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Chapter 1

Introduction & Literature Review

1.1 Introduction

For the last few decades there has been a tremendous growth in the volume of research

in the field of information theory. As long as uncertainty rules the world there always ex-

ists a necessity to measure the amount of uncertainty that is associated with it and thus

plays an important role. Study of uncertainty and information rooted in the works of

Shannon (1948) who formally introduced the term entropy as a measure of uncertainty.

Later on, efforts were made to generalize the Shannon entropy to represent various

natural phenomena. Thus Renyi’s entropy (see Renyi (1959, 1961)), R-norm entropy

and other generalized measures came into picture. There are also situations in survival

theory, reliability etc. where lifetimes are commonly truncated and the basic form of

entropy measures become unsuitable and necessitates the introduction of residual, past

and interval based entropy measures. They are called as the dynamic forms of these

information measures as these measures are functions of time. The study on such dy-

namic forms can be found in Ebrahimi (1996), Ebrahimi and Pellerey (1995), Sankaran

and Gupta (1999), Di Crescenzo and Longobardi (2002), Abraham and Sankaran (2005)

1
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etc. In parallel, another measure of information evoked that measures the distance

between two populations, or two distributions is the Kullback Leibler (KL) divergence

(Kullback and Leibler (1951)). It gives the information regarding how different two pop-

ulations/distributions are. Similar to entropy measures, dynamic forms of KL measure

were introduced to tackle truncated situations. The concept of inaccuracy evolved as a

measure of missing information was proposed by Kerridge (1961). Study on its dynamic

forms is done by Taneja et al. (2009) and Kumar et al. (2011). The above measures

discussed are on univariate setup. There are situations where one has to deal with two-

component systems when the status of one of the components is known in advance. In

the present work we have made a study of the various information measures narrated

above for such two-component situations.

Due to the importance and usage of certain basic reliability concepts in the study of

information measures, a brief review of them is presented in this chapter. In addition, a

review of information measures used in the study and other related concepts have been

appended.

1.2 Basic concepts - Univariate notions

Consider a random variable (rv) X. Let a = inf{x|F (x) > 0} and b = sup{x|F (x) < 1}

be such that (a, b), −∞ ≤ a < b < ∞ is the interval support of X. Then cumulative

distribution function (cdf) F , defined by F (x) = P (X ≤ x) is a non-decreasing con-

tinuous function satisfying lim
x→a

F (x) = 0 and lim
x→b

F (x) = 1. If F is differentiable, the

probability density function (pdf) of X may be defined as f(x) = dF (x)
dx

.
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1.2.1 Survival function

The survival function or reliability function F̄ (·) is a non-increasing continuous function

given by F̄ (x) = P (X > x) = 1 − F (x) where F̄ (0) = 1 and lim
x→∞

F̄ (x) = 0. If F̄ is

differentiable, the pdf of X is given by f(x) = −dF̄ (x)
dx

.

1.2.2 Failure rate

The failure rate (hazard rate) of a rv X, denoted by h(·), is defined as

h(x) = lim
∆x→0

P [x ≤ X < x+ ∆x|X > x]

∆x
. (1.1)

The failure rate h(x), measures the instantaneous rate of failure or death at time x, given

that an individual survives at least up to time x. h(x)∆x represents the approximate

probability of failure in the interval [x, x+∆x), given the individual survived up to time

x, provided ∆x is very small. Kotz and Shanbhag (1980) defined failure rate as the

Radon Nikodym derivative with respect to Lebesque measure on {x : F (x) < 1}, of the

hazard measure H(B) =
∫
B

dF (x)
[1−F (x)]

for every Borel set B of the form (−∞, L), where

L = inf{x : F (x) = 1}. If f is the pdf of X, (1.1) can be equivalently written as

h(x) =
f(x)

F̄ (x)
= − d

dx
[log F̄ (x)].

The above expression on integration with respect to x and applying lim
x→a

F̄ (x) = 1, yields

F̄ (x) = exp

(
−
∫ x

a

h(t)dt

)
= exp(−H(x)),

where H(x) =
∫ x
a
h(t)dt is known as cumulative hazard rate.
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The concept of failure rate is widely used for characterizing lifetime distributions. For

instance, failure rate constant is a characteristic property of exponential distribution

(Galambos and Kotz (1978)). A large volume of literature is available on characteriza-

tions of hazard rate function and functions of hazard rate function (see, for example,

Barlow et al. (1963), Nanda and Shaked (2001), Nair and Asha (2004), Nanda (2010)

and references therein).

1.2.3 Reversed hazard rate

As a dual to hazard rate function, Barlow et al. (1963) proposed reversed hazard rate

(RHR) function. The rv X has RHR on the interval of support (a, b), −∞ ≤ a < b <∞

if and only if the rv defined by Y = −X has the hazard rate h(−x) on (−b,−a) (see

Block et al.(1998)). For the rv X, reversed hazard rate denoted by λ(·) is defined as

λ(x) = lim
∆x→0

P [x−∆x < X ≤ x|X ≤ x]

∆x
.

λ(x) measures the instantaneous rate of failure of a unit at time x, given that it failed

before time x. Thus, λ(x)∆x gives the probability that the unit failed in an infinitesimal

interval (x−∆x, x], given that it failed before x. If the pdf f exists, the above equation

can be expressed as

λ(x) =
f(x)

F (x)
=

d

dx
[logF (x)].

Keilson and Sumita (1982) shown that λ(x) determines the df through the relationship

F (x) = exp

(
−
∫ b

x

λ(t)dt

)
= exp(−Λ(x)),

where Λ(x) =
∫ b
x
λ(t)dt is the cumulative reversed hazard rate.
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Finkelstein (2002) established a relation between λ(x) and h(x) which is as follows:

λ(x) =
h(x)

exp

(
x∫
a

h(t)dt

)
− 1

.

For more properties and studies related to RHR one can refer to Gupta and Nanda

(2001), Nanda and Shaked (2001), Finkelstein (2002), Nair and Asha (2004), Chandra

and Roy (2005), Nair et al.(2005), Bartoszewicz and Skolimowska (2006), Sankaran et

al. (2007) and Sunoj and Maya (2006).

1.2.4 Mean residual life function

For a rv X defined on R+ = {x|x ∈ [0,∞)} with E(X) < ∞, the mean residual life

function (MRLF) denoted by r(·), defined by (Swartz(1973))

r(x) = E(X − x|X > x). (1.2)

The mean residual life function r(x) measures the average lifetime of a residual rv X,

which has survived time x. If the df F is continuous with respect to Lebesque measure,

(1.2) becomes

r(x) =
1

F̄ (x)

∫ ∞
x

F̄ (t)dt.

It satisfies the following properties

(i) 0 ≤ r(x) <∞, x ≥ 0

(ii) r(0) > 0

(iii) r(x) is continuous in x

(iv) r(x) + x is increasing on R+
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(v) If there exists an x0 such that r(x0) = 0 then r(x) = 0 for x ≥ x0 otherwise, there

does not exist such an x0 with r(x0) = 0 then
∫∞

0
r−1(x)dx =∞.

Further r(x) uniquely determines the underlying distribution through the relationship

F̄ (x) =
r(0)

r(x)
exp

[
−
∫ x

0

1

r(t)
dt

]
.

Model identification can be done easily by knowing the functional form of r(x). For

instance, characterization of distribution using the linear form of r(x) is available in

Hall and Wellner (1981). MRLF is related to the failure rate by the equation

h(x) =
1 + r′(x)

r(x)
.

A large volume of literature is available on r(x), for more properties one could refer

to Hall and Wellner (1981), Mukherjee and Roy (1986), Nanda (2010) and references

therein.

1.2.5 Reversed mean residual life function

Reversed mean residual life function is an analogous concept of MRLF but defined for

the past lifetime (t−X|X ≤ t), denoted by v(·) and defined as

v(x) = E(x−X|X ≤ x).

It measures the average past lifetime of a rv which failed at time x. It is also known

as mean inactivity time or mean past time in reliability. If the df F is continuous with
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respect to Lebesgue measure, v(x) can be written as

v(x) =
1

F (x)

∫ x

0

F (x)dx.

Reversed mean residual life time is related to reversed hazard rate by the equation,

λ(x) =
1− v′(x)

v(x)
.

Like r(x), v(x) also determines the underlying df through the relationship (Chandra and

Roy (2001),

F (x) = exp

(
−
∫ ∞
x

1− v′(t)
v(t)

dt

)
.

For various studies related to reversed mean residual life functions we refer to Kayid and

Ahmed (2004), Ahmed and Kayid (2005), Gandotra et al.(2011) and references therein.

1.2.6 Vitality function

For a rv X admitting an absolutely continuous df F , with respect to Lebesgue Stieljes

measure on R, the vitality function m(·) given by Kupka and Loo (1989) as

m(x) = E(X|X ≥ x).

The vitality function satisfies the following properties:

(i) m(x) is non-decreasing and left continuous on [−∞, L) where L = inf{x : F (x) =

1},

(ii) m(x) > x for all x < L,

(iii) lim
x→L−

m(x) = L,
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(iv) lim
x→−∞

m(x) = E [X].

Further m(x) is related to r(x) through the relationship

m(x) = r(x) + x and m′(x) = r(x)h(x).

Shanbhag (1970) shown that the relation m(x) = x + c, with P (X < 0) = 0, E(X) <

∞ and c is a constant, holds, when X follows exponential distribution. For certain

populations m(x) stands a more suitable choice for modelling than r(x), for example,

Nair and Sankaran (1991) characterized Pearson family of distributions by means of

the relationship m(x) = µ + (a0 + a1x + a2x
2)h(x), where µ = E(X) and a0, a1, a2 are

constants. As there exists a one-to-one relationship between m(x) and r(x), the unique

determination of F is similar to r(x).

1.3 Bivariate notions

Let (X1, X2) be a random vector defined on R2 = (−∞,∞) × (−∞,∞). Then joint

(bivariate) df of (X1, X2) is defined as F (x1, x2) = P (X1 ≤ x1, X2 ≤ x2). It satisfies the

following properties:

1) lim
x1→−∞

lim
x2→−∞

F (x1, x2) = lim
x1→−∞

F (x1, x2) = lim
x2→−∞

F (x1, x2) = 0,

2) lim
x1→∞

lim
x2→∞

F (x1, x2) = 1,

3) If a < b and c < d, then F (a, c) < F (b, d),

4) If a > x1 and b > x2, then F (a, b)− F (a, x2)− F (x1, b) + F (x1, x2) ≥ 0.
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Bivariate sf of (X1, X2) denoted by F̄ is defined as F̄ (x1, x2) = P (X1 > x1, X2 > x2).

F̄ (x1, x2) is related to F (x1, x2) by the equation

F̄ (x1, x2) = 1− lim
x2→∞

F (x1, x2)− lim
x1→∞

F (x1, x2) + F (x1, x2).

If F (x1, x2) is absolutely continuous and if the second order derivative exists then the

joint density function f can be defined as

f(x1, x2) =
∂2F̄ (x1, x2)

∂x1∂x2

=
∂2F (x1, x2)

∂x1∂x2

.

1.3.1 Bivariate failure rate

In bivariate case, the failure rate has not been defined uniquely. A straightforward

extension of univariate definition of failure rate to the bivariate case is due to Basu

(1971) , defined as a scalar failure rate, given by

λ(x1, x2) =
f(x1, x2)

F̄ (x1, x2)
.

Puri and Rubin (1974) characterized a mixture of exponential distributions by the con-

stancy λ(x1, x2) = c for x1 > 0 and x2 > 0. However, in general λ(x1, x2) does not

determine the bivariate distribution uniquely. This fact was noted by Yang and Nachlas

(2001), Finkelstein (2003) and Finkelstein and Esaulova (2005).

An alternate approach is due to Johnson and Kotz (1975) who proposed a vector-valued

failure rate as

h(x1, x2) = (h1(x1, x2), h2(x1, x2)),
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where

hi(x1, x2) = − ∂

∂xi
log F̄ (x1, x2), i = 1, 2,

is the instantaneous failure rate of Xi at time xi given that Xi was alive at time xi and

that X3−i survived beyond time x3−i, i = 1, 2. Unlike λ(x1, x2), h(x1, x2) uniquely de-

termines the df (see Marshall and Olkin (1979) and Shanbhag and Kotz (1987)) through

the expression

F̄ (x1, x2) = exp

[
−
∫ x1

0

h1(u, 0)du−
∫ x2

0

h2(x1, u)du

]

or

F̄ (x1, x2) = exp

[
−
∫ x1

0

h1(u, x2)du−
∫ x2

0

h2(0, u)du

]
.

Some of the characterization results using the hazard gradient h(x1, x2) can be found in

Navarro and Ruiz (2004), Kotz et al. (2007), and Navarro et al. (2007).

Some other versions of failure rate in bivariate setup are also available in literature, for

example Cox (1972), Marshall (1975), Shaked and Shanthikumar (1987), Basu and Sun

(1997), Finkelstein (2003) and references therein.

1.3.2 Bivariate mean residual life function

As a direct extension of the definition in the univariate MRLF, Buchanan and Singpur-

walla (1977) introduced a bivariate MRLF as

m(x1, x2) =

∫∞
0

∫∞
0
P [X1 > x1 + t1, X2 > x2 + t2]

F̄ (x1, x2)
dt1dt2, xi > 0, i = 1, 2.

Even if m(x1, x2) is a direct extension, however, it does not uniquely determine the

underlying distribution, a limitation of m(x1, x2).
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An alternate definition to bivariate MRLF is provided by Shanbhag and Kotz (1987)

and Arnold and Zahedi (1988) and is defined as follows. Let (X1, X2) be a random

vector on R+
2 = {(x1, x2)|xi > 0, i = 1, 2} with joint df F and let (L1, L2) be the vector

of extended real numbers such that Li = inf{x|Fi(xi) = 1} where Fi is the df of Xi.

Further let E(Xi) <∞, for i = 1, 2. The vector-valued Borel measurable function r on

R+
2 is given by

r(x1, x2) = (r1(x1, x2), r2(x1, x2))

= (E(X1 − x1|X1 > x1, X2 > x2), E(X2 − x2|X1 > x1, X2 > x2)),

for all (X1, X2) ∈ R+
2 , xi < Li, i = 1, 2 is called the bivariate mean residual life function.

When (X1, X2) is continuous and non-negative, the components of bivariate MRLF are

given by

r1(x1, x2) = E(X1 − x1|X1 > x1, X2 > x2) =
1

F̄ (x1, x2)

∫ ∞
x1

F̄ (t, x2)dt

and

r2(x1, x2) = E(X2 − x2|X1 > x1, X2 > x2) =
1

F̄ (x1, x2)

∫ ∞
x2

F̄ (x1, t)dt.

Unlikem(x1, x2) due to Buchanan and Singpurwalla (1977), the bivariate MRLF r(x1, x2)

due to Arnold and Zahedi (1988) uniquely determines the distribution through the fol-

lowing identities (Nair and Nair (1988))

F̄ (x1, x2) =
r1(0, 0)r2(x1, 0)

r1(x1, 0)r2(x1, x2)
exp

[
−
∫ x1

0

dt

r1(t, 0)
−
∫ x2

0

dt

r2(x1, t)

]

or

F̄ (x1, x2) =
r1(0, x2)r2(0, 0)

r1(x1, x2)r2(0, x2)
exp

[
−
∫ x2

0

dt

r2(0, t)
−
∫ x1

0

dt

r1(t, x2)

]
.



Chapter 1. Introduction & Literature Review 12

Similar to the relationship between failure rate and MRLF in the univariate case, the

bivariate MRLF is related to bivariate failure rate by

hi(x1, x2) =
1 + ∂

∂xi
ri(x1, x2)

ri(x1, x2)
, i = 1, 2.

1.3.3 Bivariate reversed mean residual life function

Bivariate (vector-valued) reversed mean residual life function is proposed by Nair and

Asha (2008), the definition to which is as follows: Let (X1, X2) be a random vector

defined on R2 with joint df F and marginal df Fi, i = 1, 2, E(X1, X2) < ∞ and let

(a1, a2) and (b1, b2) be vectors of real numbers such that ai = inf(x|Fi(x) > 0) and

bi = sup(x|Fi(x) < 1) then bivariate reversed mean residual life function is defined as a

Borel measurable function

v(x1, x2) = (v1(x1, x2), v2(x1, x2)),

where

v1(x1, x2) = E(x1 −X1|X1 ≤ x1, X2 ≤ x2) =
1

F (x1, x2)

∫ x1

a1

F (t, x2)dt

and

v2(x1, x2) = E(x2 −X2|X1 ≤ x1, X2 ≤ x2) =
1

F (x1, x2)

∫ x2

a2

F (x1, t)dt.

Bivariate reversed mean residual life function determines the underlying bivariate dis-

tribution through the expressions

F (x1, x2) =
v1(b1, b2)v2(x1, b2)

v1(x1, b2)v2(x1, x2)
exp

(
−
∫ b1

x1

du

v1(u, b2)
−
∫ b2

x2

du

v2(x1, u)

)
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and

F (x1, x2) =
v1(b1, x2)v2(b1, b2)

v1(x1, x2)v2(b1, x2)
exp

(
−
∫ b1

x1

du

v1(u, x2)
−
∫ b2

x2

du

v2(b1, u)

)
.

Further, bivariate reversed mean residual life function is related to bivariate reversed

hazard rate by the expression

λi(x1, x2) =
1− ∂

∂xi
vi(x1, x2)

vi(x1, x2)
, i = 1, 2.

1.4 Weighted distributions

The concept of weighted distributions can be traced back to the study of the effects of

methods of ascertainment upon estimation of frequencies by Fisher (1934). In extend-

ing the basic ideas of Fisher, Rao (1965) identified the need for a unifying concept and

studied various sampling situations that can be modeled by what he called weighted dis-

tributions. These situations occur where the recorded observations cannot be considered

as a random sample from the original distributions, such as non observability of some

events or damage caused to the original observation resulting in reduced value, or adop-

tion of a sampling procedure which gives unequal chances to the units in the original.

A formal definition of a weighted distribution is obtained by considering a probability

space (Ω, I, P ) and a rv X : Ω → H, where H = (a, b) is an interval on the real line.

If f is the pdf of X and w(·), a non-negative function satisfying µw = E(w(X)) < ∞,

then the rv Xw with pdf

fw(x) =
w(x)

µw
f(x), a < x < b,

is said to have weighted distribution, corresponding to the distribution of X.
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Depending on the selection of weight function w(·), we obtain different weighted models.

When w(x) = x, then Xw is called the length-biased rv denoted by XL and its pdf is

given by

fL(x) =
x

µ
f(x), a < x < b,

where µ = E(X) < ∞. Length-biased sampling is usually adopted when a proper

method of selection of sampling is absent. In such situations items are sampled at a

rate proportional to their length, so that larger values of the quantity being measured

are sampled with higher probabilities. When dealing with the problem of sampling

and selection from a length-biased distribution, the possible bias due to the nature of

data-collection process can be utilized to connect the population parameters to that

of the sampling distribution. That is, biased sampling is not always harmful to the

process of inference on population parameters. Inference based on a biased sample of

a certain size may yield more information than that given by an unbiased sample of

the same size, provided that the choice mechanism behind the biased sample is known.

Length-biased sampling and the associated model are very popular in literature and

have been found many applications in various topics such as reliability theory, survival

analysis, population studies and clinical trials. For a detailed survey on various aspects

of length-biased sampling one can refer to Fisher (1934), Rao (1965), Neel and Schull

(1966), Eberhardt (1968), Zelen (1971), Zelen (1974), Cook and Martin (1974), Patil

and Rao (1977), Patil and Rao (1978), Eberhardt (1978), Sankaran and Nair (1993b),

Sen and Khattree (1996), Oluyede (1999), Oluyede (2000), Van et al. (2000), Sunoj

(2004) and Bar-Lev and Schouten (2004). More generally, when sampling of units is

made with probability proportional to some measure of unit size i.e. when w(x) = xα,

α > 0, then the resulting distribution is called size-biased (see Blumenthal (1967) and
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Scheaffer (1972)). Size-biased rv denoted by Xs of order α is specified by the density

f s(x) =
xα

µs
f(x), a < x < b, (1.3)

where µs = E(Xα) <∞. When α = 1, (1.3) reduces to the pdf of XL.

For works on weighted distribution one can refer to Rao (1965, 1985), Blumenthal (1967),

Scheaffer (1972), Patil and Ord (1976), Patil and Rao (1978), Gupta (1984), Sankaran

and Nair (1993b), Oluyede (1999, 2000), Sunoj (2000), Navarro et al. (2001), Sunoj

(2004), Di Crescenzo and Longobardi (2006), Sunoj and Maya (2006) and references

therein.

1.4.1 Equilibrium distributions

Equilibrium distributions arise naturally in renewal theory (see Cox (1962), Blumenthal

(1967), Despande et al. (1986), Singh (1989), Nair and Hitha (1990)). It is the distri-

bution of the backward and the forward recurrence time in the limiting case. That is, if

we have a set of components with continuous, independent and identically distributed

lifetimes L1, L2, L3, ... having pdf f , such that f(x)→ 0 as x→∞, sf F̄ and finite mean

µ and that the first component is replaced upon failure by second, second by third and

so on. Then the sequence of points Sn = L1 +L2 + ...+Ln constitute a renewal process.

At some fixed time t > 0, if N(t) = sup{n : Sn ≤ t}, then the rvs Ut = t − SN(t) and

Vt = SN(t)+1 − t are called the age (the backward recurrence time) and the residual life

(the forward recurrence time) of the component working at the time t. When t → ∞,

both the age Ut and the residual life Vt of the component in use at the time t, have the
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same asymptotic distribution with pdf

g(x) =
F̄ (x)

µ
, x ≥ 0.

This distribution is called the equilibrium distribution. Equilibrium distribution can be

viewed as a special case of weighted distribution with weight function w(x) = 1
h(x)

, where

h(x) is the hazard rate function. One can refer to Gupta and Sankaran (1998), Gupta

(2007), Nair and Preeth (2008), Navarro and Sarabia (2010) for works on equilibrium

distributions.

1.4.2 Bivariate weighted distribution

The wide applicability of weighted distributions in the univariate case has motivated

many researchers to extend the concept of weighted distribution to higher dimensions.

Let (X1, X2) be a bivariate random vector in the support of (a1, b1) × (a2, b2), bi > ai,

i = 1, 2 where (ai, bi) is an interval on the real line with absolutely continuous df F , and

pdf f . By defining w(·, ·) as a non-negative weight function satisfying E(w(X1, X2)) <

∞, Mahfoud and Patil (1982) defined bivariate weighted distribution as the distribution

of the random vector (Xw
1 , X

w
2 ) with pdf

fw(x1, x2) =
w(x1, x2)

E(w(X1, X2))
f(x1, x2), ai < xi < bi, i = 1, 2.

For more properties of bivariate weighted distributions one can refer to Nair and Sunoj

(2003), Sunoj and Sankaran (2005), Navarro et al. (2006) and references therein.
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1.5 Truncation

Statistical problems of truncation arise when a standard statistical model is appropriate

for analysis except that values of the rv falling below or above some value are not

measured at all. For example, in a study of particle size, particles below the resolving

power of observational equipment will not be seen at all. If values below a certain

lower limit, a, are not observed at all, the distribution is said to be truncated on the

left. If values larger than an upper limit, b, are not observed, the distribution is said

to be truncated on the right. If only values lying between a and b are observed, the

distribution is said to be doubly truncated.

1.6 Proportional hazard rate model

Proportional hazard rate model, well known as Cox proportional hazards model was

proposed by Cox (1972). Let X and Y be two rvs with pdfs f and g, sfs F̄ and Ḡ

and hazard rates hX and hY respectively, then X and Y are said to satisfy proportional

hazard rate (PHR) model if they satisfy the relationship

hY (x) = θhX(x) or equivalently Ḡ(x) = (F̄ (x))θ,

where θ > 0, is a constant, with the pdf g(x) = θ(F̄ (x))θ−1f(x). Proportional hazards

model has been used to model failure time data in reliability and survival analysis.

Studies related to PHR model could be found in Clayton and Cuzik (1985), Ebrahimi

and Kirmani (1996a), Kundu and Gupta (2004), Nair and Gupta (2007), Sankaran and

Sreeja (2007), Dewan and Sudheesh (2009) and references therein.
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1.7 Proportional reversed hazard rate model

In contrast to Cox’s proportional hazard rate model, Gupta et al.(1998) proposed the

proportional reversed hazard rate model (also known as Lehman family of alternatives).

Two rvs X and Y with dfs F and G and reversed hazard rates λX and λY satisfy

proportional reversed hazard rate (PRHR) model with proportionality constant θ > 0

if they satisfy the relationship

λY (x) = θλX(x) or G(x) = (F (x))θ,

with pdf g(x) = θ(F (x))θ−1f(x). For more details on PRHR, we refer to Sengupta et

al. (1999), Di Crescenzo (2000), Gupta and Gupta (2007), Sankaran and Gleeja (2008),

Nanda (2010) and references therein.

1.8 Characterization

A basic problem in reliability analysis, when the data on lifetimes are the only input,

is to identify the underlying distribution that is supposed to generate the observations.

In general, it is not easy to isolate all the physical causes that contribute individually

or collectively to the life mechanism and to mathematically account for each and hence

the task of identifying the suitable model representing the data becomes very difficult.

In many situations, the information content on the ageing pattern available from the

data is not specific enough to enable the analyst to narrow down his consideration

to a particular model. When the data are the only criteria for selecting the model

it is customary to start with a general system of distributions and then to select an

appropriate member from the system that fits the data. The problem one has to face

here is that most of the models used in this connection have different right tail behaviour
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and the sample size may not be large enough to notice such differences. A standard

practice adopted in such modelling situations is to ascertain the physical properties of the

process generating the observations, express them by means of equations or inequalities

and then solve them to obtain the model. In reliability, some basic concepts such as

failure rate, mean residual life, vitality etc. have been developed by analysts through

which the physical characteristics of the life mechanism can be adequately described

and therefore these concepts form the basis of specifying a probability distribution of

lifetimes. The only exact method of determining a probability distribution is to use a

characterization theorem, which in general terms say that under certain conditions a

family of distributions F is the only one possessing a designated property P . Thus if

one can translate the characteristics of the life mechanism in terms of the failure rate,

mean residual life or any ageing criteria and if there exists a probability distribution

characterised by such a property, the problem of model identification is satisfactorily

resolved.

1.9 Ordering of random variables

Stochastic orders and inequalities have been in use during the last few decades, at an

accelerated rate, in many diverse areas of probability and statistics such as reliability

theory, queuing theory, survival analysis, biology, economics, insurance, actuarial sci-

ence, operations research, and management science. The simplest way to compare two

distribution functions is through their means (if they exist) or their variances (if the

means are equal). However, such comparisons usually are not informative, because they

are based on only one or two specific characteristics. Ordering of rvs is an effective

tool used in such situations (see Marshall and Olkin (1979), Ross (1983), Shaked and

Shanthikumar (2007)). There are several ways in which one can assert that a rv X
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(or equivalently its df FX) is ‘greater than’ another rv Y (or equivalently its df FY ).

Stochastic ordering, hazard rate ordering and likelihood ratio ordering are among the

various notions of ordering between rvs.

A rv X is said to be stochastically greater than a rv Y , written as X ≥ST Y if

F̄X(t) ≥ F̄Y (t) ∀t.

We say a rv X is greater than another rv Y in hazard rate ordering, written as X ≥HR Y

if

hX(t) ≤ hY (t) ∀ t ≥ 0.

X is larger than Y in likelihood ratio, written as X ≥LR Y if fX(t)
fY (t)

is non-decreasing

in t. Here fX , F̄X and hX denote the pdf, the sf and the hazard rate of X and

fY , F̄Y and hY denote the respective functions of the rv Y . It is well known that

X ≥LR Y ⇒ X ≥HR Y ⇒ X ≥ST Y (Ross (1983)) i.e. likelihood ratio ordering implies

the other two.

1.10 Conditionally specified models

It is inherently difficult to visualise bivariate distributions. Conditional densities can

be easily visualised unlike marginal or joint densities. For example, in some human

population it is reasonable to visualise the unimodal distribution of heights for a given

weight with the mode of the conditional distribution varying monotonically with the

weight. In a similar way a unimodal distribution of weights for a given height can be

easily visualised with the mode varying monotonically with the height. But it is not

so easy to visualise the appropriate joint distributions without certain assertion. A va-

riety of transformation are being used to characterize the joint df. Joint characteristic

function, joint moment generating function, and joint hazard function are some among

them. They are well defined and will determine the joint df uniquely.
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It is known that to determine the joint df, the knowledge of the marginals is inade-

quate. But if we incorporate conditional specification instead of marginal specification

or together with marginal specification then the picture brightens. Sometimes one could

characterize joint distribution in this way, i.e. the knowledge of one marginal density

say fX and the conditional density of Y given X will completely specify the joint density

function fXY of a bivariate rv. Alternatively one may specify the distribution solely in

terms of the features of two families of conditional densities. This approach is called

conditional specification of the joint distribution. For works on conditionally specified

models one can refer to Arnold (1991), Arnold et al. (1992), Arnold et al. (1993),

Arnold (1996), Arnold et al. (1998) and references therein.

1.11 Conditional survival models

In conditionally specified bivariate distribution, joint density fXY has been referred with

all conditionals of X given Y = y belonging to a particular parametric family and all

conditionals of Y given X = x, belonging to another parametric family. In the case

of bivariate survival models, component survival i.e. on events such as {X > x} and

{Y > y} have been conditioned. For works on conditional survival models we refer to

Arnold (1995).

1.12 Shannon’s entropy

The development of the idea of entropy by Claude Shannon (Shannon (1948)) provided

the beginning of information theory. The entropy of a probability distribution is not

only a measure of uncertainty but also a measure of information. In fact, the amount of

information which we obtain when observing an experiment (depending on chance) can
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be taken numerically equal to the amount of uncertainty concerning the outcome of the

experiment before carrying it out. Shannon (1948) defined entropy in discrete case.

If X is a discrete rv taking values x1, x2, ..., xn with probabilities p1, p2, ..., pn then Shan-

non entropy is defined as

I(p) = I(p1, p2, ..., pn) = −
n∑
i=1

pi log pi,

When the rv X takes the value xi with probability pi = 1 for some i, then I(p) = 0.

Then there is no uncertainty about the predictability of X by the probability mass

function p. When X follows discrete uniform distribution, then pi = 1/n for all i. This

is the most uncertain situation as the outcome of such an experiment is the hardest to

be predicted.

If X is a rv having an absolutely continuous df F with pdf f , then Shannon’s entropy

of X is defined as

I(f) = IX = −
∫ ∞

0

f(x) log f(x)dx = −E(log f(X)). (1.4)

When I(f1) > I(f2), it is more difficult to predict the outcome of f1 as compared to

predict outcome of f2. In various life testing experiments one has information only

about the current age of the system under consideration and thus (1.4) is not a suitable

measure in such situations and should be modified to take the current age into account.

Accordingly, Ebrahimi (1996) introduced a measure of uncertainty known as residual

entropy, defined as

IX(t) = −
∫ ∞
t

f(x)

F̄ (t)
log

f(x)

F̄ (t)
dx. (1.5)

Clearly (1.5) is the Shannon entropy corresponding to the residual rv (X − t|X > t).
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IX(t) can be equivalently written as

IX(t) = log F̄ (t)− 1

F̄ (t)

∫ ∞
t

f(x) log f(x)dx,

= 1− 1

F̄ (t)

∫ ∞
t

f(x) log(h(x))dx,

where h(x) is the hazard rate of the rv X.

For further study on residual entropy one can refer to Ebrahimi and Pellerey (1995),

Nair and Rajesh (1998), Rajesh and Nair (1998), Sankaran and Gupta (1999), Asadi

and Ebrahimi (2000), Rajesh (2001), Belzunce et al. (2004), Sunoj and Sankaran (2012)

and references therein.

In many realistic situations uncertainty is not necessarily related to future but can

also be associated with past. Based on this idea, Di Crescenzo and Longobardi (2002)

proposed the past entropy using the past life rv (t−X|X ≤ t) given by

ĪX(t) = −
∫ t

0

f(x)

F (t)
log

f(x)

F (t)
dx. (1.6)

Similar to (1.5), a more useful expression in terms of the reversed failure rate is given

by

ĪX(t) = logF (t)− 1

F (t)

∫ t

0

f(x) log f(x)dx,

= 1− 1

F (t)

∫ t

0

f(x) log(λ(x))dx,

where λ(x) is the reversed hazard rate of X.

For properties and applications we refer to Nanda and Paul (2006), Di Crescenzo and
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Longobardi (2006), Kundu et al. (2010) and Thapliyal and Taneja (2012).

1.13 Renyi’s entropy

The notion of Shannon entropy can be generalized to provide additional information

about the importance of specific events, for example outliers or rare events. A generalized

measure of uncertainty, called Renyi’s entropy of order α, was proposed and studied by

Renyi (see Renyi (1959, 1961)) which is given by

IR(α) =
1

1− α
log

(∫ ∞
0

fα(x)dx

)
for α > 0, α 6= 1.

It possesses the same properties of Shannon entropy, but it contains an additional pa-

rameter α which can be used to make it more or less sensitive to the shape of probability

distribution. It plays a vital role as a measure of complexity and uncertainty in different

areas such as Physics, Electronics and Engineering to describe various chaotic systems

(Kurths et al. (1995)). It can be seen that lim
α→1

IR(α) = IX , so that Shannon entropy is

a limiting case of Renyi’s entropy. As a function of the parameter α, IR(α) is known as

the spectrum of Renyi’s information.

Abraham and Sankaran (2005) introduced Renyi’s entropy for residual lifetime rv, de-

fined by

IR(α, t) =
1

1− α
log

(∫ ∞
t

fα(x)

F̄α(t)
dx

)
for α > 0, α 6= 1. (1.7)

Abraham and Sankaran (2005) have shown that (1.7) determines the distribution uniquely.

Unlike the measure proposed by Ebrahimi (1996), IR(α, t) provides the spectrum of

Renyi’s information of the remaining life of the system for different values of α. As
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Renyi’s information is related to the log likelihood, IR(α, t) is useful in comparing the

shapes and the tails of residual lifetime distributions. For more properties and applica-

tions of (1.7), we refer to Abraham and Sankaran (2005), Asadi et al. (2005) and Maya

and Sunoj (2008).

1.14 Kullback-Leibler divergence

A measure of divergence is generally used as a tool to evaluate the information distance

(divergence) between any two populations or functions. It is a measure that quantifies

how different the two distributions are. It is not a true distance in the usual sense as it is

not a symmetric function of the two distributions. Measures of divergence between two

probability distributions have a long history initiated by the pioneering work of Pearson,

Mahalanobis, Levy and Kolmogorov. Kullback-Leibler divergence measure and Renyi’s

divergence measure are among the most popular divergence measures. Accordingly,

the present work pays attention on the information divergence measures viz. Kullback-

Leibler divergence and Renyi’s divergence of order α. Let X and Y be two absolutely

continuous non-negative rvs that describe the lifetimes of two items. Let f , F , and F̄

denote the pdf, the df and the sf of X respectively and g, G and Ḡ, the corresponding

functions of Y . As an information distance between F and G, Kullback and Leibler

(1951) proposed a divergence measure given by

IX,Y =

∫ ∞
0

f(x) log
f(x)

g(x)
dx. (1.8)

Equation (1.8) is a ruler to measure the similarity (closeness) between two distributions

f and g and it plays an important role in information theory, reliability and other related

fields. Further IX,Y ≥ 0 and equality holds if and only if f = g a.e.
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For an item under study, the information about the remaining or past lifetime is an

important component in many applications. In such cases, the information measures

are functions of time and thus are dynamic. Accordingly, Ebrahimi and Kirmani (1996b)

defined the Kullback-Leibler divergence measure for the rvs X and Y that have survived

time t > 0 as

IX,Y (t) =

∫ ∞
t

f(x)

F̄ (t)
log

f(x)/F̄ (t)

g(x)/Ḡ(t)
dx. (1.9)

Equation (1.9) can be equivalently written as

IX,Y (t) = log Ḡ(t)− IX(t)− 1

F̄ (t)

∫ ∞
t

f(x) log g(x)dx.

