e and all other columns are zeros. This fact leads us to

conclude that the first column of the matrix H12(H−1
22 )H̃(B−1

4 )H31 is H12e = λcN(N) and

all other columns are zeros. In other words

H12(H−1
22 )H̃(B−1

4 )H31 = λcN(N) ⊗ rN(1).

Now equation (3.3.16) becomes

π(i−1,0)λIN + π(i,0)H11 + π(i+1,0)λcN(N) ⊗ rN(1) + π(i+1,0)µIN = 0.

That is

π(i−1,0)λIN + π(i,0)H11 + π(i+1,0)(λcN(N) ⊗ rN(1) + µIN) = 0. (3.3.17)

Now from equation (3.3.9), we can write

π(0,1) = −π(0,0)B2(B−1
4 ) − π̃(1,0)H(B−1

4 ). (3.3.18)

However, from equation (3.3.13), we have

π̃(1,0) = −π1,0)H12(H−1
22 ). (3.3.19)
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Hence equation (3.3.18) becomes

π(0,1) = −π(0,0)B2(B−1
4 ) + π(1,0)H12(H−1

22 )H(B−1
4 ). (3.3.20)

Substituting (3.3.20) in (3.3.8), we get

π(0,0)B1 + (−π(0,0)B2(B−1
4 ) + π(1,0)H12(H−1

22 )H(B−1
4 ))B3 + π(1,0)µ̄IN = 0. (3.3.21)

Since the first column of the matrix B3 is −B4e, a similar reasoning as for equation

(3.3.16) leads us to write:

− B2(B−1
4 )B3 = λcN(N) ⊗ rN(1).

H12(H−1
22 )H(B−1

4 )B3 = λcN(N) ⊗ rN(1).

Hence equation (3.3.21) becomes

π(0,0)(B1 + λcN(N) ⊗ rN(1)) + π(1,0)(λcN(N) ⊗ rN(1) + µIN) = 0. (3.3.22)

Equations (3.3.17) and (3.3.22) shows that the vector π̂ = (π(0,0), π(1,0), π(2,0), . . .) satisfies

the relation π̃Q̃ = 0, where Q̃ is a generator matrix defined as

Q̃ =



Ã10 Ã0

Ã2 Ã1 Ã0

Ã2 Ã1 Ã0

· · ·

· · ·


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In the above, Ã10 = B1 + λcN(N) ⊗ rN(1), Ã0 = λ̄IN , Ã1 = H11 and Ã2 = λcN(N) ⊗

rN(1) + µ̄IN . Hence the vector π̂ is a constant multiple of the steady state vector τ =

(τ(0), τ(1), . . .) of the generator matrix Q̃. The vector τ can be obtained by applying the

matrix analytic methods (see Neuts [17]) as

τ(i) = τ(0)Ri, i ≥ 0, (3.3.23)

where the matrix R is the minimal non-negative solution of the matrix quadratic equa-

tion:

A0 + RA1 + R2A2 = 0. (3.3.24)

Equation (3.3.23) implies

π(0, 0) = Kτ(0),

π(i, 0) = π(0, 0)Ri, i ≥ 0.

Now the vector π̂ is obtained up to a constantK as π̂ = Kτ, the other component vectors

π̃(i,0), i ≥ 1, π(i,1), i ≥ 0 of π can be obtained from the equations (3.3.13), (3.3.14) and

(3.3.20), up to the constant K , which is finally obtained from the normalizing condition

πe = 1.

3.4. Performance measures

3.4.1. Busy period of the server with the failed components of the

main system. Let Ti denote the server busy period with failed components which

starts with i failed components and with j external customers in the system. Consider the

absorbing Markov chain Y = {Y(t), t ≥ 0}, where Y(t) is the number of failed components
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of the main system, with the state space {0, 1, 2, . . . ,N,N + 1, . . . , n − k + 1} and having

infinitesimal matrix given by

H̃BF =


0 0

−HBFe HBF

 ,
where HBF = λEn−k+1 + λcn−k+1(n − k + 1) ⊗ rn−k+1 + µE′n−k+1.

Note that Y(t) = 0 is an absorbing state. Ti is the time until absorption in the Markov

chain {Y(t)} assuming that it starts at the state i. The expected value ETi of Ti is therefore

the ith entry of the column matrix −H−1
BFe as given by (Krishnamoorthy et al. [13]):

ETi =
1
µ

i n−k+1−i∑
j=0

(
λ

µ
) j +

n−k∑
j=n−k+2−i

(n − k + 1 − j)(
λ

µ
) j


We notice that once the service of failed components starts, the external customers has

no effect on it. Define

P f (N) = π(0,0,N−1) +

∞∑
j=1

π( j,0,N) and

P f (i) =

∞∑
j=1

π( j,0,i) for N < i ≤ n − k + 1

P f (i) will then denote the system steady state probability just before starting service to

failed components with i number of failed components. The expected length of the busy

period of the server with failed components is then given by

EĤ =

n−k+1∑
i=N

P f (i)ETi

n−k+1∑
i=N

P f (i)
.
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3.4.2. Other performance measures.

(1) Fraction of time the system is down,

Pdown =

∞∑
j1=0

π( j1,0,n−k+1) +

∞∑
j1=0

π( j1,1,n−k+1).

(2) System reliability, Prel = 1 − Pdown.

(3) Average number of external customers waiting in the queue,

Nq =

∞∑
ji=0

ji

n−k+1∑
j3=0

π( j1,1, j3)

 +

∞∑
j1=1

( j1 − 1)

n−k+1∑
j3=0

π( j1,0, j3)

 .
(4) Average number of failed components of the main system,

N f ail =

n−k+1∑
j3=0

j3

 ∞∑
j1=0

π( j1,0, j3)

 +

n−k+1∑
j3=1

j3

 ∞∑
j1=0

π( j1,1, j3)

 .
(5) Average number of failed components waiting when server is busy with exter-

nal customers

=

n−k+1∑
j3=0

j3

 ∞∑
j1=1

π( j1,0, j3)

 .
(6) Expected number of external customers joining the system,

θ3 = λ̄

 ∞∑
j1=1

N−1∑
j3=0

π( j1,0, j3)

 +

N−1∑
j1=0

π(0,0, j3)

 .
(7) Expected number of external customers on its arrival gets service directly

=

N−1∑
j3=0

π(0,0, j3).
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(8) Fraction of time the server is busy with external customers,

Pext,busy =

∞∑
j1=1

n−k+1∑
j3=0

π( j1,0, j3)

 .
(9) Probability that server is found idle,

Pidle =

N−1∑
j3=0

π(0,0, j3) = Nπ(0,0,0).

(10) Probability that the server is found busy,

Pbusy = 1 −
N−1∑
j3=0

π(0,0, j3) = 1 − Nπ(0,0,0).

(11) Expected loss rate of external customers,

θ4 = λ̄

 ∞∑
j1=0

n−k+1∑
j3=1

π( j1,1, j3)

 +

∞∑
j1=1

n−k+1∑
j3=N

π( j1,0, j3)


 .

(12) Expected service completion rate of external customers,

θ5 = µ̄

∞∑
j1=0

n−k+1∑
j3=0

π( j1,0, j3)

 .
(13) Expected number of external customers when server is busy with external cus-

tomers,

θ6 =

∞∑
j1=0

j1

n−k+1∑
j3=0

π( j1,0, j3)

 .
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3.5. Numerical Study of the Performance of the System

3.5.1. The Effect of N Policy on the Server Busy Probability. The main

purpose of introducing N-policy while studying a k-out-of-n system with a single server

offering service to external customers, in a non pre-emptive nature, was optimization of

the system revenue, by utilizing the server idle time, without compromising the reliabil-

ity of the system much. From Tables 3.1 and 3.2, it follows that there is an increase in

the server busy probability, when external customers are allowed. 3.3 tells that there is

an increase in the fraction of time that the server is busy with external customers with

an increase in N. Hence, it can be concluded that the N-policy has helped in improving

the attention towards external customers slightly. Now, we want to check whether the

introduction of the N-policy has badly affected the system reliability.

3.5.2. The effect of N policy on system reliability. We study two cases

λ < µ and λ > µ . We expected a decrease in Prel with an increase in N. This is because

as N increases, the server spends more time for external customers, which we thought

might cause a decrease in the system reliability. This was verified from Table 3.4, where

we assumed λ < µ. However, Table 3.4 shows very high system reliability over 95

%. The magnitude of decrease in reliability was found lesser when the total number

of components n was high. In short Table 3.4 shows that reliability of the system is

not much affected by increasing N-policy level. In Table 3.5 where it was assumed

that the component failure rate λ is greater than their service rate µ, it was again found

that Prel decreases with increase in N and that the magnitude of decrease is not high.

More importantly, the reliability of the system was found less than 91.5 %. To check

whether this was actually due to the introduction of external customers, we compared the
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system reliability of the current model with that of a k-out-of-n system where no external

customers are entertained. Table 6 shows that allowing external customers in the system

has only a narrow effect on the system reliability and the decrease in reliability is actually

due to the assumption λ > µ .

3.5.3. Analysis of a Cost function. Table 3.1 shows that as N increases, even

though the server busy probability increases first, it decreases as N crosses some value.

Note that the overall server busy probability is the sum of the server busy probability

with external customers and the server busy probability with main customers. Table 3.3

shows that the fraction of time server remaining busy with external customers is ever

increasing with N. Now as N increases, there is a decrease in the server busy probability

with main customers. Hence, the above said behavior of the overall server busy proba-

bility can be concluded to be due to the conflicting nature of the two entities constituting

it. This behavior of the server busy probability lead us to construct a cost function in the

hope of finding an optimal value for the N-policy level defined as follows:

Expected cost per unit time = C1 ·Pdown + C2 ·Nq + C4 ·θ4 + C5 ·N f ail +
C3

EĤ
+ C6 ·Pidle

In the above, C1 denote the cost per unit time incurred if the system is down, C2 denote

the holding cost per unit time per external customer in the queue, C3 denote the cost in-

curred for starting failed components service, C4 denote the cost due to loss of 1 external

customer, C5 denote the holding cost per unit time of one failed component, C6 denote

the cost per unit time if the server is idle. We study the cost function for various failure

rates of the components, which is presented in Table 3.7. In all the 4 cases studied, we

obtained an optimal value for N.
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Table 3.1. Variation in the server busy probability when external cus-
tomers are allowed k = 20, λ = 4, λ = 3.2, µ = 5.5, µ = 8

N n = 45 n = 50 n = 55 n = 60 n = 65
1 0.823494 0.823522 0.823528 0.823529 0.823529
3 0.829935 0.829973 0.829981 0.829983 0.831354
5 0.832187 0.832243 0.832254 0.832256 0.832891
7 0.833255 0.833338 0.833355 0.833358 0.833717
9 0.833839 0.833968 0.833994 0.834 0.83423

11 0.834162 0.834367 0.834408 0.834417 0.834577
13 0.834295 0.834627 0.834695 0.834708 0.834827
15 0.834239 0.834789 0.8349 0.834923 0.835093
17 0.833936 0.834861 0.835047 0.835085 0.835224
19 0.833252 0.834829 0.835146 0.835211 0.835329
21 0.831922 0.834652 0.835196 0.835306 0.835413
23 0.829445 0.834239 0.835184 0.835375 0.83548
25 0.824871 0.833426 0.83508 0.835412 0.83553

Table 3.2. Variation in the server busy probability when external cus-
tomers are not allowed k = 20, λ = 4, µ = 5.5

N n = 45 n = 50 n = 55 n = 60 n = 65
1 0.72722 0.72726 0.72727 0.72727 0.72727
3 0.7272 0.72726 0.72727 0.72727 0.72727
5 0.72717 0.72725 0.72727 0.72727 0.72727
7 0.72711 0.72724 0.72727 0.72727 0.72727
9 0.72703 0.72722 0.72726 0.72727 0.72727

11 0.72688 0.72719 0.72726 0.72727 0.72727
13 0.72663 0.72714 0.72725 0.72727 0.72727
15 0.72622 0.72706 0.72723 0.72726 0.72727
17 0.7255 0.72691 0.7272 0.72726 0.72727
19 0.72425 0.72666 0.72715 0.72725 0.72727
21 0.72206 0.72623 0.72706 0.72723 0.72726
23 0.71814 0.72546 0.72691 0.7272 0.72726
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Table 3.3. Effect of the N-policy level on the fraction of time server is
busy with external customers with k = 20, λ = 4, λ̄ = 3.2, µ = 5.5, µ̄ = 8

N n=40 n=45 n=50 n=55 n=60
1 0.096351 0.096276 0.096261 0.096257 0.096257
2 0.100557 0.100464 0.100445 0.100441 0.10044
3 0.102853 0.10274 0.102717 0.102712 0.102711
4 0.104255 0.104117 0.104089 0.104083 0.104082
5 0.105198 0.105028 0.104993 0.104986 0.104985
6 0.105882 0.105672 0.105629 0.105621 0.105619
7 0.106413 0.106153 0.1061 0.106089 0.106087
8 0.106853 0.106528 0.106462 0.106449 0.106446
9 0.107241 0.106832 0.106749 0.106733 0.106729
10 0.107605 0.107088 0.106984 0.106963 0.106958
11 0.107968 0.107313 0.10718 0.107153 0.107148
12 0.108354 0.107517 0.107348 0.107314 0.107307
13 0.108786 0.107711 0.107495 0.107451 0.107442
14 0.109291 0.107904 0.107626 0.10757 0.107559
15 0.109905 0.108106 0.107747 0.107675 0.10766
17 0.111651 0.108581 0.107976 0.107854 0.107829
19 0.114606 0.109249 0.108092 0.108008 0.107966
21 0.110301 0.108216 0.108153 0.10808
23 0.112079 0.10851 0.108308 0.108182
25 0.115216 0.108928 0.1085 0.108281
27 0.110699 0.108771 0.108387
29 0.112652 0.109196 0.108516
31 0.116153 0.10991 0.108697
33 0.111158 0.108978
35 0.113399 0.109446
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Table 3.4. Variation in the system reliability with increase in N (λ < µ
case) k = 20, λ = 4, λ̄ = 3.2, µ = 5.5, µ̄ = 8

N n=40 n=45 n=50 n=60 n=65
1 0.99963 0.99993 0.99998 1 1
2 0.99957 0.99991 0.99998 1 1
3 0.99948 0.99989 0.99998 1 1
4 0.99937 0.99987 0.99997 1 1
5 0.99924 0.99985 0.99997 1 1
6 0.99907 0.99981 0.99996 1 1
7 0.99885 0.99977 0.99995 1 1
8 0.99856 0.99971 0.99994 1 1
9 0.9982 0.99964 0.99993 1 1
10 0.99778 0.99954 0.99991 1 1
11 0.99712 0.99942 0.99988 1 1
12 0.99633 0.99926 0.99985 0.99999 1
13 0.9953 0.99905 0.99981 0.99999 1
14 0.99395 0.99878 0.99975 0.99999 1
15 0.99217 0.99843 0.99968 0.99999 1
17 0.98668 0.99736 0.99947 0.99998 1
19 0.97689 0.9955 0.99909 0.99996 0.99999
21 0.95915 0.99223 0.99844 0.99994 0.99999
23 0.98638 0.9973 0.99989 0.99998
25 0.97578 0.99528 0.99981 0.99996
27 0.99165 0.99966 0.99993
29 0.98509 0.9994 0.99988
31 0.97315 0.99894 0.99979
33 0.99862 0.99962
35 0.99932
37 0.99878
39 0.99781
41 0.99604
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Table 3.5. Variation in the system reliability with increase in N (λ > µ
case) λ = 6, µ = 5.5, λ̄ = 3.2, µ̄ = 8

N n=40 n=50 n=55 n=60
1 0.90191 0.91106 0.91312 0.91441
2 0.90118 0.91081 0.91297 0.91431
3 0.90041 0.91055 0.91281 0.91421
4 0.89961 0.91028 0.91264 0.91411
5 0.89876 0.91 0.91247 0.914
6 0.89758 0.90971 0.91229 0.91389
7 0.89696 0.90941 0.91211 0.91377
8 0.896 0.9091 0.91192 0.91366
9 0.895 0.90878 0.91173 0.91354
10 0.89396 0.90845 0.91153 0.91341
11 0.89287 0.90812 0.91133 0.91329
12 0.89174 0.90777 0.91112 0.91316
13 0.89055 0.90741 0.9109 0.91303
14 0.88932 0.90705 0.91068 0.91289
15 0.88804 0.90667 0.91046 0.91275
16 0.8867 0.90628 0.91 0.91261
17 0.88531 0.90589 0.90951 0.91247
18 0.88386 0.90548 0.90901 0.91232
19 0.88235 0.90507 0.90848 0.91217
21 0.88079 0.90464 0.90794 0.91186
23 0.87916 0.90421 0.90738 0.91155
25 0.90331 0.90679 0.91122
27 0.90237 0.9062 0.91088
29 0.90139 0.90558 0.91053
31 0.90036 0.90494 0.91018
33 0.8993 0.90462 0.90981
35 0.90944
37 0.90905
39 0.90866
41 0.90827
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Table 3.6. Variation in the system reliability with increase in N (case
when no external customers are allowed) k = 20, λ = 6, µ = 5.5

