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PREFACE

Bejoy Varghese

Kochi 22, December 2015

Semiconductor lasers with different types of feedback schemes have been an active re-

search area for many years. Feedback can induce complex phenomena in semiconductor

lasers and their investigations often helped to understand the inner mechanisms of the

laser. The possibility of using high dimensional chaos induced in semiconductor lasers

by delayed feedback, for secure communication systems was a major motivation for in-

tense research in the subject. Recently these systems also served as a testbed for general

investigations on delay dynamical systems. The present study focuses on the aspects of the

dynamical behavior of semiconductor lasers which are induced by delay feedback.

Chapter 1: First chapter introduces the subject of semiconductor lasers with delay feed-

back. The subject combines two well established research fields - theory and modeling of

semiconductor lasers and delay dynamical systems. Necessary aspects of the operational

principles and physics of semiconductor lasers required for the following chapters are dis-

cussed. Interplay of nonlinearities and delay plays a crucial role in producing the complex

dynamics in semiconductor lasers when feedback is applied. Different sources of nonlin-

earities in the laser active medium are briefly described. Delay systems are introduced

with relevant examples. Because of their high dimensionality, delay systems can exhibit

very complex dynamics.Numerical methods used to simulate delay differential equation

are detailed in the following section. These methods are obtained by modifying the Runge-

Kutta methods of different orders which are used to solve ordinary differential equations.

We first give an account of different Runge-Kutta methods and then describe how they can

be modified to properly include the delay variable. We briefly go through some of the excit-
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PREFACE vii

ing and relevant phenomena in the dynamics of semiconductor lasers with delay feedback,

already reported in literature. Their physical significance and possible technological ap-

plications are discussed. Phenomena of Hopf bifurcation is detailed with an example as it

is required to introduce the stability analysis of the delay differential system discussed in

second chapter.

Chapter 2: In the second chapter we do the stability analysis of the delay differential

system that describe the dynamics of a semiconductor laser with optoelectronic feedback.

The general procedure for the stability analysis of delay systems, which is adopted from

literature, is explained before we come to our derivations and results. For delay systems,

the characteristic equation is transcendental and can have many solutions. We find the

nature of the eigen values of the characteristic equation in the feedback strength-delay pa-

rameter space. Curves are obtained in the parameter space where real part of the eigen

value vanishes which correspond to Hopf bifurcations. To get the direction of Hopf bifur-

cation, derivative of the real part of the eigen value with respect to delay are calculated. The

dynamics of the semiconductor laser with optoelectronic feedback is simulated and com-

pared with the analytical results. We compute how the change in nonlinear gain reduction

factor and bias current affect Hopf bifurcations. We also find regions in the parameter space

where fixed point and periodic solutions coexist. These islands are identified by giving two

types of initial conditions, which are implemented by switching on the feedback process at

two points in time - first one at the beginning of operation the of the laser and the second

one after the laser has settled to the fixed point.

Chapter 3: In this chapter we analyze the chaotic output of a Quantum Dot Laser with

optical feedback using statistical and information theoretical tools. The delay involved in

feedback process is retrieved using these techniques. The model of the Quantum Dot Laser

and the parameter values are adopted from literature. The output intensity series is ana-

lyzed using Auto Correlation Function, Delayed Mutual Information, Permutation Entropy

and Permutation Statistical Complexity. These quantifiers are defined and explained before

presenting the results. Dynamics of Quantum Dot Laser is simulated for different values of

feedback rates and delays. The quantifiers are calculated from the output intensity time
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series of the laser. We study how these measures behave when feedback rate or delay are

varied. Permutation Entropy and Permutation Statistical Complexity are calculated for dif-

ferent dimensionality of reconstruction of the time series. Indications of delay feedback

mechanism and relaxation oscillations are identified from the plots. We find that Permuta-

tion Statistical Complexity give the most reliable estimation of the delay due to its distinc-

tive maximum near the delay value.

Chapter 4: From a general point of view the problem we pursue in this chapter can be

summarized as follows : How the processes that occur in different time scales and consti-

tute a complex dynamics can be understood, resolved and differentiated from the time se-

ries of an observable of the system. The system under consideration is semiconductor laser

with optical feedback and current modulation, which we simulate using the well known

Lang-Kobayashi model. In addition to the quantifiers used in the previous chapter, we also

compute the spectra of the time series to find the indications of the component processes

in the system dynamics. All the measures are first computed on the time series which is ob-

tained without the bias current modulation. Features are least resolved in Auto Correlation

Function but the spectra and Statistical Complexity give indications of relaxation oscilla-

tion and delay feedback. When the computations are repeated for intensity time series

with bias current modulation, interesting results are observed. In Entropy and Complexity

plots the modulation and the delay feedback are reflected in different ways and are well

resolved even when they occur in similar time scales. The nature of the spectra depend on

many factors like modulation frequency, modulation strength and bias current. All these

measures compared for different operating conditions and we show that to get a clear pic-

ture it is necessary to inspect the features reflected in more than one of these quantifiers.

Chapter 5: This chapter summarize the important findings in the thesis. Also some of

the future work directions are discussed.
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1
INTRODUCTION

The work presented in this thesis brings together two exciting and independently estab-

lished research fields - theory of semiconductor lasers(SCLs) and delay dynamical systems.

Semiconductor lasers occupy a central role in today’s scientific and technological advance-

ments, and they get more than 50% of the total share in the laser market[1, 2]. SCLs meet in-

dustry requirements like compactness, long operational time, wavelength tunability, high

modulation bandwidth etc. better than any other laser system. They have applications

ranging from DVD players to communication systems, optical pumping of other lasers and

material processing etc. which are only a few to mention. Theoretical modeling of semi-

conductor lasers mostly preceded experimental realizations and are very important from a

technological point of view and also due to the underlying physics. Delayed interactions in-

evitably exist in many natural and artificial environments around us as laws of physics pre-

vent information exchange happening at infinite speed. All systems, natural or artificial, ex-

change information with the surroundings in some way or other. In most cases these infor-

mation exchanges can be represented as some form of coupling or feedback mechanism.

To exactly model and predict the phenomena observed in such systems, it is necessary to

take into account the delay involved in the feedback or coupling process. Delay systems
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1.1. SEMICONDUCTOR LASERS 3

are capable of showing very complex behavior. When delayed interactions are incorpo-

rated into SCL dynamics by introducing feedback or coupling with other SCLs, a multitude

of complex dynamical phenomena such as self pulsations[3], chaos[4], hyperchaos[5, 6],

and different types of synchronizations[7, 8] have been observed. Interplay between de-

lay and the nonlinearities present in the laser active medium underlies the complexity of

the dynamics shown by such systems. Many of these observed phenomena had important

technological applications and also they provide new insight into the basic physics of SCLs.

1.1. SEMICONDUCTOR LASERS

The first semiconductor laser was demonstrated by Robert N. Hall and co-workers from

General Electric in 1962[9]. It was a Galium Arsenide (GaAs) semiconductor diode emitting

at 850nm. Their invention soon followed by many other groups demonstrating stimulated

light emission from semiconductor diodes [10, 11]. In the most simple and primitive form

semiconductor laser can be thought of as a forward biased p-n homojunction diode. The

p and n regions are heavily doped and since its a homojunction, both regions are of the

same semiconductor host. When the diode is not biased the n side has the Fermi Level

(EF ) in the conduction band and the p side has EF in the valence band. Carrier recombi-

nation across the junction causes the formation of a thin depletion region in the middle

where no free carriers are present. A built-in potential is formed across this depletion re-

gion and this potential prevents further recombination of carriers across the junction. A

schematic of the unbiased p-n junction is shown in Fig. 1.1. When the diode is forward

biased both the width of the depletion region and the potential barrier reduce, and elec-

trons and holes flow more freely across the junction. As a result, carriers of both type will

concentrate in the depletion region causing population inversion. Recombination of these

carriers result in the emission of photons. Cleaved facets on both sides of the crystal form

the end mirrors required for the laser cavity. The cavities thus formed had typical lengths

about 200-400µm[1]. The p-n homojucntion lasers suffered from two major drawbacks -

(1) it was difficult to produce high carrier densities in the active region which resulted in
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low efficiency for light generation. (2) Loss of light due to imperfect reflection from the end

facets of the diode resulted in poor optical confinement. In short they failed to efficiently

confine the carriers and the field in the active region. As a result threshold current density

(Jth) for room temperature operation of the laser was very high(≥ 5×104 A/cm2). Initially

reliable operation of the homojunction laser diodes, required liquid nitrogen temperatures

and they had to be operated in pulsed mode. Fig 1.1 depict the band structure of a homo-

junction laser with no bias and when voltage is applied.

Room temperature continuous wave operation of SCLs were made possible by the in-

troduction of heterostructures in laser diodes[12–14] in 1970s. This was made possible by

technological advancements in semiconductor growth processes[2, 14]. Threshold current

density and temperature requirements were greatly reduced for such lasers. Heterostruc-

ture is the union of two semiconductor materials having different energy gaps, causing

a discontinuity in the resulting energy band. In Double Heterostructure SCLs (DHSCLs),

it was able to bring down the thickness of the active layer to less than 1µm, which ac-

companied further reduction in threshold current[1]. A commonly used architecture for

DHSCL consist of GaAs and AlxGa1−xAs as shown in Fig. 1.2. Basic structure consists of a

thin layer of GaAs sandwiched between a heavily p doped AlxGa1−xAs and heavily n doped

AlxGa1−xAs layers. The middle GaAs layer has a smaller bandgap compared to the outer

cladding layers. Fig. 1.3 detail the energy band diagram, carrier confinement and optical

confinement in DHSCL at high forward bias. Electrons and holes injected into the active

region under forward bias, cannot easily cross over to the other side due to the potential

barrier from the bandgap difference. Thus there is a substantial build up of carrier pop-

ulation in the active region, which produce the required optical gain for laser operation

1.3b. The active layer with a smaller band gap has a higher refractive index, compared

to the outer layers. This effect the active layer to function as a dielectric waveguide. The

rays traveling nearly parallel to the interface are guided through the active region due to

total internal reflection. Since the cladding layers have a higher bandgap, the fraction of

the guided mode outside the active region in not absorbed in DHSCL. All these features

of DHSCL combined to achieve reliable room temperature laser operation, with required
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(a)
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Figure 1.1: (a)schematic of a forward biased homojunction laser (b)homojunction laser under no bias
(c)homojunction laser under forward bias. Ec ,Ev ,E f ,E f p ,E f n represent conduction band edge, valence band
edge, Fermi level, Fermi level for holes and Fermi level for electrons respectively.

current densities reduced to about 1±0.5×103 A/cm2 at 300K[12, 15].

In a semiconductor material energy levels of individual atoms form into a band struc-

ture. This band structure is characterized by the wave vector of the electrons k. Semicon-

ductor materials can be classified into two groups based on their bandstructure - direct

transition and indirect transition materials. In direct transition semiconductor materials

the minimum energy in the conduction band and the maximum energy in the valence band
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V

Laser Output w

L0

d

n+AlxGa1−x As

p+AlyGa1−y As

Ga As

Figure 1.2: Schematic of a Ga As − AlxGa1−x As double heterojunction semiconductor laser.

occur at the same value of k. If these extrema occur at different values of k, then the ma-

terial is of the indirect transition type. A schematic of these two types of semiconductors

is shown in Fig. 1.4. Since the extrema of the conduction and valence bands does not co-

incide in indirect transition material, to effect a transition between the bands an electron

should emit a phonon to conserve momentum. Thus a two step process is required for this

transition, and this reduces the transition probability in such semiconductors . So they are

not suited for the active media of lasers. On the other hand, direct band gap materials the

transition from conduction to valence band is straight forward. GaN, GaAs and InP are ex-

amples of direct bandgap materials [15]. Also there are complex compound materials such

as AlxGa1−xAs which can be made either type by tailoring composition[15].

Nonradiative processes occurring in SCLs affect device performance by reducing ef-

ficiency and carrier life time [16, 17]. As name suggest, these processes do not include

photon emission so do not contribute to the optical field in the laser cavity. Nonradia-

tive recombination occurring in semiconductor lasers are primarily due to two different

processes[15]. One is due to the presence of recombination sites or defects in the semi-

conductor material and the second one is the Auger recombination. In Auger process the

energy released in electron-hole recombination is transferred to another electron or hole,
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Figure 1.3: (a)Schematic of a DHSCL with an active GaAs layer surrounded by heavily p doped p AlyGa1−y As
layer and heavily n doped AlxGa1−x As layers. (b) Simplified energy band diagram of the laser at high forward
bias. Solid and open circles represent electrons and holes respectively. (c)Refractive index profile (d) Optical
field distribution
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k

C .B.
−−−−−−−

V.B.
++++++

++++++++

hν= Eg

Eg

k

−−−−−−−−−−
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hν= Eg −Ephν= Eg +Ep

++++++
++++++++ V.B.

Eg
(indirect)

Figure 1.4: Electron-hole recombination in (a)direct and (b)indirect band gap semiconductors. C.B. and V.B.
represent the conduction band edge and the valence band edge respectively. ’-’ denotes electron and ’+’
denotes holes. Since phonon is involved to conserve momentum in the band-to-band transition in indirect
bandgap material, the energy of the emitted photon is either smaller or larger than the bandgap energy(Eg ).
The difference will be equal to Ep , the energy of the participating phonon.

then they get excited without moving to another band and subsequently relaxes to the

lower energy state by emitting phonons. Both Auger recombination and recombination

with defects are random events as in spontaneous emission. But no photons are emit-

ted during these processes. So the total recombination rate get contributions from three

processes - recombination with defects, radiative recombination which is also termed as

bimolecular recombination and Auger recombination. The total recombination can be ex-

pressed as

R = Anr n +Br ad n2 +C Aug n3 (1.1)

Anr ,Br ad ,C Aug are respectively the defect and surface recombination coefficient, radia-

tive recombination coefficient and Auger recombination coefficient. n is the carrier den-

sity.

1.1.1. NONLINEARITIES IN SEMICONDUCTOR LASERS

There are different sources of origin for the nonlinearities in semiconductor lasers[15].

Nonlinear amplitude-phase coupling of the electric field is strong in SCLs compared to
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other laser systems [18, 19]. This result from the carrier-induced variation of real and imagi-

nary parts of the semiconductor material’s susceptibility χ(n) =χr (n)+ iχi (n). Amplitude-

phase coupling is described by the linewidth enhancement factor(α). It is defined as the

ratio of the rate of changes in the real and imaginary parts of the susceptibility (χr & χi ),

with respect to the carrier concentration, given as

α= d [χr (n)]/dn

d [χi (n)]/dn
(1.2)

α is a key factor in determining many of the laser’s characteristics like modulation re-

sponse, frequency chirp and optical feedback effects[20]. The first calculation of laser

linewidth (δν) is by Schawlow and Townes, but their formula was valid only below threshold

conditions. This was later modified to account for the stabilization of amplitude fluctua-

tions above threshold and was found to be correct in gas lasers[19, 21]. But for semiconduc-

tor lasers the linewidth is enhanced by a factor 1+α2, due to the strong amplitude-phase

coupling. The formula for linewidth for SCLs is given by [19, 20]

δν= vg
2hνgαmβsp (1+α2)

8πP
(1.3)

Here vg is the group velocity, hν is the lasing energy, g is the modal gain, αm is the

mirror lose, βsp is the spontaneous emission factor and P is the output power of the laser.

α parameter is not constant for a given laser, but depends on factors like carrier density

and the detuning of the laser frequency from the gain maximum[18]. Thermal effects are

another source of nonlinearity in semiconductor lasers. As the temperature increases, the

bandgap energy decreases and the carrier distribution becomes broad. This results in the

reduction in gain and increase in refractive index, close to the wavelength of maximum

gain. Non-equilibrium carrier distribution in the bands such as spectral hole burning and

carrier heating effects also contribute to the nonlinearities. Spectral hole burning is the

slight reduction occurring in gain, around the spectral region of the lasing wavelength.

Stimulated emission depletes carriers in the active region near to the lasing wavelength.

Due to the finite intraband relaxation time of carriers, they are refilled at a lower rate than
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Bulk QW QD

ρ(E)

Ec

E

ρ(E)

Ec

E

ρ(E)

Ec

E

Figure 1.5: Simple picture of density of states ρ(E) for bulk semiconductor materials, Quantum Wells and
Quantum Dots

the depletion process, which make ’holes’ in the spectral gain. Carrier heating result from

stimulated emission and free carrier absorption. Since the active layer gain is sensitive to

carrier temperature, carrier heating reduces gain.

1.1.2. QUANTUM WELL AND QUANTUM DOT LASERS

The use of low dimensional structures like Quantum Wells(QW), Quantum Wires or Quan-

tum Dots(QD) can enhance the performance of lasers in different ways[22]. These en-

hancements include extreme temperature insensitivity, low power consumption, high tem-

perature stability, wavelength tunability, high speed modulation capabilities etc[22, 23]. To

observe the effects of quantum confinement, the carriers need to be restricted to regions

of size comparable to the deBroglie wavelength of carriers. Taking into account the typical

effective mass of electrons and operating temperatures, this length scale turn out to be few

nanometers. In a double heterostructure, if the thickness of the middle layer is made to this

length scale, it acts as a quantum well, and the electrons form standing wave patterns with
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their energy quantized. Developments in epitaxial methods allow controlled fabrication

of QW structures with precision in the atomic scale [22]. Quantum confinement strongly

modifies the density of states (ρ(E)) of the carriers. ρ(E) can be defined as the number of

states per unit volume, per unit energy at any particular energy value E. Change in ρ(E) in

low dimensional structures can improve electronic and optical properties of devices. Con-

finement in one, two and three dimensions result in Quantum Wells, Quantum Wires and

Quantum Dots respectively. ρ(E) for bulk semiconductors, Quantum Wells and Quantum

Dots are given in Fig. 1.5. ρ(E) is continuous for bulk materials, break down into sub bands

in Quantum Wells. As the dimensionality is decreased, compared to the band edge ρ(E)

is reduced at higher energies. Thus the number of available states that the carriers can be

thermally excited is limited and this result in better thermal stability of the laser. Also, in-

crease of ρ(E) at the band edges enhance the differential gain which in turn enhance the

modulation bandwidth. The performance characteristics of Quantum Dot lasers were first

published by Arakawa and Sakaki[23]. They showed that if carriers are confined in three

dimensions in the laser active region, the temperature dependence of threshold current

density is virtually eliminated. In QDs, the sub-band structure give way to discrete states

like in atoms, shown as delta functions in Fig.1.5. The separation between these states

exceed thermal energy, so the electron-phonon interaction is minimal. This brings down

threshold current density (Jth) and improve temperature stability.

1.1.3. MODELING OF SEMICONDUCTOR LASER DYNAMICS

The dynamics of SCL is described by a set of rate equations for the carriers and the field

in the active region. In the simplest case this consists of two equations - one for the total

number of electron-hole pairs and the second equation for the complex amplitude of the

electric filed[24]. But when more advanced structures like quantum wells and quantum

dots are used in the active region this situation can change. For example, for Quantum Dot

Lasers(QDL) separate equations are written for the carriers and the field in the QD and for

the surrounding QW region[25, 26]. Also different rate equations for electrons and holes are

written because the total number of electrons and holes may differ in numbers due to dif-
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ferent depths of conduction and valence bands in the QD and the difference in the effective

mass of electrons and holes [27]. If one consider many bound states in the QD, transitions

between these states still increase the required number of equations. Recent published re-

search works consists of models of QDL with more than two hundred equations[28]. In

spite of all these complications excellent simple models exist which can simulate the es-

sential features of the QDL dynamics effectively[29].