Ebrahimi and Kirmani (1996a) have shown that IX,Y (t) is a constant if and only if

X and Y satisfy proportional hazard rate model. On the basis of (1.8) and (1.9) Di

Crescenzo and Longobardi (2004) have proposed a measure of discrepancy between past

lifetime distributions, given by

ĪX,Y (t) =

∫ t

0

f(x)

F (t)
log

f(x)/F (t)

g(x)/G(t)
dx. (1.10)

Analogous to IX,Y (t) the constancy of ĪX,Y (t) is a characterization to reversed propor-

tional hazard rate model. Equation (1.10) can also be written as

ĪX,Y (t) = logG(t)− ĪX(t)− 1

F (t)

∫ t

0

f(x) log g(x)dx.

Di Crescenzo and Longobardi (2004) have shown that for any strictly increasing bijective

transformation φ, Īφ(X),φ(Y )(t) = ĪX,Y (φ−1(t)) for t > 0. Maya and Sunoj (2008) have

proved that ĪX,Xw(t) is a constant if and only if the weight function is of the form

w(t) = (F (t))θ−1, θ > 0.
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1.15 Kerridge’s Inaccuracy

The concept of inaccuracy was introduced by Kerridge (1961). One reasonable measure

of uncertainty is the amount of information obtained before certainty is achieved. Inac-

curacy can be related to the amount of missing information. Nath (1968) has defined

inaccuracy measure in continuous setup (also known as Fraser information) which is

given by

KX,Y = −
∫ ∞

0

f(x) log g(x)dx. (1.11)

Taneja et al. (2009) proposed the dynamic measure of inaccuracy for residual lifetime

distributions, given by

KX,Y (t) = −
∫ ∞
t

f(x)

F̄ (t)
log

g(x)

Ḡ(t)
dx, (1.12)

= −
∫ ∞
t

f(x)

F̄ (t)
log

f(x)

F̄ (t)
dx+

∫ ∞
t

f(x)

F̄ (t)
log

f(x)/F̄ (t)

g(x)/Ḡ(t)
dx,

= IX(t) + IX,Y (t). (1.13)

Note that KX,Y (t) = KXt,Yt , where Xt = (X − t|X > t) and Yt = (Y − t|Y > t) are the

residual rvs of X and Y respectively. Dynamic measure of inaccuracy for past lifetime

rvs (t−X|X ≤ t) and (t− Y |Y ≤ t) was proposed by Kumar et al. (2011) and is given

by

K̄X,Y (t) = −
∫ t

0

f(x)

F (t)
log

g(x)

G(t)
dx. (1.14)

Similar to (1.13) K̄X,Y (t) can be expressed as the sum of ĪX(t) and ĪX,Y (t). For recent

study on inaccuracy measure one can refer to Kundu (2014), Kundu and Nanda (2014)

and references therein.
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1.16 Present Study

In literature one could find numerous studies in connection with characterization of

bivariate dfs using information measures, but a little work could be found in relation

with conditional specified or conditional survival approach in identifying the underlying

bivariate model. The present study is a collection of such efforts made to characterize

bivariate distribution using conditional specified and conditional survival approach with

the help of certain well known information measures. The thesis is organized into six

chapters. First chapter gives an introduction to the information measures, a literature

review of basic reliability measures, basic measures of uncertainty and other concepts

that have been used in the study the information measures. The second chapter is

devoted to obtain the bounds for Renyi’s divergence of order α and Kerridge’s inaccu-

racy of residual and past lifetimes using likelihood ratio ordering. In the third chapter

we introduce new entropy measures called cumulative residual entropy for conditionally

specified and survival models and study their various properties. We also extend the

measure to the past lifetimes and prove results arising out of it. In fourth chapter, a new

measure of uncertainty namely cumulative residual Renyi’s entropy has been introduced

and its properties for the residual rv have been studied. We also examine the properties

of the measure in the context of weighted and conditional rvs. A study on residual Kull-

back Leibler divergence measure, Renyi’s divergence measure and Kerridge’s inaccuracy

measure for conditionally specified and conditional survival rvs are available in chapter

five. In the sixth chapter, another two generalized information measures known as resid-

ual R norm entropy and divergence measures are studied and proved characterization

theorems and bounds based on them in univariate and bivariate setup.



Chapter 2

Bounds for some dynamic

information measures

2.1 Introduction

A generalized version of Kullback-Leibler divergence measure, namely Renyi’s divergence

was proposed by Renyi (see Renyi (1961)) in his studies of information measures. Renyi’s

divergence is related to Renyi’s entropy like Kullback-Leibler divergence measure is

related to Shannon entropy. Renyi’s divergence possesses similar properties as those of

Kullback-Leibler divergence, but has an additional parameter α, called its order. The

general properties of Renyi’s divergence of order α and its usefulness in characterizing

different distributions are discussed in Section 2.2. Di Crescenzo and Longobardi (2004)

studied Kullback-Leibler divergence measure for past lives and obtained certain useful

bounds for it in terms of reversed hazard rate and past entropy. Motived by this, in

this chapter we obtain some bounds for Renyi information divergence of order α and

Kerridge’s inaccuracy using likelihood ratio ordering. It provides some upper or lower

Contents of this chapter is published in Sunoj, S. M. and Linu, M. N. (2012). “On bounds of some

dynamic information divergence measures”, Statistica, Italy, anno LXXII (1), 23–36.
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bounds to these information measures, where the bounds are functions of hazard (re-

versed hazard) rates and residual (past) Shannon information measure(s). These bounds

are also extended to the weighted models useful in comparing the observed and original

distributions.

2.2 Dynamic Renyi’s discrimination measure of or-

der α

The wide applicability of KL divergence motivated Alfred Renyi (Renyi (1961)) to intro-

duce a generalized divergence measure known as Renyi’s divergence of order α, obtained

directly from the Renyi’s entropy given in Section 1.13. A formal definition of it for con-

tinuous rvs is as follows:

Let X and Y be two absolutely continuous non-negative rvs that describe the lifetimes

of two items. Denote by f , F and F̄ , the pdf, the cdf and the sf of X respectively and

g, G and Ḡ, the corresponding functions of Y . Also, let hX = f/F̄ and hY = g/Ḡ be

the hazard (failure) rates and λX = f/F and λY = g/G be the reversed hazard rates

of X and Y respectively. Then Renyi’s information divergence of order α between two

distributions f and g is defined by

IX,Y (α) =
1

α− 1
log

∫ ∞
0

fα(x)g(1−α)(x)dx =
1

α− 1
logEf

[
f(X)

g(X)

]α−1

, (2.1)

where 0 < α 6= 1.

However, in many applied problems viz., reliability, survival analysis, economics, busi-

ness, actuarial science etc. one has information only about the current age of the systems,

and thus are dynamic. Then the discrimination information function between two resid-
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ual lifetime distributions based on Renyi’s information divergence of order α is given

by

IX,Y (α, t) =
1

α− 1
log

∫ ∞
t

fα(x)g(1−α)(x)

F̄α(t)Ḡ(1−α)(t)
dx, (2.2)

with 0 < α 6= 1. Note that IX,Y (α, t) = IXt,Yt(α), where Xt = (X − t|X > t) and Yt =

(Y − t|Y > t) are residual lifetimes associated with X and Y respectively. The following

example illustrates the role of Renyi’s information divergence of order α between two

residual rvs.

Example 2.2.1. Let X and Yβ be the random lifetimes of two items, where X is uni-

formly distributed on (0, 1) and Yβ has the pdf,

gβ(t) = β

(
t− 1

2

)
+ 1, 0 < t < 1, −2 ≤ β ≤ 2.

Now using (2.2) we have

IX,Yβ(α, t) =
1

α− 1
log

 (
β
2

+ 1
)2−α −

(
β
(
t− 1

2

)
+ 1
)2−α

β(2− α)(1− t)α
(

1− βt2

2
+ βt

2
− t
)1−α

 . (2.3)

Figure 2.1 represents (2.3) for α = 1.8, β = 1.5 (lower curve) and β = −1.5 (upper

curve) and figure 2.2 represents (2.3) for α = 1.8, β = 0.15 (lower curve) and β = −0.15

(upper curve).

The symmetry of gβ(t) with respect to t = 1
2

and (2.1) imply that the information

distance between X and Yβ equals the information distance existing between X and Y−β

i.e., IX,Yβ(α) = IX,Y−β(α) for all β ∈ [−2, 2]. Moreover, for α 6= 0 we have (2.3) from

which it follows that in general IX,Yβ(α, t) 6= IX,X−β(α, t) for all t ∈ (0, 1), as is shown

in figures 2.1 and 2.2. This illustrates that even if IX,Yβ(α) = IX,Y−β(α), its dynamic

measure IX,Yβ(α, t) is generally different from IX,Y−β(α, t).
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Now in the following theorem we show how IX,Y (α, t) is affected by an increasing trans-

formation of X and Y .

Theorem 2.2.1. If φ(·) is an increasing function, then Iφ(X),φ(Y )(α, t) = IX,Y (α, φ−1(t)).

Proof.

Iφ(X),φ(Y )(α, t) =
1

α− 1
log

∫ ∞
t

fα(φ−1(x))g1−α(φ−1(x))

F̄α(φ−1(t))Ḡ1−α(φ−1(t))φ′(φ−1(x))
dx,

=
1

α− 1
log

∫ ∞
φ−1(t)

fα(y)g1−α(y)

F̄α(φ−1(t))Ḡ1−α(φ−1(t))
dy,
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= IX,Y (α, φ−1(t)).

Example 2.2.2. Let X1 and X2 be two Pareto I rvs with pdfs given by f1(x) = (k
x
)c1 , t >

k, k, c1 > 0 and f2(x) = (k
x
)c2 , t > k, k, c2 > 0 respectively. Then IX1,X2(α, t) is obtained

as

IX1,X2(α, t) =
1

α− 1
log

[
cα1 c

1−α
2 t2

(c1 + 1)α + (c2 + 1)(1− α)− 1

]
.

Let φ(x) = x − k, x > 0, k > 0,. If Y1 = φ(X1) and Y2 = φ(X2), then Y1 and

Y2 follow Pareto II distribution with pdfs g1(x) = (1 + x
k
)−c1 , t > 0, k, c1 > 0 and

g2(x) = (1 + x
k
)−c2 , t > 0, k, c2 > 0. Then by Theorem 2.2.1 we have

IY1,Y2(α, t) =
1

α− 1
log

[
cα1 c

1−α
2 (t+ k)2

(c1 + 1)α + (c2 + 1)(1− α)− 1

]
. �

Another problem of interest that leads to the dynamic information measures is the past

lifetime of the individual. In the context of past lifetimes, Asadi et al. (2005) defined

Renyi’s discrimination implied by F and G between the past lives (t − X|X ≤ t) and

(t− Y |Y ≤ t) as

ĪX,Y (α, t) =
1

α− 1
log

∫ t

0

fα(x)g(1−α)(x)

Fα(t)G(1−α)(t)
dx, (2.4)

for α such that 0 < α 6= 1. Given that at time t, two items have been found to be

failing, equation (2.4) measures the disparity between their past lives. In the following

example the importance of Renyi’s divergence of order α between past lives has been

discussed.

Example 2.2.3. Consider the rvs given in Example 2.2.1. Now using equation (2.4),

we obtain



Chapter 2. Bounds for some dynamic information measures 34

ĪX,Yβ(α, t) =
1

α− 1
log

(β (t− 1
2

)
+ 1
)2−α −

(
1− β

2

)2−α

β(2− α)tα
(
βt2

2
− βt

2
+ t
)1−α

 . (2.5)

Figure 2.3 represents (2.5) for α = 1.8, β = 1.5 (upper curve) and β = −1.5 (lower

curve) and figure 2.4 represents (2.5) for α = 1.8, β = 0.15 (upper curve) and β = −0.15

(lower curve). As shown in figures 2.3 and 2.4, even though IX,Yβ(α) = IX,Y−β(α),

ĪX,Yβ(α, t) is generally different from ĪX,Y−β(α, t).
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In the following theorem we provide a simple relationship between Īφ(X),φ(Y )(α, t) and

ĪX,Y (α, φ−1(t)), where φ is an increasing function.

Theorem 2.2.2. If φ(·) is an increasing function, then Īφ(X),φ(Y )(α, t) = ĪX,Y (α, φ−1(t)).

Proof.

Īφ(X),φ(Y )(α, t) =
1

α− 1
log

∫ t

0

fα(φ−1(x))g1−α(φ−1(x))

Fα(φ−1(t))G1−α(φ−1(t))φ′(φ−1(x))
dx,

=
1

α− 1
log

∫ φ−1(t)

0

fα(y)g1−α(y)

Fα(φ−1(t))G1−α(φ−1(t))
dy,

= ĪX,Y (α, φ−1(t)).

Example 2.2.4. Let X1 and X2 be two exponential rvs with means 1
λ1

and 1
λ2

respec-

tively. Then ĪX1,X2(α, t) can be obtained as

ĪX1,X2(α, t) = log

[
1− e−λ2t

λ2

]
− α

α− 1
log

[
1− e−λ1t

λ1

]
+

1

α− 1
log

[
1− e−(αλ1+(1−α)λ2)t

αλ1 + (1− α)λ2

]
.

Let φ(x) = x1/γ, x > 0, γ > 0, an increasing function in x. If Y1 = φ(X1) and

Y2 = φ(X2) then Y1 and Y2 follow Weibull distribution with a common shape parameter

γ and scale parameters 1
λ1

and 1
λ2

respectively. Using Theorem 2.2.2. Renyi’s divergence

for the past lifetimes of Y1 and Y2 is given by

ĪY1,Y2(α, t) = log

[
1− e−λ2tγ

λ2

]
− α

α− 1
log

[
1− e−λ1tγ

λ1

]
+

1

α− 1
log

[
1− e−(αλ1+(1−α)λ2)tγ

αλ1 + (1− α)λ2

]
,

which using the Weibull pdfs directly is difficult to compute. �

Consider a rv X with pdf f . If w(·) is a non-negative function satisfying µw =
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E(w(X)) <∞, then the pdf fw, the df Fw and the sf F̄w of the corresponding weighted

rv Xw are respectively

fw(x) =
w(x)f(x)

µw
, Fw(x) =

E(w(X)|X ≤ t)

µw
F (x)

and

F̄w(x) =
E(w(X)|X > t)

µw
F̄ (x).

Renyi’s discrimination measure for the residual lives of the original and weighted rvs is

given by

IX,Xw(α, t) =
1

α− 1
log

∫ ∞
t

(f(x))α(fw(x))1−α

(F̄ (t))α(F̄w(t))1−α dx, (2.6)

for α such that 0 < α 6= 1, and that for past lives is given by

ĪX,Xw(α, t) =
1

α− 1
log

∫ t

0

(f(x))α(fw(x))1−α

(F (t))α(Fw(t))1−α dx, (2.7)

for α such that 0 < α 6= 1. Equations (2.6) and (2.7) measure the discrepancy be-

tween the residual (past) lives of original rv X and weighted rv Xw. More importantly,

IX,Xw(α, t) may be a useful tool for measuring how far the true density is distant from a

weighted density. On the other hand, when the original and weighted density functions

are equal then, IX,Xw(α, t) = 0 a.e.

Remark 2.2.1. Equations (2.6) and (2.7) may be useful in the determination of a

weight function and therefore for the selection of a suitable weight function in an observed

mechanism, we can choose a weight function for which (2.6) or (2.7) is small. Note that

(2.6) and (2.7) are asymmetric measures. However, these measures become symmetric

when the weight function is unity, i.e., when fw = f (see Maya and Sunoj(2008)).

In many instances in applications, stochastic orders and inequalities are very useful for
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comparing two distributions. In the univariate case, several notions of stochastic orders

are available in literature. It is well known that likelihood ratio order is stronger than

the other orders such as stochastic order or the hazard rate order (see Shaked and Shan-

thikumar (2007)), as it implies the latter two. Accordingly, in the following theorems,

we use the likelihood ratio ordering to obtain some bounds and inequalities on Renyi’s

discrimination measure of order α between X and Y and subsequently between X and

Xw. We say X is said to be smaller than Y in likelihood ratio (X ≤LR Y ) if f(x)/g(x) is

decreasing in x over the union of the supports of X and Y . For Renyi’s information di-

vergence of order α, likelihood ratio ordering provides some upper (lower) bounds which

are functions of important reliability measures and/or Shannon information measure.

The following theorem provides a simple upper bound for Renyi information of order α

with bounds as functions of hazard rates of X and Y .

Theorem 2.2.3. If X ≤LR Y , then

IX,Y (α, t) ≤ (≥)
α

α− 1
log

[
hX(t)

hY (t)

]

if α > 1 (0 < α < 1).

Proof. Since X ≤LR Y , f(x)
g(x)

is decreasing in x, i.e., f(x)
g(x)
≤ f(t)

g(t)
for all x > t

IX,Y (α, t) =
1

α− 1
log

∫ ∞
t

fα(x)

F̄α(t)

g(1−α)(x)

Ḡ(1−α)(t)
dx,

=
1

α− 1
log

∫ ∞
t

fα(x)

gα(x)

g(x)

F̄α(t)Ḡ(1−α)(t)
dx,

Then,

IX,Y (α, t) ≤ (≥)
1

α− 1
log

∫ ∞
t

fα(t)

gα(t)

g(x)

F̄α(t)Ḡ(1−α)(t)
dx, for α > 1(0 < α < 1),
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=
1

α− 1
log

[
hαX(t)

hαY (t)

]
=

α

α− 1
log

[
hX(t)

hY (t)

]
.

Corollory 2.2.1. If X ≤LR X
w, then

IX,Xw(α, t) ≤ (≥)
α

α− 1
log

[
E(w(X)|X > t)

w(t)

]

if α > 1 (0 < α < 1).

Proof. For a weighted rv Xw, hazard rate is given by

hXw(t) =
w(x)

E(w(X)|X > t)
hX(t),

then

hX(t)

hXw(t)
=
E(w(X)|X > t)

w(x)
,

now from Theorem 2.2.3 the corollary follows.

Example 2.2.5. For Pareto I distribution with pdf f(x) = ckcx−c−1, x > k, k > 0,

c > 1, using the weight function w(x) = x, we have X ≤LR Xw and also Xw has a

Pareto distribution.

IX,Xw(α, t) =
1

α− 1
log

[
cα(c− 1)

(c− 1)α(c+ α− 1)

]
=

α

α− 1
log

(
c

c− 1

)
+

1

α− 1
log

(
c− 1

c+ α− 1

)
.

So

IX,Xw(α, t) ≤(≥)
α

α− 1
log

(
c

c− 1

)
=

α

α− 1
log

[
E(w(X)|X > t)

w(t)

]
,

according as α > 1 (0 < α < 1). �
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An important distribution which arises as a special case of weighted distributions is

the equilibrium model, obtained when the weight function is w(·) = F̄ /f . Renyi’s

discrimination measure for the residual lives of the original and the equilibrium rvs is

given by

IX,XE(α, t) =
1

α− 1
log

∫ ∞
t

(f(x))α(fE(x))1−α

(F̄ (t))α(F̄E(t))1−α dx,

for α such that 0 < α 6= 1, and that for past lives is given by

ĪX,XE(α, t) =
1

α− 1
log

∫ t

0

(f(x))α(fE(x))1−α

(F (t))α(FE(t))1−α dx,

for α such that 0 < α 6= 1.

Corollory 2.2.2. If X ≤LR X
E then

IX,XE(α, t) ≤ (≥)
α

α− 1
log[1 + r′(t)]

if α > 1 (0 < α < 1) where r(t) is the MRLF of X.

Proof. For the equilibrium rv, hazard rate is given by hXE(t) = 1
r(t)

then hX(t)
h
XE

(t)
=

hX(t)r(t) = 1 + r′(t), now from Theorem 2.2.3 the corollary follows.

Even if the past lifetime information measure appears to be a dual of its residual version,

however, Di Crescenzo and Longobardi (2004) have shown the importance of past life-

time discrimination measures with residual lifetime and thus a separate study of these

discrimination measures for past lifetime is quite worthwhile. Accordingly, in the rest of

the chapter, we obtain bounds for these discrimination measures for the past lifetimes.

The following theorem provides a lower (upper) bound for ĪX,Y (α, t) using likelihood

ordering.
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Theorem 2.2.4. If X ≤LR Y , then

ĪX,Y (α, t) ≥ (≤)
α

α− 1
log

[
λX(t)

λY (t)

]

if α > 1 (0 < α < 1).

Proof. The proof is similar to that of Theorem 2.2.3.

Now we extend the above theorem to weighted models.

Corollory 2.2.3. If X ≤LR X
w, then

ĪX,Xw(α, t) ≥ (≤)
α

α− 1
log

[
E(w(X)|X ≤ t)

w(t)

]

if α > 1 (0 < α < 1).

Example 2.2.6. Suppose X is a finite range rv with pdf f(x) = cxc−1, 0 < x < 1,

c > 0, and taking w(x) = xβ (β > 0) we have f(x)
fw(x)

= c
β+c

x−β is decreasing in x (i.e.,

X ≤LR X
w). It is easy to show that

ĪX,Xw(α, t) =
α

α− 1
log

(
c

β + c

)
+

1

α− 1
log

(
β + c

β + c− βα

)
,

≥ (≤)
α

α− 1
log

(
c

β + c

)
,

=
α

α− 1
log

[
E(w(X)|X ≤ t)

w(t)

]
,

where E(w(X)|X ≤ t) = 1
F (t)

t∫
0

w(x)f(x)dx = 1
tc

t∫
0

xβcxc−1dx = c
β+c

tβ, according as α >

1 (0 < α < 1), provided β+c > βα. �

In the study of relative entropies, it is quite useful if we find some close relationships

between its different measures and other important reliability/information measures.
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Therefore, in the following theorem we derive a lower bound for IX,Y (α, t), which is a

function of both hazard rate and residual Renyi’s entropy function.

Theorem 2.2.5. If g(x) is decreasing in x, then

IX,Y (α, t) ≥ − log hY (t)− IX(α, t), α 6= 1,

where IX(α, t) = 1
1−α log

∫∞
t

fα(x)

F̄α(t)
dx, the residual Renyi’s entropy function.

Proof. Since g(x) is decreasing in x, g(x) ≤ g(t) ∀x > t. Therefore,

IX,Y (α, t) =
1

α− 1
log

∫ ∞
t

fα(x)g1−α(x)

F̄α(t)Ḡ1−α(t)
dx,

≥ 1

α− 1
log

∫ ∞
t

fα(x)

F̄α(t)
dx+

1

α− 1
log

g(1−α)(t)

Ḡ(1−α)(t)
, for α 6= 1,

= −IX(α, t)− log hY (t).

Corollory 2.2.4. If fw(x) is decreasing in x, then

IX,Xw(α, t) ≥ − log

(
w(t)hX(t)

E(w(X)|X > t)

)
− IX(α, t), α 6= 1.

Example 2.2.7. Applying the same pdf and weight function used in Example 2.2.6, we

can easily illustrate Corollary 2.2.4. �

The analogous results are straightforward for the past lifetimes, the statements are as

follows:

Theorem 2.2.6. If g(x) is increasing in x, then

ĪX,Y (α, t) ≥ − log λY (t)− ĪX(α, t), α 6= 1, α > 0,

where ĪX(α, t) = 1
1−α log

∫ t
0
fα(x)
Fα(t)

dx is the Renyi’s past entropy function.
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Corollory 2.2.5. If fw(x) is increasing in x, then

ĪX,Xw(α, t) ≥ − log

(
w(t)λX(t)

E(w(X)|X ≤ t)

)
− ĪX(α, t), α 6= 1, α > 0.

Example 2.2.8. It is easy to show that for the Power function rv with pdf f(x) = cxc−1,

0 < x < 1, c > 1 and taking w(x) = x, we have fw(x) = (c + 1)xc increasing in x and

hence Corollary 2.2.5 follows. �

In the following theorems, we establish an upper (lower) bound for IX,Y (α, t), when

there are more than two rvs, taken two at a time.

Theorem 2.2.7. Let X1, X2 and Y be 3 non-negative absolutely continuous rvs with

densities f1, f2 and g, sfs F̄1, F̄2 and Ḡ and hazard rates hX1, hX2 and hY respectively.

If X1 ≤LR X2, then

IX1,Y (α, t) ≤ (≥)
α

α− 1
log

[
hX1(t)

hX2(t)

]
+ IX2,Y (α, t)

if α > 1 (0 < α < 1).

Proof. Since X1 ≤LR X2, f1(x)
f2(x)

is decreasing in x, so
fα1 (x)

fα2 (x)
is decreasing in x for α > 0

IX1,Y (α, t) =
1

α− 1
log

∫ ∞
t

fα1 (x)g(1−α)(x)

F̄α
1 (t)Ḡ(1−α)(t)

dx,

=
1

α− 1
log

∫ ∞
t

fα1 (x)

fα2 (x)

fα2 (x)

F̄α
2 (t)

F̄α
2 (t)

F̄α
1 (t)

g(1−α)(x)

Ḡ(1−α)(t)
dx,

provided α 6= 1.

For α > 1,

IX1,Y (α, t) ≤ 1

α− 1

[
log

[
hX1(t)

hX2(t)

]α
+ log

∫ ∞
t

fα2 (x)g(1−α)(x)

F̄α
2 (t)Ḡ(1−α)(t)

dx

]
,
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=
α

α− 1
log

[
hX1(t)

hX2(t)

]
+ IX2,Y (α, t).

For 0 < α < 1,

IX1,Y (α, t) ≥ 1

α− 1

[
log

[
hX1(t)

hX2(t)

]α
+ log

∫ ∞
t

fα2 (x)g(1−α)(x)

F̄α
2 (t)Ḡ(1−α)(t)

dx

]
,

=
α

α− 1
log

[
hX1(t)

hX2(t)

]
+ IX2,Y (α, t).

Example 2.2.9. Let X1 and X2 be two independent exponential rvs with parameters

λ1 > 0 and λ2 > 0 respectively such that λ1 > λ2. Then

f1(x)

f2(x)
=
λ1

λ2

exp[−(λ1 − λ2)x]

is decreasing in x. Let Y = min(X1, X2), then

IX1,Y (α, t) =
1

α− 1
log

[(
λ1

λ1 + λ2

)α(
λ1 + λ2

λ1 + λ2 − λ2α

)]
,

=
α

α− 1
log

(
λ1

λ2

)
+

1

α− 1
log

[(
λ2

λ1 + λ2

)α(
λ1 + λ2

λ1 + λ2 − λ1α

)]
+

1

α− 1
log

(
λ1 + λ2 − λ1α

λ1 + λ2 − λ2α

)
,

≤ (≥)
α

α− 1
log

(
λ1

λ2

)
+

1

α− 1
log

[(
λ2

λ1 + λ2

)α(
λ1 + λ2

λ1 + λ2 − λ1α

)]
,

=
α

α− 1
log

[
hX1(t)

hX2(t)

]
+ IX2,Y (α, t),

according as α > 1 (0 < α < 1), provided λi + λj − λiα > 0, i 6= j, i, j = 1, 2. �

Theorem 2.2.8. Let X1, X2 and Y be 3 non-negative absolutely continuous rvs with

densities f1, f2 and g, dfs F1, F2 and G and reversed hazard rates λX1, λX2 and λY

respectively. If X1 ≤LR X2, then
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ĪX1,Y (α, t) ≥ (≤)
α

α− 1
log

[
λX1(t)

λX2(t)

]
+ ĪX2,Y (α, t)

if α > 1 (0 < α < 1).

Example 2.2.10. Let X1 and X2 be two independent Power function rvs with densities

given by f1(x) = c1x
c1−1; 0 < x < 1, c1 > 0 and f2(x) = c2x

c2−1; 0 < x < 1, c2 > 0

respectively such that c1 < c2, so

f1(x)

f2(x)
=
c1

c2

xc1−c2

is decreasing in x. Letting Y = max(X1, X2), it is easy to show that Theorem 2.2.8 fol-

lows. �

Theorem 2.2.9. Let X, Y1 and Y2 be 3 non-negative absolutely continuous rvs with

pdfs f , g1 and g2, sfs F̄ , Ḡ1 and Ḡ2 and hazard rates hX , hY1 and hY2 respectively. If

Y1 ≤LR Y2, then

IX,Y1(α, t) ≥ log

[
hY1(t)

hY2(t)

]
+ IX,Y2(α, t) for α 6= 1, α > 0.

Example 2.2.11. Let Y1 and Y2 be two independent Pareto I rvs with densities given

by g1(x) = c1k
c1
1 x
−c1−1; x > k1 > 0, c1 > 0 and g2(x) = c2k

c2
2 x
−c2−1; x > k2 > 0, c2 > 0

respectively such that c1 > c2. Then

g1(x)

g2(x)
=
c1k

c1
1

c2k
c2
2

x−(c1−c2)

is decreasing in x. Consider X = min(Y1, Y2), then Theorem 2.2.9 follows. �

Theorem 2.2.10. Let X, Y1 and Y2 be 3 non-negative absolutely continuous rvs with

densities f, g1 and g2, dfs F,G1 and G2 and reversed hazard rates λX , λY1 and λY2
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respectively. If Y1 ≤LR Y2, then

ĪX,Y1(α, t) ≤ log

[
λY2(t)

λY1(t)

]
+ ĪX,Y2(α, t)

for α 6= 1, α > 0.

Example 2.2.12. Let Y1 and Y2 be two independent Power function rvs with densities

given by g1(x) = c1x
c1−1; 0 < x < 1, c1 > 0 and g2(x) = c2x

c2−1; 0 < x < 1, c2 > 0

respectively such that c1 < c2, so

g1(x)

g2(x)
=
c1

c2

xc1−c2

is decreasing in x. Using X = max(Y1, Y2), we can illustrate the theorem. �

2.3 Dynamic Kerridge’s inaccuracy measure

As explained in Chapter 1, the inaccuracy measure due to Kerridge (1961) is a useful tool

to measure the inaccuracy between two distributions f and g. It can also be expressed

as

KX,Y = IX + IX,Y , where IX,Y =

∫ ∞
0

f(x) log(f(x)/g(x))dx

is the Kullback-Leibler (KL) divergence betweenX and Y and IX = −
∞∫
0

f(x) log f(x)dx,

Shannon measure of information ofX. Taneja et al. (2009) introduced a dynamic version

of Kerridge’s measure, given in (1.12) where KX,Y (t) = KXt,Yt . Clearly, when X = Y ,

equation (1.12) becomes the dynamic measure of uncertainty (residual entropy) due to

Ebrahimi (1996). A similar expression for the inactivity times is available in Kumar

et al.(2011) and given by (1.14). If we consider the rvs given in Example 2.2.1, we

could see that KX,Yβ(t) 6= KX,Y−β(t) and K̄X,Yβ(t) 6= K̄X,Y−β(t) for some β. The figures
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Figure 2.5:
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Figure 2.6:

2.5 and 2.6 illustrate it. Figure 2.5 represents KX,Yβ(t) for β = 1.9 (lower curve) and

β = −1.9 (upper curve), and figure 2.6 represents K̄X,Yβ(t) for β = 1.9 (upper curve)

and β = −1.9 (lower curve).

In the rest of the section we obtain bounds similar to IX,Y (α, t) and ĪX,Y (α, t) that is

given in Section 2.2 for the Kerridge’s inaccuracy measures. Let X and Y be the rvs

defined in Section 2.2. Then the dynamic inaccuracy measure for residual and past lives

of the original and weighted distributions are given by
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KX,Xw(t) = −
∫ ∞
t

f(x)

F̄ (t)
log

[
w(x)f(x)

E(w(X)|X > t)F̄ (t)

]
dx, (2.8)

and

K̄X,Xw(t) = −
∫ t

0

f(x)

F (t)
log

[
w(x)f(x)

E(w(X)|X ≤ t)F (t)

]
dx. (2.9)

Remark 2.3.1. From the above definition, it is easy to obtain, KX,XE(t) = 1 + log r(t).

The following theorem gives a simple lower bound for Kerridge’s inaccuracy measures

using likelihood ordering.

Theorem 2.3.1. If g(x) is decreasing in x, then KX,Y (t) ≥ − log hY (t).

Proof. Since g(x) is decreasing in x, we have g(x) ≤ g(t) for all x > t. Then,

KX,Y (t) = − 1

F̄ (t)

∫ ∞
t

f(x) log
g(x)

Ḡ(t)
dx ≥ − 1

F̄ (t)

∫ ∞
t

f(x) log
g(t)

Ḡ(t)
dx,

= − log hY (t).

Corollory 2.3.1. If fw(x) is decreasing in x, then

KX,Xw(t) ≥ log

(
E(w(X)|X > t)

w(t)hX(t)

)
.

Analogous results are obtained for past lifetimes in the following theorems.

Theorem 2.3.2. If g(x) is increasing in x, then K̄X,Y (t) ≥ − log λY (t).

Corollory 2.3.2. If fw(x) is increasing in x, then

K̄X,Xw(t) ≥ log

(
E(w(X)|X ≤ t)

w(t)hX(t)

)
.

Example 2.3.1. Suppose X is a Uniform rv with pdf f(x) = 1
a
; 0 < x < a, a > 0.
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Taking the weight function w(x) = x, fw(x) = 2x
a2

is increasing in x. Then,

K̄X,Y (t) = 1 + log(t/2) ≥ log(t/2) = log

(
E(w(X)|X ≤ t)

w(t)hX(t)

)
. �

In the following theorem we have a simple bound for Kerridge’s inaccuracy measure

between X and Xw which are functions of hazard rates of the same rvs and residual

entropy of X.

Theorem 2.3.3. If the weight function w(x) is increasing in x, then

KX,Xw(t) ≤ log

(
E(w(X)|X > t)

w(t)

)
+ IX(t),

where IX(t) = − 1
F̄ (t)

∫∞
t
f(x) log f(x)

F̄ (t)
dx is the residual entropy function.

Proof. Since w(x) is increasing in x, we have w(x) ≥ w(t) for all x > t. Now using

equation (2.8) we have

KX,Xw(t) ≤ − 1

F̄ (t)

∫ ∞
t

f(x) log

[
w(t)f(x)

E(w(X)|X > t)F̄ (t)

]
dx,

= log

(
E(w(X)|X > t)

w(t)

)
+ IX(t).

Example 2.3.2. Let X be a Pareto I rv with pdf f(x) = ckcx−c−1; c > 1, x > k > 0.

Take the weight function as w(x) = x, which is an increasing function in x. Then

KX,Xw(t) = log

(
t

c− 1

)
+ 1 = log

(
c

c− 1

)
+ log

(
t

c

)
+

(
c+ 1

c

)
− 1

c
,

≤ log

(
c

c− 1

)
+ log

(
t

c

)
+

(
c+ 1

c

)
,

= log

(
E(w(X)|X > t)

w(t)

)
+ IX(t). �

The following theorem is an analogous result of Theorem 2.3.3 for past lifetime.
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Theorem 2.3.4. If the weight function w(x) is decreasing in x, then

K̄X,Xw(t) ≤ log

(
E(w(X)|X ≤ t)

w(t)

)
+ ĪX(t),

where ĪX(t) = − 1
F (t)

∫ t
0
f(x) log f(x)

F (t)
dx is the past entropy function.

Example 2.3.3. Consider a finite range rv X with density function given by f(x) =

cxc−1; 0 < x < 1, c > 1. Let w(x) = 1
x
, a decreasing function in x, then using equation

(2.9) we have

K̄X,Xw(t) = log

(
t

c− 1

)
+

(
c− 2

c

)
= log

(
c

c− 1

)
+ log

(
t

c

)
+

(
c− 1

c

)
− 1

c
,

≤ log

(
c

c− 1

)
+ log

(
t

c

)
+

(
c− 1

c

)
= log

(
E(w(X)|X ≤ t)

w(t)

)
+ ĪX(t). �

Theorem 2.3.5. If X ≤LR Y , then

KX,Y (t) ≤ IX(t) + log

(
hX(t)

hY (t)

)
.

Proof. From the definition (1.12), we have

KX,Y (t) = −
∫ ∞
t

f(x)

F̄ (t)
log

(
f(x)

F̄ (t)

g(x)

f(x)

F̄ (t)

Ḡ(t)

)
dx,

= IX(t)−
∫ ∞
t

f(x)

F̄ (t)
log

(
g(x)

f(x)

F̄ (t)

Ḡ(t)

)
dx,

≤ IX(t)−
∫ ∞
t

f(x)

F̄ (t)
log

(
g(t)

f(t)

F̄ (t)

Ḡ(t)

)
dx,

= IX(t)− log

(
g(t)

f(t)

F̄ (t)

Ḡ(t)

)
= IX(t) + log

(
hX(t)

hY (t)

)
,

where the inequality is obtained by using the fact that g(x)/f(x) is increasing.

A similar statement exists for the past lifetime.
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Theorem 2.3.6. If X ≤LR Y , then

K̄X,Y (t) ≥ ĪX(t) + log

(
λX(t)

λY (t)

)
.