N n=40 n=45 n=50 n=55 n=60 n=65
1 0.902225375 0.907874465 0.911180377 0.913196206 0.914452851 0.915246844
3 0.900740206 0.90700978 0.910661995 0.912876785 0.914252281 0.915119886
5 0.899092674 0.906079888 0.910108447 0.912536681 0.914039791 0.914984941
7 0.897301137 0.905082345 0.909519434 0.91217649 0.913814664 0.914842606
9 0.895354867 0.904014587 0.908894181 0.911796391 0.913578033 0.914693356
11 0.893241525 0.902873158 0.908231676 0.911395431 0.913329422 0.914536655
13 0.890948415 0.901655376 0.907531381 0.910974264 0.913069129 0.914373219
15 0.888461053 0.900358438 0.906793237 0.910532713 0.912796974 0.914202273
17 0.885763168 0.898979008 0.906016231 0.910070777 0.912513793 0.914025187
19 0.882836878 0.897513986 0.905200183 0.909588754 0.912219048 0.913841009
21 0.895959914 0.904344797 0.909087062 0.911913395 0.91365093
23 0.894313395 0.903449655 0.908565581 0.911597252 0.913454473
25 0.892570376 0.902514458 0.908024669 0.911270797 0.913252354
27 0.901538968 0.907464802 0.910934329 0.913044453
29 0.900522768 0.90688622 0.910588205 0.912831426
31 0.899465442 0.90628922 0.910232782 0.912613034
33 0.905673981 0.90986824 0.912389636
35 0.905041099 0.909495115 0.912161767
37 0.909113765 0.911929727
39 0.908724129 0.911693275
41 0.908326745 0.911452949
43 0.911208868
45 0.910961211
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Table 3.7. Analysis of a cost function for finding optimal N value n =

50, k = 20, µ = 5.5, λ̄ = 3.2, µ̄ = 8, C1 = 2000, C2 = 20, C3 = 800,
C4 = 1000, C5 = 10, C6 = 200

N λ = 4 λ = 4.5 λ = 5 λ = 6
1 4925.877 4937.695 5079.029 5226.181
3 4710.059 4856.852 5057.425 5221.212
5 4630.354 4825.835 5050.332 5218.775
7 4591.702 4812.151 5048.243 5216.965
9 4571.3 4806.745 5048.411 5215.313

11 4561.086 4806.248 5049.849 5213.713
13 4558.217 4809.556 5052.345 5212.268
15 4563.915 4817.604 5056.578 5211.373
17 4588.216 4835.444 5064.896 5211.922
18 4605.19 4846.938 5070.21 5212.65
19 4624.185 4859.68 5076.196 5213.701
21 4670.646 4890.628 5091.4 5217.34
23 4735.585 4934.206 5114.597 5224.719
25 4837.829 5004.721 5155.522 5240.069
27 5032.125 5144.138 5241.815 5274.736
29 5546.901 5525.659 5482.957 5371.341
31 8780.95 7911.995 6932.789 5918.758
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3.6. The retrial model

Here we consider a variant of the model discussed in section 3.2 by assuming that

an arriving external customer either gets immediate service if it finds the server is idle at

that time or joins an orbit of infinite capacity, if the server is busy with external customers

with ≤ N − 1 failed components of the k-out-of-n system. As in the model discussed

in section 3.2, the external customers are not allowed to join the orbit when the server

is busy with failed components of the system. An orbital customer retries for service

with inter-retrial time following an exponential distribution with parameter θ. All other

assumptions and parameters remain the same as in model discussed in section 3.2. In

this situation the system can be modeled as follows. Let X1(t) = the number of external

customers in the orbit at time t and

X2(t) = the number of failed components of the k-out-of-n system, including the one

getting service (if any) at time t.

Define S (t) =


0, If the server is idle

1, If the server is busy with an external customer

2, If the server is busy with a main customer

Now, X(t) = (X1(t), S (t), X2(t)) forms a continuous time Markov chain on the state space

S = {( j1, 0, j2)/ j1 ≥ 0, 0 ≤ j2 ≤ N − 1}
⋃
{( j1, 1, j2)/ j1 ≥ 0, 0 ≤ j2 ≤ n − k + 1}

⋃
{( j1, 2, j2)/ j1 ≥ 0, 1 ≤ j2 ≤ n − k + 1}.
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Arranging the states lexicographically and partitioning the state space into levels i, where

each level i corresponds to the collection of states with number of external customers in

the orbit at any time t equal to i, we get an infinitesimal generator of the above chain as

Q =



A10 A0

A21 A11 A0

A22 A12 A0

· · ·

· · ·

A2p A1p A0

· · ·

· · ·



.

The entries of Q are described as below: For i ≥ 0, the transition within level i is

represented by the matrix

A1i =



D(i)
11 D12 0 D14

D21 D22 D23 0

0 0 D33 D34

D41 0 0 D44


,

where

D(i)
11 = λEN − λIN − iθIN ,D12 = λIN ,

D14 = λcN(N) ⊗ rn−k+1(N),D21 = µIN ,
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D22 = D(0)
11 − µIN ,

D23 = λcN(N) ⊗ rn−k+2−N(1),

D33 = λEn−k+2−N + λc(n − k + 2 − N) ⊗ r(n−k+2−N)(n − k + 2 − N) − µIn−k+2−N ,

D34 =

[
On−k+2−N×(N−1) µI(n−k+2−N)

]
,

D44 = λEn−k+1 + λcn−k+1(n − k + 1) ⊗ rn−k+1(n − k + 1) + µE′n−k+1,

D41 = µcn−k+1(1) ⊗ rN(1).

For i ≥ 0 the transition from level i to i + 1 is represented by the matrix

A0 =


0N×N 0 0 0

0 λIN o 0

0 0 0 0


.

For i ≥ 1, the transition from level i to i − 1 is represented by the matrix

A2i =


0 iθIN 0 0

0 0 0 0

 .
3.7. Steady state analysis of the retrial model

3.7.1. Stability condition. For finding the stability condition for the system study

,we apply Neuts Rao truncation by assuming A1i = A1M and A2i = A2M for all i ≥ M.

Then the generator matrix of the truncated system will look like:

85



Q =



A10 A0

A21 A11 A0

A22 A12 A0

· · ·

· · ·

A2M A1M A0

A2M A1M A0

· ·

· ·



.

Define AM = A0 + A1M + A2M ; then

AM =



D(M)
11 D(M)

12 0D14

D21 D̃22 D23 0

0 0 D33 D34

D41 0 0 D44


,

where D(M)
12 = (λ + Mθ)IN ,

D̃22 = λEN − µIN .

Let πM = (πM(0), πM(1), π̃M(1), πM(2)), where

πM(0) = (πM(0, 0), πM(0, 1), . . . , πM(0,N − 1)),

πM(1) = (πM(1, 0), . . . , πM(1,N − 1)),
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π̃M(1) = (πM(1,N), . . . , πM(1, n − k + 1)),

πM(2) = (πM(2, 1), . . . , πM(2, n − k + 1)).

be the steady state vector of the generator matrix AM. Then the relation πMAM = 0 gives

rise to the following equations:

πM(0)D(M)
11 + πM(1)D21 + πM(2)D41 = 0, (3.7.1)

πM(0)D(M)
12 + πM(1)D22 = 0, (3.7.2)

πM(1)D23 + π̃M(1)D33 = 0, (3.7.3)

πM(0)D14 + π̃M(1)D34 + πM(2)D44 = 0. (3.7.4)

It follows from equation (3.7.4) that

πM(2) = −πM(0)D14(D44)−1 − π̃M(1)D34(D44)−1. (3.7.5)

Substituting for πM(2) in equation (3.7.1), we get

πM(0)D(M)
11 + πM(1)D21 − πM(0)D14(D44)−1D41 − π̃M(1)D34(D44)−1D41 = 0. (3.7.6)

It follows from equation (3.7.3) that

π̃M(1) = −πM(1)D23(D−1
33 ). (3.7.7)
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Substituting for π̃M(1) in equation (3.7.6), we get

πM(0)D(M)
11 + πM(1)D21 − πM(0)D14(D44)−1D41

+ πM(1)D23(D33)−1D34(D44)−1D41 = 0.

(3.7.8)

We notice that the first column of the matrix D41 is −D44e and its all other columns

are zero columns. Hence the first column of the matrix (D44)−1D41 is −e and its all other

columns are zero columns. This implies that the first column of the matrix−D14(D44)−1D41

is D14e = λcN(N) and its all other columns are zero columns. In other words−D14(D44)−1

D41 = λcN(N) ⊗ rN(1). Also, the first column of the matrix D34(D44)−1D41 is −D34e and

its all other columns are zero columns. Since −D34e = D33e, the first column of the

matrix (D33)−1D34(D44)−1D41 is e and its all other columns are zero columns. Hence it

follows that D23(D33)−1D34(D44)−1D41 is D23e = λcN(N) ⊗ rN(1). Thus equation (3.7.8)

becomes

πM(0)(D(M)
11 + λcN(N) ⊗ rN(1)) + πM(1)(D21 + λcN(N) ⊗ rN(1)) = 0. (3.7.9)

Adding equations (3.7.2) and (3.7.9), we get

πM(0)(D(M)
11 +λcN(N)⊗ rN(1)+ D(M)

12 )+πM(1)(D̃22 + D21 +λcN(N)⊗ rN(1)) = 0. (3.7.10)

Since D(M)
11 + D(M)

12 = D̃22 + D21 = λEN , equation (3.7.10) reduces to

(πM(0) + πM(1))(λEN + λcN(N) ⊗ rN(1)) = 0. (3.7.11)
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which implies that πM(0) +πM(1) is a constant multiple of the steady state vector 1
N e′N of

the generator matrix λEN + λcN(N) ⊗ rN(1) and hence,

πM(0) + πM(1) = v
1
N

e′N . (3.7.12)

where v is a constant. Equation (3.7.2) implies that

πM(0) = −πM(1)D̃22(D(M)
12 )−1. (3.7.13)

Since (D(M)
12 )−1 = 1

(λ+Mθ)
IN ,(3.7.13) gives

lim
M→∞

πM(0) = 0. (3.7.14)

and hence

lim
M→∞

πM(1) = v
1
N

e′N , (3.7.15)

and

lim
M→∞

λπM(1)e = vλ. (3.7.16)

Again from (3.7.13),

MθπM(0)e = −MθπM(1)D̃22(D(M)
12 )−1e. (3.7.17)

Since, limM→∞ Mθ(D(M)
12 )−1e = limM→∞

Mθ
(λ̄+Mθ)eN = eN , (3.7.17) implies that
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lim
M→∞

MθπM(0)e = − lim
M→∞

πM(1)D̃22e

= −ν
1
N

e′N(−λcN(N) − µ̄e)

= ν(
λ

N
+ µ̄). (3.7.18)

The truncated system is stable if and only if

πMA0e < πMA2Me, (3.7.19)

πMA0e = λ̄πM(1)e, (3.7.20)

πMA2Me = MθπM(0)e. (3.7.21)

Making use of equations (3.7.16), (3.7.18), (3.7.20) and (3.7.21), the stability condition

for the truncated system as M → ∞ is given by

νλ̄ < ν(
λ

N
+ µ̄) ,

which can be re-arranged as

λ̄

µ̄

Nµ̄
(λ + Nµ̄)

< 1 .

Hence, we conclude that the retrial problem discussed in section 3.6 has the same sta-

bility condition as the queueing problem, which was obtained in section 3.3.1.
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3.7.2. Computation of Steady State Vector. We find the steady state vector

of {X(t), t ≥ 0}, by approximating it with the steady state vector of the truncated sys-

tem.Let π = (π0, π1, π2, . . .) where each πi = (πi(0, 0), πi(0, 1), . . . , πi(0,N − 1), πi(1, 1),

. . . , πi(1, n− k + 1), πi(2, 0), πi(2, 1), . . . , πi(2, n− k + 1)) be the steady state vector of the

Markov chain {X(t), t ≥ 0}.

Suppose A1i = A1M and A2i = A2M for all i ≥ M. Let πM+r = πM−1Rr+1, r ≥ 0, then

from πQ = 0 we get

πM−1A0 + πMA1M + πM+1A2M = 0,

πM−1A0 + πM−1RA1M + πM−1R2A2M = 0,

πM−1(A0 + RA1M + R2A2M) = 0.

Choose R such that A0 + RA1M + R2A2M = 0. We call this R as RM. Also we have

πM−2A0 + πM−1A1M−1 + πMA2M = 0,

πM−2A0 + πM−1(A1M−1 + RMA2M) = 0,

πM−1 = −πM−2A0(A1M−1 + RMA2M)−1

= πM−2RM−1 .

where

RM−1 = −A0(A1M−1 + RMA2M) .
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Next,

πM−3A0 + πM−2A1M−2 + πM−1A2M−1 = 0,

πM−3A0 + πM−2(A1M−2 + πM−1A2M−1) = 0,

πM−2 = −πM−3A0(A1M−2 + RM−1(A2M−1)−1

= πM−3RM−2.

Where

RM−2 = −A0(A1M−2 + RM−1A2M−1)−1.

and so on.

Finally

π0A10 + π1A21 = 0

becomes

π0(A10 + R1A21) = 0.

For finding π, first we take π0 as the steady state vector of A10 + R1A21.Then πi for

i ≥ 1 can be found using the recursive formula, πi = πi−1Ri for 1 ≤ i ≤ M.

Now the steady state probability distribution of the truncated system is obtained by

dividing each πi with the normalizing constant

[π0 + π1 + . . .]e =
[
π0 + π1 + . . . + πN−2 + πM−1(I − RM)−1

]
e.

92



3.7.3. Computation of the matrix RM. Consider the matrix quadratic equation

A0 + RMA1M + R2
MA2M = 0. (3.7.22)

which implies

RM = −A0(A1M + RMA2M)−1. (3.7.23)

The structure of the A0 matrix implies that the matrix RM has the form:

RM =



0 0 0 0

RM1 RM2 RM3 RM4

0 0 0 0

0 0 0 0


. (3.7.24)

In other words, the non-zero rows of the RM matrix are those, where the A0 matrix has

at least one nonzero entry. Now,

R2
M =



0 0 0 0

RM2RM1 R2
M2 RM2RM3 RM2RM4

0 0 0 0

0 0 0 0


. (3.7.25)

Equation (3.7.22) gives rise to the following equations:

RM1D(M)
11 + RM2D21 + RM4D41 = 0, (3.7.26)

RM2RM1MθIN + RM1D12 + RM2D22 + λIN = 0, (3.7.27)
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RM2D23 + RM3D33 = 0, (3.7.28)

RM1D14 + RM3D34 + RM4D44 = 0. (3.7.29)

From equation (3.7.28), we can write

RM3 = −RM2D23(D23))−1. (3.7.30)

From equation(3.7.29), we can write

RM4 = −RM1D14(D44)−1 − RM3D34(D44)−1. (3.7.31)

Substituting for RM3 from (3.7.30) in equation (3.7.31), we get

RM4 = −RM1D14(D44)−1 + RM2D23(D33)−1D34(D44)−1. (3.7.32)

Substituting for RM4 from (3.7.32) in equation (3.7.26), we get

RM1D(M)
11 + RM2D21 − RM1D14(D44)−1D41

+ RM2D23(D33)−1D34(D44)−1D41 = 0. (3.7.33)

Using the same reasoning, that lead us to equation (3.7.9), equation (3.7.33) becomes

RM1(D(M)
11 + λcN(N) ⊗ rN(1)) + RM2(D21 + λcn(N) ⊗ rN(1)) = 0. (3.7.34)
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From (3.7.34), it follows that

RM1 = −RM2(D21λcN(N) ⊗ rN(1))(D(M)
11 + λcN(N) ⊗ rN(1))−1. (3.7.35)

Substituting for RM1 in (3.7.27), we get

− R2
M2(D21 + λcN(N) ⊗ rN(1))(D(M)

11 + λcN(N) ⊗ rN(1))−1MθIN

− RM2(D21 + λcN(N) ⊗ rN(1))(D(M)
11 + λcN(N) ⊗ rN(1))−1D12

+ RM2D22 + λIN = 0.