1.2. DELAY DYNAMICAL SYSTEMS

Delay dynamical systems are getting more relevance in recent times, as it is recognized

that accurate description of many physical phenomena require delayed interactions to be

accounted for. One example, frequently quoted is that of El-Nino/Southern Oscillations

(ENSO) phenomenon, which is an irregular cycle of coupled ocean temperature and at-

mospheric pressure oscillations across equatorial pacific[30, 31]. ESNO is an active re-

search topic, as it has effects in global scale. Relatively simple delay differential models

can model these irregular oscillations[32], which otherwise require large scale computing

resources. The most interesting aspect of delay systems is that its state space is infinite

dimensional. To specify the state of a delay system at any instant t0, one needs a space

of continuous functions on the interval [t0 −τ, t0]. Mathematical models describing a de-

lay dynamical system can take several forms depending on the nature of the dynamical

system it describes. All these models include the delay parameter in some specified way,

which bring the dependence of the present rates of change on the past rates and values of

the variables[30]. The models considered in the present work consists of delay differen-

tial equations with single constant delay which belongs to the class of retarded functional

differential equations[30]. An example for such a system can be given as

q0
d x(t )

d t
+q0x(t )+q1x(t −τ) = f (t ) (1.4)

Here q0, q1 and q2 are arbitrary constants and f (t ) is forcing term. Below we discuss

some well known examples of delay systems.
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Figure 1.6: Schematic of Ikeda system - a ring cavity containing a nonlinear dielectric medium. Mi are cavity
mirrors, E I is the incident field and ET is the transmitted field.

1.2.1. IKEDA SYSTEM

The model proposed by Kensuke Ikeda describes the field dynamics in a bistable ring cavity

filled with nonlinear dielectric medium[33]. The schematic of the Ikeda system is shown in

Fig. 1.6. A nonlinear absorbing medium containing two level atoms is placed in the ring

cavity and a constant input intensity is given. For sufficiently large length of the cavity, the

optical system undergoes a time delayed feedback. This can introduce bahaviors others

than steady state output. In the original paper, Ikeda showed that the transmitted intensity

from the cavity will undergo a series of transitions from stationary state to periodic and

nonstationary states as the input intensity is increased. Ikeda derived a set of delay differ-

ential equations to describe the system starting from Maxwell-Bloch equations. They are

given by

E(t ) = A+BE(t − tR )exp
{
i
[
ϕ(t )−ϕ0

]}
(1.5)

γD
−1ϕ̇(t ) =−ϕ(t )+ sg n(n 2) |E(t − t R)| 2 (1.6)

E(t ) is the field at the boundary of the ring cavity where input and feedback lights are

bejoyrosily
Pencil

bejoyrosily
Pencil

bejoyrosily
Pencil
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bejoyrosily
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added up. ϕ(t ) denotes the phase change occur in the electric field when it passes through

the medium. ϕ0 is the linear phase shift across the medium. n2 is the coefficient of the

nonlinear refractive index and sgn function extracts the sign of n2. A is a parameter pro-

portional to the intensity of the incident field and B characterizes the dissipation of the field

in the cavity. tR is the delay which arises as time taken by the light to traverse the length

of the cavity(L). tR = L/c. γD is the Debye relaxation rate. If one assume that dissipation

is strong (small B) and input intensity is high (large A), but A2B fixed, the set of equations

given above reduce to a scalar Delay Differential Equation (DDE)

γD
−1ϕ̇(t ) =−ϕ(t )+ A2 [

1+2cos
(
ϕ(t − tR )−ϕ0

)]
(1.7)

This equation is known as the Ikeda DDE. Many experimental realizations of Ikeda like

systems followed the theoretical work. Bifurcations in optoelectronic bistable systems are

reported in [34, 35]. Similar system was demonstrated by Neyer et. al.[36] based on an

electro-optical Mach-Zehnder modulator. An acousto-optic system which show similar dy-

namics is reported by Vallee and Delisle[37]. In all the cases the dynamics of of the system

is described by an equation similar to 1.7. Anticipating synchronization in coupled Ikeda

systems have been extensively studied and reported in literature[38, 39].

1.2.2. MACKEY-GLASS SYSTEM

This model was proposed by Michael C. Mackey and Leon Glass in 1977 to describe the

blood production in patients with Chronic Granulocytic Leukemia(CGL)[40]. This model

consist of a delay differential equation with single constant delay. In CGL patients circu-

lating granulocyte numbers can show large amplitude oscillations. The period of the oscil-

lations also show significant deviations. Mackey-Glass equation successfully demonstrate

the relation between the time taken for production of the blood cellular components and

the oscillation periods. The model is described by the equation[40]

dP

d t
= β0θ

n

θn +Pτ
n −γP (1.8)
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Here P is the density of the circulating blood cells and β0,θ,n and γ are constants.

1.2.3. KALDOR-KALECKI BUSINESS CYCLE

Formally, business cycles can be defined as type of fluctuations found in aggregate eco-

nomic activity [41]. Kaldor-Kalecki model is a macroeconomic model introduced to de-

scribe these business cycles. The Kaldor-Kalecki system of differential equations can be

written as[41]

Ẏ (t ) =α [I (Y (t ),K (t ))−S(Y (t ),K (t )))] (1.9)

K̇ (t ) = I (Y (t −τ),K (t −τ))−δK (t ) (1.10)

Y (t ) denotes real production and K (t ) denotes capital at any time t . S(t) is the savings.

I (Y (t ),K (t )) represent investment. α is a constant that represent the speed of adjustments

of the goods in the market and δ represent capital depreciation rate. The first term on

the R.H.S of the second equation take into account the delay in investment decision and

delivery of investment. Time delay induce more complex behavior in the dynamics and

these are extensively reported in literature[42, 43].

1.3. NUMERICAL SOLUTION OF DELAY DIFFERENTIAL EQUATIONS

In this section we give numerical methods for solution of DDEs. Most of the existing meth-

ods to numerically solve DDEs come as natural extensions of the methods used to solve

Ordinary Differential Equations(ODEs)[44]. So we discuss ODE solvers first and then in the

next section describe how some of these methods can be used for solving DDEs. Runge-

Kutta methods of different orders are most frequently employed to solve ODEs. Euler method,

Heun’s method etc. turn out to be particular members of Runge-Kutta family.
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1.3.1. SOLVING ODES

The discussion in this section is restricted to Explicit Runge-Kutta(RK) methods. This is

justified in the next section. General form of ERK method can be expressed as[45, 46]

yn+1 = yn +h
s∑

i=1
bi ki (1.11)

where

k1 = f (tn , yn)

k2 = f (tn + c2h, yn +h(a21k1))

k3 = f (tn + c3h, yn +h(a31k1 +a32k2)

.

.

ks = f (tn + csh, yn +h(as1k1 +as2k2 + ....+as,s−1ks−1))

Any particular explicit RK3 method is completely defined if s,ai j (for 1 ≤ j < i ≤ s), bi (i =
1,2...s) and ci (for i = 2,3, ..s) are given. s gives the number of stages in the method, bi and ci

are known as the weights and nodes and the matrix
[
ai j

]
is called the Runge-Kutta matrix.

All information regarding the RK method can be arranged in what is called Butcher tableau

given by.

0

c2 a21

c3 a31 a32

. .

. .

. .

cs as1 as2 . . . as,s−1

b1 b2 bs−1 bs
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EULER METHOD

The simplest method in the RK family is the Euler method. Its tableau is given by

0

1

Corresponding formula becomes

yn+1 = yn +h f (tn , yn) (1.12)

SECOND ORDER METHOD

Second order method with two stages can be in general represented by tableau

0

α α

(1− 1
2α ) 1

2α

Here α is a parameter and if its value is 1, we get Heun’s method, given by,

k1 = f (tn , yn)

k2 = f (tn +h, yn +h(k1))

yn+1 = yn + h

2
(k1 +k2) (1.13)

When the value of α is 1
2 the method is called the midpoint method.

RK3 METHOD

The tableau for explicit RK3 method is given by
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0

1
2

1
2

1 −1 2

1
6

2
3

1
6

The corresponding equations are given by

k1 = f (tn , yn)

k2 = f (tn + h

2
, yn + h

2
(k1))

k3 = f (tn +h, yn +h(−k1 +2k2))

yn+1 = yn + h

6
(k1 +4k2 +k3) (1.14)

RK4 method is not detailed here because to solve DDEs we use the extended version of

either Heun’s method or RK3 method.

1.3.2. SOLVING DDES

The description in this section is restricted to the DDEs of the form

ẏ = f (t , y(t ), y(t −τ)) (1.15)

such that τ > 0 and y(t ) = g (t ) for t ≤ 0, which should be given in order to solve the

DDE.

In addition we assume that

• Delay is a constant. There can be situations where the value of delay depends on the

state of the system or time, but for our work presented in this thesis, this assumption

is always valid.

• h < τ, where h is the time step used in integration.
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The situations arise in this work always fall into this particular form. As discussed in

[44], these assumptions enable the use of explicit RK methods for integration. DDEs can

be effectively solved with methods that combine Explicit Runge-Kutta methods and the

method of steps. Method of steps is detailed below.

METHOD OF STEPS[46]

For DDEs of the form 1.15, the solution in the interval [0,τ] is given by φ(t ), which is the

solution of the inhomogeneous initial value problem[46]

φ̇= f (φ(t ), g (t −τ)) (1.16)

where, φ(0) = g (0). Using the solution in each interval, the DDE can be solved for the

next interval by repeating this procedure.

1.3.3. EXPLICIT RK METHODS FOR DDES

General form of an explicit RK method used to solve DDEs can be represented as[47]

yn+1 = yn +h
s∑

j=1
b j f (tn + c j h, yn j , ynτ j ) (1.17)

where yn j satisfy the relation

yni = yn−1 +h
j<i∑
j=1

ai , j f (tn + c j h, yn j , ynτ j ) (1.18)

for i = 1,2,3...., s

The argument ynτ j denotes approximation to y(tn + c j h −τ) which is obtained by spe-

cific polynomial interpolation at t = tn + c j h − τ from the known values of y . Also when

tn + c j h −τ≤ 0, y(t −τ)n j = g (tn + c j h −τ), where g is the initial function.

HEUN’S METHOD

According to the discussions given above, Heun’s method for DDEs can be written as
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k1 = f (tn , yn , y(tn −τ))

k2 = f (tn +h, yn +hk1, y(tn −τ+h))

Since y(tn −τ+h) is in the solution grid, separate interpolation procedure to estimate

delay argument is not required for Heun’s method. The final approximation formula for

yn+1 is given as

yn+1 = yn + h

2
(k1 +k2) (1.19)

RK3 METHOD

When RK3 method is adopted to solve DDEs, the modified equations for calculating ki s are

given by

k1 = f (tn , yn , y(tn −τ))

k2 = f (tn + h

2
, yn + h

2
k1, y(tn + h

2
−τ))

k3 = f (tn +h, yn +h(−k1 +2k2), y(tn +h −τ))

y(tn −τ) and y(tn +h −τ) are in the solution grid and should be already known. y(tn +
h
2 −τ) is to be estimated using interpolation[47, 48]. We use Hermite interpolation taking

four points in the grid close to tn + h
2 −τ. The approximation formula for yn+1 remains the

same as in the RK3 method for ODEs.

yn+1 = yn + h

6
(k1 +4k2 +k3) (1.20)
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1.3.4. SEMICONDUCTOR LASER WITH DELAYED FEEDBACK

In this section we give a brief overview of the dynamical behaviors observed in SCLs with

delayed feedback. Instabilities in the emission of semiconductor lasers when output light is

coupled back to the laser cavity were reported from late 1960s[49]. For many technological

applications, where stable operation was essential, this turned out to be a highly unde-

sired feature. Completely eliminating back reflection to the laser cavity from the external

environment was a difficult task, so the "intensity noise" or "instabilities" were frequently

observed in many semiconductor laser systems[2]. Later it was proposed that these insta-

bilities can be made useful in many ways. The complex emission patterns provide useful

information about the internal processes in the laser dynamics[50]. The prospect of using

feedback induced intensity modulations in optical communication systems catalyzed in-

tense research on the subject [50–52]. Also, semiconductor laser with feedback provided

a laboratory example of a delay system which is capable of exhibiting rich variety of com-

plex phenomena but at the same time can be reliably controlled. Many phenomena, first

observed in semiconductor lasers with feedback in laboratory conditions were later discov-

ered in natural systems[2, 53]. By 1970, it was shown that the use of optical feedback can be

employed for better selection of longitudinal modes[54], increase in coherence length[54]

and intensity self pulsations[3]. The feedback can be given either optically or optoelec-

tronically. Simplified schematics of both these schemes are given in Fig: 1.7. In optical

feedback(Fig. 1.7a) a mirror is placed outside the laser cavity which form a external cavity

and constitute the feedback mechanism. In optoelectronic feedback scheme(Fig. 1.7b), the

laser output is detected using a high bandwidth detector and after required amplification,

the detector signal is added with the laser bias current. In 1980, Lang and Kobayashi pro-

posed a model to describe the time evolution of the complex field and carriers in a single

mode laser with delayed optical feedback[55]. The model became an immediate success

because it accounted for many of the observed phenomena when feedback rate is low or

moderate[56]. As discussed in previous sections, delay systems are in principle infinite di-

mensional and this gives the prospect of high dimensional dynamics and many exciting

new phenomena. Interplay between the time delay and nonlinearity is the key aspect in
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SCL

M
l0

(a)

SCL
PDIb

κP (t −τ)

(b)

Figure 1.7: Simplified schematic of (a)optical and (b)optoelectronic feedback schemes for semiconductor
lasers. In (a) M the mirror that form the external cavity, lec is the length of the external cavity, τd is the time
taken by light for round trip in the external cavity and κ is the feedback rate. In (b), Ib is the bias current, PD
is the photodetector, κ is the optoelectronic conversion factor and τd is delay involved in the optoelectronic
feedback process. P (t ) denote the output power at any time t .

understanding of the delay dynamics in SCLs[15].

Chaotic behavior observed in SCLs with optical feedback is roughly categorized into

two regimes - Low Frequency Fluctuations and Coherence Collapse(CC)[57, 58]. LFFs oc-

cur for moderate feedback and near lasing threshold[58, 59]. In LFF the optical power de-

velops sudden dropouts at irregular times and recover over microsecond timescales. This

time scale is much larger than other timescales of the SCL like the relaxation oscillation pe-

riod. As the bias current increases, the average time gap between the power dropouts de-

creases and eventually they merge to form completely irregular output traces. This is called

the Coherence Collapse regime[60]. Optoelectronic feedback scheme has the possibility of

bringing any desired optical configuration between the laser and the detector. Chaos is

reported extensively with optoelectronic feedback scheme in different types of configura-

tions [52, 61, 62]. Also positive and negative feedback schemes and its many variations are

investigated and found show interesting features[63, 64].

1.4. HOPF BIFURCATION

Bifurcations are sudden qualitative changes in the nature of motion, as some control pa-

rameters cross critical values. To understand these bifurcations, local stability of the solu-

tion in the phase space of the system near the critical value of the control parameter is to

be studied. Some of the simple bifurcations, often encountered in low dimensional contin-
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Figure 1.8: Phase space trajectories of van der Pol oscillator for (a) b=-0.3 (b) b=0 and (c) c=0.5. In (a) the
equilibrium point is a stable focus, in (b) equilibrium point is of center type, in (c) equilibrium op int is
an unstable focus.

uous dynamical systems are

• saddle node bifurcation

• pitchfork bifurcation

• transcritical bifurcation

• Hopf bifurcation

Extensive literature exist on these bifurcations and the underlying mechanisms. Here

we detail only the Hopf bifurcation, since we observe Hopf bifurcation in semiconductor

laser when optoelectronic feedback is given, which is discussed in chapter 2. In Hopf bi-

furcation, at the critical value of control parameter, an equilibrium point loses its stability

and a limit cycle is born[65]. Hopf bifurcation is characterized by a change of the real parts

of the pair of complex conjugate eigen values associated with an equilibrium point from a

negative to positive value while the imaginary part remains greater than zero [66].

EXAMPLE : VAN DER POL OSCILLATOR

van der Pol model describes the dynamics of a circuit with a triode valve, where the resis-

tance of the valve changes with current. The model is described by a set of equations given

below[66].

ẋ = y (1.21)
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ẏ =µ(1−x2)y −x (1.22)

µ is the damping constant. The equilibrium point of the system is the origin (0,0). The

characteristic equation of the system is

λ2 −µ(1−x2)λ+2µx y +1 = 0 (1.23)

At the equilibrium point (0,0), the eigen values are obtained as

λ=
1

2

{
µ ±

√
µ2−4

}
(1.24)

When −2 <µ< 0, the eigen values are complex conjugate with negative real parts. This

means the equilibrium point is stable and the trajectories starting in the neighborhood of

the equilibrium point will wind around and asymptotically reach it. Such type of equi-

librium point is called stable focus. At µ = 0, the eigen values become λ = ±i . Also the

van der Pol equations reduces to that of simple harmonic motion and the solutions turn

to periodic orbits. Now, the equilibrium point is said to be center type. For 0 < µ < 2, the

eigen values are complex conjugates with their real part positive. Now (0,0) is an unstable

focus, meaning the trajectories starting near the neighborhood of the equilibrium point

spiral away from it. The fate of the the diverging trajectories can be found by calculating

the quantity[67]

∇.F = ∂ f1

∂x
+ ∂ f2

∂y
(1.25)

For van der Pol equations

∇.F =µ(1−x2) (1.26)

From the above equation it can be seen thats.F is positive for |x| < 1 and negativ ��f ������������������������������e or
| �x| > 1. This means for |x| < 1 damping is positive and |x| > 1 damping is negative. Because

of the balance between positive and negative damping, there exist a closed orbit, which



1.5. THESIS OUTLINE 25

turn out to be a stable limit cycle. This type of bifurcation is called Hopf bifurcation. Hopf

bifurcations can be of two types supercritical and subcritical[65]. The example above is a

supercritical Hopf bifurcation, because the limit cycle is stable above bifurcation point. In

the case of a subcritical Hopf bifurcation the limit cycle will be unstable.

1.5. THESIS OUTLINE

This thesis is organized in the following way.

Second chapter report our work on linear stability analysis and Hopf bifurcation in

semiconductor lasers with optoelectronic delay feedback. The theoretical model of the

laser and necessary mathematics for the linear stability analysis of delay differential equa-

tions are provided before we present the results. Effects of delay, feedback rate, bias current

and nonlinear gain reduction factor on the stability of the steady state operation and on

Hopf bifurcation are studied.

Chapter 3 present the delay estimation from chaotic output of a quantum dot laser with

optical feedback. Techniques like Correlation Functions, Mutual Information, Permutation

Entropy and Permutation Statistical Complexity are used for the estimation. A detailed

comparison of these methods is given for a range of feedback strengths and delays.

The results presented in Chapter 4 are related to distinguishing and resolving compo-

nent processes of the complex semiconductor laser dynamics in the presence of current

modulation and delayed optical feedback. In addition to the techniques used in the previ-

ous chapter, Fourier spectra of the chaotic output are also calculated to see how well these

techniques differentiate the processes like delayed feedback, current modulation and re-

laxation oscillations.

The work discussed in the previous chapters are summarized in Chapter 5.



