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Notations and Abbreviations used

e : column vector of 1’s with appropriate dimension

0 : vector consisting of 0’s with appropriate dimension

O : zero matrix with appropriate dimension

ej : column vector of appropriate dimension with 1 in the

jth position and 0 elsewhere

e′j : row vector of appropriate dimension with 1 in the

jth position and 0 elsewhere

I : identity matrix of appropriate dimension

Ir : identity matrix of dimension r

PH: Phase type

CTMC: Continuous Time Markov Chain

QBD: Quasi-birth-and-death

LIQBD: Level Independent Quasi-Birth-and-Death process

LDQBD: Level Dependent Quasi-Birth-and-Death process

CLT : Common Life Time





Chapter 1

Introduction

In any service station where it takes a positive amount of time to serve cus-

tomers, queue of customers get formed. In classical queues, service process

goes on if there is at least one customer and the server is ready to serve –

availability of resources is not taken into consideration. This is not the case

with inventory. Absence of inventory (no item) results in no service even when

there are customers and the server is ready to serve. In classical inventory,

queue of customers get formed only when there is no item in inventory, pro-

vided customers are allowed to join in the absence of inventory. This is a

consequence of negligible service time. In practice it takes sometime to serve

an item and so inventory with positive service time presents a more realis-

tic situation than that with negligible service time. Such models are referred

to as inventory with positive service time, or often called queueing-inventory

problems by several researchers. In this thesis one encounters models pro-

viding explicit solution for system state distribution and also those that need

algorithmic analysis.

Queueing phenomena can be found in almost all walks of life. For in-

stance, in airport check-in systems, traffic intersections, supermarket check-out

counters, telecommunication systems, manufacturing systems, bank branches.

1



2 Introduction

Queueing theory is the mathematical study of ‘queue’ or ‘waiting lines’

where an item from inventory is provided to the customer on completion of

service. A typical queueing system consists of a queue and a server. Cus-

tomers arrive in the system from outside and join the queue in a certain way.

The server picks up customers and serves them according to certain service

discipline. Customers leave the system immediately after their service is com-

pleted.

For queueing systems, queue length, waiting time and busy period are of

primary interest to applications. The theory permits the derivation and cal-

culation of several performance measures including the average waiting time

in the queue or the system, mean queue length, traffic intensity, the expected

number waiting or receiving service, mean busy period, distribution of queue

length, and the probability of encountering the system in certain states, such

as empty, full, having an available server or having to wait a certain time to

be served.

The simplest form of queuing models are based on the birth and death pro-

cess, where the birth process describes the inter-arrival time (time between two

arrivals) to the queue and the death process describes the service or holding

time in the queue. Birth-death processes have many applications in demog-

raphy, queueing theory and in biology, for example to study the evolution of

bacteria. The state i, of the process represents the current size of the popula-

tion. The transitions are limited to births and deaths. When a birth occurs,

the process goes from state i to i+ 1 and with the occurrence of a death, the

process goes from state i to state i− 1.

When analyzing several stochastic system, block-structured stochastic mod-

els are found to be a useful and effective mathematical tool. The block-

structured stochastic models began with studying the matrix-geometric sta-

tionary probability of a quasi-birth-and-death process (QBD) process. The

initial attention was directed toward performance computation.
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1.1 Quasi-birth-and-death process

A continuous time quasi-birth-and-death (QBD) process Ω = {(Xk, Jk), k ≥

0} is a continuous time Markov chain with state space {(0, j); 1 ≤ j ≤

a}
⋃
{(n, j);n ≥ 1, 1 ≤ j ≤ b} where a and b are positive integers. We call

Xk the level variable and Jk the phase variable. The Markov chain is

called a quasi-birth-and-death process if the level variable Xk increases or de-

creases its value by at most one at each transition: it is possible to move in

one step from (n, j) → (m, j′) only if m = n, n + 1 or n − 1 (provided in the

last case that n ≥ 1). If n = 0, then m = 0 or 1. If the transition rates

are level independent, then the QBD process is called level independent

quasi-birth-and-death process (LIQBD); else it is called level dependent

quasi-birth-and-death process (LDQBD). An LIQBD is a Markov process

with state space {(0, j); 1 ≤ j ≤ a}
⋃
{(n, j);n ≥ 1; 1 ≤ j ≤ b} and its in-

finitesimal generator is of the form

Q =









A00 A01

A10 A1 A0

A2 A1 A0

. . .
. . .

. . .









(1.1)

where A00 is an a × a matrix, A01 is an a × b matrix, A10 is a b × a matrix

and A0, A1, A2 are square matrices of order b. A0 represents the arrival of a

customer to the system; that is transition from level n→ n+1. A2 represents

departure of a customer after service completion: n→ n− 1, A1 describes all

transitions in which the level does not change (transitions within levels). Also

matrices A00, A01, A10, A0, A1, A2 satisfy (A00 + A01)e = (A10 + A1 + A0)e =

(A2 +A1 +A0)e = 0. Essentially we have a quasi-Toeplitz structure for Q in

the LIQBD process.

Let A = A0 + A1 + A2. Then A is a generator matrix of order b, which

governs the transitions of the phase variable, given that the level variable is 2
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or greater. The generator matrix A and its invariant probability vector play

an important role in the study of structured Markov chain.

1.2 Matrix Analytic Method

Marcel F Neuts pioneered Matrix Analytic Methods in the study of queue-

ing models in the 1970’s. It is a tool to construct and analyze a wide class

of stochastic models, particularly telecommunication networks, transportation

systems, supply chain systems, manufacturing systems and inventory systems,

using a matrix formalism to develop algorithmically tractable solution. For a

detailed description of this method see Latouche and Ramaswami [28], Neuts

[33], Qi-Ming He [37] and for specialized subjects see Alfa [2] for matrix an-

alytic methods in discrete time queues, Artalejo and Gomez-Corral [4] for

matrix analytic methods applied to retrial queues, Bini et al. [9] for ma-

trix analytic methods and numerical computation, Breuer and Baum [11] for

matrix analytic methods and queueing theory and Tian and Zhang [50] for

matrix analytic methods on vacation queues. The matrix geometric method

is for quasi-birth-and-death process (QBD) whereas matrix analytic method

is for GI/M/1 type structures.

From Neuts [33] we have the following theorem:

Theorem 1.2.1. The process Q in (1.1) is positive recurrent if and only

if the minimal non-negative solution R to the matrix quadratic equation

R2A2 +RA1 +A0 = O (1.2)

has all its eigenvalues lie inside the unit disk and the finite system of equations

x0A00 + x1A10 = 0,

x0A01 + x1[A1 +RA2] = 0,

x0e+ x1(I −R)−1
e = 1 (1.3)
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has a unique positive solution for x0 and x1.

If the matrix A = A0 +Al +A2 is irreducible, then sp(R) < 1 if and only if

πA0e < πA2e (1.4)

where π is the stationary probability vector of the matrix A. The stationary

probability vector x = (x0,xl,x2, ...) of Q is given by

xi = x1R
i−1, i ≥ 2. (1.5)

We can use an iterative algorithm or logarithmic reduction algorithm (see

Latouche and Ramaswami ([28], [29])) for computing rate matrix R of the

equation (1.2).

1.2.1 GI/M/1 type Markov chain

A continuous time GI/M/1 type Markov chain (see Neuts ([33], [34]))

{(Xk, Jk), k ≥ 0} is a continuous time Markov chain with state space {((n, j);n ≥

0; 1 ≤ j ≤ m} where m is a positive integer and the infinitesimal generator is

of the form

Q̃ =










B0 A0

B1 A1 A0

B2 A2 A1 A0

...
...

. . .
. . .

. . .










. (1.6)

The block matrices satisfy the following condition: Bne+(A0+A1+...+An)e =

0, for n ≥ 0. The matrix A =
∞∑

k=0

Ak has negative diagonal and non-negative

off-diagonal elements. Its row sums are non-positive.

Theorem 1.2.2. (see Neuts [33]) The irreducible Markov process Q̃ in

(1.6) is positive recurrent if and only if the minimal non-negative solution R

of the equation
∞∑

k=0

RkAk = O (1.7)
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has sp(R) < 1 and if there exists a positive vector x0 such that

x0B[R] = 0. (1.8)

The matrix B[R] =
∞∑

k=0

RkBk is a generator.

The stationary probability vector x = (x0,x1,x2, ...) of Q̃ is given by

xk = x0R
k, for k ≥ 0 (1.9)

together with the normalizing condition

x0(I −R)−1
e = 1. (1.10)

The matrix R has a positive maximal eigenvalue θ. If the generator A is

irreducible, the left eigenvector u∗ of R, corresponding to θ, is determined

up to a multiplicative constant and may be chosen to be positive. Then the

matrix R satisfies sp(R) < 1 if and only if

πA0e <
∞∑

k=2

(k − 1)πAke (1.11)

where π satisfies πA = 0 and πe = 1.

Whenever θ = sp(R) < 1, the equality

A0e =

∞∑

k=1

Rk
∞∑

v=k+1

Ave (1.12)

holds.

Phase type distribution (continuous time)

Phase type distributions (PH-distributions) were introduced by Neuts (1975)

as a generalization of the exponential distribution.
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The PH-distribution is characterized by an absorbing Markov chain with a

finite set of states, which is measured by the time that the underlying Markov

chain spends in all the transient states until the first absorption.

Consider a continuous time Markov chain with state space {1, 2, ...,m,m+

1} whose infinitesimal generator is given by

Q =

[

T T0

0 0

]

(1.13)

where T0 ≥ 0 and Te + T0 = 0. The state m + 1 is an absorbing state and

all the other are transient. Let (α, αm+1) be the initial probability vector of

the Markov chain, where αe+ αm+1 = 1.

A nonnegative random variable X has a phase type distribution if its

distribution function is given by

F (t) = P{X ≤ t} = 1−α exp(Tt)e = 1−α

(
∞∑

n=0

tn

n!
Tn

)

e, t ≥ 0. (1.14)

For the Markov chain given in (1.13), T is called a PH-generator. The 2-tuple

(α, T ) is called a phase type representation (PH-representation) of order

m for the PH-distribution.

• Density function f(t) = α exp(Tt)T0.

• Moments µ′i = (−1)ii!αT−1e, i ≥ 0.

• Laplace-Stieltjes transform f̃(s) = αm+1 +α(sI − T )−1T0, Re s ≥ 0.

For further information about the PH distribution (see Latouche and Ra-

maswami [28], Neuts [33]).

1.3 Inventory system

Inventory management is one of the most important tasks in business. In-

ventory is any stored resource that is used to satisfy current as well as future
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needs. Raw materials, work-in-process, and finished goods are examples of

inventory. Inventory models have a wide range of application in hospitals,

educational institutions, banks, agriculture, industries etc.

The fundamental problem in inventory management can be described by

the following two questions: (for more details about the inventory system see

Beyer et al. [6], Hadley and Whitin [16], Naddor [32], Sahin [40], Sivazlian

and Stanfel [48])

(1) When should an order be placed?

(2) How much should be ordered?

The reorder point (when) and order quantity (how much) are normally

determined by minimizing the total inventory cost that can be expressed as a

function of these two variables. The total inventory cost is generally composed

of the following components:

• Setup cost: The setup cost (ordering cost) represents the fixed charge

incurred when an order is placed. Thus, frequent smaller orders will

result in a higher setup cost than less frequent larger orders. The latter,

in turn, results in increasing holding cost.

• Purchase cost: The purchase cost becomes an important factor when

the commodity unit price becomes dependent on the size of the order.

This situation is normally expressed in terms of a quantity discount,

where the unit price of the item decreases with the increase in the quan-

tity ordered.

• Holding cost: The holding cost which represents the costs of carrying

inventory in stock (for example; interest on invested capital, storage,

handling, depreciation and maintenance) normally increases with the

increasing level of inventory.
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• Shortage cost: The shortage cost is a penalty incurred when we run

out of stock of a commodity that is asked for. It generally includes costs

due to loss of customer’s goodwill as well as potential loss in income.

There are two basic trade-offs in an inventory problem. One is the trade-off

between setup costs and inventory holding costs. By placing orders frequently,

the size of each order can be made relatively small. Therefore, the holding

costs can be reduced. However, the total setup costs will go up. Conversely,

less frequent orders will save setup costs but incur higher holding costs. The

other trade-off is between holding costs and stockout costs. Holding more

inventory reduces the likelihood of stockout, and vice versa. These trade-offs

give rise to an optimization problem of finding the optimal ordering policy

that minimizes the overall cost.

While dealing with inventory systems, there are several factors which are

to be taken into consideration.

1. Demand Rate

The number of items required per unit time is called demand rate . The

demand pattern of an item may be either deterministic or probabilistic.

2. Lead Time

When an order is placed, it may take some time before delivery is ef-

fected. The time lag from the point at which an order is placed until the

order is delivered is called the lead time. If the replenishment is instan-

taneous, then the lead time is zero, otherwise lead time is positive.

3. Ordering Policy

• (s, S)- policy: In (s, S)-policy, the order is such that number of

items needed at the time of replenishment is that many units to

bring the level back to S, where s is the reorder level and S is the

maximum inventory level.
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• (s,Q)- policy: In (s,Q)- policy, the number of items ordered is fixed

and is equal to Q = S − s. Here we take s as the reorder level and

Q as the fixed ordering quantity.

• (S−1, S)- policy: In (S−1, S)- policy, an order is placed for exactly

one unit at each epoch of occurrence of a demand. That is, the one-

for-one (S − 1, S) inventory policy calls for a replenishment order

after each demand, equal in magnitude to the size of the demand.

This is often advocated for controlling the stock levels of expensive,

slow-moving items.

There seems to be one more policy discussed in Schwarz et al. [43].

Queueing-inventory systems

ln queueing-inventory models the availability of items are also to be considered

in addition to the features in queueing theory. If the time required to serve

the items to the customers is taken to be positive, then a queue is formed. In

inventory models with negligible service time, queue of customers is formed

only when the system is out of stock and unsatisfied customers are permitted

to wait. In the case of inventory with positive service time, queue is formed

even when inventoried items are available because new customers can join

while a service is going on. If either lead time or service time or both are

taken to be positive, then also a queue is formed.

1.4 Review of related work

Given below is a review of work related to the theme of this thesis. Most of

the real life situations need positive amount of time to serve the inventory.

Sigman and Levi [46] were the first to introduce inventory models with pos-

itive service time. They assume that the processing of inventory require an
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arbitrarily distributed positive amount of time, thus leading to the formation

of queue. Since then numerous studies on inventory models with positive ser-

vice time are reported. Nevertheless product form solution could be arrived

at in substantially limited number of investigations. We refer to the survey

paper by Krishnamoorthy et al. [24] for details on queueing-inventory models

with positive service time.

Schwarz et al. [43] discuss M/M/1 queueing system with inventory where

the lead time is exponentially distributed. They analyze the problem for

(s,Q), (s, S), (S−1, S) and random order inventory policies and produce prod-

uct form solution for these models by assuming that no customer joins the

queue when inventory level is zero. Schwarz et al. [45] consider queueing

networks with attached inventory where again product form solution for the

system state is established. In this paper replenishment lead times are taken

to be non-zero and random which depend on the load of the system. At each

service station an order for replenishment is made when the inventory level at

that station drops to its reorder level. When the inventory level depletes to

zero, the server with zero attached inventory does not accept new customers;

however, the lost sales are not lost to the system, instead rerouted to nodes

with positive inventory. They derive stationary distributions of joint queue

lengths and inventory processes in explicit product form.

Saffari et al. [39] consider a queueing-inventory system under the (s,Q)

policy with lost sales in which demands occur according to a Poisson pro-

cess. Service time duration follows exponential distribution. Replenishment

lead time is arbitrarily distributed, independent of the on-hand inventory and

number of customers in the system. In addition to these assumptions the

condition that no customer joins when inventory level is zero, leads them to

a product form solution for the long run system state distribution, thereby

subsuming Schwarz et al. [43]. Krenzler and Daduna ([20], [21]) analyze a sin-

gle server queueing inventory system with positive service time in a random
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environment. The service system and the environment interact in both direc-

tions. Whenever the environment enters a specific subset of its state space, the

service process is completely blocked and new arrivals are lost. They obtain a

necessary and sufficient condition for a product form steady state distribution

of the joint queueing-environment process.

Krishnamoorthy and Viswanath [26] is the first reported work on produc-

tion inventory system with positive service time; in that paper the time for

producing each item is assumed to follow a Markovian production scheme.

The customer arrival process follows a Markovian arrival process and the ser-

vice time to each customer has a phase-type distribution. The analysis is

purely algorithmic in that study. This is followed by Krishnamoorthy and

Viswanath [27] analyzing an (s, S) production inventory system where again

the processing of inventory requires some positive amount of time. With de-

mand process assumed to be Poisson, service time exponentially distributed

and no customer joining the queue when the inventory level is zero, they ob-

tain an explicit product form solution. Recently Baek and Moon [5] discuss a

single server production inventory system with lost sales in which demands are

assumed to occur according to a Poisson process, service time is exponentially

distributed. The stocks are replenished by an external order under (r,Q)-

policy or an internal production. The internal production process is assumed

to be a Poisson process. They derive the stationary joint distribution of the

queue length and the on-hand inventory in product form.

An (S − 1, S) inventory system with multiple classes of customers was

first introduced by Ha [15] who analyzed a make-to-stock production system

with lost sales and showed that for a certain class of problems the (S − 1, S)

policy with rationing is optimal. For the (S − 1, S)- policy Otten et al. [36]

extensively analyze a multiple waiting line problem. With one server each

assigned to each line they establish product form solution for the system state

distribution.
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In discrete time set up Lian et al. [30] consider inventory with common life

time, namely discrete phase type distribution. The lead time is taken as zero;

demand process geometric. However service time is assumed to be negligible.

The concept of rationing of inventoried item is introduced in Sapna Isotupa

[42]. She analyzes an (S−1, S) inventory system with two demand classes and

showed that under certain conditions there is a sub-optimal rationing policy

which yields a lower cost for the supplier and higher service levels for both the

high priority and low priority customers than the optimal policy where the

two customers are treated alike. Once the on-hand inventory goes down to a

prescribed level, demands of high priority customers alone are entertained until

the next replenishment. She also assumes that the service time is negligible.

Queues with postponed work is introduced by Deepak et al. [13]. Cus-

tomers arrive to a single server system and joins a buffer of finite capacity

K. An arrival, encountering the buffer full, joins a pool of postponed work of

infinite capacity with certain probability and with complementary probability

leaves the system forever. Customers from the pool are transferred to the

buffer, one at a time, with probability p, whenever the number in the buffer

at a service completion epoch is less than L(< K). Further this transfer is

with probability one if no customer left in the buffer at a service completion

epoch. This system is analyzed in the stationary case and a number of per-

formance measures are obtained. This notion of postponement of work has

been introduced into inventory by a few researchers (see Arivarignan et al.

[3], Krishnamoorthy and Islam [23], Paul Manuel et al. [35], Sivakumar and

Arivarignan [48]).

1.5 Summary of the thesis

In this thesis a few queueing-inventory models are discussed by identifying con-

tinuous time Markov chains. The resulting LIQBD and GI/M/1 Type Markov
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chains are analyzed algorithmically where closed form expressions could not

be arrived at. In some cases we have obtained product form solutions for the

system state. Numerical examples are done using MATLAB Program.

Now we turn to the content of the thesis. This thesis entitled “On queueing-

inventory models – product form solution; reservation, cancellation

and common life time” is divided into 7 chapters.

Chapter 1 provides an introduction to the theme of this thesis, which

includes description of stochastic process, queueing theory, inventory system

and matrix analytic method. It contains a survey on related work and also

provides a brief of the work done in this thesis.

In Chapter 2, we analyze and compare three different single server queueing-

inventory models with infinite capacity. Demand process is assumed to be

Poisson, service time and lead time are independent exponentially distributed

random variables. In model I, whenever the inventory level is less than or

equal to the reorder level, new arrivals join only if the number of customers

in the system is less than the on-hand inventory. On the other hand in model

II, whenever the inventory level is less than or equal to the reorder level new

arrivals do not join. In the third model, we consider the case where, when the

inventory level enters a specific subset of its state space new arrivals do not

join the system. Inventory cycle time distribution is obtained. Optimization

problems associated with the models are investigated. Finally we discuss a

special case where, whenever the inventory level enters a complete blocking

set, new arrivals do not join and service process is also completely blocked.

In this case we obtain the system state distribution as the product of their

marginals. Further we investigate how large the blocking set can be in terms

of inventory level. Numerical illustrations of the system behavior are also

provided.

Chapter 3 is on a single server supply chain model in which stocks are

kept in both the manufacturer warehouse (production centre) and the retail
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shop (distribution centre). Arrival of customers to the retail shop form a

Poisson process and their service time follows exponential distribution. The

maximum stock of the distribution centre is limited to s+Q(= S). When the

inventory level depletes to s due to services, it demands Q units at a time from

the production centre. The lead time follows an exponential distribution. If

the production centre has the required stock on-hand, the items are shipped

on receiving the order; else it takes additional time to have Q items and

then the shipping time. The production centre adopts a (rQ,KQ)-policy

where the processing of inventory requires a positive random amount of time.

Production time for unit item is exponentially distributed. Also we assume

that no customer joins the queue when the inventory level in the distribution

centre is zero. This assumption leads to an explicit product form solution

for the steady state probability vector. (Published in OPSEARCH (Springer)

under the title: Product form solution for some queueing-inventory

supply chain problem).

In chapter 4 we analyze two single server, lost sales (S − 1, S) queueing-

inventory systems with two demand classes – high priority and low priority.

The service of non-priority customers are preempted with arrival of high pri-

ority customers. We compare two different models – one in which low priority

customers do not join the system only when the on-hand inventory is zero and

in the other case when there is no high priority customer present but there is

positive inventory an arriving low priority customer join is assumed to the sys-

tem. In the second model we obtain stochastic decomposition of the system.

On the contrary this property is absent in model I. We investigate the behavior

of both of these queuing-inventory systems. Several performance measures are

evaluated. Numerical illustrations of the system behavior are also provided.

An optimization problem of interest of both models is discussed through an

example. (Presented in 27th European Conference on Operational Research

(EURO), Glasgow, July 2015 under the title: Product form solution in
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two priority queueing-inventory systems).

In Chapter 5, a queueing-inventory system that has applications in rail-

way / airline / bus reservation systems is discussed. Maximum items in the

inventory is S which have a random common life time; this includes those

that are sold in a particular cycle. A customer, on arrival to an idle server

with at least one item in inventory, is immediately taken for service; or else

he joins the buffer of maximum size S depending on number of items in the

inventory (the buffer capacity varies and is, at any time, equal to the num-

ber of items in the inventory). The arrival of customers constitutes a Poisson

process, demanding exactly one item each from the inventory. If there is no

item in the inventory, the arriving customer first queue up in a finite wait-

ing space of capacity K. When it overflows an arrival goes to an orbit of

infinite capacity with probability p or is lost forever with probability 1 − p.

From the orbit he retries for service according to an exponentially distributed

inter-occurrence time. The service time follows an exponential distribution.

Cancellation of sold items before its expiry is permitted. Inventory gets added

through cancellation of purchased items, until the expiry time. Cancellation

time is assumed to be negligible. We analyze this system. Several perfor-

mance characteristics are computed; expected sojourn time of the system in

a cycle with “no inventory” and also “maximum inventory” are computed.

Some illustrative numerical examples are presented. An optimization problem

is numerically analyzed. (Presented in 10th International Workshop on Retrial

Queues (WRQ), Tokyo, July 2014 & Published in Special issue of Annals of

Operation Research (Springer) under the title: On a queueing-inventory

with reservation, cancellation, common life time and retrial).

In Chapter 6 we consider two single server queueing-inventory systems in

which items in the inventory have a random common life time. On realization

of common life time, all customers in the system are flushed out. Subse-

quently the inventory reaches its maximum level S through a (positive lead
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time) replenishment for the next cycle which follows an exponential distri-

bution. Through cancellation of purchases, inventory gets added until their

expiry time; where cancellation time follows exponential distribution. Cus-

tomers arrive according to a Poisson process and service time is exponentially

distributed. On arrival if a customer finds the server busy, then he joins a

buffer of varying size. If there is no inventory, the arriving customer first try

to queue up in a finite waiting room of capacity K. Finding that full, he joins

a pool of infinite capacity with probability γ (0 < γ < 1); else it is lost to the

system forever. We discuss two models based on ‘transfer’ of customers from

the pool to the waiting room / buffer. In Model 1, if at a service completion

epoch the waiting room size drops to a preassigned level L−1 (1 < L < K) or

below, a customer is transferred from pool to waiting room with probability

p (0 < p < 1) and positioned as the last among the waiting customers. If at a

departure epoch the waiting room turns out to be empty and there is at least

one customer in the pool, then the one ahead of all waiting in the pool gets

transferred to the waiting room with probability one. We introduce a totally

different transfer mechanism in Model 2: when at a service completion epoch,

the server turns idle with at least one item in the inventory, the head of the

pooled customers is immediately taken for service. At the time of a cancel-

lation, if the server is idle with none, one or more customers in the waiting

room, then the head of the pooled customers goes to the buffer directly for

service. Also we assume that no customer joins the system when there is no

item in the inventory. Several system performance measures are obtained. A

cost function is discussed for each model and some numerical illustrations are

presented. Finally a comparison of the two models are made.(Invited paper to

the special issue “Stochastic Models” of Indian Journal of Pure and Applied

Mathematics, Guest Editor: Professor M. K. Ghosh paper title: GI/M/1

type queueing-inventory systems with postponed work, reservation,

cancellation and common life time).
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The focus in chapter 7 is on a single server queueing-inventory system in

which items in the inventory have a random common life time. On realiza-

tion of common life time, customers are flushed out from the finite buffer and

waiting room. Subsequently the inventory reaches its maximum S through an

instantaneous (zero lead time) replenishment for the next cycle. Also pooled

customers, if any, immediately get transferred to the buffer and waiting room,

subject to a maximum of S + K. Through cancellation of purchases, inven-

tory gets added until their expiry time, where inter cancellation time follows

exponential distribution. Customers arrive according to a Poisson process and

service time is exponentially distributed. On arrival, if a customer finds the

server busy, then he joins a buffer of varying size provided there is “space”. If

there is no inventory, the arriving customer first go to a finite waiting room

of capacity K. If that is also full, he joins a pool of infinite capacity with

probability γ (0 < γ < 1); else it is lost to the system forever. When, at a

service completion epoch the waiting room size drops to a preassigned level

L − 1 (1 < L < K) or below, a customer is transferred from pool to waiting

room with probability p (0 < p < 1) and positioned as the last among the

waiting customers. If at a departure epoch the waiting room turns out to be

empty and there is at least one customer in the pool, then the one ahead of

all waiting in the pool gets transferred to the waiting room with probability

one. Several system performance measures are obtained. A cost function is

discussed and some numerical illustrations are presented.

Finally a section giving a few concluding remarks and some further possible

investigations is provided.