Similar to Theorems 2.2.7 to 2.2.10, in the following theorems we obtain some bounds

for Kerridge’s inaccuracy, when there are more than two rvs, taken two at a time.

Theorem 2.3.7. Let X, Y1 and Y2 be 3 non-negative absolutely continuous rvs with

pdfs f , g1 and g2, sfs F̄ , Ḡ1 and Ḡ2 and hazard rates hX , hY1 and hY2 respectively. If

Y1 ≤LR Y2, then

KX,Y1(t) ≥ KX,Y2(t) + log

[
hY2(t)

hY1(t)

]
.

Proof. From the definition (1.12), we have

KX,Y1(t) = −
∫ ∞
t

f(x)

F̄ (t)
log

(
g2(x)

Ḡ2(t)

g1(x)

g2(x)

Ḡ2(t)

Ḡ1(t)

)
dx,

= KX,Y2(t)−
∫ ∞
t

f(x)

F̄ (t)
log

(
g1(x)

g2(x)

Ḡ2(t)

Ḡ1(t)

)
dx,

≥ KX,Y2(t)−
∫ ∞
t

f(x)

F̄ (t)
log

(
g1(t)

g2(t)

Ḡ2(t)

Ḡ1(t)

)
dx,

= KX,Y2(t) + log

[
hY2(t)

hY1(t)

]
.

Example 2.3.4. Let Y1 and Y2 be two independent Pareto II rvs with pdfs g1(x) =

ac1(1 + ax)−c1−1; x > 0, a, c1 > 0 and g2(x) = ac2(1 + ax)−c2−1; x > 0, a, c2 > 0 such

that c1 > c2, then

g1(x)

g2(x)
=
c1

c2

(1 + ax)−(c1−c2)

is decreasing in x. Let X = min(Y1, Y2), then

KX,Y1(t) = log

(
1 + at

ac1

)
+

(
c1 + 1

c1 + c2

)
,
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= log

(
c2

c1

)
+ log

(
1 + at

ac2

)
+

(
c2 + 1

c1 + c2

)
+

(
c1 − c2

c1 + c2

)
,

≥ log

(
c2

c1

)
+ log

(
1 + at

ac2

)
+

(
c2 + 1

c1 + c2

)
= KX,Y2(t) + log

[
hY2(t)

hY1(t)

]
. �

Next we obtain an analogous result for the past lifetime.

Theorem 2.3.8. Let X, Y1 and Y2 be 3 non-negative rvs with pdfs f , g1 and g2, dfs F ,

G1 and G2 and reversed hazard rates λX , λY1 and λY2 respectively. If Y1 ≤LR Y2 then

K̄X,Y1(t) ≤ K̄X,Y2(t) + log

[
λY2(t)

λY1(t)

]
.

Example 2.3.5. Let Y1 and Y2 be 2 independent finite range rvs with pdfs given by

g1(x) = c1x
c1−1; 0 < x < 1, c1 > 0 and g2(x) = c2x

c2−1; 0 < x < 1, c2 > 0 such that

c1 < c2, then

g1(x)

g2(x)
=
c1

c2

xc1−c2

is decreasing in x. Let X = max(Y1, Y2), we get

K̄X,Y1(t) = log

(
t

c1

)
+

(
c1 − 1

c1 + c2

)
= log

(
c2

c1

)
+ log

(
t

c2

)
+

(
c2 − 1

c1 + c2

)
+

(
c1 − c2

c1 + c2

)
,

≤ log

(
c2

c1

)
+ log

(
t

c2

)
+

(
c2 − 1

c1 + c2

)
= K̄X,Y2(t) + log

[
λY2(t)

λY1(t)

]
. �



Chapter 3

Cumulative measure of entropy for

conditionally specified and

conditional survival models

3.1 Introduction

Although Shannon’s entropy has been widely applied in many areas of research, Rao

et al. (2004) identified some limitations of it in measuring the randomness of certain

systems (Rao (2005)) and introduced an alternate measure of uncertainty called cumu-

lative residual entropy (CRE). CRE is obtained by replacing the pdf with the cdf in the

Shannon entropy (1.4). CRE is more useful than Shannon entropy in certain systems as

it uses the cdf, which always exists and hence more regular than the pdf. The definition

of CRE in the univariate case and for the non-negative rvs is as follows:

Contents of this chapter is published in Sunoj, S. M. and Linu, M. N. (2012). “Cumulative measure

of uncertainty for conditionally specified models”, Calcutta Statistical Association Bulletin, India, 64

(253–254), 59–78.

52
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ξ = −
∫ ∞

0

F̄ (x) log F̄ (x)dx, (3.1)

Clearly, ξ measures the uncertainty contained in the sf of X. For used items, (3.1) is not

adequate for measuring uncertainty, hence dynamic versions of it are important. Based

on this idea, Asadi and Zohrevand (2007) extended (3.1) to the residual time, called

dynamic cumulative residual entropy (DCRE), given by

ξ(t) = −
∫ ∞
t

F̄ (x)

F̄ (t)
log

F̄ (x)

F̄ (t)
dx. (3.2)

After the unit has elapsed time t, ξ(t) measures the uncertainty or randomness contained

in the conditional sf of X − t given X > t about the predictability of remaining lifetime

of the unit.

Analogous to CRE, Di Crescenzo and Longobardi (2009) introduced cumulative entropy

useful in measuring the inactivity of a system. It is a dual concept of the CRE and is

suitable to measure the uncertainty on past lifetimes of the system. It is defined as

Cξ = −
∫ ∞

0

F (x) logF (x)dx.

In analogy with (3.2), Di Crescenzo and Longobardi (2009) proposed a dynamic cumu-

lative entropy for the past lifetime, defined by

Cξ(t) = −
∫ t

0

F (x)

F (t)
log

F (x)

F (t)
dx.

It measures the uncertainty related to past lifetime, i.e., it explains the uncertainty

related to the rv (t−X|X ≤ t). For more recent works and details on cumulative resid-

ual entropy and cumulative entropy we refer to Di Crescenzo and Longobardi (2009),

Abbasnejad et al. (2010), Navarro et al. (2010), Baratpour and Khodadadi (2012),
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Thapliyal et al. (2013) and references therein.

The study of reliability properties of conditionally specified models is quite recent.

Arnold (1995, 1996) and Arnold and Kim (1996) have studied several classes of con-

ditional survival models. The identification of the joint distribution of (X1, X2), when

conditional distributions of (X1|X2 = t2) and (X2|X1 = t1) are known, has been an im-

portant problem studied by many researchers in the past. This approach of identifying

a bivariate density using the conditionals is called the conditional specification of the

joint distribution (see Arnold et al. (1999)). These conditional models are often useful

in many two-component reliability systems where the operational status of one of the

components is known in advance. Another important problem closely associated to this

is the identification of the joint distribution of (X1, X2) when the conditional distribu-

tion or corresponding reliability measures of the rvs (X1|X2 > t2) and (X2|X1 > t1) are

known. That is, instead of conditioning on a component failing (down) at a specified

time, we study the system when the survival time of one of the components is known

(see Arnold (1987)). For a recent study of these models, we refer to Sunoj and Sankaran

(2005), Navarro and Sarabia (2013) and Navarro et al. (2011) and the references therein.

Although variety of research is available for cumulative entropies, a study of the same

for conditionally specified models does not appear to have been taken up. In this

chapter, we study two classes of cumulative measure of uncertainty based on conditioning

two types of events viz. {X1 = t1} and {X2 = t2} and {X1 > t1} and {X2 > t2}

respectively. The important characterization properties of these measures are studied.

We also define cumulative entropies of rvs (X1|X2 ≤ t2} and (X2|X1 ≤ t1} and discuss

some characterizations using these measures. Finally, an application of the univariate

dynamic cumulative residual entropy is studied using the maximum entropy principle.
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3.2 Cumulative measure of uncertainty for condi-

tionally specified models

In the first case we consider events of the form {X1 = t1} and {X2 = t2}. Let (X1, X2)

be a bivariate rv with support S = (0,∞)× (0,∞). Suppose fi(ti|tj) be the conditional

pdf of (Xi|Xj = tj). Then a direct extension of (3.1) to this conditional rv is given by

ξi(tj) = −
∫ ∞

0

F̄i(xi|tj) log F̄i(xi|tj)dxi,

where F̄i(ti|tj) =
∫∞
ti
fi(xi|tj)dxi is the conditional sf of (Xi|Xj = tj) for i, j = 1, 2,

i 6= j, with F̄i(xi|tj) > 0. An equivalent dynamic version of (3.2) for the conditional rv

(Xi|Xj = tj) called as cumulative measure of uncertainty of type 1 (CMU1) is defined

as

ξi(t1, t2) = −
∫ ∞
ti

F̄i(xi|tj)
F̄i(ti|tj)

log
F̄i(xi|tj)
F̄i(ti|tj)

dxi. (3.3)

The identity (3.3) measures the uncertainty contained in the conditional distributions

of (Xi − ti|Xi > ti, Xj = tj) for i, j = 1, 2, i 6= j. Equation (3.3) is equivalent to

ξi(t1, t2) = − 1

F̄i(ti|tj)

∫ ∞
ti

F̄i(xi|tj) log F̄i(xi|tj)dxi

+
log F̄i(ti|tj)
F̄i(ti|tj)

∫ ∞
ti

F̄i(xi|tj)dxi. (3.4)

Let ri(ti|tj) denote conditional mean residual life function of (Xi|Xj = tj) and it be

defined as

ri(ti|tj) = E(Xi − ti|Xi > ti, Xj = tj) =
−1

F̄i(ti|tj)

∫ ∞
ti

(xi − ti)dF̄i(xi|tj)dxi,
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=
1

F̄i(ti|tj)

∞∫
ti

F̄i(xi|tj)dxi,

for i, j = 1, 2, i 6= j. Equation (3.4) thus becomes

ξi(t1, t2) = − 1

F̄i(ti|tj)

∫ ∞
ti

F̄i(xi|tj) log F̄i(xi|tj)dxi + ri(ti|tj) log F̄i(ti|tj). (3.5)

Recently, Navarro and Sarabia (2013) studied the reliability properties in two classes

of bivariate continuous distributions based on the specification of conditional hazard

functions. These classes were constructed by conditioning on two types of events viz.

{X1 = t1} and {X2 = t2} and {X1 > t1} and {X2 > t2} respectively (see also Arnold

and Kim (1996)). In survival studies the most widely used semi-parametric regression

model is the proportional hazard rate (PHR) model. The univariate Cox PHR model is

a class of modelling distributions with pdf and sf given by

f(t;α) = αλo(t) exp{−αΛo(t)}, t ≥ 0, (3.6)

and F̄ (t;α) = exp{−αΛo(t)}, t ≥ 0 where α > 0, λo(t) is the baseline hazard rate

function and Λo(t) =
∫ t

0
λo(x)dx is the baseline cumulative hazard function, where both

λo(t) and Λo(t) might involve parameter θ, besides the parameter α. The hazard (or

failure) rate function of f(t;α) is h(t;α) = f(t;α)/F̄ (t;α) = αλo(t). A rv with the

pdf (3.6) can be denoted by X ∼ PHR (α; Λo(t)). Special cases of f(t;α) and F̄ (t;α)

include Exponential (Λo(t) = t), Burr (Λo(t) = log β+tγ

β
), Pareto (Λo(t) = log β+t

β
) and

Weibull (Λo(t) = tγ). Navarro and Sarabia (2013) obtained a general form of a bivariate

pdf with conditional distributions satisfying (Xi|Xj = tj) ∼ PHR (αi(tj); Λo
i (ti)) for
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i, j = 1, 2, i 6= j and is given by

f(t1, t2) = c(φ)a1a2λ
o
1(t1)λo2(t2) exp[−a1Λo

1(t1)− a2Λo
2(t2)− φa1a2Λo

1(t1)Λo
2(t2)], (3.7)

for t1, t2 ≥ 0, a1, a2 > 0 and φ ≥ 0. Letting (Xi|Xj = tj) ∼ PHR(ai(1 + φajtj); ti) and

using the conditional densities of (3.7) with sfs F̄i(ti|tj) = exp{−ai[1 + φajtj]ti}, ti > 0

then CMU1 for (Xi|Xj = tj), using (3.4) is obtained as

ξi(ti|tj) =
1

ai(1 + φajtj)
, (3.8)

Suppose hi(ti|tj) denotes conditional hazard (failure) rate function of (Xi|Xj = tj) and

is defined by

hi(ti|tj) = − ∂

∂ti
log F̄i(ti|tj) =

fi(ti|tj)
F̄i(ti|tj)

.

Now we have the following characterization theorem.

Theorem 3.2.1. For bivariate rvs (X1, X2), ξi(t1, t2) is independent of ti if and only if

(X1, X2) follows the joint pdf (3.7) with Λo
i (ti) = ti, αi(tj) = ai(1 + φajtj), i, j = 1, 2,

i 6= j.

Proof. If (X1, X2) follows the joint pdf (3.7) with Λi(ti) = ti, αi(tj) = ai(1 + φajtj),

i, j = 1, 2, i 6= j, a direct computation yields (3.8). This proves the ’only if’ part.

To prove the ’if’ part, assume that ξi(t1, t2) is independent of ti. Then we can write

−1

F̄i(ti|tj)

∫ ∞
ti

F̄i(xi|tj) log F̄i(xi|tj)dxi +
log F̄i(ti|tj)
F̄i(ti|tj)

∫ ∞
ti

F̄i(xi|tj)dxi = ci(tj).
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That is,

−
∫ ∞
ti

F̄i(xi|tj) log F̄i(xi|tj)dxi + log F̄i(ti|tj)
∫ ∞
ti

F̄i(xi|tj)dxi = ci(tj)F̄i(ti|tj). (3.9)

Differentiating (3.9) with respect to ti and simplifying, we get ri(ti|tj) = ci(tj), or

equivalently
∫∞
ti
F̄i(xi|tj)dxi = ci(tj)F̄i(ti|tj) which on differentiation yields hi(ti|tj) =

1
ci(tj)

. The rest of the proof follows from Theorem 2.1 of Navarro and Sarabia (2013).

Theorem 3.2.2. The relationship

ξi(t1, t2) = Cri(ti|tj) (3.10)

where C is a constant independent of t1 and t2, holds if and only if (X1, X2) is distributed

as either bivariate distribution with Pareto conditionals (Arnold (1987)) specified by the

pdf

f(t1, t2) = K1(1 + a1t1 + a2t2 + bt1t2)−c; a1, a2 > 0, b ≥ 0, c > 2,

K1 > 0, the normalizing constant; t1, t2 > 0, (3.11)

or bivariate distribution with exponential conditionals (Arnold and Strauss (1988)) with

pdf

f(t1, t2) = K2 exp(−λ1t1 − λ2t2 − θt1t2); λ1, λ2 > 0, θ ≥ 0,

K2 > 0, the normalizing constant; t1, t2 > 0, (3.12)

or bivariate distribution with beta conditionals with pdf
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f(t1, t2) = K3(1− p1t1 − p2t2 + qt1t2)d; p1, p2, d > 0, q ≥ 0, K3 > 0, the normalizing

constant; 0 < t1 <
1

p1

, 0 < t2 <
1− p1t1
p2 − qt1

, (3.13)

according as C > 1, C = 1 or 0 < C < 1.

Remark 3.2.1. The models (3.11), (3.12) and (3.13) are particular cases of bivariate

model (3.7).

Proof. Assume that (3.10) holds. Now using (3.5), we can write

−1

F̄i(ti|tj)

∫ ∞
ti

F̄i(xi|tj) log F̄i(xi|tj)dxi + ri(ti|tj)logF̄i(ti|tj) = Cri(ti|tj). (3.14)

Differentiating (3.14) with respect to ti, we get,

−fi(ti|tj)
(F̄i(ti|tj))2

∫ ∞
ti

F̄i(xi|tj) log F̄i(xi|tj)dxi + log F̄i(ti|tj)

− fi(ti|tj)
F̄i(ti|tj)

ri(ti|tj) + log F̄i(ti|tj)
∂

∂ti
ri(ti|tj) = C

∂

∂ti
ri(ti|tj). (3.15)

Now using the relationship 1 + ∂
∂ti
ri(ti|tj) = ri(ti|tj)hi(ti|tj), (3.15) reduces to ri(ti|tj)

hi(ti|tj) = C, or ∂
∂ti
ri(ti|tj) = C − 1. Thus we obtain ri(ti|tj) = (C − 1)ti +Di(tj). Now

by a characterization theorem due to Sankaran and Nair (1993a), (X1, X2) follows the

models (3.11), (3.12) and (3.13) according as C > 1, C = 1 or 0 < C < 1.

To prove the converse part, suppose that (X1, X2) follows the bivariate model with pdf

(3.11). Now using (3.4), we have

ξi(t1, t2) =
(c− 1)(1 + a1t1 + a2t2 + bt1t2)

(c− 2)2(ai + btj)
=

(c− 1)

(c− 2)
ri(ti|tj),

= Cri(ti|tj),
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where C = (c−1)
(c−2)

> 1. When (X1, X2) has a joint pdf (3.13), we obtain

ξi(t1, t2) =
(d+ 1)(1− p1t1 − p2t2 + qt1t2)

(d+ 2)2(pi − qtj)
=

(d+ 1)

(d+ 2)
ri(ti|tj),

= Cri(ti|tj),

such that 0 < C = (d+1)
(d+2)

< 1. The model for (3.12) is similar.

Next we prove a theorem for CMU1 following a similar result in Asadi and Zohrevand

(2007).

Theorem 3.2.3. For any random vector (X1, X2), the following relationship holds

ξi(t1, t2) = E[ri(Xi|tj)|Xi > ti, Xj = tj], i, j = 1, 2, i 6= j.

Proof. By definition,

E[ri(Xi|tj)|Xi > ti, Xj = tj] =
1

F̄i(ti|tj)

∫ ∞
ti

ri(xi|tj)fi(xi|tj)dxi,

=
1

F̄i(ti|tj)

∫ ∞
ti

1

F̄i(xi|tj)

(∫ ∞
xi

F̄i(u|tj)du
)
fi(xi|tj)dxi,

=
1

F̄i(ti|tj)

∫ ∞
ti

(∫ u

ti

hi(xi|tj)dxi
)
F̄i(u|tj)du,

=
1

F̄i(ti|tj)

∫ ∞
ti

(∫ u

0

hi(xi|tj)dxi −
∫ ti

0

hi(xi|tj)dxi
)
F̄i(u|tj)du,

=
−1

F̄i(ti|tj)

∫ ∞
ti

F̄i(xi|tj) log F̄i(xi|tj)dxi +
log F̄i(ti|tj)
F̄i(ti|tj)

∫ ∞
ti

F̄i(xi|tj)dxi,

= ξi(t1, t2).



Chapter 3. Cumulative measure of entropy for conditionally specified and . . . 61

Theorem 3.2.4. If ξi(t1, t2) is increasing (decreasing) in ti, then ξi(t1, t2) ≥ (≤)ri(ti|tj),∀tj.

Proof. Assume that ξi(t1, t2) is increasing (decreasing) in ti. Then ∂
∂ti
ξi(t1, t2) ≥ (≤)0.

Differentiating (3.4) with respect to ti, we get

−hi(ti|tj)
F̄i(ti|tj)

∫ ∞
ti

F̄i(xi|tj) log F̄i(xi|tj)dxi + log F̄i(ti|tj)

− hi(ti|tj)ri(ti|tj) + log F̄i(ti|tj)
∂

∂ti
ri(ti|tj) ≥ (≤)0.

Equivalently,

hi(ti|tj)[ξi(t1, t2)− log F̄i(ti|tj)ri(ti|tj)− ri(ti|tj)]

+ log F̄i(ti|tj)hi(ti|tj)ri(ti|tj) ≥ (≤)0,

hi(ti|tj)[ξi(t1, t2)− ri(ti|tj)] ≥ (≤)0.

This proves the theorem.

Example 3.2.1. Suppose (X1, X2) follows bivariate distribution with Pareto condition-

als (Arnold (1987)) specified by the pdf (3.11), then it is easy to show from the converse

part of Theorem 3.2.2 that ξi(t1, t2) is increasing in ti, and ξi(t1, t2) ≥ ri(ti|tj) for i, j =

1, 2, i 6= j. �

3.3 Cumulative measure of uncertainty for condi-

tional survival models

In the case of bivariate survival models, instead of conditioning on a component failing

at a specified time, it is sometimes more natural to condition on the components having

survived beyond a specified time (see Arnold (1996), Navarro and Sarabia (2013)), i.e.,
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conditioning on events of the form {X1 > t1} and {X2 > t2}. Let f ∗i (ti|tj) be the pdf of

the rv (Xi|Xj > tj). Then as a direct extension of (3.1) we get cumulative measure of

uncertainty for (Xi|Xj > tj) and is given by

ξ∗i (tj) = −
∫ ∞

0

F̄ ∗i (xi|tj) log F̄ ∗i (xi|tj)dxi, (3.16)

where F̄ ∗i (ti|tj) =
∫∞
ti
f ∗i (xi|tj)dxi is the conditional sf of (Xi|Xj > tj) with F̄ ∗i (xi|tj) > 0.

Assume that
F̄ ∗1 (t1|t2)

F̄ ∗2 (t2|t1)
= u(t1)v(t2) where u(t1) and 1/v(t2) are two reliability functions,

the necessary conditions for the existence of the conditional sfs F̄ ∗1 and F̄ ∗2 (see Navarro

and Sarabia (2010)). The equivalent dynamic version of (3.2) for the conditional rvs

(Xi|Xj > tj) called as cumulative measure of uncertainty of type 2 (CMU2) is defined

as

ξ∗i (t1, t2) = −
∫ ∞
ti

F̄ ∗i (xi|tj)
F̄ ∗i (ti|tj)

log
F̄ ∗i (xi|tj)
F̄ ∗i (ti|tj)

dxi. (3.17)

Like CMU1, (3.17) measures the uncertainty contained in the conditional distribution

of (Xi − ti|Xi > ti, Xj > tj). If r∗i (ti|tj) denotes the MRLF of Xi|Xj > tj, defined as

r∗i (ti|tj) = E(Xi − ti|X1 > t1, X2 > t2) =
1

F̄ ∗i (ti|tj)

∫ ∞
ti

F̄ ∗i (xi|tj)dxi,

=
1

F̄ (t1, t2)

∫ ∞
ti

F̄ (xi, tj)dxi = ri(t1, t2),

which is the ith component of vector-valued MRLF in bivariate case, where F̄ (t1, t2) =

P (X1 > t1, X2 > t2) is the bivariate sf, equation (3.17) becomes

ξ∗i (t1, t2) =
−1

F̄ ∗i (ti|tj)

∫ ∞
ti

F̄ ∗i (xi|tj) log F̄ ∗i (xi|tj)dxi + log F̄ ∗i (ti|tj)ri(t1, t2). (3.18)

Now we prove a theorem which obtains bounds for (3.16) using stochastic ordering for the

conditional survival models (X1|X2 > t2) and (X2|X1 > t1). We say the conditional rv
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(Xi|Xj > tj) is said to be smaller than (Yi|Yj > tj) in the usual stochastic order, denoted

by (Xi|Xj > tj) ≤ST (Yi|Yj > tj), if F̄ ∗Xi(ti|tj) ≤ F̄ ∗Yi(ti|tj) for all ti, tj, i, j = 1, 2, i 6= j,

where F̄ ∗Xi(ti|tj) and F̄ ∗Yi(ti|tj) are the sfs of (Xi|Xj > tj) and (Yi|Yj > tj) respectively,

for i, j = 1, 2, i 6= j.

Theorem 3.3.1. If (Xi|Xj > tj) ≥ST (Yi|Yj > tj),∀tj, then

ξ∗Xi(tj) ≤ ξ∗Yi(tj)− E(Xi|Xj > tj) log

[
E(Xi|Xj > tj)

E(Yi|Yj > tj)

]
, i, j = 1, 2, i 6= j.

Proof. Using (3.16), we get

ξ∗Xi(tj) = −
∫ ∞

0

F̄ ∗Xi(xi|tj) log F̄ ∗Xi(xi|tj)dxi,

= −
∫ ∞

0

F̄ ∗Xi(xi|tj) log

(
F̄ ∗Xi(xi|tj)
F̄ ∗Yi(xi|tj)

F̄ ∗Yi(xi|tj)
)
dxi,

= −
∫ ∞

0

F̄ ∗Xi(xi|tj)
(

log
F̄ ∗Xi(xi|tj)
F̄ ∗Yi(xi|tj)

)
dxi −

∫ ∞
0

F̄ ∗Xi(xi|tj)(log F̄ ∗Yi(xi|tj))dxi. (3.19)

Using the log sum inequality, we have

∫ ∞
0

F̄ ∗Xi(xi|tj)
(

log
F̄ ∗Xi(xi|tj)
F̄ ∗Yi(xi|tj)

)
dxi ≥ E(Xi|Xj > tj) log

[
E(Xi|Xj > tj)

E(Yi|Yj > tj)

]
,

or equivalently,

−
∫ ∞

0

F̄ ∗Xi(xi|tj)
(

log
F̄ ∗Xi(xi|tj)
F̄ ∗Yi(xi|tj)

)
dxi ≤ −E(Xi|Xj > tj) log

[
E(Xi|Xj > tj)

E(Yi|Yj > tj)

]
.

Then (3.19) becomes

ξ∗Xi(tj) ≤ −E(Xi|Xj > tj) log

[
E(Xi|Xj > tj)

E(Yi|Yj > tj)

]
−
∫ ∞

0

F̄ ∗Xi(xi|tj) log F̄ ∗Yi(xi|tj)dxi,

≤ −E(Xi|Xj > tj) log

[
E(Xi|Xj > tj)

E(Yi|Yj > tj)

]
−
∫ ∞

0

F̄ ∗Yi(xi|tj) log F̄ ∗Yi(xi|tj)dxi,
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where the second term on the right hand side of the inequality is obtained from the

condition (Xi|Xj > tj) ≥ST (Yi|Yj > tj), which proves the result.

Theorem 3.3.2. For any random vector (X1, X2), the following relationship holds

ξ∗i (t1, t2) = E[ri(Xi, tj)|X1 > t1, X2 > t2], i, j = 1, 2, i 6= j.

Proof. Applying the similar steps as in Theorem 3.2.3, the result follows.

Theorem 3.3.3. The relationship

ξ∗i (t1, t2) = Cri(t1, t2), (3.20)

for all t1 and t2, where C is a constant independent of t1 and t2, holds if and only if

(X1, X2) is distributed as bivariate Pareto distribution with joint sf

F̄ (t1, t2) = (1+a1t1 +a2t2 +bt1t2)−c; a1, a2, c > 0, 0 ≤ b ≤ (c+1)a1a2, t1, t2 > 0, (3.21)

or Gumbel’s bivariate exponential distribution with joint sf

F̄ (t1, t2) = exp(−λ1t1 − λ2t2 − θt1t2); λ1, λ2 > 0, 0 ≤ θ < λ1λ2, t1, t2 > 0, (3.22)

or bivariate beta distribution with joint sf

F̄ (t1, t2) = (1− p1t1 − p2t2 + qt1t2)d; p1, p2, d > 0,

1− d ≤ q

p1p2

≤ 1, 0 < t1 <
1

p1

, 0 < t2 <
1− p1t1
p2 − qt1

, (3.23)

according as C > 1, C = 1 or 0 < C < 1.
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Proof. Assume that (3.20) holds. Now using (3.17), we have

−1

F̄ ∗i (ti|tj)

∫ ∞
ti

F̄ ∗i (xi|tj) log F̄ ∗i (xi|tj)dxi + log F̄ ∗i (ti|tj)ri(t1, t2) = Cri(t1, t2).

Applying similar steps as in the proof of Theorem 3.2.2, we get

ri(t1, t2) = (C − 1)ti +Di(tj), i, j = 1, 2, i 6= j.

Now using a characterization Theorem due to Roy (1989), (X1, X2) follows the models

(3.21), (3.22) and (3.23) according as C > 1, C = 1 or 0 < C < 1. The converse part is

quite straightforward.

Remark 3.3.1. The models (3.21), (3.22) and (3.23) are special cases of the general

bivariate sf

F̄ (t1, t2) = exp[−a1Λo
1(t1)− a2Λo

2(t2)− φa1a2Λo
1(t1)Λo

2(t2)],

for t1, t2 ≥ 0, where a1, a2 > 0 and 0 ≤ φ ≤ 1 due to Navarro and Sarabia (2013), which

is constructed by taking conditional PHR models of the form F̄ ∗1 (t1|t2) = exp[−α1t2Λo
1(t1)]

and F̄ ∗2 (t2|t1) = exp[−α2(t1)Λo
2(t2)].

Theorem 3.3.4. If ξ∗i (t1, t2) is an increasing (decreasing) function in ti, then ξ∗i (t1, t2) ≥

(≤)ri(t1, t2), ∀tj.

The proof is similar to that of Theorem 3.2.4.

Theorem 3.3.5. ξ∗i (t1, t2), i = 1, 2, is independent of ti if and only if (X1, X2) follows

Gumbel’s bivariate exponential distribution (3.22).
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3.4 Cumulative entropy of conditional rvs of the

form Xi given Xj ≤ tj

In this section we define a new measure of cumulative entropy in bivariate setup by

conditioning on events of the form {X1 ≤ t1} and {X2 ≤ t2} namely cumulative measure

of uncertainty of type 3 (CMU3). It measures the uncertainty of past life of a component

Xi when the other component Xj was found failed at time tj. It is defined as follows:

Let f#
i (ti|tj), F#

i (ti|tj), λ#
i (ti|tj) and v#

i (ti|tj) be the pdf, the df, the reversed hazard

rate and the reversed mean residual life (mean inactivity time) of the conditional rv

(Xi|Xj ≤ tj). Then CMU3 denoted by Cξ#
i (t1, t2) is defined as

Cξ#
i (t1, t2) =

−1

F#
i (ti|tj)

∫ ti

0

F#
i (xi|tj) log

(
F#
i (xi|tj)
F#
i (ti|tj)

)
dxi,

with F#
i (xi|tj) > 0.

Theorem 3.4.1. For any rv (X1, X2), the relationship

Cξ#
i (t1, t2) = E(v#

i (Xi|tj)|Xi ≤ ti, Xj ≤ tj)

holds for all i, j = 1, 2, i 6= j.

Proof. For i = 1,

E(v#
1 (X1|t2)|X1 ≤ t1, X2 ≤ t2) =

∫ t1

0

v#
1 (x1|t2)

F#
1 (t1|t2)

f#
1 (x1|t2)dx1,

=
1

F#
1 (t1|t2)

∫ t1

0

(∫ x1

0

F#
1 (u|t2)

F#
1 (x1|t2)

du

)
f#

1 (x1|t2)dx1,

=
1

F#
1 (t1|t2)

∫ t1

0

(∫ t1

u

f#
1 (x1|t2)

F#
1 (x1|t2)

dx1

)
F#

1 (u|t2)du,
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=
1

F#
1 (t1|t2)

∫ t1

0

(∫ ∞
u

λ#
1 (x1|t2)dx1 −

∫ ∞
t1

λ#
1 (x1|t2)dx1

)
F#

1 (u|t2)du,

=
1

F#
1 (t1|t2)

∫ t1

0

(− logF#
1 (u|t2) + logF#

1 (t1|t2))F#
1 (u|t2)du,

= − 1

F#
1 (t1|t2)

∫ t1

0

F#
1 (u|t2) log

(
F#

1 (u|t2)

F#
1 (t1|t2)

)
du = Cξ#

1 (t1, t2).

Similarly for i = 2, we can prove

Cξ#
2 (t1, t2) = E(v#

2 (X2|t1)|X2 ≤ t2, X1 ≤ t1).

Theorem 3.4.2. If (X1, X2) is a random vector in the support (0, b1)×(0, b2) admitting

an absolutely continuous df F , then the relationship

Cξ#
i (t1, t2) = aiv

#
i (ti|tj) (3.24)

holds if and only if (X1, X2) is distributed as

F (x1, x2) =

(
x1

b1

)k1 (x2

b2

)k2
, k1, k2, b1, b2 > 0, (3.25)

where ki = (1− ai)−1 − 1, i = 1, 2.

Proof. Suppose (X1, X2) has joint df (3.25) then, for i = 1

Cξ#
1 (t1, t2) = − 1

F#
1 (t1|t2)

∫ t1

0

F#
1 (x1|t2) log

F#
1 (x1|t2)

F#
1 (t1|t2)

dx1,

= − 1

tk11

∫ t1

0

xk11 log

(
xk11

tk11

)
dx1,

= − 1

tk11

∫ t1

0

xk11 [k1 log x1 − k1 log t1]dx1,

=
k1 log t1

tk11

(
tk1+1
1

k1 + 1

)
− k1

tk11

[
log t1

(
tk1+1
1

k1 + 1

)
− tk1+1

1

(k1 + 1)2

]
,
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=
k1t1 log t1
(k1 + 1)

− k1t1 log t1
(k1 + 1)

+
k1t1

(k1 + 1)2
,

=
k1t1

(k1 + 1)2
=

(
k1

k1 + 1

)(
t1

k1 + 1

)
,

= a1v
#
1 (t1|t2).

The case for i = 2 is similar.

Conversely, suppose (3.24) holds, then for i = 1, we have

− 1

F#
1 (t1|t2)

∫ t1

0

F#
1 (x1|t2) logF#

1 (x1|t2)dx1

+ v#
1 (t1|t2) logF#

1 (t1|t2) = a1v
#
1 (t1|t2). (3.26)

Differentiating equation (3.26) with respect to t1, we obtain

f#
1 (t1|t2)

(F#
1 (t1|t2))2

∫ t1

0

F#
1 (x1|t2) logF#

1 (x1|t2)dx1 − logF#
1 (t1|t2) + v#

1 (t1|t2)
f#

1 (t1|t2)

F#
1 (t1|t2)

+ logF#
1 (t1|t2)

∂

∂t1
v#

1 (t1|t2) = a1
∂

∂t1
v#

1 (t1|t2),

λ#
1 (t1|t2)

(F#
1 (t1|t2))

∫ t1

0

F#
1 (x1|t2) logF#

1 (x1|t2)dx1 − logF#
1 (t1|t2) + v#

1 (t1|t2)λ#
1 (t1|t2)

+ (logF#
1 (t1|t2)− a1)

∂

∂t1
v#

1 (t1|t2) = 0,

λ#
1 (t1|t2)v#

1 (t1|t2)[logF#
1 (t1|t2)− a1]− logF#

1 (t1|t2)

+ v#
1 (t1|t2)λ#

1 (t1|t2) + [logF#
1 (t1|t2)− a1]

∂

∂t1
v#

1 (t1|t2) = 0,
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(
1− ∂

∂t1
v#

1 (t1|t2)

)
(logF#

1 (t1|t2)− a1)− logF#
1 (t1|t2)

+ 1− ∂

∂t1
v#

1 (t1|t2) + [logF#
1 (t1|t2)− a1]

∂

∂t1
v#

1 (t1|t2) = 0,

−a1 + 1− ∂

∂t1
v#

1 (t1|t2) = 0,

∂

∂t1
v#

1 (t1|t2) = 1− a1,

which implies

v#
1 (t1|t2) = (1− a1)t1 + A1(t2). (3.27)

Similarly for i = 2 we get

v#
2 (t2|t1) = (1− a2)t2 + A2(t1). (3.28)

Equivalently we can write (3.27) and (3.28) as

vi(t1, t2) = (1− ai)ti + Ai(tj).

Using the condition vi(t1, t2)→ 0 as ti → 0, we have Ai(tj) = 0, which implies that

vi(t1, t2) = (1− ai)ti.

Now using the expressions (see Nair and Asha (2008))

F (x1, x2) =
v1(b1, b2)v2(x1, b2)

v1(x1, b2)v2(x1, x2)
e
−
∫ b1
x1

du
v1(u,b2)

−
∫ b2
x2

du
v2(x1,u)
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and

F (x1, x2) =
v1(b1, x2)v2(b1, b2)

v1(x1, x2)v2(b1, x2)
e
−
∫ b1
x1

du
v1(u,x2)

−
∫ b2
x2

du
v2(b1,u) ,

which uniquely determines the joint df, we deduce

F (x1, x2) =

(
x1

b1

)k1 (x2

b2

)k2
, ki, bi > 0, 0 < xi < bi, i = 1, 2

where ki = ai
1−ai .