2
ANALYSIS AND SIMULATION OF

SEMICONDUCTOR LASER DYNAMICS WITH

OPTOELECTRONIC DELAY FEEDBACK

Semiconductor lasers (SCL) with delayed feedback have been investigated extensively in

recent years, due to the rich variety of nonlinear phenomena they exhibit and also be-

cause of their potential applications [2]. They show many interesting phenomena such

as low and high dimensional chaos [4], local and global bifurcations [68], control [7] and

synchronization of chaos [8, 69] , intensity instabilities [70], multistability and hysteresis

[71], and stochastic resonance effects[72, 73]. Incorporation of time delay into the sys-

tem makes it infinite dimensional and consequently the system can exhibit very complex

dynamics. Many aspects of delay dynamics have been observed and studied first in laser

systems [2, 30]. These nonlinear effects in semiconductor lasers have novel technological

applications like secure information encryption [56, 72], chaotic lidar [74] etc. Modifica-

tion of laser dynamics with feedback depends on many factors such as type and strength

of feedback, delay time involved in the feedback mechanism, bias current and other pa-

26
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rameters like gain nonlinearities. Feedback mechanism can be either optical [75, 76] or

optoelectronic[70, 77]. In optical feedback, a part of the output laser field is injected back

into the laser cavity. The optoelectronic feedback technique involves a high bandwidth

photodetector for optoelectronic conversion of the laser output and the injection of a suit-

ably amplified detector signal in to the pumping current of the SCL. Even when the nonlin-

ear gain reduction is strong enough to inhibit period doubling and chaos in current mod-

ulated semiconductor lasers [24], delay feedback has been proved to induce bifurcations

and chaos [62]. Destabilization of the fixed point by Hopf bifurcation in SCL with optoelec-

tronic feedback has been reported in many works [76, 77]. Given such considerations, it

is of utmost importance for the system designer to know how the SCL stability varies with

feedback and changes with different parameters. In this work, we analyse the delay dif-

ferential equations of the SCL with optoelectronic delay feedback to study the of Hopf bi-

furcation phenomena in the feedback strength-delay parameter space and its dependence

on nonlinear gain reduction factor, bias current and initial conditions. The effect of ini-

tial condition on the dynamics is studied by switching on the delay mechanism at different

stages in the operation of the laser.

2.1. SEMICONDUCTOR LASER MODEL

In this section we give an outline of how the SCL rate equations can be derived from basic

principles. A detailed derivation of the same can be found in [78]. A schematic model of the

laser cavity is given in Fig. 2.1. The laser is modeled as a Fabry-Perot cavity with the active

medium between the two end reflectors. The cavity has the length L and the reflectivities

of the end reflectors are represented by R1 and R2 respectively. Amplitude of the forward

and backward traveling complex electric field are represented respectively as

E f (z) = E f (z = 0)exp

[
−i
ηω

c
z + 1

2
(g z −αs z)

]
(2.1)

Eb(z) = Eb(z = L)exp

[
−i
ηω

c
(L− z)+ 1

2
(g (L− z)−αs(L− z))

]
(2.2)
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Figure 2.1: Schematic of laser cavity of length L along the z axis. R1 and R2 are the reflectivities of the faces
and E f ,b(z) represent the complex amplitude of the electric field traveling in the forward and the backward
directions respectively.

where η is the real part of the refractive index,ω is the angular frequency, c is the velocity

of light, g is the gain due to stimulated emission,αs takes into account all the optical losses

inside the cavity that does not result in the generation of carriers inside the active region.

Defining r1 and r2 as the reflection coefficients at the end mirrors such that
∣∣∣r1

∣∣∣2 = R1 and∣∣∣r2

∣∣∣2 = R2, it can be shown that

E f (z = 0) = E f (z = 0)r1r2exp

[
−2iηωL

c
+ (g −αs)L

]

From the above equation we can deduce the the round trip gain G and the condition for

sustained laser oscillation as

G = r1r2exp

[−2iηωL

c
+ (g −αs)L

]
= 1 (2.3)

The modulus of equation 2.3 gives the threshold gain g th

g th =αs + 1

2L
ln

(
1

R1R2

)
(2.4)
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At laser threshold the total gain inside the cavity just balances the total losses. The

resonance angular frequency of the mth mode at threshold can be written as

ωm,th = m
πc

η
(
ωm,th , Nth

)
L

(2.5)

Nth is the carrier number at threshold. In the following discussionsωm,th is represented

asωm and η
(
ωm,th , Nth

)
as ηth . Frequency dependence of g ,αs , r1 and r2 can be neglected

for frequencies close to the frequency of the laser mode under consideration. Expanding

ηω/c in terms of the optical angular frequency and the carrier number(N ) at the threshold,

and substituting in the expression for G , we get

G = exp

[
(g −αs)L+ 1

2
ln(R1R2)−2i

ωthL

c

∂n

∂N

∣∣∣∣
th

(N −Nth)

]
exp

[
−2i

ηthωthL

c
−2i

ηg L

c
(ω−ωth)

]
(2.6)

where ηg is the group refractive index given by η+ω dη
dω . The first exponential is inde-

pendent of frequency and the second exponential is dependent on frequency. So the total

round trip gain can be written as the product of frequency independent and frequency de-

pendent parts.

G =G1Gω (2.7)

To get the time evolution of electric field the round trip gain is to be applied to the time

independent electric field E f of the forward traveling wave at z = 0. The resultant equation

is

E f (t ) =GE f (t ) =G1exp(iωthτi n)exp

(
−τi n

d

d t

)
E f (t ) (2.8)

τi n is the round trip time of light inside the cavity and exp
(
−τi n

d
d t

)
is the shift operator

which bring introduces time shift of −τi n to the electric field. Introducing slowly varying

complex amplitude E(t )
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E f (t ) = E(t )exp(iωth t ) (2.9)

and assuming that the variation of E(t ) is small in one round trip time, it can be written

dE

d t
= 1

τi n

(
1− 1

G1

)
E(t ) (2.10)

After some simplifications 2.10 becomes

dE(t )

d t
=

[
c

2ηg

∂g

∂N

∣∣∣∣
th

(N −Nth)− i
ωth

ηg

∂n

∂N

∣∣∣∣
th

(N −Nth)

]
E(t ) (2.11)

The real and imaginary parts of the refractive index are dependent on each other. This

dependence can be derived from Kramers-Kronig relations and the dependence is given by

αl =
δηg

δη′g
=−2

ω

c

∂n/∂N

∂g /∂N
(2.12)

αl is known as the linewidth enhancement factor which results in linewidth broaden-

ing. In bulk semiconductor lasers its value is high typically between 3 and 7. Use of lower

dimensional structures like quantum wells or quantum dots can reduce the value ofαl and

subsequently produce a very narrow spectrum. Up to this point the assumption was that

the gain is linear with increasing population inversion. But at high intensities there is a

reduction in the mode gain occurring due to different nonlinear mechanisms like spectral

and spatial hole burning and dynamic carrier heating. To account for this a small nonlin-

ear gain reduction factor(εN L) which is dependent on intensity is incorporated to the laser

mode gain as

G(N , |E |2) =GN (N −N0)(1−εN L|E |2) (2.13)

Here N0 is the carrier number at transparency. Now the time derivative of electric field

inside the cavity can be written as
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dE

d t
= 1+ iαl

2

[
G(N )− 1

τp

]
E(t ) (2.14)

τp is the lifetime of photons inside the laser cavity. Assuming almost uniform distribu-

tion of carriers in the active region and therefore neglecting the carrier diffusion, the rate

equation describing the evolution of electron-hole pair number N is given by

∂N

∂t
= I

q
− N

τs
−Rst (N , |E |2) (2.15)

The first term represent the injection of the electron-hole pair into the active region

due to the pumping current. I is total pumping current, q is the electronic charge and τs is

the carrier lifetime. Rst accounts for the reduction in electron-hole pairs due to stimulated

recombination.

Rst (N , |E |2) =G(N )|E |2 (2.16)

Considering the above discussed factors the time evolution of semiconductor laser can

be described by rate equations for electric field and the carrier number in active region.

These equations are given by [24, 79]

dE

d t
= 1+ iαl

2

[
GN (N −N0)(1−εN L|E |2)− 1

τp

]
E(t )+FE (t ) (2.17)

d N

d t
= I

qV
− N

τs
−GN (N −N0)|E |2 (2.18)

The term FE (t ) accounts for the spontaneous emission fluctuations. Spontaneously

emitted photon will randomly perturb the amplitude and phase of the laser output. FE (t )

is given by
√

2βNς(t )[80, 81]. βsp is the spontaneous emission factor defined as the frac-

tion of the total power coupled to the laser mode. ς(t ) is Gaussian white noise of zero mean

unity intensity[81]. To exactly model the SCL dynamics, carrier fluctuations also need to

be included in the rate equation for N . These fluctuations arise from the discrete nature of

carrier generation and recombination processes. This shot noise term has much less im-
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pact on the laser dynamics compared to the spontaneous emission noise[78, 80], therefore

not included in the rate equations. The electric field is normalized such that |E(t )|2 = P (t ),

where P (t ) is the total number of photons inside the laser cavity at any time. So the rate

equations can be written in terms of P (t ) by using the relation

E(t ) =
√

P (t )exp(iφ(t )) (2.19)

Also taking into account the contribution of the spontaneous emission into the oscil-

lating laser mode, the rate equations become

dP (t )

d t
= ΓGN (N −N0)(1−εN LP )P − P

τp
+Γβsp

N

τs
+FP (t ) (2.20)

dφ

d t
= αl

2

[
GN (N −N0)(1−εN LP )− 1

τp

]
+Fφ(t ) (2.21)

d N

d t
= I

q
− N

τs
−GN (N −N0)(1−εP )P (2.22)

The newly introduced term Γ is the optical confinement factor. It is defined as the ratio

between the optical power confined in the active region to the total power flowing across

the structure. The third term in the Equation 2.20 represent the contribution of the spon-

taneous emission to the laser mode. In optoelectronic delay feedback the phase of the

output optical field is not involved in determining the system dynamics. So two differential

equations are sufficient to simulate the time evolution of the system, one for the photon

density and the other for the carrier density. Noise terms are not considered for our analy-

sis presented in the next section. Numerical simulations are done using normalized carrier

number and normalized power obtained by the transformation [24]

N ←− N /Nth ,P ←−= P/P0 (2.23)

where P0 = Γ(
τp /τs

)
Nth and Nth = N0 +

(
ΓGNτp

)−1 which is obtained by substituting

threshold conditions in the rate equations. Also defining δ = N0/Nth and ε = εN LP0, the
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rate equations without the noise terms can be written as[24]

d N

d t
= 1

τs

(
I

Ith
−N − N −δ

1−δ P

)
(2.24)

dP

d t
= 1

τp

(
N −δ
1−δ (1−εP )P −P +βsp N

)
(2.25)

Ith is the threshold current given by Ith = qNth/τs . When optoelectronic feedback is

introduced the total pumping current I (t ) at any instant of time becomes

I (t ) = Ib +κP (t −τ) (2.26)

here Ib is the constant bias current, κ is the feedback strength and τ represent the delay

in feedback. This delay can arise from time taken for external transit of the laser beam, fi-

nite response time of the detector as well as the intentional delays included in the feedback

circuitry.

2.2. LINEAR STABILITY ANALYSIS OF SCALAR DDES

A general approach to the linear stability analysis of scalar DDEs[30] is presented in this

section. The basic form of the scalar DDE considered in this section is represented by

ẋ =−bx +a f (x(t −τ)) (2.27)

parameters a and b are assumed to be positive and f is a nonlinear function. Let x = x∗
be an equilibrium point of Equation 2.27. When a linear perturbation of the form x = x∗+
ρeλt where ρ << 1 is applied, the characteristic equation associated with the time delay

differential equation 2.27 can be obtained as

d

d t

[
x∗+ρeλt

]
=−b

[
x∗+ρeλt

]
+a f (x∗+ρeλ(t−τ)) (2.28)
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d x

d t

∣∣∣
x=x∗ +ρλeλt =−bx∗−bρeλt +a f

(
x∗+ρeλ(t−τ)

)
(2.29)

Since time derivative at the equilibrium point vanishes, the above expression can be

reduced using Taylor expansion of the function at about the equilibrium point. This gives

λ=−b +a f ′(x∗)e−λτ (2.30)

This represents the characteristic equation of the scalar DDE under consideration. λ is

the complex eigen value with the equilibrium point x = x∗ given as λ = α+ iβ. In general

the characteristic equation of a delay differential system Y = f (X , X (t −τ)) can be written

in the form

∣∣∣J0 +e−λτ Jτ−λI
∣∣∣= 0 (2.31)

where X = {xi } and X ∗ = {
x1

∗, x2
∗, ...., xn

∗}
, is the equilibrium point. J0 is the Jacobian

with respect to the present variables, Jτ is the Jacobian with respect to the delayed variables

respectively, evaluated at the equilibrium point given as

(J0)i j = ∂ fi

∂x j

∣∣∣
x j=x j

∗ (2.32)

and

(Jτ)i , j = ∂ fi

∂xτ j

∣∣∣
xτ j=x∗

τ j

(2.33)

The characteristic equation happens to be a transcendental equation containing quasi-

polynomials. Such type of equations can have infinite number of solutions in the complex

plane. The problem of interest at this point is when the equilibrium point changes its sta-

bility. This happens when the real part of the eigen value crosses the imaginary axis i.e.,

λ= iβ. Substituting this into Equation 2.31 we get

iβ=−b +a f ′(x∗)
(
cosβτ− i si nβτ

)
(2.34)
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Separating into real and imaginary parts

b = a f ′(x∗)cosβτ (2.35)

β=−a f ′(x∗)si nβτ (2.36)

Squaring and adding the above two equations we get

β=±
√

a2 f ′2(x∗)−b2 (2.37)

Since β > 0 the above equation can hold only if
∣∣∣a f ′(x∗)

∣∣∣ > b. From Equation 2.35 one

gets

βτ=±ar ccos

(
b

a f ′(x∗)

)
+2nπ (2.38)

where n can take integer values 0,±1,±2,... etc. From the above equation one can find

the condition when the real part of the eigen value becomes zero for a given value of β.

To find what happens when a change in delay occurs dα
dτ is calculated. A positive value for

dα
dτ means loss in stability and a negative value for dα

dτ indicate gaining of stability of the

equilibrium point with increase in delay on that particular curve. Since there can be many

such curves, they divide the parameter space into different stable and unstable regions.

From Equation 2.38 we get two sets of delay curves in the (τ, a,b) parameter space.

τ1(n) =
2nπ+ar ccos

(
b

a f ′(x∗)

)
√

a2 f ′2(x∗)−b2
,n = 0,1,2, ... (2.39)

τ2(n) =
2nπ−ar ccos

(
b

a f ′(x∗)

)
√

a2 f ′2(x∗)−b2
,n = 1,2,3, ... (2.40)

In the above equations n is chosen such that the values of τ is always positive. Stable

regions are enclosed by curves with dα/dτ negative on the lower side and positive on the

upper side. For β < 0, n can take negative values and the curves thus obtained will have
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identical behavior with the above ones. As mentioned above the real part of dλ
dτ tell us what

happens on the stability curves. Differentiating Equation 2.30 with respect to τ, one gets

dλ

dτ
= a f ′(x∗)e−λτ

[
−λ−τdλ

dτ

]
(2.41)

Using Equation 2.30 and some rearrangements the above equation takes the form

dλ

dτ
=− λ(λ+b)

1+τ(λ+b)
(2.42)

The real part of the above equation is

dα

dτ
= β2

(1+τb)2 +τ2β2
(2.43)

Thus it can be seen that dα
dτ is always positive for both curves τ1(n) and τ2(n) if the con-

dition
∣∣∣a f ′(x∗)

∣∣∣> b is satisfied. So there does no exist an eigen value that has negative real

part across the critical delay curves. By substituting τ = 0 in the characteristic equation it

can be directly shown that for τ= 0 the equilibrium point is stable. From these arguments

we can conclude that there can exist only one stable region in the (τ, a,b) parameter space

bounded by the curves τ= 0 and the curve closest to it. The dynamical equations of semi-

conductor laser as derived in the previous section comes under the category of coupled

nonlinear equations. Though the above description is for scalar DDE, we follow similar ap-

proach to find the stability and Hopf bifurcations for semiconductor laser with optoelec-

tronic feedback. The analysis of the delay differential equations derived for semiconductor

laser with optoelectronic feedback turns more complicated than the scalar DDEs. A similar

kind of analysis for coupled limit cycle oscillators had been reported in literature[82].

2.3. STABILITY ANALYSIS OF SCL RATE EQUATIONS WITH OPTO-

ELECTRONIC FEEDBACK

The values of the parameters are chosen as τp = 6ps, τe = 3ns, δ = 0.692, β = 5.0× 10−5

[24]. To determine the stability of the fixed point of the system consisting Equations 2.24
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& 2.25, nature of the roots of the characteristic equation has to be calculated. If all of the

eigenvalues of the characteristic equation have negative real parts, then the equilibrium

point is said to be stable. On the other hand, if at least one of the eigenvalues has a positive

real part, then the equilibrium point is unstable. The characteristic equation for our set of

rate equation becomes

λ2 +K2λ+K3 +K4e−λτ = 0. (2.44)

where

K2 =
(

1

τe

)[
1+ P0

1−δ
]
− N0 −1−2εP0(N0 −δ)

τp (1−δ)
(2.45)

K3 = −1

τeτp (1−δ)

[(
1+ P0

1−δ
)

(N0 −1−2εP0(N0 −δ))+
(
εP0

2 −P0 −β(1−δ)

(
N0 −δ
1−δ

))]
(2.46)

K4 = −F

τeτp (1−δ)

[−εP0
2 +P0 +β(1−δ)

]
(2.47)

Here F is defined as κ/Ith . A change in stability can occur only when a root of the Equa-

tion 2.44 crosses the imaginary axis, that is when the real part of the eigen value changes

from negative to positive, where λ with α = 0 is a solution of the equation. Substituting

α= 0 in Equation 2.44 and equating the real and imaginary parts of the resulting equation

we get

K2β−K4si n(βτ) = 0 (2.48)

and

−β2 +K3 +K4cos(βτ) = 0 (2.49)

which leads to
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τ± =
±ar ccos

(
β2−K3

K4

)
+2nπ

β
(2.50)

where n is an integer. Squaring and adding equations 2.48 & 2.49 result in a fourth

degree equation in β

β4 +β2(K2
2 −2K3)+ (K3

2 −K4
2) = 0 (2.51)

This equation is solved to find the range of F, where β2 is real and positive. τ± are cal-

culated using Equation 2.50 for these values of F. Both τ− and τ+ satisfy the characteristic

equation for α= 0. The results we present in this work are specific to two types of feedback

schemes. In the first scheme the feedback starts after the SCL has stabilized to the steady

state operation. In the second scheme the feedback is present from the beginning of oper-

ation. In the first scheme the bifurcations happen on τ−, but the feedback can be applied

in many possible ways, of which one may lead to bifurcations on τ+. As delay systems gen-

erally exhibit abundant multistability with complex basins of attraction[83] , to devise such

a unique scheme can be difficult. Since the feedback schemes we use in this work do not

give bifurcations on τ+, in the following discussions we assume

τi (n) =
−ar ccos

(
βi

2−K3
K4

)
+2nπ

βi
(2.52)

i = 1,2 corresponding to two real and positive solutions of Equation 2.51. These are

the critical values of delay (τc ) where the stability changes. To find the direction in which

the eigen value crosses the imaginary axis, dα/dτ is calculated on each τ(n). If dα/dτ is

positive, at delay equal to τi (n), the eigen value crosses the imaginary axis to the positive

side as the delay is increased and the fixed point becomes unstable. If dα/dτ is negative

at τi (n), the eigen value crosses the imaginary axis to the negative side of α and the fixed

point becomes stable. Thus it can be seen that for the same value of F , depending on the

value of delay, the fixed point can be stable or unstable.
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Figure 2.2: [a] Curves representing Eq.2.52 for the parameter values I0 = 1.5, ε = 0.025 and for n from 1 to 4.
Solid curves represent τ1(n) and dashed curves represent τ2(n). τ1 and τ2 for same value of n are joined to
form closed curves. dα

dτ is positive for τ1 and negative for τ2. [b] Stability regions obtained by simulating the
dynamical equations (1) and (2). Grey colored regions shows the points at which the laser go to a steady state
when feedback is applied and the red colored regions shows the points, at which the laser go to an oscillatory
state.

dα

dτ
= −(K4)βsi n(βτ)(−K2 +K4τcos(βτ))−K4βcos(βτ)(2β−K4τsi n(βτ)

(−K2 +K4τcos(βτ))2 + (2β−K4τsi n(βτ))2
(2.53)

2.4. SIMULATION AND RESULTS

Fig. 2.2 shows the plot of τ(n)′s from Equation 2.52 plotted against F for the parameter

values I0 = 1.5 and ε= 0.025, where I0 is defined as Ib/Ith . Solid curves represent the critical

delays with dα/dτ positive and the dashed curves represent the critical delays with dα/dτ

negative. Substituting Equation 2.52 in Equation 2.53 we find that dα/dτ is positive for

τ1 and negative for τ2 for all values of n . τ1 and τ2 for the same value of n join to form

closed curves (τ1τ2(n)). Four such closed curves for n equal 1 to 4 are shown in Fig. 2.2a.