Chapter 2

On partial and complete

blocking set of states in

queueing-inventory models

This chapter focuses on partial and complete blocking sets. Whereas both

service process and new arrivals are completely blocked in the completely

blocking set, in the partial blocking set service is provided as long as inventory

is available. The only action that is not prevented while in complete blocking

set is the replenishment of inventory. Through replenishment the system gets

freed temporarily from blocking set.

Three queueing-inventory models are investigated in this chapter:

(1) When inventory level is less than or equal to the reorder level s, new ar-

rivals join only when the number of customers in the system is less than the

on-hand inventory level.

Some results in this chapter are included in the paper:

A. Krishnamoorthy, Dhanya Shajin and B. Lakshmy : On partial and complete blocking

set of states in queueing-inventory models (communicated).

19
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(2) Newly arriving customers do not join the system when the inventory level

is less than or equal to the reorder level s.

(3) When the inventory level enters a specific subset {0, 1, 2, ..., s2} of {0, 1, 2, ...,

s2, s2 + 1, ..., s1, ..., S} new arrivals do not join the system irrespective of the

number of customers in the system.

In these three models partial blocking is considered, that is, service is

provided as long as at least an item is available in the inventory subject to

customer availability. As a particular case of Model 3 we examine a system

with complete blocking set to produce product form solution.

Krenzler and Daduna ([20], [21]) have analyzed a single server queueing

inventory system with positive service time in a random environment. The

service system and the environment interact in both directions. Whenever

the environment enters a specific subset of its state space, the service process

is completely blocked and new arrivals are lost (blocking set of states with

positive inventory). They obtain a necessary and sufficient condition for the

stability of the system and then derive a product form steady state distribution

of the joint queueing-environment process.

This chapter is motivated by Krenzler and Daduna [20] mentioned above

where the authors assume that whenever the environment enters a specific

subset (blocking state), the service process will be interrupted and no new

arrivals are admitted to the system, rather they are lost to the system forever.

Under this assumption a product form solution for the steady state distribution

is obtained by them. However, they are silent as to how large this blocking

set could be in terms of the number of items in the inventory. For example, if

there is inventory and customers are waiting, blocking service proves costly.

In the present work, we assume that new arrivals join the system depending

on the inventory level as well as the number of customers waiting. When the in-

ventory level enters a partially blocking set, new arrivals are restricted, though

service is continued to be provided. The decomposition property evades; worse
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still is that we do not have a closed form expression for system state distribu-

tion. Both (s, S) and (s,Q) ordering policies are considered.

Further we consider a special case of Model 3 in which, when the inventory

level enters a complete blocking subset of the set of states, new arrivals do not

join the system as well as no service is given until the system exits from this

blocking set of states (here ‘exit from the blocking set’ is by way of replenish-

ment against the order placed). In this case we obtain the joint distribution

of the number of customers and the number of items in the inventory as the

product of their marginals, which is similar to the condition imposed in the

paper of Krenzler and Daduna [20]. Further we investigate the optimal size of

the blocking set. We prove that the cost turns out to be minimum when the

blocking set has the inventory coordinate equal to zero (see Table 2.15).

2.1 Mathematical formulation of Model 1

We consider an inventory system with positive service time. Arrival process

is assumed to be Poisson with rate λ. Each customer demands one unit of

the item, having a random duration of service time which is exponentially

distributed with parameter µ. The maximum capacity of the storage system

is fixed as S. The lead time is exponentially distributed with parameter β

which is independent of the service and arrival processes. We consider two

distinct replenishment policies: (a) (s,Q) policy (b) (s, S) policy.

Assumptions

• If the inventory level is greater than the reorder level s, then newly

arriving customers join.

• If the inventory level is less than or equal to s and the number of cus-

tomers in the system is less than the inventory level then also an arriving

customer joins.
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• If the inventory level is less than or equal to s and also less than or equal

to the number of customers in the system, then new arrivals do not join

until the next replenishment.

The model is studied as a quasi-birth-and-death process and a matrix geomet-

ric solution is obtained (see Latouche and Ramaswami [28], Neuts [33]). To

obtain the state space of the QBD in the sequel we use the following notations.

N (t) Number of customers in the system at time t

I(t) Number of items in the inventory at time t

2.1.1 Analysis: (s,Q) policy

In this model when the inventoried items reach the level s ≥ 0, an order

for replenishment by fixed quatity Q, where Q = S − s, is placed. Then

Ω = {(N (t) ,I (t)) ; t ≥ 0} is a continuous time Markov chain with state space

E = {0, 1, 2, ...} × {0, 1, 2, ..., S} and the infinitesimal generator matrix Q1 is

given by

Q1 =


















A00 A01

A2 A11 A12

A2 A22 A23

. . .
. . .

. . .

A2 As−1 s−1 As−1 s

A2 A1 A0

. . .
. . .

. . .


















. (2.1)

All submatrices in the above are square matrices of order S + 1. The non-

diagonal elements of Q1 = (q1((n, i), (m, j)); (n, i), (m, j) ∈ E) are:

• if the inventory level is less than or equal to s and the number of cus-

tomers in the system is less than the inventory level then also an arriving

customer joins. The transition rates are
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(n, i) → (n+ 1, i) = λ; 0 ≤ n ≤ s− 1, i = n+ 1, n+ 2, ..., S

• if the inventory level is greater than the reorder level s, then newly

arriving customers join. Here transition rates are

(n, i) → (n+ 1, i) = λ; n ≥ s, i = s+ 1, s+ 2, ..., S

• (n, i) → (n− 1, i− 1) = µ; n ≥ 1, i = 1, 2, ..., S

• (n, i) → (n, i+Q) = β; n ≥ 0, i = 0, 1, ..., s

• (n, i) → (m, j) = 0; otherwise.

The diagonal entries are such that each row sum is zero.

Steady-state analysis

For determining the stability condition for the original system, consider A =

A0 +A1 +A2:

A =





















0 1 · · · s s+ 1 · · · Q · · · S − 1 S
0 −β β
1 µ −(µ+ β) β
...

. . .
. . .

. . .
s −(µ+ β) β
s+ 1 µ −µ
...

. . .
. . .

Q µ −µ
...

. . .
. . .

S − 1 µ −µ
S µ −µ





















Lemma 2.1.1. The steady-state probability distribution Π = (π0, π1, ..., πS)

of the Markov chain corresponding to the generator A is given by

πi =

{
β
µ(

β+µ
µ )i−1π0, i = 1, 2, ..., s

β
µ(

β+µ
µ )sπ0, i = s+ 1, s+ 2, ..., Q
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πQ+i =
β

µ

(
β + µ

µ

)i−1
[(

β + µ

µ

)s−(i−1)

− 1

]

π0, i = 1, 2, ..., s

and π0 can be obtained from the normalizing equation Πe = 1.

Proof. We have ΠA = 0 and Πe = 1. The first equation of the above

yields the following set of equations:

−βπ0 + µπ1 = 0,

−(β + µ)πi + µπi+1 = 0, i = 1, 2, ..., s,

−µπi + µπi+1 = 0, i = s+ 1, s+ 2, ..., Q− 1,

βπi − µπQ+i + µπQ+i+1 = 0, i = 0, 1, ..., s− 1,

βπs − µπS = 0.

These equations can be recursively solved to get

πi =

{
β
µ(

β+µ
µ )i−1π0, i = 1, 2, ..., s

β
µ(

β+µ
µ )sπ0, i = s+ 1, s+ 2, ..., Q

πQ+i =
β

µ

(
β + µ

µ

)i−1
[(

β + µ

µ

)s−(i−1)

− 1

]

π0, i = 1, 2, ..., s.

Using the normalizing condition Πe = 1, we get

π0 =

[

1 + (S − s)
β

µ

(
β + µ

µ

)s]−1

.

Lemma 2.1.2. The stability condition of the system under study is given

by

λ <
1−

[

1 + (S − s)βµ

(
β+µ
µ

)s]−1

1−
(
β+µ
µ

)s [

1 + (S − s)βµ

(
β+µ
µ

)s]−1µ (2.2)
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Proof. We look at the left as well as right drift rates of the Markov chain.

These are respectively ΠA2e and ΠA0e. When the former exceeds the latter

the system is stable. Computation yields

ΠA0e = λ

[

1−

(
β + µ

µ

)s [

1 + (S − s)
β

µ

(
β + µ

µ

)s]−1
]

,

ΠA2e = µ

(

1−

[

1 + (S − s)
β

µ

(
β + µ

µ

)s]−1
)

.

2.1.2 Analysis: (s, S) policy

In (s, S) policy, when the inventory level falls to s, order for replenishment is

placed to bring the level back to S at the time of replenishment. The lead

time for replenishment is exponentially distributed with parameter β. Under

the above assumptions we get the infinitesimal generator matrix Q1 given in

(2.1). The transition rates (q1((n, i), (m, j)); (n, i), (m, j) ∈ E) are given by

(n, i) → (n+ 1, i) = λ; 0 ≤ n ≤ s− 1, i = n+ 1, n+ 2, ..., S,

(n, i) → (n+ 1, i) = λ; n ≥ s, i = s+ 1, s+ 2, ..., S,

(n, i) → (n− 1, i− 1) = µ; n ≥ 1, i = 1, 2, ..., S,

(n, i) → (n, S) = β; n ≥ 0, i = 0, 1, ..., s,

(n, i) → (m, j) = 0; otherwise.

The diagonal entries are such that each row sum is zero.

Now for determining the stability condition for the system, we define Ã =

A0 +A1 +A2.

LetΦ = (φ0, φ1, ..., φS) be the steady-state probability vector of the matrix

Ã. Then Φ satisfies the equation ΦÃ = 0 and Φe = 1.
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Equation ΦÃ = 0 ⇒

−βφ0 + µφ1 = 0,

−(β + µ)φi + µφi+1 = 0, i = 1, 2, ..., s,

−µφi + µφi+1 = 0, i = s+ 1, s+ 2, ..., S − 1,

β [φ0 + φ1 + ...+ φs]− µφS = 0.

Solving these equations recursively we get,

φi =

{
β
µ(

β+µ
µ )i−1φ0, i = 1, 2, ..., s,

β
µ(

β+µ
µ )sφ0, i = s+ 1, s+ 2, ..., S.

Using the normalizing condition Φe = 1, we further get

φ0 =

(
β + µ

µ

)−s [

1 +
β

µ
(S − s)

]−1

.

Lemma 2.1.3. The stability condition of the original system under study

is given by

λ <
1−

(
β+µ
µ

)−s [

1 + β
µ(S − s)

]−1

1−
[

1 + β
µ(S − s)

]−1 µ. (2.3)

Proof. This is on the same lines as that for Lemma 2.1.2 and hence is

omitted.

2.1.3 Steady-state probability vector of Q1

We calculate the steady-state probability vector of Q1 under the stability

condition. Let the steady-state probability vector x of Q1 be partitioned

according to the number of customers in the system as x = (x0,x1,x2, ...)

where the sub-vectors xi, i ≥ 0, contains S+1 elements xi(0), xi(1), ..., xi(S).
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The sub-vectors satisfy the equations:

x0A00 + x1A2 = 0,

xi−1Ai−1 i + xiAi i + xi+1A2 = 0, 1 ≤ i ≤ s− 1

xs−1As−1 s + xsA1 + xs+1A2 = 0,

xi−1A0 + xiA1 + xi+1A2 = 0, i ≥ s+ 1.

From the matrix- geometric method (see Neuts [33]), we have

xi+1 = xiR, i ≥ s

where R is the minimal non-negative solution to the matrix quadratic equation

R2A2 + RA1 + A0 = O and the vectors x0,x1, ...,xs−1,xs are obtained from

the boundary equations:

x0A00 + x1A2 = 0,

xi−1Ai−1 i + xiAi i + xi+1A2 = 0, 1 ≤ i ≤ s− 1,

xs−1As−1 s + xs[A1 +RA2] = 0.

Once R is obtained, from the boundary equation we obtain xs = xs−1Rs−1

and xi = xi−1Ri−1, 1 ≤ i ≤ s− 1 which gives

xs = x0

s−1∏

i=0

Ri

where (see Neuts [33])

Rs−1 = As−1 s [− (A1 +RA2)]
−1 ,

Ri−1 = Ai−1 i [− (Ai i +RiA2)]
−1 , 1 ≤ i ≤ s− 1.

x0 is obtained from xe = 1, as

x0



I +

s−2∑

k=0

k∏

j=0

Rj +

s−1∏

j=0

Rj(I −R)−1



 e = 1.
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Performance Measures

1. Mean number of customers in the system EC =
∞∑

i=0

ixie.

2. Expected inventory level in the system EI =
∞∑

i=0

S∑

j=0

jxi(j).

3. Expected reorder rate ER = µ
∞∑

i=1

xi(s+ 1).

4. Expected loss rate of customers

EL = λ





s∑

i=0

i∑

j=0

xi(j) +
∞∑

i=s+1

s∑

j=0

xi(j)



 .

2.2 Analysis of inventory cycle time

In the (s, S) policy with positive lead time L, an order is placed so as to bring

its level to S at the replenishment epoch whenever the inventory level reaches s.

Let T be the time elapsed, starting with s items in the inventory triggering an

order for replenishment, until the inventory level returns to s for the first time

(with exactly one replenishment in between). The inventory cycle time is a

random variable whose distribution depends both on the number of customers

in the system when the replenishment order is placed and length of the lead

time. Let j be the number of customers in the system when the inventory

level is s (that is, j is the number of customers in the starting state). The

analysis of the inventory cycle time T using the formula
4∑

i=1

P (T |Ai)P (Ai)

where each Ai, i = 1, 2, 3, 4, is described below for Case 1 in detail.

• t0 is some arbitrary but fixed instant of time (inventory cycle time start-

ing at time t0).
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• τ is a stopping time when the first replenishment occurs (τ > t0).

• ν is a stopping time when the inventory reaches state s again.

• [I(t) = ℓ] = “A new replenishment occurs, when the inventory level is

ℓ”.

• A is any measurable set. It is used as a place holder for arguments of

probability measures.

Case 1: The number of customers j ≥ S − ℓ, 1 ≤ ℓ ≤ s

When the number of customers j ≥ S − ℓ, future arrivals need not be consid-

ered. The state space of X (t) = (N (t),I(t)) is {(n,m)}
⋃
{∆} where {∆} is

the absorbing state namely, {(j− s+ ℓ, S)}. Here s ≥ m ≥ ℓ, and n = j. Dur-

ing lead time the inventory level decreases from s to ℓ (1 ≤ ℓ ≤ s), consequent

to service completions. That is, the time before replenishment

P (ν ∈ A/I(τ) = ℓ ∩N (t0) ≥ S − ℓ ∩ I(t0) = s)

is Erlang distributed with parameter µ and s− ℓ stages. The probability that

the replenishment will occur when the inventory level is ℓ, 1 ≤ ℓ ≤ s is

P (I(τ = ℓ/N (t0) ≥ S − ℓ ∩ I(t0) = s) =

(
µ

β + µ

)s−ℓ( β

β + µ

)

.

Then from S, the inventory level drops to s, due to S − s service completions

with parameter µ each, which therefore follows Erlang distribution with S− s

stages. That is, P (ν ∈ A/I(τ) = ℓ ∩N (t0) ≥ S − ℓ) = Eµ,S−s(A).

Thus the conditional distribution of the cycle time T is

s∑

ℓ=1

P (ν ∈ A ∩ I(τ) = ℓ/N (t0) ≥ S − ℓ ∩ I(t0) = s)

=
s∑

ℓ=1

Eµ,s−ℓ(A)P [time taken for s− ℓ services < L
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< time taken for s− ℓ+ 1 service] ∗ Eµ,S−s(A)

=
s∑

ℓ=1

β

β + µ

(
µ

β + µ

)s−ℓ

Eµ,s−ℓ(A) ∗ Eµ,S−s(A).

In the above and in what to follow, * denotes convolution.

Case 2: j ≥ S and ℓ = 0; inventory level reaches zero before

replenishment

In this case, if the number of customers is j(≥ S) at the epoch of order

placement, future arrivals need not be considered. Here we assume that the

lead time realization occurs only after inventory level drops to zero. Thus the

inventory cycle time T consists of the time taken for s service completions each

following exponential distribution with parameter µ, followed by an idle time

of the system having random duration following exponential distribution with

parameter β plus service time of S−s customers each of which has exponential

distribution with parameter µ. The probability that the inventory will be

empty before replenishment is

P (I(τ) = 0/N (t0) ≥ S ∩ I(t0) = s) =

(
µ

β + µ

)s

.

Thus the conditional inventory cycle time distribution is

P (ν ∈ A/I(τ) = 0 ∩N (t0) ≥ S ∩ I(t0) = s)

= Eµ,s(A)P [L > time taken for s services]∗exp(β)(A)∗Eµ,S−s(A)

=

(
µ

β + µ

)s

Eµ,s(A) ∗ exp(β)(A) ∗ Eµ,S−s(A).

Case 3: The number of customers j < s

Here we have to consider the future arrivals until the number of customers

and the inventory level become equal. Assume that the replenishment takes
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place only after the inventory level falls down below j. The state space of the

process {X (t)} is {(n,m)}
⋃
{∆} where 0 ≤ n,m ≤ s. All possible transitions

of the finite Markov chain {X (t)} and the corresponding instantaneous rates

are given in Table 2.1. Thus the infinitesimal generator Qj1 of the Markov

from To Rate

(n,m) (n + 1,m) λ m = s − k, 0 ≤ k ≤ j, j − k ≤ n ≤ m − 1

1 ≤ m ≤ s − (j + 1), 0 ≤ n ≤ m − 1

(n,m) (n − 1,m − 1) µ m = s − k, 0 ≤ k ≤ j − 1, j − k ≤ n ≤ m

1 ≤ m ≤ s − j, 1 ≤ n ≤ m

(n,m) ∆ β 0 ≤ m < j − 1, 0 ≤ n ≤ m

Table 2.1: Transition rates in Qj1

chain {X (t)} is of the form Qj1 =

(

T j1 T 0
j1

0 0

)

, with initial probability

vector αj1 = (0, 0, ..., 1, 0, ..., 0) where 1 is at the [(j+1)(s− j+1)]th position.

T j1 is a square matrix of order (s − j + 1)[(j + 1) + (s − j)/2] and αj1 has

(s − j + 1)[(j + 1) + (s − j)/2] elements. Therefore, when j < s, the time

till absorption to {∆} = {(n, S); 0 ≤ n < j − 1}, denoted by τj1 , follows

Phase-type distribution having representation (αj1 ,T j1) and expected value

E(τj1)(A) = −αj1(T j1)
−1e.

Now we consider the time till absorption to s, starting from {∆}. Consider

the Markov chain {X ′(t)} = {(N (t),I(t)), t ≥ 0}. The state space of X ′(t)

is {(n,m)}
⋃
{∆′} where {∆′} = {(n, s); 0 ≤ n ≤ s} denotes the absorbing

state.

If the system contains at least S−s customers at replenishment epoch, fu-

ture arrivals need not have to be considered. Then from S, the inventory level

goes down to s after S − s service completions. Therefore the time τ ′j1 till ab-

sorption to s, starting from {∆}, follows Erlang distribution Eµ,S−s(A). Thus

the inventory cycle time T follows PH-distribution, which is the convolution

of PH-distribution (αj1 ,T j1) and Erlang distribution Eµ,S−s(A).

If the system has j′(< S−s) customers only, then we have to consider future
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arrivals. Clearly, {X ′(t)} is a finite state space Markov chain, the possible

transitions and the corresponding instantaneous rates are given in Table 2.2.

Hence the infinitesimal generator Q′
j1 of this Markov chain is of the form

from To Rate

(n,m) (n + 1,m) λ m = S − k 0 ≤ k ≤ j′ j′ − k ≤ n ≤ m − 1

s + 1 ≤ m ≤ S − (j′ + 1) 0 ≤ n ≤ m

(n,m) (n − 1,m − 1) µ m = S − k 0 ≤ k ≤ j′ − 1 j′ − k ≤ n ≤ m

s + 2 ≤ m ≤ S − j′ 1 ≤ n ≤ m

(n, s + 1) ∆′ µ 1 ≤ n ≤ s + 1

Table 2.2: Transition rates in Q′
j1

Q′
j1 =

(

T ′
j1 T ′0

j1

0 0

)

, with initial probability vector α′
j1

= (0, 0, ..., 1, 0, ..., 0)

of order (S − j′ + 1)[(j′ + 1) + (S − j′)/2] − (s + 1)(s + 2)/2 having 1 at the

[(j′+1)(S− j′+1)] position. Therefore, the time till absorption to s, starting

from {∆}, denoted by τ ′j1 , follows phase-type distribution whose expected

value is E(τ ′j1)(A) = −α′
j1
(T ′

j1)
−1
e.

Thus the inventory cycle time T follows PH-distribution, which is the

convolution of two phase-type distributions with representations (αj1 ,T j1)

and (α′
j1
,T ′

j1) respectively.

Case 4: The number of customers j ≥ s

When the number of customers j(≥ s), future arrivals need not be considered.

The state space of X (t) is {(n,m)}
⋃
{∆} where 0 ≤ m ≤ s, n = j. In this

case the inventory level decreases from level s to some level ℓ (0 ≤ ℓ ≤ s), due

to service of s−ℓ customers. At the inventory level ℓ, the lead time realization

occurs and it is restocked to S. Thus the time τ till absorption to {∆}, follows

Erlang distribution Eµ,s−ℓ(A).

The time till absorption to s, starting from {∆} , is as discussed above.

Thus the inventory cycle time T follows the Erlang distribution Eµ,s−ℓ(A) ∗

Eµ,S−s(A) when the system contains at least S − s customers after replen-
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ishment, otherwise inventory cycle time T follows the convolution of Erlang

distribution Eµ,s−ℓ(A) and phase-type distributions (α′
j1
,T ′

j1).

2.3 Mathematical formulation of Model 2

In this model also arrival process is assumed to be Poisson with rate λ. Each

customer demands exactly one item from the inventory, having random dura-

tion of service which follows exponential distribution with parameter µ. The

maximum capacity of the inventory level is fixed as S. The lead time is ex-

ponentially distributed with parameter β which is independent of the service

time distribution as well as the arrival process of customers. As in the case of

model 1, here we discuss two distinct replenishment policies: (a) (s,Q) policy

(b) (s, S) policy.

Assumptions

• As long as the inventory level is greater than the reorder level s, newly

arriving customers join.

• If the inventory level is less than or equal to reorder level s, then new

arrivals do not join, irrespective of the number of customers already

present in the system.

2.3.1 Analysis: (s,Q) policy

The process Ω′ = {(N (t),I(t)); t ≥ 0} is a CTMC with state space E′ =

{(n, i);n ≥ 0, 0 ≤ i ≤ S} . The infinitesimal generator Q2 of this CTMC is an

LIQBD of the form:
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Q2 =










B00 B0

B2 B1 B0

B2 B1 B0

. . .
. . .

. . .










(2.4)

where the sub-matrices B00, B0, B1 and B2 are square matrices of order S+1.

Define Q2((n, i); (m, j)) as the transition rates from the state (n, i) →

(m, j) where n (m) represents number of customers in the system and i (j) is

the number of items in the inventory. Then the non-diagonal entries are given

by

Q2((n, i), (m, j)) =







λ for m = n+ 1, j = i; n ≥ 0, i = s+ 1, s+ 2, ..., S.

µ for m = n− 1, j = i− 1; n ≥ 1, i = 1, 2, ..., S.

β for m = n, j = i+Q; n ≥ 0, i = 0, 1, ..., s.

0 otherwise.

The diagonal entries are such that each row sum is zero. The stability condi-

tion of this system is same as that of Model 1 given in (2.2). This is despite

the fact that we imposed strong conditions on the admission of customers in

this model.

2.3.2 Analysis: (s,S) policy

Under the (s, S) policy, the infinitesimal generator Q2 in block partitioned

form is as given in (2.4).

The non-diagonal elements of Q2 = (q2((n, i), (m, j)); (n, i), (m, j) ∈ E) are

q2((n, i), (m, j)) =







λ for m = n+ 1, j = i; n ≥ 0, i = s+ 1, s+ 2, ..., S.

µ for m = n− 1, j = i− 1; n ≥ 1, i = 1, 2, ..., S.

β for m = n, j = S; n ≥ 0, i = 0, 1, ..., s.

0 otherwise.
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The diagonal entries are such that each row sum is zero. The stability condi-

tion of this system is the same as the one given in (2.3).

2.3.3 Steady-state probability vector of Q2

Let the steady-state probability vector x̃ ofQ2 be partitioned by the levels into

sub-vectors x̃i for i ≥ 0, which contains S + 1 elements x̃i(0), x̃i(1), ..., x̃i(S).

Theorem 2.3.1. When the stability condition holds, the steady-state

probability vector x̃ = (x̃0, x̃1, x̃2, ...) is given by

x̃i = x̃0R
′i, i ≥ 1

where the matrix R′ satisfies the matrix quadratic equation

R′2B2 +R′B1 +B0 = O

and the vector x̃0 is obtained by solving

x̃0

[
B00 +R′B2

]
= 0

subject to the normalizing condition

x̃0

[
I −R′

]−1
e = 1.

Proof. We have x̃Q2 = 0 and x̃e = 1.

The first equation of the above yields the set of equations

x̃0B00 + x̃1B2 = 0, (2.5)

x̃iB0 + x̃i+1B1 + x̃i+2B2 = 0, i ≥ 0. (2.6)

In order to express the solution in a recursive form, we assume

x̃i = x̃0R
′i, i ≥ 1
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where the spectral radius of R′ is less than 1, which is ensured by the stability

condition. From equation (2.6) we get

x̃i

[
R′2B2 +R′B1 +B0

]
= 0, i ≥ 0.

Since the above equation is true for i ≥ 0, we get

R′2B2 +R′B1 +B0 = 0.

Thus R′ is a solution of above matrix quadratic equation. Post multiplying

the above equation by e we get

[
I −R′

] [
λ−R′µ

]
= 0,

where µ = (0, µ, µ, ..., µ)T and λ = (0, 0, ..., 0, λ, λ, ..., λ)T are column vectors

of order S + 1. (In µ, first element is 0, remaining S entries are µ and in λ

first s+ 1 entries are 0, remaining are λ).

Since spectral radius of R′ is less than one, I − R′ is non-singular. Hence

we have R′µ = λ.

From (2.5) we get x̃0 [B00 +R′B2] = 0. Also x̃e = 1, which implies

x̃0

[

I +
∞∑

i=0

R′i+1

]

e = 1 ⇒ x̃0

[
I −R′

]−1
e = 1.

Thus x̃0 is obtained by solving

x̃0

[
B00 +R′B2

]
= 0

subject to the normalizing condition

x̃0

[
I −R′

]−1
e = 1.

This completes the proof of the theorem.
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Performance Measures

1. Mean number of customers in the system EC =
∞∑

i=1

ix̃ie.

2. Expected inventory level in the system EI =
∞∑

i=0

S∑

j=0

jx̃i(j).

3. Expected reorder rate ER = µ
∞∑

i=1

x̃i(s+ 1).

4. Expected loss rate of customers EL = λ
∞∑

i=0

s∑

j=0

x̃i(j).