That is

R2
M2

(
−(D21 + λcN(N))(D(M)

11 + λcN(N) ⊗ rN(1))−1MθIN

)
+ RM2

(
−(D21 + λcN(N) ⊗ rN(1))(D(M)

11 + λcN(N) ⊗ rN(1)−1)D12 + D22

)
+ λIN = 0. (3.7.36)

We notice that −(D(M)
11 + λcN(N) ⊗ rN(1))e = (D12 + MθIN)e. and therefore

− (D21 + λcN(N) ⊗ rN(1))(D(M)
11 + λcN(N) ⊗ rN(1))−1(D12 + MθIN)e =

(D21λcN(N) ⊗ rN(1))e. (3.7.37)

Also,

D22e + (D21 + λcN(N) ⊗ rN(1))e + λe = 0.
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and hence

(
−(D21 + λcN(N) ⊗ rN(1))(D(M)

11 + λcN(N) ⊗ rN(1))−1MθIN

)
e+

(
−(D21 + λcN(N) ⊗ rN(1))(D(M)

11 + λcN(N) ⊗ rN(1))−1D12 + D22

)
e

+λ̄e = 0.

(3.7.38)

Equation (3.7.38) shows that the matrix RM2 is the minimal non-negative solution of

the matrix quadratic equation (3.7.36). Once obtaining RM2, the matrices RM1,RM3,RM2,

and RM4 can be found using equations (3.7.35), (3.7.30) and (3.7.31) respectively. Hence

the matrix RM can be found. From the form of the matrix D(M)
11 , we notice that,

−
(
D(M)

11 + λcN(N) ⊗ rN(1)
)

= MθIN −
(
λEN − λ̄IN + λcN(N) ⊗ rN(1)

)
= Mθ

(
IN −

1
Mθ

(λEN − λ̄IN + λcN(N) ⊗ rN(1))
)
.

and hence

−
(
D(M)

11 + λcN(N) ⊗ rN(1)
)−1

=
1

Mθ

(
IN −

1
Mθ

(λEN − λ̄IN + λcN(N) ⊗ rN(1))
)−1

=
1

Mθ

(
IN +

1
Mθ

(λEN − λ̄IN + λcN(N) ⊗ rN(1)) + . . .

)
.

Therefore

lim
M→∞

(
−(D(M)

11 + λcN(N) ⊗ rN(1))−1MθIN

)
= IN .
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and

lim
M→∞

(
−(D(M)

11 + λcN(N) ⊗ rN(1))−1D12

)
= 0.

Hence as M → ∞ equation (3.7.36) becomes

R2
M2(D21 + λcN(N) ⊗ rN(1)) + RM2D22 + λ̄IN = 0. (3.7.39)

We identify D21 + λcN(N) ⊗ rN(1) as Ã2, D22 as Ã1 and λ̄IN as Ã0, which were defined

in section 3.3.2. Hence equation (3.7.39) is the same as equation (3.3.24) of section

3.3.2. That is the matrix RM tends to the matrix R, the minimal non-negative solution of

(3.3.24), as M → ∞. This fact can be utilized in determining the truncation level M.

3.8. System Performance Measures

The following system performance measures were calculated numerically.

(1) Fraction of time the system is down,

Pdown =

∞∑
j1=0

(
π j1(1, n − k + 1) + π j1(2, n − k + 1)

)
.

(2) System reliability, Prel = 1 − Pdown

= 1 −
∞∑

j1=0

(
π j1(1, n − k + 1) + π j1(2, n − k + 1)

)
.

(3) Average number of external customers in the orbit,

Norbit =

∞∑
j1=0

j1

n−k+1∑
j3=1

π j1(1, j3)

 +

∞∑
j1=0

j1

n−k+1∑
j3=0

π j1(2, j3)

 .
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(4) Average number of failed components in the system,

N f ail =

n−k+1∑
j3=0

j3

 ∞∑
j1=0

π j1(0, j3)

 +

n−k+1∑
j3=1

 ∞∑
j1=0

π j1(2, j3)

 .
(5) Average number of failed components waiting when server is busy with exter-

nal customers

=

n−k+1∑
j3=0

j3

 ∞∑
j1=1

π j1(0, j3)

 .
(6) Expected rate at which external customers joining the system

= λ̄

 ∞∑
j1=1

n−k+1∑
j3=0

π j1(0, j3)

 +

N−1∑
j3=0

π0(0, j3)

 .
(7) Expected number of external customers on its arrival gets service directly,

=

N−1∑
j3=0

π0(0, j3).

(8) Fraction of time server is busy with external customers,

Pext,busy =

∞∑
j1=1

n−k+1∑
j3=0

π j1(0, j3)

 .
(9) Probability that the server is found idle,

Pidle =

N−1∑
j3=0

π0(0, j3) = Nπ0(0, 0).

(10) Probability that the server is found busy,

Pbusy = 1 −
N−1∑
j3=0

π0(0, j3) = 1 − Nπ0(0, 0).
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(11) Expected loss rate of external customers

θ4 = λ̄

 ∞∑
j1=0

n−k+1∑
j3=1

π j1(1, j3)

 +

∞∑
j1=1

n−k+1∑
j3=N

π j1(0, j3)


 .

(12) Expected service completion rate of external customers,

θ5 = µ̄

∞∑
j1−0

n−k+1∑
j3=0

π j1(0, j3)

 .
(13) Expected number of external customers when server is busy with external cus-

tomers

θ6 =

∞∑
j1−0

j1

n−k+1∑
j3=0

π j1(0, j3)

 .
(14) Expected successful retrial rate

= θ ·
∑
j1=1

N−1∑
j3=0

πJ1(0, j3)

 .

3.9. Numerical study of the performance of the system

3.9.1. The effect of N policy on the server busy probability. A compar-

ison of Tables 3.1 and 3.8 shows that the models discussed in section 3.2 and its variant

where external customers are sent to the orbit, which was discussed in section 3.6 have

similar behavior as far as the server busy probability is considered. Comparison of Ta-

bles 3.3 and 3.9 also points to the same for the fraction of time server remains busy

with external customers. Tables 3.4 and 3.10 indicate that the two models have similar

reliability.
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Table 3.8. Variation in the server busy probability when external cus-
tomers are allowed k = 20, λ = 4, λ = 3.2, µ = 5.5, µ = 8, θ = 5.

N n = 45 n = 50 n = 55 n = 60 n = 65
1 0.82349 0.82352 0.82353 0.82353 0.82353
3 0.82995 0.82999 0.83 0.83 0.83
5 0.83222 0.83228 0.83229 0.83229 0.83229
7 0.83328 0.83336 0.83338 0.83338 0.83338
9 0.83385 0.83398 0.83401 0.83401 0.83401

11 0.83417 0.83437 0.83442 0.83442 0.83443
13 0.8343 0.83463 0.8347 0.83471 0.83472
15 0.83424 0.83479 0.8349 0.83493 0.83493
17 0.83394 0.83486 0.83505 0.83509 0.8351
19 0.83325 0.83483 0.83515 0.83521 0.83523
21 0.83192 0.83465 0.8352 0.83531 0.83533
23 0.82945 0.83424 0.83518 0.83538 0.83541

Table 3.9. Effect of the N-policy level on the fraction of time server is
busy with external customers k = 20, λ = 4, λ̄ = 3.2, µ = 3.2, µ̄ = 8,
θ = 5

N n=40 n=45 n=50 n=55 n=60
1 0.09635 0.09628 0.09626 0.09626 0.09626
3 0.10287 0.10276 0.10273 0.10273 0.10273
5 0.10523 0.10506 0.10503 0.10502 0.10502
7 0.10644 0.10618 0.10612 0.10611 0.10611
9 0.10725 0.10685 0.10676 0.10675 0.10674
11 0.10798 0.10732 0.10719 0.10716 0.10716
13 0.10879 0.10772 0.1075 0.10746 0.10745
15 0.10991 0.10811 0.10775 0.10768 0.10766
17 0.11461 0.10858 0.10798 0.10786 0.10783
19 0.11983 0.10925 0.10822 0.10801 0.10797
21 0.1103 0.10851 0.10815 0.10808
23 0.11208 0.10893 0.10831 0.10818
25 0.11522 0.10959 0.1085 0.10828
27 0.1107 0.10877 0.10839
29 0.11265 0.1092 0.10852
31 0.11615 0.10991 0.1087
33 0.11116 0.10898
35 0.1134 0.10945
37 0.11026
39 0.11172
41 0.11435
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Table 3.10. Variation in the system reliability with increase in N k =

20, λ = 4, λ̄ = 3.2, µ = 5.5, µ̄ = 8, θ = 5

N n=40 n=45 n=50 n=55 n=60
1 0.99963 0.99993 0.99998 1 1
3 0.99948 0.99989 0.99998 1 1
5 0.99924 0.99985 0.99997 0.99999 1
7 0.99885 0.99977 0.99995 0.99999 1
9 0.9982 0.99964 0.99993 0.99998 1
11 0.99712 0.99942 0.99988 0.99998 1
13 0.9953 0.99905 0.99981 0.99996 0.99999
15 0.99217 0.99843 0.99968 0.99994 0.99999
17 0.9769 0.99736 0.99947 0.99989 0.99998
19 0.9955 0.99909 0.99982 0.99996
21 0.99223 0.99844 0.99968 0.99994
23 0.98638 0.9973 0.99945 0.99989
25 0.97578 0.99528 0.99905 0.99981
27 0.99165 0.99833 0.99966
29 0.98509 0.99705 0.9994
31 0.97315 0.99475 0.99894
33 0.99058 0.99812
35 0.98297 0.99663
37 0.99393
39 0.989

3.9.2. Cost Analysis. As in the case of the queueing model discussed in section

3.2, for finding an optimal value for the N-policy level, we analyzed a cost function

for the retrial model also. For defining the cost function, let C1 be the cost per unit

time incurred if the system is down, C2 be the holding cost per unit time per external

customer in the orbit, C3 is the cost incurred for starting failed components service after

accumulation of N of them, C4 be the cost due to loss of 1 external customer, C5 be the

holding cost per unit time of one failed component, C6 be the cost per unit time if the

server is idle. We define the cost function as:
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Expected cost per unit time = C1·Pdown + C2·Norbit + C4·θ4 + C5·N f ail +
C3

EĤ
+ C6·Pidle.

where EĤ is found exactly in the same lines as in section 3.4.1.

Our numerical study, as presented in Table 3.11, show that an optimal value for N

can be found for different parameter choices and also that this optimal value happens

to be a much smaller value like N = 6. This shows the care needed in selecting the

N-policy level.

Table 3.11. Analysis of a cost function n = 50, λ̄ = 3.2, µ = 5.5, µ̄ =

8, θ = 5,C1 = 2000,C2 = 1000,C3 = 800,C4 = 1000,C5 = 10,C6 =

200, θ = 5

N λ = 4 λ = 4.5 λ = 5
1 6235.23047 6440.20947 6671.65918
2 6137.3877 6343.84668 6576.75928
3 6109.98389 6317.7207 6551.88965
4 6102.75391 6311.82178 6547.30566
5 6102.27734 6312.30322 6548.71436
6 6104.71094 6315.28613 6552.17676
7 6108.70947 6319.521 6556.51709
8 6113.67188 6324.50439 6561.33057
9 6119.2749 6329.98047 6566.44873
10 6125.32666 6335.80176 6571.76465
11 6131.69824 6341.87891 6577.22021
12 6138.31006 6348.14307 6582.78711
13 6145.10449 6354.55762 6588.43018
14 6152.04492 6361.09961 6594.13086
15 6159.104 6367.74854 6599.88428
17 6173.53564 6381.33594 6611.51611
19 6188.38672 6395.33936 6623.31689
21 6203.78809 6409.88037 6635.37354
23 6220.13477 6417.44531 6647.98535
25 6238.73828 6443.09375 6662.8042
27 6266.49854 6471.54688 6690.0752
29 6356.05566 6571.71631 6799.88672
31 7073.24658 7340.11523 7618.78223
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Chapter 4

Reliability of a k-out-of-n system with a repair

facility extending service to external customers

– The T -policy

4.1. Introduction

In the previous chapers we concentrated elaborately as N-policy, both under pre-

emptive and non pre-emptive priority basis. The pre-emptive priority to serve the failed

components produced quite high reliability. There was a mild reduction in this under

nonpre-emptive nature set up. We also considered the case of providing service only to

the main system. Of course, under this policy the reliability can be brought to as high

as .9999.... Neverthless, the server stays idle for a long time. The utilization of this idle

time is equally important. This leads us to wonder the intension of the repair facility
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to external customers. As a consequence revenue could be generated without serious

compromise in the main system reliability.

In this chapter, we study a k-out-of-n system where server offers service to external

customers on a time-based policy, namely the T -policy. Under this policy, the server

starts attending the failed components, if any present (main customers), only on the re-

alization of a random time T . Priority is given to the main customers in the sense that, if

the realization of T happens in the middle of an external customer’s service, the ongoing

service is preempted to start serving the main customers. Also, once the server starts

attending the main customers, it continues to do so that until every component becomes

operational. At the end of a cycle (the epoch at which no component of the main system

is in breakdown state), a clock starts ticking. This clock has a random duration T , on

realisation of which the repair facility is turned to repair of failed components, if any, of

the main syatem. The pre-emptive rule is adopted.

The motivation for the present study comes from the real world scenarios of time-

based resources sharing like those of spectrum-sharing, inventory-sharing etc.

This chapter is arranged as follows. In section 4.2 a queueing model is described

for studying the problem discussed. In section 4.3, we conduct the steady state analysis

of the system and give a product form solution for the steady state distribution. Several

important system performance measures have been derived in section 4.4. In section 4.5

we present results from a numerical study on the behavior of the system performance

measures as different system parameters are varied.
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4.2. The queueing model

We consider a k-out-of-n system with a single server, offering service to external

customers also. Commencement of service to failed components of the main system is

governed by T -policy. ie, at the epoch the system starts with all components operational,

the server starts attending external customers (if any present). The server starts the ser-

vice of the failed components of the main system only at the moment of the realization

of the random time T (if there is at least one failed component). If the time T is real-

ized in the middle of an external customer’s service and if there exists at least one failed

component, the external customer in service is pre-empted and the server is switched on

to the service of main customers. The preempted external customer goes to the queue of

external customers. If there are no main customers present at the moment of realization

of the time T , the server continues at his present status and the time T restarts. The ran-

dom time T is assumed to follow an exponential distribution with parameter δ. The life

time of a component of the k-out-of-n system follows an exponential distribution with

parameter λ

i when i components are operational. This assumption ensures decreasing

failure rate of the entire system with increase in number of oprational units. Hence the

inter-arrival time of failed components follows an exponential distribution with param-

eter λ. Arrival of external customers has inter-occurrence time exponentially distributed

with parameter λ. External customers, arriving when the server is busy with main cus-

tomers, are not allowed to join the system. Only those external customers who arrive

during the service of an external customer, join the queue of such customers (of infinite

capacity). An external customer, who finds the server idle on its arrival, is directly taken
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for service. Service times of main customers and external customers follow exponential

distributions with parameters µ and µ, respectively.

Notations. In the following sequel,

(i) In denotes identity matrix of order n;

(ii) I denotes an identity matrix of appropriate size;

(iii) en denotes a n × 1 column matrix of 1’s;

(iv) e denotes a column matrix of 1’s of appropriate order;

(v) En denotes a square matrix of order n defined as

En(i, j) =



−1; if i = j, 1 ≤ i ≤ n

1; if j = i + 1, 1 ≤ i ≤ n − 1

0; otherwise.

(vi) E′n = Transpose of En

(vii) rn(i) denotes a 1 × n row matrix whose ith entry is 1 and all other entries are zeroes

(viii) cn(i) = Transpose rn(i)

(ix) ⊗ denotes Kronecker product of matrices.

(x) O stands for zero matrix of appropriate order.

4.2.1. The Markov Chain. Let X1(t) = number of external customers in the sys-

tem including the one getting service (if any) at time t.

X2(t) = number of main customers in the system including the one getting service (if

any) at time t.
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If X1(t) = X2(t) = 0, then an external customer arriving at time t is taken for service.

Define

S (t) =


0, if the server is idle or the server is busy with external customers

1, if the server is busy with main customers.

Let X(t) = (X1(t), S (t), X2(t)); then {X(t), t ≥ 0} is a continuous time Markov chain on

the state space

S = {(0, 0, j2), 0 ≤ j2 ≤ n − k + 1} ∪ {( j1, 0, j2), j1 ≥ 1, 0 ≤ j2 ≤ n − k + 1}∪

{( j1, 1, j2), j1 ≥ 0, 1 ≤ j2 ≤ n − k + 1}.