Theorem 3.4.3. If (X1, X2) is any random vector in the support (0, b1)× (0, b2) admit-

ting an absolutely continuous df F , then the relationship

Cξ#
i (t1, t2) = ai(tj)v

#
i (ti|tj), i, j = 1, 2, i 6= j, (3.29)

where ai(·) is a non-negative function, holds if and only if (X1, X2) has Power function

distribution (see Nair and Asha (2008))

F (x1, x2) =

(
x1

b1

)k1 (x2

b2

)k2+θ log(
x1
b1

)

, ki, bi > 0, 0 < xi < bi, i = 1, 2, θ ≤ 0, (3.30)

where ki = [1− ai(bj)]−1 − 1.

Proof. Suppose (X1, X2) follows (3.30). Using Theorem 3.4.1 we have,

Cξ#
i (t1, t2) =

1

F#
i (ti|tj)

∫ ti

0

v#
i (xi|tj)f#

i (xi|tj)dxi,

Cξ#
i (t1, t2) =

1

F#
i (ti|tj)

∫ ti

0

vi(xi, tj)f
#
i (xi|tj)dxi,

For i = 1,

Cξ#
1 (t1, t2) =

1

F#
1 (t1|t2)

∫ t1

0

v1(x1, t2)f#
1 (x1|t2)dx1,
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=
1

F#
1 (t1|t2)

∫ t1

0

v1(x1, t2)f#
1 (x1|t2)dx1,

=
1(

t1
b1

)k1 (
t2
b2

)k2+θ log(
t1
b1

)

∫ t1

0

x1(
1 + k1 + θ log

(
t2
b2

))
[
k1x

k1−1
1

bk11

(
t2
b2

)k2+θ log(
x1
b1

)

+

(
x1

b1

)k1 ( t2
b2

)k2+θ log(
x1
b1

)

log

(
t2
b2

)
θ

x1

]
dx1,

=
1(

t1
b1

)k1 (
t2
b2

)k2+θ log(
t1
b1

)

∫ t1

0

k1(
1 + k1 + θ log

(
t2
b2

)) (x1

b1

)k1 ( t2
b2

)k2+θ log(
x1
b1

)

dx1


+

1(
t1
b1

)k1 (
t2
b2

)k2+θ log(
t1
b1

)

∫ t1

0

θ log
(
t2
b2

)
(

1 + k1 + θ log
(
t2
b2

)) (x1

b1

)k1 ( t2
b2

)k2+θ log(
x1
b1

)

dx1

 ,
=

(
k1 + θ log

(
t2
b2

))
(
t1
b1

)k1 (
t2
b2

)k2+θ log(
t1
b1

) (
1 + k1 + θ log

(
t2
b2

))
[∫ t1

0

(
x1

b1

)k1 ( t2
b2

)k2+θ log(
x1
b1

)

dx1

]
,

=

(
k1 + θ log

(
t2
b2

))
(
t1
b1

)k1 (
t2
b2

)k2+θ log(
t1
b1

) (
1 + k1 + θ log

(
t2
b2

))
t1

(
t1
b1

)k1 (
t2
b2

)k2+θ log(
t1
b1

)(
1 + k1 + θ log

(
t2
b2

))
 ,

=
t1

(
k1 + θ log

(
t2
b2

))
(

1 + k1 + θ log
(
t2
b2

))2 ,

= a1(t2)v#
1 (t1|t2).

The case for i = 2 is similar.

Conversely, suppose that (3.29) holds. Then

1

F#
i (ti|tj)

∫ ti

0

v#
i (xi|tj)f#

i (xi|tj)dxi = ai(tj)v
#
i (ti|tj). (3.31)
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Differentiating equation (3.31) with respect to ti, we have

− f#
i (ti|tj)

(F#
i (ti|tj))2

∫ ti

0

v#
i (xi|tj)f#

i (xi|tj) + v#
i (ti|tj)λ#

i (ti|tj) = ai(tj)
∂

∂ti
v#
i (ti|tj),

−λ#
i (ti|tj)ai(tj)v#

i (ti|tj) + λ#
i (ti|tj)v#

i (ti|tj) = ai(tj)
∂

∂ti
v#
i (ti|tj),

λ#
i (ti|tj)v#

i (ti|tj)(1− ai(tj)) = ai(tj)
∂

∂ti
v#
i (ti|tj),(

1− ∂

∂ti
v#
i (ti|tj)

)
(1− ai(tj)) = ai(tj)

∂

∂ti
v#
i (ti|tj),

1− ∂

∂ti
v#
i (ti|tj)− ai(tj) + ai(tj)

∂

∂ti
v#
i (ti|tj) = ai(tj)

∂

∂ti
v#
i (ti|tj),

∂

∂ti
v#
i (ti|tj) = 1− ai(tj) = li(tj),

v#
i (ti|tj) = li(tj)ti + Ai(tj),

which is equivalent to vi(t1, t2) = li(tj)ti+Ai(tj). Using the condition lim
ti→0

vi(t1, t2) = 0,

we have Ai(tj) = 0. Hence we have vi(t1, t2) = li(tj)ti. The rest of the proof follows

from Theorem 2.1 of Nair and Asha (2008).

Theorem 3.4.4. If (X1, X2) is a random vector in the support (−∞, b1) × (−∞, b2)

admitting an absolutely continuous df F , then relationship

Cξ#
i (t1, t2) = v#

i (ti|tj), i, j = 1, 2, i 6= j, (3.32)

holds if and only if (X1, X2) is distributed as

F (x1, x2) = exp[p1(x1−b1)+p2(x2−b2)+p3(x1−b1)(x2−b2)], pi, bi > 0, i = 1, 2. (3.33)

Proof. Suppose that (X1, X2) follows (3.33). Now using Theorem 3.4.1 we have,

Cξ#
i (t1, t2) =

1

F#
i (ti|tj)

∫ ti

0

v#
i (xi|tj)f#

i (xi|tj)dxi,
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=
1

F#
i (ti|tj)

∫ ti

0

vi(xi, tj)f
#
i (xi|tj)dxi.

For i = 1, we have

Cξ#
1 (t1, t2) =

1

F#
1 (t1|t2)

∫ t1

0

v1(x1, t2)f#
1 (x1|t2)dx1,

=
1

ep1(t1−b1)+p2(t2−b2)+p3(t1−b1)(t2−b2)∫ t1

−∞

1

(p1 + p3(t2 − b2))
ep1(x1−b1)+p2(t2−b2)+p3(x1−b1)(t2−b2)dx1,

=
1

ep1(t1−b1)+p2(t2−b2)+p3(t1−b1)(t2−b2)∫ t1

−∞

(p1 + p3(t2 − b2))

(p1 + p3(t2 − b2))
ep1(x1−b1)+p2(t2−b2)+p3(x1−b1)(t2−b2)dx1,

=
1

ep1(t1−b1)+p2(t2−b2)+p3(t1−b1)(t2−b2)

∫ t1

−∞
ep1(x1−b1)+p2(t2−b2)+p3(x1−b1)(t2−b2)dx1,

=
1

(p1 + p3(t2 − b2))
= v#

1 (t1|t2).

Similarly for i = 2, we get

Cξ#
2 (t1, t2) = v#

2 (t2|t1).

Conversely, suppose that relationship (3.32) holds. Then

1

F#
i (ti|tj)

∫ ti

−∞
v#
i (xi|tj)f#

i (xi|tj)dxi = v#
i (ti|tj). (3.34)

Differentiating equation (3.34) with respect to ti, we get

− f#
i (ti|tj)

(F#
i (ti|tj))2

∫ ti

−∞
v#
i (xi|tj)f#

i (xi|tj)dxi + λ#
i (ti|tj)v#

i (ti|tj) =
∂

∂ti
v#
i (ti|tj),

−λ#
i (ti|tj)v#

i (ti|tj) + λ#
i (ti|tj)v#

i (ti|tj) =
∂

∂ti
v#
i (ti|tj),

which implies ∂
∂ti
v#
i (ti|tj) = 0. Hence v#

i (ti|tj) = ai(tj), i.e., vi(t1, t2) = ai(tj). Now the
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proof follows from Theorem 2.3 of Nair and Asha (2008).

3.5 An application of dynamic cumulative residual

entropy

Sometimes we will be faced with the problem of extracting the distribution F from

the limited and incomplete information which would be typically available in many real

life situations. To produce a model for the data generating distribution, the well known

maximum entropy (ME) paradigm can be employed. In the ME procedure, we start with

the fact that distribution F is not known. But we may have some information about

this distribution based on which we want to derive a model that best approximates the

distribution F . We proceed by formulating the partial knowledge about F in terms of a

set of information constraints. The distribution that maximizes the entropy subject to

the constraints is the least committal with respect to unknown or missing information

and hence is least prejudiced. So in this sense, ME distribution is preferred over any

other.

For univariate case, we have the dynamic cumulative residual entropy function (3.2),

which can also be written as ξ(t) = 1
F̄ (t)

∫∞
t
r(x)f(x)dx, where r(t) = E(X − t|X > t),

the mean residual life function. Though variety of research is available for ME principle

based residual Shannon entropy, a study of the same using cumulative residual entropy

does not appear to have been taken up. Therefore in the following theorem we illustrate

the usefulness of the univariate DCRE in identifying a ME model.

In survival analysis and in life testing, many results are based on the assumption that

the life of a system is described by an exponential distribution. Following the results in

Ebrahimi (2000), we derive exponential distribution as the distribution which maximizes
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the dynamic cumulative residual entropy function.

Theorem 3.5.1. The exponential distribution uniquely maximizes the DCRE subject to

the constraints 1)
∫∞

0
f(x)dx = 1, 2) r(0) = θ(> 0), 3) r(x) is decreasing in x.

Proof. We have

ξ(t) =
1

F̄ (t)

∫ ∞
t

r(x)f(x)dx.

Using conditions (2) and (3) in the statement, we get

ξ(t) ≤ 1

F̄ (t)

∫ ∞
t

r(t)f(x)dx ≤ r(0) = θ. (3.35)

From (3.35) it is clear that a density f ∗ which satisfies the equality maximizes DCRE.

So, if ξ∗(t) denotes the DCRE corresponding to f ∗ we have ξ∗(t) = θ. That is,

1

F̄ ∗(t)

∫ ∞
t

r∗(x)f ∗(x)dx = θ. (3.36)

where F̄ ∗ and r∗ are the survival and the mean residual life functions corresponding

to the density f ∗. Differentiating equation (3.36) with respect to t, we get θh∗(t) −

h∗(t)r∗(t) = 0 where h∗(t) = f∗(t)
F̄ ∗(t)

. That is, h∗(t)(θ−r∗(t)) = 0, which implies r∗(t) = θ.

This proves the result.

Conversely, let f ∗(x) = 1
θ
e−

1
θ
x, θ > 0. Then it is shown that f ∗ uniquely maximizes

ξ∗(t) over all probability densities f satisfying the information constraints from (1) to
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(3). We have

ξ∗(t) =
1

F̄ ∗(t)

∫ ∞
t

r∗(x)f ∗(x)dx =
1

F̄ ∗(t)

∫ ∞
t

θf ∗(x)dx = θ = r(0)

=
1

F̄ (t)

∫ ∞
t

r(0)f(x)dx ≥ 1

F̄ (t)

∫ ∞
t

r(t)f(x)dx ≥ 1

F̄ (t)

∫ ∞
t

r(x)f(x)dx

= ξ(t),

which completes the proof.



Chapter 4

Dynamic cumulative residual

Renyi’s entropy

4.1 Introduction

Cumulative residual entropy (CRE) proposed by Rao et al. (2004) gains its importance

over Shannon’s entropy as it utilizes cdf which is more regular than pdf. Renyi’s entropy

is considered as the well known generalized form of Shannon’s entropy. Like Shannon’s

entropy, Renyi’s entropy proposed by Renyi uses pdf in its definition. Motivated by

CRE, an idea to replace pdf in Renyi’s definition of entropy was born. This chapter is

the consequence of such thoughts and the studies made in this regard.

In this chapter we introduce a new measure of uncertainty namely cumulative residual

Renyi’s entropy of order α. Section 4.2 includes the definition of cumulative residual

Renyi’s entropy and definiton and properties of dynamic cumulative residual Renyi’s

entropy (DCRRE) and some characterization theorems arising out of it. In Section 4.3,

Contents of this chapter is published in Sunoj, S. M. and Linu, M. N. (2012). “Dynamic cumulative
residual Renyi’s entropy”, Statistics, Germany, 46(1), 41–56.

77
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we examine DCRRE in the context of weighted and equilibrium distributions and study

its various relationships. Finally Section 4.4 introduces DCRRE in the bivariate case

and proves certain characterizations based on it.

4.2 Dynamic cumulative residual Renyi’s entropy

Motivated with the usefulness of Renyi’s entropy of order α and cumulative residual

entropy for measuring uncertainty, in the present chapter, we propose a new measure

of uncertainty called cumulative residual Renyi’s entropy of order α. Analogous to the

definition of cumulative residual entropy (3.1) by Rao et al. (2004) we define cumulative

residual Renyi’s entropy (CRRE) as follows:

Definition 4.2.1. For a non-negative rv X with an absolutely continuous sf F̄ , the

cumulative residual Renyi’s entropy of order α is defined as

γ(α) =
1

1− α
log

(∫ ∞
0

F̄α(x)dx

)
for

α 6= 1

α > 0
. (4.1)

When α→ 1, (4.1) reduces to

γ(1) = lim
β→1

γ(β) = −
∫ ∞

0

F̄ (x) log F̄ (x)dx,

which is the cumulative residual entropy (3.1) and hence possesses all the properties

discussed in Rao et al. (2004). Studying the effects of the age t of an individual or an

item, the information about the remaining lifetime is of importance. In such situations,

either (3.1) or (4.1) is not suitable and therefore it has to be modified to include the

current age into account. Information measures that include the age are functions of

t and hence dynamic. Hence we define a dynamic cumulative residual Renyi’s entropy
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(DCRRE) as follows.

Definition 4.2.2. For a non-negative rv X with an absolutely continuous sf F̄ , DCRRE

of order α denoted by γ(α; t) is defined as

γ(α; t) =
1

1− α
log

(∫ ∞
t

F̄α(x)

F̄α(t)
dx

)
for

α 6= 1

α > 0
, (4.2)

which can be written as

(1− α)γ(α; t) = log

(∫ ∞
t

F̄α(x)dx

)
− α log F̄ (t). (4.3)

Differentiating (4.3) with respect to t, we have

(1− α)γ′(α; t) = αh(t)− e−(1−α)γ(α;t), (4.4)

where γ′(α; t) denotes the derivative of γ(α; t) with respect to t and h(t) = f(t)

F̄ (t)
is the

hazard rate of X. Obviously, when a system has completed t units of time, for different

values of α, γ(α; t) gives Renyi’s information for the remaining life of the system. Also,

γ(α; 0) = γ(α).

Remark 4.2.1. The variation of DCRRE of order α can be obtained from the following

example.

Suppose thatX follows exponential distribution with mean 1
2
. Then γ(α; t) = 1

(α−1)
log 2α.

Clearly, for α > 1, γ(α; t) is positive while for 0.5 < α < 1, γ(α; t) is negative. When

α = 1
2
, γ(α; t) is zero.

γ(α; t) has been obtained for various distributions in the Table 4.1.

In the following theorem we prove that DCRRE determines F̄ uniquely.
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Sl. No. Distributions F̄ (t) γ(α; t)
1 Uniform 1− t

a
; 0 < t < a, a > 0 1

1−α log
(
a−t
α+1

)
2 Exponential e−λt; λ > 0, t > 0 1

1−α log
(

1
λα

)
3 Weibull e−t

p
; t > 0, p > 0 1

1−α log
(
α−1/p

pe−αtp
Γ(1

p
, αtp)

)
4 Pareto I

(
k
t

)c
; t > k, c, k > 0 1

1−α log
(

t
cα−1

)
5 Pareto II (1 + pt)−q; p > 0, q > 0, t > 0 1

1−α log
(

1+pt
p(qα−1)

)
6 Beta (1− at)b; a > 0, b > 0, 0 < t < 1

a
1

1−α log
(

1−at
a(bα+1)

)
Table 4.1:

Theorem 4.2.1. Let X be a non-negative rv having an absolutely continuous sf F̄ (t)

and hazard rate h(t) with γ(α; t) < ∞; t ≥ 0; α > 0, α 6= 1. Then for each α, γ(α; t)

uniquely determines F̄ (t).

Proof. Let F̄1(t) and F̄2(t) be two sfs with DCRRE γ1(α; t) and γ2(α; t) and failure rates

h1(t) and h2(t) respectively. Now γ1(α; t) = γ2(α; t) implies that

γ′1(α; t) = γ′2(α; t),

which is equivalent to

(1− α)γ′1(α; t) = (1− α)γ′2(α; t). (4.5)

Using (4.4), equation (4.5) becomes

αh1(t)− e−(1−α)γ1(α;t) = αh2(t)− e−(1−α)γ2(α;t). (4.6)

But γ1(α; t) = γ2(α; t). Equation (4.6) then reduces to

αh1(t) = αh2(t),

which implies that h1(t) = h2(t), or equivalently F̄1(t) = F̄2(t).
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In the following theorem we show how γ(α; t) is affected by an increasing transformation

of rv X.

Theorem 4.2.2. If φ is a strictly increasing function, then

γφ(X)(α; t) = γX(α, φ−1(t)).

Proof. Using the definition of DCRRE, we have

γφ(X)(α; t) =
1

1− α
log

∫ ∞
t

F̄α(φ−1(x))

F̄α(φ−1(t))

dx

φ′(φ−1(x))
,

=
1

1− α
log

∫ ∞
φ−1(t)

F̄α(y)

F̄α(φ−1(t))
dy,

= γX(α, φ−1(t)).

Example 4.2.1. Let X be a rv distributed as Pareto I with sf,

F̄X(t) =

(
k

t

)c
; t > k, c, k > 0,

then from the table 4.1 we have

γX(α; t) =
1

1− α
log

(
t

cα− 1

)
, cα− 1 > 0.

Now consider Y = φ(X) = X − k, then Y follows Pareto II distribution with sf

F̄Y (t) =

(
1 +

t

k

)−c
; k, c > 0, t > 0.

Now by definition

γY (α, t) =
1

1− α
log

(
t+ k

cα− 1

)
, cα− 1 > 0,
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which can be verified using Theorem 4.2.2. �

Theorem 4.2.3. Let X1, X2, X3, . . . , Xn be n iid rvs with common sf F̄ and let X(1)

denote the first order statistic, then the relationship

γX(1)
(α; t) =

(
1− nα
1− α

)
γ(nα; t)

holds for all n except n = 1
α

, where γX(1)
(α, t) denote the DCRRE of X(1).

Proof. Let F̄X(1)
denote the sf of X(1), then

γX(1)
(α; t) =

1

1− α
log

∫ ∞
t

(
F̄X(1)

(x)
)α

(
F̄X(1)

(t)
)α dx,

=
1

1− α
log

∫ ∞
t

(
F̄ (x)

)nα(
F̄ (t)

)nα dx,
=

(
1− nα
1− α

)
1

1− nα
log

∫ ∞
t

(
F̄ (x)

)nα(
F̄ (t)

)nα dx,
=

(
1− nα
1− α

)
γ(nα; t).

Theorem 4.2.4. For the rv considered in Theorem 4.2.1, the relationship

(1− α)γ′(α; t) = Ch(t), (4.7)

where C is a constant, holds if and only if X is distributed as

(a) Pareto II distribution with sf

F̄ (t) = (1 + pt)−q; p > 0, q > 0, t > 0, (4.8)
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(b) exponential distribution with sf

F̄ (t) = e−λt; λ > 0, t > 0, (4.9)

(c) finite range distribution with sf

F̄ (t) = (1− at)b; a > 0, b > 0, 0 < t <
1

a
, (4.10)

according as C
>
=
<

0.

Proof. Assume that the relationship (4.7) holds. Using (4.4), (4.7) becomes

αh(t)− e−(1−α)γ(α;t) = Ch(t),

which is equivalent to

(α− C)h(t) = e−(1−α)γ(α;t). (4.11)

Using the expression of DCRRE in (4.2), equation (4.11) becomes

(α− C)f(t)

∫ ∞
t

F̄α(x)dx = F̄α+1(t). (4.12)

Differentiating (4.12) with respect to t, we get

(α− C)f ′(t)

∫ ∞
t

F̄α(x)dx− (α− C)f(t)F̄α(t) = −(α + 1)F̄α(t)f(t). (4.13)

Using (4.12), equation (4.13) becomes

f ′(t)
F̄α+1(t)

f(t)
− (α− C)f(t)F̄α(t) = −(α + 1)F̄α(t)f(t). (4.14)
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Dividing the equation (4.14) by f(t)F̄α(t)and simplifying, yield d
dt

log f(t) = (C +

1) d
dt

log F̄ (t), which implies

d

dt
log h(t) = C

d

dt
log F̄ (t). (4.15)

Integrating (4.15) with respect to t, we get

log h(t) = C log F̄ (t) +K, (4.16)

where K is the constant of integration. Now differentiating equation (4.16) with respect

to t, we obtain h′(t)
h(t)

= −C f(t)

F̄ (t)
, or

d

dt

[
1

h(t)

]
= C. (4.17)

Integrating equation (4.17) with respect to t, we obtain 1
h(t)

= Ct + l, where l > 0 is

the constant of integration, or equivalently h(t) = 1
Ct+l

. Since the hazard rate uniquely

determines sf using the relationship F̄ (t) = exp
(
−
∫ t

0
h(x)dx

)
, the models (4.8), (4.9)

and (4.10) follow according as C
>
=
<

0.

To prove the converse part, first assume that X is distributed as Pareto II with sf (4.8).

Now using (4.3), we have

(1− α)γ(α; t) = log

[
1 + pt

p(qα− 1)

]
= log(1 + pt) + log

[
1

p(qα− 1)

]
,

which on differentiation yields

(1− α)γ′(α; t) =
p

1 + pt
= Ch(t),
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with

h(t) =
pq

1 + pt
and C =

1

q
> 0,

(4.7) follows. When X is distributed as exponential with sf (4.9), we have

(1− α)γ(α; t) = log

(
1

λα

)
,

from which (4.7) follows with C = 0. When X is distributed as finite range with sf

(4.10), we get

(1− α)γ′(α; t) = − a

1− at
= Ch(t),

with

h(t) =
ab

(1− at)

and C = −1
b
< 0, which yields (4.7).

Theorem 4.2.5. For a non-negative rv X with an absolutely continuous sf F̄ and mean

residual life function r(t) = E(X − t|X > t), the relationship

(1− α)γ(α; t) = log[Cr(t)], (4.18)

holds if and only if X has sf (4.8), (4.9) or (4.10) according as

Cα− 1

C(1− α)
>
=
<

0.

Proof. Assume that the relationship (4.18) holds. Then

(1− α)γ(α; t) = logC + log r(t). (4.19)
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Differentiating (4.19) with respect to t, we get

(1− α)γ′(α; t) =
r′(t)

r(t)
. (4.20)

Using (4.4), equation (4.20) becomes

r′(t)

r(t)
= αh(t)− e−(1−α)γ(α;t). (4.21)

Using (4.18), equation (4.21) becomes

r′(t)

r(t)
= αh(t)− 1

Cr(t)
,

which is equivalent to

Cr′(t) = αCr(t)h(t)− 1.

Now using the relationship between h(t) and r(t), the above expression becomes Cr′(t) =

αC(r′(t) + 1) − 1. Equivalently, r′(t) = Cα−1
C(1−α)

= P , a constant. This implies that

r(t) = Pt + Q, where Q is the constant of integration, which is a characterization to

the models (4.8), (4.9) and (4.10) according as P
>
=
<

0. The converse part is quite

straightforward.

Definition 4.2.3. The sf F̄ (t) is said to have increasing (decreasing) α order dynamic

cumulative residual Renyi’s entropy IDCRRE (DDCRRE) if γ(α; t) is increasing (de-

creasing) in t; t > 0. i.e., F̄ (t) have IDCRRE (DDCRRE) if γ′(α; t) ≥ (≤)0. F̄ (t) is

both IDCRRE and DDCRRE if γ′(α; t) = 0.

Examples:

(a) IfX is distributed uniformly on (0, a), then F̄ (t) is IDCRRE for α > 1 and DDCRRE
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Figure 4.2:

for 0 < α < 1. Figure 4.1 represents DCRRE for α = 1.4 (lower curve) and DCRRE

for α = 0.8 (upper curve) when a = 10.

(b) When X is distributed as Pareto II with sf (4.8), then F̄ (t) is IDCRRE for 0 < α < 1

and DDCRRE for α > 1. Figure 4.2 represents DCRRE for α = 1.4 (lower curve)

and DCRRE for α = 0.8 (upper curve) for p = 1 and q = 2.

Theorem 4.2.6. F̄ (t) is both IDCRRE and DDCRRE if and only if X follows expo-

nential distribution.
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Proof. Suppose F̄ (t) is both IDCRRE and DDCRRE then we have γ′(α; t) = 0 ⇒

(1− α)γ′(α; t) = 0. Now using Theorem 4.2.4, X follows exponential distribution.

Corollory 4.2.1. DCRRE is constant if and only if X is exponentially distributed.

4.3 Weighted dynamic cumulative residual Renyi’s

entropy

The concept of weighted distributions is usually considered in connection with modeling

statistical data, where the usual practice of employing standard distributions is not

found appropriate. A survey of research on weighted distributions in various fields of

applications is available in Nair and Sunoj (2003), Di Crescenzo and Longobardi (2006),

Sunoj and Maya (2006), Maya and Sunoj (2008) and Sunoj and Sreejith (2012). If X

is an absolutely continuous non-negative rv with pdf f and sf F̄ , then the pdf fw and

the sf F̄w of the weighted rv Xw associated to X and to a positive real function w(·)

are defined by

fw(t) =
w(t)f(t)

E(w(X))
(4.22)

and

F̄w(t) =
E(w(X)|X > t)

E(w(X))
F̄ (t), (4.23)

where E(w(X)) < ∞. When the weight function is proportional to lengths of units of

interest (i.e., w(t) = t), then the model (4.22) is known as length-biased model with rv

denoted by XL. Analogous to the definition of DCRRE in (4.2), the weighted dynamic

cumulative residual Renyi’s entropy denoted by γw(α; t) is defined as

γw(α; t) =
1

1− α
log

(∫ ∞
t

(F̄w(x))α

(F̄w(t))α
dx

)
for

α 6= 1

α > 0
, (4.24)
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For the length-biased rv XL, DCRRE is given by

γL(α; t) =
1

1− α
log

(∫ ∞
t

(F̄L(x))α

(F̄L(t))α
dx

)
,

where F̄L(t) = m(t)
µ
F̄ (t) with m(t) = E(X|X > t) denoting the vitality function.

Theorem 4.3.1. If E(w(X)|X > x) ≤ E(w(X)|X > t) for all x > t, then γw(α; t) ≤

(≥)γ(α; t) for 0 < α < 1 (α > 1). If E(w(X)|X > x) ≥ E(w(X)|X > t) for all x > t,

then γw(α; t) ≥ (≤)γ(α; t) for 0 < α < 1 (α > 1).

Proof. If E(w(X)|X > x) ≤ E(w(X)|X > t) for all x > t, then using (4.23) and (4.24)

we have

γw(α; t) =
1

1− α
log

(∫ ∞
t

[E(w(X)|X > x)F̄ (x)]α

[E(w(X)|X > t)F̄ (t)]α
dx

)
,

≤ (≥)
1

1− α
log

(∫ ∞
t

F̄α(x)

F̄α(t)
dx

)
= γ(α; t) for 0 < α < 1 (α > 1).

Corollory 4.3.1. If m(x) ≤ m(t) for all x > t, then γL(α; t) ≤ (≥)γ(α; t) for 0 < α < 1

(α > 1). If m(x) ≥ m(t) for all x > t, then γL(α; t) ≥ (≤)γ(α; t) for 0 < α < 1 (α > 1).

When the weight function is given by w(t) = F̄ (t)
f(t)

(also called Mill’s ratio), the corre-

sponding weighted distribution is called the equilibrium distribution. The equilibrium

distribution arises naturally in renewal theory and it is the distribution of the backward

and the forward recurrence time in the limiting case. For a recent survey of research on

various applications of equilibrium distribution we refer to Gupta and Sankaran (1998),

Gupta (2007), Sunoj and Maya (2008) and Nair and Preeth (2008). Let XE be a rv

corresponding to the equilibrium distribution with pdf

fE(t) =
F̄ (t)

µ
, t > 0,
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where µ = E(X) <∞, then DCRRE of XE is obtained as

γE(α; t) =
1

(1− α)
log

(∫ ∞
t

(F̄E(x))α

(F̄E(t))α
dx

)
for

α 6= 1

α > 0
, (4.25)

where

F̄E(t) =
r(t)

µ
F̄ (t).

Equation (4.25) can be equivalently written as

γE(α; t) =
1

(1− α)
log

(∫ ∞
t

rα(x)F̄α(x)

rα(t)F̄α(t)
dx

)
.

Theorem 4.3.2. If F̄ (t) is increasing mean residual life (IMRL), then γE(α; t) ≥ (≤

)γ(α; t) for 0 < α < 1 (α > 1). If F̄ (t) is decreasing mean residual life (DMRL), then

γE(α; t) ≤ (≥)γ(α; t) for 0 < α < 1 (α > 1).

Proof. Since F̄ (t) is IMRL (DMRL) we have r(x) ≥ (≤)r(t) for all x > t, the remaining

part is similar to the proof of Theorem 4.3.1.

Theorem 4.3.3. The relationship

(1− α)γE(α; t) = (1− α)γL(α; t) = log(Ct), (4.26)

where C (> 0) is a constant, holds if and only if X follows Pareto I distribution with sf

F̄ (t) =

(
k

t

)c
, t > k, k > 0, c > 1.

Proof. Assume that (4.26) holds, now using (4.25), we obtain

log

(∫ ∞
t

(F̄E(x))α

(F̄E(t))α
dx

)
= log(Ct),
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equivalently, ∫ ∞
t

(F̄E(x))α

(F̄E(t))α
dx = Ct. (4.27)

Differentiating (4.27) with respect to t, we get

αhE(t)

(F̄E(t))α

∫ ∞
t

(F̄E(x))αdx− 1 = C,

where hE(t) = fE(t)

F̄E(t)
= 1

r(t)
is the failure rate of XE. Substituting (4.27) in the above

equation, we get r(t) = αC
C+1

t = Pt, where P (> 0) is a constant, follows Pareto I. The

converse part is quite straightforward.

4.4 Conditional dynamic cumulative residual Renyi’s

Entropy

In Sections 1.10 and 1.11 of Chapter 1 we discussed briefly on conditionally specified

models (identifies bivariate models by using densities of rvs of the form (Xi|Xj = tj),

i, j = 1, 2, i 6= j) and conditional survival models (identifies bivariate models by using

densities of rvs of the form (Xi|Xj > tj), i, j = 1, 2, i 6= j). Characterization of the

bivariate density given the forms of the marginal density of X1(X2) and the conditional

density of X1 given X2 = t2 (X2 given X1 = t1) for certain classes of distributions,

have been considered by Seshadri and Patil (1964), Nair and Nair (1988) and Hitha

and Nair (1991). On the other hand, Gourieroux and Monfort (1979) have developed

conditions under which the conditional densities determine the joint density f uniquely.

For more recent works on conditional densities we refer to Sankaran and Nair (2000),

Sunoj and Sankaran (2005) and Kotz et al. (2007). Accordingly in following Sections

4.4.1 and 4.4.2, we consider conditional dynamic cumulative residual Renyi’s entropies
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of Xi given Xj = tj and Xi given Xj > tj, i, j = 1, 2, i 6= j respectively and study some

characteristic relationships in the context of reliability modeling.

4.4.1 Conditional dynamic cumulative residual Renyi’s entropy

for Xi given Xj = tj

Let (X1, X2) be a bivariate random vector admitting an absolutely continuous pdf f

and cdf F with respect to Lesbegue measure in the positive octant R+
2 = {(t1, t2)|ti >

0, i = 1, 2} of the two-dimensional Euclidean space R2. Let F̄i(ti|tj), i, j = 1, 2, i 6= j

denote the sf of Xi given Xj = tj. Then the conditional dynamic cumulative residual

Renyi’s entropy (CDCRRE) of Xi given Xj = tj is defined as

γi(α; t1, t2) =
1

(1− α)
log

(∫ ∞
ti

F̄α
i (xi|tj)
F̄α
i (ti|tj)

dxi

)
, i, j = 1, 2, i 6= j, (4.28)

which can be written as

(1− α)γi(α; t1, t2) = log

(∫ ∞
ti

F̄α
i (xi|tj)dxi

)
− α log F̄i(ti|tj). (4.29)

Differentiating (4.29) with respect to ti, we have

(1− α)
∂

∂ti
γi(α; t1, t2) = αhi(ti|tj)− e−(1−α)γi(α;t1,t2), (4.30)

where hi(ti|tj), i, j = 1, 2, i 6= j, is the failure rate of Xi given Xj = tj.

Theorem 4.4.1. The relationship

(1− α)γi(α; t1, t2) = log[Cri(ti|tj)], i, j = 1, 2, i 6= j, (4.31)

holds for all ti and tj, where C(> 0) is a constant independent of ti and tj, i 6= j,
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i, j = 1, 2 and ri(ti|tj) = E(Xi − ti|Xi > ti, Xj = tj) is the MRLF of Xi given Xj = tj,

if and only if (X1, X2) follows either bivariate distribution with Pareto conditionals given

in Arnold (1987) with pdf

f(t1, t2) = K1(1 + a1t1 + a2t2 + bt1t2)−c, a1, a2 > 0, b ≥ 0, c > 2, K1 > 0, the

normalizing constant; t1, t2 > 0, (4.32)

or bivariate distribution with exponential conditionals of Arnold and Strauss (1988) with

pdf

f(t1, t2) = K2 exp(−λ1t1 − λ2t2 − θt1t2), λ1, λ2 > 0, θ ≥ 0, K2 > 0, the normalizing

constant; t1, t2 > 0, (4.33)

or bivariate distribution with beta conditionals with pdf

f(t1, t2) = K3(1− p1t1 − p2t2 + qt1t2)d, p1, p2, d > 0, q ≥ 0, K3 > 0, the normalizing

constant; 0 < t1 <
1

p1

, 0 < t2 <
1− p1t1
p2 − qt1

, (4.34)

according as P
>
=
<

0, where P =
(

Cα−1
C(1−α)

)
.

Proof. Suppose that (4.31) holds, then for i = 1, we have

log[Cr1(t1|t2)] = (1− α)γ1(α; t1, t2),

which is equivalent to

Cr1(t1|t2) =

∫ ∞
t1

F̄α
1 (x1|t2)

F̄α
1 (t1|t2)

dx1. (4.35)
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Differentiating with respect to t1, (4.35) becomes

C
∂

∂t1
r1(t1|t2) =

αh1(t1|t2)

F̄α
1 (t1|t2)

∫ ∞
t1

F̄α
1 (x1|t2)dx1 − 1. (4.36)

Using equation (4.35) and the relationship between failure rate and MRLF, (4.36) re-

duces to

C
∂

∂t1
r1(t1|t2) = Cα

[
∂

∂t1
r1(t1|t2) + 1

]
− 1,

implies that ∂
∂t1
r1(t1|t2) = Cα−1

C(1−α)
. Now integrating with respect to t1, we have

r1(t1|t2) =
Cα− 1

C(1− α)
t1 +B1(t2) = At1 +B1(t2),

where

A =
Cα− 1

C(1− α)
.

Similarly, for i = 2 we have r2(t2|t1) = At2 + B2(t1). Hence ri(ti|tj) = Ati + Bi(tj),

i 6= j, i, j = 1, 2, where Bi(tj) is a function of tj only. Now using Sankaran and Nair

(2000), the proof of the theorem follows, according as A
>
=
<

0.

Conversely, when (X1, X2) follows (4.32), using (4.28), we get

(1− α)γi(α; t1, t2) = log

[
(c− 2)

(cα− α− 1)

(1 + a1t1 + a2t2 + bt1t2)

(c− 2)(ai + btj)

]
,

= log[Cri(ti|tj)], i 6= j, j = 1, 2,

with

C =
(c− 2)

(cα− α− 1)
such that

Cα− 1

C(1− α)
> 0.
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When (X1, X2) follows (4.33), we have

(1− α)γi(β; t1, t2) = log

(
1

β(λi + θtj)

)
= log[Cri(ti|tj)], i 6= j, j = 1, 2

with

C =
1

α
so that

Cα− 1

C(1− α)
= 0.