2.4 Mathematical formulation of Model 3

Consider an infinite capacity queueing-inventory system with a single server

to which customers arrive according to a Poisson process with rate λ. The ser-

vice time is assumed to follow an exponential distribution with parameter µ.

The replenishment rule is based on (s1, Q) policy. That is, when the on-hand

inventory reaches s1 > 0, a replenishment order is placed for Q units and fix

S = Q + s1 as the maximum capacity of the inventory level. We introduce a

partially blocking set (partially blocking, since complete blocking involves a

bit more stronger assumption). In a complete blocking set all activities other

than replenishment, are blocked. Assume that the new arrivals do not join

the system whenever the inventory level falls in the blocking set {0, 1, 2, ..., s2},

where s2 < s1, but the service process is continued as long as customers are

available. This model involves positive lead time which follows an exponential

distribution with parameter β. Then the process Ω = {(N (t),I(t)) : t ≥ 0} is

a CTMC whose state space is E = {(n, i);n ≥ 0, 0 ≤ i ≤ S} and the infinites-
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imal generator Q3 given by

Q3 =










C00 C0

C2 C1 C0

C2 C1 C0

. . .
. . .

. . .










(2.7)

where the sub-matrices C00, C0, C1 and C2 are square matrices of order S+1.

Entries in the sub-matrices are given by

(n, i) → (n+ 1, i) = λ; n ≥ 0, i = s2 + 1, s2 + 2, ..., S,

(n, i) → (n− 1, i− 1) = µ; n ≥ 1, i = 1, 2, ..., S,

(n, i) → (n, i+Q) = β; n ≥ 0, i = 0, 1, ..., s1,

(n, i) → (m, j) = 0; otherwise.

The diagonal entries are determined by the fact that each row sum is zero.

Let ξ = (ξ0, ξ1, ..., ξS) be the steady-state probability vector of the gener-

ator C = C0 + C1 + C2. That is, ξC = 0 and ξe = 1.

Using the above equations, the vector ξ can be obtained explicitly in terms

of the parameters of the model as:

ξi =







β
µ

(
β+µ
µ

)i−1
ξ0, 1 ≤ i ≤ s1,

β
µ

(
β+µ
µ

)s1
ξ0, s1 + 1 ≤ i ≤ Q,

β
µ

(
β+µ
µ

)i−Q−1
[(

β+µ
µ

)s1−(i−Q−1)
− 1

]

ξ0, Q+ 1 ≤ i ≤ S

and the unknown probability ξ0 is found using the normalizing condition ξe =

1 as

ξ0 =

[

1 +Q
β

µ

(
β + µ

µ

)s1]−1

where ξi is the probability that the inventory level is i, 0 ≤ i ≤ S. Because of

the QBD structure of the model, the queueing system is stable if and only if

(see Neuts [33])

ξC0e < ξC2e.



Mathematical formulation of Model 3 39

This reduces to

λ

µ

[

1−

(
β + µ

µ

)s2 [

1 +Q
β

µ

(
β + µ

µ

)s1]−1
]

<

[

1−

[

1 +Q
β

µ

(
β + µ

µ

)s1]−1
]

.

2.4.1 Steady-state distribution

Assume that the stability condition holds. Let x′ denote the steady-state

probability vector of the generator Q3 given in (2.7). That is,

x′Q3 = 0 and x′e = 1.

Partition the steady-state probability vector x′ according to the number of

customers in the system as x′ = (x′
0,x

′
1,x

′
2, ...) where the sub-vectors x

′
n, n ≥

0, contains S + 1 elements. The sub-vectors satisfy the equations

x′
0C00 + x′

1C2 = 0,

x′
n−1C0 + x′

nC1 + x′
n+1C2 = 0, n ≥ 1.

From the matrix-geometric method (see Neuts [33]),we have

x′
n = x′

0ℜ̃
n, n ≥ 1

where ℜ̃ is the minimal non-negative solution to the matrix quadratic equation

ℜ̃2C2 + ℜ̃C1 + C0 = O.

The subvector x′
0 is obtained by solving the boundary equation

x′
0[C00 + ℜ̃C2] = 0

and the normalizing condition

x′
0(I − ℜ̃)−1e = 1.
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System Performance Measures

1. Expected number of customers in the system EC =
∞∑

i=1

ix′
ie.

2. Expected inventory level in the system EI =
∞∑

i=0

S∑

j=1

jx′i(j).

3. Expected re-order rate ER = µ
∞∑

i=1

x′i(s1 + 1).

4. Expected loss rate of customers EL = λ
∞∑

i=0

s2∑

j=0

x′i(j).

2.4.2 Expected time to emptiness of the inventory

We consider M/M/1/s2+1 queueing-inventory system. Starting from a state

with inventory level S, we need to find the time till absorption to the state

with zero inventory. Let n be the number of customers in the system when

the inventory level is S, 0 ≤ n ≤ s2 + 1 (i.e. n is the number of customers in

the starting state).

Consider a finite state Markov chain Ω′ = {(N (t),I(t)) , t ≥ 0}. The state

space of Ω′ is {(i, j)}
⋃
{∆} where 0 ≤ i ≤ s2 + 1, 1 ≤ j ≤ S and {∆} is the

absorbing state which denotes zero inventory. The possible transitions and

corresponding instantaneous rates are given in Table 2.3.

From To Rate

Transition (i, j) (i + 1, j) λ 0 ≤ i ≤ s2 1 ≤ j ≤ S

rates of (i, j) (i − 1, j − 1) µ 1 ≤ i ≤ s2 + 1 2 ≤ j ≤ S

T̃ n (i, j) (i, j + Q) β 0 ≤ i ≤ s2 + 1 1 ≤ j ≤ s1,

Transition rates of T̃
0
n (i, 1) {∆} µ 1 ≤ i ≤ s2 + 1

Table 2.3: Transition rates in Q̃

Hence the infinitesimal generator Q̃, of the Markov chain Ω′ is of the form
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(

T̃ n T̃
0
n

0 0

)

with initial probability vector αn == (0, ..., 0, 1, 0, ..., 0) where

1 is in the S(n + 1)th position, 0 ≤ n ≤ s2 + 1. T̃ n is a square matrix of

order S(s2+2) and αn has S(s2+2) elements and T̃ ne+ T̃
0
n = 0. Therefore,

the expected time τ until absorption to {∆} follows PH-distribution with

representation (αn, T̃ n) and E(τ) = −αn(T̃ n)
−1e.

2.5 Case of complete blocking

Here we strengthen the assumption in the model described earlier (see also

Krenzler and Daduna [20]): Whenever the inventory level reaches the blocking

set, newly arriving customers are lost and service process is completely blocked.

All other assumptions remain same as in Section 2.4. Thus the infinitesimal

generator Q̃3 has a form as given in (2.7). However the entries in the block

matrices are as described below,

(n, i) → (n+ 1, i) = λ; n ≥ 0, i = s2 + 1, s2 + 2, ..., S,

(n, i) → (n− 1, i− 1) = µ; n ≥ 1, i = s2 + 1, s2 + 2, ..., S,

(n, i) → (n, i+Q) = β; n ≥ 0, i = 0, 1, ..., s1,

(n, i) → (m, j) = 0; otherwise.

The diagonal entries are determined by the fact that each row sum is zero.

The matrix C = C0+C1+C2 is a finite dimensional irreducible generator.

Therefore there exists a unique positive stochastic solution ζ̃ of the steady

state equation

ζ̃C = 0 and ζ̃e = 1.

The system is stable if and only if

ζ̃C0e < ζ̃C2e ⇔

(
S∑

i=s2+1

ζi

)

λ <

(
S∑

i=s2+1

ζi

)

µ⇔ λ < µ.

Thus we have the following lemma.
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Lemma 2.5.1. The system with complete blocking of activities, other

than replenishment, is stable if and only if λ < µ.

For finding the steady state probability vector, we first consider an inven-

tory system where the serving of the inventory is instantaneous, that is, the

service time is negligible. Its infinitesimal generator W is


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
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

.

Let ξ′ = (ξ′0, ξ
′
1, ..., ξ

′
S) be the steady state vector of the generator W . Then

ξ′ satisfies the equations ξ′W = 0 and ξ′e = 1 and can be obtained as

ξ′i =







0, 0 ≤ i ≤ s2 − 1,

β
λ

(
β+λ
λ

)i−(s2+1)

ξ′s2 , s2 + 1 ≤ i ≤ s1,

β
λ

(
β+λ
λ

)s1−s2

ξ′s2 , s1 + 1 ≤ i ≤ Q+ s2,

β
λ

(
β+λ
λ

)i−(Q+s2+1)
[(

β+λ
λ

)(Q+s1+1)−i

− 1

]

ξ′s2 , Q+ s2 + 1 ≤ i ≤ Q+ s1.

The unknown probability ξ′s2 can be found from the normalizing condition

ξ′e = 1 as

ξ′s2 =

[

1 +Q
β

λ

(
β + λ

λ

)s1−s2
]−1

.

Now using the vector ξ′ we can find the steady-state vector of Q3. Let η =

(η0,η1,η2, ...) be the steady-state probability vector of the original system.
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Then ηQ3 = 0 and ηe = 1. These equations reduce to

η0C00 + η1C2 = 0,

ηi−1C0 + ηiC1 + ηi+1C2 = 0.

Assume the ηi to have a form:

ηi = k

(
λ

µ

)i

ξ′ for i ≥ 0, (2.8)

where k is an unknown constant to be evaluated. Under the above assump-

tion, we have

η0C00 + η1C2 = kξ′
[

C00 +
λ

µ
C2

]

,

ηi−1C0 + ηiC1 + ηi+1C2 = k

(
λ

µ

)i

ξ′
[

C00 +
λ

µ
C2

]

where C00 +
λ
µC2 = W . Also we have ξ′W = 0.

Now applying the normalizing condition ηe = 1, we get

k

(

1 +

(
λ

µ

)

+

(
λ

µ

)2

+ ...

)

= 1.

Hence under the condition that λ < µ, we have k = 1−
(
λ
µ

)

. That is, we get a

stochastic decomposition of the state space under the assumption that service

process is interrupted in blocked set and further we are able to write the joint

probability of the system state as product of their marginals. Thus we have

proved the main result for the special case discussed in this section which we

summarize in

Theorem 2.5.1. The system under consideration has stochastic decom-

position with the joint distribution of the system state equal to the product

of their marginal distributions.
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System performance measures

1. Expected number of customers in the system EC =
λ

µ− λ
.

2. Expected inventory level in the system

EI =

{

s2 +Q+

[
β

2λ
(Q+ 2s1 + 1)− 1

]

Q

(
β + λ

λ

)s1−s2
}

ξ′s2 .

3. Expected re-order rate ER = β ξ′s2 .

4. Expected loss rate of customers EL = λξ′s2 .

2.6 Numerical illustration

In this section we provide numerical illustration of the system performance

measures with variation in values of underlying parameters so as to compare

the relative superiority of Models 1 and 2. The conclusions drawn in what to

follow are specific to values assigned to parameters.

Effect of λ on various performance measures of Models 1 and 2

Table 2.4 indicates the variation in the system performance measures with

arrival rate λ. The increase in the values of the performance measures like ex-

pected number of customers in the system, expected reorder rate and expected

loss rate are on predictable lines in Models 1 and 2.

Note that the expected number of customers in Model 1 remains larger

whereas that of inventory is higher in Model 2. This is a consequence of the

assumption in Model 2 that customers do not join once inventory level drops

to s until next replenishment. As a consequence, in Model 1 the expected

reorder rate is higher and expected loss rate of customers is lesser.
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Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

λ EC EC EI EI ER ER EL EL

1 0.2441 0.2239 7.0342 7.4739 0.1091 0.1000 0.0179 0.1000

1.5 0.4014 0.3625 6.6087 7.2212 0.1590 0.1428 0.0694 0.2142

2 0.5873 0.5303 6.2327 6.9667 0.2037 0.1818 0.1670 0.3632

2.5 0.8122 0.7396 5.9054 6.7099 0.2429 0.2171 0.3135 0.5408

3 1.0948 1.0073 5.6231 6.4562 0.2771 0.2493 0.5065 0.7404

3.5 1.4676 1.3543 5.3805 6.2136 0.3066 0.2784 0.7410 0.9549

Table 2.4: Effect of λ with β = 1, µ = 5, s = 3, Q = 9.

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

µ EC EC EI EI ER ER EL EL

3 1.5068 1.3703 6.2769 6.8383 0.1976 0.1802 0.2220 0.3545

4 0.8473 0.7721 6.2475 6.9172 0.2016 0.1815 0.1854 0.3617

5 0.5873 0.5303 6.2327 6.9667 0.2037 0.1818 0.1670 0.3632

6 0.4487 0.4023 6.2235 6.9966 0.2048 0.1818 0.1564 0.3635

7 0.3627 0.3236 6.2173 7.0157 0.2056 0.1818 0.1497 0.3636

8 0.3043 0.2705 6.2127 7.0285 0.2061 0.1818 0.1452 0.3636

Table 2.5: Effect of µ: Take β = 1, λ = 2, s = 3, Q = 9.

Effect of µ on various performance measures of Models 1 and 2

From Table 2.5 we can make the following observations. As the service rate

increases, expected inventory level and expected loss rate increase in Model

2. But in Model 1 expected inventory level and expected loss rate decrease

with increase in value of the parameter µ. This shows that expected loss rate

is higher in Model 2.

Effect of β on various performance measures of Models 1 and 2

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

β EC EC EI EI ER ER EL EL

1 0.5873 0.5303 6.2327 6.9667 0.2037 0.1818 0.1670 0.3632

2 0.6326 0.5838 7.0419 7.4270 0.2163 0.1999 0.0530 0.1997

3 0.6461 0.6058 7.3473 7.6026 0.2193 0.2067 0.0260 0.1377

4 0.6522 0.6181 7.5061 7.6955 0.2205 0.2103 0.0158 0.1051

5 0.6556 0.6260 7.6031 7.7531 0.2210 0.2126 0.0110 0.0849

Table 2.6: Effect of β: Take µ = 5, λ = 2, s = 3, Q = 9.
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Table 2.6 shows that an increase in the value of parameter β makes an

increase in the values of measures like expected number of customers, ex-

pected inventory level and expected reorder rate, whereas the expected loss

rate decreases in Models 1 and 2.

Effect of the arrival rate in Model 3

λ EC EI ER EL

2 0.3665 11.0594 0.1900 0.1379

3 0.5852 9.5899 0.2594 0.5117

4 0.8207 8.3900 0.3060 1.0705

5 1.0872 7.5151 0.3359 1.7228

6 1.3994 6.9009 0.3548 2.4112

Table 2.7: Effect of λ: Fix β = 1, µ = 7, s2 = 3, s1 = 8, Q = 10.

Table 2.7 shows that an increase in the arrival rate λ results in an increase

in measures like expected number of customers in the system, expected reorder

rate and expected loss rate, whereas the expected inventory level decreases.

Effect of the service rate in Model 3

µ EC EI ER EL

4 1.3193 9.7352 0.2133 0.4782

5 0.9401 9.5833 0.2344 0.5119

6 0.7236 9.5603 0.2490 0.5178

7 0.5852 9.5899 0.2594 0.5117

8 0.4896 9.6377 0.2670 0.5013

9 0.4200 9.6887 0.2726 0.4899

Table 2.8: Effect of µ: Take β = 1, λ = 3, s2 = 3, s1 = 8, Q = 10.

From Table 2.8, we observe that as service rate increases, expected number

of customers decreases and expected reorder rate increases.
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Effect of the replenishment rate in Model 3

The behavior of measures like the expected number of customers, expected

inventory level and expected loss rate, as β increases, are on expected lines;

where as the first two increase, the third one decreases. Another interesting

observation that we get from Table 2.9 is that an optimal value could be

obtained for expected reorder rate as the replenishment rate increases.

β EC EI ER EL

1 0.5852 9.5899 0.2594 0.5117

2 0.6350 11.7151 0.2627 0.1017

3 0.6418 12.3439 0.2613 0.0329

4 0.6439 12.6172 0.2608 0.0161

5 0.6439 12.7713 0.2606 0.0100

Table 2.9: Effect of β: Fix µ = 7, λ = 3, s2 = 3, s1 = 8, Q = 10.

2.6.1 Optimization problem

(s,Q) policy

In this section we provide the optimal values of the inventory level s and the

fixed order quantity Q. For computing the minimal costs (s,Q) of the given

queueing-inventory models we introduce the cost function K(s,Q) as

K(s,Q) = [C0 +QC1]ER + C2EI + C3EC + C4EL

where

C0 : Fixed cost for placing an order

C1 : Procurement cost / unit

C2 : Holding cost of inventory / unit / unit time

C3 : Holding cost of customers / unit / unit time

C4 : Cost due to the loss of customers / unit / unit time

Due to the complexity of the cost function we are unable to compute the opti-

mal pair (s,Q) explicitly, so we arrive at these by using numerical procedures.
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We fix the values of the parameters: λ = 3, µ = 5, β = 1,C0 = $100,C1 =

$10,C2 = $1,C3 = $0.5,C4 = $20 and vary the values of s and Q.

Optimal (s,Q) pair (1,25) (2,25) (3,25) (4,25) (5,24) (6,24) (7,24) (8,24)

Minimum cost 56.758 57.2 57.684 58.242 58.881 59.596 60.376 61.21

Table 2.10: Optimal (s,Q) pair and corresponding minimum cost of Model 1

Optimal(s,Q) pair (1,25) (2,25) (3,25) (4,25) (5,25) (6,26) (7,26) (8,26)

Minimum cost 56.568 57.52 58.496 59.486 60.481 61.479 62.479 63.479

Table 2.11: Optimal (s,Q) pair and corresponding minimum cost of Model 2

From Table 2.10 we observe that (s,Q) = (1, 25) is the optimal pair and

the corresponding cost (minimum) is $ 56.758. This obviously depends on the

input parameter values. From Table 2.11 we get the optimal pair of (s,Q) as

(1,25) and the corresponding minimum cost is $ 56.568.

(s,S) policy

Now for computing the minimal costs of (s, S) models we introduce the cost

function K(s, S) as

K(s, S) =

[

C0 +
s∑

i=0

(S − i)C1

]

ER + C2EI + C3EC + C4EL

For numerical comparison we assign the following values to the parameters:

λ = 3, µ = 5, β = 1, C0 = $100, C1 = $10, C2 = $1, C3 = $0.5, C4 = $20 and vary

the values of s and S.

Optimal (s, S) pair (1,25) (2,24) (3,24) (4,26) (5,30) (6,34) (7,40) (8,45)

Minimum cost 85.418 114.24 144.6 176.74 210.4 245.1 280.46 316.21

Table 2.12: Optimal (s, S) pair and corresponding minimum cost of Model 1
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Optimal (s, S) pair (1,26) (2,26) (3,28) (4,31) (5,35) (6,40) (7,45) (8,49)

Minimum cost 85.157 114.68 145.35 177.13 209.72 242.96 276.67 310.72

Table 2.13: Optimal (s, S) pair and corresponding minimum cost of Model 2

From Table 2.12 we observe that (s, S) = (1, 25) is the optimal pair and

the corresponding cost is $ 85.418. Table 2.13 shows $ 85.157 as the minimum

cost corresponding to the optimal pair (s, S) = (1,26).

Cost analysis of Model 3

We discuss the optimal values of the inventory levels s2, s1 and the fixed order

quantity Q. For computing the minimal costs of the given queueing-inventory

model we introduce the cost function K(s2, s1, Q) as

K(s2, s1, Q) = [C0 +QC1]ER + C2EI + C3EC + C4EL

where C0,C1,C2,C3 and C4 are defined earlier.

We fix the values of the parameters: λ = 6, µ = 7, β = 1,C0 = $100,C1 =

$10,C2 = $1,C3 = $0.5,C4 = $20 and vary the values of s2, s1 and Q. We

obtain the following Table which provide the optimal pairs (s2, s1, Q) and

the corresponding minimum cost (in $). Table 2.14 indicate that optimal

Optimal values (0,11,26) (1,10,29) (2,9,30) (3,10,30) (4,11,30) (5,12,30) (6,13,30)

Minimum cost 69.182 68.946 66.737 67.739 68.74 69.741 70.742

Table 2.14: Optimal values (s2, s1, Q) and minimum cost

pair (s1, Q) is obtained when s2 = 2 and the corresponding minimum cost is

$66.737. In this model it is difficult to prove analytically that the cost function

is convex in s2 because of high non-linearity of the function. Nevertheless, all

numerical experiments we have performed indicate that this cost function first

decreases in s2, attains a minimum and then starts going up.
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Analysis of cost function in the case of complete blocking

Based on the above performance measures, we construct a cost function for

checking the optimality of the inventory level s2.

K(s2, s1, Q) = ξ′s2

{

β(C0 +QC1) + λC4 +

[

s2 +Q+Q

(
β + λ

λ

)s1−s2

(
β

2λ
[Q+ 2s1 + 1]− 1

)]

C2

}

+

(
λ

µ− λ

)

C3.

where C0,C1,C2,C3 and C4 are defined earlier.

Fixing the values of the parameters: λ = 5, µ = 7, β = 1,C0 = $100,C1 =

$10,C2 = $1,C3 = $0.5,C4 = $20 and vary the values of s2, s1 and Q we

obtain the following Table:

Optimal triplet (0,3,32) (1,4,32) (2,5,32) (3,6,32) (4,7,32) (5,8,32)

Minimum cost 82.362 83.362 84.363 85.363 86.363 87.363

Table 2.15: Optimal (s2, s1, Q) and minimum cost

From Table 2.15 optimal pair (s1, Q) is (3, 32), obtained when s2 = 0 and

the corresponding minimum cost is $82.362.



Chapter 3

Product form solution for a

queueing-inventory supply

chain problem

In the previous chapter we established product form solution for the (s1, Q)

inventory model, under heavy restrictions (Special case of Model 3 discussed

there). In the present chapter we analyze a single server supply chain model

in which stocks are kept in both the production centre and the distribution

centre. Arrival of customers to the retail shop forms a Poisson process and

their service time are exponentially distributed. The maximum stock level at

the distribution centre is limited to s + Q(= S). When the inventory level

depletes to s due to services, it demands Q units of items from the production

centre. The lead time follows exponential distribution. If the production

centre has the required stock on-hand, the items are despatched immediately.

Some results in this chapter are appeared in Journal of OPSEARCH.

A. Krishnamoorthy, Dhanya Shajin and B. Lakshmy : Product form solution for

some queueing-inventory supply chain problem, OPSEARCH (Springer), DOI

10.1007/s12597-015-0215-8.

51
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Supply of items from the production centre to the distribution centre is

done only in packets ofQ units at a time. So if a packet of sizeQ is not available

the distribution centre has to wait till Q units accumulate in the production

centre. The production plant adopts an (rQ,KQ) policy where the processing

of inventory requires a positive random amount of time. Production time

for unit item is exponentially distributed. We impose the condition that no

customer joins the queue when the inventory level in the distribution centre

is zero.

The motivation behind this work comes from Krishnamoorthy and Viswanath

[27]. As in that paper, in the present case also we consider the condition that

no customer joins the system when the inventory level is zero at the distri-

bution centre. Those who are already in the queue do not leave the system.

This assumption has lead to a product form solution for the system state

distribution in the problem under discussion here.

This chapter has theoretical significance in that it provides product form

solution despite strong dependence between the number of customers joining

during lead time (as long as inventory level is positive) and the duration of the

lead time.

Its practical application lies in the following: Customers who join the sys-

tem would like to minimize their waiting time in the system. As a consequence

an arriving customer prefers not to join the system if the inventory level is

found to be zero. Under this condition we get a simple expression for the

system stability which is independent of the lead time distribution. However,

if customers join the system (with positive probability) when inventory level

is zero then the expression for system stability will involve the lead time dis-

tribution parameter. Further the system state distribution will not have the

closed form solution that we could arrive at in the present chapter.
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3.1 Mathematical formulation and analysis

A supply chain model with one production centre and one distribution centre

is considered in this chapter. Stocks are kept in the retail shop for meeting

customer demands whereas the items produced at the plant (which is also

considered as the warehouse) are stocked there for meeting demands from the

distribution centre. The distribution centre has one server to serve customers

when on-hand inventory is positive. Customers arrive to the distribution cen-

tre according to a Poisson process of rate λ. Service time follows exponential

distribution with parameter µ. The maximum stock at the distribution centre

is limited to s+Q(= S).

When the stock of the distribution centre depletes to s, it demands Q items

from the production centre. At that instant if the production centre has the

required stock on-hand, the items are supplied to the distribution centre. It

takes an exponentially distributed amount of time (lead time) with parameter

β for the item to reach the distribution centre. At the time of receiving the

order if the production centre has less than Q items on stock then an additional

time for inventory to accumulate to Q by production is needed. Production

time for each unit is exponentially distributed with parameter η.

The production centre adopts an (rQ,KQ) policy where 0 < r < K < ∞

and are positive integers. When the inventory level depletes to rQ the produc-

tion process is immediately switched on. The production process is kept in the

on mode until the inventory level becomes KQ. We assume that no customer

is allowed to join the queue when the inventory level in the distribution centre

is zero; such demands are considered as lost. These are referred to as lost

sales.

To describe the state space of the QBD we use the following notations in

the sequel.
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N (t) number of customers in the system

IP (t) number of items present in the production centre

ID(t) inventory level in the distribution centre

M(t) status of the production process: on or off mode

The production process is always in on mode if 0 ≤ IP (t) ≤ rQ and it is in

off mode if IP (t) = KQ; but when the inventory level lies between rQ + 1

and KQ− 1, M(t) is either 1 or 0 according as the production is in on or off

mode, respectively.

Under the above assumptions Ω = {(N (t),ID(t),IP (t),M(t)), t ≥ 0}

forms a CTMC with state space
∞⋃

n=0

ℓ(n) where

ℓ(n) = {(n, iD, iP , 1); 0 ≤ iD ≤ S, 0 ≤ iP ≤ rQ}
⋃
{(n, iD, iP ,m); 0 ≤ iD ≤ S, rQ+ 1 ≤ iP ≤ KQ− 1,m = 1, 0}

⋃
{(n, iD,KQ, 0); 0 ≤ iD ≤ S}.

We now describe the infinitesimal generator matrix Q of this CTMC. Note

that by the assumptions made above the CTMC Ω is a LIQBD.

We have

Q =










B0 A0

A2 A1 A0

A2 A1 A0

. . .
. . .

. . .










(3.1)

Each matrix B0, A0, A1, A2 is a square of order (S + 1)(2K − r)Q where

A0 =

[

0 0

0 λIS(2K−r)Q

]

, A2 =

[

0 0

µIS(2K−r)Q 0

]
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B0 =












F M

F1

. . .

. . .
. . .

F1 M

F2

. . .

F2












, A1 =












F M

F3

. . .

. . .
. . .

F3 M

F4

. . .

F4












with F, F1, F2, F3, F4 and M are square matrices of order (2K − r)Q.

Define H
(jP ,k2)
(iP ,k1)

for H = F, F1, F2, F3, F4,M as the transition rates from

the state (iP , k1) → (jP , k2) where iP , jP represent the number of items in the

production centre and k1, k2 are the mode of production process.