Arranging the states lexicographically and partitioning the state space into levels i, where

each level i corresponding to the collection of states with number of external customers

in the system at any time t as i, we get an infinitesimal generator of the above chain as

Q =



A10 A0

A2 A1 A0

A2 A1 A0

A2 A1 A0

· · · · · · · · ·

· · · · · · · · ·


The entries of which are described below.
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The transition within level 0 is represented by the matrix

A10 =


B1 B2

B3 B4


where

B1 = λEn−k+2 + λcn−k+2(n − k + 2) ⊗ rn−k+2(n − k + 2) − (λ + δ)In−k+2 + δcn−k+2(1) ⊗ rn−k+2(1)

B2 =


01×(n−k+1)

δIn−k+1


B3 is a (n − k + 1) × (n − k + 2) matrix whose (1, 1)th entry is µ and all other entries are

zeroes.

B4 = λEn−k+1 + λcn−k+1(n − k + 1) ⊗ rn−k+1(n − k + 1) − µE′n−k+1

The transition from level i to level i + 1, i ≥ 0 is represented by the matrix

A0 =


λI(n−k+2)×(n−k+2) O(n−k+2)×(n−k+1)

O(n−k+1)×(n−k+2) O(n−k+1)×(n−k+1)


Transition from level i to i − 1, i ≥ 1 is represented by the matrix

A2 =


µI(n−k+2)×(n−k+2) O(n−k+2)×(n−k+1)

O(n−k+1)×(n−k+2) O(n−k+1)×(n−k+1)


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Transition within level i is represented by the matrix

A1 = A10 − A2.

4.3. Steady state analysis

4.3.1. Stability condition.

Consider the generator matrix A = A0 + A1 + A2

Then A =


F B2

B3 B4

, where

F = λEn−k+2 + λcn−k+2(n − k + 2) ⊗ rn−k+2(n − k + 2) − δIn−k+2 + δcn−k+2(1) ⊗ rn−k+2(1).

Let πππ = (π(0), π(1)), where π(0) = (π(0, 0), π(0, 1), . . . , π(0, n − k + 1)), π(1) =
(
π(1, 1),

π(1, 2), . . . , π(1, n − k + 1)
)

be the steady state vector of the generator matrix A.

The Markov chain {X(t), t ≥ 0} is stable if and only if πππ A0eee < πππ A2eee. It follows that

πππ A0eee = λπ(0)eee and πππ A2eee = µπ(0)eee.

Therefore the stability condition becomes

λ

µ
< 1 (4.3.1)

Though we have the stability condition as given by (4.3.1), for future reference, we

evaluate the steady state vector πππ as follows:
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The relation πππ A = 0 gives

π(0)F + π(1)B3 = 0 (4.3.2)

π(0)B2 + π(1)B4 = 0. (4.3.3)

From (4.3.3), it follows that

π(1) = −π(0)B2B−1
4 . (4.3.4)

Substituting (4.3.4) in (4.3.2), we get

π(0)F − π(0)B2B−1
4 B3 = 0

π(0)
(
F − B2B−1

4 B3

)
= 0. (4.3.5)

We notice that the first column of the matrix B3 is −B4 eee and all other columns of B3

are columns zero. Hence the first column of the matrix is
(
B−1

4

)
B3 which is −eee and its

all other columns are zero columns. This tells us that the first column of the matrix

−B2

(
B−1

4

)
B3 is B2eee =


0

δen−k+1

 and its all other columns are columns of zeros. Hence

F − B2B−1
4 B3 =



−λ λ

δ −(λ + δ) λ

· · ·

δ −(λ + δ) λ

δ −δ


(n−k+2)×(n−k+2)

. (4.3.6)
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Then equation (4.3.5) gives:

π(0, i) =

(
λ

λ + δ

)i

π(0, 0), i = 1, 2, . . . , n − k (4.3.7)

π(0, n − k + 1) =
λ

δ

(
λ

λ + δ

)n−k

π(0, 0). (4.3.8)

Equations (4.3.7) and (4.3.8) gives the component vector π(0) up to a constant π(0, 0).

Hence from (4.3.4), the vector π(1) is also obtained up to the constant π(0, 0). The

constant π(0, 0) can be found using the normalizing condition πππeee = 1.

4.3.2. The steady state probability vector.

Let φφφ = (φ(0), φ(1), φ(2), . . .) be the steady state probability vector of the Markov

chain {X(t), t ≥ 0} where

φ(i) = (φ(i, 0, 0), φ(i, 0, 1), . . . , φ(i, 0, n − k + 1), φ(i, 1, 1), . . . , φ(i, 1, n − k + 1)) , i ≥ 0.

The relation φφφQ = 0 then gives rise to:

φ(0)A10 + φ(1)A2 = 0 (4.3.9)

φ(i − 1)A0 + φ(i)A1 + φ(i + 1)A2 = 0, i ≥ 1. (4.3.10)

We notice that

A0 =
λ

µ
A2 (4.3.11)

and therefore
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A0 +
λ

µ
A1 +

λµ
2

A2 =
λ

µ
A2 +

λ

µ
A1 +

λµ
 A0

=
λ

µ
(A2 + A1 + A0)

=
λ

µ
A.

(4.3.12)

Also

A1 = A10 − A2 (4.3.13)

implies that A10 +
λ

µ
A2 = A10 + A0

= A1 + A2 + A0

= A. (4.3.14)

Now, if we take

φ(i) = η

λµ
i

πππ , i ≥ 0, (4.3.15)

where πππ is the steady state vector of the generator matrix A, which was found in section

3.1 and η a constant, equations (4.3.14) and (4.3.15) helps us to write:

φ(0)A10 + φ(1)A2 = ηπππ

A10 +
λ

µ
A2


= ηπππ A

= 0 (4.3.16)
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φ(i − 1)A0 + φ(i)A1 + φ(i + 1)A2 = ηπππ

λµ
i−1 A0 +

λ

µ
A1 +

λµ
2

A2


= ηπππ

λµ
i

A

= 0. (4.3.17)

Hence, equations (4.3.16) and (4.3.17) show that if we take φφφ = (φ(0), φ(1), φ(2), . . .) as

in (4.3.15), equations (4.3.9) and (4.3.10) are satisfied. Since πππeee = 1, it follows from

the normalizing condition πππeee = 1 that the unknown constant η = 1 − ρ, where ρ = λ

µ
.

We state the above discussion in the following theorem.

Theorem 4.3.1. The steady state probability vector φφφ = (φ(0), φ(1), φ(2), . . .) of the

Markov chain {X(t), t ≥ 0} is given in product form as:

φ(i) = (1 − ρ)

λµ
i

πππ , i ≥ 0,

where πππ is the steady state probability vector of the generator matrix A = A0 + A1 + A2.

4.4. Performance measures

4.4.1. Busy period of the server with the failed components of the

main system.

Let Tm denote the server busy period with failed components of the main system

which starts with m failed components and i external customers in the system. We notice

that external customers have no influence on Tm since our repair policy is pre-emptive.
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For analyzing Tm, let Y(t) be the number of failed components of the k-out-of-n

system. When Tm starts, Y(t) = m; then Y(t) may increase by 1 at the rate λ and may

decrease by 1 at the rate µ.

When Y(t) = 0, Tm gets realized. {Y(t), t ≥ 0} is a Markov chain with state space

{0, 1, 2, . . . , n − k + 1}, where 0 is an absorbing state. The infinitesimal generator matrix

of {Y(t)} is given by

S h =


0 0

S 0 S

 , where S = λEn−k+1 + λcn−k+1(n − k + 1)

⊗ rn−k+1(n − k + 1) + µE′n−k+1 and S 0 = −S eee.

Busy period Tm is the time until absorption in the Markov chain {Y(t)}, assuming that it

starts at the state m. Hence Tm has a phase type distribution with representation (α, S )

where α = rn−k+1(m). The expected value of Tm is therefore given by

ETm = −
(
αS −1 eee

)
ETm =

1
µ

m n−k−m+1∑
j=0

(
λ

µ

) j

+

n−k∑
j=n−k−m+2

(n − k + 1 − j)
(
λ

µ

) j
 .

We recall that the busy period of failed components starts when at least 1 failed compo-

nent is present at the realization epoch of the random time T . The state of the Markov

chain {X(t), t ≥ 0} just before start of busy period Tm is (i, 0, j), i ≥ 0, 1 ≤ j ≤ n − k + 1.

We take the probability of finding m failed components just before the start of a busy
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period Tm with an arbitrary number of external customers as φ(m) =
∞∑

i=0
φ(i, 0,m). The

expected value of busy period with failed components, which start with an arbitrary

number of failed components and an arbitrary number of external customers, is then

given by

ES =

n−k+1∑
m=1

φ(m)ETm

n−k+1∑
m=1

φ(m)
.

4.4.2. Probability that the main system goes to the down state before

the random time T is materialized.

Here we derive PT (i) the probability of finding i, 0 ≤ i ≤ n− k + 1 failed components

at the realization epoch of the random time T . For this purpose, we consider the Markov

chain {Ỹ(t), t ≥ 0}, where Ỹ(t) represents the number of failed components. Besides the

states 0, 1, . . . , n − k + 1, we consider n − k + 2 absorbing states for Ỹ(t) denoted by

∆0,∆1, . . . ,∆n−k+1, where absorption to the state ∆i means that at the realization epoch of

T , there were i failed components in the system. Hence the state space of Ỹ(t) is given

by {∆0,∆1, . . . ,∆n−k+1, 0, 1, . . . , n − k + 1}. Let ∇ denote the collection of non-absorbing

states {0, 1, . . . , n − k + 1}. The infinitesimal generator matrix of Ỹ(t) is given by

Ũ =



∆0 · · · ∆n−k+1 ∇

∆0 0 · · · 0 0

...
... · · ·

...
...

∆n−k+1 0 · · · 0 0

∇ U0 · · · Un−k+1 U


,
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where Ui = δcn−k+2(i + 1), 0 ≤ i ≤ n − k + 1 is the column matrix, which governs

absorption from ∇ to ∆i and U = λ En−k+2 + λcn−k+2(n− k + 2)⊗ rn−k+2(n− k + 2)− δIn−k+2

is the matrix, which governs transitions between the various states in ∇. Now PT (i) is

the probability that absorption occurs to the state ∆i in Ỹ(t) and hence, PT (i) = −βU−1Ui,

where β = rn−k+2(1). Therefore, PT (i) is the first entry of the column matrix −U−1Ui =

Z = (z1, z2, . . . , zn−k+2)′. That is PT (i) = z1. To compute this for 1 ≤ i ≤ n − k, we notice

that UZ = −Ui = −δcn−k+2(i + 1), which gives rise to the following equations:

−(λ + δ)z j + λz j+1 = 0, 1 ≤ j ≤ i (4.4.1)

−(λ + δ)zi+1 + λzi+2 = −δ (4.4.2)

−(λ + δ)z j + λz j+1 = 0, i + 2 ≤ j ≤ n − k + 1

−δzn−k+2 = 0. (4.4.3)

It follows from equations (4.4.3) that z j = 0 for i + 2 ≤ j ≤ n− k + 2 and equation (4.4.2)

gives

zi+1 =
δ

(λ + δ)
. (4.4.4)

Iterating backwards, equation (4.4.1) gives

PT (i) = z1 =

(
λ

λ + δ

)i
δ

(λ + δ)
, 1 ≤ i ≤ n − k.
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A similar computation gives

PT (0) =
δ

(λ + δ)
and PT (n − k + 1) =

(
λ

λ + δ

)n−k+1

.

4.4.3. Other performance measures.

The measures that are described below refer to system condition in a cycle.

(1) Fraction of time the system is down,

Pdown =

∞∑
j1=0

φ( j1, 0, n − k + 1) +

∞∑
j1=0

φ( j1, 1, n − k + 1)

(2) System reliability,

= 1 − Pdown

(3) Average number of external customers waiting in the queue,

Nq =

∞∑
j1=2

( j1 − 1)
n−k+1∑

j3=0

φ( j1, 0, j3) +

∞∑
j1=0

j1

n−k+1∑
j3=1

φ( j1, 1, j3).

(4) Average number of failed components of the main system,

N f ail =

n−k+1∑
j3=0

J3

∞∑
j1=0

φ( j1, 0, j3) +

n−k+1∑
j3=1

j1

∞∑
j1=0

φ( j1, 1, j3)

(5) Average number of failed components waiting when the server is busy with external

customers

=

n−k+1∑
j3=0

j3

∞∑
j1=1

φ( j1, 0, j3)
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(6) Expected number of external customers joining the system,

θ3 = λ

∞∑
j1=0

n−k+1∑
j3=0

φ( j1, 0, j3).

(7) Expected number of external customers on its arrival gets service directly

= µ

n−k+1∑
j3=0

φ(0, 0, j3)

(8) Fraction of time the server is busy with external customers,

Pex.busy =

∞∑
j1=1

n−k+1∑
j3=0

φ( j1, 0, j3)


(9) Probability that the server is idle,

Pidle =

n−k+1∑
j3=0

φ(0, 0, n − k + 1)

(10) Probability that the server is busy,

Pbusy = 1 − pidle

(11) Expected loss rate of external customers,

θ4 = λ

∞∑
j1=0

n−k+1∑
j3=1

φ( j1, 1, j3)


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(12) Expected service completion rate of external customers,

θ5 = µ

∞∑
j1=0

n−k+1∑
j3=0

φ( j1, 0, j3)


(13) Expected number of external customers when server is busy with external customers,

θ6 =

∞∑
j1=1

j1

n−k+1∑
j3=0

φ( j1, 0, j3)


4.5. Numerical study of the performance of the system

We notice that under the T -policy discussed in this chapter, the priority of failed

components begins only on the realization of the random time T . If T is not realized,

there is possibility of system being found in the down state. Table 4.1 shows that as δ,

the realization rate of the random time T decreases, the reliability of the system also

decreases. Due to the preemptive nature of the service to external customers, allowing

them doesn’t affect the reliability further. This fact also follows from the nature of the

steady state distribution given in Theorem 4.3.1, where πππ is the steady state probability

vector of a k-out-of-n system with T -policy and no external customers. In a k-out-of-n

system with T -policy, the server remains idle if the random time T is not realized. Table

4.2 shows that the server idle probability is 0.27 even when δ = 2. Hence rendering

service to external customers during this idle period might be a good idea for generating

additional income to the system. Table 4.3 justifies this intuition. If the realization rate

is small, for example δ = 0.005 , Table 4.2 shows that server idle probability is 0.93

(when n = 45), in a system where external customers are not allowed; however when
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external customers are allowed, it follows from Table 4.3 that the server idle probability

is reduced to 0.56. At the same time Table 4.1 show that the system reliability is just

0.1, when δ = 0.005. Hence finding an optimal value for δ seems to be an interesting

problem. For the same, we constructed and analyzed a cost function as follows:

Let C1 be the cost per unit time incurred if the system is down, C2 be the holding

cost per unit time per external customer in the queue, C3 is the cost incurred for starting

failed components service, C4 be the cost due to loss of 1 external customer, C5 be the

holding cost per unit time of one failed component, C6 be the cost per unit time if the

server is idle. Now, consider the cost function,

Expected cost per unit time = C1 · Pdown + C2 ·Nq + C4 · θ4 +
C3

ES
+ C5 ·N f ail + C6 · pidle.

Table 4.4 shows that an optimal value for δ can be obtained for different component

failure rates λ = 4, 4.5, 5, 6.
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Table 4.4. Variation in cost n = 45, λ = 3.2, µ = 5.5, µ = 8, C1 = 2000,
C2 = 1000, C3 = 1600, C4 = 1000, C5 = 500, C6 = 100, k = 20

δ λ = 4 λ = 4.5 λ = 5 λ = 6
0.005 2812.05054 2734.50244 2608.92358 1932.0752
0.007 2735.31641 2643.51587 2492.33667 1740.06384
0.009 2663.59082 2559.8562 2388.50049 1597.91943
0.01 2629.45825 2520.50146 2340.71875 1539.83276
0.03 2123.09912 1969.05518 1735.47485 1051.33716
0.05 1820.06433 1665.29358 1446.2063 912.222778
0.07 1621.95947 1475.9408 1279.27649 848.368347
0.09 1484.99597 1348.74854 1172.36658 812.769226
0.1 1431.97754 1300.20605 1132.58997 800.651184
0.3 1122.22144 1012.10541 905.285889 751.959412
0.5 1166.1283 1028.01672 911.207886 770.260803
0.7 1264.1792 1090.52588 950.656372 795.817017
0.9 1371.0564 1162.78784 997.501831 822.161316
1.1 1475.37793 1235.22021 1045.06689 847.852661
1.3 1574.04211 1304.87305 1091.26477 872.51886
1.5 1666.43896 1370.8844 1135.39673 895.990112
1.7 1752.74353 1433.12891 1177.30688 918.267517
1.9 1833.38123 1491.73572 1217.02124 939.585693
2 1871.72095 1519.74512 1236.07495 949.794006
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Chapter 5

Reliability analysis of a k-out-of-n system with

repair facility extending service to external

customers in a pool of infinite capacity

5.1. The queueing model

We consider a k-out-of-n system with a single server, rendering service to external

customers also. It has a finite buffer of capacity n− k + 1 in which the failed components

of the main system wait for service in the order of their arrival. Also it has a pool of

external customers with infinite capacity.