Similarly, when (X1, X2) follows (4.34) we have

(1− α)γi(α; t1, t2) = log

[
(d+ 2)

(dα + α + 1)

(1− p1t1 − p2t2 + qt1t2)

(d+ 2)(pi − qtj)

]
,

= log[Cri(ti|tj)], i 6= j, i, j = 1, 2,

with

C =
d+ 2

dα + α + 1
implies that

Cα− 1

C(1− α)
< 0,

proves the theorem.

Theorem 4.4.2. The relationship

(1− α)
∂

∂ti
γi(α; t1, t2) = Chi(ti|tj), (4.37)

for all ti and tj, where C is a constant independent of ti and tj, i 6= j, i, j = 1, 2 holds if

and only if (X1, X2) is distributed as (4.32) when C > 0, (4.33) when C = 0 and (4.34)

when −1 < C < 0.

Proof. Suppose (4.37) holds, now using (4.30), we get

αhi(ti|tj)− e−(1−α)γi(α;t1,t2) = Chi(ti|tj), i 6= j, i, j = 1, 2.
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From the definition of CDCRRE (4.28), the above expression becomes

(α− C)hi(ti|tj) =
F̄α
i (ti|tj)∫∞

ti
F̄α
i (xi|tj)

dxi.

Equivalently,

(α− C)

∫ ∞
ti

F̄α
i (xi|tj)dxi =

F̄α+1
i (ti|tj)
fi(ti|tj)

, (4.38)

(α− C)fi(ti|tj)
∫ ∞
ti

F̄α
i (xi|tj)dxi = F̄α+1

i (ti|tj). (4.39)

Differentiating (4.39) with respect to ti and using (4.38), we have

∂

∂ti
fi(ti|tj)

F̄α+1
i (ti|tj)
fi(ti|tj)

− (α− C)fi(ti|tj)F̄α
i (ti|tj) = −(α + 1)F̄α

i (ti|tj)fi(ti|tj). (4.40)

Dividing equation (4.40) by F̄α
i (ti|tj)fi(ti|tj) and simplifying, we obtain

∂

∂ti
log fi(ti|tj) = (C + 1)

∂

∂ti
log F̄i(ti|tj),

Equivalently,

∂

∂ti
log hi(ti|tj) = C

∂

∂ti
log F̄i(ti|tj). (4.41)

Integrating (4.41) with respect to ti, we get

log hi(ti|tj) = C log F̄i(ti|tj) +Ki(tj).

Differentiating the above equation with respect to ti and rearranging, the above equation

becomes

∂

∂ti

[
1

hi(ti|tj)

]
= C,
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which on integration with respect to ti, gives

1

hi(ti|tj)
= Cti +Di(tj). (4.42)

From the definition of hi(ti|tj) =
fi(ti|tj)
F̄i(ti|tj)

= − f(t1,t2)
∂
∂tj

F̄ (t1,t2)
, (4.42) becomes

− ∂

∂tj
F̄ (t1, t2) = f(t1, t2)[Cti +Di(tj)].

Differentiating with respect to ti and simplifying, we get

∂

∂ti
log f(t1, t2) = − (C + 1)

[Cti +Di(tj)]
.

Now on integrating with respect to ti, we have

log f(t1, t2) = −(C + 1)

C
log[Cti +Di(tj)] + logmi(tj).

Equivalently,

f(t1, t2) = mi(tj)[Cti +Di(tj)]
− (C+1)

C , C 6= 0, i 6= j, i, j = 1, 2. (4.43)

Applying for i = 1, 2 and equating, we obtain

m1(t2)[Ct1 +D1(t2)]−
(C+1)
C = m2(t1)[Ct2 +D2(t1)]−

(C+1)
C . (4.44)

As t1 → 0, (4.44) becomes

m1(t2) =
m2(0)[Ct2 +D2(0)]−

(C+1)
C

[D1(t2)]−
(C+1)
C

.
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Similarly, as t2 → 0, (4.44) becomes

m2(t1) =
m1(0)[Ct1 +D1(0)]−

(C+1)
C

[D2(t1)]−
(C+1)
C

.

Substituting for m1(t2) and m2(t1), (4.44) becomes

m2(0)[Ct2 +D2(0)]−
(C+1)
C

[D1(t2)]−
(C+1)
C

[Ct1 +D1(t2)]−
(C+1)
C

=
m1(0)[Ct1 +D1(0)]−

(C+1)
C

[D2(t1)]−
(C+1)
C

[Ct2 +D2(t1)]−
(C+1)
C . (4.45)

For i = 1 in (4.43) and as t1 → 0, we get

lim
t1→0

f(t1, t2) = m1(t2)[D1(t2)]−
(C+1)
C . (4.46)

Similarly for i = 2 and as t1 → 0, we have

lim
t1→0

f(t1, t2) = m2(0)[Ct2 +D2(0)]−
(C+1)
C . (4.47)

Equating (4.46) and (4.47), we obtain

m1(t2)[D1(t2)]−
(C+1)
C = m2(0)[Ct2 +D2(0)]−

(C+1)
C . (4.48)

As t2 → 0, (4.48) becomes

m1(0)

m2(0)
=

[D2(0)]−
(C+1)
C

[D1(0)]−
(C+1)
C

.

Then equation (4.45) becomes

[Ct2 +D2(0)]−
(C+1)
C [Ct1 +D1(t2)]−

(C+1)
C

[D1(t2)]−
(C+1)
C
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=
[D2(0)]−

(C+1)
C

[D1(0)]−
(C+1)
C

[Ct1 +D1(0)]−
(C+1)
C [Ct2 +D2(t1)]−

(C+1)
C

[D2(t1)]−
(C+1)
C

.

Equivalently, we get

1

t1D2(t1)
− 1

t1D2(0)
+

C

D2(t1)D1(0)
=

1

t2D1(t2)
− 1

t2D1(0)
+

C

D1(t2)D2(0)
. (4.49)

Since (4.49) is true for all t1, t2 ≥ 0, we may take both sides of (4.49) equal to n, where

n is a constant. Using the expression of m1(t2), the joint pdf f(t1, t2) in (4.43) for i = 1

becomes,

f(t1, t2) =
m2(0)[Ct2 +D2(0)]−

(C+1)
C

[D1(t2)]−
(C+1)
C

[Ct1 +D1(t2)]−
(C+1)
C

or

f(t1, t2) = m2(0)(D2(0))−
(C+1)
C

(
1 +

Ct2
D2(0)

)− (C+1)
C
(

1 +
Ct1
D1(t2)

)− (C+1)
C

. (4.50)

Now using (4.49) and substituting for 1 + Ct1
D1(t2)

, the joint pdf f(t1, t2) in (4.50) becomes

f(t1, t2) = m2(0)[D2(0)]−
(C+1)
C

[
1 +

Ct1
D1(0)

+
Ct2
D2(0)

+ nCt1t2

]− (C+1)
C

, (4.51)

which is of the form (4.32) with K1 = m2(0)[D2(0)]−
(C+1)
C , a1 = C

D1(0)
, a2 = C

D2(0)
,

b = nC and c = C+1
C

. If C > 0, since Di(tj) is a non-negative function of tj we have

K1, a1, a2, b > 0. Similarly, if −1 < C < 0, equation (4.51) takes the form (4.34) with

K3, p1, p2 > 0, d > 0, 0 < t1 <
1
p1

and 0 < t2 <
1−p1t1
p2−qt1 . When C = 0 from (4.42), we get

hi(ti|tj) =
1

Di(tj)
,
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following the similar steps, we obtain

− log f(t1, t2) =
ti

Di(tj)
+Qi(tj),

where Qi(tj) is a function of tj only, i 6= j, i, j = 1, 2. Equivalently, we have

f(t1, t2) = e
−
[

ti
Di(tj)

+Qi(tj)

]
, i 6= j, i, j = 1, 2. (4.52)

For i = 1, 2 and equating, (4.52) becomes a functional equation

t1
D1(t2)

+Q1(t2) =
t2

D2(t1)
+Q2(t1),

which gives the solution as D1(t2) = 1
λ1+θt2

and D2(t1) = 1
λ2+θt1

. Then Q1(t2) = Q2 +

λ2t2 and Q2(t1) = Q1 + λ1t1, where λ1, λ2, θ are non-negative constants and Qi =

Qi(0), i = 1, 2. Substituting these in (4.52), we have (4.33). The converse part is

straightforward.

Theorem 4.4.3. γi(α; t1, t2), i = 1, 2 is locally constant (i.e., γi(α; t1, t2) is a function of

tj only) if and only if (X1, X2) follows bivariate distribution with exponential conditionals

of Arnold and Strauss (1988) with pdf (4.33).

Proof. Let γi(α; t1, t2), i = 1, 2 be locally constant. This implies that ∂
∂ti
γi(α; t1, t2) = 0,

or (1− α) ∂
∂ti
γi(α; t1, t2) = 0. Now rest of the proof follows from Theorem 4.4.2.

4.4.2 Conditional dynamic cumulative residual Renyi’s entropy

for Xi given Xj > tj

Let (X1, X2) be a bivariate random vector admitting an absolutely continuous pdf f

and cdf F with respect to Lesbegue measure in the positive octant R+
2 = {(t1, t2)|ti >
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0, i = 1, 2} of the two dimensional Euclidean space R2. Let the sf of Xi given Xj > tj

be F̄ ∗i (ti|tj), i, j = 1, 2, i 6= j. Now using (4.2) the CDCRRE (Conditional dynamic

cumulative residual Renyi’s entropy) of Xi given Xj > tj turns out to be

γ∗i (α; t1, t2) =
1

1− α
log

(∫ ∞
ti

(F̄ ∗i (xi|tj))α

(F̄ ∗i (ti|tj))α
dxi

)
, (4.53)

which can be written as

(1− α)γ∗i (α; t1, t2) = log

(∫ ∞
ti

(F̄ ∗i (xi|tj))αdxi
)
− α log F̄ ∗i (ti|tj). (4.54)

Differentiating with respect to ti, (4.54) becomes

(1− α)
∂

∂ti
γ∗i (α; t1, t2) = αh∗i (ti|tj)− e−(1−α)γ∗i (α;t1,t2),

where

h∗i (ti|tj) = − ∂

∂ti
log F̄ ∗i (ti|tj) = − ∂

∂ti
log F̄ (t1, t2) = hi(t1, t2),

i, j = 1, 2, i 6= j, ith component of the vector-valued failure rate due to Johnson and

Kotz (1975).

γ∗i (α; t1, t2) is obtained for bivariate Pareto I and bivariate Weibull is the following

examples.

Examples.

(a) If (X1, X2) is distributed as bivariate Pareto I with joint sf F̄ (t1, t2) = t−ρ11 t−ρ22 t−θ log t2
1 ;

ρ1, ρ2, θ > 0, t1, t2 > 1, then

γ∗i (α; t1, t2) =
1

1− α
[log ti − log(α(ρi + θ log tj)− 1)] ,
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i, j = 1, 2, i 6= j.

(b) If (X1, X2) follows bivariate Weibull with joint sf F̄ (t1, t2) = e−l1t
a
1−l2ta2−θta1ta2 ; t1, t2 >

0, l1, l2, θ, a > 0, then

γ∗i (α; t1, t2) =
1

1− α

[
log(

1

a
(α(li + θtaj ))

−1/aΓ(
1

a
, α(li + θtαj )tai ))− α(li + θtaj )t

a
i

]
,

i, j = 1, 2, i 6= j.

Theorem 4.4.4. The relationship

(1− α)γ∗i (α; t1, t2) = log[C∗r∗i (ti|tj)], (4.55)

holds for all ti and tj, where C∗(> 0) is a constant independent of ti and tj, i 6= j,

i, j = 1, 2 and

r∗i (ti|tj) = E(Xi − ti|Xi > ti, Xj > tj) = ri(t1, t2)

is the ith component of vector-valued MRLF in the bivariate case, if and only if (X1, X2)

follows either bivariate Pareto II with joint sf

F̄ (t1, t2) = (1 + a1t1 + a2t2 + bt1t2)−c; a1, a2 > 0, c > 1,

0 ≤ b ≤ (c+ 1)a1a2; t1, t2 > 0, (4.56)

or Gumbel’s bivariate exponential with joint sf

F̄ (t1, t2) = e−λ1t1−λ2t2−θt1t2 ; λ1, λ2 > 0, 0 ≤ θ < λ1λ2; t1, t2 > 0, (4.57)
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or bivariate finite range with joint sf

F̄ (t1, t2) = (1− p1t1 − p2t2 + qt1t2)d; p1, p2, d > 0,

1− d ≤ q

p1p2

≤ 1; 0 < t1 <
1

p1

, 0 < t2 <
1− p1t1
p2 − qt1

, (4.58)

according as P ∗
>
=
<

0 where P ∗ = C∗α−1
C∗(1−α)

.

Proof. Assume that (4.55) holds, then using (4.53) and applying the similar steps as in

Theorem 4.4.1, we obtain

r∗i (ti|tj) =
C∗α− 1

C∗(1− α)
ti +Bi(tj) = Ati +Bi(tj),

where A = C∗α−1
C∗(1−α)

and Bi(tj) is a function of tj only, i 6= j, i, j = 1, 2. Now using

a characterization theorem in Sankaran and Nair (1993a), (X1, X2) follows bivariate

Pareto II with sf (4.56) when A > 0, Gumbel’s exponential with sf (4.57) when A = 0,

and bivariate finite range with sf (4.58) when A < 0.

Conversely, when (X1, X2) follows bivariate Pareto II with sf (4.56), using (4.53), we

have

(1− α)γ∗i (α; t1, t2) = log

(∫ ∞
ti

(1 + aixi + ajtj + bxitj)
−cα

(1 + a1t1 + a2t2 + bt1t2)−cα
dxi

)
,

= log

[
(c− 1)

(cα− 1)

(1 + a1t1 + a2t2 + bt1t2)

(c− 1)(ai + btj)

]
= log(C∗r∗i (ti|tj)),

we have C∗ = c−1
cα−1

, so that P ∗ = C∗α−1
C∗(1−α)

> 0. When (X1, X2) follows Gumbel’s

exponential with sf (4.57), then
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(1− α)γ∗i (α; t1, t2) = log

(∫ ∞
ti

(e−λixi−λjtj−θxitj)α

(e−λ1t1−λ2t2−θt1t2)α
dxi

)
= log

(
1

α(λi + θtj)

)
= log(C∗r∗i (ti|tj)),

where C∗ = 1
α

, such that

P ∗ =
C∗α− 1

C∗(1− α)
= 0.

Finally, when (X1, X2) follows bivariate finite range with sf (4.58), we have

(1− α)γ∗i (α; t1, t2) = log

(∫ 1−pjtj
pi−qtj

ti

(1− pixi − pjtj + qxitj)
dα

(1− p1t1 − p2t2 + qt1t2)dα
dxi

)
,

= log

[
(d+ 1)

(dα + 1)

(1− p1t1 − p2t2 + qt1t2)

(d+ 1)(pi − qtj)

]
= log(C∗r∗i (ti|tj)),

where C∗ = d+1
dα+1

such that P ∗ = C∗α−1
C∗(1−α)

< 0, proves the theorem.

Theorem 4.4.5. The relationship

(1− α)
∂

∂ti
γ∗i (α; t1, t2) = Ch∗i (ti|tj), (4.59)

for all ti and tj, where C is a constant independent of ti and tj, i 6= j, i, j = 1, 2 holds

if and only if (X1, X2) is distributed as bivariate Pareto II with sf (4.56) when C > 0,

Gumbel’s exponential with sf (4.57) when C = 0 and bivariate finite range with sf (4.58)

when C < 0.

Proof. Assume that (4.59) holds, then using (4.53) and applying the similar steps as in

Theorem 4.4.2, we get

h∗i (ti|tj) =
1

Cti +Di(tj)
, or hi(t1, t2) =

1

Cti +Di(tj)
.



Chapter 4. Dynamic cumulative residual Renyi’s entropy 105

Now characterization to (4.56), (4.57) and (4.58) follows from Roy (1989). The converse

of the theorem can be easily proved.

Theorem 4.4.6. γ∗i (α; t1, t2) is locally constant if and only if (X1, X2) follows Gumbel’s

bivariate exponential with sf (4.57).

Proof. Since γ∗i (α; t1, t2) is locally constant,

(1− α)
∂

∂ti
γ∗i (α; t1, t2) = 0.

Rest of the proof follows from Theorem 4.4.5.



Chapter 5

Characterizations of bivariate

models using certain dynamic

information measures

5.1 Introduction

In the previous chapters we came across some important information measures like

Kullback-Leibler Divergence measure, Renyi’s divergence measure and Kerridge’s inac-

curacy. Studies on these measures and their dynamic forms have been done by several

researchers in the past decades, but a little work could be found on these measures in

the bivariate conditional set up. In two-component reliability systems, where the oper-

ational status of one is known in advance, there comes the importance of conditionally

specified and conditional survival models. A brief discussion on these models is available

Contents of this chapter is published in

1. Navarro, J., Sunoj, S. M. and Linu, M. N. (2011). “Characterizations of bivariate models us-
ing dynamic Kullback-Leibler discrimination measures”, Statistics and Probability Letters, USA,
81(11), 1594–1598.

2. Navarro, J., Sunoj, S. M. and Linu, M. N. (2014). “Characterizations of bivariate models using
some dynamic conditional information divergence measures”, Communications in Statistics-The-
ory and Methods, USA, 43(9), 1939–1948.
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in the Sections 1.10 and 1.11 of Chapter 1. Motivated by the usefulness of these con-

ditional models, the dynamic versions of information measures viz. Kullback-Leibler

divergence, Renyi’s divergence and Kerridge’s inaccuracy are extended to conditionally

specified and conditional survival models, and studied its usefulness in identifying bi-

variate distributions and to obtain some bounds for these measures using likelihood ratio

ordering.

5.2 Conditional Kullback-Leibler discrimination of

type 1

In this section dynamic Kullback-Leibler divergence measure proposed by Ebrahimi

and Kirmani (1996b) is extended to conditionally specified models called conditional

Kullback-Leibler discrimination of type 1 (CKLD1), the definition to which is as follows:

Definition 5.2.1. Let (X1, X2) and (Y1, Y2) be two bivariate random vectors with joint

pdfs f and g, joint cdfs F and G, joint sfs F̄ and Ḡ respectively. Let us assume that the

common support is S = (l,∞)× (l,∞) for l ≥ 0. Also let fi(ti|tj) and gi(ti|tj), F̄i(ti|tj)

and Ḡi(ti|tj) denote the pdfs and the sfs of (Xi|Xj = tj) and (Yi|Yj = tj) respectively for

i, j = 1, 2, i 6= j. Then we define the conditional Kullback-Leibler discrimination of type

1 (CKLD1) information function as

IXi,Yi(t1, t2) =

∫ ∞
ti

fi(xi|tj)
F̄i(ti|tj)

log
fi(xi|tj)Ḡi(ti|tj)
gi(xi|tj)F̄i(ti|tj)

dxi,

for i, j = 1, 2, i 6= j and t1, t2 ≥ l.

Note that,

IXi,Yi(t1, t2) = I(Xi|Xj=tj),(Yi|Yj=tj)(ti), (5.1)
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for i, j = 1, 2, i 6= j and t1, t2 ≥ l. Hence IXi,Yi(t1, t2) is the dynamic Kullback-Leibler

discrimination measure at time ti defined by Ebrahimi and Kirmani (1996b) but applied

to the conditional rvs (Xi|Xj = tj) and (Yi|Yj = tj) for i = 1, 2, i 6= j. As in the

univariate case, this function measures the information distance between the conditional

distributions of the residual lifetimes of the two random vectors. In the bivariate case,

other interesting options are also available (see Ebrahimi et al. (2007)).

In survival studies, the most widely used semi-parametric model is the Cox proportional

hazard rate (PHR) model. Let X and Y be two rvs with the same support S and with

the hazard rate functions hX = f/F̄ and hY = g/Ḡ, respectively. Then X and Y satisfy

the PHR model when, for θ > 0,

hY (t) = θhX(t),

for all t ∈ S. This relationship is also equivalent to

Ḡ(t) = [F̄ (t)]θ,

for all t (see Cox (1959)). Ebrahimi and Kirmani (1996a) obtained the following result.

Theorem 5.2.1. (Ebrahimi and Kirmani (1996a)) The function IX,Y (t) is a constant

if and only if X and Y satisfy PHR model.

In a similar way the random vectors (X1, X2) and (Y1, Y2) satisfy conditional propor-

tional hazard rate (CPHR) model (see Sankaran and Sreeja (2007)) when their respective

conditional hazard rate functions satisfy

h(Yi|Yj)(ti|tj) = θi(tj)h(Xi|Xj)(ti|tj), (5.2)
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for i, j = 1, 2, i 6= j, where θi(tj) is a non-negative function of tj. Then we can state the

result as follows.

Theorem 5.2.2. For i, j = 1, 2, i 6= j, the function IXi,Yi(t1, t2) depends only on tj if

and only if (Yi|Yj = tj) and (Xi|Xj = tj) satisfy the CPHR model (5.2).

Proof. The proof is obtained from Theorem 5.2.1 and (5.1).

Now let us consider the random vector (Xw
1 , X

w
2 ) which has the bivariate weighted

distribution associated to (X1, X2) and to two non-negative real functions w1 and w2,

i.e., its joint pdf is

fw(x1, x2) =
w1(x1)w2(x2)f(x1, x2)

E(w1(X1)w2(X2))
, (5.3)

where f is the joint pdf of (X1, X2) and E(w1(X1)w2(X2)) <∞.

Integrating (5.3) with respect to xj over (l,∞) yields

fwi (xi) =

∫ ∞
l

wi(xi)wj(xj)f(x1, x2)

E(w1(X1)w2(X2))
dxj,

=
wi(xi)E(wj(Xj)|Xi = xi)fi(xi)

E(w1(X1)w2(X2))
.

i.e., the marginal rv Xw
i has the univariate weighted distribution associated to Xi and

w•i (xi) = wi(xi)E(wj(Xj)|Xi = xi) for i, j = 1, 2, i 6= j. Analogously it is easy to prove

that Xw
i |Xw

j = xj has (univariate ) weighted distribution associated to Xi|Xj = xj

and wi(xi) for i, j = 1, 2, i 6= j. Particularly, when w1(x1) = x1 and w2(x2) = x2, the

random vector (Xw
1 , X

w
2 ) is called length-biased random vector. There are other options

in defining the bivariate weighted distribution which can be found in Navarro et al.

(2006). Now we can state the main result of this section as follows.

Theorem 5.2.3. Let (Xw
1 , X

w
2 ) be a random vector which has the bivariate weighted

distribution associated to (X1, X2) and to two non-negative and differentiable functions
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w1 and w2. Let us assume that the support of (X1, X2) is S = (l,∞)× (l,∞) for l ≥ 0.

Then the following conditions are equivalent:

(a) (Xw
1 , X

w
2 ) and (X1, X2) satisfy the CPHR model (5.2).

(b) IXi,Xw
i

(t1, t2) depends only on tj for i, j = 1, 2, i 6= j.

(c) The conditional reliability functions of (X1, X2) satisfy

log F̄i(ti|tj) =
log(wi(ti)/wi(l))

θi(tj)− 1
,

for i, j = 1, 2, i 6= j.

(d) (X1, X2) has the following pdf

f(x1, x2) = ca1a2
w′1(x1)w′2(x2)

wa1+1
1 (x1)wa2+1

2 (x2)
exp

(
−φa1a2

(
log

w1(x1)

w1(l)

)(
log

w2(x2)

w2(l)

))
,

for x1, x2 ≥ l, where c > 0, φ ≥ 0 and ai > 1 or ai < 0 for i = 1, 2.

Proof. The equivalence between (a) and (b) is the consequence of Theorem 5.2.2.

Let us prove that (a) implies (c). So let us assume that (Xw
1 , X

w
2 ) and (X1, X2) satisfy

the CPHR model (5.2) for i, j = 1, 2, i 6= j. From the expression of the pdf of (Xw
1 , X

w
2 )

given in (5.3), it is easy to prove that the pdf of (Xw
i |Xw

j = tj) is given by

fwi (ti|tj) =
wi(ti)fi(ti|tj)

E(wi(Xi)|Xj = tj)
,

for i, j = 1, 2, i 6= j, where fi(ti|tj) is the pdf of (Xi|Xj = tj). Then the hazard rate

hXw
i |Xw

j
(ti|tj) of (Xw

i |Xw
j = tj) is given by

hXw
i |Xw

j
(ti|tj) =

wi(ti)fi(ti|tj)∫∞
ti
wi(xi)fi(xi|tj)dxi

. (5.4)
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Moreover, from (5.2), we have

hXw
i |Xw

j
(ti|tj) = θi(tj)hXi|Xj(ti|tj)

and hence

wi(ti)fi(ti|tj)∫∞
ti
wi(xi)fi(xi|tj)dxi

= θi(tj)
fi(ti|tj)
F̄i(ti|tj)

.

Therefore,

1

F̄i(ti|tj)

∫ ∞
ti

wi(xi)fi(xi|tj)dxi =
1

θi(tj)
wi(ti).

Then differentiating both sides with respect to ti, we obtain

−wi(ti)fi(ti|tj) =
1

θi(tj)

(
w′i(ti)F̄i(ti|tj)− wi(ti)fi(ti|tj)

)
,

that is,

hXi|Xj(ti|tj) =
w′i(ti)

(1− θi(tj))wi(ti).

Hence

log F̄i(ti|tj) = −
∫ ti

l

hXi|Xj(ti|tj)dxi =
1

(θi(tj)− 1)
log

wi(ti)

wi(l)
,

for i, j = 1, 2, i 6= j and (c) holds.

Let us prove that (c) is equivalent to (d). The expression given in (c) is equivalent to

hXi|Xj(ti|tj) =
w′i(ti)/wi(ti)

1− θi(tj)
,

for i, j = 1, 2, i 6= j, i.e., (X1|X2 = t2) and (X2|X1 = t1) satisfy the conditional propor-
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tional hazard rate model considered by Arnold and Strauss (1991) which is equivalent

to (d).

Finally, let us prove that (d) implies (a). From the expression of the joint pdf given in

(d) it is easy to prove that the conditional hazard rate functions are given by

hXi|Xj(ti|tj) = ai

(
1− φaj log

wj(tj)

wi(l)

)
w′i(ti)

wi(ti)
,

for i, j = 1, 2, i 6= j. Moreover, the weighted version associated to w1 and w2 has the

following joint pdf

fw(x1, x2) = c
w′1(x1)w′2(x2)

wa11 (x1)wa22 (x2)
exp

(
−φa1a2

(
log

w1(x1)

w1(l)

)(
log

w2(x2)

w2(l)

))
,

which is also a model included in the type of the pdf given in (d) with parameters a1−1

and a2 − 1. Therefore, its hazard rate functions are

hXw
i |Xw

j
(ti|tj) = (ai − 1)

(
1− φ′(aj − 1) log

wj(tj)

wj(l)

)
w′i(ti)

wi(ti)
,

for i, j = 1, 2, i 6= j. Hence (a) holds.

Note that the condition (c) given in Theorem 5.2.3 implies that either log(wi(ti)/wi(l))

or − log(wi(ti)/wi(l)) should be cumulative hazard rate functions, i.e., they should be

non-negative, increasing and they should go to ∞ when ti goes to ∞. In the first case,

wi should be increasing in [l,∞) with wi(l) > 0 and wi(∞) =∞. In the second case, wi

should be decreasing, with wi(ti) > 0 for ti ∈ [l,∞) and wi(∞) = 0. These conditions

can also be written as

hXi|Xj(ti|tj) =
w′i(ti)/wi(ti)

1− θi(tj)
,

for i, j = 1, 2, i 6= j, i.e., (X1|X2 = t2) and (X2|X1 = t1) satisfy the conditional
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proportional hazard rate model considered by Arnold and Strauss (1991). The reliability

properties of this semi-parametric model can be seen in Navarro and Sarabia (2013).

Actually, the model in (d) is just a truncated version of Arnold and Strauss model in the

support S = (l,∞)× (l,∞) and when l = 0 both models coincide. Again we have two

options, in the first one, λi(ti) = w′i(ti)/wi(ti) is a proper hazard rate function and, in the

second one, λi(ti) = −w′i(ti)/wi(ti) is a proper hazard rate function. In the first option,

we need ai > 1 and in the second one ai < 0, for i, j = 1, 2, i 6= j. The model in (d)

contains several parametric models. In particular, when l = 1 and w1(x) = w2(x) = x

for x > 1, from Theorem 5.2.3, we can characterize the bivariate Pareto model with the

following joint pdf

f(x1, x2) =
ca1a2

xa1+1
1 xa2+1

2

exp(−φa1a2(log x1)(log x2)),

for x1, x2 ≥ 1, where c > 0, a1, a2 > 1 and φ ≥ 0.

We end this section by obtaining some bounds for the CKLD1 functions using the

likelihood ratio (LR) order. Xi|Xj = tj is said to be smaller than Yi|Yj = tj in likelihood

ratio ((Xi|Xj = tj) ≤LR (Yi|Yj = tj)) if
fi(xi|tj)
gi(xi|tj) is decreasing in xi, ∀tj .

Theorem 5.2.4. For i = 1, 2, i 6= j if (Xi|Xj = tj) ≤LR (Yi|Yj = tj), then

IXi,Yi(ti, tj) ≤ log
hXi|Xj(ti|tj)
hYi|Yj(ti|tj)

.

Proof. Since Xi|Xj = tj ≤LR Yi|Yj = tj we have
fi(xi|tj)
gi(xi|tj) is decreasing in xi, ∀ tj

i.e.,
fi(xi|tj)
gi(xi|tj)

≤ fi(ti|tj)
gi(ti|tj)

, ∀xi > ti, ∀tj.
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Now IXi,Yi(t1, t2) =
1

F̄i(ti|tj)

∫ ∞
ti

fi(xi|tj) log

[
fi(xi|tj)Ḡi(ti|tj)
F̄i(ti|tj)gi(xi|tj)

]
dxi,

≤ 1

F̄i(ti|tj)

∫ ∞
ti

fi(xi|tj) log

[
hXi|Xj(ti|tj)
hYi|Yj(ti|tj)

]
dxi,

= log

[
hXi|Xj(ti|tj)
hYi|Yj(ti|tj)

]
.

Corollory 5.2.1. For i, j = 1, 2, i 6= j, if Xi|Xj = tj ≤LR X
w
i |Xw

j = tj then

IXi,Xiw(t1, t2) ≤ log

[
E(wi(Xi)|Xi > ti, Xj = tj)

wi(ti)

]
.

Theorem 5.2.5. For i, j = 1, 2, i 6= j, if wi is increasing, then

IXi,Xiw(t1, t2) ≤ log

[
E(wi(Xi)|Xi > ti, Xj = tj)

wi(ti)

]
.

Proof. Since wi(xi) is increasing in xi we have wi(xi) ≥ wi(ti), ∀ xi > ti

IXi,Xiw(t1, t2) =
1

F̄i(ti|tj)

∫ ∞
ti

fi(xi|tj) log

[
fi(xi|tj)F̄w

i (ti|tj)
F̄i(ti|tj)fwi (xi|tj)

]
dxi,

=
1

F̄i(ti|tj)

∫ ∞
ti

fi(xi|tj) log

[
E(wi(Xi)|Xi > ti, Xj = tj

wi(xi)

]
dxi,

≤ 1

F̄i(ti|tj)

∫ ∞
ti

fi(xi|tj) log

[
E(wi(Xi))|Xi > ti, Xj = tj

wi(ti)

]
dxi,

= log

[
E(wi(Xi)|Xi > ti, Xj = tj)

wi(ti)

]
.

Theorem 5.2.6. Let (X1, X2), (Y1, Y2), and (Z1, Z2) be three non-negative bivariate

random vectors. Let fi(ti|tj), gi(ti|tj) and qi(ti|tj) be the pdfs and F̄i(ti|tj), Ḡi(ti|tj) and

Q̄i(ti|tj) be the sfs of Xi|Xj = tj, Yi|Yj = tj and Zi|Zj = tj respectively. If Yi|Yj =

tj) ≤LR (Zi|Zj = tj), then
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IXi,Yi(t1, t2) ≥ IXi,Zi(t1, t2) + log

(
hZi|Zj(ti|tj)
hYi|Yj(ti|tj)

)
.

Proof. Since Yi|Yj = tj ≤LR Zi|Zj = tj,
gi(xi|tj)
qi(xi|tj) is decreasing in xi, ∀tj

IXi,Yi(t1, t2) =
1

F̄i(ti|tj)

∫ ∞
ti

fi(xi|tj) log

[
fi(xi|tj)Ḡi(ti|tj)
F̄i(ti|tj)gi(xi|tj)

]
dxi,

=
1

F̄i(ti|tj)

∫ ∞
ti

fi(xi|tj) log

[
fi(xi|tj)Q̄i(ti|tj)qi(xi|tj)Ḡi(ti|tj)
F̄i(ti|tj)qi(xi|tj)gi(xi|tj)Q̄i(ti|tj)

]
dxi,

≥ 1

F̄i(ti|tj)

∫ ∞
ti

fi(xi|tj) log

[
fi(xi|tj)Q̄i(ti|tj)hZi|Zj(ti|tj)
F̄i(ti|tj)qi(xi|tj)hYi|Yj(ti|tj)

]
dxi,

= IXi,Zi(t1, t2) + log

(
hZi|Zj(ti|tj)
hYi|Yj(ti|tj)

)
.

5.3 Conditional Kullback-Leibler discrimination of

type 2

In this section dynamic Kullback-Leibler divergence measure proposed by Ebrahimi and

Kirmani (1996b) is extended to conditional survival models called conditional Kullback-

Leibler discimination of type 2 (CKLD2), defined as follows:

Definition 5.3.1. Let (X1, X2) and (Y1, Y2) be two bivariate random vectors having

joint pdf f and g, joint cdf Fand G, joint sf F̄ and Ḡ respectively. Let their common

support be S = (l,∞) × (l,∞) for l ≥ 0. Also let f ∗i (ti|tj) and g∗i (ti|tj), F̄ ∗i (ti|tj) and

Ḡ∗i (ti|tj) denote the pdf and the sf of (Xi|Xj > tj) and (Yi|Yj > tj), respectively for

i, j = 1, 2, i 6= j. Then we define the conditional Kullback-Leibler discrimination of type

2 (CKLD2) information function as

I∗Xi,Yi(t1, t2) =

∫ ∞
ti

f ∗i (xi|tj)
F̄ ∗i (ti|tj)

log
f ∗i (xi|tj)Ḡ∗i (ti|tj)
g∗i (xi|tj)F̄ ∗i (ti|tj)

dxi.

Definition 5.3.2. Let (X1, X2) and (Y1, Y2) be two non-negative bivariate random vec-
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tors. Then the conditional survival rvs Xi|Xj > tj and Yi|Yj > tj satisfy CPHM of type

2 if

h∗Yi|Yj(ti|tj) = θi(tj)h
∗
Xi|Xj(ti|tj), (5.5)

where h∗Xi|Xj(ti|tj) and h∗Yi|Yj(ti|tj) are the hazard rates of Xi|Xj > tj and Yi|Yj > tj

respectively and θi(tj) is a function of tj only.

From (5.5) it follows that,

∫ ti

0

h∗Yi|Yj(xi|tj)dxi = θi(tj)

∫ ti

0

h∗Xi|Xj(xi|tj)dxi,

e
−
∫ ti
0 h∗

Yi|Yj
(xi|tj)dxi

=

e− ti∫
0

h∗
Xi|Xj

(xi|tj)dxi

θi(tj)

,

Ḡ∗i (ti|tj) =
[
F̄ ∗i (ti|tj)

]θi(tj) .
Theorem 5.3.1. For i, j = 1, 2, i 6= j, Xi|Xj > tj and Xw

i |Xw
j > tj satisfy CPHR

model (5.5) if and only if wi(ti) = [F̄ ∗i (ti|tj)]θi(tj)−1, where θi(tj) is a function of tj only.