F
(jP ,k2)
(iP ,k1)

=







η jP = iP + 1, 0 ≤ iP ≤ KQ− 2, k2 = k1 = 1

η jP = iP + 1, iP = KQ− 1, k2 = 0, k1 = 1

−η jP = iP , 0 ≤ iP ≤ Q− 1, k2 = k1 = 1

−(η + β) jP = iP , Q ≤ iP ≤ KQ− 1, k2 = k1 = 1

−β jP = iP , rQ+ 1 ≤ iP ≤ KQ, k2 = k1 = 0

0 otherwise

F
(jP ,k2)
1(iP ,k1)

=







η jP = iP + 1, 0 ≤ iP ≤ KQ− 2, k2 = k1 = 1

η jP = iP + 1, iP = KQ− 1, k2 = 0, k1 = 1

−(λ+ η) jP = iP , 0 ≤ iP ≤ Q− 1, k2 = k1 = 1

−(λ+ η + β) jP = iP , Q ≤ iP ≤ KQ− 1, k2 = k1 = 1

−(λ+ β) jP = iP , rQ+ 1 ≤ iP ≤ KQ, k2 = k1 = 0

0 otherwise

M
(jP ,k2)
(iP ,k1)

=







β jP = iP −Q,Q ≤ iP ≤ KQ− 1, k2 = k1 = 1

β jP = iP −Q, rQ+ 1 ≤ iP ≤ (r + 1)Q, k2 = 1, k1 = 0

β jP = iP −Q, (r + 1)Q+ 1 ≤ iP ≤ KQ, k2 = k1 = 0

0 otherwise

F
(jP ,k2)
2(iP ,k1)

=







η jP = iP + 1, 0 ≤ iP ≤ KQ− 2, k2 = k1 = 1

η jP = iP + 1, iP = KQ− 1, k2 = 0, k1 = 1

−(λ+ η) jP = iP , 0 ≤ iP ≤ KQ− 1, k2 = k1 = 1

−λ jP = iP , rQ+ 1 ≤ iP ≤ KQ, k2 = k1 = 0

0 otherwise
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F
(jP ,k2)
3(iP ,k1)

=







η jP = iP + 1, 0 ≤ iP ≤ KQ− 2, k2 = k1 = 1

η jP = iP + 1, iP = KQ− 1, k2 = 0, k1 = 1

−(λ+ µ+ η) jP = iP , 0 ≤ iP ≤ Q− 1, k2 = k1 = 1

−(λ+ µ+ η + β) jP = iP , Q ≤ iP ≤ KQ− 1, k2 = k1 = 1

−(λ+ µ+ β) jP = iP , rQ+ 1 ≤ iP ≤ KQ, k2 = k1 = 0

0 otherwise

F
(jP ,k2)
4(iP ,k1)

=







η jP = iP + 1, 0 ≤ iP ≤ KQ− 2, k2 = k1 = 1

η jP = iP + 1, iP = KQ− 1, k2 = 0, k1 = 1

−(λ+ µ+ η) jP = iP , 0 ≤ iP ≤ KQ− 1, k2 = k1 = 1

−(λ+ µ) jP = iP , rQ+ 1 ≤ iP ≤ KQ, k2 = k1 = 0

0 otherwise.

3.1.1 System stability

Next we examine the system stability. Define A = A0 + A1 + A2. This is the

infinitesimal generator of the finite state CTMC Ω′ = {(ID(t),IP (t),M(t)),

t ≥ 0} corresponding to the inventory level {0, 1, ..., S} in the distribution

centre. Let π = (π0,π1, ...,πS) be the steady-state probability vector of A

where each

πi =
(

πi(0, 1), ..., πi(rQ, 1), πi(rQ+ 1, 1), πi(rQ+ 1, 0), ...,

πi(KQ− 1, 1), πi(KQ− 1, 0), πi(KQ, 0)
)

, for 0 ≤ i ≤ S,

is of order (2K − r)Q. Then πA = 0, πe = 1.

This Markov chain is stable if and only if the left drift rate exceeds the

right drift rate which amounts to

πA0e < πA2e (3.2)

From the matrices A0, A2 we have πA0e = λ
S∑

i=1

πie and πA2e = µ
S∑

i=1

πie.

Using relation (3.2) we obtain the stability condition as λ < µ. Thus we have

the following result.
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Theorem 3.1.1. The system under study is stable if and only if λ < µ.

3.2 Steady-state analysis

For finding the steady-state probability vector of the CTMC Ω, we first con-

sider the distribution centre of the system where the serving of the inventory is

instantaneous. The corresponding Markov chain is defined as {(ID(t),IP (t),

M(t)), t ≥ 0} where ID(t),IP (t) and M(t) represent the entities described

earlier. The infinitesimal generator of this CTMC is given by

Ã =

















F M

L F1
. . .

. . .
. . .

. . .

L F1 M

L F2

. . .
. . .

L F2

















where L = λI(2K−r)Q and all other sub matrices are as defined previously in

matrix B0.

Let ξ = (ξ0, ξ1, ..., ξS) be the steady-state vector of Ã. Then ξ satisfies

the equations ξÃ = 0, ξe = 1.

Each ξi can be obtained as

ξi =







ξ0V(0)[V(1)](i−1), 1 ≤ i ≤ s+ 1

ξ0V(0)[V(1)]s[V(2)]i−(s+1), s+ 2 ≤ i ≤ Q

ξ0V(i− 1), Q+ 1 ≤ i ≤ S.

The unknown probability ξ0 can be found from the normalizing condition

ξ0



I + V(0)
s−1∑

i=0

(V(1))i + V(0)(V(1))s
Q−(s+1)
∑

i=0

(V(2))i +
S−1∑

i=Q

V(i)



 e = 1
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where V(0) = −FL−1, V(1) = −F1L
−1, V(2) = −F2L

−1,

V(Q) = −
[
M + V(0) (V(1))s (V(2))Q−(s+1) F2

]
L−1,

V(i) = −[V(0) (V(1))i−(Q+1) M + V(i− 1) F2] L
−1, Q+ 1 ≤ i ≤ S − 1.

Now using the vector ξ, we can find the steady-state vector of the given

system. Let x be the steady-state vector of the generator Q. Then x must

satisfy the set of equations xQ = 0, xe = 1.

Partition x as x = (x0,x1,x2, ...). Then the above system of equations

reduces to:

x0B0 + x1A2 = 0, (3.3)

xi−1A0 + xiA1 + xi+1A2 = 0, i ≥ 1. (3.4)

Now assume a solution of the form

xi = κ

(
λ

µ

)i

ξ for i ≥ 0 (3.5)

where κ is a constant.

We verify that equation (3.5) satisfies (3.3) and (3.4). We have

x0B0 + x1A2 = κξ

(

B0 +
λ

µ
A2

)

= κξÃ = 0,

xi−1A0 + xiA1 + xi+1A2 =

(
λ

µ

)i

κξ

(

B0 +
λ

µ
A2

)

=

(
λ

µ

)i

κξÃ = 0.

Hence it follows that if we take the vector x as given by (3.5), Equations

(3.3) and (3.4) are satisfied. Now applying the normalizing condition xe = 1,

we get

κ

[

1 +

(
λ

µ

)

+

(
λ

µ

)2

+ ...

]

ξe = 1.

Hence under the condition that λ < µ, we have κ = 1 − λ
µ . Thus we have

proved the main result of this paper:
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Theorem 3.2.1. The system under consideration has stochastic decom-

position with the joint distribution of the system state equal to the product

of their marginal distributions.

3.2.1 Distribution of the replenishment time

Now we derive the distribution of the time until the replenishment is realized

after placing an order. There are two cases to be considered:

a. The number of items in the inventory at the production centre < Q at the

time of receiving the replenishment order.

b. The inventory level at the production centre ≥ Q.

The distribution centre demands Q items from the production centre when

the inventory level there depletes to s. Here the expected time required to

deliver an order depends on the number of items present in the production

centre. Thus we consider the following cases:

Let i be the number of items present in the production centre when an

order is placed from the distribution centre.

Case a: 0 ≤ i < Q

Production centre delivers in packets of Q items. So at a time when an order

is placed if the number of items present in the production centre is i(< Q),

the despatch of the packet takes place only when the inventory level at the

production centre reaches Q. Thus we have to consider a Markov chain on the

states {i, i+ 1, i+ 2, ..., Q}
⋃
{Q∗} where {Q∗} is an absorbing state which

represents a packet of Q items delivered to the distribution centre. The in-

finitesimal generator has of the form

W =

[

T i T 0
i

0 0

]
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where T i=















i i+ 1 i+ 2 . . . Q− 1 Q

i −η η

i+ 1 −η η

i+ 2 −η
. . .

...
. . . η

Q− 1 −η η

Q −β















, T 0
i =










0
...

0

β










.

Also T ie + T 0
i = 0 and the initial probability vector αi = (1, 0, 0, ...) of

order (Q− i+ 1), to compute the time to despatching the order quantity.

That is, the waiting time at the distribution centre for despatch follows PH-

distribution with representation PH(αi,T i). The unconditional distribution

for time to replenishment is

Q−1
∑

i=0

PH(αi,T i) P [IP = i] and the corresponding

expected time is E(T̂) =

Q−1
∑

i=0

−αiT
−1
i e P [IP = i].

Case b: i ≥ Q

In this case the moment the order for replenishment is received, Q units are

despatched to the distribution centre. It takes an exponentially distributed

amount of time with parameter β to receive the item at the distribution cen-

tre. Then the expected time until replenishment after placing the order is

E(T̆) =
∑

i≥Q

1

β
P [IP = i] and the unconditional distribution for replenish-

ment is

KQ
∑

i=Q

exp(β) P [IP = i].

Thus from these two cases we obtain the unconditional distribution for

realization of the order at the distribution centre is

Q−1
∑

i=0

PH(αi,T i) P [IP =
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i] +

KQ
∑

i=Q

exp(β) P [IP = i] and expected total waiting time for replenishment

as ET = E(T̂) + E(T̆).

3.2.2 Analysis of production on-time

The production process is switched on when the inventory level at the produc-

tion centre depletes to rQ (that is r packets, each of size Q), starting with KQ

at the beginning of the cycle. We analyze the length of the production on-time

as the time until absorption in a Markov chain ψ = {(IP (t),N (t),ID(t)), t ≥

0} where N (t) denotes the number of customers in the system where variation

is from 0 to B (finite but sufficiently large to ensure that with only very small

probability ǫ customers are lost when inventory level is positive.) The state

space of ψ is given by {(iP , n, iD), 0 ≤ iP ≤ KQ − 1, 0 ≤ n ≤ B, 0 ≤ iD ≤

S}
⋃
{∗} where {∗} denotes the absorbing state, which represents switching

off the production process. The infinitesimal generator W ′ of the process ψ

has the form

W ′ =

[

T T 0

0 0

]

where T is of order KQ(S + 1)(B+ 1) and is given by

T =





















E E0

. . .
. . .

. . .
. . .

E E0

E2 E1 E0

. . .
. . .

. . .

E2 E1 E0

E2 E1





















, T 0 =









0
...

0

E′

0









with E0 = ηI(S+1)(B+1), E
′
0 = ηe.
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The matrix E0 in T represents an item added to inventory by production

and E2 represents the case of Q items from production centre despatched to

the distribution centre.

Define E
(n,iD)
(m,jD) as the transition rates from (n, iD) → (m, jD) where E =

E,E1, E2. These transitions are

E
(n,iD)
2(m,jD) =

{

β jD = iD +Q, 0 ≤ iD ≤ s,m = n, 0 ≤ n ≤ B

0 otherwise.

The non-diagonal elements of E and E1 are

E
(n,iD)
1(m,jD) =







λ jD = iD, 1 ≤ iD ≤ S,m = n+ 1, 0 ≤ n ≤ B − 1

µ jD = iD − 1, 1 ≤ iD ≤ S,m = n− 1, 1 ≤ n ≤ B

0 otherwise,

E
(n,iD)
(m,jD) =







λ jD = iD, 1 ≤ iD ≤ S,m = n+ 1, 0 ≤ n ≤ B − 1

µ jD = iD − 1, 1 ≤ iD ≤ S,m = n− 1, 1 ≤ n ≤ B

0 otherwise.

The diagonal entries of E and E1 are such that each row sum is zero.

Thus the production on-time τ follows phase type distribution and the

expected duration of production on time is given by Eon(τ) = −γT −1e where

γ = (0, .., 0, 1, 0, .., 0) is the initial probability vector of orderKQ(B+1)(S+1).

3.2.3 Analysis of production off time

Next we consider the switching off of the production process. When the in-

ventory level at the production centre reaches KQ, the process is switched off

to restart at the epoch when the inventory depletes to rQ.

Case 1

When the number of customers at the distribution centre is i ≥ (K − r)Q,

future arrivals need not be considered. In this case we analyze the length of the
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production off period as the time until absorption (to rQ) in the finite state

Markov chain ̟ = {(IP (t),N (t),ID(t)), t ≥ 0}. The state space of ̟ =

{(iP , n, iD), iP = (r + 1)Q, (r + 2)Q...,KQ, 0 ≤ n ≤ i, 0 ≤ iD ≤ S}
⋃
{∆},

where {∆} denotes the absorbing state, which represents switching on of the

production process. The infinitesimal generator W̃ i is of the form

W̃ i =

[

T̃ i T̃
0
i

0 0

]

with initial probability vector γi = (1, 0, 0, ...) of order (K − r)(i+ 1)(S + 1).

Here

T̃ i =












D1

D2 D1

. . .
. . .

D2 D1

D2 D1












, T̃
0

i =









D′

2

0
...

0









with

D1 =











U U1

U U1

. . .
. . .

U U1

U ′











, D2 =











U2

U2

. . .

U2

U2











,

D′
2 = U ′

2e where U ′ = diag(−β, ...,−β, 0, ..., 0), U ′
2 = [β, ..., β, 0, ..., 0]T , U =

diag(−β,−(µ+ β), ...,−(µ+ β),−µ, ...,−µ),

U1 =











µ

µ

. . .

µ











, U2 =











β

. . .

β











.
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The production off time τi (when i ≥ (K − r)Q) follows phase type distribu-

tion. Therefore the expected duration of production off time when there are i

customers in the system is given by Eoff (τi) = −γiT̃
−1
i e.

Case 2

When the number i of customers at the distribution centre is less than (K −

r)Q, new arrivals are to be considered until the epoch at which the number of

customers equals the number of items in the production exceeding rQ.

Thus for computing the production off time we have to consider a Markov

chain ̟′ = {N 1(t),N 2(t),IP (t),ID(t)), t ≥ 0} where N 1(t) is the number

of new arrivals to the system and N 2(t) is the number of customers present in

the distribution centre at time t. The state space is {(n1, n2, iP , iD), 0 ≤ n1 ≤

(K − r)Q− i, n2 = n1 − (K − r)Q, iP = (r+ 1)Q, (r+ 2)Q...,KQ, 0 ≤ iD ≤

S}
⋃
{∆′} where {∆′} denotes the absorbing state, which represents switching

on of the production process. The infinitesimal generator ˜̃
W i of the process

̟′ is of the form

˜̃
W i =

[
˜̃
T i

˜̃
T 0

i

0 0

]

with initial probability vector γ̃i = (1, 0, ..., 0) of order (K − r)(S + 1)[(K −

r)Q− (i− 1)]. Here

˜̃
T i =












D D5

D3 D4 D5

. . .
. . .

. . .

D3 D4 D5

D3 D′
4












, ˜̃T 0
i =







D6

...

D6







where

D =





U′

3 U2

. . .
. . .

U′

3 U2

U′

3



 , D′
4 =





U U2

. . .
. . .

U U2

U



 , D4 =





U3 U2

. . .
. . .

U3 U2

U3



 ,
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D3 = diag(U1, ..., U1), D5 = diag(U0, ..., U0), D6 = [0, ..., 0, U ′
2]
T with

(U0)ij =

{

λ j = i, 2 ≤ i ≤ S + 1

0 otherwise,

(U3)ij =







−β j = i, i = 1

−(λ+ β + µ) j = i, 2 ≤ i ≤ s+ 1

−(λ+ µ) j = i, s+ 2 ≤ i ≤ S + 1

0 otherwise,

(U ′
3)ij =







−β j = i, i = 1

−(λ+ β) j = i, 2 ≤ i ≤ s+ 1

−λ j = i, s+ 2 ≤ i ≤ S + 1

0 otherwise.

Matrices U,U1, U2 and U ′
2 are as given in Case 1. The production off time

τ ′i (when i < (K − r)Q) follows phase type distribution. These lead to the

expression for the expected duration of production off time as Eoff (τ
′
i) =

−γ̃i
˜̃
T −1

i e.

Performance Measures

1. Expected number of customers in the system

EC =
λ

µ− λ
.

This expression indicates that as λ increases, subject to the condition λ < µ,

EC increases.

2. Expected inventory level in the distribution centre

EID =

S∑

j=1





rQ
∑

k=0

jξj(k, 1) +

KQ−1
∑

k=rQ+1

j[ξj(k, 0) + ξj(k, 1)] + jξj(KQ, 0)



 .
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Though the production rate η does not appear explicitly in the above expres-

sion, we note that EID increases with η increasing. The reason for this is easy

to trace – low values of η would mean that finished products in batches of

size Q can not be expected at the time when replenishment order is placed,

whereas with increasing values of η the waiting time for packets of size Q turns

out to be smaller.

3. Expected inventory level in the production centre

EIP =
S∑

j=0





rQ
∑

k=0

kξj(k, 1) +

KQ−1
∑

k=rQ+1

k[ξj(k, 0) + ξj(k, 1)] +KQξj(KQ, 0)



 .

Here again EIP can be seen to increase with increase in production rate η.

4. Expected loss rate of customers when the inventory level in the distribution

centre is zero

EL = λ





rQ
∑

k=0

ξ0(k, 1) +

KQ−1
∑

k=rQ+1

[ξ0(k, 0) + ξ0(k, 1)] + ξ0(KQ, 0)



 .

We notice from the above that EL increases (decreases) with increase (de-

crease) in the value of λ.

5. Expected production rate

EP = η
S∑

j=0

KQ−1
∑

k=0

ξj(k, 1).

This tells that EP increases / decreases as η increases (decreases). It is also

seen that for fixed η, EP increases with λ increasing, reaches a maximum and

then starts decreasing. Beyond a certain value, large number of customers are

lost.
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6. Expected reorder rate

ER = µ
∞∑

i=1

(

1−
λ

µ

)(
λ

µ

)i




KQ−1
∑

k=0

ξs+1(k, 1) +

KQ
∑

k=rQ+1

ξs+1(k, 0)



 .

ER is seen to increase / decrease with µ increasing / decreasing.

7. Expected rate at which production process is switched on

EPR = β

s∑

j=0

ξj((r + 1)Q, 0).

EPR is increasing / decreasing linear function of β.

8. Fraction of time the production process is on

Ton =

S∑

j=0

KQ−1
∑

k=0

ξj(k, 1).

Using Renewal reward theorem (see Ross [38]) we get the above expression.

A simple proof for the above expression runs as follows: consider the indi-

cator random variables ION and IOFF representing production ‘on’ and ‘off’

respectively. The expectations of these random variables are their correspond-

ing probabilities. We give a reward of one unit when production is in on mode.

In one unit of time, total time spent in ‘on’ and ‘off’ modes put together is

also one unit. Thus the denominator has value one. The numerator is the

expectation E(ION ).

3.3 Optimization problem

Based on the above performance measures we construct a cost function for

checking the optimality of the reorder level s and the fixed order quantity Q
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in the distribution centre. Also we check the effect of r and K on the cost

function.

Consider a cost function F (s,Q, r,K) defined as

F (s,Q, r,K) = C1EPR + (C2 + C3Q)ER + C4EL + C5EP + C6EID

+C7EIP + C8EC + C9ET + C10Ton

where

C1: Fixed cost for starting the production

C2: Fixed cost for placing an order

C3: Procurement cost per unit

C4: Cost incurred due to loss of customers

C5: Running cost per unit time of production process

C6: Holding cost per unit time per inventory in the distribution centre

C7: Holding cost per unit time per inventory in the production centre

C8: Holding cost of customer per unit time

C9: Penalty cost per unit time delay in replenishment

C10: Cost per unit when production is on (Running cost)

The problem of minimizing the cost for various parameter values are carried

out. Below we provide local minimum costs and local optimal pairs.

Effect of variation in s and Q

We assign the following values to the parameters: C1 = $20000,C2 = $2000,C3 =

$200,C4 = $100,C5 = $500,C6 = $25,C7 = $20,C8 = $15,C9 = $100,C10 =

$150, λ = 5, µ = 7, β = 2, η = 3, r = 2 and K = 4. We obtain the following

table (Table 3.1) which provide the optimal (s,Q) pair and the correspond-

ing minimum cost (in $). Here (3,9) is the local optimal (s,Q) pair and the

corresponding minimum local cost is $4595.7.
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H
H
HHs

Q
6 7 8 9 10

1 5354 4862.4 4854.5 4650.3 4660.1

2 5033.6 4723.8 4714.5 4597.5 4613.6

3 4916.2 4695.1 4674.4 4595.7 4611.6

4 4895.4 4713.9 4681.9 4618.7 4630.8

5 4918.2 4752.9 4710.6 4691.3 4683.3

Table 3.1: Effect of s and Q on expected total cost

Effect of variation in r and K

In order to study the variation in r and K on expected total cost we fix

λ = 5, µ = 7, β = 2, η = 3, s = 1,C1 = $20000,C2 = $2000,C3 = $200,C4 =

$100,C5 = $500,C6 = $25,C7 = $20,C8 = $15,C9 = $100,C10 = $150 and for

different values of r and K, the expected total costs are calculated, as they

are presented in Tables 3.2 and 3.3. These tables show that the expected total

cost is minimum when r = 3 and K = 10.

H
H
HHr

K
8 9 10 11 12

1 6618.3 6491.9 6396 6322 6264.3

2 5953.8 5859.7 5798.4 5757 5729.8

3 5589.4 5309.5 5094.6 5101.2 5163.3

4 5199.3 5157.2 5264.7 5166 5193.2

5 5234.3 5217 5343.9 5225.4 5226.3

Table 3.2: Effect of r and K on expected total cost for Q = 2

H
H
HHr

K
8 9 10 11 12

1 6751.1 6608 6499.1 6414.8 6348.7

2 6123 6010.8 5934.5 5880.6 5842.8

3 5693.6 5449.7 5229.7 5234 5296

4 5271.4 5256.6 5364.2 5264 5291.3

5 5294.3 5289.7 5417.7 5297.7 5298.4

Table 3.3: Effect of r and K on expected total cost for Q = 3

Further numerical experiments were conducted and the above findings are

seen to hold.
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Chapter 4

Product form solution in two

priority queueing-inventory

system

In chapters 2 and 3 we assumed the demand to arise from a single class of

customers. Literature on multi class customers as source for inventory demand

is just a hand full (see for example Isotupa [17], Sapna Isotupa [42], Zhao and

Lian [51]).

In this chapter we analyze single server, lost sales (S − 1, S) queueing-

inventory system with two demand classes – high priority and low priority. The

service of non-priority customers are preempted with arrival of high priority

customers. We compare two different models – one in which, low priority

customers do not join the system when the on-hand inventory is zero and

in the other case when there is no high priority customer present but there

Some results in this chapter are included in the following paper.

A. Krishnamoorthy, Dhanya Shajin and B. Lakshmy : Product form solution in two

priority queueing-inventory system, Presented in 27th European Conference on Oper-

ational Research (EURO), Glasgow, July 2015.
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is positive inventory, an arriving low priority customer joins the system. In

the second model we obtain stochastic decomposition of the system. On the

contrary this property is absent in model I.

Appropriate blocking sets can be constructed to come up with product

form solution in certain queueing-inventory systems. For example, in the

M/M/1 queueing-inventory problem, the smallest blocking set is the the set

{(n, 0)/n ≥ 0} where n is the number of customers in the system and the

second coordinate stands for zero inventory. One can enlarge the blocking

set by allowing no activity other than replenishment when the system state

is {(n, i)/n ≥ 0, 0 ≤ i ≤ l < S}. This means that no customer is permitted

to join the queue even when inventory level is positive and no service takes

place while the system is in that blocking set. However, this turns out to be

prohibitively expensive to the system. Thus the optimal blocking set turns out

to be {(n, 0)/n ≥ 0}. When extended to priority system, the above statement

is not valid. For example, with {(n1, n2, 0)/n1, n2 ≥ 0} where n1(n2) is the

number of high (low) priority customers and no inventory (last coordinate) in

the system we are not able to produce the system state distribution as product

of the marginals! However, a mild relaxation in the blocking set resulted in

even the stochastic decomposition ruled out (see model I).

4.1 Mathematical formulation of model I

We consider a single server queueing-inventory system with two types of cus-

tomers - high priority (HP) and low priority (LP), each of which arrives ac-

cording to Poisson process of rates λ1 and λ2, respectively. HP-customers

receive priority over LP-customers; arrival of an HP-customer preempts the

service of an LP-customer currently, if any in service. The inventory is con-

trolled by (S − 1, S)-policy, where S is the maximum inventory level in the

system. No customer (both HP and LP) joins the system when the inven-
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tory level is zero. The lead time for replenishment is exponentially distributed

with parameter β. The HP-customers join a finite queue of maximum size S.

Size of this finite queue varies according to the number of items available in

the inventory. In other words at any time this finite queue cannot have more

HP-customers than the number of items in the inventory. This ensures that

all HP-customers in the system are assured of the item even in the absence

of replenishment. LP-customers join an infinite capacity queue. The service

time for HP and LP-customers are independent and exponentially distributed

with parameters µ1 and µ2, respectively.

In the sequel we use the following notations:

N 1(t) : Number of HP customers in the system at time t

N 2(t) : Number of LP customers in the system at time t

I(t) : Number of items in the inventory at time t

The process {(N 2(t),I(t),N 1(t)) , t ≥ 0} is a CTMC whose state space

Ω = {(n2, i, n1) ;n2 ≥ 0, 0 ≤ i ≤ S, 0 ≤ n1 ≤ i} .

Thus the infinitesimal generator Q1 of this CTMC is LIQBD with

Q1 =










A00 A0

A2 A1 A0

A2 A1 A0

. . .
. . .

. . .