When no external customers are present, the system behaves like a M/PH/1/n−k+1

queue. At the end of a service if there are external customers in the pool, the system

operates as follows: (i) if the buffer is empty an external customer from the pool is
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transferred to the buffer with probability 1 and immediately starts its service (ii) if the

queue size in the buffer is less than L (1 ≤ L ≤ n − k + 1), a pre-assigned number called

the transition level, an external customer from the pool is transferred to the head of the

queue in the buffer with probability ‘p’ and immediately enters for service (iii) if there

are between L and n − k + 1 failed components in the buffer, the customer at the head

of the queue in the buffer enters in to the service process. We assume that an external

customer who on arrival finds the server busy with main customers, joins the pool with

probability γ, 0 ≤ γ ≤ 1.

Failure time of components of the main system is assumed to follow an exponential

distribution with parameter λ

i when i components are operational. External customers

arrive according to a Poisson process with parameter λ. The service process of main cus-

tomers and external customers has the same phase type distribution with representation

(S , α) of order m.

In the sequel, eee denote a column vector of 1’s of appropriate order, In denotes an

identity matrix of order n, ⊗ stands for Kronecker product of matrices and S 0 is given

by S 0 = −S eee.

5.1.1. The Markov Chain.

Let J1(t) = number of external customers in the pool including the one getting ser-

vice (if any) at time t,

J2(t) = number of main customers in the buffer including the one getting service (if any)

at time t,
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S (t) =


0, if the server is idle or the server is busy with external customers

1, if the server is busy with main customers

J3(t) = phase of the service process at time t.

Then X(t) = (J1(t), S (t), J2(t), J3(t)) is a continuous time Markov chain on the state space
∞⋃

i=0
l(i) where l(0) = {(0, 0, 0)} ∪ {(0, 1, j2, j3)/1 ≤ j2 ≤ n − k + 1, 1 ≤ j3 ≤ m} and for

i ≥ 1

l(i) = {(i, 0, j2, j3)/0 ≤ j2 ≤ n − k + 1, 1 ≤ j3 ≤ m}∪

{(i, 1, j2, j3)/1 ≤ j2 ≤ n − k + 1, 1 ≤ j3 ≤ m}.

The infinitesimal generator of this process,

Q =



B0 B1

B2 A1 A0

A2 A1 A0

A2 A1 A0

· · ·

· · ·

· · ·


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where the matrix B0 is a square matrix of order 1 + m(n − k + 1); the matrices B1 and B2

are of orders (1 + m(n−k + 1))× (m(2n−2k + 3)) and (m(2n−2k + 3))× (1 + m(n−k + 1))

respectively; A0, A1 and A2 are square matrices of order (m(2n−2k+3))×(m(2n−2k+3))

Transition from level from 0 to 1 is represented by the matrix

B1 =


λα 01×(n−k+1)m 0

0 0 In−k+1 ⊗ γλIm


The transition from level i to i + 1, i ≥ 1, is represented by

A0 =

λI(n−k+2)m 0

0 γλI(n−k+1)m


Transition from level 1 to 0 is represented by

B2 =


S 0 0

0 In−k+1 ⊗ S 0α

0(n−k+1)m×1 0(n−k+1)m×(n−k+1)m


The transition from level i to i − 1, i ≥ 2 is represented by

A2 =



S 0α 0 0 0 0

0 IL−1 ⊗ pS 0α 0 IL−1 ⊗ (1 − p)S 0α 0

0 0 0(n−k+2−L)m×(n−k+2−L)m 0 I(n−k+2−L) ⊗ S 0α

0(n−k+1)m×m 0(n−k+1)m×(L−1)m 0(n−k+1)m×(n−k+2−L)m 0(n−k+1)m×(L−1)m 0(n−k+1)m×(n−k+2−L)m


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The transition within level 0 is represented by the square matrix B0 of order

(1 + (n − k + 1)m), where

B0 =



−(λ + λ) λα

S 0 S − (λ + γλ)Im λIm

S 0α S − (λ + γλ)Im λIm

· · ·

· · ·

· · ·

S 0α S − (λ + γλ)Im λIm

S 0α S − γλIm


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Let πππ =
(
π(0), π(1), . . ., π(n−k+1)(n−k+1)(n−k+1), π̃(1), π̃(2), . . . π̃(n−k+1)(n−k+1)(n−k+1)

)
be the steady state vector of the

generator matrix A, where π(i) =
(
π(i,1), π(i,2), . . . , π(i,m)

)
, i = 0, 1 . . . , n − k + 1 and π̃(i) =(̃

π(i,1), π̃(i,2), . . . , π̃(i,m)
)
, i = 1, 2, . . . , n−k +1, then the equations πππ A = 0 and π eπ eπ e = 1 gives

the equations

π(0)(0)(0)(S + S 0α − λIm) + π̃(1)(1)(1)S 0α = 0

π(i)(i)(i)λIm + π(i+1)(i+1)(i+1)(S + pS 0α − λIm) + π̃(i+2)(i+2)(i+2) pS 0α = 0, 0 ≤ i ≤ L − 2

π(i)(i)(i)λIm + π(i+1)(i+1)(i+1)(S − λIm) = 0, L − 1 ≤ i ≤ n − k + 1

π(n−k)(n−k)(n−k)λIm + π(n−k+1)(n−k+1)(n−k+1)S = 0.

(5.2.1)

π(i)(i)(i)(1 − p)S 0α + π̃(1)(1)(1)(S − λIm) + π̃(2)(2)(2)(1 − p)S 0α = 0

π(i)(i)(i)(1 − p)S 0α + π̃(i−1)(i−1)(i−1)λIm + π̃(i)(S − λIm) + π̃(i+1)(i+1)(i+1)(1 − p)S 0α = 0, 2 ≤ i ≤ L − 1

π(i)(i)(i)S 0α + π̃(i−1)(i−1)(i−1)λIm + π̃(i)(i)(i)(S − λIm) + π̃(i+1)(i+1)(i+1)S 0α = 0, L ≤ i ≤ n − k

π(n−k+1)(n−k+1)(n−k+1)S 0α + π̃(n−k)(n−k)(n−k)λIm + π̃(n−k+1)(n−k+1)(n−k+1)S = 0.

(5.2.2)

On simplification, we can express the equations represented by equ (5.2.1) as

π(0)(0)(0)(S + S 0α − λIm + λeα = 0

π(i)(i)(i)λ(Im − eα) + π(i+1)(i+1)(i+1)(S + S 0α − λIm + λeα) = 0, 0 ≤ i ≤ n − k − 1

π(n−k)(n−k)(n−k)λ(Im − eα) + π(n−k+1)(n−k+1)(n−k+1)(S + S 0α) = 0.

(5.2.3)

Adding these equations we get

(
π(0)(0)(0) + π(1)(1)(1) + . . . + π(n−k+1)(n−k+1)(n−k+1)

)
(S + S 0α) = 0. (5.2.4)
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This shows that the vector π(0)(0)(0) + π(1)(1)(1) + . . . + π(n−k+1)(n−k+1)(n−k+1) is a constant multiple of the steady

state vector η of the generator matrix S + S 0α. Let

π(0)(0)(0) + π(1)(1)(1) + . . . + π(n−k+1)(n−k+1)(n−k+1) = δη. (5.2.5)

Similarly, on simplification of the equations represented by (5.2.2), we obtain(̃
π(1)(1)(1) + π̃(2)(2)(2) + . . . + π̃(n−k+1)(n−k+1)(n−k+1)

)
(S + S 0α) = 0. This implies that π̃(1)(1)(1) + π̃(2)(2)(2) + . . . + π̃(n−k+1)(n−k+1)(n−k+1)

is a constant multiple of the steady state vector η. Since πeπeπe = 1, we have

π̃(1)(1)(1) + π̃(2)(2)(2) + . . . + π̃(n−k+1)(n−k+1)(n−k+1) = (1 − δ)η. (5.2.6)

The stability condition πππA0eee < πππA2eee, that is

(
π(0)(0)(0) + π(1)(1)(1) + . . . + π(n−k+1)(n−k+1)(n−k+1)

)
λeee +

(̃
π(1)(1)(1) + π̃(2)(2)(2) + . . . + π̃(n−k+1)(n−k+1)(n−k+1)

)
γλeee <

(
π(0)(0)(0) + π(1)(1)(1) + . . . + π(n−k+1)(n−k+1)(n−k+1)

)
S 0,

thus becomes

δλ + (1 − δ)γλ < δηS 0. (5.2.7)

If γ = 0, that is if the arrival of external customers is blocked while the server is busy

with main customers, the stability condition (5.2.7) becomes

λ < ηS 0. (5.2.8)
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5.2.2. The steady state probability vector. Let πππ = (π(0)π(0)π(0), π(1)π(1)π(1), π(2)π(2)π(2), . . .) be

the steady state vector of the Markov chain {X(t), t ≥ o} where

π(0)π(0)π(0) =
(
π(0,0), π̃(0,1), π̃(0,2), . . . , π̃(0,n−k+1)

)
, and

π(i)π(i)π(i) =
(
π(i,0), π(i,1), π(i,2), . . . , π(i,n−k+1), π̃(0,1), π̃(0,2), . . . , π̃(0,n−k+1)

)
, here

πππ(i, j) =
(
π(i, j,1), π(i, j,2), . . . , π(i, j,m)

)
, i = 1, 2, . . . and j = 0, 1, . . . , n − k + 1

and π̃(i, j) =
(̃
π(i, j,1), π̃(i, j,2), . . . , π̃(i, j,m)

)
, i = 0, 1, 2, . . . and j = 1, 2, . . . , n − k + 1.

Let

π(i + 1)π(i + 1)π(i + 1) = π(1)π(1)π(1)Ri, i ≥ 1, . . . .

Then from πππQ = 0, we get

π(0)π(0)π(0)A0 + π(1)π(1)π(1)A1 + π(2)π(2)π(2)A2 = 0, (5.2.9)

π(0)π(0)π(0)
(
A0 + RA1 + R2A2

)
= 0.

Choose R as the minimal non negative solution of A0 + RA1 + R2A2 = 0. Then from

(5.2.9), we have

π(1)π(1)π(1) = −π(0)π(0)π(0)B1 (A1 + RA2)−1

π(1)π(1)π(1) = π(0)π(0)π(0)ω (5.2.10)

where ω = −B1(A1 + RA2)−1.

Also
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π(0)π(0)π(0)B0 + π(1)π(1)π(1)B2 = 0

π(0)π(0)π(0)(B0 + ωB2) = 0.

First take π(0)π(0)π(0) as the steady state vector of B0 + ωB2, then π(1)π(1)π(1) can be obtained using

(5.2.10). i ≥ 2, π(i)π(i)π(i) can be found using the recursive formula π(i + 1)π(i + 1)π(i + 1) = π(1)π(1)π(1)Ri, i ≥ 1.

The steady state probability distribution of the system is obtained by dividing each

π(i) with the normalising constant (π(0)(0)(0) + π(1)(1)(1) + . . .)eee = π(0)(0)(0)eee + π(1)(I − R)−1(1)(I − R)−1(1)(I − R)−1 eee.

5.3. Performance measures

(1) Fraction of time the system is down,

Pdown =

∞∑
j1=0

m∑
j4=1

π( j1, n − k + 1, 1, j4) +

∞∑
j1=0

m∑
j4=1

π( j1, n − k + 1, 0, j4)

(2) System reliability,

Prel = 1 − Pdown

(3) Average number of external customers waiting in the pool,

Nq =

∞∑
j1=2

( j1 − 1)

n−k+1∑
j2=0

m∑
j4=1

π( j1, j2, 0, j4)

 +

∞∑
j1=0

j1

n−k+1∑
j2=1

m∑
j4=1

π( j1, j2, 1, j4)

 .
(4) Average number of failed components in the main system,

N f ail =

n−k+1∑
j2=0

J2

 ∞∑
j1=1

m∑
j4=1

π( j1, j20, j4)

 +

n−k+1∑
j2=1

j2

 ∞∑
j1=0

m∑
j4=1

π( j1, j2, 1, j4)

 .
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(5) Average number of failed components waiting when the server is busy with external

customers

=

n−k+1∑
j2=0

j2

 ∞∑
j1=1

m∑
j4=1

π( j1, j2, 0, j4)


(6) Fraction of time the server is busy with external customers,

Pex.busy =

∞∑
j1=1

n−k+1∑
j2=0

m∑
j4=1

π( j1, j2, 0, j4)

(7) Probability that the server is found idle,

Pidle = π(0, 0, 0)

(8) Probability that the server is busy,

Pbusy = 1 − pidle

(9) Expected loss rate of external customers,

θ4 = λ

∞∑
j1=1

n−k+1∑
j2=0

m∑
j4=1

π( j1, j2, 1, j4)

(10) Expected number of external customers in the system when server is busy with ex-

ternal customers,

θ6 =

∞∑
j1=1

j1

n−k+1∑
j2=0

m∑
j4=1

π( j1, j2, 0, j4)


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5.4. Numerical study of the performance of the system

Here, since the service to external customers is of non-preemptive nature, there is a

possibility of system going to the down status while external customers are getting ser-

vice. Hence, we studied the effect of the transition level L on the reliability of the system.

However, Table 5.1 shows that a very high reliability is maintained in the system. The

decrease in reliability as L increases is expected, since the increase in L leads to more

external customers being selected for service. However, Table 5.1 shows that the rate

of decrease in reliability is very slow. We have compared the reliability of the current

system with that of a system, where external customers are not allowed and had found

that they agree up to first 7 decimal places for different values of n. The server busy

probability was found to be 0.4, for a system where no external customers are allowed.

Table 5.2 shows that the server busy probability is above 0.57, when external customers

are allowed. Table 5.3 shows that the fraction of time the server remains busy with ex-

ternal customers Pext.busy is > 0.24. The increase in Pext.busy as L increases, as shown

by Table 5.3 is expected, since as L increases, external customers obtain service more

frequently. The same reasoning can be attributed to a decrease in the server busy prob-

ability with main customers, which is reflected in the decrease in pbusy with an increase

in L, is noticed in Table 5.2. Though the entire system reliability may be satisfactory,

with external customers getting more frequent service, while L increases, the possible

dissatisfaction caused to the main customers forced us to investigate a cost function in

hope of finding an optimal value for L.

Let C1 be the cost per unit time incurred if the system is down, C2 be the holding

cost per unit time per external customer in the pool, C3 is the cost incurred for starting
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service of failed components, C4 be the cost due to loss of 1 external customer, C5 be the

holding cost per unit time of one failed component, C6 be the cost per unit time when

the server is idle.

Now, consider the cost function,

Expected Cost per unit time = C1 · Pdown + C2 · Nq + C4 · θ4 + C3
ES

+ C5 · N f ail + C6 · idle.

Table 5.4 shows that an optimal value for L can be obtained for different component

failure rates λ = 4, 4.5, 5.