Proof. Let Xi|Xj > tj and Xw
i |Xw

j > tj satisfy (5.5), then

h∗Xw
i |Xw

j
(ti|tj)

h∗Xi|Xj(ti|tj)
= θi(tj),

wi(ti)

E(wi(Xi)|Xi > ti, Xj > tj)
= θi(tj),

i.e.,

wi(ti) =
θi(tj)

F̄ ∗i (ti|tj)

∫ ∞
ti

wi(xi)f
∗
i (ti|tj)dxi. (5.6)

Differentiating (5.6) with respect to ti,

w′i(ti) =
θi(tj)f

∗
i (ti|tj)[

F̄i(ti|tj)
]2 ∫ ∞

ti

wi(xi)f
∗
i (xi|tj)dxi − θi(tj)wi(ti)h∗Xi|Xj(ti|tj),
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w′i(ti) = h∗Xi|Xj(ti|tj)wi(ti)− θi(tj)wi(ti)h
∗
Xi|Xj(ti|tj),

w′i(ti) = [1− θi(tj)]wi(ti)h∗Xi|Xj(ti|tj),

w′i(ti)

wi(ti)
= [1− θi(tj)]

[
− ∂

∂ti
log F̄ ∗i (ti|tj)

]
,

∂

∂ti
logwi(ti) =

∂

∂ti
log[F̄ ∗i (ti|tj)]θi(tj)−1,

which on integration and taking exponentials yield, wi(ti) = [F̄ ∗i (ti|tj)]θi(tj)−1.

Conversely suppose that wi(ti) = [F̄ ∗i (ti|tj)]θi(tj)−1 then

h∗Xw
i |Xw

j
(ti|tj)

h∗Xi|Xj(ti|tj)
=

wi(ti)

E(wi(Xi)|Xi > ti, Xj > tj)
,

=
wi(ti)F̄

∗
i (ti|tj)∫∞

ti
wi(xi)f ∗i (xi|tj)dxi

,

=
[F̄ ∗i (ti|tj)]θi(tj)−1F̄ ∗i (ti|tj)∫∞

ti
[F̄ ∗i (xi|tj)]θi(tj)−1f ∗i (xi|tj)dxi

,

=
[F̄ ∗i (ti|tj)]θi(tj)θi(tj)∫∞

ti
θi(ti)

[
F̄ ∗i (xi|tj)

]θi(tj)−1
f ∗i (xi|tj) dxi

,

=
[F̄ ∗i (ti|tj)]θi(tj)θi(tj)

[F̄ ∗i (ti|tj)]θi(tj)
,

= θi(tj),

which implies h∗Xw
i |Xw

j
(ti|tj) = θi(tj)h

∗
Xi|Xj(ti|tj).

Example 5.3.1. Let (X1, X2) follow Gumbel’s bivariate exponential distribution with

joint sf F̄ (t1, t2) = e−λ1t1−λ2t2−θt1t2 , λ1, λ2 > 0, θ ≥ 0, t1, t2 > 0. We have h∗Xi|Xj(ti|tj) =

(λi + θtj). Now consider θi(tj) = tj, a non-negative function of tj such that wi(ti) =

[F̄ ∗i (ti|tj)]θi(tj)−1 = e−(λi+θtj)ti(tj−1)). So we have h∗Xw
i |Xw

j
(ti|tj) = tj(λi + θtj) = θi(tj)

h∗Xi|Xj(ti|tj).

Conversely, let
h∗Xw

i |Xw
j

(ti|tj)
h∗Xi|Xj(ti|tj)

= tj,
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i.e., wi(ti) = tj

∫ ∞
ti

wi(xi)f
∗
i (xi|tj)

F̄ ∗i (ti|tj)
dxi,

which on simplification yields wi(ti) = [F̄ ∗i (ti|tj)]tj−1. �

Theorem 5.3.2. For i, j = 1, 2, i 6= j, I∗Xi,Yi(t1, t2) is locally constant if and only if

Xi|Xj > tj and Yi|Yj > tj satisfy CPHR model (5.5).

Proof. Assume that Xi|Xj > tj and Yi|Yj > tj satisfy (5.5). So we have

Ḡ∗i (ti|tj) =
[
F̄ ∗i (ti|tj)

]θi(tj) .
I∗Xi,Yi(t1, t2) =

1

F̄ ∗i (ti|tj)

∫ ∞
ti

f ∗i (xi|tj) log

[
f ∗i (xi|tj)[F̄ ∗i (ti|tj)]θi(tj)

F̄ ∗i (ti|tj)θi(tj)[F̄ ∗i (xi|tj)]θi(tj)−1f ∗i (xi|tj)

]
dxi,

=
1

F̄ ∗i (ti|tj)

∫ ∞
ti

f ∗i (xi|tj) log

[
[F̄ ∗i (ti|tj)]θi(tj)−1

θi(tj)[F̄ ∗i (xi|tj)]θi(tj)−1

]
dxi,

=
1

F̄ ∗i (ti|tj)

∫ ∞
ti

f ∗i (xi|tj)
[
(θi(tj)− 1) log F̄ ∗i (ti|tj)

− log θi(tj)− (θi(tj)− 1) log F̄ ∗i (xi|tj)
]
dxi,

= (θi(tj)− 1) log F̄ ∗i (ti|tj)− log θi(tj)

− (θi(tj)− 1)

F̄ ∗i (ti|tj)

∫ ∞
ti

f ∗i (xi|tj) log F̄ ∗i (xi|tj)dxi,

= (θi(tj)− 1) log F̄ ∗i (ti|tj)− log θi(tj)

− (θi(tj)− 1)

F̄ ∗i (ti|tj)
[F̄ ∗i (ti|tj) log F̄ ∗i (ti|tj)− F̄ ∗i (ti|tj)],

= (θi(tj)− 1)− log θi(tj), locally constant.

Conversely suppose that I∗Xi,Yi(t1, t2) is locally constant.

i.e., I∗Xi,Yi(t1, t2) = ci(tj) (say).

i.e.,

1

F̄ ∗i (ti|tj)

∫ ∞
ti

f ∗i (xi|tj) log

[
f ∗i (xi|tj)
g∗i (xi|tj)

]
dxi + log Ḡ∗i (ti|tj)− log F̄ ∗i (ti|tj) = ci(tj). (5.7)
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Differentiating (5.7) with respect to ti , we get

f ∗i (ti|tj)
[F̄ ∗i (ti|tj)]2

∫ ∞
ti

f ∗i (xi|tj) log

[
f ∗i (xi|tj)
g∗i (xi|tj)

]
dxi − h∗Xi|Xj(ti|tj) log

[
f ∗i (ti|tj)
g∗i (ti|tj)

]
− h∗Yi|Yj(ti|tj) + h∗Xi|Xj(ti|tj) = 0.

Using (5.7) we have,

h∗Xi|Xj(ti|tj)[ci(tj)− log Ḡ∗i (ti|tj) + log F̄ ∗i (ti|tj)]− h∗Xi|Xj(ti|tj) log

[
f ∗i (ti|tj)
g∗i (ti|tj)

]
− h∗Yi|Yj(ti|tj) + h∗Xi|Xj(ti|tj) = 0. (5.8)

Dividing (5.8) with h∗Xi|Xj(ti|tj), we get

ci(tj) + log

[
F̄ ∗i (ti|tj)
Ḡ∗i (ti|tj)

]
− log

[
f ∗i (ti|tj)
g∗i (ti|tj)

]
−
h∗Yi|Yj(ti|tj)
h∗Xi|Xj(ti|tj)

+ 1 = 0,

ci(tj) + 1 + log

[
g∗i (ti|tj)F̄ ∗i (ti|tj)
f ∗i (ti|tj)Ḡ∗i (ti|tj)

]
−
h∗Yi|Yj(ti|tj)
h∗Xi|Xj(ti|tj)

= 0,

i.e.,
h∗Yi|Yj(ti|tj)
h∗Xi|Xj(ti|tj)

− log

[
h∗Yi|Yj(ti|tj)
h∗Xi|Xj(ti|tj)

]
= ci(tj) + 1. (5.9)

Putting
h∗
Yi|Yj

(ti|tj)

h∗
Xi|Xj

(ti|tj) = ψi(t1, t2), (5.9) becomes

ψi(t1, t2)− logψi(t1, t2) = 1 + ci(tj). (5.10)

Now differentiating (5.10) with respect to ti, we get

∂

∂ti
ψi(t1, t2)−

∂
∂ti
ψi(t1, t2)

ψi(t1, t2)
= 0
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or

∂

∂ti
ψi(t1, t2)

[
1− 1

ψi(t1, t2)

]
= 0,

which implies ψi(t1, t2) = 1 or ψi(t1, t2) = θi(tj) (say).

i.e.,
h∗Yi|Yj(ti|tj)
h∗Xi|Xj(ti|tj)

= θi(tj).

i.e., Xi|Xj > tj and Yi|Yj > tj satisfy CPHR model (5.5).

Corollory 5.3.1. For i, j = 1, 2, i 6= j, I∗Xi,Xw
i

(t1, t2) is locally constant if and only if

Xi|Xj > tj and Xw
i |Xw

j > tj satisfy CPHR model (5.5).

Corollory 5.3.2. For i, j = 1, 2, i 6= j, I∗Xi,Xw
i

(t1, t2) is locally constant if and only if

wi(ti) = [F̄ ∗i (ti|tj)]θi(tj)−1 where θi(tj) is a function of tj only.

Theorem 5.3.3. Let (Xs
1 , X

s
2) be the size-biased random vector having pdf (5.3) where

wi(x) = xβ, i = 1, 2, then I∗Xi,Xs
i
(t1, t2) is locally constant if and only if (X1, X2) is

distributed as bivariate Pareto I specified by the sf

F̄ (x1, x2) = x−α1
1 x−α2

2 x−θ log x2
1 ; x1, x2 > 1, α1, α2, θ > 0.

Proof. Assume that X is distributed as bivariate Pareto I then, for i = 1, we have

I∗X1,Xs
1
(t1, t2) =

1

F̄ (t1, t2)

∫ ∞
t1

− ∂

∂x1

F̄ (x1, t2) log

[
E(xβ1 |X1 > t1, X2 > t2)

xβ1

]
dx1,

=
1

t−α1
1 t−α2

2 t−θ log t2
1

∫ ∞
t1

(α1 + θ log t2)x
−(α1+θ log t2)−1
1 t−α2

2

log

[
(α1 + θ log t2)tβ1

(α1 + θ log t2 − β)xβ1

]
dx1,

= log

[
(α1 + θ log t2)tβ1

(α1 + θ log t2 − β)

]
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− (α1 + θ log t2)

t
−(α1+θ log t2)
1

∫ ∞
t1

x
−(α1+θ log t2)−1
1 log(xβ1 )dx1,

= log

[
(α1 + θ log t2)tβ1

(α1 + θ log t2 − β)

]

− β(α1 + θ log t2)

t
−(α1+θ log t2)
1

∫ ∞
t1

x
−(α1+θ log t2)−1
1 log(x1)dx1,

= log

[
(α1 + θ log t2)tβ1

(α1 + θ log t2 − β)

]

− β(α1 + θ log t2)

t
−(α1+θ log t2)
1

[
t
−(α1+θ log t2)
1 log t1
(α1 + θ log t2)

+
t
−(α1+θ log t2)
1

(α1 + θ log t2)2

]
,

= log

[
(α1 + θ log t2)

(α1 + θ log t2 − β)

]
− β

α1 + θ log t2
.

Similarly with i = 2 we have

I∗X2,Xs
2
(t1, t2) = log

[
(α2 + θ log t1)

(α2 + θ log t1 − β)

]
− β

α2 + θ log t1
,

i.e., I∗Xi,Xs
i
(t1, t2) = log

[
(αi + θ log tj)

(αi + θ log tj − β)

]
− β

αi + θ log tj
, locally constant.

Conversely suppose that I∗Xi,Xs
i
(t1, t2) is locally constant. Now using Corollary 5.3.1. we

have

h∗Xs
i |Xs

j
(ti|tj) = Ki(tj)h

∗
Xi|Xj(ti|tj)

or

tβi = Ki(tj)E(Xβ
i |Xi > ti, Xj > tj),

tβi = Ki(tj)
1

F̄ ∗i (ti|tj)

∫ ∞
ti

xβi f
∗
i (xi|tj)dxi. (5.11)

Differentiating (5.11) with respect to ti,

βtβ−1
i = Ki(tj)

f ∗i (ti|tj)[
F̄ ∗i (ti|tj)

]2 ∫ ∞
ti

xβi f
∗
i (xi|tj)dxi −

Ki(tj)

F̄ ∗i (ti|tj)
tβi f
∗
i (ti|tj). (5.12)
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Using (5.11) and then dividing with tβi , (5.12) becomes

β

ti
= h∗Xi|Xj(ti|tj)−Ki(tj)h

∗
Xi|Xj(ti|tj)

or

h∗Xi|Xj(ti|tj) =

[
β

1−Ki(tj)

]
1

ti
=
Pi(tj)

ti
,where Pi(tj) =

β

1−Ki(tj)
,

i.e., −
∂
∂ti
F̄ (t1, t2)

F̄ (t1, t2)
=
Pi(tj)

ti
,

∂

∂ti
log F̄ (t1, t2) = −Pi(tj)

ti
,

which, on integration with respect to ti, gives

log F̄ (t1, t2) = −Pi(tj) log ti + logAi(tj),

where logAi(tj) is the constant of integration.

Taking exponentials,

F̄ (t1, t2) = Ai(tj)t
−Pi(tj)
i .

For i = 1, we have

F̄ (t1, t2) = A1(t2)t
−P1(t2)
1 . (5.13)

As t1 → 1+ in (5.13) we get,

F̄2(t2) = A1(t2).

Then (5.13) becomes

F̄ (t1, t2) = F̄2(t2)t
−P1(t2)
1 . (5.14)
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Similarly we have

F̄ (t1, t2) = F̄1(t1)t
−P2(t1)
2 . (5.15)

When t2 → 1+, (5.14) becomes

F̄1(t1) = t
−P1(1)
1 = t−α1

1 , where α1 = lim
t2→1+

P1(t2).

Substituting this in (5.15), we get

F̄ (t1, t2) = t−α1
1 t

−P2(t1)
2 . (5.16)

Similarly we get

F̄ (t1, t2) = t−α2
2 t

−P1(t2)
1 . (5.17)

Equating (5.16) and (5.17),

t−α1
1 t

−P2(t1)
2 = t−α2

2 t
−P1(t2)
1

or

t
P1(t2)−α1

1 = t
P2(t1)−α2

2 .

Taking logarithms,

(P1(t2)− α1) log t1 = (P2(t1)− α2) log t2,

or

P1(t2)− α1

log t2
=
P2(t1)− α2

log t1
= θ,

which implies Pi(tj) = αi + θ log tj, i 6= j, i, j = 1, 2.
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Substituting P1(t2) in (5.17) we have

F̄ (t1, t2) = t−α1
1 t−α2

2 t−θ log t2
1 ,

which completes the proof.

Now we end this section by obtaining some bounds to CKLD2 which uses likelihood ratio

ordering of conditional survival rvs. Xi|Xj > tj is said to be smaller than Yi|Yj > tj in

likelihood ratio ((Xi|Xj > tj) ≤LR (Yi|Yj > tj)) if
f∗i (xi|tj)
g∗i (xi|tj) is decreasing in xi, ∀tj .

Theorem 5.3.4. If Xi|Xj > tj ≤LR Yi|Yj > tj then

I∗Xi,Yi(t1, t2) ≤ log

[
h∗Xi|Xj(ti|tj)
h∗Yi|Yj(ti|tj)

]
.

Proof. The proof is similar to that of Theorem 5.2.4.

Corollory 5.3.3. If Xi|Xj > tj ≤LR X
w
i |Xw

j > tj then

I∗Xi,Xw
i

(t1, t2) ≤ log

[
E(wi(Xi)|Xi > ti, Xj > tj)

wi(ti)

]
.

Theorem 5.3.5. If wi is increasing, then

I∗Xi,Xw
i

(t1, t2) ≤ log

[
E(wi(Xi)|Xi > ti, Xj > tj)

wi(ti)

]
.

Proof. The proof is similar to that of Theorem 5.2.5.

Theorem 5.3.6. Let (X1, X2), (Y1, Y2) and (Z1, Z2) be three non-negative bivariate

random vectors. Let f ∗i (ti|tj), g∗i (ti|tj), and q∗i (ti|tj) be the pdfs and F̄ ∗i (ti|tj), Ḡ∗i (ti|tj)

and Q̄∗i (ti|tj) be the sfs of Xi|Xj > tj, Yi|Yj > tj, and Zi|Zj > tj respectively. If
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Yi|Yj > tj ≤LR Zi|Zj > tj, then

I∗Xi,Yi(t1, t2) ≥ log

(
h∗Zi|Zj(ti|tj)
h∗Yi|Yj(ti|tj)

)
+ I∗Xi,Zi(t1, t2).

Proof. The proof is similar to that of Theorem 5.2.6.

5.4 Conditional Renyi’s discrimination information

of type 1

In this section dynamic Renyi’s discrimination function given in (2.2) is extended to

conditionally specified models called conditional Renyi’s discrimination information of

type 1 (CRDI1) function, the definition of which is as follows:

Definition 5.4.1. Let (X1, X2) and (Y1, Y2) be two bivariate random vectors with com-

mon support (l,∞) × (l,∞) for l ≥ 0. The joint pdf and sf of (X1, X2) are denoted

by f and F̄ and that of (Y1, Y2) by g and Ḡ respectively. Consider the conditionally

specified rvs (Xi|Xj = tj) and (Yi|Yj = tj) for i, j = 1, 2, i 6= j. Their pdf and sf are

denoted by fi(ti|tj), F̄i(ti|tj), gi(ti|tj), Ḡi(ti|tj) respectively for i, j = 1, 2, i 6= j. Then

the conditional Renyi’s discrimination information of type 1 (CRDI1) function is defined

as

IXi,Yi(α; t1, t2) =
1

α− 1
log

∫ ∞
ti

fαi (xi|tj)
F̄α
i (ti|tj)

g1−α
i (xi|tj)
Ḡ1−α
i (ti|tj)

dxi, (5.18)

for i, j = 1, 2, i 6= j and t1, t2 ≥ l.

Note that IXi,Yi(α; t1, t2) = I(Xi|Xj=tj),(Yi|Yj=tj)(α; ti) for i, j = 1, 2, i 6= j. Hence (5.18)

provides dynamic information on the distance between the conditionally specified rvs.

Theorem 5.4.1. For i, j = 1, 2, i 6= j and 0 < α 6= 1, the function IXi,Yi(α; t1, t2)

depends only on tj if and only if (Xi|Xj = tj) and (Yi|Yj = tj) satisfy CPHR model
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(5.2).

Proof. For i = 1, let us suppose that (X1|X2 = t2) and (Y1|Y2 = t2) satisfy (5.2).

Then their sfs satisfy Ḡ1(t1|t2) =
[
F̄1(t1|t2)

]θ1(t2)
. Hence from (5.18) if α satisfies (1 −

α)θ1(t2) + α > 0, we get

IX1,Y1(α; t1, t2) =
1

α− 1
log

θ1−α
1 (t2)

(1− α)θ1(t2) + α
,

which depends only on t2. The proof for i = 2 is similar.

Conversely, for i = 1, let us suppose that IX1,Y1(α; t1, t2) depends only on t2 for some

0 < α 6= 1. Then

1

α− 1
log

∫ ∞
t1

fα1 (x1|t2)

F̄α
1 (t1|t2)

g1−α
1 (x1|t2)

Ḡ1−α
1 (t1|t2)

dx1 = A1(t2) (say).

Equivalently,

∫ ∞
t1

fα1 (x1|t2)g1−α
1 (x1|t2)dx1 = B1(t2)F̄α

1 (t1|t2)Ḡ1−α
1 (t1|t2),

where B1(t2) = exp((α − 1)A1(t2)). Differentiating with respect to t1 and simplifying,

we get

1

B1(t2)
= αφα−1

1 (t1, t2) + (1− α)φα1 (t1, t2),

where φ1(t1, t2) = hY1|Y2(t1|t2)/hX1|X2(t1|t2). Differentiating again with respect to t1 we

get

0 = α(α− 1)φα−2
1 (t1, t2)(1− φ1(t1, t2))

∂

∂t1
φ1(t1, t2).

As α(α− 1) 6= 0, we have ∂
∂t1
φ1(t1, t2) = 0 and hence φ1(t1, t2) = θ1(t2). Therefore (5.2)

holds for i = 1. The proof for the case i = 2 is similar.
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Now we will state a theorem which is quite similar to Theorem 5.2.3 of Section 5.2 of

this chapter.

Theorem 5.4.2. Let (Xw
1 , X

w
2 ) be a random vector which has the bivariate weighted

distribution associated to (X1, X2) and to two non-negative and differentiable functions

w1 and w2. Let us assume that the support of (X1, X2) is S = (l,∞)× (l,∞) for l ≥ 0.

Then the following conditions are equivalent:

(a) (Xw
1 , X

w
2 ) and (X1, X2) satisfy the CPHR model (5.2) for i, j = 1, 2, i 6= j.

(b) IXi,Xiw(α; t1, t2) depends only on tj for i = 1, 2 and 0 < α 6= 1.

(c) The conditional reliability functions of (X1, X2) satisfy

log F̄i(ti|tj) =
log(wi(ti)/wi(l))

θi(tj)− 1
,

for i, j = 1, 2, i 6= j.

(d) (X1, X2) has the following pdf

f(x1, x2) = ca1a2
w′1(x1)w′2(x2)

wa1+1
1 (x1)wa2+1

2 (x2)
exp

(
−φa1a2

(
log

w1(x1)

w1(l)

)(
log

w2(x2)

w2(l)

))
,

for x1, x2 ≥ l, where c < 0, φ ≥ 0, and ai > 1 or ai < 0 for i, j = 1, 2, i 6= j.

Proof. The equivalence of (a) and (b) is a direct consequence of Theorem 5.4.1. The

equivalences of (a), (c) and (d) were proved in Theorem 5.2.3.

The comments given after Theorem 5.2.3 also hold for the present theorem. In par-

ticular note that the model given in (d) is a truncated version of the conditional pro-

portional hazard rate model considered by Arnold and Strauss (1991) and that Arnold

and Strauss’s model is obtained when l = 0. Some particular parametric model can

be obtained from this general model. For example if l = 1 and wi(t) = t for i = 1, 2,



Chapter 5. Characterizations of bivariate models using certain dynamic . . . 128

then we get a bivariate Pareto model (see Navarro et al. (2014)). This section ends

by obtaining some bounds to CRDI1 in terms of some well known reliability measures

using likelihood ratio ordering.

Theorem 5.4.3. For i, j = 1, 2, i 6= j, if (Xi|Xj = tj) ≤LR (Yi|Yj = tj) and α > 1

(0 < α < 1), then

IXi,Yi(α; t1, t2) ≤ (≥)
α

α− 1
log

[
hXi|Xj(ti|tj)
hYi|Yj(ti|tj)

]
.

Proof. SinceXi|Xj = tj ≤LR Yi|Yj = tj,
fi(xi|tj)
gi(xi|tj) is decreasing in xi,∀tj. Therefore

fαi (xi|tj)
gαi (xi|tj)

is decreasing in xi,∀tj, and for α > 0.

i .e.,
fαi (xi|tj)
gαi (xi|tj)

≤ fαi (ti|tj)
gαi (ti|tj)

∀xi > ti, ∀tj, α > 0,

IXi,Yi(α; t1, t2) =
1

α− 1
log

∫ ∞
ti

fαi (xi|tj)g1−α
i (xi|tj)

F̄α
i (ti|tj)Ḡ1−α

i (ti|tj)
dxi,

=
1

α− 1
log

∫ ∞
ti

fαi (xi|tj)Ḡα
i (ti|tj)gi(xi|tj)

gαi (xi|tj)F̄α
i (ti|tj)Ḡi(ti|tj)

dxi.

For 0 < α < 1,

IXi,Yi(α; t1, t2) ≥ 1

α− 1
log

∫ ∞
ti

hαXi|Xj(ti|tj)gi(xi|tj)
hαYi|Yj(ti|tj)Ḡi(ti|tj)

dxi,

=
α

α− 1
log

[
hXi|Xj(ti|tj)
hYi|Yj(ti|tj)

]
.

For α > 1,

IXi,Yi(α; t1, t2) ≤ α

α− 1
log

[
hXi|Xj(ti|tj)
hYi|Yj(ti|tj)

]
.

Corollory 5.4.1. For i, j = 1, 2, i 6= j, if Xi|Xj = tj ≤LR Xw
i |Xw

j = tj and α > 1



Chapter 5. Characterizations of bivariate models using certain dynamic . . . 129

(0 < α < 1), then

IXi,Xw
i

(α; t1, t2) ≤ (≥)
α

α− 1
log

[
hXi|Xj(ti|tj)
hXw

i |Xw
j

(ti|tj)

]
.

Example 5.4.1. Let (X1, X2) be a Pareto I rv specified by the pdf

f(t1, t2) = Cx−α1−1
1 x−α2−1

2 x−θ log x2
1 ; x1, x2 > 1, C > 0, α1, α2, θ > 1.

Take the weight function as wi(xi) = xi, so
fi(xi|tj)
fwi (xi|tj) =

(αi+θlogtj)

(αi+θlogtj−1)xi
is decreasing in xi

and the corollary follows. �

Theorem 5.4.4. For i, j = 1, 2, i 6= j and 0 < α 6= 1, if wi is increasing, then

IXi,Xiw(α; t1, t2) ≤ log

[
E(wi(Xi)|Xi > ti, Xj = tj)

wi(ti)

]
.

Proof. Since wi(xi) is increasing in xi, we have (wi(xi))
1−α is increasing (decreasing) in

xi if 0 < α < 1 (α > 1). i.e., (wi(xi))
1−α ≥ (≤)(wi(ti))

1−α ∀xi > ti, if 0 < α < 1

(α > 1). We have

IXi,Xiw(α; t1, t2) =
1

α− 1
log

(∫ ∞
ti

fi(xi|tj)wi(xi)1−α

F̄i(ti|tj)(E(wi(Xi)|Xi > ti, Xj = tj))1−αdxi

)
,

i 6= j, i, j = 1, 2.

For 0 < α < 1,

IXi,Xiw(α; t1, t2) ≤ log

[
E(wi(Xi)|Xi > ti, Xj = tj)

wi(ti)

]
.

The inequality is preserved when α > 1 also.
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Remark 5.4.1. Theorem 5.4.4 can be illustrated using Example 5.4.1.

Theorem 5.4.5. For i, j = 1, 2, i 6= j, if Xi|Xj = tj ≤LR Yi|Yj = tj and α > 1

(0 < α < 1), then

IXi,Zi(α; t1, t2) ≤ (≥)
α

α− 1
log

[
hXi|Xj(ti|tj)
hYi|Yj(ti|tj)

]
+ IYi,Zi(α; t1, t2).

Proof. Since Xi|Xj = tj ≤LR Yi|Yj = tj,
fi(xi|tj)
gi(xi|tj) is decreasing in xi, ∀tj, i.e.

fαi (xi|tj)
gαi (xi|tj) is

decreasing in xi,∀tj, for α > 0.

i.e.,
fαi (xi|tj)
gαi (xi|tj)

≤ fαi (ti|tj)
gαi (ti|tj)

∀xi > ti, ∀tj, for α > 0.

IXi,Zi(α; t1, t2) =
1

α− 1
log

∫ ∞
ti

fαi (xi|tj)q1−α
i (xi|tj)

F̄α
i (ti|tj)Q̄1−α

i (ti|tj)
dxi,

=
1

α− 1
log

∫ ∞
ti

fαi (xi|tj)gαi (xi|tj)Ḡα
i (ti|tj)q1−α

i (xi|tj)
gαi (xi|tj)Ḡα

i (ti|tj)F̄α
i (ti|tj)Q̄1−α

i (ti|tj)
dxi.

For 0 < α < 1,

IXi,Zi(α; t1, t2) ≥ 1

α− 1
log

∫ ∞
ti

hαXi|Xj(ti|tj)g
α
i (xi|tj)q1−α

i (xi|tj)
hαYi|Yj(ti|tj)Ḡ

α
i (ti|tj)Q̄1−α

i (ti|tj)
dxi,

=
α

α− 1
log

[
hXi|Xj(ti|tj)
hYi|Yj(ti|tj)

]
+ IYi,Zi(α; t1, t2).

For α > 1,

IXi,Zi(α; t1, t2) ≤ 1

α− 1
log

∫ ∞
ti

hαXi|Xj(ti|tj)g
α
i (xi|tj)q1−α

i (xi|tj)
hαYi|Yj(ti|tj)Ḡ

α
i (ti|tj)Q̄1−α

i (ti|tj)
dxi,

=
α

α− 1
log

[
hXi|Xj(ti|tj)
hYi|Yj(ti|tj)

]
+ IYi,Zi(α; t1, t2).

Example 5.4.2. Let (X1, X2), (Y1, Y2) and (Z1, Z2) be 3 bivariate independent expo-
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nential rvs with respective pdfs given by f(x1, x2) = λ1λ2 exp(−λ1x1−λ2x2); λ1, λ2 > 0,

x1, x2 > 0, g(x1, x2) = µ1µ2 exp(−µ1x1 − µ2x2); µ1, µ2 > 0, x1, x2 > 0 and q(x1, x2) =

γ1γ2 exp(−γ1x1 − γ2x2); γ1, γ2 > 0, x1, x2 > 0, such that λi > µi > γi. Clearly,

fi(xi|tj)
gi(xi|tj) = λi

µi
exp[−(λi − µi)xi] is decreasing in xi, ∀tj and Theorem 5.4.5 can be illus-

trated. �

Theorem 5.4.6. For i, j = 1, 2, i 6= j and 0 < α 6= 1, if Yi|Yj = tj) ≤LR (Zi|Zj = tj),

then

IXi,Yi(α; t1, t2) ≥ IXi,Zi(α; t1, t2) + log
hZi|Zj(ti|tj)
hYi|Yj(ti|tj)

.

Proof. Since Yi|Yj = tj ≤LR Zi|Zj = tj we have
gi(xi|tj)
qi(xi|tj) is decreasing in xi, ∀tj. Therefore

g1−αi (xi|tj)
q1−αi (xi|tj)

is decreasing in xi, ∀tj, if 0 < α < 1 and
g1−αi (xi|tj)
q1−αi (xi|tj)

is increasing in xi, ∀tj if

α > 1.

i.e.,
g1−α
i (xi|tj)
q1−α
i (xi|tj)

≤ g1−α
i (ti|tj)
q1−α
i (ti|tj)

∀xi > ti, ∀tj, if 0 < α < 1

and

g1−α
i (xi|tj)
q1−α
i (xi|tj)

≥ g1−α
i (ti|tj)
q1−α
i (ti|tj)

∀xi > ti, ∀tj, if α > 1.

Now for 0 < α < 1, we have

IXi,Yi(α; t1, t2) =
1

α− 1
log

∫ ∞
ti

fαi (xi|tj)g1−α
i (xi|tj)

F̄α
i (ti|tj)Ḡ1−α

i (ti|tj)
dxi,

=
1

α− 1
log

∫ ∞
ti

fαi (xi|tj)g1−α
i (xi|tj)q1−α

i (xi|tj)Q̄1−α
i (ti|tj)

F̄α
i (ti|tj)q1−α

i (xi|tj)Q̄1−α
i (ti|tj)Ḡ1−α

i (ti|tj)
dxi,

≥ log

[
hZi|Zj(ti|tj)
hYi|Yj(ti|tj)

]
+

1

α− 1
log

∫ ∞
ti

fαi (xi|tj)q1−α
i (xi|tj)

F̄α
i (ti|tj)Q̄1−α

i (ti|tj)
dxi,

= IXi,Zi(α; t1, t2) + log

[
hZi|Zj(ti|tj)
hYi|Yj(ti|tj)

]
.

The inequality is preserved when α > 1 also.

Remark 5.4.2. Theorem 5.4.6 can be illustrated using Example 5.4.2.
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5.5 Conditional Renyi’s discrimination information

of type 2

In this section, dynamic Renyi’s divergence measure given in (2.2) is extended to con-

ditional survival models, the definition to which is as follows:

Definition 5.5.1. Let (X1, X2) and (Y1, Y2) be two non-negative bivariate rvs admit-

ting absolutely continuous dfs. If f ∗i (ti|tj) and g∗i (ti|tj), i 6= j, i, j = 1, 2 denote the

conditional densities of Xi|Xj > tj and Yi|Yj > tj respectively, then conditional Renyi’s

discrimination information of type 2 (CRDI2) for these rvs can be defined as

I∗Xi,Yi(α; t1, t2) =
1

α− 1
log

∫ ∞
ti

(f ∗i (xi|tj))α(g∗i (xi|tj))1−α

(F̄ ∗i (ti|tj))α(Ḡ∗i (ti|tj))1−αdxi,

where F̄ ∗i (ti|tj) and Ḡ∗i (ti|tj) are the sfs of Xi|Xj > tj and Yi|Yj > tj respectively.

The weighted distribution of Xi given Xj > tj, i 6= j, i, j = 1, 2, is defined as

fw
∗

i (ti|tj) =
wi(ti)

E(wi(Xi)|Xj > tj)
f ∗i (ti|tj), ti, tj > 0. (5.19)

The corresponding sf denoted by F̄w∗
i (ti|tj) = P (Xw

i > ti|Xw
j > tj) is of the form

F̄w∗

i (ti|tj) =
E(wi(Xi)|Xi > ti, Xj > tj)

E(wi(Xi)|Xj > tj)
F̄ ∗i (ti|tj), i 6= j, i, j = 1, 2, (5.20)

CRDI2 of Xi|Xj > tj and Xw
i |Xw

j > tj denoted by I∗Xi,Xw
i

(α; t1, t2) is defined as

I∗Xi,Xw
i

(α; t1, t2) =
1

α− 1
log

∫ ∞
ti

f ∗i (xi|tj)
F̄ ∗i (ti|tj)

(wi(xi))
1−α

(E(wi(Xi)|Xi > ti, Xj > tj)1−αdxi,

i 6= j, i, j = 1, 2.
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Theorem 5.5.1. For i, j = 1, 2, i 6= j, I∗Xi,Yi(α; t1, t2) is locally constant if and only if

Xi|Xj > tj and Yi|Yj > tj satisfy CPHR model (5.5).

Proof. Assume that Xi|Xj > tj and Yi|Yj > tj satisfy CPHR model (5.5). So we have

Ḡ∗i (ti|tj) = [F̄ ∗i (ti|tj)]θi(tj).

I∗Xi,Yi(α; t1, t2) =
1

α− 1
log

∫ ∞
ti

f ∗αi (xi|tj)g∗1−αi (xi|tj)
F̄ ∗αi (ti|tj)Ḡ∗1−αi (ti|tj)

dxi,

=
1

α− 1
log

∫ ∞
ti

f ∗αi (xi|tj)[θi(tj)[F̄ ∗i (xi|tj)]θi(tj)−1f ∗i (xi|tj)]1−α

F̄ ∗αi (ti|tj)[F̄ ∗i (ti|tj)]θi(tj)(1−α)
dxi,

=
1

α− 1
log

∫ ∞
ti

[θi(tj)]
1−α[F̄ ∗i (xi|tj)](θi(tj)−1)(1−α)f ∗i (xi|tj)

[F̄ ∗i (ti|tj)]θi(tj)(1−α)+α
dxi,

=
1

α− 1
log

∫ ∞
ti

[θi(tj)]
1−α[F̄ ∗i (xi|tj)]θi(tj)(1−α)+α−1f ∗i (xi|tj)

[F̄ ∗i (ti|tj)]θi(tj)(1−α)+α
dxi,

=
1

α− 1
log

∫ ∞
ti

[θi(tj)]
1−α[θi(tj)(1− α) + α][F̄ ∗i (xi|tj)]θi(tj)(1−α)+α−1f ∗i (xi|tj)

[θi(tj)(1− α) + α][F̄ ∗i (ti|tj)]θi(tj)(1−α)+α
dxi,

=
1

α− 1
log

[
[θi(tj)]

1−α[F̄ ∗i (ti|tj)]θi(tj)(1−α)+α

[θi(tj)(1− α) + α][F̄ ∗i (ti|tj)]θi(tj)(1−α)+α

]
,

=
1

α− 1
log

[
[θi(tj)]

1−α

[θi(tj)(1− α) + α]

]
, locally constant.

Conversely suppose that I∗Xi,Yi(α; t1, t2) is locally constant, i.e. I∗Xi,Yi(α; t1, t2) = Bi(tj)

(say).

1

α− 1
log

∫ ∞
ti

f ∗αi (xi|tj)g∗1−αi (xi|tj)
F̄ ∗αi (ti|tj)Ḡ∗1−αi (ti|tj)

dxi = Bi(tj),

i .e.