. (4.1)

The matrices A00, A0, A1 and A2 are square matrices of the same order (S +

1)(S + 2)/2 with A00 containing transition rates within level 0, A0 represents

transition from level n2 to n2+1, n2 ≥ 0, A1 represents the transitions within

level n2, n2 ≥ 1, and A2 represents transitions from level n2 to level n2−1, n2 ≥

1. Define A
(i,j)
k(n1,m1)

, k = 00, 0, 1, 2 as the transition rates from (i, n1) → (j,m1)

where i represents the number of items in the inventory and n1 represents the

number of HP-customers. These transition rates are
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A
(i,j)
00(n1,m1)

=







β j = i+ 1, 0 ≤ i ≤ S − 1;m1 = n1, 0 ≤ n1 ≤ i

λ1 j = i, 1 ≤ i ≤ S;m1 = n1 + 1, 0 ≤ n1 ≤ i− 1,

µ1 j = i− 1, 1 ≤ i ≤ S;m1 = n1 − 1, 1 ≤ n1 ≤ i,

−β j = i = 0;m1 = n1 = 0,

−(λ1 + λ2 + β) j = i, 1 ≤ i ≤ S − 1;m1 = n1 = 0,

−(λ1 + λ2 + µ1 + β) j = i, 2 ≤ i ≤ S − 1;m1 = n1, 1 ≤ n1 ≤ i− 1,

−(λ2 + µ1 + β) j = i, 1 ≤ i ≤ S − 1;m1 = n1 = i,

−(λ1 + λ2) j = i = S;m1 = n1 = 0,

−(λ2 + µ1) j = i = S;m1 = n1 = S,

−(λ1 + λ2 + µ1) j = i = S;m1 = n1, 1 ≤ n1 ≤ S − 1,

0 otherwise,

A
(i,j)
1(n1,m1)

=







β j = i+ 1, 0 ≤ i ≤ S − 1;m1 = n1, 0 ≤ n1 ≤ i

λ1 j = i, 1 ≤ i ≤ S;m1 = n1 + 1, 0 ≤ n1 ≤ i− 1,

µ1 j = i− 1, 1 ≤ i ≤ S;m1 = n1 − 1, 1 ≤ n1 ≤ i,

−β j = i = 0;m1 = n1 = 0,

−(λ1 + λ2 + µ2 + β) j = i, 1 ≤ i ≤ S − 1;m1 = n1 = 0,

−(λ1 + λ2 + µ1 + β) j = i, 2 ≤ i ≤ S − 1;m1 = n1, 1 ≤ n1 ≤ i− 1,

−(λ2 + µ1 + β) j = i, 1 ≤ i ≤ S − 1;m1 = n1 = i,

−(λ1 + λ2 + µ2) j = i = S;m1 = n1 = 0,

−(λ2 + µ1) j = i = S;m1 = n1 = S,

−(λ1 + λ2 + µ1) j = i = S;m1 = n1, 1 ≤ n1 ≤ S − 1,

0 otherwise,

A
(i,j)
0(n1,m1)

=

{

λ2 j = i, 1 ≤ i ≤ S;m1 = n1, 0 ≤ n1 ≤ i,

0 otherwise,

A
(i,j)
2(n1,m1)

=

{

µ2, j = i− 1, 1 ≤ i ≤ S;m1 = n1 = 0,

0, otherwise.



Steady-state analysis 75

4.2 Steady-state analysis

We proceed with the steady-state analysis of the queueing-inventory system

under study. The first stage in this direction is to look for the condition for

stability.

4.2.1 Stability condition

Let π = (π0,π1, ...,πS) denote the steady-state probability vector of the

generator

A = A0 +A1 +A2 =












F0 B0

M1 F1 B1

. . .
. . .

. . .

MS−1 FS−1 BS−1

MS FS












(4.2)

where

Mi(j, k) =

{

µ1 k = j − 1, 1 ≤ j ≤ i, 1 ≤ i ≤ S

0 otherwise,

Bi(j, k) =

{

β k = j, 0 ≤ j ≤ i, 0 ≤ i ≤ S − 1

0 otherwise,

Fi(j, k) =







−β k = j = 1, i = 0

−(λ1 + µ2 + β) k = j = 1, 1 ≤ i ≤ S

−(λ1 + µ1 + β) k = j, 2 ≤ j ≤ i, 2 ≤ i ≤ S

−(µ1 + β) k = j, j = i+ 1, 1 ≤ i ≤ S

λ1 k = j + 1, 1 ≤ j ≤ i, 1 ≤ i ≤ S

0 otherwise

with dimension ofMi, Bi are (i+1)× i, i× (i+1) respectively and Fi is square

matrix of order (i+ 1). That is,

πA = 0, πe = 1. (4.3)
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The LIQBD description of the model indicates that the queueing system is

stable (see Neuts [33]) if and only if

πA0e < πA2e. (4.4)

The vector π cannot be obtained explicitly in terms of the parameters of the

model, and hence the stability condition is known only implicitly as given in

(4.7). From expressions in (4.3) we get

πi = πi−1U i−1, 1 ≤ i ≤ S (4.5)

where
US−1 = −BS−1F

−1
S

U i = −Bi[Fi+1 + U i+1Mi+2]
−1, 0 ≤ i ≤ S − 2.

From the normalizing condition πe = 1 we have

π0





S−1∑

j=0

j
∏

i=0

U i + I



 e = 1. (4.6)

Inequality (4.4) gives the stability condition as

π0





S∑

j=1

j−1
∏

i=0

U iLj



 e < π0





S∑

j=1

j−1
∏

i=0

U iMj



 e (4.7)

where Li is a square matrix of order (i+ 1) with

Li(j, k) =

{

λ2, k = j = 0, 1 ≤ i ≤ S

0, otherwise.

4.2.2 Steady-state probability vector

Assuming that (4.7) is satisfied, we briefly outline the computation of the

steady-state probability of the system state. Let x denote the steady-state

probability vector of the generator Q1. Then

xQ1 = 0, xe = 1. (4.8)
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Partitioning x as x = (x0,x1,x2, ...) we see that x, under the assumption that

the stability condition (4.7) holds, is obtained as (see Neuts [33])

xn = x0R
n, n ≥ 1. (4.9)

where R is the minimal nonnegative solution to the matrix quadratic equation:

A0 +RA1 +R2A2 = O (4.10)

and the boundary equation is given by

x0[A00 +RA2] = 0. (4.11)

The normalizing condition (4.8) gives

x0(I −R)−1e = 1. (4.12)

Now we look at a few of the system performance measures.

Performance Measures

1. Expected number of low priority customers in the system

ELP (N) =
∞∑

n2=1

n2xn2e

2. Expected number of high priority customers in the system

EHP (N) =

∞∑

n2=0

S∑

i=1

i∑

n1=1

n1xn2(i, n1)

3. Expected number of items in the inventory

E(I) =
∞∑

n2=0

S∑

i=0

i∑

n1=0

ixn2(i, n1)
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4. Expected loss rate of low priority customers

ELP (L) = λ2

∞∑

n2=0

xn2(0, 0)

5. Expected loss rate of high priority customers

EHP (L) = λ1

∞∑

n2=0

S∑

i=0

xn2(i, i)

6. Expected reorder rate

E(R) = µ1

∞∑

n2=0

S∑

i=1

i∑

n1=1

xn2(i, n1) + µ2

∞∑

n2=1

S∑

i=1

xn2(i, 0)

4.2.3 Distribution of waiting time of a HP-customer

For computing the expected waiting time of an HP-customer who joins as the

rth customer (r > 0) in the queue at the time he joins (joining time taken as

time origin, of course provided he is able to join the system). We consider

the Markov process W1(t) = {(N (t),I(t)) , t ≥ 0} where N (t) is the rank of

the customer at time t. The rank N (t) of the customer is r if he is the rth

customer in the queue at time t. His rank decreases to 1 as the customers ahead

of him leave the system after completing service. Thus the state space of the

process is {(n, i), 1 ≤ n ≤ r, n ≤ i ≤ S}
⋃
{0} where {0} is the absorbing state

indicating that the tagged customer is selected for service. The infinitesimal

generator W1 of W1(t) has the form

W1 =

[

T T 0

0 0

]
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where

T =












D
(1)
r D

(2)
r

D
(1)
r−1 D

(2)
r−1

. . .
. . .

D
(1)
2 D

(2)
2

D
(1)
1












,T 0 =










0
...

0

D1










with

D
(1)
j =










−(µ1 + β) β
. . .

. . .

−(µ1 + β) β

−µ1










S−j+1×S−j+1

, 1 ≤ j ≤ r,

D1 =







µ1
...

µ1







s×1

, D
(2)
j =







µ1
. . .

µ1







S−j+1×S−j+2

, 2 ≤ j ≤ r.

Now, the waiting time of HP-customer, who joins the queue as the rth cus-

tomer is the time until absorption of the Markov chain {W1(t), t ≥ 0}. The

distribution of W1 is Phase type. Thus the vector of expected waiting time

of this particular customer is given by the column vector,

Er
T = −T −1e.

Hence, the expected waiting time of a general HP-customer in the system is,

EHP (W ) =
∞∑

n1=0

S∑

r=1

yr
n1
Er

T

where yr
i = (xi(r, r),xi(r + 1, r), ...,xi(S, r), ...,xi(1, 1), ...,xi(S, 1)) is a row

vector of dimension r
[

S − (r−1)
2

]

.
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4.2.4 Expected waiting time of a low priority customer

We compute the expected waiting time of a LP-customer in the same way

we computed that for the HP-customer. However, the preemption of LP by

HP-customer has to be considered, which infact, can be arbitrarily large for

any sample LP-customer. So first we give a bound on this and proceed. Here

we consider the Markov process W2(t) = {(N ′(t),N (t),I(t),N 1(t)) , t ≥ 0}

where N ′(t) is the number of preemptions (0 ≤ l < ∞), N (t) is the rank of

the tagged low priority customer at time t. As defined earlier I(t) and N 1(t)

respectively denote the inventory level and number of HP-customers at time

t in the system. Its state space is {(n′, n, i, n1), 0 ≤ n′ ≤ l, 1 ≤ n ≤ r, 0 ≤ i ≤

S,0 ≤ n1 ≤ i}
⋃
{0} where the absorbing state {0} indicates that the tagged

customer is either selected for service or number of preemption is maximum.

Thus the infinitesimal generator of {W2(t), t ≥ 0} is of the form

W2 =

[

T̂ T̂
0

0 0

]

where

T̂ =










D1 D0

. . .
. . .

D1 D0

D1










, T̂
0
=










D
...

D

D′










with

D =





0

.

.

.

0

G′

2



 ,D1 =





G1 G2

. . .
. . .

G1 G2

G1



 ,D′ =





G′

0

.

.

.

G′

0

G



 ,D0 =

[
G0

. . .

G0

]

,

G1 =







−β B0

M1 F ′

1 B1

. . .
. . .

. . .

MS−1 F ′

S−1 BS−1

MS F ′

S






, G0 =







0

L
(1)
1

. . .

L
(1)
S−1

L
(1)
S






,
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G2 =











0

L1

. . .

LS−1

LS











, G′
2 = G2e, G

′
0 = G0e, G = G′

2 +G′
0,

L
(1)
i (j, k) =

{

λ1 j = 0, k = 1, 1 ≤ i ≤ S

0 otherwise,

F ′
i (j, k) =







−(λ1 + µ2 + β) k = j = 0, 1 ≤ i ≤ S − 1

−(λ1 + µ1 + β) k = j, 1 ≤ j ≤ i− 1, 2 ≤ i ≤ S − 1

−(µ1 + β) k = j, j = i, 1 ≤ i ≤ S − 1

λ1 k = j + 1, 1 ≤ j ≤ i− 1, 1 ≤ i ≤ S − 1

0 otherwise,

F ′
S(j, k) =







−(λ1 + µ2) k = j = 0,

−(λ1 + µ1) k = j, 1 ≤ j ≤ S − 1,

−µ1 k = j, j = S,

λ1 k = j + 1, 1 ≤ j ≤ S − 1,

0 otherwise

and matrices Bi, 0 ≤ i ≤ S−1 and Mi, 1 ≤ i ≤ S are as given in Section 4.2.1.

The expected waiting time of the tagged customer according to the position

of the customer at the time of his arrival, is a column vector

Er
T̂
= −T̂

−1
e

of order (l + 1)r(S + 1)(s+ 2)/2.

Hence the expected waiting time of an LP-customer in the system is

ELP (W ) =
∞∑

l=0

∞∑

r=1

zlrE
r
T̂

where zlr =
(
e′l+1 ⊗ (xr,xr−1, ...,x1)

)
.

We now proceed to the analysis of the second model.
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4.3 Mathematical formulation of model II

In this model we introduce some additional assumptions: low priority cus-

tomers do not join the system when HP-customers are present. This is too

strong a restriction on the system. However, our purpose is to produce a

product form solution for this highly dependent system. Nothing less than

this works for the intented purpose. Despite this we are able to separate the

system into two independent components only, the first of which is the number

of priority customer together with number of items in the inventory and the

second is the number of low priority customers. All other assumptions remain

the same as in model I. Thus the process {(N 2(t),I(t),N 1(t)) , t ≥ 0} is a

CTMC whose state space {(n2, i, n1) ;n2 ≥ 0, 0 ≤ i ≤ S, 0 ≤ n1 ≤ i} and its

infinitesimal generator Q2 has the form

Q2 =










A′
00 A′

0

A′
2 A′

1 A′
0

A′
2 A′

1 A′
0

. . .
. . .

. . .










. (4.13)

DefineQ
(m2,j,m1)
2(n2,i,n1)

as the transition rates from the state (n2, i, n1) → (m2, j,m1).

Thus the transition rates in this CTMC are

Q
(m2,j,m1)
2(n2,i,n1)

=







λ2 m2 = n2 + 1, n2 ≥ 0; j = i, 1 ≤ i ≤ S;

m1 = n1 = 0,

µ2 m2 = n2 − 1, n2 ≥ 1; j = i− 1, 1 ≤ i ≤ S;

m1 = n1 = 0,

λ1 m2 = n2, n2 ≥ 0; j = i, 1 ≤ i ≤ S;

m1 = n1 + 1, 0 ≤ n1 ≤ i− 1,

µ2 m2 = n2, n2 ≥ 0; j = i− 1, 1 ≤ i ≤ S;

m1 = n1 − 1, 1 ≤ n1 ≤ i,

β m2 = n2, n2 ≥ 0; j = i+ 1, 0 ≤ i ≤ S − 1;

m1 = n1, 0 ≤ n1 ≤ i,

0 otherwise,
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and its diagonal entries are such that each row sum is zero.

4.3.1 Stability condition

Now look at the finite state space CTMC {(I(t),N 1(t)), t ≥ 0} defined on

the phases {(i, n1)/0 ≤ i ≤ S, 0 ≤ n1 ≤ i}. Denote its infinitesimal generator

by A′ = A′
0+A

′
1+A

′
2 where A

′
0, A

′
1, A

′
2 are matrices indicating transition rates,

to one higher level, within the same level and to the immediate lower level in

the repeating part, respectively (that is, the transition at the boundary are

excluded).

Let π′ be the steady state probability vector of A′. Then π′A′ = 0, π′e = 1.

The Markov chain is stable if and only if

π′A′
0e < π′A′

2e. (4.14)

This simplifies to λ2 < µ2. Thus we have the following lemma.

Lemma 4.3.1. The system under study is stable if and only if λ2 < µ2.

4.4 Steady-state analysis

For the stable system (that is under the condition λ2 < µ2), we will prove that

the system state can be decomposed. We establish that the joint distribution

of the system state equals the product of their marginals. For computing the

steady-state probability vector of the system, we first consider an inventory

system with negligible service time for LP-customers alone. The rest of the

assumptions are the same as given earlier. The corresponding Markov chain is

denoted by Ω′ = {(I(t),N 1(t)) , t ≥ 0}. The state space of this finite CTMC
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is {(i, n1)/0 ≤ i ≤ S, 0 ≤ n1 ≤ i} and its infinitesimal generator is given by

Ã =












−β B0

M ′
1 F

′(0)
1 B1

. . .
. . .

. . .

M
′

S−1 F
′(0)
S−1 BS−1

M
′

S F
′(0)
S












(4.15)

where F
′(0)
i (j, k), Bi(j, k),M

′

i (j, k) denote the transition rates of HP-customers

from j to k with

F
′(0)
i (j, k) =







−(λ1 + λ2 + β) k = j = 0; 1 ≤ i ≤ S − 1

−(λ1 + µ1 + β) k = j, 1 ≤ j ≤ i− 1; 2 ≤ i ≤ S − 1

−(µ1 + β) k = j, j = i; 1 ≤ i ≤ S − 1

λ1 k = j + 1, 0 ≤ j ≤ i− 1; 1 ≤ i ≤ S − 1

0 otherwise,

F
′(0)
S (j, k) =







−(λ1 + λ2) k = j = 0,

−(λ1 + µ1) k = j, 1 ≤ j ≤ S − 1,

µ1 k = j, j = S,

λ1 k = j + 1, 0 ≤ j ≤ S − 1,

0 otherwise,

Bi(j, k) =

{

β k = j, 0 ≤ j ≤ i; 0 ≤ i ≤ S − 1

0 otherwise,

M
′

i (j, k) =







λ2 k = j = 0; 1 ≤ i ≤ S

µ1 k = j − 1, 1 ≤ j ≤ i; 1 ≤ i ≤ S

0 otherwise.

Let ξ = (ξ0, ξ1, ..., ξS) be the steady-state vector of Ã. Then ξ satisfies the

equations

ξÃ = 0, ξe = 1. (4.16)
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Sub-vectors of ξ are further partitioned as

ξi = (ξi(0), ξi(1), ..., ξi(i)), 0 ≤ i ≤ S

and can be obtained as

ξi = ξi−1V i−1, 1 ≤ i ≤ S

where
VS−1 = −BS−1[F

′(0)
S ]−1

V i = −Bi[F
′(0)
i+1 + V i+1M

′
i+2]

−1, 0 ≤ i ≤ S − 2.

The unknown probability ξ0 can be found from the normalizing condition

ξ0



I +
S−1∑

j=0

j
∏

i=0

V i



 e = 1.

Using the components of the probability vector ξ we shall find the steady-

state probability vector to the original system. Let x′ be the steady-state

vector of the generator Q2. Then x′ must satisfy the set of equations

x′Q2 = 0, x′e = 1. (4.17)

Partition x′ as x′ = (x′
0,x

′
1,x

′
2, ...). Then the above system of equations

reduces to:

x′
0A

′
00 + x′

1A
′
2 = 0, (4.18)

x′
i−1A0 + x′

iA
′
1 + x′

i+1A
′
2 = 0, i ≥ 1. (4.19)

We take as a candidate for the solution

x′
i = γρi2ξ, i ≥ 0 (4.20)

where ρ2 = λ2
µ2

and γ is a constant. That (4.18) and (4.19) are satisfied by

(4.20) can be easily verified: from (4.18), we have

x′
0A

′
00 + x′

1A
′
2 = γξ

[
A′

00 + ρ2A
′
2

]
(4.21)
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and from (4.19),

x′
i−1A0 + x′

iA
′
1 + x′

i+1A
′
2 = γρi2ξ

[
A′

00 + ρ2A
′
2

]
, i ≥ 1. (4.22)

We have Ã = [A′
00 + ρ2A

′
2] and from (4.16), the right hand side of equations

(4.21), (4.22) are zero. Hence it follows that if we take the expression of the

vector x′ as given by (4.20), equations (4.18) and (4.19) are satisfied. Now

applying the normalizing condition x′e = 1, we get

γ
[
1 + ρ2 + ρ22 + ...

]
= 1.

Hence under the condition that λ2 < µ2, we have γ = 1 − ρ2. Thus we have

proved the main result of model II:

Theorem 4.4.1. The system under consideration has stochastic decom-

position with the joint distribution of the system state equal to the product

of their marginal distributions.

We now turn to compute a few of the important system characteristics.

Performance Measures

1. Expected number of low priority customers in the system

ELP (N) =
λ2

µ2 − λ2
.

2. Expected number of high priority customers in the system

EHP (N) =
S∑

i=1

i∑

n1=1

n1ξi(n1).

3. Expected number of items in the inventory

E(I) =
S∑

i=1

i∑

n1=0

iξi(n1).



Numerical illustrations 87

4. Expected loss rate of low priority customers

ELP (L) = λ2

[

ξ0(0) +
S∑

i=1

i∑

n1=1

ξi(n1)

]

.

5. Expected loss rate of high priority customers

EHP (L) = λ1

S∑

i=0

ξi(i).

6. Expected reorder rate

E(R) =
S∑

i=1

[

µ1

i∑

n1=1

ξi(n1) + λ2ξi(0)

]

.

7. Expected waiting time of low priority customer

ELP (W ) =
∞∑

l=0

∞∑

r=1

z
′l
rE

r
T̂

where z
′l
r =

(
e′l+1 ⊗ (x′

rx
′
r−1...x

′
1)
)
and Er

T̂
given in Section 4.2.4.

8. Expected waiting time of high priority customer

EHP (W ) =
S∑

r=1

y′
rE

r
T

where y′
r = (ξr(r), ..., ξS(r), ξr−1(r − 1), ..., ξS(r − 1), ..., ξ1(1), ..., ξS(1))

and Er
T given in Section 4.2.3.

4.5 Numerical illustration

In this section we provide numerical illustration of the system performance

measures with variation in the values of the underlying parameters.
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Figure 4.1: Effect of λ1 on various performance measures with λ2 = 5, µ1 =

10, µ2 = 13, β = 1, S = 5 in models I & II

Effect of λ1 on various performance measures

From Figure 4.1 we can make the following observations. As the arrival rate of

high priority customer increases, expected reorder rate, expected waiting time

of HP-customers, expected waiting time of LP-customers, expected loss rate

for LP-customers and expected loss rate for HP-customers increase. However,

the expected number of items in the inventory decreases.

Effect of µ1 on various performance measures

Table 4.1 indicates the variation in the system performance measures with a

high priority customer’s service rate µ1. As µ1 increases, the behavior of mea-

sures like expected number of HP/LP-customers in the system, expected num-

ber of items in the inventory, expected reorder rate, expected waiting time of

HP/LP-customer are on expected lines. The decrease in the expected number

of LP-customers in model II, with increase in µ1 is attributed to the increase

in number HP-customers getting into the system and consequently resulting
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Model I

µ1 ELP (N) EHP (N) E(I) ELP (L) EHP (L) E(R) ELP (W ) EHP (W )

5 7.5961 0.4161 1.5688 2.6115 1.7932 3.4634 3.2240 0.0832

6 4.6498 0.3213 1.5179 2.6755 1.7764 3.5036 1.9645 0.0536

7 3.2674 0.2606 1.4935 2.7059 1.7599 3.5196 1.3871 0.0372

8 2.5206 0.2189 1.4806 2.7220 1.7461 3.5272 1.0811 0.0274

9 2.0721 0.1887 1.4729 2.7317 1.7352 3.5318 0.8992 0.0210

10 1.7802 0.1667 1.4678 2.7382 1.7265 3.5351 0.7813 0.0166

Model II

µ1 ELP (N) EHP (N) E(I) ELP (L) EHP (L) E(R) ELP (W ) EHP (W )

5 0.6250 0.5073 2.0094 3.5417 1.4677 2.9906 0.4015 0.1015

6 0.6250 0.3868 1.8982 3.4117 1.4865 3.1018 0.3666 0.0645

7 0.6250 0.3092 1.8221 3.3177 1.5044 3.1779 0.3451 0.0442

8 0.6250 0.2561 1.7671 3.2471 1.5200 3.2329 0.3321 0.0320

9 0.6250 0.2177 1.7256 3.1922 1.5334 3.2744 0.3237 0.0242

10 0.6250 0.1889 1.6933 3.1486 1.5447 3.3067 0.3178 0.0189

Table 4.1: Effect of µ1 on various performance measures with λ2 = 5, λ1 =

3, µ2 = 13, β = 1, S = 5 in models I & II

in the reduction of LP-customers (while HP-customer is getting served). How-

ever this is reversed in model I since LP-customers join the system even when

an HP-customer is in service. This is a consequence of presence of the larger

number of LP-customers resulting in the inventory becoming empty more of-

ten. We stress that HP-customers do not join the system while inventory is

zero in both models.

Effect of λ2 on various performance measures

Table 4.2 shows that an increase in the arrival rate of low priority customers

results in an increase in measures like the expected number of LP-customers,

expected loss rate of both LP/HP-customers, expected waiting time of LP/HP-

customers and expected reorder rate, whereas the expected number of HP-

customers and expected number of items show a decreasing trend. Both low

priority and high priority customers loss rate increase due to the increase of η0

in model I and in model II due to increase in the values of xn2(0, 0), n2 ≥ 0.
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Model I

λ2 ELP (N) EHP (N) E(I) ELP (L) EHP (L) E(R) ELP (W ) EHP (W )

3 0.7753 0.2009 1.8159 1.3604 1.4555 3.1841 0.3896 0.0201

4 1.1909 0.1813 1.6233 2.0194 1.6035 3.3772 0.5588 0.0181

5 1.7802 0.1657 1.4678 2.7382 1.7265 3.5351 0.7813 0.0166

6 2.6793 0.1543 1.3424 3.4980 1.8286 3.6680 1.1017 0.0154

7 4.1414 0.1470 1.2438 4.2792 1.9113 3.7797 1.6024 0.0147

8 6.6268 0.1426 1.1702 5.0619 1.9744 3.8676 2.4288 0.0143

Model II

λ2 ELP (N) EHP (N) E(I) ELP (L) EHP (L) E(R) ELP (W ) EHP (W )

3 0.3000 0.2212 2.0133 1.7105 1.3027 2.9867 0.1557 0.0221

4 0.4444 0.2039 1.8398 2.4076 1.4322 3.1602 0.2303 0.0204

5 0.6250 0.1889 1.6933 3.1486 1.5447 3.3067 0.3178 0.0189

6 0.8571 0.1759 1.5682 3.9250 1.6431 3.4319 0.4223 0.0176

7 1.1667 0.1645 1.4602 4.7300 1.7294 3.5399 0.5509 0.0164

8 1.6000 0.1545 1.3667 5.5575 1.8053 3.6340 0.7171 0.0154

Table 4.2: Effect of λ2 on various performance measures with λ1 = 3, µ1 =

10, µ2 = 13, β = 1, S = 5 in models I & II

Model I

µ2 ELP (N) EHP (N) E(I) ELP (L) EHP (L) E(R) ELP (W ) EHP (W )

9 4.2276 0.1721 1.4802 2.7178 1.7180 3.5423 1.8547 0.0172

10 3.1029 0.1691 1.4729 2.7289 1.7230 3.5407 1.3548 0.0169

11 2.4621 0.1673 1.4697 2.7341 1.7251 3.5383 1.0749 0.0167

12 2.0569 0.1663 1.4684 2.7368 1.7261 3.5364 0.8999 0.0166

13 1.7802 0.1657 1.4678 2.7382 1.7265 3.5351 0.7813 0.0166

14 1.5803 0.1654 1.4677 2.7390 1.7268 3.5342 0.6961 0.0165

Model II

µ2 ELP (N) EHP (N) E(I) ELP (L) EHP (L) E(R) ELP (W ) EHP (W )

9 1.25 0.1889 1.6936 3.1482 1.5445 3.3065 0.6318 0.0189

10 1.0000 0.1889 1.6934 3.1485 1.5447 3.3066 0.5055 0.0189

11 0.8333 0.1889 1.6933 3.1485 1.5447 3.3067 0.4218 0.0189

12 0.7143 0.1889 1.6933 3.1486 1.5447 3.3067 0.3623 0.0189

13 0.6250 0.1889 1.6933 3.1486 1.5447 3.3067 0.3128 0.0189

14 0.5556 0.1889 1.6933 3.1486 1.5447 3.3067 0.2833 0.0189

Table 4.3: Effect of µ2 on various performance measures with λ1 = 3, µ1 =

10, λ2 = 5, β = 1, S = 5 in models I & II

Effect of µ2 on various performance measures

Table 4.3 shows that in model II, with increasing value of µ2, the expected

inventory level decreases and consequently the reorder rate increases. This

behaviour looks quite rational whereas it shows a decreasing trend in model

I. We do not have an explanation for the latter.
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Effect of β on various performance measures

Figure 4.2 indicates the variation in the system performance measures with

replenishment rate β. This shows that the behavior of the system performance

measures with increase in β is similar to that with increase in S, which is on

expected lines.
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Figure 4.2: Effect of β on various performance measures with λ1 = 3, µ1 =

10, λ2 = 5, µ2 = 13, S = 5 in models I & II

4.5.1 Optimization problem

Based on the above performance measures we construct a cost function for

checking the optimality of the maximum inventory S in the system.