They exist only for a range of F , outside this range stability does not depend on τ. Also,

immediately outside this range, α is negative, indicating fixed point is stable. Fig. 2.2b

shows the scan of (F,τ) parameter space, by simulating the laser dynamics with feedback at
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Figure 2.3: Solution P (t ) of the laser dynamical equations when the feedback is applied at t = 50ns with
F = 0.45. (a) Damped oscillatory decay to the fixed point at τ= 0.2ns. (b) Periodic solution at τ= τc = 0.33ns.
(c) Undamped growing oscillations at τ= 0.4ns. (d) Damped oscillatory decay to the fixed point at τ= 0.75ns.
(e) Periodic solution at τ = τc = 0.8ns. (f ) Undamped growing oscillations at τ = 0.85ns. (a),(b) & (c) shows
Hopf bifurcation happening at τc = 0.33ns and (d),(e) & (f) shows the same for τc = 0.8ns.

each point. Grey colored area represent points where the solution P (t ) converged to a fixed

point and the red colored regions represent the points where P (t ) is oscillatory. Substituting

τ = 0 in the characteristic equation and solving, we find that α is negative at τ = 0 below

the curve τ1(n = 1). So the fixed point is stable at τ = 0. Thus the first stability region is

the area enclosed between the curves τ = 0 and τ1(n = 1). In Fig. 2.2b, this is the grey

region below the first red patch. From τ1(n = 1), stability regions are formed between a

lower dashed curve and an upper solid curve. Inside the region enclosed by (τ1τ2(n)), the

fixed point is always unstable because,α calculated at the fixed point is always greater than
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zero, as indicated by the solid lower curves and dashed upper curves. But at both ends of

these curves, where there are no overlaps, stability regions are formed between τ2(n) and

τ1(n +1). These are the protruding shaded regions on both sides in Fig. 2.2b. Successive

curves overlap to greater extent in the middle and the stability regions are pushed towards

both sides, reducing their area. In the simulations it is assumed that the feedback is applied

after the laser has stabilized to its steady state. What happens when the feedback is applied

before stabilization is discussed in section 2.4.3. Fig. 2.3 depict the Hopf bifurcations at the

critical delay values. At F = 0.45, the first instance of losing stability occurs at the critical

value of delay τc = 0.33ns, this point is marked P1 in Fig. 2.2a. Fig. 2.3a shows P (t ) at 0.2

ns where τ < τc . When feedback is applied P (t ) suddenly stabilizes to the new fixed point

with highly damped oscillations. At τ = τc periodic solution appear as shown in Fig. 2.3b.

When τ > τc , undamped growing oscillations are obtained (Fig. 2.3c). Fig. 2.3d, Fig. 2.3e

and Fig. 2.3f depict the same scenario across the second instance (marked P2 in Fig. 2.2a)

of losing stability at τc = 0.8ns. This numerically verifies the Hopf bifurcation phenomena

occurring along the critical delay curves with dα/dτ is positive, that is, on τ1(n).

2.4.1. EFFECT OF NONLINEAR GAIN REDUCTION FACTOR

We show that changes in ε can drastically change the critical delay curves. In Fig. 2.4 de-

lay curves for increasing values of ε are plotted. For small values of ε stability regions are

formed only on the lower side of F except for the first stability region that lies between τ= 0

and τ1(n = 1). This result is shown in Fig. 2.4a, for the value 0.01 of ε. Here all τ′1s where

dα/dτ is positive (solid curves) converge closer to τ = 0 axis for higher values of F and at

least one eigen value has positive real part above τ1(n = 1), on the right end. The span of

the curves decreases, as ε is increased to 0.02 in Fig. 2.4b, which indicates that delay has

a role in determining stability only for shorter range of F . With further increase in ε, the

curves with dα/dτ positive and negative for the same n join at the right end to form closed

structures (τ1τ2(n)) and stability regions are formed at both ends. At the same time, extent

of overlap between these closed curves reduces. In Fig. 2.4c, (τ1τ2(1)) and (τ1τ2(2)) com-

pletely move apart from overlap for ε = 0.03 and the stability region becomes continuous
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Figure 2.4: Critical delay curves for four different values of ε. (a) ε= 0.01, (b) ε= 0.02, (c) ε= 0.03, (d) ε= 0.031.
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Figure 2.5: Critical delay curves for four different values of I0. (a) I0 = 1.4, (b) I0 = 1.7, (c) I0 = 1.9.
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Figure 2.6: Differences in final states when feedback is applied after the SCL is stabilized to the fixed point
and before stabilization, for the parameter values I0 = 1.5, ε = 0.025. In the completely shaded region the
SCL goes to the same final state in both cases. In the completely unshaded area, SCL goes to a fixed point
when feedback is started after the laser is stabilized to the fixed point and to an oscillatory solution when the
feedback is started at time t = τ(del ay). In the half shaded regions the dynamics is switched. The SCL goes
to an oscillatory state under the first situation and to a fixed point under the second.

between them. More curves move apart as ε is increased and they change to elliptical in

shape as shown in Fig. 2.4d. Around ε = 0.035 the curves completely disappear, making

stability of the fixed point independent of τ.

2.4.2. EFFECT OF BIAS CURRENT

Fig. 2.5a, Fig. 2.5b and Fig. 2.5c shows critical delay curves at ε= 0.025 for I0 equal to 1.4,

1.7 and 1.9 respectively. Increase in I0 has similar effects as increase in ε. Dependence of

stability on delay converges to shorter ranges of F , for higher I ′0s. The closed curve struc-

tures (τ1τ2(n)) changes to oval in shape and the extent of overlap between the them re-

duces. Around I0 equal to 1.9 four curves move apart and form continuous stability regions

between them. As a result of flattening of the closed curves, for higher I0 successive Hopf

bifurcations come closer in delay. The curves completely disappear before I0 is increased

upto 2.
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Figure 2.7: Solution P (t ) of the rate equations for two different initial conditions for the parameter values
F = 0.52, I0 = 1.5 and τ = 1.1ns. (a) Feedback is applied at 50ns when the laser is already operating at its
steady state. Dynamics converge to the new fixed point after damped oscillations. (b) Feedback mechanism
is present from a time t = τ after the beginning of the operation. Here solution goes to oscillatory state. (c)
and (d) shows the final states switched for F = 0.99, and τ= 0.53ns.

2.4.3. EFFECT OF INITIAL CONDITION

Numerical simulations in the previous sections had the assumption that the laser has set-

tled to the steady state before feedback is applied. Thus for the delay differential equa-

tions representing the delay feedback dynamics the initial condition is a constant function,

namely the steady state solution without feedback. But, situations can arise, where this is

not the case. Feedback can be present from t = τ, where τ is the delay in feedback. Here, if

τ is shorter than the time taken by SCL to stabilize to the fixed point after relaxation oscilla-

tions, the initial function is not a constant. For certain set of (F,τ) values oscillatory states

appear, in place of the fixed point in the previous case, and vice versa, with all the other

parameters being same. But the final states are identical for most regions in the parameter

space. Fig. 2.6 characterizes the (F,τ) parameter space for these three types of behaviour.

One such instance for parameter values F = 0.52, I0 = 1.5 and τ= 1.1ns is given in Fig. 2.7.

In Fig. 2.7a, when the feedback is applied at t = 50ns, SCL is already operating at the steady
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state, and P (t ) settles to the new fixed point after damped oscillations. Fig. 2.7b shows the

case, when feedback is present from 1.1 ns, which is equal to the delay. In this case P (t ) is

undamped and slowly growing. Such points are represented by the yellow colored regions

in Fig. 2.6. If P (t ) is oscillatory when initial feedback function is constant, one would ex-

pect the same for a case when the initial feedback function itself is oscillatory. But we get

the unexpected result as shown in Fig. 2.7c & Fig. 2.7d. Here the final state is the fixed

point when feedback is applied at t = τ(0.53ns), but final state is oscillatory when feedback

is applied after the stabilization of the SCL to the fixed point. The half green regions in Fig.

2.6 represent this behaviour. For the rest of the parameter space, the initial function does

not influence a change from stable fixed point to oscillatory output or vice versa.

2.5. CONCLUSIONS

We have done the linear stability analysis of the nonlinear delay differential equations aris-

ing in a semiconductor laser with optoelectronic delay feedback. Critical stability curves

and Hopf bifurcation points obtained are in agreement with numerical simulations, pro-

vided feedback is given after the SCL stabilized to the fixed point. Deviations from the pre-

dicted behaviour, when the feedback is present from the beginning, are discussed. Effects

of nonlinear gain reduction factor and bias current are deduced from the analysis and are

numerically verified. Increase in both of these parameters reduces the range of feedback

strength where the stability depends on delay. Beyond a critical value, stability of the steady

state solution becomes independent of delay.



3
DELAY SIGNATURES IN THE DYNAMICS OF

QDL WITH OPTICAL FEEDBACK

Research in complex systems require quantitative predictions of their dynamics, even be-

fore we completely understand the underlying mechanisms. This can only be done by col-

lecting data about the past evolution and retrieving the structures in the dynamics from

the collected data. Numerous statistical and information theoretical approaches have been

successfully employed for analyzing the time series obtained from the observation of com-

plex processes. Due to the finite speed of information propagation, interaction between

different components of a complex system do inevitably involve time delays. Identifying

these delays are crucial for modeling and forecasting applications in different fields includ-

ing biology[40], optics[80, 84] and climate science[31]. Most conventional and widely used

methods for estimating delay in complex dynamics are auto correlation function (ACF)

and delayed mutual information (DMI). Several new techniques were recently discovered

for delay identification [85–89]. Information theory measures like Entropy and Complex-

ity have been particularly useful in the case of nonlinear systems[80, 88]. In the present

work we focus on the dynamics of a Quantum Dot Laser(QDL) with optical feedback work-

46
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ing in the coherence collapse regime. Dynamics of QDLs show quite distinctive features

compared to bulk semiconductor dynamics. Conventional Lang-Kobayashi equations fail

in many places to accurately predict QDL dynamics[27]. In QDLs relaxation oscillations

are strongly damped due to different carrier capture dynamics into the Quantum Dots

(QDs)[90]. Strong damping added with relatively small line width enhancement factor(αl )

make QDLs less sensitive to optical feedback[29]. So instabilities in QDLs occur at higher

feedback strengths compared to bulk or Quantum Well Lasers. Synchronization of QDLs

working in the chaotic regime is currently an active research area with the prospect of us-

ing them for secure communication with chaotic carriers[28]. A major concern in chaos

based secure communication is the level of difficulty in identifying the parameters of the

chaotic emitter from the output time series. Chaos generated in feedback systems can have

very high dimensionality due to the infinite number of degrees of freedom introduced by

time delay. But once the delay value is retrieved from the time series, the high dimen-

sional attractor can be projected to a low dimensional phase space, which may result in low

complexity numerical techniques to decrypt the information. This security aspect of chaos

based communication had been addressed for semiconductor lasers modeled with con-

ventional Lang-Kobayashi equations[80, 91, 92]. Rontani et.al. [91] showed that a careful

choice of laser operating conditions can make delay retrieval extremely difficult. In another

work [92], the same group also demonstrated that the time scales of laser dynamics in its

route to chaos influence the difficulty in delay identification. Recently, information theory

measures like permutation entropy(HS) and permutation statistical complexity(C JS) were

employed to get good estimates of delay value from the time series of delay differential sys-

tems. Soriano et. al.[80] used this approach to find the intrinsic time scales in the dynamics

of a semiconductor laser with optical feedback operating in the coherence collapse regime.

We use ACF, DMI, HS and C JS to retrieve delay from the output intensity time series of a

QDL with external cavity. HS and C JS are calculated from a probability distribution which

is characteristic of the given time series. This probability distribution is created using a

proper reconstruction of the dynamics from the time series. Bandt and Pompe symboliza-

tion method is employed for this purpose[88, 93]. Different dimensionality of reconstruc-
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tion are used for the calculation and we compare the results. Reliability of these measures

are investigated for different values of external cavity round trip time and feedback rates.

3.1. QUANTUM DOT LASER MODEL

Figure 3.1: Energy band diagram of a QD.∆Ee and∆Eh are the energy differences of the lasing levels from the
band edge of the QW, for electrons and holes respectively. The ground state lasing energy is hν. Rcap and Resc

represent the carrier capture from and escape to the QW region.

We adopt the dynamical model of QDL from Ref. [29]. A schematic representation of

the band diagram assumed in the model is given in Figure 3.1. The QD is inserted into a QW

and the QW will act as a reservoir for both electrons and holes. This architecture bring per-

formance improvements like low threshold conditions and its temperature stability. The

carriers are first injected into the quantum well before being captured into the quantum

dots by different mechanisms as explained below . ∆Ee and ∆Eh are the energy differences

of the lasing levels from the band edge of the QW, for electrons and holes respectively. Evo-

lution of both type of carriers is given by the same rate equation, assuming equal number

and similar dynamics. Also possibility of more number of energy levels in the quantum dot
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and the possible transitions between them is not taken into consideration here. Despite

these approximations, as mentioned in [29], this model adequately explain many features

of the dynamics of QDLs. The dynamics is described by the following set of delay differen-

tial equations that give the time evolution of the complex amplitude of the electric field(E),

occupation probability in a dot(ρ) and the carrier density in the well(N).

Ė =− E

2τs
+ g0V

2

(
2ρ−1

)
E + i

δω

2
E + γ

2
E (t −τ) (3.1)

ρ̇ =− ρ

τd
− g0

(
2ρ−1

) |E |2 +F
(
N ,ρ

)
(3.2)

Ṅ = J

q
− N

τn
−2Nd F (N ,ρ) (3.3)

τs ,τn and τd are the photon lifetime, carrier lifetime in the well and the carrier lifetime

in the dot, respectively. g0 =σvg whereσ is the cross section of interaction of the carriers in

the dots with the electric field and vg is the group velocity. V = 2NdΓ/d , where Nd is the two

dimensional density of dots, Γ is the confinement factor and d is the thickness of the dot

layer. J is the pump current density and q is the electronic charge. γ is the feedback rate and

τ is the delay involved in the feedback process. F (N ,ρ) is the rate of exchange of carriers

between the well and dots and is given by F (N ,ρ) = Rcap (1 − ρ) −Rescρ. Rcap = C N 2 +
B N where B describes carrier-phonon capture and C describes Auger carrier capture. For

simulations B is taken as zero. This is justified because discrete nature of QD energy levels

and fixed energies of Longitudinal Optical (LO) phonons make carrier-phonon capture in

QD structures highly improbable [90]. Temperature dependent carrier escape from the

dots is given by Resc . δω take into account the dependence of laser frequency on carrier

densities in QW and QD regions. δω = β1N +β2ρ where plasma effect from the carriers

in the well is described by β1 and variations caused by population in the dots is described

by β2[29]. The values used in the simulations are τs = 3ps, τn = τd = 1ns, g0 = 0.9259×
10−10m3s−1, V = 2.4×1022m−3, Nd = 2×1015m−2, β1 = 0, β2 = 2, C = 10−20m4s−1, Resc =
0,J = 125A/cm2[29].
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When there is no feedback present equation 3.1 reduces to

Ė =− E

2τs
+ g0V

2

(
2ρ−1

)
E + i

δω

2
E (3.4)

Complex conjugate of the above equation can be written as

Ė∗ =− E∗

2τs
+ g0V

2

(
2ρ−1

)
E ∗−i

δω

2
E∗ (3.5)

Multiplying Equation 3.4 by E∗ and 3.5 by E and adding the resulting equations we get

E∗Ė + Ė∗E =−E∗E

τs
+ g0V

(
2ρ−1

)
E∗E (3.6)

The term on the left is the total derivative of E∗E and this quantity is the photon density

in the active region (S). So the rate equation without feedback can be written as

Ṡ =− S

τs
+ g0V

(
2ρ−1

)
S (3.7)

ρ̇ =− ρ

τd
− g0

(
2ρ−1

)
S +F

(
N ,ρ

)
(3.8)

Ṅ = J

q
− N

τn
−2Nd F (N ,ρ) (3.9)

At threshold the losses in the cavity just equals the gain. In Equation 3.7 the first term

on the right had side represent the losses and the second term represent the gain. So at

threshold

− 1

τs
+ g0V

(
2ρ−1

)= 0. (3.10)

This gives the carrier density in the dots at threshold as

ρth = 1

2
+ (2τs g0V )−1 (3.11)

If one keep the current density just at the threshold value, the rate equation for carrier

density in the active region is given by
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ρ̇ =−ρth

τd
− g0

(
2ρth −1

)
S +C Nth

2 (
1−ρ)= 0 (3.12)

From the above equation the carrier density in the well at threshold (Nth) can be derived

as

Nth =
√

ρth

Cτd
(
1−ρth

) (3.13)

Substituting the values for ρth and Nth in the rate equation for N ,

Ṅ = Jth

q
− Nth

τn
−2NdC Nth

2 (
1−ρ)

(3.14)

An approximate equation for threshold current density can be obtained from the above

equation as

Jth = q

τn

√
ρth

cτd
(
1−ρth

) + 2Ndρth q

τd
(3.15)

3.2. AUTO CORRELATION FUNCTION

ACF quantifies the linear relationship between a signal and its time-shifted version. In

other words it is the similarity between observations as a function of the time lag between

them. ACF find applications in different fields and its definition may slightly differ depend-

ing on the application. For our study ACF for a random process X (t ) is defined as [92]

Γ(θ) = 1

σ̂2
X

〈(x(t )− µ̂X )(x(t +θ)− µ̂X )〉 (3.16)

x(t ) and x(t +θ) are sampled from X (t ). µ̂X = 〈x(t )〉 and σ̂X = 〈(x(t )− µ̂X )2〉1/2.〈.〉 de-

notes expectation value.
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Figure 3.2: Comparison of histogram and ordinal pattern based methods. (a) shows the time series generated
using logistic map for control parameter value of 4. (b) shows the histogram generated and (c) shows the
distribution generated using BP method.

3.3. BANDT AND POMPE SYMBOLIZATION METHOD

Information theoretic measures are computed from a probability distribution which is con-

structed from a time series, which in turn is obtained by recording some real world process.

The construction of the probability distribution from the time series is very crucial because

any loss of information in this phase will get reflected in the final quantitative measure.