∫ ∞
ti

f ∗αi (xi|tj)g∗1−αi (xi|tj)
F̄ ∗αi (ti|tj)Ḡ∗1−αi (ti|tj)

dxi = Ci(tj) where Ci(tj) = e(α−1)Bi(tj),

∫ ∞
ti

f ∗αi (xi|tj)g∗1−αi (xi|tj)dxi = Ci(tj)F̄
∗α
i (ti|tj)Ḡ∗1−αi (ti|tj).
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Differentiating with respect to ti, we get

−f ∗αi (ti|tj)g∗1−αi (ti|tj) = −αCi(tj)F̄ ∗1−αi (ti|tj)f ∗i (ti|tj)Ḡ∗1−αi (ti|tj)

− (1− α)Ci(tj)F̄
∗α
i (ti|tj)Ḡ∗−αi (ti|tj)g∗i (ti|tj),

f ∗αi (ti|tj)g∗1−αi (ti|tj) = αCi(tj)F̄
∗1−α
i (ti|tj)f ∗i (ti|tj)Ḡ∗1−αi (ti|tj)

+ (1− α)Ci(tj)F̄
∗α
i (ti|tj)Ḡ∗−αi (ti|tj)g∗i (ti|tj). (5.21)

Dividing with f ∗αi (ti|tj)g∗1−αi (ti|tj), equation (5.21) reduces to

1 = αCi(tj)h
∗1−α
Xi|Xj(ti|tj)h

∗α−1
Yi|Yj (ti|tj) + (1− α)Ci(tj)h

∗−α
Xi|Xj(ti|tj)h

∗α
Yi|Yj(ti|tj),

or

1

Ci(tj)
= α

[
h∗Yi|Yj(ti|tj)
h∗Xi|Xj(ti|tj)

]α−1

+ (1− α)

[
h∗Yi|Yj(ti|tj)
h∗Xi|Xj(ti|tj)

]α
. (5.22)

Putting
h∗
Yi|Yj

(ti|tj)

h∗
Xi|Xj

(ti|tj) = ψi(t1, t2), equation (5.22) becomes

1

Ci(tj)
= α [ψi(t1, t2)]α−1 + (1− α) [ψi(t1, t2)]α . (5.23)

Differentiating (5.23) with respect to ti, we get

0 = α(α− 1) [ψi(t1, t2)]α−2 ∂

∂ti
ψi(t1, t2) + (1− α)α [ψi(t1, t2)]α−1 ∂

∂ti
ψi(t1, t2),

0 = α(α− 1) [ψi(t1, t2)]α−2 ( ∂
∂ti

ψi(t1, t2)
)

[1− ψi(t1, t2)] ,

0 =
( ∂
∂ti

ψi(t1, t2)
)

[1− ψi(t1, t2)] ,
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which implies ψi(t1, t2) = 1 or ∂
∂ti
ψi(t1, t2) = 0

∂

∂ti
ψi(t1, t2) = 0⇒ ψi(t1, t2) = θi(tj),

i.e.,
h∗Yi|Yj(ti|tj)
h∗Xi|Xj(ti|tj)

= θi(tj).

Thus Xi|Xj > tj and Yi|Yj > tj satisfy CPHR model (5.5).

Corollory 5.5.1. For i, j = 1, 2, i 6= j, I∗Xi,Xw
i

(α; t1, t2) is locally constant if and only

if Xi|Xj > tj and Xw
i |Xw

j > tj satisfy CPHR model (5.5).

Corollory 5.5.2. For i, j = 1, 2, i 6= j, I∗Xi,Xw
i

(α; t1, t2) is locally constant if and only

if wi(ti) = [F̄ ∗i (ti|tj)]θi(tj)−1, where θi(tj) is a function of tj only.

Theorem 5.5.2. Let (X1, X2) be a non-negative bivariate random vector and (Xs
1 , X

s
2)

be its size-biased version. Then I∗Xi,Xs
i
(α; t1, t2) is locally constant if and only if (X1, X2)

follows bivariate Pareto I distribution specified by the sf

F̄ (x1, x2) = x−α1
1 x−α2

2 x−θ log x2
1 ; x1, x2 > 1, α1, α2, θ ≥ 0.

Proof. Assume that (X1, X2) follows bivariate Pareto I model, then for i = 1 we have

I∗X1,Xs
1
(α; t1, t2) =

1

α− 1
log

∫ ∞
t1

x
β(1−α)
1 f ∗1 (x1|t2)[

E(Xβ
1 )|X1 > t1, X2 > t2

]1−α
F̄ ∗1 (t1|t2)

dx1,

=
1

α− 1
log

∫ ∞
t1

x
β(1−α)
1 x−α1−1

1 t−α2
2 x−θ log t2

1 (α1 + θ log t2)[
(α1+θ log t2)tβ1
(α1+θ log t2−β)

]1−α
t−α1
1 t−α2

2 t−θ log t2
1

dx1,

=
1

α− 1
log

∫ ∞
t1

x
−α1−θ log t2−β(α−1)−1
1 (α1 + θ log t2)α

(α1 + θ log t2 − β)α−1t
−α1−θ log t2−β(α−1)
1

dx1,

=
1

α− 1
log

[
(α1 + θ log t2)α

(α1 + θ log t2 − β)α−1(α1 + θ log t2 + β(α− 1))

]
,

= log

[
α1 + θ log t2

α1 + θ log t2 − β

]
+

1

α− 1
log

[
α1 + θ log t2

α1 + θ log t2 + β(α− 1)

]
.
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Similarly for i = 2 we have

I∗X2,Xs
2
(α; t1, t2) = log

[
α2 + θ log t1

α2 + θ log t1 − β

]
+

1

α− 1
log

[
α2 + θ log t1

α2 + θ log t1 + β(α− 1)

]
.

i.e., I∗Xi,Xs
i
(α; t1, t2) = log

[
αi + θ log tj

αi + θ log tj − β

]
+

1

α− 1
log

[
αi + θ log tj

αi + θ log tj + β(α− 1)

]
,

locally constant.

Conversely suppose that I∗Xi,Xs
i
(α; t1, t2) is locally constant. Now using Corollary 5.5.1

we have

h∗Xs
i |Xs

j
(ti|tj) = Ki(tj)h

∗
Xi|Xj(ti|tj).

The rest of the proof follows similar to that for Theorem 5.3.3.

In the following theorems we use the likelihood ratio ordering of conditional survival rvs

to obtain some bounds for CRDI2.

Theorem 5.5.3. For i, j = 1, 2, i 6= j, if Xi|Xj > tj ≤LR Yi|Yj > tj and α > 1

(0 < α < 1), then

I∗Xi,Yi(α; t1, t2) ≤ (≥)
α

α− 1
log

[
h∗Xi|Xj(ti|tj)
h∗Yi|Yj(ti|tj)

]
.

Proof. The proof is similar to that of Theorem 5.4.3.

Corollory 5.5.3. For i, j = 1, 2, i 6= j, if Xi|Xj > tj ≤LR Xw
i |Xw

j > tj and α > 1

(0 < α < 1), then

I∗Xi,Xw
i

(α; t1, t2) ≤ (≥)
α

α− 1
log

[
h∗Xi|Xj(ti|tj)
h∗Xw

i |Xw
j

(ti|tj)

]
.

Example 5.5.1. Let (X1, X2) be a bivariate Pareto I rv specified by the sf F̄ (x1, x2) =

x−α1
1 x−α2

2 x−θ log t2
1 ; x1, x2 > 1, α1, α2, θ > 1. Take the weight function as wi(xi) = xi so
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that

f ∗i (xi|tj)
fw∗i (xi|tj)

=
(αi + θ log tj)

(αi + θ log tj − 1)xi
is decreasing in xi.

Therefore,

I∗Xi,Xw
i

(α; t1, t2) =
α

α− 1
log

[
αi + θ log tj

αi + θ log tj − 1

]
+

1

α− 1
log

[
αi + θ log tj − 1

αi + θ log tj + α− 1

]
,

≤ (≥)
α

α− 1
log

[
αi + θ log tj

αi + θ log tj − 1

]
=

α

α− 1
log

[
h∗Xi|Xj(ti|tj)
h∗Xw

i |Xw
j

(ti|tj)

]
,

according as α > 1 (0 < α < 1). �

Theorem 5.5.4. If wi is increasing, then

I∗Xi,Xw
i

(α; t1, t2) ≤ log

[
E(wi(Xi)|Xi > ti, Xj > tj)

wi(xi)

]
.

Proof. The proof is similar to that of Theorem 5.4.4.

Example 5.5.2. Consider the bivariate rv taken in Example 5.5.1. Using the weight

function wi(xi) = xi, which is increasing in xi, we have

I∗Xi,Xw
i

(α; t1, t2) = log

[
αi + θ log tj

αi + θ log tj − 1

]
+

1

α− 1
log

[
αi + θ log tj

αi + θ log tj − 1

]
,

≤ log

[
αi + θ log tj

αi + θ log tj − 1

]
= log

[
E(wi(Xi)|Xi > ti, Xj > tj)

wi(ti)

]
. �

Theorem 5.5.5. For i, j = 1, 2, i 6= j, if Xi|Xj > tj ≤LR Yi|Yj > tj and α > 1

(0 < α < 1), then

I∗Xi,Zi(α; t1, t2) ≤ (≥)
α

α− 1
log

[
h∗Xi|Xj(ti|tj)
h∗Yi|Yj(ti|tj)

]
+ I∗Yi,Zi(α; t1, t2).

Proof. The proof is similar to that of Theorem 5.4.5.



Chapter 5. Characterizations of bivariate models using certain dynamic . . . 138

Example 5.5.3. Let (X1, X2), (Y1, Y2) and (Z1, Z2) be 3 bivariate independent exponen-

tial rvs with respective sfs given by F̄ (x1, x2) = exp(−λ1x1−λ2x2); λ1, λ2 > 0, x1, x2 > 0,

Ḡ(x1, x2) = exp(−µ1x1 − µ2x2); µ1, µ2 > 0, x1, x2 > 0 and Q̄(x1, x2) = exp(−γ1x1 −

γ2x2); γ1, γ2 > 0, x1, x2 > 0 such that λi > µi > γi. Clearly,

f ∗i (xi|tj)
g∗i (xi|tj)

=
λi
µi

exp[−(λi − µi)xi]

is decreasing in xi,∀tj. Therefore,

I∗Xi,Zi(α; t1, t2) =
α

α− 1
log

[
λαi γ

1−α
i

(λi − γi)α + γi

]
,

=
α

α− 1
log

[
λi
µi

]
+

1

α− 1
log

[
µαi γ

1−α
i

(µi − γi)α + γi

]
+

1

α− 1
log

[
(µi − γi)α + γi
(λi − γi)α + γi

]
,

≤ (≥)
α

α− 1
log

[
λi
µi

]
+

1

α− 1
log

[
µαi γ

1−α
i

(µi − γi)α + γi

]
,

=
α

α− 1
log

[
h∗Xi|Xj(ti|tj)
h∗Yi|Yj(ti|tj)

]
+ I∗Yi,Zi(α; t1, t2),

provided α > 1 (0 < α < 1). �

Theorem 5.5.6. For i, j = 1, 2, i 6= j, if Yi|Yj > tj ≤LR Zi|Zj > tj and α > 1

(0 < α < 1), then

I∗Xi,Yi(α; t1, t2) ≤ (≥)I∗Xi,Zi(α; t1, t2) + log

[
h∗Zi|Zj(ti|tj)
h∗Yi|Yj(ti|tj)

]
.

Proof. The proof is similar to that of Theorem 5.4.6

Example 5.5.4. Consider the rvs discussed in Example 5.5.3. so that

g∗i (xi|tj)
q∗i (xi|tj)

=
µi
γi
e−(µi−γi)xi
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is decreasing in xi. Therefore,

I∗Xi,Yi(α; t1, t2) =
1

α− 1
log

[
λαi µ

1−α
i

(λi − µi)α + µi

]
,

=
1

α− 1
log

[
λαi γ

1−α
i

(λi − γi)α + γi

]
+ log(

γi
µi

) +
1

α− 1
log

[
(λi − γi)α + γi
(λi − µi)α + µi

]
,

≤ (≥)
1

α− 1
log

[
λαi γ

1−α
i

(λi − γi)α + γi

]
+ log(

γi
µi

),

= log

[
h∗Zi|Zj(ti|tj)
h∗Yi|Yj(ti|tj)

]
+ I∗Xi,Zi(α; t1, t2),

provided α > 1 (0 < α < 1). �

5.6 Conditional Kerridge’s inaccuracy measure of

type 1

In this section we extend the Kerridge’s inaccuracy measure, given in (1.12) to the

conditionally specified rvs (Xi|Xj = tj) and (Yi|Yj = tj).

Definition 5.6.1. Let (X1, X2) and (Y1, Y2) be two non-negative bivariate random vec-

tors admitting absolutely continuous dfs. If fi(ti|tj) and gi(ti|tj), i 6= j, i, j = 1, 2 denote

the conditional densities of Xi|Xj = tj and Yi|Yj = tj respectively, then conditional Ker-

ridge’s inaccuracy measure of type 1 (CKIM1) is defined by

KXi,Yi(t1, t2) = −
∫ ∞
ti

fi(xi|tj)
F̄i(ti|tj)

log
gi(xi|tj)
Ḡi(ti|tj)

dxi,

for i, j = 1, 2, i 6= j and t1, t2 ≥ l, where F̄i(ti|tj) and Ḡi(ti|tj) are the sfs of Xi|Xj = tj

and Yi|Yj = tj respectively. Note that KXi,Yi(t1, t2) = K(Xi|Xj=tj),(Yi|Yj=tj)(ti) for i, j =

1, 2, i 6= j.
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Then we have the following characterization result for the Arnold and Strauss’s bivariate

exponential distribution obtained in Arnold and Strauss (1991).

Theorem 5.6.1. Let (X1, X2) and (Y1, Y2) be two random vectors with common support

(0,∞) × (0,∞) and that satisfy the CPHR model given in (5.2) for i, j = 1, 2, i 6= j

then the following conditions are equivalent:

(a) KXi,Yi(t1, t2) depends only on tj for i, j = 1, 2, i 6= j.

(b) (X1, X2) has the following joint pdf

f(x1, x2) = c exp(−λ1x1 − λ2x2 − θλ1λ2),

for x1, x2 ≥ 0, where c > 0, θ ≥ 0 and λi > 0 for i = 1, 2.

Proof. If (X1, X2) and (Y1, Y2) satisfy the CPHR model given in (5.2), then

Ḡi(ti|tj) =
[
F̄i(ti|tj)

]θi(tj) .
To prove that (a) implies (b), let us assume that KXi,Yi(t1, t2) depends only on tj for

i, j = 1, 2, i 6= j.

Then for i = 1, we have

−
∫ ∞
t1

f1(x1|t2) log(θ1(t2)
[
F̄1(x1|t2)

]θ1(t2)−1
f1(x1|t2))dx1

= C1(t2)F̄1(t1|t2)− θ1(t2)F̄1(t1|t2) log F̄1(t1|t2).
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Differentiating with respect to t1, we get

f1(t1|t2) log(θ1(t2)
[
F̄1(t1|t2)

]θ1(t2)−1
f1(t1|t2))

= −C1(t2)f1(t1|t2) + θ1(t2)f1(t1|t2)(1 + log F̄1(t1|t2)).

Hence

log
(
θ1(t2)

[
F̄1(t1|t2)

]θ1(t2)−1
f1(t1|t2)

)
= −C1(t2) + θ1(t2) + log

[
F̄1(t1|t2)

]θ1(t2)

and

log(θ1(t2)hX1|X2(t1|t2)) = θ1(t2)− C1(t2).

Therefore hX1|X2(t1|t2) depends only on t2. Analogously it can be proved that hX2|X1(t2|t1)

depends only on t1. Hence, both the conditional distributions are Exponential and from

Arnold and Strauss (1991) the pdf is as given in (b).

The converse part is straight forward.

Finally in this section, we obtain bounds for CKIM1 function by using the LR ordering.

Theorem 5.6.2. For i, j = 1, 2, i 6= j, if gi(ti|tj) is decreasing, then

KXi,Yi(t1, t2) ≥ − log hYi|Yj(ti|tj).

Proof. Since gi(xi|tj) is decreasing in xi, gi(xi|tj) ≤ gi(ti|tj), ∀xi > ti and ∀tj

KXi,Yi(t1, t2) = −
∫ ∞
ti

fi(xi|tj)
F̄i(ti|tj)

log
gi(xi|tj)
Ḡi(ti|tj)

dxi,

≥ −
∫ ∞
ti

fi(xi|tj)
F̄i(ti|tj)

log hYi|Yj(ti|tj)dxi,

= − log(hYi|Yj(ti|tj)).
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Corollory 5.6.1. For i, j = 1, 2, i 6= j, if fwi (ti|tj) is decreasing, then

KXi,Xw
i

(t1, t2) ≥ − log(hXi|Xw
i

(ti|tj)).

Theorem 5.6.3. For i, j = 1, 2, i 6= j, if wi is increasing, then

KXi,Xw
i

(t1, t2) ≤ IXi(t1, t2) + log

[
E(wi(Xi)|Xi > ti, Xj = tj)

wi(ti)

]
,

where IXi(t1, t2) = −
∫∞
ti

fi(xi|tj)
F̄i(ti|tj)

log
fi(xi|tj)
F̄i(ti|tj)

dxi is the residual entropy of (Xi|Xj = tj).

Proof. Since wi(xi) is increasing xi, wi(xi) ≥ wi(ti), ∀xi > ti

KXi,Xw
i

(t1, t2) = −
∫ ∞
ti

fi(xi|tj)
F̄i(ti|tj)

log

[
wi(xi)fi(xi|tj)

E(wi(Xi)|Xi > ti, Xj = tj)F̄i(ti|tj)

]
dxi,

≤ −
∫ ∞
ti

fi(xi|tj)
F̄i(ti|tj)

log

[
wi(ti)fi(xi|tj)

E(wi(Xi)|Xi > ti, Xj = tj)F̄i(ti|tj)

]
dxi,

= −
∫ ∞
ti

fi(xi|tj)
F̄i(ti|tj)

log
(fi(xi|tj)
F̄i(ti|tj)

)
dxi + log

[
E(wi(Xi)|Xi > ti, Xj = tj)

wi(ti)

]
,

= IXi(t1, t2) + log

[
E(wi(Xi)|Xi > ti, Xj = tj)

wi(ti)

]
.

Remark 5.6.1. Using joint pdf considered in Example 5.4.1. and using weight function

as wi(xi) = xi, Corollary 5.6.1. and Theorem 5.6.3. can be illustrated.

Theorem 5.6.4. For i, j = 1, 2, i 6= j, if (Xi|Xj = tj) ≤LR (Yi|Yj = tj), then

KXi,Zi(t1, t2) ≥
hXi|Xj(ti|tj)
hYi|Yj(ti|tj)

KYi,Zi(t1, t2).

Proof. Since Xi|Xj = tj ≤LR Yi|Yj = tj,
fi(xi|tj)
gi(xi|tj) is decreasing in xi, ∀tj.

i .e.,
fi(xi|tj)
gi(xi|tj)

≤ fi(ti|tj)
gi(ti|tj)

, ∀xi > ti and ∀tj.
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KXi,Zi(t1, t2) = −
∫ ∞
ti

fi(xi|tj)
F̄i(ti|tj)

log
qi(xi|tj)
Q̄i(ti|tj)

dxi,

= −
∫ ∞
ti

fi(xi|tj)gi(xi|tj)Ḡi(ti|tj)
F̄i(ti|tj)Ḡi(ti|tj)gi(xi|tj)

log
qi(xi|tj)
Q̄i(ti|tj)

dxi,

≥ −
∫ ∞
ti

hXi|Xj(ti|tj)
hYi|Yj(ti|tj)

gi(xi|tj)
Ḡi(ti|tj)

log
qi(xi|tj)
Q̄i(ti|tj)

dxi,

=
hXi|Xj(ti|tj)
hYi|Yj(ti|tj)

KYi,Zi(t1, t2).

Theorem 5.6.5. For i, j = 1, 2, i 6= j, if (Yi|Yj = tj) ≤LR (Zi|Zj = tj), then

KXi,Yi(t1, t2) ≥ KXi,Zi(t1, t2) + log
hZi|Zj(ti|tj)
hYi|Yj(ti|tj)

.

Proof. Since Yi|Yj = tj ≤LR Zi|Zj = tj,
gi(xi|tj)
qi(xi|tj) is decreasing in xi, ∀tj,

i .e.,
gi(xi|tj)
qi(xi|tj)

≤ gi(ti|tj)
qi(ti|tj)

∀xi > ti and ∀tj.

KXi,Yi(t1, t2) = −
∫ ∞
ti

fi(xi|tj)
F̄i(ti|tj)

log
gi(xi|tj)
Ḡi(ti|tj)

dxi,

= −
∫ ∞
ti

fi(xi|tj)
F̄i(ti|tj)

log
gi(xi|tj)
qi(xi|tj)

qi(xi|tj)
Q̄i(ti|tj)

Q̄i(ti|tj)
Ḡi(ti|tj)

dxi,

≥ −
∫ ∞
ti

fi(xi|tj)
F̄i(ti|tj)

log
qi(xi|tj)
Q̄i(ti|tj)

hYi|Yj(ti|tj)
hZi|Zj(ti|tj)

dxi,

= KXi,Zi(t1, t2) + log
hZi|Zj(ti|tj)
hYi|Yj(ti|tj)

.

Example 5.6.1. Let (X1, X2), (Y1, Y2) and (Z1, Z2) be 3 bivariate Pareto rvs with

respective pdfs given by f(x1, x2) = (c1−1)(c1−2)(1+a1x1+a2x2)−c1 ;x1, x2 > 0, a1, a2 >

0, c1 > 1; g(x1, x2) = (c2−1)(c2−2)(1+a1x1+a2x2)−c2 ; x1, x2 > 0, a1, a2 > 0, c2 > 1 and

q(x1, x2) = (c3 − 1)(c3 − 2)(1 + a1x1 + a2x2)−c3 ; x1, x2 > 0, a1, a2 > 0, c3 > 1 such that

c1 > c2 > c3. So
gi(xi|tj)
qi(xi|tj) = (c2−1)

(c3−1)

(1+aixi+ajtj)
−(c2−c3)

(1+ajtj)
−(c2−c3) is decreasing in xi, ∀tj and can be

seen that Theorem 5.6.5. follows. �
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5.7 Conditional Kerridge’s inaccuracy measure of

type 2

In this section we study conditional Kerridge’s inaccuracy measure of type 2 (CKIM2),

an extension of residual Kerridge’s inaccuracy measure (1.12) to conditional survival

rvs. The definition is as follows:

Definition 5.7.1. Let (X1, X2) and (Y1, Y2) be two non-negative bivariate random vec-

tors admitting absolutely continuous dfs. If f ∗i (ti|tj) and g∗i (ti|tj), i 6= j, i, j = 1, 2

denote the conditional densities of Xi|Xj > tj and Yi|Yj > tj respectively, then dynamic

inaccuracy measure for these conditionally specified distributions, called CKIM2, can be

defined as

K∗Xi,Yi(t1, t2) = −
∫ ∞
ti

f ∗i (xi|tj)
F̄ ∗i (ti|tj)

log
g∗i (xi|tj)
Ḡ∗i (ti|tj)

dxi,

where F̄ ∗i (ti|tj) and Ḡ∗i (ti|tj) are the sfs of Xi|Xj > tj and Yi|Yj > tj respectively.

The CKIM2 of Xi|Xj > tj and the corresponding weighted rv Xw
i |Xw

j > tj denoted by

KXi,Xw
i

(t1, t2) is defined as

K∗Xi,Xw
i

(t1, t2) = −
∫ ∞
ti

f ∗i (xi|tj)
F̄ ∗i (ti|tj)

log
fw
∗

i (xi|tj)
F̄w∗
i (ti|tj)

, i 6= j, i, j = 1, 2. (5.24)

Using (5.19) and (5.20), (5.24) can be written as

K∗Xi,Xw
i

(t1, t2) = −
∫ ∞
ti

f ∗i (xi|tj)
F̄ ∗i (ti|tj)

log

(
wi(xi)f

∗
i (xi|tj)

E(wi(Xi)|Xi > ti, Xj > tj)F̄ ∗i (ti|tj)

)
dxi,

i 6= j, i, j = 1, 2.

Theorem 5.7.1. Let (X1, X2) be a non-negative bivariate random vector and let (Xw
1 , X

w
2 )

be its weighted version. Assume that Xi|Xj > tj and Xw
i |Xw

j > tj satisfy conditional
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proportional hazards model (5.5). Then K∗Xi,Xw
i

(t1, t2) is locally constant if and only if

(X1, X2) follows Gumbel’s bivariate exponential distribution.

Proof. Assume that (X1, X2) follows Gumbel’s bivariate exponential distribution.

Then

K∗Xi,Xw
i

(t1, t2) = −
∫ ∞
ti

f ∗i (xi|tj)
F̄ ∗i (ti|tj)

log
fw
∗

i (xi|tj)
F̄w∗
i (ti|tj)

,

= −
∫ ∞
ti

f ∗i (xi|tj)
F̄ ∗i (ti|tj)

log

[
θi(tj)

[
F̄ ∗i (xi|tj)

]θi(tj)−1
f ∗i (xi|tj)[

F̄ ∗i (ti|tj)
]θi(tj)

]
dxi.

For i = 1, we have

K∗X1,Xw
1

(t1, t2) = −
∫ ∞
t1

f ∗1 (x1|t2)

F̄ ∗1 (t1|t2)
log

[
θ1(t2)[F̄ ∗1 (x1|t2)]θ1(t2)−1f ∗1 (x1|t2)

[F̄ ∗1 (t1|t2)]θ1(t2)

]
dx1,

= −
∫ ∞
t1

− ∂
∂x1
F̄ (x1, t2)

F̄ (t1, t2)
log

[
θ1(t2)[F̄ (x1, t2)]θ1(t2)−1

(
− ∂

∂x1
F̄ (x1, t2)

)
[F̄ (t1, t2)]θ1(t2)

]
dx1,

= −
∫ ∞
t1

(λ1 + θt2)e−λ1x1−λ2t2−θx1t2

e−λ1t1−λ2t2−θt1t2

log

[
θ1(t2)[e−λ1x1−λ2t2−θx1t2 ]θ1(t2)−1

(
(λ1 + θt2)e−λ1x1−λ2t2−θx1t2

)
[e−λ1t1−λ2t2−θt1t2 ]θ1(t2)

]
dx1,

= − log
(θ1(t2)(λ1 + θt2)

e−(λ1+θt2)θ1(t2)t1

)
+

(λ1 + θt2)2θ1(t2)

e−(λ1+θt2)t1

∫ ∞
t1

x1e
−(λ1+θt2)x1dx1,

= − log
(θ1(t2)(λ1 + θt2)

e−(λ1+θt2)θ1(t2)t1

)
+

(λ1 + θt2)2θ1(t2)

e−(λ1+θt2)t1

[
t1e
−(λ1+θt2)t1

(λ1 + θt2)
+
e−(λ1+θt2)t1

(λ1 + θt2)2

]
,

= θ1(t2)− log[θ1(t2)(λ1 + θt2)].

Similarly for i = 2, we have

K∗X2,Xw
2

(t1, t2) = θ2(t1)− log[θ2(t1)(λ2 + θt1)],

i.e. K∗Xi,Xw
i

(t1, t2) = θi(tj)− log [θi(tj)(λi + θtj)] , locally constant.
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Conversely, assume that K∗Xi,Xw
i

(t1, t2) is locally constant. Then we have

−
∫ ∞
ti

f ∗i (xi|tj)
F̄ ∗i (ti|tj)

log

[
θi(tj)

[
F̄ ∗i (xi|tj)

]θi(tj)−1
f ∗i (xi|tj)[

F̄ ∗i (ti|tj)
]θi(tj)

]
dxi = Ci(tj),

−
∫ ∞
ti

f ∗i (xi|tj)
F̄ ∗i (ti|tj)

log
[
θi(tj)

[
F̄ ∗i (xi|tj)

]θi(tj)−1
f ∗i (xi|tj)

]
dxi

+ θi(tj) log F̄ ∗i (ti|tj) = Ci(tj). (5.25)

Differentiating (5.25) with respect to ti, we get

− h∗Xi|Xj(ti|tj)
∫ ∞
ti

f ∗i (xi|tj)
F̄ ∗i (ti|tj)

log
[
θi(tj)

[
F̄ ∗i (xi|tj)

]θi(tj)−1
f ∗i (xi|tj)

]
dxi

+ h∗Xi|Xj(ti|tj) log
[
θi(tj)

[
F̄ ∗i (xi|tj)

]θi(tj) h∗Xi|Xj(ti|tj)]− θi(tj)h∗Xi|Xj(ti|tj) = 0. (5.26)

Using (5.25) and then dividing by h∗Xi|Xj(ti|tj), (5.26) reduces to

log
[
θi(tj)h

∗
Xi|Xj(ti|tj)

]
= θi(tj)− Ci(tj)

or h∗Xi|Xj(ti|tj) = Ki(tj) where Ki(tj) = eθi(tj)−Ci(tj)

θi(tj)
which implies

f ∗i (ti|tj)
F̄ ∗i (ti|tj)

= Ki(tj),

− ∂
∂ti
F̄ (t1, t2)

F̄ (t1, t2)
= Ki(tj),

∂

∂ti
log F̄ (t1, t2) = −Ki(tj),

log F̄ (t1, t2) = −Ki(tj)ti + Ai(tj),
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F̄ (t1, t2) = e−Ki(tj)ti+Ai(tj).

i.e.,

F̄ (t1, t2) = e−K1(t2)t1+A1(t2), (5.27)

F̄ (t1, t2) = e−K2(t1)t2+A2(t1). (5.28)

As t1 → 0+ in (5.27) we have

F̄2(t2) = eA1(t2). (5.29)

Using (5.29), (5.27) becomes

F̄ (t1, t2) = e−K1(t2)t1F̄2(t2). (5.30)

Similarly, we get

F̄ (t1, t2) = e−K2(t1)t2F̄1(t1). (5.31)

As t2 → 0+ in (5.30), we get

F̄1(t1) = e−K1(0)t1 = e−λ1t1 , where λ1 = K1(0).

So (5.31) becomes

F̄ (t1, t2) = e−K2(t1)t2e−λ1t1 . (5.32)

Similarly, we get

F̄ (t1, t2) = e−K1(t2)t1e−λ2t2 . (5.33)
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Equating (5.32) and (5.33), we get

e−K2(t1)t2e−λ1t1 = e−K1(t2)t1e−λ2t2 .

e(K1(t2)−λ1)t1 = e(K2(t1)−λ2)t2 .

Taking logarithms, we have

(K1(t2)− λ1)t1 = (K2(t1)− λ2)t2,

(K1(t2)− λ1)

t2
=

(K2(t1)− λ2)

t1
= θ,

which implies

Ki(tj) = λi + θtj, i 6= j, i, j = 1, 2. (5.34)

Substituting (5.34) either in (5.32) or (5.33) we get

F̄ (t1, t2) = e−λ1t1−λ2t2−θt1t2 , t1, t2 > 0, λ1, λ2, θ ≥ 0.

Hence the theorem follows.

Theorem 5.7.2. For i, j = 1, 2, i 6= j, if g∗i (ti|tj) is decreasing, then

K∗Xi,Yi(t1, t2) ≥ − log
(
h∗Yi|Yj(ti|tj)

)
.

Proof. The proof is similar to that of Theorem 5.6.2.

Corollory 5.7.1. For i, j = 1, 2, i 6= j, if fw
∗

i (xi|tj) is decreasing, then

K∗Xi,Xw
i

(t1, t2) ≥ − log
(
h∗Xw

i |Xw
j

(ti|tj)
)
.
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Example 5.7.1. Let (X1, X2) be a bivariate Pareto I rv specified by the sf

F̄ (x1, x2) = x−α1
1 x−α2

2 x−θ log t2
1 ; x1, x2 > 1, α1, α2, θ > 1.

Using the weight function wi(xi) = xi, we have that f ∗wi (xi|tj) is decreasing in xi.

Therefore,

K∗Xi,Xw
i

(t1, t2) = log
( ti
αi + θ log tj − 1

)
+ 1 ≥ log

( ti
αi + θ log tj − 1

)
,

= log

[
1

h∗Xw
i |Xw

j
(ti|tj)

]
. �

Theorem 5.7.3. For i, j = 1, 2, i 6= j, if wi is increasing, then

K∗Xi,Xw
i

(t1, t2) ≤ I∗Xi(t1, t2) + log

[
E(wi(Xi)|Xi > ti, Xj > tj)

wi(ti)

]
,

where I∗Xi(t1, t2) = −
∫∞
ti

f∗i (xi|tj)
F̄ ∗i (ti|tj)

log
f∗i (xi|tj)
F̄ ∗i (ti|tj)

dxi is the residual entropy function of Xi|Xj >

tj.

Proof. The proof is similar to that of Theorem 5.6.3

Example 5.7.2. Consider the sf given in Example 5.7.1. Take the weight function as

wi(xi) = xi which is increasing in xi. Then,

K∗Xi,Xw
i

(t1, t2) = log
( ti
αi + θ log tj − 1

)
+ 1,

= log
( ti
αi + θ log tj

)
+
(αi + θ log tj + 1

αi + θ log tj

)
+ log

( αi + θ log tj
αi + θ log tj − 1

)
−
( 1

αi + θ log tj

)
,

≤ log
( ti
αi + θ log tj

)
+
(αi + θ log tj + 1

αi + θ log tj

)
+ log

( αi + θ log tj
αi + θ log tj − 1

)
,

= I∗Xi(t1, t2) + log

[
E(wi(Xi)|Xi > ti, Xj > tj)

wi(ti)

]
. �
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Theorem 5.7.4. For i, j = 1, 2, i 6= j, if (Xi|Xj > tj) ≤LR (Yi|Yj > tj), then

K∗Xi,Zi(t1, t2) ≥
h∗Xi|Xj(ti|tj)
h∗Yi|Yj(ti|tj)

K∗Yi,Zi(t1, t2).

Proof. The proof is similar to that of Theorem 5.6.4.

Theorem 5.7.5. For i, j = 1, 2, i 6= j, if (Yi|Yj > tj) ≤LR (Zi|Zj > tj), then

K∗Xi,Yi(t1, t2) ≥ K∗Xi,Zi(t1, t2) + log

[
h∗Zi|Zj(t1|t2)

h∗Yi|Yj(t1|t2)

]
.

Proof. The proof is similar to that of Theorem 5.6.5.

Example 5.7.3. Let (X1, X2), (Y1, Y2) and (Z1, Z2) be 3 bivariate Pareto rvs with re-

spective sfs given by F̄ (x1, x2) = (1 + a1x1 + a2x2)−c1 ; x1, x2 > 0, a1, a2, c1 > 0;

Ḡ(x1, x2) = (1 + a1x1 + a2x2)−c2 ; x1, x2 > 0, a1, a2, c2 > 0; and Q̄(x1, x2) = (1 +

a1x1 + a2x2)−c3 ; x1, x2 > 0, a1, a2, c3 > 0 such that c1 > c2 > c3. So

g∗i (xi|tj)
q∗i (xi|tj)

=
c2

c3

(1 + aixi + ajtj)
−(c2−c3)

(1 + ajtj)−(c2−c3)

is decreasing in xi, ∀tj. Therefore,

K∗Xi,Yi(t1, t2) = log
(1 + a1t1 + a2t2

c2ai

)
+
(c2 + 1

c1

)
,

= log
(1 + a1t1 + a2t2

c3ai

)
+
(c3 + 1

c1

)
+ log

(c3

c2

)
+
c2 − c3

c1

,

≥ log
(1 + a1t1 + a2t2

c3ai

)
+
(c3 + 1

c1

)
+ log

(c3

c2

)
,

= log
h∗Zi|Zj(ti|tj)
h∗Yi|Yj(ti|tj)

+K∗Xi,Zi(t1, t2). �



Chapter 6

Some properties of residual R-norm

entropy and divergence measures

6.1 Introduction

Several generalizations of the classical Shannon’s entropy are available in literature, by

introducing some additional parameters which make these entropies sensitive to different

shapes of probability distributions (see, for example, Renyi (1961), Kapur (1967) and

Tsallis (1988)). All these entropies, when the additional parameters tend to one, reduce

to the classical Shannon’s entropy (1.4). Another important generalization of Shannon’s

information is due to Boekee and Lubbe (1980), called as R-norm entropy, which is

initially defined in the discrete case. One can also refer to Kumar and Choudhary

(2011). A continuous version of R-norm entropy is available in Nanda and Das (2006),

given by

HX(R) =
R

R− 1

[
1−

(∫ ∞
0

fR(x)dx

)1/R
]
, (6.1)

which is a real-valued function, for R 6= 1, R ∈ (0,∞). When R → 1 (6.1) reduces to

(1.4). Using similar argument in (1.5), the residual R-norm entropy for an item survived

151
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for t units of time is given by (Nanda and Das (2006))

HX(R; t) =
R

R− 1

1−

(∫ ∞
t

(
f(x)

F̄ (t)

)R
dx

)1/R
 , (6.2)

for R 6= 1, R ∈ (0,∞). Note that, as R → 1, (6.2) approaches (1.5). Different

generalizations of R-norm entropy could be found in Hooda and Ram (1998), Hooda

(2001) Kumar (2009), Choudhary and Kumar (2011).