Let C
(L)
LP (C

(L)
HP ) be the loss due to a single LP (HP) customer being lost to

the system, C(R) be the purchase price/unit, C(I) be the inventory carrying

cost/unit/unit time, C
(W )
LP be the waiting cost in the system per LP-customer

and C
(W )
HP be that for the HP-customer.
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The total expected cost can be expressed as

F(S) = C
(L)
LPELP (L) + C

(L)
HPEHP (L) + C(R)E(R) + C(I)E(I)

+C
(W )
LP ELP (W ) + C

(W )
HP EHP (W ).

This is a function of S. Hence we compute the effect of S on F(S). We assign

the following values to the parameters: λ1 = 2, µ1 = 7, λ2 = 3, µ2 = 5, β =

1,C
(L)
LP = $10,C

(L)
HP = $20,C

(W )
LP = $5,C

(W )
HP = $10,C(R) = $50 and C(I) = $5.

F(S) value for different values of S are tabulated in Table 4.4.

S Model I Model II

F(S) F(S)

2 113.5168 99.6193

3 104.1112 92.7812

4 97.9858 88.5918

5 94.0210 86.2826

6 91.6896 85.4251

7 90.6554 85.7196

8 90.6728 86.9370

9 91.5511 87.2153

Table 4.4: Effect of variation in S



Chapter 5

On a queueing-inventory with

reservation, cancellation,

common life time and retrial

In chapter 2, 3 and 4 we analyzed inventory systems, for most of which product

form solution could be arrived at. From now on we consider real life situations

which do not yield product form solution for the system state probability.

The reason for the non availability of that may be the ‘dimension’ problem in

modelling.

Advance reservation / purchase of inventory for future use is a common

phenomena. Sometimes items reserved are subject to cancellation. A typical

example is flight / train / bus seats for travel. The seats are considered as

inventory. In this context once the flight / train / bus departs, the one holding

inventory, but not using it, will lose the inventory as well. This is so since the

Part of this chapter appeared in Annals of Operations Research, under the title: On

a queueing-inventory with reservation, cancellation, common life time and re-

trial, A. Krishnamoorthy, Dhanya Shajin and B. Lakshmy, Annals of Operations Research

(Springer), DOI 10.1007/s10479-015-1849-x.

93



94On a queueing-inventory with reservation, cancellation, common life time and retrial

life time of the inventory has expired. Thus in our cited example, all items in

the inventory have a common life time.

In this chapter we consider maximum items in the inventory to be S which

have a random common life time; this includes those that are sold in a par-

ticular cycle. A customer, on arrival to an idle server, with at least one

item in inventory, is immediately taken for service; else he joins the buffer of

maximum size S depending on number of items in the inventory (the buffer

capacity varies and is, at any time, equal to the number of items in the in-

ventory). The arrival of customers constitutes a Poisson process, demanding

exactly one item each from the inventory. If there is no item in the inventory,

the arriving customer first queues up in a finite waiting space of capacity K.

When it overflows an arrival goes to an orbit of infinite capacity with proba-

bility p or is lost forever with probability 1− p. From the orbit he retries for

service according to an exponentially distributed inter-occurrence time. The

service time follows an exponential distribution. Cancellation of reservation

before its expiry is permitted. Inventory gets added through cancellation of

purchased items until the expiry time. Cancellation time is assumed to be

negligible.

It is interesting to note that in a recent investigation, with much reduced

dimension, we arrived at product form solution. However, the findings are not

reported in this thesis.

5.1 Mathematical formulation

We consider an infinite capacity queueing-inventory system with positive ser-

vice time to which customers arrive according to a Poisson process with rate

λ demanding one item each. At the beginning of each cycle there are S

new items in the inventory which have a common life time, exponentially dis-

tributed with parameter α. Here cycle is the time duration from the epoch at
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which we start with S items at a replenishment epoch, to the moment when

the common life time is realized. The service time for each customer follows

an exponential distribution with parameter µ. If on arrival a customer finds

the server busy, it joins a buffer of varying size (which depends on the number

of items in the inventory). In the absence of vacant position in the buffer, the

customer joins a finite waiting room of capacity K, provided vacant position is

available there. If the waiting space has reached the maximum capacity, then

an arriving customer joins an orbit of infinite capacity with probability p or

is lost forever with probability 1 − p. From the orbit he retries for service at

a constant rate η. Cancellation of item sold (that is, returning of a sold item)

before its expiry is permitted. This takes place according to an exponentially

distributed inter-occurrence time with parameter iβ, when (S− i) items are in

the inventory. Through cancellation of purchases, inventory gets added until

their expiry time. On expiry of common life time, the inventory reaches its

maximum level S through an instantaneous (zero lead time) replenishment

for the next cycle. Note that through cancellation inventory level will not go

above S since exactly i items are ‘in sold list’ (which is the maximum possible

number that could appear for cancellation) when (S − i) items are held in

the inventory. Cancellation time is assumed to be negligible. We start with

the case of customers being flushed out from the finite buffer and the waiting

room, but not from the orbit, at the epoch of occurrence of the common life

time is realized.

When the buffer is full (that is, the number of items in inventory equal

to number of customers in the buffer) a new arrival has to go to the waiting

room. From waiting room customers go to buffer in the order of arrival as and

when cancellation of purchased inventory occurs. Overflow of waiting room

results in new arrivals going to an orbit of infinite capacity; the probability of

such a customer joining being p, 0 < p < 1. With complementary probability

the customer leave the system forever. From orbit, customers try to access the
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waiting room through retrial, if buffer is full; else go to buffer. Failed retrials

get back to orbit. Note that p = 0 provides a finite state space system and

0 < p ≤ 1, an infinite system; p = 1 provides a system with no balking.

In the sequel we use the following notations:

N 1(t) Number of customers in the orbit at time t

N 2(t) Number of customers in the waiting room at time t

N 3(t) Number of customers in the buffer at time t

I(t) Number of items in the inventory at time t

N 4(t) Number of revisits to S upto time t (within the same cycle).

S(t) =

{

0; if server is idle at time t,

1; if server is busy at time t.

U1 = (S + 1)(S + 2)/2

U2 = (S + 1)S/2 + 2

The process {(N 1(t),N 2(t),I(t),N 3(t),S(t)) , t ≥ 0} is a CTMC which is

LIQBD, with state space

Ω = {(n1, 0, i, 0, 0) ;n1 ≥ 0; 0 ≤ i ≤ S}
⋃

{(n1, n2, 0, 0, 0) ;n1 ≥ 0; 1 ≤ n2 ≤ K}

⋃

{(n1, n2, i, n3, 1) ;n1 ≥ 0; 1 ≤ n2 ≤ K; 1 ≤ i ≤ S;n3 = i}
⋃

{(n1, 0, i, n3, 1) ;n1 ≥ 0; 1 ≤ i ≤ S; 1 ≤ n3 ≤ i}
⋃

{(n1, 0, S, 0);n1 ≥ 0}.

Once the CLT is realized the inventory level reaches its maximum by way of

fresh replenishment with no customer in the finite buffer and waiting room.

The subset of the state space constituting such states is given by {(n1, 0, S, 0);n1 ≥

0}. Thus the infinitesimal generator Q of this CTMC is

Q =










B00 B0

B2 B1 B0

B2 B1 B0

. . .
. . .

. . .










.
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The matrices B00, B0, B1 and B2 are square matrices of order U1+K(S+1)+1.

B00 =

[

A00 ᾱ

λ̄ −λ

]

, B0 =

[

A0 0

0 0

]

, B1 =

[

A1 ᾱ

λ̄ −(η + λ)

]

, B2 =

[

A2 0

η̄ 0

]

where λ̄ = (0, ..., 0, λ, 0, ..., 0) and η̄ = (0, ..., 0, η, 0, ..., 0) with λ and η at

the U th
2 position and ᾱ = αe. A00, A0, A1, A2 are square matrices of order

U1 +K(S + 1) which are represented by

A00 =













H0 L0

M0 H L

M H L

. . .
. . .

. . .

M H L

M H1













, A1 =













H ′

0 L0

M0 H L

M H L

. . .
. . .

. . .

M H L

M H1













,

A0 = diag(0, ..., 0, L1) and A2 = diag(N, 0, ..., 0).

The sub-matrices H,H1, L, L1,M are square matrices of order (S + 1);

H0, H
′
0, N are square matrices of order U1; dimension of L0 and M0 are U1 ×

(S + 1), (S + 1) × U1 respectively. These sub-matrices give transition rates

from the state (i, n3, k1) → (j,m3, k2) where i(j) represents the number of

items in the inventory; n3(m3), the number of customers in the buffer and

kℓ, for ℓ = 1, 2, are status of the server.

N(i,n3,k1;j,m3,k2) =







η j = i,m3 = n3 + 1, k2 = 1

1 ≤ i ≤ S, n3 = 0, k1 = 0

0 otherwise,

L0(i,n3,k1;j,m3,k2) =







λ j = i,m3 = n3, k2 = 0

i = 0, n3 = 0, k1 = 0

λ j = i,m3 = n3, k2 = k1

1 ≤ i ≤ S, n3 = i, k1 = 1

0 otherwise,
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L(i,n3,k1;j,m3,k2) =







λ j = i,m3 = n3, k2 = 0

i = 0, n3 = 0, k1 = 0

λ j = i,m3 = n3, k2 = k1

1 ≤ i ≤ S, n3 = i, k1 = 1

0 otherwise,

H(i,n3,k1;j,m3,k2) =







−(λ+ Sβ + α) j = i,m3 = n3, k2 = 0

i = 0, n3 = 0, k1 = 0

−(λ+ (S − i)β + µ+ α) j = i,m3 = n3, k2 = k1

1 ≤ i ≤ S, n3 = i, k1 = 1

µ j = i− 1,m3 = n3 − 1, k2 = k1

2 ≤ i ≤ S, n3 = i, k1 = 1

µ j = i− 1,m3 = n3 − 1, k2 = 0

i = 1, n3 = i, k1 = 1

0 otherwise,

H0(i,n3,k1;j,m3,k2) =







−(λ+ (S − i)β + α) j = i,m3 = n3, k2 = k1

0 ≤ i ≤ S, n3 = 0, k1 = 0

−(λ+ (S − i)β + µ+ α) j = i,m3 = n3, k2 = k1

1 ≤ i ≤ S, 1 ≤ n3 ≤ i, k1 = 1

(S − i)β j = i+ 1,m3 = n3, k2 = k1

0 ≤ i ≤ S − 1, n3 = 0, k1 = 0

(S − i)β j = i+ 1,m3 = n3, k2 = k1

0 ≤ i ≤ S − 1, 1 ≤ n3 ≤ i, k1 = 1

µ j = i− 1,m3 = n3 − 1, k2 = 0

1 ≤ i ≤ S, n3 = 1, k1 = 1

µ j = i− 1,m3 = n3 − 1, k2 = 1

2 ≤ i ≤ S, 2 ≤ n3 ≤ i, k1 = 1

λ j = i,m3 = n3 + 1, k2 = 1

1 ≤ i ≤ S, n3 = 0, k1 = 0

λ j = i,m3 = n3 + 1, k2 = 1

2 ≤ i ≤ S, 1 ≤ n3 ≤ i− 1, k1 = 1

0 otherwise,
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H ′
0(i,n3,k1;j,m3,k2)

=







−(λ+ η + (S − i)β + α) j = i,m3 = n3, k2 = k1

1 ≤ i ≤ S, n3 = 0, k1 = 0

−(λ+ (S − i)β + α) j = i,m3 = n3, k2 = k1

i = 0, n3 = 0, k1 = 0

−(λ+ (S − i)β + µ+ α) j = i,m3 = n3, k2 = k1

1 ≤ i ≤ S, 1 ≤ n3 ≤ i, k1 = 1

(S − i)β j = i+ 1,m3 = n3, k2 = k1

0 ≤ i ≤ S − 1, n3 = 0, k1 = 0

(S − i)β j = i+ 1,m3 = n3, k2 = k1

0 ≤ i ≤ S − 1, 1 ≤ n3 ≤ i, k1 = 1

µ j = i− 1,m3 = n3 − 1, k2 = 0

1 ≤ i ≤ S, n3 = 1, k1 = 1

µ j = i− 1,m3 = n3 − 1, k2 = 1

2 ≤ i ≤ S, 2 ≤ n3 ≤ i, k1 = 1

λ j = i,m3 = n3 + 1, k2 = 1

1 ≤ i ≤ S, n3 = 0, k1 = 0

λ j = i,m3 = n3 + 1, k2 = 1

2 ≤ i ≤ S, 1 ≤ n3 ≤ i− 1, k1 = 1

0 otherwise,

L1(i,n3,k1;j,m3,k2) =







pλ j = i,m3 = n3, k2 = 0

i = 0, n3 = 0, k1 = 0

pλ j = i,m3 = n3, k2 = k1

1 ≤ i ≤ S, n3 = i, k1 = 1

0 otherwise,

H1(i,n3,k1;j,m3,k2) =







−(pλ+ Sβ + α) j = i,m3 = n3, k2 = 0

i = 0, n3 = 0, k1 = 0

−(pλ+ (S − i)β + µ+ α) j = i,m3 = n3, k2 = k1

1 ≤ i ≤ S, n3 = i, k1 = 1

µ j = i− 1,m3 = n3 − 1, k2 = k1

2 ≤ i ≤ S, n3 = i, k1 = 1

µ j = i− 1,m3 = n3 − 1, k2 = 0

i = 1, n3 = i, k1 = 1

0 otherwise,
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M0(i,n3,k1;j,m3,k2) =







Sβ j = i+ 1,m3 = n3 + 1, k2 = 1

i = 0, n3 = 0, k1 = 0

(S − i)β j = i+ 1,m3 = n3 + 1, k2 = k1

1 ≤ i ≤ S − 1, n3 = i, k1 = 1

0 otherwise,

M(i,n3,k1;j,m3,k2) =







Sβ j = i+ 1,m3 = n3 + 1, k2 = 1

i = 0, n3 = 0, k1 = 0

(S − i)β j = i+ 1,m3 = n3 + 1, k2 = k1

1 ≤ i ≤ S − 1, n3 = i, k1 = 1

0 otherwise.

5.2 Steady-state analysis

In this section, we perform the steady-state analysis of the queueing-inventory

model under study by first establishing the stability condition of the system.

5.2.1 Stability condition

To establish the stability condition, we consider the Markov chain

{(N 2(t),I(t),N 3(t),S(t)), t ≥ 0} on the finite state space {(0, i, 0, 0), 0 ≤

i ≤ S}
⋃
{(n2, 0, 0, 0), 1 ≤ n2 ≤ K}

⋃
{(0, i, n3, 1), 1 ≤ i ≤ S, 1 ≤ n3 ≤ i}

⋃
{(n2, i, n3, 1), 1 ≤ n2 ≤ K, 1 ≤ i ≤ S, n3 = i}

⋃
{(0, S, 0)}.

Let φ = (φ0, ...,φK , φ
∗
S) denote the steady-state probability vector of this

Markov chain. Its infinitesimal generator is

B(= B0 +B1 +B2) =















H0 L0 ᾱ

M0 H L ᾱ

M H L ᾱ

. . .
. . .

. . .
...

M H L ᾱ

M H ′

1 ᾱ

L′ −(η + λ)














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which is of order U1 + (S + 1)K + 1 where

L′ = (0,0, ..., (0, η + λ, 0, ..., 0)),

H ′
1(i,n3,k1;j,m3,k2)

=







−(Sβ + α) j = i,m3 = n3, k2 = 0

i = 0, n3 = 0, k1 = 0

−((S − i)β + µ+ α) j = i,m3 = n3, k2 = k1

1 ≤ i ≤ S, n3 = i, k1 = 1

µ j = i− 1,m3 = n3 − 1, k2 = k1

2 ≤ i ≤ S, n3 = i, k1 = 1

µ j = i− 1,m3 = n3 − 1, k2 = 0

i = 1, n3 = i, k1 = 1

0 otherwise.

We have

φB = 0 and φe = 1. (5.1)

The LIQBD description of the model indicates that the queueing system is

stable (see Neuts [33]) if and only if

φB0e < φB2e. (5.2)

Partition φi as

φ0 = {φ0(j, 0, 0); 0 ≤ j ≤ S}
⋃

{φ0(j, k, 1); 1 ≤ j ≤ S, 1 ≤ k ≤ j},

φi = {φi(0, 0, 0)}
⋃

{φi(j, k, 1); 1 ≤ j ≤ S, k = j}, 1 ≤ i ≤ K.

From equation (5.1) we get

φi = φi−1V i−1, 1 ≤ i ≤ K

where

V i =







−L (H ′
1)

−1 if i = K − 1,

−L [H + V i+1M ]−1 if 1 ≤ i ≤ K − 2,

−L0 [H + V1M ]−1 if i = 0
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and

φ0 = φ∗SV
∗
S (5.3)

where V∗
S = −L′(H0 + V0M0)

−1.

From the normalizing condition we have (φ0 + φ1 + ...+ φK)e = 1− φ∗S .

Thus the equation (5.1) implies that φ∗S = α
α+λ+η and

α

α+ λ+ η



V∗
S



I +

K−1∑

j=0

j
∏

i=0

V i



 e+ 1



 = 1. (5.4)

Relation (5.2) gives the stability condition explicitly as

V∗
S

K−1∏

i=0

V iL1e < V∗
SNe+ η. (5.5)

Thus we have

Lemma 5.2.1. The system described in Section 5.1 is stable if and only

if

L′(H0 + V0M0)
−1

K−1∏

i=0

V iL1e > L′(H0 + V0M0)
−1Ne− η. (5.6)

where N is given in Section 5.1.

5.2.2 Steady-state probability vector

Assuming that (5.6) is satisfied, we briefly outline the computation of the long

run system state probability.

Let x denote the steady-state probability vector of the generator Q. Then

we have

x Q = 0 with x e = 1. (5.7)

Partitioning x as x = (x0,x1,x2, ...) and then each of the sub-vectors as

xn1 = {xn1(0, S, 0)}
⋃

{xn1(0, i, 0, 0); 0 ≤ i ≤ S}
⋃
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{xn1(n2, 0, 0, 0); 1 ≤ n2 ≤ K}
⋃

{xn1(0, i, n3, 1); 1 ≤ i ≤ S, 1 ≤ n3 ≤ i}
⋃

{xn1(n2, i, i, 1); 1 ≤ n2 ≤ K, 1 ≤ i ≤ S} , for n1 ≥ 0,

we see that x, under the assumption that the stability condition (5.6) holds,

is obtained as (see Neuts [33])

xn1 = x0 R
n1 , n1 ≥ 1 (5.8)

where R is the minimal nonnegative solution to the matrix quadratic equation:

B0 +R B1 +R2 B2 = O (5.9)

and the boundary equation is given by

x0[B00 +R B2] = 0.

The normalizing condition (5.7) gives

x0(I −R)−1e = 1. (5.10)

5.2.3 Expected sojourn time in a cycle in maximum inventory

level S before realization of common life time

In order to compute the sojourn time of the system in a cycle, with inventory

at the maximum S, we consider the case of a finite orbit. For numerical

procedure the truncation level K1 (size of the orbit) is taken such that the

probability of the number of customers in the orbit going above the truncated

size is of the order less than ǫ (here ǫ is taken as 10−6). Consider the Markov

chain {(N ′
1(t),N 2(t),I(t),N 3(t),S(t)), t ≥ 0} where N ′

1(t) = number of

customers in the finite orbit at time t. Its state space is {(n′1, 0, S, 0, 0); 0 ≤

n′1 ≤ K1}
⋃
{(n′1, n2, S, S, 1); 0 ≤ n′1 ≤ K1; 1 ≤ n2 ≤ K}

⋃
{(n′1, 0, S, n3, 1); 0 ≤

n′1 ≤ K1; 1 ≤ n3 ≤ S}
⋃
{∆̃} where {∆̃} is an absorbing state which denotes

the realization of CLT . The infinitesimal generator of the Markov chain is

W̃K1 =

[

T̃ K1 T̃
0
K1

0 0

]
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where

T̃ K1 =












G̃00 G̃0

G̃2 G̃1 G̃0

. . .
. . .

. . .

G̃2 G̃1 G̃0

G̃2 G̃′
1












, T̃
0
K1

=







G̃
...

G̃







with

(G̃)ij =







α j = i, i = 1,

α+ µ j = 1, 2 ≤ i ≤ K + S + 1,

0 otherwise,

(G̃00)ij =







−(λ+ α) j = i, i = 1,

−(λ+ α+ µ) j = i, 2 ≤ i ≤ K + S,

−(pλ+ α+ µ) j = i, i = K + S + 1,

λ j = i+ 1, 1 ≤ i ≤ K + S,

0 otherwise,

(G̃′
1)ij =







−(λ+ α) j = i, i = 1,

−(λ+ α+ µ) j = i, 2 ≤ i ≤ K + S,

−(α+ µ) j = i, i = K + S + 1,

λ j = i+ 1, 1 ≤ i ≤ K + S,

0 otherwise,

(G̃1)ij =







−(η + λ+ α) j = i, i = 1,

−(λ+ α+ µ) j = i, 2 ≤ i ≤ K + S,

−(pλ+ α+ µ) j = i, i = K + S + 1,

λ j = i+ 1, 1 ≤ i ≤ K + S,

0 otherwise,

(G̃0)ij =

{

pλ i = j = K + S + 1,

0 otherwise,
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(G̃2)ij =

{

η j = i+ 1, i = 1,

0 otherwise,

G̃00, G̃0, G̃1, G̃2, G̃
′
1 are square matrices of order K + S + 1.

The expected sojourn time in the maximum inventory levels in a cycle is

given by E(S)(T) = −γK1
T̃

−1
K1

e where γK1
= (xn′

1
(0, S, 0, 0),xn′

1
(0, S, n3, 1);

0 ≤ n′1 ≤ K1, 1 ≤ n3 ≤ S,xn′
1
(n2, S, S, 1); 0 ≤ n′1 ≤ K1, 1 ≤ n2 ≤ K) is a

row vector of order (K1 + 1)(K + S + 1). It may be noted that the set of

states with inventory level at the maximum could be revisited several times

due to cancellations in a cycle. This maximum does not arise in classical

queueing-inventory models.

5.2.4 Expected sojourn time in zero inventory level in a cycle

before realization of common life time

Now we compute the expected time the system stays with no items in inventory

in finite orbit case. Consider the Markov Chain {(N ′
1(t),N 2(t),I(t)), t ≥ 0}

where N ′
1(t) is the number of customers in the finite orbit at time t. The state

space of the system is given by {(n′1, n2, 0); 0 ≤ n′1 ≤ K1; 0 ≤ n2 ≤ K}
⋃
{∆̃′}.

The absorbing state of the Markov Chain is {∆̃′} which denotes the realization

of CLT . Thus the infinitesimal generator W̃
′

K1
of the Markov Chain is of the

form

W̃
′

K1
=

[

T̃
′

K1
T̃

′0
K1

0 0

]

where

T̃
′

K1
=












Ĝ1 Ĝ0

Ĝ1 Ĝ0

. . .
. . .

Ĝ1 Ĝ0

Ĝ′
1












, T̃
′0
K1

=







Ĝ
...

Ĝ






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with Ĝ = (Sβ + α)e,

(Ĝ1)ij =







−(λ+ Sβ + α) j = i, 1 ≤ i ≤ K,

−(pλ+ Sβ + α) j = i, i = K + 1,

λ j = i+ 1, 1 ≤ i ≤ K,

0 otherwise,

(Ĝ0)ij =

{

pλ j = i, i = K + 1,

0 otherwise,

(Ĝ′
1)ij =







−(λ+ Sβ + α) j = i, 1 ≤ i ≤ K,

−(Sβ + α) j = i, i = K + 1,

λ j = i+ 1, 1 ≤ i ≤ K,

0 otherwise.

Ĝ1, Ĝ0, Ĝ
′
1 are square matrices of order K + 1.

Thus the expected sojourn time in zero inventory level during a cycle is

given by E(0)(T) = −γ ′
K1

T̃
′−1
K1

e where γ ′
K1

= (xn′
1
(n2, 0, 0, 0); 0 ≤ n′1 ≤

K1, 0 ≤ n2 ≤ K) is a row vector of order (K1 + 1)(K + 1).

5.2.5 Expected number of revisits to S in a cycle before the

realization of common life time

We compute the expected number of revisits of inventory level to S in a cycle.

Consider a Markov chain {(N 4(t),N
′
1(t),N 2(t),I(t),N 3(t),S(t)), t ≥ 0} on

the states {(n4, n
′
1, 0, i, 0, 0);n4 ≥ 0; 0 ≤ n′1 ≤ K1; 0 ≤ i ≤ S}

⋃
{(n4, n

′
1, n2, 0,

0, 0);n4 ≥ 0; 0 ≤ n′1 ≤ K1; 1 ≤ n2 ≤ K}
⋃
{(n4, n

′
1, 0, i, n3, 1);n4 ≥ 0; 0 ≤ n′1 ≤

K1; 1 ≤ i ≤ S; 1 ≤ n3 ≤ i}
⋃
{(n4, n

′
1, n2, i, i, 1);n4 ≥ 0; 0 ≤ n′1 ≤ K1; 1 ≤

i ≤ S; 1 ≤ n2 ≤ K}
⋃
{∗′} where {∗′} is an absorbing state which denotes

the realization of the CLT . Here we consider N 4(t) (see Section 5.1 for its

definition) as the level and N ′
1(t),N 2(t),I(t),S(t) are referred to as phases.

Thus the infinitesimal generator is
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W̌ =












0 0 0 0 0 . . .

Ǧ Ǧ1 Ǧ0 . . .

Ǧ Ǧ1 Ǧ0 . . .

Ǧ Ǧ1 Ǧ0 . . .
...

. . .
. . .












where Ǧ1, Ǧ0 are square matrices of order (K1+1)[U1+(S+1)K+1] with

Ǧ = αe,

Ǧ1 =












G00 G0

G2 G G0

. . .
. . .

. . .

G2 G G0

G2 G1












,

Ǧ0 = diag(G0, ...,G0),G0 = diag(0, ..., 0, L1), G2 = diag(N, 0, ..., 0),

G00 =








Ȟ00 L0

M̌0 H L

M̌ H L

. . .
. . .

. . .

M̌ H L

M̌ H1







,G =








Ȟ0 L0

M̌0 H L

M̌ H L

. . .
. . .