One approach is to divide the total range of data into large number of bins and count the

number of occurrences of the data in each bin. The histogram thus generated can serve as

the probability distribution for the calculation of the proposed measures. The histogram

method has the drawback that it does not take into account the time correlations arising in

the time series. In this work we use the method proposed by Bandt and Pompe, which is

based on the symbolic reconstruction of time series data. Bandt and Pompe (BP) method
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is devised such that information regarding the time causality is not lost in the generated

probability distribution. The original work and many research works that followed showed

the robustness of this method in the presence of dynamical or observational noise[93]. BP

method has recently been applied successfully in the time series analysis of chaotic dy-

namical systems[80, 88]. A detailed description about the method is given in references

[80] and [88]. The method is briefly explained below. Given a time series xt , t = 1,2, .....,n,

an embedding dimension D and a time delay (τ), a D dimensional vector is constructed as

s 7→ (xs−(D−1)τ, xs−(D−2)τ, ....., xs−τ, xs) (3.17)

This vector is then rearranged as

xs−r0τ ≥ xs−r1τ ≥ xs−r2τ... ≥ xs−rD−2τ ≥ xs−rD−1τ (3.18)

to get an ordinal pattern

π= (r0,r1, .....,rD−1) (3.19)

Each possible ordinal pattern that is generated in this way, is an element of the set of all

permutations of (0,1, ....,D −1). If we have a sufficiently long time series that satisfy N >>
D !, an ordinal pattern probability distribution P = {

p(πi ), i = 1,2, ...,D !
}

can be generated.

In the following example (Figure 3.2) a comparison of histogram and ordinal pattern

based methods is presented. The data shown in the figure 3.2a is generated using the well

known logistic map given by

x(t +1) =µx(t )(1−x(t )) (3.20)

Here µ is the control parameter and t is the discrete time. x can take values between 0

and 1. The value of λ is taken as 4, which results in chaotic dynamics. For demonstration

purpose only 50 data points in the time series are considered. The range of x is divided into

5 bins as shown in Fig. 3.2a. The histogram obtained is shown in Fig. 3.2b. After proper
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normalization, this will serve as a probability distribution that characterizes the given time

series. For ordinal pattern calculation D is taken as 3, so 3! = 6 different patterns can be

formed. They are numbered as given below.

pattern Number

(0,1,2) 1

(0,2,1) 2

(1,0,2) 3

(1,2,0) 4

(2,0,1) 5

(2,1,0) 6

Delay of reconstruction is 1. Since D = 3, first vector can be constructed at t = 3. Thus

S3 = (x(1), x(2), x(3)) = (0.64,0.9216,0.28901)

Similarly

S4 = (x(2), x(3), x(4)) = (0.9216,0.28901,0.82194)

Rearranging S3 and S4 in descending order we get

S′
3 = (0.9216,0.64,0.28901) = (x(2), x(1), x(3))

= (x(3−1), x(3−2), x(3−0))

and

S′
4 = (0.9216,0.82194,0.28901) = (x(2), x(4), x(3))

= (x(4−2), x(4−0), x(4−1))

Following the procedure described above we get the 4th ordinal pattern from S′
3 and the
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5th ordinal pattern from S′
5. Totally 48 such vectors can be generated from 50 data points

and the distribution obtained is given in 3.2c. The pattern 6 is completely absent in the

time series (Fig.3.2c). The absence and presence of such patterns in the distribution plays

an important role in complexity calculations. This type of behavior is generally absent in

histogram based calculations. This is because when generating a histogram we take the

values at each point in time without considering the values preceding it.

3.4. PERMUTATION ENTROPY

One of the natural approaches to quantify the information content of a process is the Shan-

non Entropy(S). It is given by

S[P ] =−
M∑

i=1
pi ln(pi ) (3.21)

S is calculated from a probability distribution P = {
pi : i = 1, ..., M

}
of some observable,

associated with the process. M represent the total number of states the observable can take.

S is also the measure of uncertainty associated with the process. If we can perfectly predict

the outcome at any instant, there is minimum uncertainty, and S[P ] = 0. In contrast, if there

is equal probability for all the states to occur, uncertainty is maximum and S[Pe ] = l n(M).

Here Pe denotes uniform probability distribution Pe = {1/M ,1/M , .....,1/M }. Normalized

Shannon Entropy H is defined as

H [P ] = S[P ]/S[Pe ]. (3.22)

Here we construct the probability distribution using the BP method described above.

Shannon Entropy calculated using this probability distribution is the Permutation Entropy

represented by HS[P ]. In the following discussions, Permutation Entropy is always used in

the normalized form.
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3.5. DELAYED MUTUAL INFORMATION

Mutual Information quantifies the amount of information that one random variable con-

tains about another random variable. It is the reduction in the uncertainty of one random

variable due to the knowledge of other. Mutual information can be defined in terms of

relative entropy. Relative entropy is a measure of the distance between two distributions.

In other words relative entropy gives the inefficiency of assuming that the distribution is q

when the actual distribution is p. The relative entropy or Kullback Leibler distance between

two probability density functions p and q is defined as [94]

SK L
(
p/q

)=∑
x

p(x)ln
[
p(x)/q(x)

]
(3.23)

Using the above definition of relative entropy, Mutual Information can be defined in

the following way. Consider two random variables X and Y with a joint probability den-

sity function p(x, y) and marginal probability density functions p(x) and p(y). Then, the

Mutual Information I (X ,Y ) is the relative entropy between the joint distribution and the

product distribution [94].

I (X ,Y ) = ∑
x∈X

∑
y∈Y

p(x, y)log

(
p(x, y)

p(x)p(y)

)
(3.24)

I (X ,Y ) can also be expressed in terms of Shannon Entropy S.

I (X ,Y ) = S(X )+S(Y )−S(X ,Y ) (3.25)

Here S(X ,Y ) is the joint entropy given by

S(X ,Y ) =− ∑
x∈X

∑
y∈Y

p(x, y)log (p(x, y)) (3.26)

Delayed Mutual Information (DMI) is the Mutual Information between a signal X (t )

and its time shifted version X (t +θ). It can be obtained from the above definitions as
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I (θ) = ∑
x,x(t+θ)∈X

p(x(t ), x(t +θ))log

(
p(x(t ), x(t +θ))

p(x(t ))p(x(t +θ))

)
(3.27)

Also,

I (θ) = S(X (t ))+S(X (t +θ))−S(X (t ), X (t +θ)) (3.28)

3.6. PERMUTATION STATISTICAL COMPLEXITY

The term complexity is often accepted without a precise quantitative definition. But a lot of

theoretical work had been carried out in the past to quantify complexity arising in different

contexts. A detailed survey of the subject in scientific literature suggest that there may not

be a unique definition of complexity, that can be applied in all circumstances. For example

two important methods often used to quantify complexity are Algorithmic complexity and

Dimension of a chaotic attractor. Algorithmic complexity refers to the time and memory

space an algorithm needs as a function of the size of the input data[95]. In other words this

measure gives how the resources required to compute a problem increases as the size of the

problem increases for the algorithm under consideration. Dimension of a chaotic attractor

gives the number of active variables of the system. If the number of active variables is high

extremely complex dynamics can take place, as in the case of delay systems.

The complexity measure used for delay identification in this work is the statistical com-

plexity. The definition and a detailed study of the properties of statistical complexity can be

found in references [96–99]. Statistical complexity measures has recently been used for de-

lay identification in nonlinear systems[80, 88]. Statistical Complexity measures can provide

useful information about the structure of the underlying dynamics when the dynamics is

not perfectly random or ordered[97]. The basic form of the definition is adopted from the

work of Lopez Ruiz, Mancini and Calbet (LMC)[96, 98, 99] and their definition is given as

C LMC =Q[P,Pe ]H [P ] (3.29)

Here H is the normalized Shannon Entropy(0 < H < 1) as defined in the previous sec-
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tion. Q is called "disequilibrium" which is a measure of how far is the given probability

distribution P is from the uniform probability distribution Pe . Q can be written in a gen-

eral form

Q[P,Pe ] =Q0D[P,Pe ]. (3.30)

where D is a measure of distance and Q0 is a normalization constant. Rigorous theoretical

work has been done to find the most suitable way to compute Q. One approach is to use

the Euclidean distance[96].

QE [P,Pe ] =Q0
(E)||P −Pe ||E

=Q0
(E)

N∑
i=1

{
pi −1/N

}2 (3.31)

If one uses the Euclidean norm, the stochastic nature of the vectors P is ignored. These

vectors are essentially calculated from a finite sample, so they are always prone to statistical

errors. Due to these errors, the observed frequencies of occurrence of the output states

may differ from the actual probabilities. In other words finite sample size always restrict us

from distinguishing distributions which are closer than typical fluctuations. It is possible

to circumvent this issue using other distance measures which are more statistical in nature.

As stated in Ref [96] statistical complexity measures are best suited to reveal the intricate

structures hidden in the complicated dynamics of simple systems. For any given value of

H , C LMC can take values between a minimal value and a maximal value. Another approach

is to use Kullback-Leibler relative entropy SK L(p/q) as described in the previous section.

SK L(p/q) measures just how different both distributions are, taking
{

qi
}

as the reference

distribution. If we take the uniform distribution as the reference, it follows

S
(
p/pe

)=∑
i

pi l n
(
pi /pe

)
=∑

i

[
pi ln(pi )−pi ln(pe )

)
=−∑

i
pi ln(pe )−

[
−∑

i
pi ln(pi )

]
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=∑
i

pi ln(N )−Hl n(N )

= (1−H) ln(N ) (3.32)

In the present work we adopt a definition of Statistical complexity which goes to zero

when the process is completely random or perfectly ordered[96, 100]. The distance mea-

sure is based on Jensen-Shannon divergence as detailed below. Permutation Statistical

Complexity (C JS) is defined over two probability distributions - probability distribution of

the ordinal patterns(P) obtained as discussed previously and the uniform distribution(Pe ).

C JS[P ] =Q J [P,Pe ]HS[P ] (3.33)

where Q J is the disequilibrium which quantify how distant P is from Pe . Q increases

if the system has preferred states among the accessible ones. Q J is defined in terms of

Jensen-Shannon divergence J [P,Pe ].

Q J [P,Pe ] =Q0J [P,Pe ] (3.34)

with

J [P,Pe ] = S [(P + ������Pe )/2] S− [P ]/2 S− [Pe ]/2 (3.35)

Q0 is a normalization constant corresponding to the maximum possible value of J [P,Pe ]

which is equal to−2{((N + N1)/ ) ln(N +1)−2ln(2N )+ lnN }
−1

. Maximum value for J [P,Pe

]occurs for a distribution P, which has a particular component (p j ) equal to 1, and all the re-

maining components zero.

3.7. NUMERICAL SIMULATIONS

Dynamical equations are scaled properly before performing numerical calculations. Time(t)

is nondimensionalized by scaling it with respect to the photon lifetime as t/2τs . Feedback

rate(γ) and the electric field(E) are scaled as τsγ and (2τs g0)−1/2E , respectively. Simula-
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Figure 3.3: Steady state operation of QDL without feedback and chaotic operation when feedback is applied.
J = 125A/cm2, delay is 200ps and feedback rate is 0.06ps−1

tions are done using second order Runge-Kutta method and the output is sampled with a

period ∆s = 0.01. 2×108 points are used for the calculations. Figure 3.4 shows the graph

of the four quantifiers discussed in previous sections for γ = 0.18 and τ = 66.66. This de-

lay value corresponds to 400ps in the original time scale. Relaxation oscillation period is

approximately 89ps which scale to τRO ≈ 14.83. Figure 3.4a shows ACF as a function of the

shift in time series. ACF does not have any vividly indicative feature near the value of τ,

from which one can estimate the time delay involved in the feedback process. In contrast

to ACF, all the other three quantifiers give an affirmative indication of the delay. For highly

nonlinear systems like QDL with optical feedback, it is necessary to detect the nonlinear

nonlocal time correlations in the output intensity time series if one wants to estimate the

inherent delay in the time evolution of state variables. The ambiguity in delay estimation

from ACF is attributed to the fact that it detect only linear correlations[92]. Figure 3.4b plot

DMI with the inset graph showing the enlarged portion near the delay value. There is a

pronounced peak near τ, which is slightly shifted to the right. This shift originate from the

finite response time of the laser. The prediction of the response time beforehand is difficult

and is an inherent property of the laser. Two less dominant peaks appear on both sides of

the delay peak at τ±τRO/2. In the figure the peak on the lower side of τ is more dominant
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Figure 3.4: ACF,DMI,HS and C JS calculated from output intensity time series of QDL for τ = 400ps and γ =
0.18. For HS and C JS , D is varied from 5 to 9.

than the one on the higher side. The height of the delay peak as well as of the sidebands

depends on the value of γ. This dependence is discussed later in this section. Figure 3.4c
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Figure 3.5: HS and C JS for D equal to 9 and 10. τ= 400ps and γ= 0.18

& 3.4e shows the plots obtained for HS and C JS for D values from 5 to 9. When the dynam-

ics is reconstructed with a proper value of delay a minimum in entropy and a maximum

in complexity are expected. 3.4c shows the plot of both the measures together. The more

pronounced C JS peak is visible in this plot, but it is difficult to spot the dip in HS as its con-

trast from the baseline is low. The dip in HS and the peak in C JS near θ = τ is evident from

the enlarged graphs in figure 3.4d and 3.4e. Like DMI, delay estimation from both these

measures suffer from the finite response time of the laser. Shift in the peak(dip) from the

actual value of delay is found to be the same in all the three cases. In the complexity and

entropy plots, the peak(dip) at τ+τRO/2 is suppressed while the one at τ−τRO/2 is visible.

As the dimensionality of reconstruction increases the delay signature become prominent

in both HS and C JS . But increasing D to 10 give a different result. In Figure 3.5 entropy and

complexity are plotted for D equal to 9 and 10. For D = 10, HS increases for all the values

of θ reducing the contrast of the dip near τ. But C JS peaks near θ = τ′ and τ′−τRO
′/2 are

enhanced. Interestingly, for other values of θ, C JS[D = 10] is less than C JS[D = 9]. This

shows that better delay retrieval using higher values of D is possible if one uses C JS , even

when the delay signature in HS diminish. For higher values of D, we get the advantage that

the background is minimized, and so better contrast. Next we perform the same calcula-

tions for τ ≈ 33.33(200ps) keeping all other parameters constant. The results are given in
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Figure 3.6: ACF,DMI,HS and C JS calculated from output intensity time series of QDL for τ= 33.33(200ps) and
γ= 0.18. D is taken as 9 for HS and C JS

Figure 3.6. HS and C JS are plotted only for D = 9. Even with a closer scrutiny no affirmative

feature indicative of delay can be spotted in any of the four plots. This reveal the practical

impossibility of delay identification when the actual delay get closer to the relaxation oscil-

lation period. Numerous correlations exist in the QDL dynamics which die only long after

the value of θ exceeds the value of τ. So when the delay get closer to the relaxation oscilla-

tion period, the delay signature get immersed in these correlations and a proper estimation

becomes impossible. Finally we study the behavior of DMI and C JS when feedback rate is

varied. Figure 3.7a& b shows these quantifiers for six different values of γ. Delay is set to

66.66(400ps) in all the cases and the feedback rates are chosen such that the dynamics is in

the coherence collapse regime. For both DMI and C JS higher peaks are obtained for lower
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Figure 3.7: DMI and C JS calculated for six different values of feedback rate(γ) with τ= 66.66(400ps)

values of γ. In the figure highest peak is obtained for the value of γ equal to 0.14. But due to

the pronounced nearby peaks, delay estimation can become ambiguous. As feedback rate

increases the delay peaks reduce height but since the nearby peaks diminish faster, con-

trast from the baseline get enhanced. Especially for C JS , peaks at θ > τ get flattened. When

feedback rate is high the delay estimation become more accurate because the shift due to

the finite laser response time reduces and the peaks get more closer to the actual value of

the delay. This happens identically for both DM I and C JS .

3.8. CONCLUSIONS

We investigate the delay estimation scenarios from the time series using four quantifiers -

namely Auto Correlation Function, Delayed Mutual Information, Permutation Entropy and

Permutation Statistical Complexity. These numerical and information theoretical tech-

niques are applied to the output intensity of a Quantum Dot Laser with optical feedback,

which is operating in the coherence collapse regime. A Quantum Dot Laser shows many

distinctive features in their dynamics when compared to the bulk or quantum well lasers.

Conventional Lang-Kobayashi rate equation model cannot account for all these features

adequately. Considering this fact we have carefully chosen a Quantum Dot Laser model

from literature to simulate the delay dynamics. A detailed comparison of the proposed
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measures is performed for different feedback rates and the delays. From the numerical cal-

culations performed, we find Permutation Statistical Complexity to be the best candidate

due to its distinctive maximum close to the delay. Also, we show that higher dimensionality

of symbolic reconstruction will work with Permutation statistical complexity to get bet-

ter contrast against the background as opposed to Permutation Entropy. Auto Correlation

Function fails to give a distinctive identification unlike the other three measures. When

the delay involved in feedback is close to the relaxation oscillation period of the laser delay

identification become practically impossible with any of these techniques. Due to the finite

laser response time all the measures have an error which give a slightly higher estimation

of delay. For high feedback rates delay estimation become more accurate because the shift

due to finite laser response reduces.



4
IDENTIFYING THE COMPONENTS IN THE

DELAY DYNAMICS OF CURRENT MODULATED

SEMICONDUCTOR LASERS

A close inspection of complex systems often reveal many interdependent processes that

occur in different timescales. Resolving and understanding these timescales are essential

for the proper modeling and prediction of their dynamics[80, 101]. Recent developments

in this aspect of complex systems science provided examples where different numerical

and information theoretical techniques could identify the component processes of com-

plex dynamics[80, 88]. Delay estimation is an important subclass of this more general

problem, where the focus is on identifying the delay signatures from the time series ob-

tained by recording the values of at least one representative variable. Here the origin of

delay is some sort of feedback mechanism present in the system as finite speed of infor-

mation propagation always introduce a time lag in the feedback process. Some important

works on this subject which are relevant to our results reported here are (a) time delay es-

timation in chaotic semiconductor lasers with optical feedback by Rontani et. al. making

66
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use of Auto Correlation Function and Delayed Mutual Information [92] (b) the same prob-

lem is addressed by Soriano et. al. [80] using permutation entropy and permutation sta-

tistical complexity. With this approach, besides delay estimation they could also get clear

indications of other time signatures like relaxation oscillations and picosecond pulsing (c)

work of Zunino et. al. in which delay dynamics of Mackey-Glass system is explored using

permutation-information theory[88]. Semiconductor lasers with optical feedback are par-

ticularly interesting systems because of its technological applications like high bandwidth

modulation and encrypted chaotic communication[102–104]. Unlike many real world sys-

tems which exhibit complex dynamics but for which our control over the operating con-

ditions or critical parameters is minimal, experiments with semiconductor lasers can be

precisely controlled. This makes semiconductor lasers a favorite subject for investigations

in dynamical systems. As mentioned earlier signatures of different inherent and induced

processes can be extracted from the chaotic output time series of a semiconductor laser

with optical feedback using numerical and information theoretical techniques. The fastest

time scale is that of irregular picosecond pulsing which also is an indication of high dimen-

sional chaos[80, 105]. The width of these pulses can have values around 100ps and have

inter pulse separation less than 1 ns[105]. The relaxation oscillations typically fall into a few

GHz range depending on the value of bias current. Time lag in the feedback process can

range from a fraction of nanoseconds to a few nanoseconds. When relaxation oscillation

period and delay are close it becomes extremely difficult to estimate the delay irrespective

of the technique used[91]. In the present work we investigate a scenario where in addition

to the feedback there is a periodic modulation of the bias current. From a more general

point of view, this can be viewed as finding the timescales when an additional external pe-

riodic perturbation is present in the dynamics of the system. This is important because for

complex systems prior knowledge of all the component processes and their time scales may

not be available and there can be disturbances from hidden sources in unexpected ways.