Table 5.1. Effect of the Transition level L on the system reliability λ < µ case

λ = 4, µ = 5.5, λ = 3.2, µ = 8, γ = 0.55, m = 3

L n = 45 n = 50 n = 55
1 1 1 1
3 1 1 1
5 1 1 1
7 1 1 1
9 1 1 1
11 1 1 1
13 1 1 1
15 1 1 1
17 1 1 1
19 1 1 1
21 1 1 1
23 0.99999994 1 1
25 0.99999994 1 1
27 1 1
29 1 1
31 1 1
33 1
35 1
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Table 5.2. Effect of L on the server busy probability

λ = 4, µ = 5.5, λ = 3.2, µ = 8, γ = 0.55, m = 3

L n = 45 n = 50 n = 55
1 0.60810256 0.60810256 0.60810256
3 0.586476922 0.586476922 0.586476922
5 0.576753855 0.576753855 0.576753855
7 0.573665261 0.573665261 0.573665261
9 0.572723567 0.572723567 0.572723567
11 0.57243067 0.572430611 0.57243067
13 0.572336793 0.572336733 0.572336793
15 0.572305799 0.572305799 0.572305799
17 0.572295308 0.572295308 0.572295308
19 0.572291672 0.572291672 0.572291672
21 0.572290421 0.572290421 0.572290421
23 0.572290003 0.572290003 0.572290003
25 0.572289705 0.572289824 0.572289824
27 0.572289705 0.572289765
29 0.572289705 0.572289705
31 0.572289467 0.572289705
33 0.572289705
35 0.572289646
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Table 5.3. Effect of L on the probability that server is busy with external
customers

λ = 4, µ = 5.5, λ = 3.2, µ = 8, γ = 0.55, m = 3

L n = 45 n = 50 n = 55

1 0.244336635 0.244336635 0.244336635
3 0.250016034 0.250016123 0.250016034
5 0.252569616 0.252569586 0.252569616
7 0.253380775 0.253380775 0.253380775
9 0.253628808 0.253628045 0.253628075
11 0.253704965 0.253704935 0.253704965
13 0.253729612 0.253729612 0.253729613
15 0.253737718 0.253737718 0.253737718
17 0.253740489 0.253740489 0.253740489
19 0.253741443 0.253741443 0.253741443
21 0.253741801 0.253741771 0.253741801
23 0.25374189 0.25374186 0.25374189
25 0.25374189 0.25374192 0.25374192
27 0.25374195 0.25374195
29 0.25374195 0.25374195
31 0.253741831 0.25374195
33 0.25374198
35 0.25374192
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Table 5.4. Cost analysis

n = 45, k = 20, λ = 3.2, µ = 5.5, µ = 8, γ = 0.55, m = 3, C1 = 900000,

C2 = 1000, C3 = 2000, C4 = 200, C5 = 500, C6 = 100

L λ=4 λ=4.5 λ=5

1 1781.65845 2097.99414 2493.99146

3 1398.34412 1631.46753 1935.72974

5 1217.66528 1371.07092 1572.30933

7 1157.48804 1269.76624 1409.78735

9 1138.29138 1232.53027 1342.26868

11 1132.05823 1218.68481 1314.16382

13 1129.97559 1213.39905 1302.21362

15 1129.26135 1211.33142 1297.0354

17 1129.01233 1210.51465 1294.7998

19 1128.92676 1210.20691 1293.92249

21 1128.90308 1210.13 1293.76453

23 1128.90906 1210.19128 1294.10291

25 1128.9364 1210.3645 1294.83313
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Chapter 6

Reliabiity of a k-out-of-n System with a repair

facility rendering service to external customers

in a retrial set up and orbital search under

N-policy

6.1. The queueing model

We consider a k-out-of-n system with a single sever extending service also to ex-

ternal customers according to N-policy. An external customer, who finds an idle server

on its arrival, is immediately taken for service and who finds the server busy with an-

other external customer, joins an orbit of external customers with infinite capacity and

from there retries for service. The service to failed components starts only on the epoch
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of accumulation of N of them. If such an epoch happens in the middle of an external

customer’s service, the external customer in service will get pre-empted and the server

will be switched over to the service of the failed components. The external customer

whose service got preempted is sent back to the orbit. For decreasing the waiting of

the external customers in the orbit and also for effectively utilizing the server idle time,

we apply a search mechanism for selecting customers from the orbit. This works as

follows: at the epoch of service completion of an external customer or at the epoch of

service completion of the last main customer, the server makes a search with probabil-

ity p and selects a customer (if any) randomly from the orbit for the next service. The

search time is assumed to be negligible. Also we assumed that the arrival of external

customers is completely blocked while serving main customers. Arrival of main and

external customers has inter-occurrence times exponentially distributed with parameters

λ and λ respectively. Service times of main customers and external customers are inde-

pendent exponentially distributed with parameters µ and µ respectively. The inter-retrial

times are independent exponentially distributed random variables with parameter θ.

6.1.1. The Markov Chain.

Let X1(t) = number of external customers in the orbit including the one getting

service (if any) at time t.

X2(t) = number of main customers in the system including the one getting service (if

any) at time t.

If X1(t) = X2(t) = 0, then an arriving external customer is taken for service.
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Define

S (t) =


0, if the server is idle

1, if the server is busy with main customers

2, if the server is busy with external customers.

Let X(t) = (X1(t), S (t), X2(t)); then {X(t), t ≥ 0} is a continuous time Markov chain on

the state space

S = {( j1, 0, j2), j1 ≥ 0, 0 ≤ j2 ≤ N − 1} ∪ {( j1, 1, j2), j1 ≥ 0,

0 ≤ j2 ≤ n − k + 1} ∪ {( j1, 2, j2), j1 ≥ 0, 0 ≤ j2 ≤ N − 1}.

Arranging the states lexicographically and partitioning the state space into levels i, where

each level i corresponds to the collection of the states with number of external customers

in the system at any time t as i, we get the infinitesimal generator matrix of the above

chain as

Q =



A00 A0

A12 A11 A0

A22 A21 A0

A32 A31 A0

· · ·

· · ·

Am2 Am1 A0

· · ·

· · ·


where A00, A0, Ai2 and Ai1, i = 1, 2, 3, . . .m are square matrices of order (2N + n − k +

1) × (2N + n − k + 1).
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In the sequel,

(i) In denotes identity matrix of order n;

(ii) I denotes an identity matrix of appropriate size;

(iii) en denotes a n × 1 column matrix of 1’s;

(iv) e denotes a column matrix of 1’s of appropriate order;

(v) En denotes a square matrix of order n defined as

En(i, j) =


−1; if i = j, 1 ≤ i ≤ n

1; if j = i + 1, 1 ≤ i ≤ n − 1

0; otherwise.

(vi) E′n = Transpose of En

(vii) rn(i) denotes a 1 × n row matrix whose ith entry is 1 and all other entries are zeroes

(viii) cn(i) = Transpose of rn(i)

(ix) ⊗ denotes Kronecker product of matrices.

The structures of these matrices for n = 10, k = 6 and N = 3 are as follows.

The transition from level ‘0’ to level ‘0’ is represented by the matrix

A00 =


H11 H12 H13

H21 H22 0

H31 0 H33


H11 = λEN − λIN

H12 = λcN(N) ⊗ rn−k+1(N)
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H13 = λIN

H21 = µcn−k+1(1) ⊗ rN(1)

H22 = λEn−k+1 + λcn−k+1(n − k + 1) ⊗ rn−k+1(n − k + 1) + µE′n−k+1,

H31 = µIN

H33 = λEN −
(
λ + µ

)
IN .

The transition level ‘i’ to level ‘i + 1’, i ≥ 0 is represented by the matrix

A0 =


0 0 0

0 0 0

0 λcN(N) ⊗ rn−k+1(N) λIN


The transition from level ‘i’ to level ‘i − 1’, i ≥ 1 is represented by the matrix

Ai2 =


0 0 iθIN

0 0 pµcn−k+1(1) ⊗ rN(1)

0 0 pµIN


.

The transition within level i, i ≥ 1, is represented by the matrix

Ai1 =


H(i)

11 H12 H13

H̃21 H22 0

H̃31 0 H33


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H(i)
11 = H11 − iθIN

H̃21 = (1 − p)H21

H̃31 = (1 − p)H31

6.2. Steady state analysis

6.2.1. Stability condition.

We apply Neuts-Rao truncation for finding the stability condition of the system. For

this we assume that Ai1 = Am1 and Ai2 = Am2 for all i ≥ m. Then the generator matrix of

the truncated system will look like this

Qm =



A00 A0

A12 A11 A0

A22 A21 A0

A32 A31 A0

· · ·

· · ·

Am2 Am1 A0

Am2 Am1 A0

· · ·

· · ·


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Define Am = A0 + Am1 + Am2.

Am =


H(m)

11 H12 H(m)
13

H̃21 H22 H̃23

H̃31 H32 H̃33


H(m)

13 = (λ + mθ)IN

H̃23 = pµcn−k+1(1) ⊗ rN(1)

H32 = λcN(N) ⊗ rn−k+1(N)

H̃33 = λEN − (1 − p)µIN .

Let πm = (πm(0), πm(1), πm(2)) , where

πm(0) = (πm(0, 0), πm(0, 1), . . . πm(0,N − 1))

πm(1) = (πm(1, 1), . . . , πm(1, n − k + 1))

πm(2) = (πm(2, 0), πm(2, 0), . . . , πm(2,N − 1))

be the steady state vector of the generator matrix Am. Then the relation πmAm = 0

implies:

πm(0)H(m)
11 + πm(1)H̃21 + πm(2)H̃31 = 0 (6.2.1)

πm(0)H12 + πm(1)H22 + πm(2)H32 = 0 (6.2.2)

πm(0)H(m)
13 + πm(1)H̃23 + πm(2)H̃33 = 0. (6.2.3)
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From (6.2.2), it follows that,

πm(1) = −πm(0)H12(H22)−1 − πm(2)H32(H22)−1. (6.2.4)

Substituting for πm(1) from (6.2.4) in (6.2.1), we obtain,

πm(0)H(m)
11 − πm(0)H12(H22)−1H̃21 − πm(2)H32(H22)−1H̃21 + πm(2)H̃31 = 0. (6.2.5)

We notice that the first column of the matrix H̃21 is −(1 − p)H22 eee and all other columns

are zero columns. Hence the first column of the matrix (H22)−1H̃21 is −(1 − p)eee and

all other columns are zero columns. This in turn tells that the first column of the matrix

−H12(H22)−1H̃21 is (1−p)λcN(N) and all other columns are zero columns. In other words,

−H12(H22)−1H̃21 = (1 − p)λcN(N) ⊗ rN(1). (6.2.6)

Since H32 = H12, it follows that

−H32(H22)−1H̃21 = (1 − p)λcN(N) ⊗ rN(1). (6.2.7)

In the light of equations (6.2.6) and (6.2.7), equation (6.2.5) becomes

πm(0)
(
H(m)

11 + (1 − p)λcN(N) ⊗ rN(1)
)

+ πm(2)

(
H̃31 + (1 − p)λcN(N) ⊗ rN(1)

)
= 0. (6.2.8)

149



Substituting for πm(1) from (6.2.4) in (6.2.3) and noticing that the first column of the

matrix H̃23 is −pH22 eee, reasoning as for equation (6.2.8), we can write

πm(0)
(
H(m)

13 + pλcN(N) ⊗ rN(1)
)

+ πm(2)
(
H̃33 + pλcN(N) ⊗ rN(1)

)
= 0. (6.2.9)

We notice that H(m)
11 + H(m)

13 = H̃33 + H̃31 = λEN . Hence adding equations (6.2.8) and

(6.2.9), we get

(πm(0) + πm(2)) (λEN + λcN(N) ⊗ rN(1)) = 0. (6.2.10)

Equation (6.2.10) implies that the vector πm(0) + πm(2) is a constant multiple of the

steady state vector 1
N e′N of the generator matrix λEN + λcN(N) ⊗ rN(1) and hence,

πm(0) + πm(2) = η
1
N

e′N (6.2.11)

where η is a constant.

Since H32 = H12, it follows from equation (6.2.2) that,

(πm(0) + πm(2)) H12 + πm(1)H22 = 0. (6.2.12)

Post multiplying equation (6.2.12) with the column vector eee, we get

(πm(0) + πm(2)) H12 eee + πm(1)H22 eee = 0. (6.2.13)

We notice that

H12eee = λcN(N) and H22eee = −µcn−k+1(1). (6.2.14)
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In the light of equations (6.2.11) and (6.2.14), equation (6.2.13) becomes

ηλ

N
= πm(1, 1)µ. (6.2.15)

Now, from equations (6.2.11) and (6.2.12), it follows that

πm(1) = −
η

N
e′N H12 (H22)−1 . (6.2.16)

Post multiplying with the column matrix eee, equation (6.2.16) gives

πm(1)eee = −
η

N
e′N H12 (H22)−1 eee. (6.2.17)

Since H12 = λcN(N) ⊗ rn−k+1(N), we get η

N e′N H12 =
ηλ

N rn−k+1(N). Now,

−rn−k+1(N)(H22)−1eee =
1
µ

N
n−k−N+1∑

j=0

(
λ

µ

) j

+

n−k∑
j=n−k−N+2

(n − k + 1 − j)
(
λ

µ

) j
 . (6.2.18)

For details on the derivation of equation (6.2.18), one may refer to Krishnamoorthy, see

section 2.4.3 of chapter 2.

Thus equation (6.2.17) becomes

πm(1)eee =
ηλ

N
1
µ

N
n−k−N+1∑

j=0

(
λ

µ

) j

+

n−k∑
j=n−k−N+2

(n − k + 1 − j)
(
λ

µ

) j
 . (6.2.19)

Now, from the normalizing condition πm eee = 1, we can write

(πm(0) + πm(2))eee + πm(1)eee = 1
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that is

η +
ηλ

N
1
µ

N
n−k−N+1∑

j=0

(
λ

µ

) j

+

n−k∑
j=n−k−N+2

(n − k + 1 − j)
(
λ

µ

) j
 = 1 (6.2.20)

which gives the constant η as

η =

1 +
λ

N
1
µ

N
n−k−N+1∑

j=0

(
λ

µ

) j

+

n−k∑
j=n−k−N+2

(n − k + 1 − j)
(
λ

µ

) j


−1

. (6.2.21)

Equation (6.2.21) shows that the constant η is independent of the retrial rate θ.

Now, from equation (6.2.9) it follows that,

πm(0) = −πn(2)
(
H̃33 + pλcN(N) ⊗ rN(1)

) (
H(m)

13 + pλcN(N) ⊗ rN(1)
)−1

. (6.2.22)

From the structure of the matrix H(m)
13 + pλcN(N) ⊗ rN(1), it follows that the non zero

entries of its inverse are given by

(
H(m)

13 + pλcN(N) ⊗ rN(1)
)−1

ii
=

1

λ + mθ
, 1 ≤ i ≤ N

(
H(m)

13 + pλcN(N) ⊗ rN(1)
)−1

N1
= −

pλ

(λ + mθ)2
.

(6.2.23)

It then follows from (6.2.23) that as m → ∞, the matrix
(
H(m)

13 + pλcN(N) ⊗ rN(1)
)−1

tends to the zero matrix and the matrix mθ
(
H(m)

13 + pλcN(N) ⊗ rN(1)
)−1

tends to the iden-

tity matrix IN . Hence equation (6.2.22) gives

lim
m→∞

πm(0) = 0 (6.2.24)

and hence equation (6.2.11) implies that
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lim
m→∞

πm(2) = η
1
N

e′N . (6.2.25)

Therefore,

lim
m→∞

mθπm(0) = −η
1
N

e′N
(
H̃33 + pλcN(N) ⊗ rN(1)

)
. (6.2.26)

Since
(
H̃33 + pλcN(N) ⊗ rN(1)

)
eee = −(1− p)µeee− (1− p)λcN(N), it follows from (6.2.26)

that,

lim
m→∞

mθπm(0)eee = η(1 − p)µ +
η(1 − p)λ

N
. (6.2.27)

Now from the structure of the A0 and Am2 matrices, it follows that

πmA0 eee = πm(2)(λcN(N) + λeee) (6.2.28)

πmAm2 eee = mθπm(0)eee + pµπm(1)cn−k+1(1) + pµπm(2)eee. (6.2.29)

Hence the stability condition πmA0eee < πmAm2eee for the truncated system becomes

πm(2)(λcN(N) + λeee) < mθπm(0)eee + pµπm(1)cn−k+1(1) + pµπm(2)eee. (6.2.30)

As m → ∞, equations (6.2.25), (6.2.27), (6.2.15), implies that inequality (6.2.30) be-

comes

ηλ

N
+ ηλ < η(1 − p)µ +

η(1 − p)λ
N

+
ηpλ
N

+ ηpµ. (6.2.31)

On simplification, inequality (6.2.31) reduces to

λ < µ (6.2.32)
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which leads to the following theorem

Theorem 6.2.1. The Markov chain {X(t), t ≥ 0} is stable, if and only if λ < µ.

6.2.2. The steady state vector.

We find the steady state vector of {X(t), t ≥ 0}, by approximating it with the steady

state vector of the truncated system. Let π = (π0, π1, π2, . . .) where each

πi = (πi(0, 0), πi(0, 1), . . . , πi(0,N − 1), πi(1, 1), . . . ,

πi(1, n − k + 1), πi(2, 0), πi(2, 1), . . . , πi(2,N − 1))

be the steady state vector of the {X(t), t ≥ 0}.

Suppose Ai1 = Am1 and Ai2 = Am2 for all i ≥ m.

Let πm+r = πm−1Rr+1, r ≥ 0, then from πQ = 0 we get

πm−1A0 + πmAm1 + πm+1Am2 = 0

πm−1

(
A0 + RAm1 + R2Am2

)
= 0.

Choose R as the minimal non negative solution of A0 + RAm1 + R2Am2 = 0. We call this

R as Rm.

Also we have

πm−2A0 + πm−1Am−11 + πmAm2 = 0

πm−1 = −πm−2A0(Am−11 + RmAm2)−1

= πm−2Rm−1,
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where Rm−1 = −A0(Am−11 + RmAm2)−1.