. . .

M̌ H L

M̌ H1







,

G1 =













Ȟ0 L0

M̌0 H L

M̌ H L

. . .
. . .

. . .

M̌ H L

M̌ H ′

1













,G0 =











B̌0

B̌1 0

B̌ 0

. . .
. . .

B̌ 0











with
(
M̌0

)

jk
=

{

(S − j + 1)β 1 ≤ j ≤ S − 1, k =
∑j+1

i=1 i+ j

0 otherwise,

(
M̌
)

jk
=

{

(S − j + 1)β 1 ≤ j ≤ S − 1, k = j + 1

0 otherwise,
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(
B̌0

)

jk
=

{

β k = j + S + 1, S(S+1)
2 − 1 ≤ j ≤ S(S+1)

2 + S − 1

0 otherwise,

(
B̌1

)

jk
=

{

β j = S, k = (S+2)(S+1)
2 + S

0 otherwise,

(
B̌
)

jk
=

{

β k = S + 1, j = S

0 otherwise.

The following matrices give transition rates from the state (i, n3, k1) →

(j,m3, k2) where i(j) represents the number of items in the inventory; n3(m3),

the number of customers in the buffer and kl, for l = 1, 2, are status of the

server.

Ȟ
(k1,k2)
00(i,j) (n3,m3) =







Sβ j = i+ 1,m3 = n3, k2 = k1;

i = 0, n3 = 0, k1 = 0

(S − i)β j = i+ 1,m3 = n3 = 0, k2 = k1;

1 ≤ i ≤ S − 2, n3 = 0, k1 = 0

(S − i)β j = i+ 1,m3 = n3, k2 = k1;

1 ≤ i ≤ S − 2, 1 ≤ n3 ≤ i, k1 = 1

µ j = i− 1,m3 = n3 − 1, k2 = k1 − 1;

1 ≤ i ≤ S, n3 = 1, k1 = 1

µ j = i− 1,m3 = n3 − 1, k2 = k1;

2 ≤ i ≤ S, 2 ≤ n3 ≤ i, k1 = 1

λ j = i,m3 = n3 + 1, k2 = k1 + 1;

1 ≤ i ≤ S, n3 = 0, k1 = 0

λ j = i,m3 = n3 + 1, k2 = k1;

1 ≤ i ≤ S, 1 ≤ n3 ≤ i− 1, k1 = 1

−(λ+ α+ (S − i)β) j = i,m3 = n3, k2 = k1;

0 ≤ i ≤ S, n3 = 0, k1 = 0

−(λ+ µ+ α+ (S − i)β) j = i,m3 = n3, k2 = k1;

1 ≤ i ≤ S, 1 ≤ n3 ≤ i, k1 = 1

0 otherwise,
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Ȟ
(k1,k2)
0(i,j) (n3,m3) =







Sβ j = i+ 1,m3 = n3, k2 = k1;

i = 0, n3 = 0, k1 = 0

(S − i)β j = i+ 1,m3 = n3, k2 = k1;

1 ≤ i ≤ S − 2, n3 = 0, k1 = 0

(S − i)β j = i+ 1,m3 = n3, k2 = k1;

1 ≤ i ≤ S − 2, 1 ≤ n3 ≤ i, k1 = 1

µ j = i− 1,m3 = n3 − 1, k2 = k1 − 1;

1 ≤ i ≤ S, k1 = 1, n3 = 1

µ j = i− 1,m3 = n3 − 1, k2 = k1;

2 ≤ i ≤ S, 2 ≤ n3 ≤ i, k1 = 1

λ j = i,m3 = n3 + 1, k2 = k1 + 1;

1 ≤ i ≤ S, n3 = 0, k1 = 0

λ j = i,m3 = n3 + 1, k2 = k1;

1 ≤ i ≤ S, 1 ≤ n3 ≤ i− 1, k1 = 1

−(λ+ α+ Sβ) j = i,m3 = n3, k2 = k1;

i = 0, n3 = 0, k1 = 0

−(λ+ α+ η + (S − i)β) j = i,m3 = n3, k2 = k1;

1 ≤ i ≤ S, n3 = 0, k1 = 0

−(λ+ µ+ α+ (S − i)β) j = i,m3 = n3, k2 = k1 = 1;

1 ≤ i ≤ S, 1 ≤ n3 ≤ i, k1 = 1

0 otherwise,

Ȟ00, Ȟ0, B̌0 are square matrices of order U1 and dimension of the matrices

B̌1, M̌0 are (S + 1) × U1. B̌ is a square matrix of order S + 1 and all other

sub-matrices are given in Section 5.1.

If pk is the probability that absorption occurs with exactly k revisits, then

pk = δ̌K1(−Ǧ
−1
1 Ǧ0)

k(−Ǧ−1
1 Ǧ), k ≥ 0

with δ̌K1 = (x0,x1, ...,xK1) is a row vector of order (K1+1)[U1+K(S+1)+1].

Therefore the expected number of revisits to S before realization of CLT is

Ě(S)(N) =
∞∑

k=0

kpk (see Krishnamoorthy et al. [22]).
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5.2.6 Additional Performance Measures

1. Expected number of customers in the orbit

EO =
∞∑

n1=1

n1

[
S∑

i=0

xn1(0, i, 0, 0) +
K∑

n2=1

xn1(n2, 0, 0, 0)

+
K∑

n2=1

S∑

i=1

xn1(n2, i, i, 1) +
S∑

i=1

i∑

n3=1

xn1(0, i, n3, 1)

]

.

2. Expected number of customers in the waiting room

EW =
∞∑

n1=0

K∑

n2=1

n2

[

xn1(n2, 0, 0, 0) +
S∑

i=1

xn1(n2, i, i, 1)

]

.

3. Expected number of customers in the buffer

EB =
∞∑

n1=0

[
K∑

n2=1

S∑

i=1

ixn1(n2, i, i, 1) +
S∑

i=1

i∑

n3=1

n3xn1(0, i, n3, 1)

]

.

4. Expected number of items in the inventory before realization of CLT

EI =
∞∑

n1=0

S∑

i=1

i

[

xn1(0, i, 0, 0) +
i∑

n3=1

xn1(0, i, n3, 1) +
K∑

n2=1

xn1(n2, i, i, 1)

]

.

5. Expected cancellation rate before realization of CLT

ECR =
∞∑

n1=0

[
S−1∑

i=0

(S − i)βxn1(0, i, 0, 0) +
S−1∑

i=1

i∑

n3=1

(S − i)βxn1(0, i, n3, 1)

+
K∑

n2=1

(

Sβxn1(n2, 0, 0, 0) +
S−1∑

i=1

(S − i)βxn1(n2, i, i, 1)

)]

.
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6. Expected number of items in the system immediately on realization of

CLT (this is the inventory, which cannot be carried forward to the next

cycle since their life time is expired – a typical case is: flights taking off

with one or more vacant seats)

E′
I =

S∑

i=1

i

[

Z
(i)
1 x0(0, i, 0, 0) + Z

(i)
3

(
K∑

n2=1

x0(n2, i, i, 1)

+
i∑

n3=1

x0(0, i, n3, 1)

)]

+
∞∑

n1=1

S∑

i=1

i

[

Z
(i)
3

(
K∑

n2=1

xn1(n2, i, i, 1)

+
i∑

n3=1

xn1(0, i, n3, 1)

)

+ Z
(i)
2 xn1(0, i, 0, 0)

]

where Z
(i)
1 = α

λ+α+(S−i)β , Z
(i)
2 = α

λ+α+η+(S−i)β , Z
(i)
3 = α

λ+α+µ+(S−i)β .

A Random Walk

In order to compute the measures given in a, b, c and d below we consider a

random walk (a birth and death process) on the set {0, 1, 2, ..., S} which is the

set of possible values of the inventory. Here a left transition means purchase

of an item and a right transition represents cancellation. This is similar to a

situation of a transport system with S seats. Then

a. Probability that the transport system is fully vacant at the time of realiza-

tion of CLT (all seats remain vacant at the time of realization of CLT

which is the departure time):

Pvacant =
∞∑

n1=0

[

xn1(0, S, 0, 0) +
K∑

n2=1

xn1(n2, S, S, 1) +
S∑

n3=1

xn1(0, S, n3, 1)

]

.
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b. Probability that the transport system goes with full capacity at the time

of realization of CLT (all seats are filled at departure time):

Pfull =
∞∑

n1=0

K∑

n2=0

xn1(n2, 0, 0, 0).

c. Expected number of purchases before realization of CLT

ENP =
µ

α

∞∑

n1=0

[
K∑

n2=1

S∑

i=1

xn1(n2, i, i, 1) +
S∑

i=1

i∑

n3=1

xn1(0, i, n3, 1)

]

.

d. Expected number of cancellations before realization of CLT

ENC =
1

α

∞∑

n1=0

[
S−1∑

i=1

(S − i)β

(

xn1(0, i, 0, 0) +
i∑

n3=1

xn1(0, i, n3, 1)

+

K∑

n2=1

xn1(n2, i, i, 1)

)

+ Sβ

K∑

n2=0

xn1(n2, 0, 0, 0)

]

.

The significance of measures a, b, c and d above occur in the determination of

the capacity of transport system.

5.3 Special Case

In this section we consider the case of negligible service time. This means that

the service rate is infinite. Here we can combine the buffer and waiting room:

if inventory is available then none will be in the waiting room; however, none

in the waiting room need not necessarily mean that inventory is available.

Thus the Markov chain is ψ = {(N 1(t),I(t)); t ≥ 0}, where N 1(t) and I(t)

have the same definition as in Section 5.1. The state space of the process ψ

is given by {(n1, i); n1 ≥ 0, −K ≤ i ≤ S}
⋃
{(n1, S

∗); n1 ≥ 0}. Here i can

be positive, zero or negative. Negative value of i indicates that no item is
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available in the inventory and |i| customers are in the waiting room. Once the

CLT is realized the inventory level reaches its maximum, which is denoted by

S∗. This is so because the next cycle starts at that moment with instantaneous

replenishment of inventory. The infinitesimal generator Q∗ of this CTMC is

of the form:

Q∗ =










B′
00 B′

0

B′
2 B′

1 B′
0

B′
2 B′

1 B′
0

. . .
. . .

. . .










.

B′
00, B

′
0, B

′
1 and B′

2 are square matrices of order K + S + 2.

B′
00 =





















b′S Sβ α

λ bS Sβ α

. . .
. . .

. . .
...

λ bS Sβ α

λ bS−1 (S − 1)β α

. . .
. . .

. . .
...

λ b1 β α

λ b0 α

λ −λ





















,

B′
2 =


















0 0

0 0 0
...

. . .
. . .

...

0 0 0 0

0 η 0 0
...

. . .
. . .

...

0 η 0 0

0 η 0 0


















,
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B′
1 =





















b′S Sβ α

λ bS Sβ α

. . .
. . .

. . .
...

λ bS Sβ α

λ b′S−1 (S − 1)β α

. . .
. . .

. . .
...

λ b′1 β α

λ b′0 α

λ −(η + λ)





















,

B′
0 = diag(pλ, 0, ..., 0) where b′S = −(pλ + α + Sβ); bi = −(λ + α + iβ) for

0 ≤ i ≤ S and b′i = −(λ+ α+ η + iβ) for 0 ≤ i ≤ S − 1.

5.3.1 Stability of the system

In this section we perform the steady state analysis of the queueing-inventory

model under study by first establishing the stability condition of the system.

Define B′ = B′
0+B

′
1+B

′
2. This is the infinitesimal generator of the finite state

CTMC corresponding to the inventory level {−K,−K+1, ..., 0, ..., S, S∗}. Let

φ′ denote the steady-state probability vector of B′. That is,

φ′B′ = 0, φ′e = 1. (5.11)

Write φ′ = (φ′(−K), φ′(−K + 1), ..., φ′(0), φ′(1), ..., φ′(S), φ′(S∗)). Then using

relations in (5.11) we get the components of the vector φ′ explicitly as

φ′(i) =







α
α+λ+η , i = S∗

v∗S−1vS∗φ′(S∗), i = S

vS∗φ′(S∗), i = S − 1
S−1∏

j=i+1
vjvS∗φ′(S∗), −K ≤ i ≤ S − 2
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where v∗S−1 =
β

(λ+α+η) and

vi =







λ
α+Sβ , i = −K + 1

λ
(λ+α+Sβ)−Sβvi+1

, −K + 2 ≤ i ≤ 0
λ+η

(λ+α+Sβ)−Sβv0
, i = 1

λ+η
(λ+α+η+(S−i+1)β)−(S−i+2)βvi+1

, 2 ≤ i ≤ S − 1
λ+η

(λ+α+η+β)−2βvS−1−(λ+η)v∗
S−1

, i = S∗

Since the Markov chain is an LIQBD, it is stable if and only if the left drift

rate exceeds the right drift rate. That is,

φ′B′
0e < φ′B′

2e. (5.12)

We have the following lemma:

Lemma 5.3.1. The stability condition of the queueing-inventory model

is given by

pλ

S−1∏

i=−K+1

vi < η





S−2∑

j=1

S−1∏

i=j+1

vi + v∗S−1 + 1



 . (5.13)

Proof: From the well known result in Neuts [33] on the positive recurrence

of B′, we have φ′B′
0e < φ′B′

2e. With a bit of computation, this simplifies to

the result

pλ
S−1∏

i=−K+1

vivS∗φ′(S∗) < η





S−2∑

j=1

S−1∏

i=j+1

vi + v∗S−1 + 1



 vS∗φ′(S∗).

5.3.2 Steady state analysis of the system

For computing the steady-state probability vector of the system, we first con-

sider the rate matrix R which is the minimal nonnegative solution to the

matrix quadratic equation:

B′
0 +R B′

1 +R2 B′
2 = O. (5.14)
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From the structure of the coefficient matrices B′
0, B

′
1 and B′

2, we observe that

the rate matrix R has the form

R =










r−K · · · r0 r1 · · · rS rS∗

0 · · · 0 0 · · · 0 0
...

...
...

...
...

0 · · · 0 0 · · · 0 0










.

Substituting R2 and R into equation (5.14) we obtain

ri =







q∗i+1 + qi+1ri+1, −K ≤ i ≤ −1

((ηr−K + λ)r1 + Sβr−1)(λ+ α+ Sβ)−1, i = 0

((ηr−K + λ)ri+1 + Sβri−1)(λ+ α+ η + (S − i)β)−1, 1 ≤ i ≤ S − 2

((ηr−K + λ)(rS + rS∗) + 2βrS−2)(λ+ α+ η + β)−1, i = S − 1

βrS−1(λ+ α+ η)−1, i = S

α(r−K + ...+ rS)(η + λ)−1, i = S∗

where

qi =

{

λ(pλ+ α+ Sβ)−1, i = −K + 1

λ((λ+ α+ Sβ)− Sβqi−1)
−1, −K + 2 ≤ i ≤ 0

and

q∗i =

{

pλ(pλ+ α+ Sβ)−1, i = −K + 1

Sβq∗i−1((λ+ α+ Sβ)− Sβqi−1)
−1, −K + 2 ≤ i ≤ 0.

Let x∗ denote the steady-state probability vector of Q∗. Then x∗ satisfies the

relations x∗ Q∗ = 0 and x∗ e = 1.

Partitioning x∗ as x∗ = (x∗
0,x

∗
1,x

∗
2, ...), each

x∗
n1

= (x∗n1
(−K), x∗n1

(−K + 1), ..., x∗n1
(−1), x∗n1

(0), x∗n1
(1), ..., x∗n1

(S), x∗n1
(S∗))

and

x∗
n1

= x∗
0 R

n1 , n1 ≥ 1, (5.15)

which implies x∗
n1

= x∗
0r

n1−1
−K R, n1 ≥ 1 and x∗

0(I + (1− r−K)−1R)e = 1.

The normalizing condition expressed by x∗
0(I + (1− r−K)−1R)e = 1 indi-

cates that the total probability adds to 1.
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5.4 Numerical illustration

In this section we provide numerical illustration of the system performance

with variation in values of underlying parameters.

In these the “expected inventory level immediately on realization of com-

mon life time”, plays a significant role due to the fact that it gives an idea as

to how much of inventory is ‘wasted’.

Effect of the arrival rate λ

Table 5.1 indicates that the increase in λ makes expected number of customers

in the orbit, that in the waiting room as well as in the buffer, expected can-

cellation rate and expected sojourn time in zero inventory all increase. As

λ increases there is a comparatively high decrease in the expected number

of items in the inventory immediately on realization of CLT and expected

sojourn time in S. These are on expected lines.

λ EO EW EB EI ECR E′

I E(S)(T) E(0)(T)

12 0.0290 0.0617 0.6827 4.2981 5.9389 0.3325 0.0234 1.4963×10−5

13 0.0596 0.0944 0.8144 4.2998 6.3448 0.3094 0.0218 2.0955×10−5

14 0.1151 0.1368 0.9536 4.2975 6.7365 0.2890 0.0205 2.8029 ×10−5

15 0.2118 0.1890 1.0978 4.2927 7.1128 0.2709 0.0193 3.6044×10−5

16 0.3766 0.2509 1.2446 4.2866 7.4730 0.2595 0.0184 4.4801×10−5

17 0.6568 0.3218 1.3919 4.2803 7.8172 0.2395 0.0175 5.4032 ×10−5

Table 5.1: Effect of the arrival rate λ: Fix S = 6,K = 4, µ = 15, η = 5, α =

2, β = 7, p = 0.5,K2 = 50

Effect of the service rate µ

From Table 5.2 we observe that the increase in µ makes expected number of

customers in the orbit, expected number of customers in the waiting room, ex-

pected number of items immediately on realization of CLT , expected sojourn

time in S, expected number of customers in the buffer and expected number
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of items in the inventory to decrease. This is a consequence of decrease in

traffic intensity. But as µ increases, expected cancellation rate, expected so-

journ time in 0 inventory increase: more the number of customers served out

higher the rate of cancellation. The expected number of unsold items (in the

sense of items remaining in inventory immediately after the expiry of CLT )

decrease because of a large number of customers purchasing the inventory.

µ EO EW EB EI ECR E′

I E(S)(T) E(0)(T)

10 1.0984 0.8694 1.3674 3.2331 5.1532 0.1822 0.0218 0.0008

11 0.7211 0.7591 1.2192 3.1583 5.4146 0.1773 0.0191 0.0010

12 0.4920 0.6630 1.0870 3.0951 5.6395 0.1732 0.0169 0.0012

13 0.3465 0.5800 0.9699 3.0418 5.8323 0.1698 0.0152 0.0013

14 0.2510 0.5090 0.8665 2.9967 5.9975 0.1670 0.0139 0.0015

15 0.1865 0.4486 0.7758 2.9584 6.1395 0.1648 0.0128 0.0016

Table 5.2: Effect of the service rate µ: Fix S = 5,K = 6, λ = 13, η = 5, α =

1.5, β = 4, p = 0.5,K2 = 50

Effect of the retrial rate η

η EO EW EB EI ECR E′

I E(S)(T) E(0)(T)

3 0.2895 0.1575 1.4938 6.1700 7.9673 0.1362 0.0537 3.8825×10−8

4 0.2417 0.1574 1.4938 6.1703 7.9672 0.1361 0.0538 3.7693×10−8

5 0.2137 0.1574 1.4938 6.1706 7.9671 0.1361 0.0538 3.7051×10−8

6 0.1952 0.1574 1.4938 6.1709 7.9671 0.1361 0.0539 3.6638×10−8

7 0.1822 0.1574 1.4937 6.1711 7.9671 0.1360 0.0539 3.6352×10−8

8 0.1725 0.1574 1.4937 6.1713 7.9671 0.1360 0.0539 3.6142×10−8

Table 5.3: Effect of the retrial rate η: Fix S = 7,K = 5, λ = 11, µ = 13, α =

0.5, β = 15, p = 0.75,K2 = 50

From Table 5.3 we observe that as η increases there is a comparatively

high decrease in expected number of customers in the orbit as is expected,

slight decrease in expected number of items immediately on realization of

CLT , expected cancellation rate, expected number of customers in the waiting

room and buffer and slight increase in the expected number of items before

realization of CLT . The latter is attributed to larger number of cancellations
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and the former due to more items taken away by waiting customers (with η

increasing larger number of orbital customers get into the waiting room and

buffer). The expected sojourn time in S increases with increase in η values.

However, expected sojourn time in 0 shows a decreasing trend.

Effect of the common life time parameter α

Table 5.4 shows that an increase in α results in a decrease in expected number

of customers in the orbit, in the waiting room and that in the buffer - the

shorter the life time, lesser the number of cancellations. The expected length of

a cycle turns out to be smaller and so the expected number of arrivals decrease.

The expected sojourn time in 0 and expected cancellation rate also decrease

with increase in α values. However, expected number of items in the inventory

before realization, expected sojourn time in S, expected number of items in

the inventory immediately on realization of CLT all show an increasing trend.

This could be attributed to decrease in the number of demands during a shorter

duration of time (with α increasing the CLT realizes faster).

α EO EW EB EI ECR E′

I E(S)(T) E(0)(T)

0.25 1.6091 0.5753 1.4113 4.1614 8.0883 0.0415 0.0066 0.0010

0.5 0.7578 0.4074 1.2181 4.3553 7.0672 0.0910 0.0090 0.0007

0.75 0.4195 0.3013 1.0796 4.4709 6.2904 0.1436 0.0108 0.0005

1 0.2553 0.2294 0.9735 4.5390 5.6710 0.1989 0.0121 0.0004

1.25 0.1654 0.1784 0.8884 4.5760 5.1615 0.2496 0.0132 0.0003

1.5 0.1120 0.1411 0.8181 4.5913 4.7331 0.3010 0.0140 0.0002

Table 5.4: Effect of α: Fix S = 7,K = 5, λ = 11, µ = 13, η = 4, β = 3, p =

0.75,K2 = 50

Effect of β

From Table 5.5, we observe that the expected number of customers in the

orbit and that in the waiting room, expected inventory level on realization of

CLT and expected sojourn time in 0 decrease with increase in β value which
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is a consequence of positive inventory in the system over a longer duration of

time in a cycle. Here expected number of customers in the buffer, expected

cancellation rate, expected number of items in the inventory and expected

sojourn time in S show a sharper upward trend on realization of CLT . This

tendency is a natural consequence of higher cancellation rate for the same

CLT parameter value.

β EO EW EB EI ECR E′

I E(S)(T) E(0)(T)

8 0.0999 0.1155 1.1177 5.7946 8.4143 0.0626 0.0316 3.0820×10−6

9 0.0945 0.1085 1.1285 5.9082 8.4433 0.0643 0.0357 1.4032×10−6

10 0.0905 0.1032 1.1370 5.9996 8.4667 0.0658 0.0394 6.8522 ×10−7

11 0.0873 0.0990 1.1437 6.0747 8.4859 0.0672 0.0427 3.5504×10−7

12 0.0848 0.0956 1.1491 6.1376 8.5020 0.0684 0.0457 1.9361 ×10−7

13 0.0827 0.0929 1.1537 6.1910 8.5157 0.0695 0.0484 1.1045×10−7

Table 5.5: Effect of β: Fix S = 7,K = 5, λ = 11, µ = 15, α = 0.25, η = 6, p =

0.75,K2 = 50

Effect of variation in α, β on Pvacant and Pfull

We assign the following values to the parameters: S = 6,K = 4, λ = 11, µ =

15, η = 5, p = 0.75. The effect of the parameters α and β are given in Table

5.6. Probability for the inventory being full (at S), increases with increasing

value of α (for fixed β). Similarly probability for inventory being zero at the

time of realization of CLT is a linearly decreasing function of α (for fixed β).

Pfull decreases with β for fixed α (a consequence of higher cancellation rate).

On the other hand, probability for the other extreme shows negligible increase.

α Pvacant Pfull

1.2 0.0690 0.4530

1.4 0.0784 0.3968

1.6 0.0871 0.3459

1.8 0.0952 0.2998

2 0.1027 0.2586

2.2 0.1097 0.2223

β Pvacant Pfull

0 0.0828 0.3708

0.1 0.0839 0.3474

0.2 0.0850 0.3245

0.3 0.0862 0.3019

0.4 0.0874 0.2797

0.5 0.0887 0.2581

Table 5.6: Effect of α for β = 0 and that of β for α = 1.5 on Pvacant and Pfull
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Effect of variation in α, β on ENP and ENC

We assign the same values as in the previous illustration, to the parameters

S = 6,K = 4, λ = 11, µ = 15, η = 5, p = 0.75. With increase in the values of

α, keeping β fixed we notice that ENP and ENC decrease. However, keeping

α fixed and increasing value of β result in ENP and ENC increasing (see Table

5.7).

α ENP ENC

1.3 4.6852 1.3007

1.35 4.5411 1.2270

1.4 4.4038 1.1590

1.45 4.2729 1.0960

1.5 4.1479 1.0376

1.55 4.0268 0.9834

β ENP ENC

1 4.5720 1.8305

1.1 4.6266 1.9591

1.2 4.6734 2.0787

1.3 4.7135 2.1899

1.4 4.7478 2.2934

1.5 4.7770 2.3897

Table 5.7: Effect of α for β = 0.5 and that of β for α = 1.5 on ENP and ENC

5.4.1 Optimization Problem

Based on the above performance measures we construct a cost function for

checking the optimality of the waiting room capacity K. It may be noted that

cancellation to some extent prior to CLT realization results in higher profit

to the system since there is a cancellation penalty imposed on the customer.

Hence we define profit/revenue function F (K,S) as

F(K,S) = C1ECR − C2EI + C3EB − C4EW

where

C1 = Revenue to the system due to per unit cancellation of inventory pur-

chased,

C2 = Holding cost per unit time per inventory,

C3 = Revenue to the system per customer per unit time in the buffer (this is

an income on account of inventory being sold for sure),
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C4 = Holding cost of customer per unit per unit time in the waiting room.

In order to study the variation in different parameters on expected total

cost we first fix the costs C1 = $50,C2 = $10,C3 = $15,C4 = $20.

Effect of variation in S and K

We assign the following values to the parameters: λ = 11, µ = 15, β = 17, η =

5, α = 0.25, p = 0.75. For different values of S and K, the expected revenue

are calculated and presented in Table 5.8. This table shows that the expected

revenue decreases when S increases and for each value of S we get an optimum

K.

P
P
P

P
PPK

S
2 3 4 5 6

3 413.7963 404.6718 399.7146 394.1720 387.4320

4 415.6992 406.2415 400.7019 394.7882 387.8239

5 415.5614 406.7719 401.0563 394.9985 387.9483

6 414.4258 406.7782 401.0896 395.0037 387.9387

7 412.8614 406.5428 400.9743 394.9154 387.8690

8 411.1812 406.2183 400.8032 394.7937 387.7792

Table 5.8: Effect of S and K on expected revenue



Chapter 6

GI/M/1 type

queueing-inventory systems

with postponed work,

reservation, cancellation and

common life time

In the previous chapter the problem discussed was an LIQBD process. This

turned out to be so since we assumed that unsatisfied customers stay back in

the system. In the present chapter we discuss two models in which items in

the inventory have a random common life time. On realization of common

Some results of this chapter are included in the following paper.