We analyze Auto Correlation Function(ACF), Delayed Mutual Information(DMI), Permu-

tation Entropy(HS), Permutation Statistical Complexity(C JS) and Frequency spectra (FFT)

computed on the intensity time series of SCL with delay feedback to find the timescales
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Figure 4.1: Schematic of semiconductor laser with an external cavity that constitute the delay feedback mech-
anism.

of the component processes. How these measures differentiate and resolve different pro-

cesses for different delays and modulation frequencies are demonstrated and a detailed

comparison is drawn.

4.1. SEMICONDUCTOR LASER WITH OPTICAL FEEDBACK : LANG-

KOBAYASHI MODEL

Theoretical description of semiconductor laser dynamics with coherent optical feedback

was developed by Lang and Kobayashi in 1980[55]. They put forward a delay differential

system to explain experimentally observed phenomena like multistability and hysteresis in

the presence of optical feedback. The rate equations of Lang-Kobayashi model is derived

in this section[78]. Figure 4.1 shows the schematic of the laser diode with an external cavity

which constitute the delay feedback mechanism. In the following discussions r and t rep-

resent reflection and transmission coefficients for the electric field amplitude and R and T

represent reflection and transmission coefficients for the intensity. Laser cavity mirrors are

located at z = 0(mirror 1) and z = L(mirror 2). The reflection and transmission coefficients

of these mirrors for the waves inside the cavity are given by ri and ti , i = 1,2. An external

mirror is placed at z = −Lext (mirror 3). This mirror has reflection and transmission co-

efficients r3 and t3 respectively. For the waves traveling towards the cavity from mirror 3,

the reflection and transmission coefficients at mirror 1 are r1
′ and t1

′. Meaning of other

symbols and terms are carried on from the second chapter.The round trip time in the ex-
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ternal cavity, which is the delay involved in the feedback process, is given by τ= 2Lext /c. At

any instant of time, the electric field coupled into the laser cavity from the external cavity

(t1
′Eext (t )) will have contributions from an infinite number of round trips in the external

cavity, i.e.,

t1
′Eext (t ) = r3t1t ′1Eb(0, t −τ)+ r 2

3 r ′
1t1t ′1Eb(0, t −2τ)+ r 3

3 r ′2
1 t1t ′1Eb(0, t −3τ)+

....+ r n
3 r ′n

1

r ′
1

t1t ′1Eb(0, t −nτ) (4.1)

Eb(0, t −nτ) is the electric field amplitude at z = 0 at time t −nτ. The reflection and trans-

mission coefficients of the first mirror are related by the equations

t1t ′1 = 1− r 2
1 (4.2)

r1 =−r ′
1 (4.3)

When the feedback is present, for calculating the field of the forward traveling wave at

z = 0 the contribution due to the field transmitted from the external cavity is to be added.

So equation 2.8 is modified as

E f (t ) =G1exp(iωthτi n)E f (t −τi n)+ r 2
1 −1

r 2
1

∞∑
n=1

(−r1r3)nE f (t −nτ)+FE (t ) (4.4)

Proceeding in a similar way as the rate equations are derived in the second chapter, one

can see that the time evolution of the complex amplitude of the electric filed is E(t ) can be

written as

dE

d t
= 1+ iαl

2

[
G(N , |E |2)−γp

]
E(t )+ 1

τi n

r 2
1 −1

r 2
1

∞∑
n=1

(−r1r3)nE(t −nτ)+FE (t ) (4.5)

In Lang-Kobayashi model only the first term in the summation is considered, meaning
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the contribution of multiple reflected waves from the external cavity is neglected. This is

a good approximation if the reflection from the external mirror is weak or the laser facet is

antireflection coated. The feedback parameter γ is defined as

γ= (1− r 2
1 )

r3

r1
(4.6)

The equation describing the carrier dynamics is unaffected by the presence of optical

feedback. Taking into account these factors and assuming that the noise correlation time is

much shorter than the carrier and photon decay times, final rate equations describing the

dynamics in the presence of coherent optical feedback can be written as

dE

d t
= 1+ iαl

2

[
G(N , |E |2)−γp

]
E(t )+ γ

τi n
E(t −τ)+FE (t ) (4.7)

d N

d t
= 1

τs

(
pIth −N − N −δ

1−δ P

)
(4.8)

where p is the pumping factor. Relaxation oscillation frequency ΩR of the laser, calcu-

lated from the rate equations without feedback, is given by

ΩRO = 1

2π

√
GN Ith(p −1)

q
(4.9)

4.2. SIMULATION AND RESULTS

4.2.1. COMPARISON OF THE QUANTIFIERS FOR LANG-KOBAYASHI MODEL

Before introducing modulation in the pump current, we compare the quantifiers calculated

for Lang-Kobayashi model with constant pump. Two different operating conditions are

considered, p = 1.06 and p = 1.55. Fig. 4.2 shows the chaotic time series and the plots

obtained by applying five different techniques, FFT, ACF, DMI, HS and C JS to the chaotic

time series for p = 1.05, at which ΩRO is calculated to be 1.31GHz. Delay is 1.2ns and γ

is 10GHz. From Fig. 4.2b, it can be seen that the dominant peak in the spectrum is at

0.85GHz, corresponding to a time period of 1.18ns, which is approximately equal to the
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Figure 4.2: Time series, FFT, ACF, DMI, HS and C JS for p=1.05, γ= 10, τ= 1.2ns when there is no modulation
present.
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Figure 4.3: Time series, FFT, ACF, DMI, HS and C JS for p=1.55, γ= 10G H z, τ= 1.2ns when there is no current
modulation.
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Figure 4.4: Spectra of chaotic time series of SCL output obtained without current modulation when τ= 1.5ns,
γ= 10G H z. (a),(b),(c) and (d) correspond to p values in the order 1.06,1.25,1.55 and 1.75.
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Figure 4.5: Spectra of chaotic time series of SCL output obtained without current modulation when τ= 2ns,
γ= 10G H z. (a),(b),(c) and (d) correspond to p values in the order 1.06,1.25,1.55 and 1.75.
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Figure 4.6: Spectra of the chaotic SCL output when τ< τRO . (a) τRO = 0.75ns and τ= 0.5ns (5) τRO = 0.69ns
and τ= 0.5ns

feedback delay in the laser. The peaks repeat at 1.66GHz and 2.44GHz which are close to

the multiples of 0.85GHz. The same trend can also be observed in the spectrum in Fig. 4.3b

where value of p is 1.55. Here the grid lines are drawn at multiples of 0.83GHz. The peaks

are not equally spaced, but as frequency increases tend to occur at shorter separations.

This behavior becomes visible near to ΩRO which is equal to 4.38GHz in this case. For

detailed investigation we plot FFTs with different pump currents and delay values. Fig.4.4

and Fig. 4.5 depict FFTs for feedback delays 1.5ns and 2ns respectively and for each value of

τ, four pump factors (p) are chosen - 1.06,1.25,1.55 and 1.75. ΩROs for these values of pump

currents in the given order are 1.44GHz, 2.95GHz, 4.38GHz and 5.11GHz. In Fig. 4.4 grid

lines are drawn at multiples of 0.67GHz which give a time period equal to 1.5ns. The graphs

reveal that the locations of the peaks are unchanged as the pump current and thereby the

relaxation oscillation frequency are increased. But the relative strength of these frequency

components change as the relaxation oscillation frequency is changed. A close observation

shows that the most dominant components in the spectra are always close to the relaxation

oscillation frequency. Again it can be seen that close to the relaxation oscillation frequency

the peaks begin to occur at shorter separations. These observations hold also in Fig. 4.5

where the frequency corresponding to the period equal to feedback delay is 0.5GHz. From

these observations we conclude that the peaks upto the relaxation oscillation frequency

in the spectrum give a good estimate of the delay present in the system. This result can
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Ω

Figure 4.7: Graph of relaxation oscillation frequency vs. the largest component in the spectrum

be connected with the findings in [91] where they showed that when relaxation oscillation

period is close to the delay, estimation of delay from output time series become extremely

difficult using AC F or DM I . We look into this scenario by calculating FFTs when τ < τRO .

In Fig. 4.6 two FFTs are shown for τRO values 0.75ns (a) and 0.69ns (b) while keeping τ at

0.5ns. In both cases the peaks are near to 2GHz which is the indication of the delay feedback

process. This can be due to the strengthening of the periodic orbits of which the period or

its multiples matches with that of the feedback delay. In Fig.4.6 a sharp peak exactly at

2GHz is present with a broader and slightly smaller shifted peak to the left. Fig.4.6b shows

the peak at a slightly lower frequency value indicating a higher feedback delay value. The

significance of this result is that delay signature can be observed with FFT while it is difficult

to estimate it from ACF and DMI.

Fig. 4.7 shows the plot of the relaxation oscillation frequency vs. the largest component

in the FFT. A linear relationship between these two shows the effect of relaxation oscilla-

tions on the peaks of the spectra and confirm the previously made observation that the

highest component in FFT is always closer to the relaxation oscillation frequency.

In Fig. 4.2 and 4.3 ACF and DMI has clear and distinctive peaks at the delay value. In the

DMI plot, smaller peaks appear on both sides of the delay peak. It can be seen that these

peaks come closer in Fig. 4.3d compared to Fig. 4.2d . Evidently these peaks are the sig-

natures of relaxation oscillations because for Fig.4.2d corresponds to a lower value of ΩRO

consequently a higher relaxation oscillation period. HS and C JS plots pick many correla-
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tions from the time series that are absent in ACF or DMI. The dips(peaks) at τ,τ/2, τ/3 and

τ/4 can be identified from Fig. 4.2e& f as well as from 4.3e & f. This property of Entropy and

Complexity are very helpful when the correlations are very weak. In the case of Quantum

Dot Laser the correlations in the output intensity series are weak because of the low sensi-

tivity of Quantum Dot Lasers to feedback[27, 29, 106] as discussed in the third chapter. In

that case only HS and C JS detected the delay feedback process. Bulk semiconductor lasers

are more sensitive to delay feedback and so the information theory measures detect many

more correlations.

Delay signature in the spectra posses one important difference when compared with

other measures. All the measures except FFT produce a delay indication at a slightly higher

value than the actual delay present in the system. In the case of FFT, the frequency compo-

nent arising from the feedback delay can occur at higher, lower or exact value of the delay,

for different parameter values. In Fig. 4.2 the actual value of τ is 1.2ns while the peak from

the spectrum give 1.18ns which is less than τ. In Fig. 4.4c & d as well as on 4.5c & d, the

initial peaks in the spectra occur exactly at τ and its multiples. Finally, in Fig. 4.6, the ac-

tual value of τ is 0.5ns, but the peak in the spectra gives a frequency less than 2GHz, which

indicate τ is greater than 0.5ns.

4.2.2. EFFECTS OF CURRENT MODULATION

Fig. 4.8 shows the graphs of the quantifiers for different values of modulation frequency

(Ωm). Here the pumping factor is fixed at 1.05 and the modulation depth(m) at 0.05. Feed-

back rate and delay are 10GHz and 1.2ns respectively. In all the graphs the value of delay

is indicated by an unlabeled dotted vertical line. Each row in the figure corresponds to the

plots for a particular value ofΩm . Ωm is normalized to the relaxation oscillation frequency

(ΩRO) and the values chosen forΩm are 0.7,0.8,1.0,1.2 and 1.4 respectively. For these values

the modulation periods(τm) are respectively 1.07,0.94,0.75,0.62 and 0.53 nanoseconds and

the corresponding frequency values in GHz are 0.93,1.06,1.33,1.61 and 1.88. Relaxation os-

cillation frequencyΩRO of the free running laser at p = 1.05 is 1.33GHz which corresponds

to a period of 0.75ns. All the measures are shown for reconstruction delays(θ) from 0.35ns
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Figure 4.8: ACF, DMI, HS and C JS computed for different values ofΩm at p=1.05. The rows from top to bottom
correspond to Ωm values 0.7,0.8,1,1.2,1.4 respectively. Other parameters are γ = 10G H z, τ = 1.2ns and m =
0.05. For ACF and DMI plots x axis represent the time shift and for HS and C JS x axis represent delay of
reconstruction, both represented by θ
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to 3ns. In this range one can look for the indications of three different processes in the

quantifiers - Relaxation oscillations at 0.75ns, delay feedback at 1.2ns and modulation at

the value chosen for Ωm . Correlations arising from picosecond pulsing appears for values

smaller than 0.35ns and the effect of modulation on those correlations is discussed later.

Fig. 4.8a-d depict the quantifiers for Ωm = 0.7. It can readily seen that only the modula-

tion process has got reflected in ACF. Broad and clear peaks are present at τm(1.07ns) and

2τm(2.14ns). Other time signatures are completely absent. In DMI more features are visi-

ble, but peak at the modulation period is the most dominant and the only affirmative one.

Entropy and complexity shows more resolved features compared to ACF and DMI. When

delay of reconstruction (θ) is proper, the reconstructed time series appear more structured

and consecutively there occur a reduction in entropy and an increment in complexity. But

for other values of θ the reconstructed time series appear to be random and entropy max-

imizes and complexity minimizes. So when the delay of reconstruction equals the delay

of feedback in the system, a dip in entropy and a peak in complexity are expected. This is

what we find in Fig. 4.8c& d, but the dip in HS and the peak in C JS occur at slightly higher

value θ. This is due to the finite response time of the laser and its value can depend on the

parameters of the system as discussed in the third chapter. From a detailed literature sur-

vey on this subject, it seems that irrespective of the technique used, such a shift is always

present in delay estimation from chaotic time series. Though we have shown examples in

the previous section where exact estimation of delay is possible from the spectra, that is

not the case always. This happens only for certain combination of τ and other parameter

values, and cannot be predicted in advance. Unlike ACF and DMI, the delay signature and

the correlation arising from modulation are resolved in HS and C JS . In addition to that,

these two correlations are reflected in different ways in the information theory measures.

At the value of τm the behavior of HS and C JS are reversed from that at τ. A dominant

peak in HS and a dominant dip in C JS are present at τm . A minimum in complexity and a

maximum in entropy indicate a completely random dynamics without any structure in the

time series. This is exactly opposite to the results at τ where the results indicate a complex

dynamics with complex structures hidden in the time series. This shows that when infor-



4.2. SIMULATION AND RESULTS 79

mation theory measures are calculated from time series choosing a proper value for delay

of reconstruction is very critical. A slight change in its value may give completely different

results as in the case shown here. The results also shows that HS and C JS can resolve pro-

cesses that occur in very close timescales and for the same reason are not resolvable in ACF

or DMI.

Now, we increase the value of Ωm gradually and study how the quantifiers change. In

the figure 4.8, second row to fifth corresponds to values of Ωm respectively to 0.8,1,1.2

and 1.4. The indication of feedback process becomes dominant in ACF and DMI only

for Ωm ≥ ΩRO . At Ωm = ΩRO the delay peak in DMI has a minimal background, making

delay estimation clear and straightforward. Also, in HS and C JS the effect of modulating

frequency is gradually reduces as Ωm is increased to ΩRO . One important difference is

that irrespective of the value of Ωm delay indications are always present in HS and C JS .

AtΩm = 1.2, twice the modulation period become close to feedback delay. In fig. 4.8m& n,

these two factors add up at τ to give enhanced peaks for ACF and DMI. On the other hand,

delay signature is diminished in HS and C JS (4.8m & n), since the modulation and delay

feedback are resolved. WhenΩm is increased to 1.4, all the quantifiers show dominant sig-

natures of the delay feedback mechanism and the signatures of other processes disappear.

ACF peak is broad but affirmative because of substantial reduction in the background. DMI

gives the most obvious result at θ = τ, with a flat background. In HS and C JS , other than the

dominant dip(peak) at τ, one can find less dominant dips(peaks) at τ/2 and τ/3.

Fig. 4.9 shows the spectra of the chaotic time series for the five sets of parameter val-

ues considered above. ForΩ= 0.7&0.8, the modulation frequency and its higher harmonics

have dominant peaks in the spectra. Delay indications are highly suppressed in these cases.

AtΩm = 1, which means the modulation frequency is equal to the relaxation oscillation fre-

quency, the higher harmonics in the spectra diminishes and the delay indication emerges

at 0.85GHz which approximately give the period of 1.2 ns. This is in accordance with ACF

and DMI, where delay signature is evident only when Ωm is increased to 1. At Ωm = 1.2

there is a dominant peak at the modulation frequency, but higher harmonics are absent

and delay signature is weak. When Ωm is increased to 1.4, the strength of the modulation



80 CHAPTER 4

0 1 2 3 4 5 60 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

0 . 1 0

3.6
9 G

Hz2.7
7 G

Hz1.8
5 G

Hz

 F r e q u e n c y  ( G H z )
 

 

Am
plit

ud
e S

pe
ctr

um
 of

 S(
t)

0.9
2G

Hz ( a )

0 1 2 3 4 5 60 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

0 . 1 0
( b )

3.1
7 G

Hz

2.1
1 G

Hz

 F r e q u e n c y  ( G H z )

 

 

Am
plit

ud
e S

pe
ctr

um
 of

 S(
t)

1.0
5 G

Hz

0 1 2 3 4 5 60 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

0 . 1 0
( c )

1.3
2 G

Hz
1.6

6 G
Hz

 F r e q u e n c y  ( G H z )

 

 

Am
plit

ud
e S

pe
ctr

um
 of

 S(
t)

0.8
5 G

Hz

0 1 2 3 4 5 60 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

0 . 1 0
( d )

2.4
 G

Hz

1.5
9 G

Hz

 F r e q u e n c y  ( G H z )
 

 

Am
plit

ud
e S

pe
ctr

um
 of

 S(
t)

0 1 2 3 4 5 60 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

0 . 1 0
( e )

1.8
5 G

Hz

 F r e q u e n c y  ( G H z )

 

 

Am
plit

ud
e S

pe
ctr

um
 of

 S(
t)

0.8
5 G

Hz

Figure 4.9: Spectra of the SCL chaotic output corresponding to the graphs given in 4.8. (a) Ωm = 0.7 (b)
Ωm = 0.8 (c)Ωm = 1.0 (d)Ωm = 1.2 and (e)Ωm = 1.4.
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Figure 4.10: C JS calculated for small values of embedding delays and for different values of ΩRO . The first
peak represent the minimum sampling time required to preserve all the correlations.

components drop substantially as is the case with the other quantifiers.

The curves in Fig. 4.10 depict the behavior of C JS for small values of embedding delays

and for all the values ofΩRO considered in the above discussion. In all the cases the curves

reach a maximum at an intermediate value of embedding delay and then drop again. As

discussed in [80], this value of delay(τM ) indicate the time scale of the fastest component

process in the dynamics. This is attributed to the phenomenon of picosecond pulsing,

which occur in faster timescale than the relaxation oscillations. τM determine the mini-

mally required sampling rate which preserve all the nonlinear correlations occurring in the

chaotic dynamics. From Fig. 4.10, we find that the value of τM is affected by the modulation

process. τM is minimum when Ωm = 0.8 and then increases with increase in Ωm . Again,

when theΩm reaches 1.2, τM reaches a maximum and reduces with further increase inΩm .