There are different generalizations on Kullback-Leibler divergence. In preceding chapters

we came across Renyi’s divergence measure, a well known generalization of Kullback-

Leibler divergence measure. Another generalization of Kullback-Leibler divergence is

due to Nanda and Das (2006), based on the R-norm entropy, and its residual form.

This residual R-norm divergence measure for two absolutely continuous rvs X and Y

with common support S = (l,∞) for l ≥ 0 is given by

HX,Y (R; t) =
R

R− 1

(∫ ∞
t

f(x)

F̄ (t)

(
f(x)/F̄ (t)

g(x)/Ḡ(t)

)R−1

dx

) 1
R

− 1

 . (6.3)

For properties of the residual R-norm entropy (6.2) and its divergence measure (6.3),

we refer to Nanda and Das (2006).

In this chapter, we further study R-norm entropy and divergence in the context of

weighted models and study its properties using some stochastic orderings. We also ex-

tend these measures to the doubly truncated rvs, conditionally specified models and

conditional survival models and prove results that characterize some well known bivari-

ate lifetime models.
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6.2 Weighted residual R-norm entropy and diver-

gence

Using (6.2), the residual R-norm entropy for weighted rv Xw is given by

HXw(R, t) =
R

R− 1

1−

(∫ ∞
t

(
fw(x)

F̄w(t)

)R
dx

) 1
R

 . (6.4)

The corresponding weighted residual R-norm divergence measure based on (6.2) is of

the form

HX,Xw(R, t) =
R

R− 1

(∫ ∞
t

f(x)

F̄ (t)

(
f(x)/F̄ (t)

fw(x)/F̄w(t)

)R−1

dx

) 1
R

− 1

 . (6.5)

In the following theorem we obtain a bound that connects HXw(R; t) and HX(R; t)

Theorem 6.2.1. If w(x) is increasing in x, then for R 6= 1

[
1−

(
R− 1

R

)
HXw(R; t)

]
≥ hXw(t)

hX(t)

(
1−

(
R− 1

R

)
HX(R; t)

)
,

where hX(t) and hXw(t) denote the failure (hazard) rate functions of X and Xw respec-

tively.

Proof. Since w(x) is increasing in x, we have w(x) ≥ w(t) ∀x > t. Therefore

[
1−

(
R− 1

R

)
HXw(R; t)

]
=

(∫ ∞
t

(
fw(x)

F̄w(t)

)R
dx

) 1
R

,

=

(∫ ∞
t

(
w(x)f(x)

[E(w(X)|X > t)]F̄ (t)

)R
dx

) 1
R

,

≥ w(t)

[E(w(X)|X > t)]

(∫ ∞
t

(
f(x)

F̄ (t)

)R
dx

) 1
R

,
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=
hXw(t)

hX(t)

[
1−

(
R− 1

R

)
HX(R; t)

]
.

Example 6.2.1. Consider Pareto I distribution with pdf given by f(x) = ckcx−c−1,

x > k, k > 0, c > 1. Using the weight function w(x) = x which is increasing we get

[
1−

(
R− 1

R

)
HXw(R; t)

]
=

(c− 1)

tR−1(cR− 1)
,

=

(
c− 1

c

)(
cR +R− 1

cR− 1

)(
c

tR−1(cR +R− 1)

)
,

=

(
cR +R− 1

cR− 1

)(
hXw(t)

hX(t)

)[
1−

(
R− 1

R

)
HX(R; t)

]
,

≥ hXw(t)

hX(t)

[
1−

(
R− 1

R

)
HX(R; t)

]
. �

We now obtain a bound for the residual R-norm divergence using likelihood ratio (LR)

ordering.

Theorem 6.2.2. If X ≤LR Y , then for R > 1 (0 < R < 1)

1 +

(
R− 1

R

)
HX,Y (R; t) ≤ (≥)

(
hX(t)

hY (t)

)R−1
R

.

Proof. Since X ≤LR Y , f(x)
g(x)

is decreasing in x. Therefore f(x)
g(x)
≤ f(t)

g(t)
for every x > t.

For R > 1,

1 +

(
R− 1

R

)
HX,Y (R; t) =

(∫ ∞
t

f(x)

F̄ (t)

(
f(x)/F̄ (t)

g(x)/Ḡ(t)

)R−1

dx

) 1
R

,

≤

(∫ ∞
t

f(x)

F̄ (t)

(
hX(t)

hY (t)

)R−1

dx

) 1
R

,

proves the result. The case for 0 < R < 1 is similar.
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Corollory 6.2.1. If X ≤LR Xw, then for R > 1 (0 < R < 1)

(
1 +

(
R− 1

R

)
HX,Xw(R; t)

)
≤ (≥)

(
hX(t)

hXw(t)

)R−1
R

.

Remark 6.2.1. Corollary 6.2.1 can be easily illustrated using Example 6.2.1.

The following theorem provides bounds for HX,Y (R; t) in terms of the hazard function

of Y and HX(R; t).

Theorem 6.2.3. If g(x) is decreasing in x, then for R > 1 (0 < R < 1)

[
1 +

(
R− 1

R

)
HX,Y (R; t)

]
≥ (≤)

[
1

hY (t)

]R−1
R
[
1−

(
R− 1

R

)
HX(R; t)

]
.

Proof. Since g(x) is decreasing in x, g(x) ≤ g(t) ∀x > t. For R > 1, we have

[
1 +

(
R− 1

R

)
HX,Y (R; t)

]
=

(∫ ∞
t

f(x)

F̄ (t)

(
f(x)/F̄ (t)

g(x)/Ḡ(t)

)R−1

dx

) 1
R

,

≥
[

1

hY (t)

]R−1
R
(∫ ∞

t

fR(x)

F̄R(t)
dx

) 1
R

,

=

[
1

hY (t)

]R−1
R
[
1−

(
R− 1

R

)
HX(R; t)

]
.

For 0 < R < 1, the inequality is reversed.

Corollory 6.2.2. If fw(x) is decreasing in x, then for R > 1 (0 < R < 1)

[
1 +

(
R− 1

R

)
HX,Xw(R; t)

]
≥ (≤)

[
1

hXw(t)

]R−1
R
[
1−

(
R− 1

R

)
HX(R; t)

]
.

Example 6.2.2. Consider an exponential rv with pdf f(x) = λe−λx, x > 0, λ > 0. Take

the weight function as w(x) = e−ax, a > 0. Then fw(x) = (λ + a)e−(λ+a)x, λ, a > 0,
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x > 0 is decreasing in x. Then R > 1, we get

[
1+

(
R− 1

R

)
HX,Xw(R; t)

]
=

λ

(λ− a(R− 1))
1
R (λ+ a)

R−1
R

,

=
λ
R−1
R

R
1
R (λ+ a)

R−1
R

(
λR

λ− a(R− 1)

) 1
R

,

=

(
λR

λ− a(R− 1)

) 1
R
(

1

hXw(t)

)R−1
R
[
1−

(
R− 1

R

)
HX(R; t)

]
,

≥
(

1

hXw(t)

)R−1
R
[
1−

(
R− 1

R

)
HX(R; t)

]
. �

In certain reliability studies, often one has information about the lifetime only between

two time points. That is, individuals whose event time lies within a certain time in-

terval are only observed. Based on this idea, Kotlarski (1972) studied the conditional

expectation for the doubly (interval) truncated rvs. Later, Navarro and Ruiz (1996)

generalized the failure rate and the conditional expectation to the doubly truncated

rvs. It is shown that generalized failure rate (GFR) and the conditional expectation

for doubly truncated rvs determine the distribution uniquely. More properties of GFR

and conditional expectation in the context of characterization problems are available in

Ruiz and Navarro (1996), Navarro and Ruiz (2004) and Sunoj et al. (2009) and the

references therein. Motivated by this idea, we extend the definition of R-norm entropy

to the double truncated rvs and study certain properties. A straightforward extension

of R-norm entropy to the doubly truncated rvs is given by

HX(R; t1, t2) =
R

R− 1

[
1−

(∫ t2

t1

fR(x)

[F̄ (t1)− F̄ (t2)]R
dx

) 1
R

]
,

HX(R; t1, t2) obtained for different distributions is given in Table 6.1.

The corresponding residual R-norm divergence measure for doubly truncated rvs is of
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Sl. Distributions f(t) HX(R; t1, t2)
No.

1 Uniform 1
a
; R

R−1

[
1− (t2−t1)1/R

(t2−t1)

]
0 < t < a, a > 0

2 Exponential λe−λt; R
R−1

[
1− λ

(e−λt1−e−λt2 )

[
(e−λRt1−e−λRt2 )

λR

] 1
R

]
λ > 0, t > 0

3 Pareto I c
k

(
k
t

)c+1 R
R−1

[
1− ckc

kc(t−c1 −t
−c
2 )

[
t−cR−R+1
1 −t−cR−R+1

2

cR+R−1

] 1
R

]
t > k, c, k > 0

4 Pareto II pq(1 + pt)−q−1; R
R−1

[
1− pq

(1+pt1)−q−(1+pt2)−q

p > 0, q > 0, t > 0
[

(1+pt1)−Rq−R+1−(1+pt2)−Rq−R+1

p(Rq+R−1)

] 1
R
]

5 Beta ab(1− at)b−1; R
R−1

[
1− ab

(1−at1)b−(1−at2)b

a > 0, b > 0, 0 < t < 1
a

[
(1−at1)bR−R+1−(1−at2)bR−R+1

a(bR−R+1)

] 1
R
]

Table 6.1:

the form

HX,Y (R; t1, t2) =
R

R− 1

{∫ t2

t1

f(x)

[F̄ (t1)− F̄ (t2)]

(
f(x)/F̄ (t1)− F̄ (t2)

g(x)/Ḡ(t1)− Ḡ(t2)

)R−1

dx

} 1
R

− 1

 .
If Xw denotes the weighted rv corresponding to X, then the residual R-norm divergence

measure for doubly truncated rvs between X and Xw is given by

HX,Xw(R; t1, t2) =
R

R− 1

{∫ t2

t1

f(x)

[F̄ (t1)− F̄ (t2)]

(
f(x)/F̄ (t1)− F̄ (t2)

fw(x)/F̄w(t1)− F̄w(t2)

)R−1

dx

} 1
R

− 1

 .
In the following theorem we have obtained bounds for

[
1 +

(
R−1
R

)
HX,Y (R; t1, t2)

]
in

terms of the generalised failure rates of X and Y.

Theorem 6.2.4. If X ≤LR Y , then for R > 1 (0 < R < 1)

[
hX2 (t1, t2)

hY2 (t1, t2)

]R−1
R

≤ (≥)

[
1 +

(
R− 1

R

)
HX,Y (R; t1, t2)

]
≤ (≥)

[
hX1 (t1, t2)

hY1 (t1, t2)

]R−1
R

, (6.6)
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where hXi (t1, t2) = f(ti)

F̄ (t1)−F̄ (t2)
, i = 1, 2 and hYi (t1, t2) = g(ti)

Ḡ(t1)−Ḡ(t2)
, i = 1, 2 are the

generalized failure rates (GFRs) of the rvs X and Y respectively.

Proof. Since X ≤LR Y , we have f(x)
g(x)

is decreasing in x. That is,

f(t2)

g(t2)
≤ f(x)

g(x)
≤ f(t1)

g(t1)
, ∀t1 < x < t2.

Then for R > 1 we have

[
1 +

(
R− 1

R

)
HX,Y (R; t1, t2)

]
=

[∫ t2

t1

f(x)

[F̄ (t1)− F̄ (t2)]

(
f(x)/F̄ (t1)− F̄ (t2)

g(x)/Ḡ(t1)− Ḡ(t2)

)R−1

dx

] 1
R

,

≤

[∫ t2

t1

f(x)

[F̄ (t1)− F̄ (t2)]

(
hX1 (t1, t2)

hY1 (t1, t2)

)R−1

dx

] 1
R

,

which proves the upper bound of (6.6). In a similar way, we can obtain the lower bound.

The case for 0 < R < 1 is similar.

Corollory 6.2.3. If w(x) is increasing in x (or X ≤LR X
w) then for R > 1 (0 < R < 1)

[
hX2 (t1, t2)

hX
w

2 (t1, t2)

]R−1
R

≤ (≥)

[
1 +

(
R− 1

R

)
HX,Xw(R; t1, t2)

]
≤ (≥)

[
hX1 (t1, t2)

hX
w

1 (t1, t2)

]R−1
R

.

Theorem 6.2.5. If g(x) is decreasing in x, then for R > 1 (0 < R < 1)

[
1

hY1 (t1, t2)

]R−1
R
[
1−

(
R− 1

R

)
HX(R; t1, t2)

]
≤ (≥)

[
1 +

(
R− 1

R

)
HX,Y (R; t1, t2)

]
,

≤ (≥)

[
1

hY2 (t1, t2)

]R−1
R
[
1−

(
R− 1

R

)
HX(R; t1, t2)

]
. (6.7)

Proof. If g(x) is decreasing in x, we have g(t1) ≥ g(x) ≥ g(t2), ∀t1 < x < t2. For R > 1,

[
1 +

(
R− 1

R

)
HX,Y (R; t1, t2)

]
=

[∫ t2

t1

f(x)

[F̄ (t1)− F̄ (t2)]

(
f(x)/F̄ (t1)− F̄ (t2)

g(x)/Ḡ(t1)− Ḡ(t2)

)R−1

dx

] 1
R

,
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≥

[∫ t2

t1

f(x)

[F̄ (t1)− F̄ (t2)]

(
f(x)/F̄ (t1)− F̄ (t2)

g(t1)/Ḡ(t1)− Ḡ(t2)

)R−1

dx

] 1
R

,

=

[∫ t2

t1

(
f(x)

[F̄ (t1)− F̄ (t2)]

)R(
1

hY1 (t1, t2)

)R−1

dx

] 1
R

.

proves the lower bound for (6.7). The upper bound for the same is similarly obtained.

The case for 0 < R < 1 is similar.

6.3 Residual R-norm entropy and divergence for con-

ditionally specified models

In this section we study the residual R-norm entropy measure (6.2) and divergence

measure (6.3) based on it for conditionally specified models. Let (X1, X2) and (Y1, Y2) be

two bivariate random vectors with respect to Lesbegue measure in the positive quadrant

R+
2 = {(t1, t2)|ti > 0, i = 1, 2} of the two dimensional Euclidean space R2. The joint pdf

and sf of (X1, X2) are denoted by f and F̄ and that of (Y1, Y2) by g and Ḡ, respectively.

Consider the conditionally specified rvs (Xi|Xj = tj) and (Yi|Yj = tj) for i, j = 1, 2,

i 6= j. Their pdfs, sfs and hazard rates are denoted by fi(ti|tj), gi(ti|tj), F̄i(ti|tj),

Ḡi(ti|tj), hXi|Xj(ti|tj), hYi|Yj(ti|tj) respectively for i, j = 1, 2, i 6= j. Using (6.2), the

residual R-norm entropy for conditionally specified rv (Xi|Xj = tj) is defined by

HXi(R; t1, t2) =
R

R− 1

1−

(∫ ∞
ti

(
fi(xi|tj)
F̄i(ti|tj)

)R
dxi

) 1
R

 . (6.8)

Note that HXi(R; t1, t2) = H(Xi|Xj=tj)(R; ti). Now we have a characterization theorem

that establishes a relationship between HXi(R; t1, t2) and hXi|Xj(ti|tj).
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Theorem 6.3.1. For the random vector (X1, X2), the relationship

HXi(R; t1, t2) =
R

R− 1

[
1− (C(hXi|Xj(ti|tj))R−1)

1
R

]
, (6.9)

where C is a constant independent of t1 and t2 holds if and only if it is distributed as

(a) Bivariate distribution with Pareto conditional given in Arnold (1987) with pdf

f(x1, x2) = c1(1 + a1x1 + a2x2 + bx1x2)−c, a1, a2 > 0, b ≥ 0, c > 2, c1 > 0, the

normalizing constant; x1, x2 > 0,

or

(b) Bivariate distribution with exponential conditionals of Arnold and Strauss (1988)

with pdf

f(x1, x2) = c2e
−α1x1−α2x2−βx1x2 , α1, α2 > 0, β ≥ 0, c2 > 0, the normalizing

constant; x1, x2 > 0,

or

(c) Bivariate distribution with beta conditionals with pdf

f(x1, x2) = c3(1−p1x1−p2x2 +qx1x2)d, p1, p2, d > 0, q ≥ 0, c3 > 0, the normalizing

constant; 0 < x1 <
1

p1

, 0 < x2 <
1− p1x1

p2 − qx1

,

according as C
<
=
>

1
R

for R > 1 and C
>
=
<

1
R

for 0 < R < 1.

Proof. The first part is straightforward. To prove the converse, we assume that (6.9)
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holds and assume that R > 1.

Then,

∫ ∞
ti

(
fi(xi|tj)
F̄i(ti|tj)

)R
dxi = C(hXi|Xj(ti|tj))R−1,∫ ∞

ti

(fi(xi|tj))Rdxi = C(hXi|Xj(ti|tj))R−1(F̄i(ti|tj))R. (6.10)

Differentiating (6.10) with respect to ti, we get

− (fi(ti|tj))R = C(R− 1)(hXi|Xj(ti|tj))R−2 ∂

∂ti
hXi|Xj(ti|tj)(F̄i(ti|tj))R

− CR(hXi|Xj(ti|tj))R−1(F̄i(ti|tj))R−1fi(ti|tj). (6.11)

Dividing (6.11) by (F̄i(ti|tj))R(hXi|Xj(ti|tj))R, we get

−1 =
C(R− 1)

(hXi|Xj(ti|tj))2

∂

∂ti
hXi|Xj(ti|tj)− CR

or

CR− 1

C(R− 1)
= − ∂

∂ti

(
1

hXi|Xj(ti|tj)

)
.

Equivalently,

CR− 1

C(1−R)
=

∂

∂ti

(
1

hXi|Xj(ti|tj)

)
. (6.12)

Integrating (6.12) with respect to ti, we obtain

(
1

hXi|Xj(ti|tj)

)
=

CR− 1

C(1−R)
ti +Bi(tj) = Ati +Bi(tj). (6.13)

where A = CR−1
C(1−R)

. Equation (6.13) is equivalent to

hXi|Xj(ti|tj) =
1

Ati +Bi(tj)
.



Chapter 6. Some properties of residual R-norm entropy and divergence measures 162

The remaining part of the proof follows directly from Theorem 4.4.2 of Chapter 4.

Similar steps holds for 0 < R < 1.

Now we consider some results on bivariate weighted distribution when the status of one

component is known in advance, more discussion on which is available in Section 5.2 of

Chapter 5.

Theorem 6.3.2. If wi(xi) is decreasing in xi for i = 1, 2, then for R 6= 1

[
1−

(
R− 1

R

)
HXw

i
(R; t1, t2)

]
≤
hXw

i |Xw
j

(ti|tj)
hXi|Xj(ti|tj)

[
1−

(
R− 1

R

)
HXi(R; t1, t2)

]
.

Proof. By definition, we have

[
1−

(
R− 1

R

)
HXw

i
(R; t1, t2)

]
=

(∫ ∞
ti

(fwi (xi|tj))R

(F̄w
i (ti|tj))R

dxi

) 1
R

,

=

(∫ ∞
ti

(wi(xi)fi(xi|tj))R

(E(wi(Xi)|Xi > ti, Xj = tj)F̄i(ti|tj))R
dxi

) 1
R

,

≤ wi(ti)

E(wi(Xi)|Xi > ti, Xj = tj)

(∫ ∞
ti

(fi(xi|tj))R

(F̄i(ti|tj))R
dxi

) 1
R

,

=
hXw

i |Xw
j

(ti|tj)
hXi|Xj(ti|tj)

[
1−

(
R− 1

R

)
HXi(R; t1, t2)

]
.

Example 6.3.1. Suppose (X1, X2) follows Arnold and Strauss bivariate exponential

distribution with joint pdf f(t1, t2) = Ke−λ1t1−λ2t2−θt1t2, t1, t2 > 0, K,λ1, λ2 > 0, θ ≥ 0,

Taking the weight wi(xi) = 1
xi

, a decreasing function, we obtain

[
1−

(
R− 1

R

)
HXw

i
(R; t1, t2)

]
=

(λi + θtj + 1)

[R(λi + θtj + 1)]
1
R

,

=

(
λi + θtj + 1

λi + θtj

)
(λi + θtj)

[R(λi + θtj)]
1
R

(
λi + θtj

λi + θtj + 1

) 1
R

,

=
hXw

i |Xw
j

(ti|tj)
hXi|Xj(ti|tj)

[
1−

(
R− 1

R

)
HXi(R; t1, t2)

](
λi + θtj

λi + θtj + 1

) 1
R

,
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≤
hXw

i |Xw
j

(ti|tj)
hXi|Xj(ti|tj)

[
1−

(
R− 1

R

)
HXi(R; t1, t2)

]
. �

We now define the conditional residual R-norm divergence between the rvs (Xi|Xj = tj)

and (Yi|Yj = tj) as

HXi,Yi(R; t1, t2) =
R

R− 1

{∫ ∞
ti

fi(xi|tj)
F̄i(ti|tj)

(
fi(xi|tj)/F̄i(ti|tj)
gi(xi|tj)/Ḡi(ti|tj)

)R−1

dxi

} 1
R

− 1

 ,
(6.14)

where HXi,Yi(R; t1, t2) = H(Xi|Xj=tj),(Yi|Yj=tj)(R; ti). Hence (6.14) provides dynamic in-

formation on the distance between the conditionally specified rvs (Xi|Xj = tj) and

(Yi|Yj = tj).

Now we study what is the impact on HXi,Yi(R; t1, t2) when (Xi|Xj = tj) and (Yi|Yj = tj)

satisfy PHR models. Nanda and Das (2006) obtained the following result for univariate

rvs.

Theorem 6.3.3. (Nanda and Das(2006)) HR(X, Y ; t)is independent of t if and only if

F and G satisfy the PHR model.

Then we have the following result.

Theorem 6.3.4. For i, j = 1, 2, i 6= j, the function HXi,Yi(R; t1, t2) depends only on tj

if and only if (Yi|Yj = tj) and (Xi|Xj = tj) satisfy the CPHR model (5.2).

Proof. The proof is obtained from Theorem 6.3.3 using (5.2) and the fact that

HXi,Yi(R; t1, t2) = H(Xi|Xj=tj),(Yi|Yj=tj)(R; ti).

Theorem 6.3.5. Let (Xw
1 , X

w
2 ) be a random vector having bivariate weighted distri-

bution associated to (X1, X2) and to non-negative differentiable functions w1 and w2.
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Assume that the support of (X1, X2) is S = (l,∞)× (l,∞) for l ≥ 0. Then the following

conditions are equivalent.

(a) (Xw
1 , X

w
2 ) and (X1, X2) satisfy the CPHR model (5.2)

(b) HXi,Xw
i

(R; t1, t2) is independent of ti for i = 1, 2 and (θi(tj)− 1)(1−R) + 1 > 0

(c) The conditional reliability functions of (X1, X2) satisfy

log F̄i(ti|tj) =
log[wi(ti)/wi(l)]

θi(tj)− 1
.

d) (X1, X2) has the following joint pdf

f(x1, x2) = ca1a2
w′1(x1)w′2(x2)

wa1+1
1 (x1)wa2+1

2 (x2)
exp

(
−φa1a2 log

[
w1(x1)

w1(l)

]
log

[
w2(x2)

w2(l)

])
,

for x1, x2 ≥ l where c > 0, φ ≥ 0 and ai > 1 or ai < 0 for i = 1, 2.

Proof. The equivalence between (a) and (b) is a consequence of Theorem 6.3.2. The rest

of the proof is similar to Theorem 5.2.3 of Chapter 5.

In the following theorem, a bound for conditional residual R-norm divergence is obtained

using the LR ordering.

Theorem 6.3.6. If (Xi|Xj = tj) ≤LR (Yi|Yj = tj) for i, j = 1, 2, i 6= j, then for R > 1

(0 < R < 1)

[
1 +

(
R− 1

R

)
HXi,Yi(R; t1, t2)

]
≤ (≥)

(
hXi|Xj(ti|tj)
hYi|Yj(ti|tj)

)R−1
R

.

Proof. (Xi|Xj = tj) ≤LR (Yi|Yj = tj) implies that
fi(xi|tj)
gi(xi|tj) is decreasing in xi.

i .e.,
fi(xi|tj)
gi(xi|tj)

≤ fi(ti|tj)
gi(ti|tj)

, ∀xi > tj.
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Now using (6.18) and for R > 1 we obtain

[
1 +

(
R− 1

R

)
HXi,Yi(R; t1, t2)

]
=

(∫ ∞
ti

fi(xi|tj)
F̄i(ti|tj)

(
fi(xi|tj)/F̄i(ti|tj)
gi(xi|tj)/Ḡi(ti|tj)

)R−1

dxi

) 1
R

,

≤
(
hXi|Xj(ti|tj)
hYi|Yj(ti|tj)

)R−1
R
(∫ ∞

ti

fi(xi|tj)
F̄i(ti|tj)

dxi

) 1
R

,

=

(
hXi|Xj(ti|tj)
hYi|Yj(ti|tj)

)R−1
R

.

The case for 0 < R < 1 is similar.

Corollory 6.3.1. If (Xi|Xj = tj) ≤LR (Xw
i |Xw

j = tj) for i, j = 1, 2, i 6= j, then for

R > 1 (0 < R < 1)

[
1 +

(
R− 1

R

)
HXi,Xw

i
(R; t1, t2)

]
≤ (≥)

(
hXi|Xj(ti|tj)
hXw

i |Xw
j

(ti|tj)

)R−1
R

.

6.4 Residual R-norm entropy and divergence for con-

ditional survival models

In this section, we consider the conditional survival rvs (Xi|Xj > tj) and (Yi|Yj > tj);

i, j = 1, 2, i 6= j. Their pdf, sf and hazard rates are denoted by f ∗i (ti|tj), g∗i (ti|tj),

F̄ ∗i (ti|tj), Ḡ∗i (ti|tj), h∗Xi|Xj(ti|tj), h
∗
Yi|Yj(ti|tj) respectively for i, j = 1, 2, i 6= j. Using

(6.2), the conditional survival residual R-norm entropy for (Xi|Xj > tj) is defined as

H∗Xi(R; t1, t2) =
R

R− 1

[
1−

(∫ ∞
ti

(f ∗i (xi|tj))R

(F̄ ∗i (ti|tj))R
dxi

) 1
R

]
. (6.15)

Now we have the following characterization theorem.
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Theorem 6.4.1. For the random vector (X1, X2) the relationship

H∗Xi(R; t1, t2) =
R

R− 1

(
1−

(
K(h∗Xi|Xj(ti|tj))

R−1
) 1
R

)
, (6.16)

where K is a constant independent of t1 and t2 holds if and if it is distributed as

(a) Bivariate Pareto with sf

F̄ (x1, x2) = (1 + a1x1 + a2x2 + bx1x2)−c, a1, a2, c > 0, b ≥ 0 ;x1, x2 > 0, (6.17)

or

(b) Gumbel’s bivariate exponential with sf

F̄ (x1, x2) = exp(−α1x1 − α2x2 − βx1x2), α1, α2 > 0, β ≥ 0;x1, x2 > 0, (6.18)

or

(c) Bivariate beta with sf

F̄ (x1, x2) = (1− p1x1 − p2x2 + qx1x2)d, p1, p2, d > 0, q ≥ 0

0 < x1 <
1

p1

, 0 < x2 <
1− p1x1

p2 − qx1

, (6.19)

according as K
<
=
>

1
R

for R > 1 and K
>
=
<

1
R

for 0 < R < 1.

Proof. The proof for the first part of the theorem is direct. To prove the converse part,

assume that (6.16) holds. For R > 1, equation (6.16) is equivalent to

∫ ∞
ti

(f ∗i (xi|tj))R

(F̄ ∗i (ti|tj))R
dxi = K(h∗Xi|Xj(ti|tj))

R−1,∫ ∞
ti

(f ∗i (xi|tj))Rdxi = K(h∗Xi|Xj(ti|tj))
R−1(F̄ ∗i (ti|tj))R. (6.20)



Chapter 6. Some properties of residual R-norm entropy and divergence measures 167

Differentiating (6.20) with respect to ti, we get

− (f ∗i (ti|tj))R = K(R− 1)(h∗Xi|Xj(ti|tj))
R−2 ∂

∂ti
h∗Xi|Xj(ti|tj)(F̄

∗
i (ti|tj))R

−KR(h∗Xi|Xj(ti|tj))
R−1(F̄ ∗i (ti|tj))R−1f ∗i (ti|tj),

− (f ∗i (ti|tj))R = K(R− 1)(h∗Xi|Xj(ti|tj))
R−2 ∂

∂ti
h∗Xi|Xj(ti|tj)(F̄

∗
i (ti|tj))R

−KR(h∗Xi|Xj(ti|tj))
R(F̄ ∗i (ti|tj))R. (6.21)

Dividing (6.21) by (F̄ ∗i (ti|tj))R(h∗Xi|Xj(ti|tj))
R, yield

K(R− 1)

∂
∂ti

(h∗Xi|Xj(ti|tj))
(h∗Xi|Xj(ti|tj))

2
= KR− 1,

K(1−R)
∂

∂ti

(
1

h∗Xi|Xj(ti|tj)

)
= KR− 1. (6.22)

Integrating (6.22) with respect to ti, we obtain

1

(h∗Xi|Xj(ti|tj))
=

KR− 1

K(1−R)
ti +Bi(tj) = Ati +Bi(tj),

where A = KR−1
K(1−R)

. Thus, h∗Xi|Xj(ti|tj) = 1
Ati+Bi(tj)

. Now using the result of Roy (1989),

the models (6.17), (6.18) and (6.19) follow. The case for 0 < R < 1 can be similarly

obtained.

The following theorems give the bounds for conditional residual R-norm entropy.
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Theorem 6.4.2. If wi(xi) is decreasing in xi for i = 1, 2, then for R 6= 1

[
1−

(
R− 1

R

)
H∗Xw

i
(R; t1, t2)

]
≤
h∗Xw

i |Xw
j

(ti|tj)
h∗Xi|Xj(ti|tj)

[
1−

(
R− 1

R

)
H∗Xi(R; t1, t2)

]
.

Proof. The proof is similar to that of Theorem 6.3.2.

Example 6.4.1. Suppose (X1, X2) follows bivariate Pareto I distribution with joint sf

F̄ (x1, x2) = x−α1
1 x−α2

2 x−θ log x2
1 ; x1, x2 > 1, α1, α2, θ > 0.

Taking the weight wi(xi) = 1
xi

, a decreasing function, we obtain

[
1−

(
R− 1

R

)
H∗Xw

i
(R; t1, t2)

]
= (αi + θ log tj + 1)

[
t−R+1
i

αiR + θR log tj + 2R− 1

] 1
R

,

=

(
αi + θ log tj + 1

αi + θ log tj

)[
(αi + θ log tj)

(
t−R+1
i

αiR + θR log tj +R− 1

) 1
R

]
(
αiR + θR log tj +R− 1

αiR + θR log tj + 2R− 1

) 1
R

,

=
h∗Xw

i |Xw
j

(ti|tj)
h∗Xi|Xj(ti|tj)

[
1−

(
R− 1

R

)
H∗Xi(R; t1, t2)

](
αiR + θR log tj +R− 1

αiR + θR log tj + 2R− 1

) 1
R

,

≤
h∗Xw

i |Xw
j

(ti|tj)
h∗Xi|Xj(ti|tj)

[
1−

(
R− 1

R

)
H∗Xi(R; t1, t2)

]
. �

We now define the conditional survival residual R-norm divergence between the rvs

(Xi|Xj > tj) and (Yi|Yj > tj) as

H∗Xi,Yi(R; t1, t2) =
R

R− 1

{∫ ∞
ti

f ∗i (xi|tj)
F̄ ∗i (ti|tj)

(
f ∗i (xi|tj)/F̄ ∗i (ti|tj)
g∗i (xi|tj)/Ḡ∗i (ti|tj)

)R−1

dxi

} 1
R

− 1

 .
It is to be noted that H∗Xi,Yi(R; t1, t2) = H(Xi|Xj>tj),(Yi|Yj>tj)(R; ti). Hence H∗Xi,Yi(R; t1, t2)

provides dynamic information on the distance between the conditional survival rvs
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(Xi|Xj > tj) and (Yi|Yj > tj). Now we have the following characterization theorem

using conditional proportional hazards model (5.5).

Theorem 6.4.3. For i, j = 1, 2, i 6= j, H∗Xi,Yi(R; t1, t2) depends only on tj if and only

if (Xi|Xj > tj) and (Yi|Yj > tj) satisfy conditional proportional hazards model (5.5).

Proof. The proof is obtained from Theorem 6.3.3 using (5.5) and the fact that

H∗Xi,Yi(R; t1, t2) = H(Xi|Xj>tj),(Yi|Yj>tj)(R; ti).

Corollory 6.4.1. For i, j = 1, 2, i 6= j, H∗Xi,Xw
i

(R; t1, t2) depends only on tj if and only

if Xi|Xj > tj and Xw
i |Xw

j > tj satisfy conditional proportional hazards model (5.5).

Corollory 6.4.2. For i, j = 1, 2, i 6= j, H∗Xi,Xw
i

(R; t1, t2) depends only on tj if and only

if wi(ti) = [F̄ ∗i (ti|tj)]θi(tj)−1 where θi(tj) is a function of tj only.

Proof. Using Theorem 5.3.1 and Corollary 6.4.1, Corollary 6.4.2 can be proved.

The following theorems provide bounds for conditional survival residual R-norm diver-

gence.

Theorem 6.4.4. If (Xi|Xj > tj) ≤LR (Yi|Yj > tj) for i, j = 1, 2, i 6= j, then for R > 1

(0 < R < 1)

[
1 +

(
R− 1

R

)
H∗Xi,Yi(R; t1, t2)

]
≤ (≥)

(
h∗Xi|Xj(ti|tj)
h∗Yi|Yj(ti|tj)

)R−1
R

.

Proof. The proof is similar to that of Theorem 6.3.6.

Corollory 6.4.3. If (Xi|Xj > tj) ≤LR (Xw
i |Xw

j > tj) for i, j = 1, 2, i 6= j, then for

R > 1 (0 < R < 1)

[
1 +

(
R− 1

R

)
H∗Xi,Xw

i
(R; t1, t2)

]
≤ (≥)

(
h∗Xi|Xj(ti|tj)
h∗Xw

i |Xw
j

(ti|tj)

)R−1
R

.
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6.5 Future Study

In the present study we have considered three types of uncertainty measures viz. Shan-

non’s entropy, Renyi’s entropy and R-norm entropy. These measures came under a

family of uncertainty measures namely φ entropy introduced by Burbea and Rao (1982)

which is given by

Hφ(X) = Hφ(Pθ) =

∫
X

φ(fθ(x))dµ(x),

where Pθ is the probability distribution of the rv X, φ : (0,∞) → R is a continuous

concave function and φ(0) = lim
t↓0

φ(t) ∈ (−∞,∞). Shannon entropy and Renyi’s entropy

can be viewed as special cases of φ entropy with φ(x) = −x log x and φ(x) = xα

respectively. Studies similar to that considered in the present work can be taken up for

φ entropies also. Similarly one can come across φ divergence measures defined by

Dφ(Pθ1 , Pθ2) =

∫
X

fθ2(x)φ

(
fθ1(x)

fθ2(x)

)
dµ(x), φ ∈ Φ∗

where Φ∗ is the class of all convex functions φ(x), x ≥ 0. If φ(x) = x log x − x + 1

the above measure reduces to Kullback-Leibler divergence. Similar works in the present

study can be carried out for φ divergence measures also.
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