Further

πm−3A0 + πm−2Am−21 + πm−1Am−12 = 0

πm−2 = −πm−3A0(Am−21 + Rm−1Am−12)−1

= πm−3Rm−2,

where Rm−2 = −A0(Am−21 + Rm−1Am−12)−1.

And so on. Finally π0A00 + π1A12 = 0⇒ π0(A00 + R1A12) = 0.

First we take π0 as the steady state vector of (A00 + R1A12). Then πi for i ≥ 1 can be

found using the recursive formula, πi = πi−1Ri for 1 ≤ i ≤ m − 1.

Now the steady state probability distribution of the truncated system is obtained by di-

viding each πi with the normalizing constant

[π0 + π1 + . . .]eee = [π0 + π1 + . . . + πm−2 + πm−1(I − Rm)−1]eee.

6.2.3. Computation of the matrix Rm.

Consider the matrix quadratic equation

A0 + RmAm1 + R2
mAm2 = 0, (6.2.33)

which implies

Rm = −A0
(
Am1 + RmAm2

)−1 . (6.2.34)

The structure of the A0 matrix implies that the matrix Rm has the form:
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Rm =


0 0 0

0 0 0

Rm1 Rm2 Rm3


. (6.2.35)

In other words, the non-zero rows of the Rm matrix are those, where the A0 matrix has at

least one nonzero entry. Now

R2
m =


0 0 0

0 0 0

Rm2Rm1 Rm3Rm2 R2
m3


. (6.2.36)

Equation (6.2.33) gives rise to the following equations:

Rm1 H(m)
11 + Rm2 H̃21 + Rm3 H̃31 = 0. (6.2.37)

Rm1 H12 + Rm2 H22 + λcN(N) ⊗ rn−k+1(N) = 0. (6.2.38)

Rm3Rm1mθIN + Rm3Rm2 H̃23 + R2
m3

pµIN + Rm1 H13 + Rm3 H33 + λIN = 0. (6.2.39)

From equation (6.2.38), we can write

Rm2 = −Rm1 H12 (H22)−1
− λcN(N) ⊗ rn−k+1(N) (H22)−1 . (6.2.40)

Substituting for Rm2 in equation (6.2.37), we get

Rm1 H(m)
11 −Rm1 H12 (H22)−1 H̃21 − λcN(N)⊗ rn−k+1(N) (H22)−1 H̃21 + Rm3 H̃31 = 0. (6.2.41)

From the discussion that has lead us to equations (6.2.6) and (6.2.7), it follows that
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−λcN(N) ⊗ rn−k+1(N) (H22)−1 H̃21 = (1 − p)λcN(N) ⊗ rN(1). (6.2.42)

Equations (6.2.6), (6.2.7) and (6.2.42) transform equation (6.2.41) as

Rm1

(
H(m)

11 + (1 − p)λcN(N) ⊗ rN(1)
)

+ Rm3

(
H̃31

)
+ (1 − p)λcN(N) ⊗ rN(1) = 0. (6.2.43)

Denoting the matrix
(
H(m)

11 + (1 − p)λcN(N) ⊗ rN(1)
)−1

as Wm, and λcN(N) ⊗ rN(1) as W0

from equation (6.2.43), it follows that

Rm1 = −Rm3

(
H̃31

)
Wm − (1 − p)W0Wm. (6.2.44)

Using equation (6.2.40), it follows that

Rm2 H̃23 = −Rm1 H12 (H22)−1 H̃23 − λcN(N) ⊗ rn−k+1(N) (H22)−1 H̃23. (6.2.45)

We notice that H̃21 = (1 − p)H21, where as H̃23 = pH21. Hence replacing 1 − p by p in

equations (6.2.6), (6.2.7) and (6.2.42), we can write the equations

−H12(H22)−1H̃23 = pλcN(N) ⊗ rN(1). (6.2.46)

−H32(H22)−1H̃23 = pλcN(N) ⊗ rN(1). (6.2.47)

−λcN(N) ⊗ rn−k+1(N) (H22)−1 H̃23 = pλcN(N) ⊗ rN(1). (6.2.48)

Equations (6.2.46) to (6.2.48) transform equation (6.2.45) as

Rm2 H̃23 = Rm1 pλcN(N) ⊗ rN(1) + pλcN(N) ⊗ rN(1). (6.2.49)

Substituting for Rm1 from equation (6.2.44), the above equation becomes
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Rm2 H̃23 =
(
−Rm3

(
H̃31

)
Wm − (1 − p)W0Wm

)
pW0 + pW0. (6.2.50)

Substituting for Rm1 from (6.2.44), for Rm2 H̃23 from (6.2.50), in equation (6.2.39), it

reduces to,

Rm3

(
− Rm3

(
H̃31

)
Wm − (1 − p)W0Wm

)
mθIN

+ Rm3

((
−Rm3

(
H̃31

)
Wm − (1 − p)W0Wm

)
pW0 + pW0

)
+ R2

m3
pµIN +

(
−Rm3

(
H̃31

)
Wm − (1 − p)W0Wm

)
H13

+ Rm3 H33 + λIN = 0 (6.2.51)

that is R2
m3

(
−

(
H̃31

)
WmmθIN −

(
H̃31

)
Wm pW0 + pµIN

)
+ Rm3

(
−(1 − p)W0WmmθIN − (1 − p)W0Wm pW0 + pW0 −

(
H̃31

)
WmH13 + H33

)
+

(
−(1 − p)W0WmH13 + λIN

)
= 0 (6.2.52)

Which is a matrix quadratic equation of the form

R2
m3

Ãm2 + Rm3 Ãm1 + Ãm0 = 0, (6.2.53)

which can be solved for obtaining Rm3 . The matrix Rm1 can then be obtained from

(6.2.44) and Rm2 from (6.2.40).

We notice that

− lim
m→∞

Wm = − lim
m→∞

(
H(m)

11 + (1 − p)λcN(N) ⊗ rN(1)
)−1

= 0.

− lim
m→∞

WmmθIN = − lim
m→∞

(
H(m)

11 + (1 − p)λcN(N) ⊗ rN(1)
)−1

mθIN = IN
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and hence Â2 = lim
m→∞

Ãm2 = lim
m→∞

(
−

(
H̃31

)
WmmθIN −

(
H̃31

)
Wm pW0 + pµIN

)
= H̃31 + pµIN

= (1 − p)µIN + pµIN

= µIN . (6.2.54)

Â1 = lim
m→∞

Ãm1 = lim
m→∞

(
− (1 − p)W0WmmθIN − (1 − p)W0Wm pW0

+ pW0 − H̃31WmH13 + H33

)
= (1 − p)W0 + pW0 + H33

= H33 + W0. (6.2.55)

Â0 = lim
m→∞

Ãm0 = lim
m→∞

(
−(1 − p)W0WmH13 + λIN

)
= λIN . (6.2.56)

Hence as m → ∞, equation (6.2.53) becomes R2Â2 + RÂ1 + Â0 = 0, whose minimal

non-negative solution R satisfies the relation

lim
m→∞

Rm3 = R. (6.2.57)

The relation (6.2.57) can be made use of selecting the truncation level m.

6.3. Performance measures

We now turn to deriving a few important characteristics of the system
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(1) Fraction of time the system is down:

Pdown =

∞∑
j1=0

π j1(1, n − k + 1).

(2) System reliability defined as the probability that at least k components are opera-

tional: Prel = 1 − Pdown.

(3) Average number of external units in the orbit is given by:

NO =

∞∑
j1=0

j1

n−k+1∑
j3=1

π j1(1, j3) +

∞∑
j1=2

j1

N−1∑
j3=0

π j1(0, j3) +

N−1∑
j3=0

π j1(2, j3)

 .
(4) Average number of failed components of the main system:

N f ail =

N−1∑
j3=0

j3

 ∞∑
j1=0

π j1(0, j3) +

∞∑
j1=0

π j1(2, j3)

 +

n−k+1∑
j3=1

j3

 ∞∑
j1=0

π j1(1, j3)

 .
(5) Average number of failed components waiting when the server is busy with external

customers:

EFSBE =

N−1∑
j3=0

j3

 ∞∑
j1=1

π j1(2, j3)

 .
(6) Expected number of external customers joining the system:

θ3 = λ

∞∑
j1=0

N−1∑
j3=0

π j1(0, j3) +

N−1∑
j3=0

π j1(2, j3)

 .
(7) Expected number of external customers on arrival getting service directly:

= µ

∞∑
j1=0

N−1∑
j3=0

π j1(0, j3).
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(8) Fraction of time the server is busy with external customers:

Pex.busy =

∞∑
j1=1

N−1∑
j3=0

π j1(2, j3)

 .
(9) Probability that the server is found idle:

Pidle =

∞∑
j1=0

N−1∑
j3=0

π j1(0, j3).

(10) Probability that the server is found busy:

Pbusy = 1 − Pidle = 1 −
∞∑

j1=0

N−1∑
j3=0

π j1(0, j3).

(11) Expected loss rate of external customers:

θ4 = λ

∞∑
j1=0

n−k+1∑
j3=1

π j1(1, j3)

 .
(12) Expected service completion rate of external customers:

θ5 = µ

∞∑
j1=0

N−1∑
j3=0

π j1(2, j3).

(13) Expected number of external customers when the server is busy with external cus-

tomers:

θ6 =

∞∑
j1=0

j1

N−1∑
j3=0

π j1(2, j3)

 .
(14) Expected number of successful retrials:

ESR = θ ·

∞∑
j1=1

N−1∑
j3=0

π j1(0, j3).
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(15) The effective search rate is given by:

EFSR = pµ
∞∑

j1=0

N−1∑
j3=0

π j1(2, j3) + pµ
∞∑

j1=0

π j1(1, 1).

6.4. Numerical study of the performance of the system

According to the N-policy considered here, at the epoch when the number of failed

components in the main system reaches N, external customer’s (if any) service is pre-

empted in order to attend the failed components. Due to the pre-emptive nature of ser-

vice to external customers, allowing them does not affect the reliability of the system

further. Table 6.2 shows that, system reliability decreases as the value of N increases.

We want to notice that this is not due to the presence of the external customers; rather

this is because as N increases, it gets late for the server to start attending the failed com-

ponents and also it takes more time for the server to repair all the failed components

accumulated, and in the mean time the system can reach the down status. We have

compared the server busy probability of the system discussed here with that of a system

where external customers are not allowed. Table 6.4 shows that the server busy probabil-

ity is between 0.71 and 0.73, for a system where no external customers are not allowed;

where as the same is between 0.84 and 0.86 when external customers are allowed as can

be found in Table 6.3. Table 6.1 shows that the fraction of the time the server remains

busy with external customers is Pext.busy greater than 0.094 and it is increases as the value

of N increases. This is because, as the value of N increases, the external customers gets

more attention from the server. In table 6.3, it can be seen that the server busy probabil-

ity increases initially as N increases and then it begins to decrease after N exceed some
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value. For explaining this behavior, we notice that the server busy probability Pbusy is

the sum of two probabilities namely the server busy probability with external customers

Pext.busy and the server busy probability with failed components Pm.busy. Among these,

Pext.busy increases as N increases, while Pm.busy decreases as N increases. As N exceeds

some value, which depends on the choice of the other parameters also, the magnitude of

decrease in Pm.busy exceeding the magnitude of increase in Pext.busy could be the reason

behind the decrease of Pbusy. This points to while N increases, even though the system

reliability maintained as very high with external customers getting frequent service, a

possible dissatisfaction of the main customers forced us to find an optimal value for N.

For this we constructed a cost function as follows

Let C1 be the cost per unit time incurred if the system is down, C2, be the holding

cost per unit time per external customer in the orbit, C3 is the cost incurred towards set

up (instantaneous) of the server to serve main customers, C4 be the cost due to loss of

an external customer, C5 be the holding cost per unit time of one failed component, C6

be the cost per unit idle time.

Expected cost per unit time = C1 ·Pdown +C2 ·N0 +C4 ·θ4 +C5 ·N f ail +

(
C3

EB

)
+C6 ·Pidle.

Table 6.5 gives the variation of the cost function as the N-policy level increases. Ac-

cording to the cost values and the other parameters assumed for Table 6.5, an optimum

value for N happens to be a much smaller value N = 3, which points to the care needed

for selecting N.
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Table 6.2. Effect of N-policy on system reliability

λ = 4, λ = 3.2, µ = 5.5, µ = 8, p = 0.6

N n = 45 n = 50 n = 55 n = 60 n = 65
1 0.999927512 0.999985278 0.99999702 0.999999404 0.999999881
3 0.999896646 0.99997896 0.999995708 0.999999106 0.999999821
5 0.999848127 0.999969125 0.999993742 0.999998748 0.999999762
7 0.999770224 0.99995327 0.999990463 0.999998093 0.999999583
9 0.999642789 0.999927402 0.999985218 0.99999702 0.999999404
11 0.999431372 0.999884427 0.999976516 0.999995232 0.999999046
13 0.999076188 0.999812424 0.999961853 0.999992251 0.99999845
15 0.998472273 0.999690175 0.999936998 0.999987185 0.999997377
17 0.997434139 0.999480784 0.9998945 0.999978542 0.999995649
19 0.995629668 0.999118984 0.999821067 0.999963582 0.999992609
21 0.992453277 0.998488724 0.999693513 0.999937654 0.999987304
23 0.986771345 0.997382045 0.999470294 0.999892354 0.999978125
25 0.976366401 0.99542129 0.99907738 0.999812663 0.999961913
27 0.991909087 0.998381615 0.999671817 0.999933302
29 0.98551929 0.9971416 0.999421954 0.999882519
31 0.973603964 0.994914472 0.99897635 0.999792159
33 0.990871668 0.998178065 0.999630749
35 0.98341167 0.996739745 0.999341249
37 0.994129002 0.998820186
39 0.989336848 0.997878492
41 0.980377853 0.996167362
43 0.99303767
45 0.987223387

165



Table 6.3. Effect of N-policy on server busy probability

λ = 4, λ = 3.2, µ = 5.5, µ = 8, p = 0.6

N n = 45 n = 50 n = 55 n = 60 n = 65
1 0.857275724 0.857297719 0.857302189 0.857303083 0.857303262
3 0.858526945 0.858557999 0.858564317 0.858565569 0.858565807
5 0.858603597 0.858649135 0.858658373 0.858660281 0.85860638
7 0.858595431 0.858664453 0.85867846 0.858682321 0.858681917
9 0.858557642 0.85866493 0.858686686 0.858691096 0.85869205
11 0.85843315 0.858654141 0.858688831 0.858695865 0.858697295
13 0.858352482 0.858629882 0.85868609 0.858697653 0.858699918
15 0.85812664 0.858585477 0.858678579 0.858697355 0.858701289
17 0.85773623 0.858507335 0.858663321 0.858694911 0.858701229
19 0.857056856 0.858371615 0.858636022 0.858689725 0.858700752
21 0.855860233 0.85813427 0.858588219 0.858680248 0.858698964
23 0.853719652 0.857717574 0.858504355 0.85866344 0.858695865
25 0.849799335 0.856978774 0.858356416 0.858633459 0.858689785
27 0.855655491 0.858094394 0.858580709 0.858679175
29 0.85324846 0.857627392 0.858486652 0.858660221
31 0.848758399 0.856788158 0.858318806 0.858626127
33 0.855264723 0.858017802 0.858565032
35 0.852453589 0.857475638 0.858455837
37 0.856491923 0.85825938
39 0.85468632 0.857904792
41 0.851310493 0.85725981
43 0.856079221
45 0.853889942
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Table 6.4. Variation in the server busy probability when external cus-
tomers are not allowed

k = 20,λ = 4, µ = 5.5

N n = 45 n = 50 n = 55 n = 60 n = 65
1 0.72722 0.72726 0.72727 0.72727 0.72727
3 0.7272 0.72726 0.72727 0.72727 0.72727
5 0.72717 0.72725 0.72727 0.72727 0.72727
7 0.72711 0.72724 0.72727 0.72727 0.72727
9 0.72703 0.72722 0.72726 0.72727 0.72727
11 0.72688 0.72719 0.72726 0.72727 0.72727
13 0.72663 0.72714 0.72725 0.72727 0.72727
15 0.72622 0.72706 0.72723 0.72726 0.72727
17 0.7255 0.72691 0.7272 0.72726 0.72727
19 0.72425 0.72666 0.72715 0.72725 0.72727
21 0.72206 0.72623 0.72706 0.72723 0.72726
23 0.71814 0.72546 0.72691 0.7272 0.72726
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Table 6.5. Variation in cost

λ = 3.2, µ = 5.5, µ = 8, p = 0.6, C1 = 2000, C2 = 1000,
C3 = 1600, C4 = 1000, C5 = 500, C6 = 100

N λ = 4 λ = 4.5 λ = 5 λ = 6
1 6294.77881 7014.58057 8451.76855 13187.4873
3 5568.93115 6558.06396 8271.66699 13118.4756
5 5818.25 6848.77002 8555.66797 13162.373
7 6210.08398 7246.75537 8901.53516 13227.1445
9 6648.28174 7676.01807 9259.15332 13297.1064
11 7105.86084 8114.13281 9613.13281 13367.0576
13 7571.48877 8550.64063 9955.93164 13434.373
15 8038.32568 8978.31543 10282.1611 13497.3008
17 8500.26953 9390.24902 10586.7256 13554.3633
19 8949.75098 9778.28027 10863.8584 13604.1982
21 9375.36719 10131.4531 11106.3301 13645.4541
23 9758.08301 10433.8193 11304.4141 13676.7705
25 10063.5977 10660.3818 11444.3047 13696.7246
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Chapter 7

Reliability of a k-out-of-n system with a repair

facility- Essential and Inessential services

7.1. Introduction

We consider a k-out-of-n system with a single server repair facility. At the epoch the

system starts, all components are in operational state. Service to failed components is

in the order of their arrival. When a component is selected for repair, we assume that,

the server may select it for a service that turns out to be different from what is exactly

needed for it. In other words, each failed component may get selected for an unwanted

service, which we call the inessential service with probability p and with probability

(1 − p), it is taken for desired service, called the essential service. Once the inessential

service process starts, the customer either completes the service there and moves for the

essential service or leaves the system before completing the service in the first part. A
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random clock is assumed to start ticking the moment the inessential service starts, which

decides the event to follow: if the clock realises first (still the inessential service is going

on) the customer leaves the system immediately without going for the essential service.