Even though the underlying mechanism is not evident here, this result clearly demonstrate

how the presence of a periodic perturbation in the system alter the minimum sampling

rate for loss less reconstruction of the system dynamics. In Fig. 4.11 the quantifiers cal-

culated for p = 1.26 and in the presence of modulation are plotted. Here γ and τ are kept

unchanged as in the previous discussions, respectively to 10GHz and 1.2ns. The graphs in
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Figure 4.11: ACF, DMI, HS and C JS computed for different values of modulation strength(m) at p = 1.26.
The rows from top to bottom correspond to m values 0,0.05,0.08,0.1 respectively. Other parameters are γ =
10G H z, τ = 1.2ns and m = 0.05. For ACF and DMI plots x axis represent the time shift and for HS and C JS x
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the first row are calculated from the chaotic time series of the LK model without any cur-

rent modulation. The delay signatures as well as the side bands created by the relaxation

oscillations are evident in all the four measures. In additions dips in entropy and peaks in

complexity appear corresponding to τ/2 and τ/3. 2nd to 4th rows in Fig. 4.11 corresponds

to m values 0.05,0.08 and 0.1. Modulation process dominate in ACF for all values of m. At

m = 0.5, DMI still produce a peak closer to 1.2ns, but highly diminished when compared

to m = 0. With further increase in m, correlations arising from delay get completely sub-

merged in the periodic correlations arising from the modulating frequency. The effect of

modulation process manifest as peaks in entropy and the height of these peaks increases

when modulation strength is increased. The dominance of delay indication in entropy di-

minishes with increase in modulation strength. Irrespective of the value of modulation

depth a comparatively distinct delay peak in present in complexity for all values of m. Lke

HS , in C JS also the periodic correlations arising from modulation, get dominant for higher

values of m, which in this case appear as dips.

4.3. CONCLUSIONS

Our results indicate that understanding and resolving component processes of complex

dynamics from the time series of its observable variables is not trivial. Often a single ap-

proach to the problem may not give desired output. In the presented work, we applied dif-

ferent numerical and information theoretical techniques to the output intensity of a semi-

conductor laser with delay feedback. Different approaches to the same problem proved

advantageous and most often essential to draw meaningful and more accurate conclu-

sions. Special attention has been given to delay estimation from the simulated chaotic

output of Lang-Kobayashi model, which has been the most successful model in predicting

the semiconductor laser dynamics in the presence of coherent optical feedback. A detailed

account of the delay calculation from the spectra of the chaotic intensity time series is pre-

sented. Also Auto-Correlation, Mutual Information, Entropy and Complexity measures are

employed and how different internal and external processes of the semiconductor laser get
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reflected in these measures are discussed. These methods are again applied when a peri-

odic modulation is given to the bias current of the laser. We find that Information theory

measures resolve and distinguish the delay feedback and modulation processes much bet-

ter than other methods. Finally we show how the minimum sampling rate required for the

loss less reconstruction of the intensity time series depend on the modulation frequency.

To check the reliability of the different techniques and the results, calculations are always

done with time series generated with different operating conditions of the laser.





5
SUMMARY

For last some decades semiconductor lasers have been key components in many applica-

tions like optical fiber communications, data storage and material processing. For most of

these applications the laser need to be operated in a stable regime. In the initial phases

of the development of semiconductor lasers the instabilities arising due to the backreflec-

tion from the external optical components were seriously investigated in order to minimize

them. Later developments suggested that these instabilities, arising from self coupling or

feedbak phenomena, can be useful in many ways. In this thesis we investigate the role

played by delay in the feedback mechanism, in producing different types of semiconduc-

tor laser dynamics.

The first chapter is dedicated to providing an introduction to the basics of semicon-

ductor lasers and delay systems. We also discuss some of the interesting phenomena re-

ported in semiconductor lasers with different types of feedback. In the following chapter,

we do the stability analysis of the Delay Differential Equations that describe the dynamics

of Semiconductor Lasers with optoelctronic feedback. We compute the critical delay curves

in the Feedbacks strength-delay parameter space and simulate the delay differential equa-

tions of the system to show the Hopf bifurcations. Our results suggest that linear stability
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analysis of nonlinear delay differential equations can show more complex behaviour com-

pared to linear delay differential equations. We compute the stability islands of the fixed

point in the Feedback strength-delay parameter space and show how they reshape, merge

and disappear with changes in nonlinear gain reduction factor or bias current. Bistability

exhibited by the system is studied by giving different physically meaningful initial condi-

tions. We identify two type of bistable regions in Feedback strength-delay parameter space.

In the first type of bistability, the system goes to a fixed point when the initial condition is

a constant function and goes to an oscillatory state when the initial function is oscillatory.

In the second type, the system goes to a fixed point if the initial function is oscillatory and

goes to oscillatory output if the initial condition is a constant function. Here the constant

function is the output of the laser without feedback, and the oscillatory initial condition is

the laser output before the relaxation oscillations die out.

In the third chapter, we analyze the output of a Quantum Dot Laser with optical feed-

back using different methods. Quantum Dot Lasers have superior performance character-

istics compared to other type of semiconductor lasers. We choose a proper model of Quan-

tum Dot Laser with optical feedback from existing literature and simulate the dynamics.

Computing Auto Correlation Function, Delayed Mutual Information, Permutation Entropy

and Permutation Statistical Complexity on the output time series, we show how the value

of delay taken for feedback can be retrieved. A comparison of the delay estimation for

Quantum Dot Lasers and that of bulk Semiconductor Lasers shows that for Quantum Dot

Lasers the delay signatures obtained with different measures are very weak. Also these sig-

natures disappear very fast when the delay become closer to relaxation oscillation period.

In chaos based optical secure communications, the security depends on the level of diffi-

culty in retrieving the delay value from the chaotic laser output. So use of Quantum Dot

Lasers in such communication systems can increase the layer of security. We also investi-

gate how the delay estimation scenario changes if the operating conditions of the Quantum

Dot Laser are changed.

In the last work, we employ different methods to unravel the timescales of different

processes that contribute to the complex dynamics of a semiconductor laser with coherent
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optical feedback and current modulation. Different techniques reflect different aspects of

the laser dynamics and which also change with the change in feedback rate, delay, mod-

ulation strength and modulation frequency. We present our results by comparing five dif-

ferent techniques calculated on the output time series of the semiconductor laser. Inter-

estingly, we find that information theory measures differentiate delay feedback and mod-

ulation processes in addition to giving indication of the timescales of these processes. We

apply different tools on the time series obtained from the simulation for a wide range of

parameter values to validate our results.

In chapter 3 & 4 we use different statistical, numerical and information theoretical meth-

ods to extract information about the dynamics of the respective laser systems with delay

feedback. This approach proved very successful and can be extended to biological or cli-

matological systems, where we may not have the exact dynamical equations in hand. Com-

parison of different measures in these cases may provide crucial information about the

underlying mechanisms that produce the complex output and which may help to better

understand, model and predict their dynamics.
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Abstract:In this work we investigate semiconductor laser dynamics with optoelectronic delay feedback, both analytically

and numerically. Stability criteria are derived from the delay differential equations of the system. Stability curves are

obtained in the feedback strength–delay parameter space. We show that delay has a role in determining the stability

only for a range of feedback strength and this range can vary depending on other parameters. Effects of bias current

and nonlinear gain reduction on the stability curves are shown in the analysis and numerically verified.

Key words: Semiconductor laser, delay feedback, stability, Hopf bifurcation

1. Introduction

Semiconductor lasers (SLs) with delayed feedback have been investigated extensively in recent years, due to

the rich variety of nonlinear phenomena they exhibit and also because of their potential applications [1]. They

are excellent dynamical models that show many exciting phenomena such as low and high dimensional chaos

[2], local and global bifurcations [3], control [4] and synchronization of chaos [5,6], intensity instabilities [7],

multistability and hysteresis [8], and stochastic resonance effects [9,10]. Incorporating time delay into the

system makes it infinite dimensional and consequently the system can exhibit very complex dynamics. Many

aspects of delay dynamics have been observed and studied first in laser systems [1,11]. These nonlinear effects

in semiconductor lasers have novel technological applications like secure information encryption [9,12] and

chaotic lidar [13]. Modification of laser dynamics with feedback depends on many factors such as type and

strength of feedback, delay time involved in the feedback mechanism, bias current, and other parameters like

gain nonlinearities. Feedback mechanism can be either optical [14,15] or optoelectronic [16,17]. In optical

feedback, a part of the output laser field is injected back into the laser cavity. The other technique involves a

high bandwidth photodetector for optoelectronic conversion of the laser output and the injection of a suitably

amplified detector signal into the pumping current of the SL. Even when the nonlinear gain reduction is strong

enough to inhibit period doubling and chaos in current modulated semiconductor lasers [18], delay feedback

has been proved to induce bifurcations and chaos [19]. Destabilization of the fixed point by Hopf bifurcation in

SLs with optoelectronic feedback has been reported in many works [15,17]. Given such considerations, it is of

utmost importance for the system designer to know how the SL stability varies with feedback and changes with

different parameters. In this work, we analyze the delay differential equations of the SL with optoelectronic

∗Correspondence: bejoyrosily@gmail.com
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delay feedback to study the dependence of Hopf bifurcation phenomena on the nonlinear gain reduction factor,

for a range of values of feedback strength and bias current. In addition, the effect of initial condition on the

dynamics is studied by switching on the delay mechanism at different stages in the operation of the laser.

2. Model and analysis

In optoelectronic delay feedback the phase of the output optical field is not involved in determining the system

dynamics. Therefore, the dynamics can be studied using 2 rate equations, one for carrier density (N) and the

other for photon density (P). Single mode rate equations of an SL are given by [18,20]

dN

dt
=

1

τe

(
I

Ith
− N − N − δ

1 − δ
P

)
(1)

dP

dt
=

1

τp

(
N − δ

1 − δ
(1 − εP ) P − P + βN

)
, (2)

where I is the total pumping current, I th is threshold laser current, and τe and τp are the electron and photon

lifetimes, respectively. δ = n0/n th , n0 is the carrier density required for transparency and n th is the threshold

carrier density. ε is related to the nonlinear gain reduction factor εNL by the equation [18]

ε = εNLΓ

(
τe

τp

)
nth. (3)

is the confinement factor. β is the spontaneous emission factor. When optoelectronic feedback is introduced

the total pumping current at any instant of time becomes

I (t) = Ib + FP (t − τ) . (4)

Here Ib is the constant bias current, F is the feedback strength, and τ represents the delay in feedback. This

delay can arise from time taken for external transit of the laser beam and finite response time of the detector

as well as the intentional delays included in the feedback circuitry. The values of the parameters are chosen as

τp = 6 ps, τe = 3 ns, δ = 0.692, β = 5.0 × 10−5 [18].

To determine the stability of the fixed point of the system consisting of Eqs. (1) and (2), the nature of

the roots of the characteristic equation has to be calculated. The characteristic equation of a delay differential

system is a transcendental equation that admits several solutions, given by [11]

∣∣J0 + e−λτJτ − λI
∣∣ = 0, (5)

where J0 is the Jacobian with respect to the present variables, Jτ is the Jacobian with respect to the delayed

variables evaluated at the equilibrium point, and λs are the eigen values with λ = α + iγ . If all of the

eigenvalues of the characteristic equation have negative real parts, then the equilibrium point is said to be

stable. On the other hand, if at least one of the eigenvalues has a positive real part, then the equilibrium point

is unstable. The characteristic equation for our set of rate equation becomes

λ2 + K2λ + K3 + K4e
−λτ = 0, (6)

where

K2 =

(
1

τe

)[
1 +

P0

(1 − δ)

]
− (N0 − 1 − 2εP0 (N0 − δ))

τp (1 − δ)
(7)
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K3 =
−1

τeτp (1 − δ)

[(
1 +

P0

(1 − δ)

)
(N0 − 1 − 2εP0 (N0 − δ)) +

(
εP 2

0 − P0 − β (1 − δ)
) (

N0 − δ

1 − δ

)]
(8)

K4 =
−F

τeτpIth (1 − δ)

[
−εP 2

0 + P0 + β (1 − δ)
]
. (9)

A change in stability can occur only when a root of Eq. (5) crosses the imaginary axis, that is when the real

part of the eigenvalue changes from negative to positive, where λ with α = 0 is a solution of the equation.

Substituting α = 0 in Eq. (6) and equating the real and imaginary parts of the resulting equation we get

K2γ − K4sin (γτ) = 0 (10)

and

−γ2 + K3 + K4cos (γτ) = 0, (11)

which leads to

τ±. =
±arccos

([
γ2−K3

K4

])
+ 2nπ

γ
, (12)

where n is an integer. Squaring and adding Eqs. (10) and (11) result in a fourth degree equation in γ

γ4 + γ2
(
K2

2 − 2K3

)
+

(
K2

3 − K2
4

)
= 0. (13)

This equation is solved to find the range of F, where γ2 is real and positive. τ± are calculated using Eq. (12)

for these values of F. Both τ− and τ+ satisfy the characteristic equation for α = 0. The results we present

in this work are specific to 2 types of feedback schemes: when feedback starts after the SL has stabilized to

steady state operation and when feedback is present from the beginning of SL operation. In the first scheme

the bifurcations happen on τ− , but feedback can be applied in many possible ways, of which one may lead to

bifurcations on τ+ . As delay systems generally exhibit abundant multistability, to devise such a unique scheme

can be difficult. Since the feedback schemes we use in this work do not give bifurcations on τ+ , in the following

discussions we assume

τi (n) =
−arccos

(
γ2

i −K3

K4

)
+ 2nπ

γi
, (14)

i = 1,2 corresponding to 2 real and positive solutions of Eq. (13). Negative or imaginary values of γ will yield

τi (n)’s that are unphysical. These are the critical values of delay (τc) where the stability changes. To find the

direction in which the eigen value crosses the imaginary axis, dα/dτ is calculated on each τ (n). If dα/dτ

is positive, at delay equal to τi (n), the eigenvalue crosses the imaginary axis to the positive side as the delay

is increased and the fixed point becomes unstable. If dα/dτ is negative at τi (n), the eigen value crosses the

imaginary axis to the negative side of α and the fixed point becomes stable. Thus it can be seen that for the

same value of F, depending on the value of delay, the fixed point can be stable or unstable.

dα

dτ λ=iγ
=

− (K4) γsin (γτ) (−K2 + K4τcos (γτ)) − K4γcos (γτ) (2γ − K4τsin (γτ))

(−K2 + K4τcos (γτ))
2

+ (2γ − K4τsin (γτ))
2 (15)
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3. Simulation and results

Figure 1a shows the plot of τ (n)’s from Eq. (12) plotted against F/I th for the parameter values I0 = 1.5 and

ε = 0.025, where I0 is defined as Ib /I th . Solid curves represent the critical delays with dα/dτ positive and

the dashed curves represent the critical delays with dα/dτ negative. Substituting Eq. (14) in Eq. (15) we find

that dα/dτ is positive for τ1 and negative for τ2 for all values of n. τ1 and τ2 for the same value of n join to

form closed curves (τ1τ2 (n)). Four such closed curves for n equal 1 to 4 are shown in Figure 1a. They exist only

for a range of F; outside this range stability does not depend on τ . Moreover, immediately outside this range,

α is negative, indicating the fixed point is stable. Figure 1b shows the scan of (F/I th , τ) parameter space,

by simulating the laser dynamics with feedback at each point. The shaded area represents points where the

solution P(t) converged to a fixed point and the unshaded region represent the points where P(t) is oscillatory.

Substituting τ = 0 in the characteristic equation and solving, we find that α is negative at τ = 0 below the

curve τ1 (n = 1). Therefore, the fixed point is stable at τ = 0. Thus the first stability region is the area enclosed

between the curves τ = 0 and τ1 (n = 1). In Figure 1b, this is the shaded region below the first unshaded

patch. From τ1 (n = 1), stability regions are formed between a lower dashed curve and an upper solid curve.

Inside the region enclosed by τ1τ2 (n), the fixed point is always unstable because α calculated at the fixed point

is always greater than zero, as indicated by the solid lower curves and dashed upper curves. However, at both

ends of these curves, where there are no overlaps, stability regions are formed between τ2 (n) and τ1 (n + 1).

These are the protruding shaded regions on both sides in Figure 1b. Successive curves overlap to greater extent

in the middle and the stability regions are pushed towards both sides, reducing their area. In the simulations

it is assumed that the feedback is applied after the laser has stabilized to its steady state. What happens when

the feedback is applied before stabilization is discussed in section 3.3. Figure 2 depicts the Hopf bifurcations

at the critical delay values. At F/I th = 0.45, the first instance of losing stability occurs at the critical value of

delay τc = 0.33 ns; this point is marked P1 in Figure 1a. Figure 2a shows P(t) at 0.2 ns where τ < τc . When

feedback is applied P(t) suddenly stabilizes to the new fixed point with highly damped oscillations. At τ = τc

a periodic solution appears as shown in Figure 2b. When τ > τc , undamped growing oscillations are obtained
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Figure 1. (a) Curves representing Eq. (14) for the parameter values I0 = 1.5 and ε = 0.025 and for n from 1 to 4.

Solid curves represent τ1 (n) and dashed curves represent τ2 (n). τ1 and τ2 for the same value of n are joined to form

closed curves. dα/dτn is positive for τ1 and negative for τ2 . (b) Stability regions obtained by simulating the dynamical

Eqs. (1) and (2). Shaded regions show the points at which the laser goes to a steady state when feedback is applied and

the unshaded regions show the points at which the laser goes to an oscillatory state.
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(Figure 2c). Figures 2d–2f depict the same scenario across the second instance (marked P2 in Figure 1a) of

losing stability at τc = 0.8 ns. This numerically verifies the Hopf bifurcation phenomena occurring along the

critical delay curves with dα/dτ is positive, that is, on τ1 (n).
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Figure 2. Solution P(t) of the laser dynamical equations when the feedback is applied at t = 50 ns with F/I th = 0.45.

(a) Damped oscillatory decay to the fixed point at τ = 0.2 ns. (b) Periodic solution at τ = τc = 0.33 ns. (c) Undamped

growing oscillations at τ = 0.4 ns. (d) Damped oscillatory decay to the fixed point at τ = 0.75 ns. (e) Periodic solution

at τ = τc = 0.8 ns. (f) Undamped growing oscillations at τ = 0.85 ns. (a),(b), and (c) show Hopf bifurcation happening

at τc = 0.33 ns and (d),(e), and (f) show the same for τc = 0.8 ns.

3.1. Effect of nonlinear gain reduction factor

We show that changes in ε can drastically change the critical delay curves. In Figure 3 delay curves for

increasing values of ε are plotted. For small values of ε stability regions are formed only on the lower side

of F/I th except for the first stability region that lies between τ = 0 and τ1 (n = 1). This result is shown in

Figure 3a for the value 0.01 of ε . Here all τ1 ’s where dα/dτn is positive (solid curves) converge closer to the

τ = 0 axis for higher values of F/I th and at least one eigen value has a positive real part above τ1 (n = 1),

on the right end. The span of the curves decreases as ε is increased to 0.02 in Figure 3b, which indicates that

delay has a role in determining stability only for shorter ranges of F/I th . With further increase in ε , the curves

with dα/dτn positive and negative for the same n join at the right end to form closed structures (τ1τ2 (n))

and stability regions are formed at both ends. At the same time, the extent of overlap between these closed
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curves decreases. In Figure 3c, τ1τ2 (1) and τ1τ2 (2) completely move apart from overlap for ε = 0.03 and the

stability region becomes continuous between them. More curves move apart as ε is increased and they change

to elliptical as shown in Figure 3d. Around ε = 0.035 the curves completely disappear, making the stability of

the fixed point independent of τ .
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Figure 3. Critical delay curves for 4 different values of ε . (a) ε = 0.01, (b) ε = 0.02, (c) ε = 0.03, (d) ε = 0.031.

3.2. Effect of bias current

Figures 4a–4c show critical delay curves at ε = 0.025 for I0 equal to 1.4, 1.7, and 1.9, respectively. Increase

in I0 has similar effects as increase in ε . Dependence of stability on delay converges to shorter ranges of F for

higher I0 ’s. The closed curve structures (τ1τ2 (n)) change to oval and the extent of overlap between the them

decreases. Around I0 equal to 1.9 four curves move apart and form continuous stability regions between them.

As a result of flattening of the curves, for higher I0 successive Hopf bifurcations come closer in delay. The

curves completely disappear before I0 is increased up to 2.

3.3. Effect of initial condition

Numerical simulations in the previous sections had the assumption that the laser has settled to the steady state

before feedback is applied. Thus for the delay differential equations representing the delay feedback dynamics the

initial condition is a constant function, namely the steady state solution without feedback. However, situations

can arise where this is not the case. Feedback can be present from t = τ , where τ is the delay in feedback. Here,
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Figure 4. Critical delay curves for 3 different values of I0 . (a) I0 = 1.4, (b) I0 = 1.7, (c) I0 = 1.9.
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Figure 5. Differences in final states when feedback is applied after the SL is stabilized to the fixed point and before

stabilization for the parameter values I0 = 1.5, ε = 0.025. In the completely shaded region the SL goes to the same

final state in both cases. In the completely unshaded area, SL goes to a fixed point when feedback is started after the

laser is stabilized to the fixed point and to an oscillatory solution when the feedback is started at time t = τ (delay).

In the half-shaded regions the dynamics are switched. The SL goes to an oscillatory state in the first situation and to a

fixed point in the second.
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if τ is shorter than the time taken by SL to stabilize to the fixed point after relaxation oscillations, the initial

function is not a constant. In this scheme the parameter space is divided based on 3 types of behavior: regions

where the attractor remained the same as with the previous case, regions where the attractor changed from

fixed point to a limit cycle, and regions where the attractor changed from a limit cycle to a fixed point. Figure

5 characterizes the (F/I th ,τ) parameter space for these 3 types of behavior. One such instance for parameter

values F/I th = 0.52, I0 = 1.5, and τ = 1.1 ns is given in Figure 6. In Figure 6a, when the feedback is applied

at t = 50 ns, SL is already operating at the steady state, and P(t) settles to the new fixed point after damped

oscillations. Figure 6b shows the case when feedback is present from 1.1 ns, which is equal to the delay. In this

case P(t) is undamped and slowly growing. Such points are represented by the unshaded regions in Figure 5.

If P(t) is oscillatory when the initial feedback function is constant, one would expect the same for a case when

the initial feedback function itself is oscillatory, but we get the unexpected result as shown in Figures 6c and

6d. Here the final state is the fixed point when feedback is applied at t = τ (0.53 ns), but the final state is

oscillatory when feedback is applied after the stabilization of the SL to the fixed point. The half-shaded regions

in Figure 5 represent this behavior.
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Figure 6. Solution P(t) of the rate equations for 2 different initial conditions for the parameter values F/I th = 0.52, I0

= 1.5, and τ = 1.1 ns. (a) Feedback is applied at 50 ns when the laser is already operating at its steady state. Dynamics

converge to the new fixed point after damped oscillations. (b) Feedback mechanism is present from a time t = τ after

the beginning of the operation. Here the solution goes to oscillatory state. (c) and (d) show the final states switched for

F/I th = 0.99 and τ = 0.53 ns.
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4. Conclusions

We have done the linear stability analysis of the nonlinear delay differential equations arising in a SL with

optoelectronic delay feedback. Critical stability curves and Hopf bifurcation points obtained from the analysis

are verified by simulating the delay dynamics of the SL. Here simulations are done such that delay feedback is

switched on only after the SL has stabilized to the fixed point. Deviations from the predicted behavior, when

the feedback is present from the beginning, are discussed. Effects of nonlinear gain reduction factor and bias

current are deduced from the analysis and are numerically verified. Increase in both of these parameters reduces

the range of feedback strength where the stability depends on delay. Beyond a critical value, stability of the

steady state solution becomes independent of delay.
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Delay signatures in the chaotic intensity output of a Quan-
tum Dot Laser with optical feedback.
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Abstract. Delay identification from the chaotic intensity output of a Quantum Dot Laser with
optical feedback is done using numerical and information theoretical techniques. Four quantifiers,
namely Auto Correlation function, Delayed Mutual Information, Permutation Entropy and Permu-
tation Statistical Complexity are employed in delay estimation. A detailed comparison of these
quantifiers with different feedback rates and delay is undertaken. Permutation Entropy and Permu-
tation Statistical Complexity are calculated with different dimensions of symbolic reconstruction to
obtain the best results.

Keywords. Quantum Dot Laser, Delay, Information Entropy, Statistical Complexity, Mutual In-
formation

PACS Nos. 05.10.-a

1. Introduction

Research in complex systems require quantitative predictions of their dynamics, even
before we completely understand the underlying mechanisms. This can only be done
by collecting data about the past evolution and retrieving the structures in the dynamics
from the collected data. Numerous statistical and information theoretical approaches have
been successfully employed for analyzing the time series obtained from the observation of
complex processes. Due to finite speed of information propagation, interaction between
different components of a complex system do inevitably involve time delays. Identify-
ing these delays are crucial for modeling and forecasting applications in different fields
including biology[1], optics[2, 3] and climate science[4]. Most conventional and widely
used methods for estimating delay in complex dynamics are auto correlation function
(ACF) and delayed mutual information (DMI). Several new techniques were recently dis-
covered for delay identification. Information theory measures like Entropy and Complex-
ity have been shown to be particularly useful in the case of nonlinear systems[3, 5]. In the
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present work we focus on the dynamics of a Quantum Dot Laser(QDL) with optical feed-
back working in the coherence collapse regime. Dynamics of QDLs show quite distinc-
tive features compared to bulk semiconductor dynamics. Conventional Lang-Kobayashi
equations fail in many places to accurately predict QDL dynamics[6]. In QDLs relax-
ation oscillations are strongly damped due to different carrier capture dynamics into the
Quantum Dots (QDs)[7]. Strong damping added with relatively small line width enhance-
ment factor(α) make QDLs less sensitive to optical feedback[8]. So instabilities in QDLs
occur at higher feedback strengths compared to bulk or Quantum Well(QW) lasers. Syn-
chronization of QDLs working in the chaotic regime is currently an active research area
with the prospect of using them for secure communication with chaotic carriers[9]. A
major concern in chaos based secure communication is the level of difficulty to identify
the parameters of the chaotic emitter from the output time series. Chaos generated in
feedback systems can have very high dimensionality due to the infinite number of degrees
of freedom introduced by time delay. But once the delay value is retrieved from the time
series, the high dimensional attractor can be projected to a low dimensional phase space,
which may result in low complexity numerical techniques to decrypt the information.
This security aspect of chaos based communication had been addressed for semiconduc-
tor lasers modeled with conventional Lang-Kobayashi equations[3, 10, 11]. Rontani et.al.
[10] showed that a careful choice of laser operating conditions can make delay retrieval
extremely difficult. In another work [11], the same group also demonstrated that the time
scales of laser dynamics in its route to chaos influence the difficulty in delay identifica-
tion. Recently, information theory measures like permutation entropy(HS) and permuta-
tion statistical complexity(CJS) were employed to get good estimates of delay value from
the time series of delay differential systems. Soriano et. al.[3] used this approach to find
the intrinsic time scales in the dynamics of a semiconductor laser with optical feedback
operating in the coherence collapse regime. We use ACF,DMI,HS and CJS to retrieve
delay from the chaotic output intensity series of a QDL with external cavity. Reliability of
these measures are investigated when external cavity round trip time and feedback rates
are varied.

2. Theoretical Framework

2.1 Rate Equation Model

We adopt the dynamical model of QDL from Ref. [8]. This model presumes that the car-
riers are first injected into the quantum well before being captured into the quantum dots.
The dynamics is described by the following set of delay differential equations that give the
time evolution of the complex amplitude of the electric field(E), occupation probability in
a dot(ρ) and the carrier density in the well(N).

Ė = − E

2τs
+
g0V

2
(2ρ− 1)E + i

δω

2
E +

γ

2
E (t− τ) (1)

ρ̇ = − ρ

τd
− g0 (2ρ− 1) |E|2 + F (N, ρ) (2)

Ṅ =
J

q
− N

τn
− 2NdF (N, ρ) (3)
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τs,τn and τd are the photon lifetime, carrier lifetime in the well and the carrier lifetime
in the dot, respectively. g0 = σvg where σ is the cross section of interaction of the
carriers in the dots with the electric field and vg is the group velocity. V = 2NdΓ/d,
where Nd is the two dimensional density of dots, Γ is the confinement factor and d is
the thickness of the dot layer. γ is the feedback rate and τ is the delay involved in the
feedback process. F (N, ρ) is the rate of exchange of carriers between the well and dots
and is given by F (N, ρ) = Rcap(1−ρ)−Rescρ. Rcap = CN2 +BN where B describes
carrier-phonon capture and C describes Auger carrier capture. For simulations B is taken
as zero. This is justified because discrete nature of QD energy levels and fixed energies of
Longitudinal Optical (LO) phonons make carrier-phonon capture in QD structures highly
improbable [7]. Temperature dependent carrier escape from the dots is given by Resc. δω
take into account the dependence of laser frequency on carrier densities in QW and QD
regions. δω = β1N + β2ρ where plasma effect from the carriers in the well is described
by β1 and variations caused by population in the dots is described by β2[8]. The values
used in the simulations are τs = 3ps, τn = τd = 1ns, g0 = 0.9259 × 10−10m3s−1,
V = 2.4×1022m−3, Nd = 2×1015m−2, β1 = 0, β2 = 2, C = 10−20m4s−1, Resc = 0
[8].

2.2 Auto Correlation Function

ACF quantifies the linear relationship between a signal and its time-shifted version. ACF
for a random process X(t) is defined as

Γ(θ) =
1

σ̂2
X

〈(x(t)− µ̂X)(x(t+ θ)− µ̂X)〉 (4)

x(t) and x(t+θ) are sampled fromX(t). µ̂X = 〈x(t)〉 and σ̂X = 〈(x(t)−µ̂X)2〉1/2.〈.〉
denotes expectation value.

2.3 Permutation Entropy

One of the natural approaches to quantify the information content of a process is the Shan-
non Entropy(H). H is calculated from a probability distribution P = {pi : i = 1, ...,M}
of some observable, associated with the process. M represent the total number of states
the observable can take.

H[P ] = −
M∑

i=1

piln(pi) (5)

It is also the measure of uncertainty associated with the process. If we can perfectly
predict the outcome at any instant, there is minimum uncertainty, and H[P ] = 0. In
contrast, if there is equal probability for all the states to occur, uncertainty is maxi-
mum and H[Pe] = ln(M). Here Pe denotes uniform probability distribution Pe =
{1/M, 1/M, ....., 1/M}. To find the associated probability distribution, we use Bandt and
Pompe symbolization method, which has recently been applied successfully in the time
series analysis of chaotic dynamical systems. A detailed description about the method is
given in references [3] and [5]. The method is briefly explained below. Given a time se-
ries xt, t = 1, 2, ....., n, an embedding dimension D and a time delay (τ ), a D dimensional
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vector is constructed as

s 7→ (xs−(D−1)τ , xs−(D−2)τ , ....., xs−τ , xs) (6)

This vector is then rearranged as

xs−r0τ ≥ xs−r1τ ≥ xs−r2τ ... ≥ xs−rD−2τ ≥ xs−rD−1τ (7)

to get an ordinal pattern

π = (r0, r1, ....., rD−1) (8)

Each possible ordinal pattern that is generated in this way, is an element of the set of
all permutations of (0, 1, ...., D−1). If we have a sufficiently long time series that satisfy
N >> D!, an ordinal pattern probability distribution P = {p(πi), i = 1, 2, ..., D!} can
be generated. Shannon Entropy calculated using this probability distribution is the Per-
mutation Entropy denoted by HS . In the following discussions, Permutation Entropy is
always used in the normalized form given by

HS [P ] = H[P ]/H[Pe]. (9)

2.4 Delayed Mutual Information

Mutual Information of two discrete random variables X&Y , is defined as [10, 11]

I(X,Y ) =
∑

x∈X

∑

y∈Y
p(x, y)log

(
p(x, y)

p(x)p(y)

)
(10)

where p(x) and p(y) are marginal probability density functions and p(x, y) is the joint
probability density function. DMI can also be defined in terms of H

I(θ) = H(X(t)) +H(X(t+ θ))−H(X(t), X(t+ θ)) (11)

DMI between X(t) and X(t+ θ) can be obtained from the first definition as

I(θ) =
∑

x,x(t+θ)∈X
p(x(t), x(t+ θ))log

(
p(x(t), x(t+ θ))

p(x(t))p(x(t+ θ))

)
(12)

2.5 Permutation Statistical Complexity

Statistical Complexity measures can provide useful information about the structure of
the underlying dynamics when the dynamics is not perfectly random or ordered[12]. So
by definition, statistical complexity goes to zero as the process tend to either of these
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extremes.[13, 14] Permutation Statistical Complexity (CJS) is defined over two probabil-
ity distributions - probability distribution of the ordinal patterns(P) obtained as discussed
previously and the uniform distribution(Pe).

CJS [P ] = QJ [P, Pe]HS [P ] (13)

where QJ is the disequilibrium which quantify how distant P is from Pe. Q increases
if the system has preferred states among the accessible ones. QJ is defined in terms of
Jensen-Shannon divergence J [P, Pe].

QJ [P, Pe] = Q0J [P, Pe] (14)

with

J [P, Pe] = H[[P + Pe]/2]−H[P ]/2−H[Pe]/2 (15)

Q0 is a normalization constant corresponding to the maximum possible value of J [P, Pe]

which is equal to −2 {((N + 1)/2) ln(N + 1)− 2ln(2N) + lnN}−1. Maximum value
for J [P, Pe] occurs for a distribution P, which has a particular component (pj) equal to
1, and all the remaining components zero.

3. Numerical Simulations

Dynamical equations are scaled properly before performing numerical calculations. Time(t)
is nondimensionalized by scaling it with respect to the photon lifetime as t/2τs. Feedback
rate(γ) and Electric field(E) are scaled as τsγ and (2τsg0)−1/2E, respectively. Simula-
tions are done using second order Runge-Kutta method and the output is sampled with a
period ∆s = 0.01. 2× 108 points are used for the calculations. Figure 1 shows the graph
of the four quantifiers discussed in previous sections for γ = 0.18 and τ = 66.66. This
delay value corresponds to 400ps in the original time scale. Relaxation oscillation period
is approximately 89ps which scale to τRO ≈ 14.83. Figure 1a shows ACF as a function
of the shift in time series. ACF does not have any vividly indicative feature near the value
of τ , from which one can estimate the time delay involved in the feedback process. In
contrast to ACF, all the other three quantifiers give an affirmative indication of the delay.
For highly nonlinear systems like QDL with optical feedback, it is necessary to detect the
nonlinear nonlocal time correlations in the output intensity series if one wants to estimate
the inherent delay in the time evolution of state variables. The ambiguity in delay estima-
tion from ACF is attributed to the fact that it detect only linear correlations[11]. Figure 1b
plot DMI with the inset graph showing the enlarged portion near the delay value. There is
a pronounced peak near τ , which is slightly shifted to the right. This shift originate from
the finite response time of the laser. The prediction of the response time beforehand is
difficult and is an inherent property of the laser. Two less dominant peaks appear on both
sides of the delay peak at τ±τRO/2. In the figure the peak on the higher side of τ is more
dominant than on the lower side. The height of the delay peak as well as of the sidebands
depends on the value of γ. This dependence is discussed later in this section. Figure 1c &
1e shows the plots obtained for HS and CJS for D values from 5 to 9. When the dynam-
ics is reconstructed with a proper value of delay, a minimum in entropy and a maximum
in complexity are expected. 1c shows the plot of both the measures together. The more
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Figure 1. ACF,DMI,HS and CJS calculated from output intensity time series of QDL
for τ = 400ps and γ = 0.18. For HS and CJS , D is varied from 5 to 9.
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Figure 2. HS and CJS for D equal to 9 and 10. τ = 400ps and γ = 0.18
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Figure 3. ACF,DMI,HS and CJS calculated from output intensity time series of QDL
for τ = 33.33(200ps) and γ = 0.18. D is taken as 9 for HS and CJS
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pronounced CJS peak is visible in this plot, but it is difficult to spot the dip in HS as its
contrast from the baseline is low. The dip inHS and the peak inCJS near θ = τ is evident
from the enlarged graphs in figure 1d and 1e. Like DMI, delay estimation from both these
measures suffer from the finite response time of the laser. Shift in the peak(dip) from the
actual value of delay is found to be the same in all the three cases. In the complexity
and entropy plots, the peak(dip) at τ + τRO/2 is suppressed while the one at τ − τRO/2
is visible. As the dimensionality of reconstruction increases the delay signature become
prominent in bothHS and CJS . But increasing D to 10 give a different result. In Figure 2
entropy and complexity are plotted for D equal to 9 and 10. ForD = 10,HS increases for
all the values of θ reducing the contrast of the dip near τ . But CJS peaks near θ = τ ′ and
τ ′ − τRO ′/2 are enhanced. Interestingly, for other values of θ, CJS [D = 10] is less than
CJS [D = 9]. This shows that better delay retrieval using higher values of D is possible
if one uses CJS , even when HS fail to give an estimation. For higher values of D, we
get better contrast for the delay peak because the values of complexity in the background
get considerably reduced. Next we perform the same calculations for τ ≈ 33.33(200ps)
keeping all other parameters constant. The results are given in Figure 3. HS and CJS
are plotted only for D = 9. Even with a closer scrutiny no affirmative feature indicative
of delay can be spotted in any of the four plots. This reveal the practical impossibility of
delay identification when the actual delay get closer to the relaxation oscillation period.
Numerous correlations exist in the QDL dynamics which die only long after the value of
θ exceeds the value of τ . So when the delay get closer to the relaxation oscillation period,
the delay signature get immersed in these correlations and a proper estimation becomes
impossible. Finally we study the behavior of DMI and CJS when feedback rate is var-
ied. Figure 4a& b shows these quantifiers for six different values of γ. Delay is set to
66.66(400ps) in all the cases and the feedback rates are chosen such that the dynamics is
chaotic. For both DMI and CJS higher peaks are obtained for lower values of γ. In the
figure highest peak is obtained for the value of γ equal to 0.14. But due to the pronounced
peaks at τ ± τRO/2, delay estimation can become ambiguous. As feedback rate increases
the delay peaks reduce height but since the nearby peaks diminish faster, contrast from the
baseline get enhanced.Especially for CJS , peaks at θ > τ get flattened. When feedback
rate is high the delay estimation become more accurate because the shift due to the finite
laser response time reduces and the peaks get more closer to the actual value of the delay.
This happens identically for both DMI and CJS .

4. Conclusions

We investigate the delay estimation scenarios from the chaotic time series using four
quantifiers - namely Auto Correlation Function, Delayed Mutual Information, Permuta-
tion Entropy and Permutation Statistical Complexity. These numerical and information
theoretical techniques are applied to the chaotic output intensity of a Quantum Dot Laser
with optical feedback. A detailed comparison of these measures is performed for different
feedback rates and the delays. From the numerical calculations performed, we find Per-
mutation Statistical Complexity to be the best candidate due to its distinctive maximum
close to the delay. Also, we show that higher dimensionality of symbolic reconstruc-
tion will work with Permutation statistical complexity to get better contrast against the
background as opposed to Permutation Entropy. Auto Correlation Function fails to give
a distinctive identification unlike the other three measures. When the delay involved in
feedback is close to the relaxation oscillation period of the laser, delay identification be-
comes practically impossible with any these techniques. Due to the finite laser response
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time all the measures have an error which give a slightly higher estimation of delay. For
high feedback rates delay estimation become more accurate because the shift due to finite
laser response reduces.
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