On the other hand if the inessential service gets completed before the realisation of the

random clock, then the component moves for the essential service immediately.

The arrival process of the failed components has inter-arrival times exponentially

distributed with parameter λ. The essential service time of a failed component is ex-

ponentially distributed with parameter µ and the service time of failed components in

inessential service has a phase type distribution with representation (α, S ) of order m.

We assume that S 0 = −S eee. S be a square matrix of order m with entries µi j, where µi j is

the parameter of the exponentially distributed sojurn time in state i when it moves from

j to i. The random clock time is assumed to be exponentially distributed with parameter

δ.

7.2. The Markov Chain

Let N(t) = at time t number of failed components in the system.

J(t) =


0, if the failed component getting essential service

1, if a failed component getting ith phase of inessential service,

where i = 1, 2, . . . ,m

Then {X(t), t ≥ 0} where X(t) = (N(t), J(t)) is a continuous time Markov chain with state

space {(0, 0)} ∪ {1, 2, . . . , n − k + 1} × {0, 1, 2, . . . ,m}.
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The generator matrix of the Markov chain {X(t), t ≥ 0} is

Q =



A00 B0

B1 A1 A0

A2 A1 A0

A2 A1 A0

· · ·

· · ·

· · ·

A2 A1 A0

A2 Ã1



A00 = [−λ]; B0 = [(1 − p)λ pλα]; B1 =


µ

δe


A1 =


−(µ + λ) 0

S 0 S − (δ + λ)Im

 ; A0 = [λIm+1]; A2 =


(1 − p)µ pµα

(1 − p)δeee pδeeeα


Ã1 =


−µ 0

S 0 S − δIm


where α = (α1, α2 . . . , αm) with α1 + α2 + . . . + αm = 1.

Let β = ((1 − p) p)
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since this system is finite, it is stable. Let

πππ = (π(0), π(1), . . . , π(n − k + 1))

with

π(i) = (π(i, 0), π(i, 1), π(i, 2), . . . π(i,m)), 1 ≤ i ≤ n − k + 1

be the steady state probability vector of the system {X(t), t ≥ 0}. Then it satisfies the

equations πππQ = 0 and πππeee = 1.

The equation πππQ = 0 gives rise to

π(0)A00 + π(1)B1 = 0 (7.2.1)

π(0)B0 + π(1)A1 + π(2)A2 = 0 (7.2.2)

π(i − 1)A0 + π(i)A1 + π(i + 1)A2 = 0, 2 ≤ i ≤ n − k (7.2.3)

π(n − k)A0 + π(n − k + 1)Ã1 = 0. (7.2.4)

Since A00 = [−λ] and B1 = A2 eee, from (7.2.1) it follows that

λπ(0) = π(1)A2 eee. (7.2.5)

Since B0 = λβ, equation (7.2.2) becomes

π(0)λβ + π(1)A1 + π(2)A2 = 0. (7.2.6)
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Using (7.2.5) we can write this equation as

π(1)B1β + π(1)A1 + π(2)A2 = 0. (7.2.7)

We notice that B1β = A2 and hence equation (7.2.7) beocmes

π(1)(A1 + A2) + π(2)A2 = 0. (7.2.8)

Post multiplying equation (7.2.8) with eee, we get

π(1)(A1 + A2)eee + π(2)A2 eee = 0 (7.2.9)

but (A1 + A2)eee = −A0 eee = −λeee. Hence (7.2.9) becomes

π(1)λeee = π(2)A2 eee. (7.2.10)

We notice that A2 = A2 eeeβ, which transforms equation (7.2.8) in to

π(1)(A1 + A2) + π(2)A2 eeeβ = 0. (7.2.11)

Substituting for π(2)A2 eee from (7.2.10) in (7.2.11), we get

π(1)(A1 + A2) + π(1)λeeeβ = 0.

That is

π(1)(A1 + A2 + λeeeβ) = 0. (7.2.12)
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Equation (7.2.12) shows that π(1) is a constant multiple of the steady state vector ϕϕϕ of

the generator matrix A1 + A2 + λeeeβ. That is

π(1) = ηϕϕϕ (7.2.13)

where η is a constant.

Equation (7.2.3) for i = 2 gives

π(1)A0 + π(2)A1 + π(3)A2 = 0. (7.2.14)

Since A2 = A2 eeeβ, equation (7.2.14) becomes

π(1)A0 + π(2)A1 + π(3)A2 eeeβ = 0. (7.2.15)

Post multiplying with eee, we get

π(1)λeee + π(2)A1 eee + π(3)A2 eee = 0. (7.2.16)

Using (7.2.10) the above equation can be written as

π(2)A2 eee + π(2)A1 eee + π(3)A2 eee = 0

i.e., π(2)(A1 + A2)eee = −π(3)A2 eee

i.e., π(2)λeee = π(3)A2 eee. (7.2.17)
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In the light of equation (7.2.17), equation (7.2.15) becomes,

π(1)A0 + π(2)A1 + π(2)λeeeβ = 0

i.e., π(1)A0 + π(2)(A1 + λeeeβ) = 0

which implies that

π(2) = −π(1)A0(A1 + λeeeβ)−1.

That is

π(2) = −ηϕϕϕA0(A1 + λeeeβ)−1. (7.2.18)

Post-multiplying equation (7.2.3) with eee and proceeding in the same lines as we derived

equation (7.2.17), we can derive that

π(i + 1)A2 eee = π(i)λeee, for 3 ≤ i ≤ n − k. (7.2.19)

Equation (7.2.19) then transforms equation (7.2.3) as

π(i − 1)A0 + π(i)A1 + π(i)λeeeβ = 0, 3 ≤ i ≤ n − k,

which implies that

π(i) = −π(i − 1)A0(A1 + λeeeβ)−1, 2 ≤ i ≤ n − k (7.2.20)

which in turn gives

π(i) = (−1)i−1ηϕϕϕ(A0(A1 + λeeeβ)−1)i−1, 2 ≤ i ≤ n − k. (7.2.21)
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We notice that Ã1 eee = −A2 eee; post-multiplying equation (7.2.4) with eee, we get

π(n − k)λeee = π(n − k + 1)A2 eee. (7.2.22)

From equation (7.2.4), we can also write

π(n − k + 1) = −π(n − k)A0(Ã1)−1. (7.2.23)

Using (7.2.21) for i = n − k, (7.2.23) becomes

π(n − k + 1) = (−1)n−kηϕϕϕ(A0(A1 + λeeeβ)−1)n−k+1A0(Ã1)−1. (7.2.24)

Hence, we have the following theorem for the steady state distribution:

Theorem 7.2.1. The steady state distribution πππ = (π(0), π(1), . . . , π(n − k + 1)) of the

Markov chain {X(t), t ≥ 0} is given by

π(0) =
1
λ
ηϕϕϕB1

π(1) = ηϕϕϕ

π(i) = (−1)i−1ηϕϕϕ(A0(A1 + λeeeβ)−1)i−1, 2 ≤ i ≤ n − k

π(n − k + 1) = (−1)n−kηϕϕϕ(A0(A1 + λeeeβ)−1)n−k−1A0(Ã1)−1,

where ϕϕϕ is the steady state vector of the generator matrix A1 + A2 + λeeeβ and η is a

constant, which can be found from the normalizing condition πππeee = 1.
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7.3. System performance measures

(1) Fraction of time the system is down,

Pdown =

m∑
j=0

π(n − k + 1, j)

(2) System reliability,

Prel = 1 − Pdown = 1 −
m∑

j=0

π(n − k + 1, j)

(3) Average number of failed components in the system,

N f ail =

n−k+1∑
i=0

i

 m∑
j=0

π(i, j)

 .
(4) Expected rate at which failed components are taken for essential service:

Ees = (1 − p)λπ(0) +

n−k+1∑
i=2

(1 − p)µπ(i, 0) +

n−k+1∑
i=2

(1 − p)δ

 m∑
1

π(i, j)

 .
(5) Expected rate at which failed components are taken for inessential service

Ein es = pλπ(0) +

n−k+1∑
i=2

pµπ(i, 0) +

n−k+1∑
i=2

pδ

 m∑
j=1

π(i, j)

 .
(6) Expected rate at which new components were bought:

EC.R =

n−k+1∑
i=1

δ

 m∑
j=1

π(i, j)

 .
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(7) Expected rate at which failed components that start with inessential service subse-

quently moves to essential service before clock realisation :

EIN E =

n−k+1∑
i=1

m+1∑
j=2

π(i, j)S 0( j − 1, 1).

(8) Fraction of time server is idle:

Pidle = π(0).

(9) Fraction of time server is busy:

Pbusy = 1 − π(0).

Numerical study of the system performance measures

Notice that if a component is selected for inessential service, it is either replaced

by a new component (if the random clock realises before completion of the inessential

service) or is got repaired (if the inessential service completes before the random clock

realises). Hence a component getting selected for inessential service according to prob-

ability p affects the system reliability only through an increase in the repair time by a

random amount of time (minimum of inessential service time and random clock time).

Table 7.1 shows that very high reliability is maintained in the system, which decreases

slightly as the probability p that a failed component receives an undesired service ini-

tially, increases. The decrease in the average rate at which components directly receive

essential service with an increase in p, as seen in Table 7.2, was expected. So is the
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increase in the rate at which components receive inessential service initially as seen in

Table 7.3, with an increase in p. According to the modelling assumption, if the ran-

dom clock expires during an inessential service, the component receiving the inessential

service is replaced with a new component. Hence, as the probability p increases, more

components will get selected for inessential service, which leads to an increase in the

replacement rate as seen in Table 7.4.

Since the inessential service is not helping the system in any way whatsoever, one

would expect the optimal value for the probability p as to be zero. However in a situation

where the possibility for inessential service can’t be avoided, one would like to know its

harm through some number. For this purpose, we have constructed a cost function as

follows:

Let C1 be the cost per unit time incurred if the system is down, C2, be the repair cost

per unit time for essential service per failed component, C3 is the cost incurred towards

the time loss due to wrong diagnosis with failed components and consequent realisation

of random clock before inessential service completion. C4 is the extra cost incurred

on failed components that start with inessential service subsequently moves to essential

service before clock realisation, C5 be the repair cost per unit time for inessential service

Expected cost per unit time = C1 · Pdown + C2 · Ees + C3 · EC.R + C4 · EIN E + C5 · Eines.

Table 7.5 presents the variation in cost function as the probability p increases for

different component failure rates. In all the cases studied, the optimum value of p was
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Conclusion

In this thesis, we studied different k-out-of-n systems where the server, besides re-

pairing failed components, renders service to external customers also. Rendering service

to external customers could be an effective way for utilizing the server idle time and

there by earn more profit to the system. However, in the case of a system, where a mini-

mum number of working components is necessary for its operation, the external service

should be carefully managed so that it does not affect the system reliability seriously.

In chapter 2, we adopted an N-policy for managing the external service. Precisely,

we assume that the server starts attending failed components of the main system only

on accumulation of N of them. During this idle period, the server renders service to

external customers (if there is any). This scenario was modeled using a continuous time

Markov chain. Further we make the reasonable assumption that the external service is

pre-emptive in nature on accumulation of N failed components and also that the external

arrivals which finds the server busy with failed system components are blocked from en-

tering the system. These assumptions lead us to a product form solution for the system

steady state distribution, when the underlying distributions are all assumed to be expo-

nential; and for obtaining the same, we used a novel matrix decomposition approach.

Our numerical study of the system performance measures reveals that by introducing N-

policy, we can optimize the system revenue, by rendering service to external customers,

still maintaining high system reliability. Analysis of a cost function has helped us in

finding an optimal value for the N-policy level.
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In chapter 3, we extended the model in chapter 2 by considering a non-preemptive

service for external customers thereby making their service more attractive. We analyzed

two models: one in which the external customers joins a queue and another in which they

move to an orbit of infinite capacity. Our numerical study showed that rendering non-

preemptive service to external customers has not affected the system reliability much,

thereby re-asserting that the same could be an effective idea for utilizing the server idle

time and there by earning more profit to the system. Here also we analyzed a cost

function, which helped us in finding an optimal value for the N-policy level.

In chapter 4, we replaced the N-policy for the service of failed components with a T -

policy. That is at the epoch the system starts with all components operational, the server

starts attending the external customers (if there is any). The server starts the service of

the failed components only at the moment of the realization of the random time T (if

there is at least one failed component). If the time T is realized in the middle of an

external customer’s service and if there exists at least one failed component, the external

customer in service is pre-empted and the server is switched over to the service of main

customers. The preempted external customer goes to the queue of external customers.

Our numerical study showed that the realization rate of the random time T should be

chosen very carefully since it may severely affect the reliability of the k-out-of-n system.

More precisely if T takes large values with positive probability, reliability is very small

and at the same time the server busy probability is not very high. We have therefore

constructed a cost function for selecting an optimal value for the realization rate of T .

As in the case of classical queue, the performance of N-policy excels that of T -policy.
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In chapter 5, it was assumed that the server selects an external customer from the

pool of external customers for service with probability ‘p’, if the number of failed com-

ponents is less than ‘L’, a pre-assigned number called the transition level. We notice that

in the case of an N-policy (assumed in chapters 2 and 3), the server starts attending the

failed components only on the accumulation of N of them and in the case of T -policy

(assumed in chapter 4) it happens on the realization of time T . In contrast to these, ac-

cording to the policy adopted in this chapter, even if there is only one failed component

found at an external customers service completion epoch, its repair is started with prob-

ability 1 − p. Hence this policy helps to maintain very high system reliability and at the

same time gives much attention for external customers. Optimal value for L was found

based on a cost function.

Chapter 6 differs from the preceding chapters that it assumes the external customers

are sent to an orbit instead of a queue. We assume an N-policy for starting the service

of failed components and the service of an external customer is preempted and it is sent

back to the orbit at the epoch of accumulation of N failed components. Because of the

assumption of the orbit of external customers, the server goes idle after each service

completion of an external customer. In order to reduce the server idle probability, an

orbital search of external customers was applied. An optimal value for N was found

using a cost function.

Chapter 7 does not assume any external customers in the system; instead here the

reliability of a k-out-of-n system is studied in a setup where a failed component may get

selected for an undesirable service initially, which may be due to some wrong diagnosis
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of the reason for its failure. Each failed component may complete the different stages of

the undesirable service to finally receive the essential service or may get replaced with a

new component. This decision was done on the basis of the elapse of a random clock T .

More precisely, if T realizes before the completion of the unwanted service, the failed

component is replaced with a new component. A cost function was studied for selecting

an optimal value for the probability p with which an external customer is selected for

the unwanted service and it was found that zero is its optimal value.

There are several extensions to the work reported in this thesis. For example external

arrivals, wherever considered could be assumed to follow an Markovian Arrival Process

with appropriate representation. D-policy as a control policy could be examined. Here

it is the accumulated work load (D) that is to be considered. Yet another direction of

extension is a multi server system. The extension of the results reported to the case of

more than one essential service is worth examining. This has applications in medicine,

biology and several other fields of activity.
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