A. Krishnamoorthy, Dhanya Shajin and B. Lakshmy : GI/M/1 type queueing-inventory

systems with postponed work, reservation, cancellation and common life time,

Invited paper to the special issue “Stochastic Models” of Indian Journal of Pure and Applied

Mathematics, Guest Editor: Professor M. K. Ghosh, 2015 (to appear).
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life time, all customers in the system are flushed out. Subsequently the in-

ventory reaches its maximum level S through a replenishment which follows

an exponential distribution for the next cycle. Through cancellation of pur-

chases, inventory gets added until their expiry time; inter cancellation times

follow exponential distribution. Customers arrive according to a Poisson pro-

cess and service time is exponentially distributed. On arrival, if a customer

finds the server busy, he joins a buffer of varying size. If there is no inventory,

the arriving customer first try to queue up in a finite waiting room of capac-

ity K. Finding that full, he joins a pool of infinite capacity with probability

γ (0 < γ < 1); else it is lost to the system forever. We discuss two models

based on ‘transfer’ of customers from the pool to the waiting room / buffer. In

Model 1 when, at a service completion epoch the waiting room size drops to

a preassigned number L− 1 (1 < L < K) or below, a customer is transferred

from pool to waiting room with probability p (0 < p < 1) and positioned as the

last among the waiting customers. If at a departure epoch the waiting room

turns out to be empty and there is at least one customer in the pool, then the

one ahead of all waiting in the pool gets transferred to the waiting room with

probability one. We introduce a totally different transfer mechanism in Model

2: when at a service completion epoch, the server turns idle with at least one

item in the inventory, the pooled customer is immediately taken for service.

At the time of a cancellation if the server is idle with none, one or more cus-

tomers in the waiting room, then the head of the pooled customer goes to the

buffer directly for service. Also we assume that no customer joins the system

when there is no item in the inventory. Our computational experiments show

that the second model is more cost effective.

With the assumption of flush out of all customers from the system on

realization of CLT , what we get is GI/M/1 type Markov chain. Whereas for

the model discussed in chapter 5 the stability condition was to be investigated,

the present model is always stable. Here in reality we can have traffic intensity



Mathematical formulation: Model 1 125

crossing 1, still the system is stable!

6.1 Mathematical formulation: Model 1

We have a single commodity inventory system with S items at the beginning of

a cycle. Customers arrive according to a Poisson process of rate λ demanding

exactly one unit of item (extension to demand for more than one item by a

customer is straight forward). To deliver the item to the customer in service, it

requires an exponentially distributed time with parameter µ. The inventoried

items have a common life time which means that they all perish (unfit for use)

together on realization of this time (example is drugs that are manufactured in

a batch). We assume that this common life time is exponentially distributed

with parameter α. On realization of common life time the process of ordering

for inventory replenishment starts. The physical arrival of items takes an

exponentially distributed amount of time having parameter η. The quantity

of replenishment is S. A buffer of varying size, depending on the number

of items in the inventory is available near the service counter. We call it

varying size because at most as many customers as the number of items in

the inventory are allowed to be in this buffer. In addition the possibility of

cancellation of purchase (return of the item with a penalty) is introduced

here. Inter cancellation time follows exponential distribution with parameter

iβ, when there are i items in the purchased list in the current cycle (that is,

there are (S − i) items in the inventory). Next in order is a finite waiting

space of capacity K. When the buffer is full further arrivals wait in this room;

as and when inventory level in the buffer goes above (due to cancellation),

the head in the waiting room moves to the buffer and positions himself as the

last there. When the waiting room is also full, further arrivals are directed to

a pool (of customers) having infinite capacity. Whereas customers join with

probability one in the buffer and waiting room whenever there is a vacancy,
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it is not the case with the pool. An arrival, finding waiting room also full,

joins the pool with probability γ(0 < γ < 1) or balks with complementary

probability.

We introduce a transfer mechanism of customers from pool to waiting

room as follows: when, at a departure epoch the number of customers in the

waiting room drops to a preassigned number L − 1, (1 < L < K) or below,

a customer is transferred from the pool to the waiting room with probability

p (0 < p < 1) and positioned as last among the waiting customers. If at a

service completion epoch the waiting room turns out to be empty and there is

at least one customer in the pool, the one ahead of all waiting in the pool gets

transferred (with probability one) to the waiting room. Transfer of customers

in a pure queueing theory perspective from a pool is introduced and analyzed

in Deepak et al. [13].

It is in the transfer mechanism that the two models discussed in this chap-

ter differ. This mechanism for Model 2 is discussed at the appropriate place

in Section 6.2.

Further all customers are flushed out from the system (finite buffer, waiting

room and pool) when the common life time is realized.

In the sequel we use the following notations:

N 1(t) Number of customers in the pool at time t

N 2(t) Number of customers in the waiting room at time t

N 3(t) Number of customers in the buffer (including in service) at time t

I(t) Number of items in the inventory at time t

u(t) =







0, if server is idle at time t

1, pooled customer in service at time t

2, customer in service not from the pool at time t
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Cycle : The time duration from the epoch at which we start with

maximum inventory level S at a replenishment epoch, to the

moment when the common life time is realized

Lead time : On expiry of common life time, the inventory level reaches its

maximum S through a replenishment for the next cycle. The

time elapsed between realization of CLT of a batch to the

epoch at which the replenishment takes place for the next

cycle, is called lead time

U1 = (S + 1)(S + 2)/2 +K(S + 1)

U2 = K(S + 1)

U3 = (S + 1)2 +K(2S + 1)

U4 = S(S + 1) +K(2S + 1) + 1

By the above assumptions Ω = {(N 1(t),N 2(t),I(t),N 3(t)) , t ≥ 0} is a

CTMC. Its state space is given by

{∆}
⋃

{(0, 0, i, n3) ; 0 ≤ i ≤ S, 0 ≤ n3 ≤ i}

⋃

{(n1, n2, i, n3) ;n1 ≥ 0, 1 ≤ n2 ≤ K, 0 ≤ i ≤ S, n3 = i}

where {∆} denotes the temporary absorbing state. Thus the infinitesimal

generator Q1 is of the form

Q1 =












A∆ A∆0

A0∆ A00 A01

A′
2 A10 A1 A0

A′
2 A2 A1 A0

...
. . .

. . .
. . .












.

The matrices A0, A1, A2 are square matrices of the same order U2 with A0

representing transition from level n1 to n1 + 1, n1 ≥ 1; A1 represents the

transitions within the level n1, n1 ≥ 1; and A2 contains transition rates from

level n1 to n1−1, n1 ≥ 2. Dimension of matrices A00, A01, A10 are U1×U1, U1×
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U2, U2×U1 respectively. Matrices A0∆, A
′
2 are column vectors of orders U1, U2

respectively. A∆0 is a row vector of order U1.

A∆ = −η,A∆0 = ηe′(S(S+1)/2)+1, A0∆ = αe, A′
2 = αe.

DefineA
(m2,j,m3)
k(n2,i,n3)

, k = 00, 01, 10, 0, 1, 2 as the transition rates from (n2, i, n3) →

(m2, j,m3) where n2,m2 represent the number of customers in the waiting

room, i, j represent the number of items in the inventory and n3,m3 represent

the number of customers in the buffer. These transition rates are

A
(m2,j,m3)
1(n2,i,n3)

=







λ 1 ≤ n2 ≤ K − 1, 0 ≤ i ≤ S, n3 = i;

m2 = n2 + 1, j = i,m3 = n3,

µ 1 ≤ n2 ≤ K, 1 ≤ i ≤ S, n3 = i;

m2 = n2, j = i− 1,m3 = n3 − 1,

(1− p)(S − i)β 2 ≤ n2 ≤ L, 0 ≤ i ≤ S − 1, n3 = i;

m2 = n2 − 1, j = i+ 1,m3 = n3 + 1,

(S − i)β L+ 1 ≤ n2 ≤ K, 0 ≤ i ≤ S − 1, n3 = i;

m2 = n2 − 1, j = i+ 1,m3 = n3 + 1,

−(λ+ Sβ + α) 1 ≤ n2 ≤ K − 1, i = 0, n3 = 0;

m2 = n2, j = i,m3 = n3,

−(λ+ µ+ (S − i)β + α) 1 ≤ n2 ≤ K − 1, 1 ≤ i ≤ S, n3 = i;

m2 = n2, j = i,m3 = n3,

−(γλ+ Sβ + α) n2 = K, i = 0, n3 = 0;

m2 = n2, j = i,m3 = n3,

−(γλ+ µ+ (S − i)β + α) n2 = K, 1 ≤ i ≤ S, n3 = i;

m2 = n2, j = i,m3 = n3,

0 otherwise,

A
(m2,j,m3)
10(n2,i,n3)

=







(S − i)β n2 = 1, 0 ≤ i ≤ S − 1, n3 = i;

m2 = n2, j = i+ 1,m3 = n3 + 1,

p(S − i)β 2 ≤ n2 ≤ L, 0 ≤ i ≤ S − 1, n3 = i;

m2 = n2, j = i+ 1,m3 = n3 + 1,

0 otherwise,
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A
(m2,j,m3)
00(n2,i,n3)

=







λ n2 = 0, 0 ≤ i ≤ S, n3 = i;

m2 = n2 + 1, j = i,m3 = n3,

λ n2 = 0, 1 ≤ i ≤ S, 0 ≤ n3 ≤ i− 1;

m2 = n2, j = i,m3 = n3 + 1,

λ 1 ≤ n2 ≤ K − 1, 0 ≤ i ≤ S, n3 = i;

m2 = n2 + 1, j = i,m3 = n3,

µ n2 = 0, 1 ≤ i ≤ S, 1 ≤ n3 ≤ i;

m2 = n2, j = i− 1,m3 = n3 − 1,

µ 1 ≤ n2 ≤ K, 1 ≤ i ≤ S, n3 = i;

m2 = n2, j = i− 1,m3 = n3 − 1,

(S − i)β n2 = 0, 0 ≤ i ≤ S − 1, 0 ≤ n3 ≤ i;

m2 = n2, j = i+ 1,m3 = n3,

(S − i)β 1 ≤ n2 ≤ K, 0 ≤ i ≤ S − 1, n3 = i;

m2 = n2 − 1, j = i+ 1,m3 = n3 + 1,

−(λ+ (S − i)β + α) n2 = 0, 0 ≤ i ≤ S, n3 = 0;

m2 = 0, j = i,m3 = n3,

−(λ+ µ+ (S − i)β + α) n2 = 0, 1 ≤ i ≤ S, 1 ≤ n3 ≤ i;

m2 = 0, j = i,m3 = n3,

−(λ+ Sβ + α) 1 ≤ n2 ≤ K − 1, i = 0, n3 = 0;

m2 = n2, j = i,m3 = n3,

−(λ+ µ+ (S − i)β + α) 1 ≤ n2 ≤ K − 1, 1 ≤ i ≤ S, n3 = i;

m2 = n2, j = i,m3 = n3,

−(γλ+ Sβ + α) n2 = K, i = 0, n3 = 0;

m2 = n2, j = i,m3 = n3,

−(γλ+ µ+ (S − i)β + α) n2 = K, 1 ≤ i ≤ S, n3 = i;

m2 = n2, j = i,m3 = n3,

0 otherwise,

A
(m2,j,m3)
2(n2,i,n3)

=







(S − i)β n2 = 1, 0 ≤ i ≤ S − 1, n3 = i;

m2 = n2, j = i+ 1,m3 = n3 + 1,

p(S − i)β 2 ≤ n2 ≤ L, 0 ≤ i ≤ S − 1, n3 = i;

m2 = n2, j = i+ 1,m3 = n3 + 1,

0 otherwise,
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A
(m2,j,m3)
01(n2,i,n3)

=







γλ n2 = K, 0 ≤ i ≤ S, n3 = i;

m2 = n2, j = i,m3 = n3,

0 otherwise,

A
(m2,j,m3)
0(n2,i,n3)

=







γλ n2 = K, 0 ≤ i ≤ S, n3 = i;

m2 = n2, j = i,m3 = n3,

0 otherwise.

6.1.1 Analysis of the system

In this section, we perform the steady-state analysis of the queueing-inventory

model described above.

Let x be the steady-state probability vector of generator Q1. Then we

have

xQ1 = 0, xe = 1. (6.1)

First partitioning x as x = (x∆,x0,x1,x2, ...) and then each of the sub-vectors

as

x0 = (x0(0, i, n3), x0(n2, i, i); 0 ≤ i ≤ S, 0 ≤ n3 ≤ i, 1 ≤ n2 ≤ K),

xn1 = (xn1(n2, i, i); 0 ≤ i ≤ S, 1 ≤ n2 ≤ K), for n1 ≥ 1,

we see that x is obtained as (see Neuts [33])

xn1 = x1R
n1−1, n1 ≥ 2

where R is the minimal nonnegative solution to the matrix quadratic equation:

2∑

k=0

RkAk = O.

The boundary equations are given by

x∆A∆0 + x0A00 + x1A10 = 0,

x0A01 + x1[A1 +RA2] = 0,

x∆ =
α

η

∞∑

n1=0

xn1e.
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The normalizing condition (6.1) gives

x∆ + x0e+ x1[I −R]−1e = 1.

The system state probabilities computed above provide the following useful

information

1. Expected number of customers in the pool before realization of CLT

EP (N) =
∞∑

n1=1

n1xn1e.

2. Expected number of customers in the waiting room before realization of

CLT

EW (N) =
∞∑

n1=0

K∑

n2=1

S∑

i=0

n2xn1(n2, i, i).

3. Expected number of customers in the buffer before realization of CLT

EB(N) =
∞∑

n1=0

K∑

n2=1

S∑

i=1

ixn1(n2, i, i) +
S∑

i=1

i∑

n3=1

n3x0(0, i, n3).

4. Expected number of items in the inventory before realization of CLT

EI(N) =
∞∑

n1=0

K∑

n2=1

S∑

i=1

ixn1(n2, i, i) +
S∑

i=1

i∑

n3=0

ix0(0, i, n3).

5. Expected number of items in the inventory immediately on realization

of CLT

E′
I(N) =

∞∑

n1=0

K∑

n2=1

S∑

i=1

iu1(i)xn1(n2, i, i)+

S∑

i=1

iu2((i)x0(0, i, 0) +
S∑

i=1

i∑

n3=1

iu1(i)x0(0, i, n3)

where u1(i) =
α

α+λ+µ+(S−i)β , u2(i) =
α

α+λ+(S−i)β .
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6. Rate of addition to the pool is

γλ
∞∑

n1=0

S∑

i=0

xn1(K, i, i).

7. The probability that a customer enters service immediately on arrival

S∑

i=1

x0(0, i, 0).

8. The rate at which pooled customers are transferred to the waiting room

EPW (R) =
∞∑

n1=1

S−1∑

i=0

(S − i)β

[
L∑

n2=2

pxn1(n2, i, i) + xn1(1, i, i)

]

.

9. The rate at which customers abandon the system on arrival

EWL(R) = (1− γ)λ
∞∑

n1=0

S∑

i=0

xn1(K, i, i).

10. Expected cancellation rate

EC(R) =

∞∑

n1=0

K∑

n2=1

S−1∑

i=0

(S − i)βxn1(n2, i, i) +

S−1∑

i=0

i∑

n3=0

(S − i)βx0(0, i, n3).

11. Expected inventory depletion rate

EP (R) = µ

{
∞∑

n1=0

K∑

n2=1

S∑

i=1

xn1(n2, i, i) +
S∑

i=1

i∑

n3=1

x0(0, i, n3)

}

.

12. Expected number of cancellations in a cycle

ENC =
1

α
EC(R).
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13. Expected number of purchases in a cycle

ENP =
1

α
EP (R)

14. Expected number of transfers from the pool to the waiting room

EPW (N) =
1

α

∞∑

n1=1

S−1∑

i=0

(S − i)β

[
L∑

n2=2

pxn1(n2, i, i) + xn1(1, i, i)

]

.

15. The probability that the system has all the S items in the inventory at

the time of realization of CLT

Pvacant =
S∑

n3=1

x0(0, S, n3) +
∞∑

n1=0

K∑

n2=1

xn1(n2, S, S) + x0(0, S, 0).

This is equal to the probability, for example, that a bus with S seats

depart without any passenger on board.

16. The probability that the system is left with no item in the inventory at

the time of realization of CLT

Pfull = x0(0, 0, 0) +
∞∑

n1=0

K∑

n2=1

xn1(n2, 0, 0).

This is equivalent to the probability that bus referred to in the previous

item leaves with full capacity.

6.2 Mathematical formulation: Model 2

In this section we describe an inventory problem in which further restrictions

are imposed on Model 1 described in Section 6.1. The following are the addi-

tional restrictions:

(a). No customer joins the system when inventory level is zero.
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(b). At the instant when a cancellation of purchased inventory occurs with

none, one or more customers waiting in the waiting room and server idle

due to no item in the inventory the head of the pool is transferred to the

buffer for immediate service.

(c). If at a service completion epoch, there is no customer in the buffer as

well as the waiting room, then again the head of the pool is transferred

to the buffer for immediate service.

(d). No transfer takes place from the pool / waiting room to the buffer when

no item is in the inventory.

All other assumptions in Model 1 hold for the present model also. Assump-

tions (b), (c) are to reduce the waiting time of customers in the pool to the ex-

tent possible. Thus we get a CTMC {(N 1(t),N 2(t),I(t),N 3(t), u(t)) , t ≥ 0}

with state space

Ω′ = {∆}
⋃

{(0, 0, i, 0, 0) ; 0 ≤ i ≤ S}
⋃

{(n1, n2, 0, 0, 0) ;n1 ≥ 0, 1 ≤ n2 ≤ K}

⋃

{(n1, 0, i, n3, k) ;n1 ≥ 0, 1 ≤ i ≤ S, 1 ≤ n3 ≤ i, k = 1, 2}
⋃

{(n1, n2, i, i, k) ;n1 ≥ 0, 1 ≤ n2 ≤ K, 1 ≤ i ≤ S, k = 1, 2}

where {∆} denotes the temporary absorbing state. In this model u(t) is

brought in to identify whether the current service, if any, is of a pooled cus-

tomer. This is introduced to explicitly compute certain system performance

index that would help to control the number of customers in the pool. Thus

the infinitesimal generator Q2 is of form

Q2 =












B∆ B∆0

B0∆ B00 B01

B′
2 B10 B1 B0

B′
2 B2 B1 B0

...
. . .

. . .
. . .












.
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The matrices B0, B1, B2 are square matrices of the same order U4 with B0

representing transition from level n1 to n1 + 1, n1 ≥ 1, B1 represents the

transitions within the level n1, n1 ≥ 1 and B2 contains transition rates from

level n1 to n1−1, n1 ≥ 2. Dimension of matrices B00, B01, B10 are U3×U3, U3×

U4, U4 ×U3 respectively. Matrices B0∆, B
′
2 are column vectors of order U3, U4

respectively. B∆0 is a row vector of order U3.

B∆ = −η,B∆0 = ηe′S2+1, B0∆ = αe, B′
2 = αe.

Define B
(n2,i,n3,k1:m2,j,m3,k2)
l , l = 00, 01, 10, 0, 1, 2 as the transition rates from

(n2, i, n3, k1) → (m2, j,m3, k2) where n2,m2 represent the number of cus-

tomers in the waiting room, i, j represent the number of items in the inventory,

n3,m3 represent the number of customers in the buffer and k1, k2 represent

the status of server. These transition rates are

B
(n2,i,n3,k1:m2,j,m3,k2)
1 =







λ n2 = 0, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2 + 1, j = i,m3 = n3, k2 = k1,

λ n2 = 0, 2 ≤ i ≤ S, 1 ≤ n3 ≤ i − 1, k1 = 1, 2;

m2 = n2, j = i,m3 = n3 + 1, k2 = k1,

λ 1 ≤ n2 ≤ K − 1, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2 + 1, j = i,m3 = n3, k2 = k1,

µ n2 = 0, i = 1, n3 = 1, k1 = 1, 2;

m2 = n2, j = i − 1,m3 = n3 − 1, k2 = 0,

µ n2 = 0, 2 ≤ i ≤ S, 2 ≤ n3 ≤ i, k1 = 1, 2;

m2 = n2, j = i − 1,m3 = n3 − 1, k2 = 2,

µ 1 ≤ n2 ≤ K, i = 1, n3 = i, k1 = 1, 2;

m2 = n2, j = i − 1,m3 = n3 − 1, k2 = 0,

µ 1 ≤ n2 ≤ K, 2 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2, j = i − 1,m3 = n3 − 1, k2 = 2,

(S − i)β n2 = 0, 1 ≤ i ≤ S − 1, 1 ≤ n3 ≤ i, k1 = 1, 2;

m2 = n2, j = i + 1,m3 = n3, k2 = k1,

(S − i)β 1 ≤ n2 ≤ K, 1 ≤ i ≤ S − 1, n3 = i, k1 = 1, 2;

m2 = n2 − 1, j = i + 1,m3 = n3 + 1, k2 = k1,

−(Sβ + α) 0 ≤ n2 ≤ K, i = 0, n3 = i, k1 = 0;

m2 = n2, j = i,m3 = n3, k2 = k1,

−(λ + µ + (S − i)β + α) n2 = 0, 1 ≤ i ≤ S, 1 ≤ n3 ≤ i, k=1, 2;

m2 = 0, j = i,m3 = n3, k2 = k1,

−(λ + µ + (S − i)β + α) 1 ≤ n2 ≤ K − 1, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2, j = i,m3 = n3, k2 = k1,

−(γλ + µ + (S − i)β + α) n2 = K, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2, j = i,m3 = n3, k2 = k1,

0 otherwise,
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B
(n2,i,n3,k1:m2,j,m3,k2)
00 =







λ n2 = 0, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2 + 1, j = i,m3 = n3, k2 = k1,

λ n2 = 0, 2 ≤ i ≤ S, 1 ≤ n3 ≤ i − 1, k1 = 1, 2;

m2 = n2, j = i,m3 = n3 + 1, k2 = k1,

λ n2 = 0, 1 ≤ i ≤ S, n3 = 0, k1 = 0;

m2 = n2, j = i,m3 = n3 + 1, k2 = 2,

λ 1 ≤ n2 ≤ K − 1, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2 + 1, j = i,m3 = n3, k2 = k1,

µ n2 = 0, 1 ≤ i ≤ S, n3 = 1, k1 = 1, 2;

m2 = n2, j = i − 1,m3 = n3 − 1, k2 = 0,

µ n2 = 0, 2 ≤ i ≤ S, 2 ≤ n3 ≤ i, k1 = 1, 2;

m2 = n2, j = i − 1,m3 = n3 − 1, k2 = 2,

µ 1 ≤ n2 ≤ K, i = 1, n3 = i, k1 = 1, 2;

m2 = n2, j = i − 1,m3 = n3 − 1, k2 = 0,

µ 1 ≤ n2 ≤ K, 2 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2, j = i − 1,m3 = n3 − 1, k2 = 2,

(S − i)β n2 = 0, 0 ≤ i ≤ S − 1, n3 = 0, k1 = 0;

m2 = n2, j = i + 1,m3 = n3, k2 = 0,

(S − i)β n2 = 0, 1 ≤ i ≤ S − 1, 1 ≤ n3 ≤ i, k1 = 1, 2;

m2 = n2, j = i + 1,m3 = n3, k2 = k1,

Sβ 1 ≤ n2 ≤ K, i = 0, n3 = i, k1 = 0;

m2 = n2 − 1, j = i + 1,m3 = n3 + 1, k2 = 2,

(S − i)β 1 ≤ n2 ≤ K, 1 ≤ i ≤ S − 1, n3 = i, k1 = 1, 2;

m2 = n2 − 1, j = i + 1,m3 = n3 + 1, k2 = k1,

−(Sβ + α) 0 ≤ n2 ≤ K, i = 0, n3 = i, k1 = 0;

m2 = n2, j = i,m3 = n3, k2 = k1,

−(λ + (S − i)β + α) n2 = 0, 1 ≤ i ≤ S, n3 = 0, k1 = 0;

m2 = 0, j = i,m3 = n3, k − 2 = k1,

−(λ + µ + (S − i)β + α) n2 = 0, 1 ≤ i ≤ S, 1 ≤ n3 ≤ i, k=1, 2;

m2 = 0, j = i,m3 = n3, k2 = k1,

−(λ + µ + (S − i)β + α) 1 ≤ n2 ≤ K − 1, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2, j = i,m3 = n3, k2 = k1,

−(γλ + µ + (S − i)β + α) n2 = K, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2, j = i,m3 = n3, k2 = k1,

0 otherwise,

B
(n2,i,n3,k1:m2,j,m3,k2)
2 =







Sβ 0 ≤ n2 ≤ K, i = 0, n3 = i, k1 = 0;

m2 = n2, j = i+ 1,m3 = n3 + 1, k2 = 1,

µ n2 = 0, 2 ≤ i ≤ S, n3 = 1, k1 = 1, 2;

m2 = n2, j = i− 1,m3 = n3, k2 = 1,

0 otherwise,

B
(n2,i,n3,k1:m2,j,m3,k2)
10 =







Sβ 0 ≤ n2 ≤ K, i = 0, n3 = i, k1 = 0;

m2 = n2, j = i+ 1,m3 = n3 + 1, k2 = 1,

µ n2 = 0, 2 ≤ i ≤ S, n3 = 1, k1 = 1, 2;

m2 = n2, j = i− 1,m3 = n3, k2 = 1,

0 otherwise,
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B
(n2,i,n3,k1:m2,j,m3,k2)
01 =







γλ n2 = K, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2, j = i,m3 = n3, k2 = k1,

0 otherwise,

B
(n2,i,n3,k1:m2,j,m3,k2)
0 =







γλ n2 = K, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2, j = i,m3 = n3, k2 = k1,

0 otherwise.

6.2.1 Steady-state analysis

Note that the system described is always stable since realization of common life

time results in all customers in the system being flushed out. In this section,

we perform the steady-state analysis of the queueing-inventory model.

Let y be the steady-state probability vector of generator Q2. Then we

have

yQ2 = 0, ye = 1. (6.2)

Partitioning y as y = (y∆,y0,y1,y2, ...) and then each of the sub-vectors as

y0 = ((y0(0, i, 0, 0), 0 ≤ i ≤ S); (y0(0, i, n3, k), 1 ≤ i ≤ S, 1 ≤ n3 ≤ i, k = 1, 2);

(y0(n2, 0, 0, 0), 1 ≤ n2 ≤ K); (y0(n2, i, i, k), 1 ≤ n2 ≤ K, 1 ≤ i ≤ S, k = 1, 2))

yn1
= ((yn1(n2, i, i, k), 1 ≤ i ≤ S, 1 ≤ n2 ≤ K, k = 1, 2);

(yn1(0, i, n3, k), 1 ≤ i ≤ S, 1 ≤ n3 ≤ i, k = 1, 2); (yn1(n2, 0, 0, 0), 1 ≤ n2 ≤ K))

for n1 ≥ 1,

we see that y is obtained as (see Neuts [33])

yn1
= y1R

n1−1, n1 ≥ 2

where R is the minimal nonnegative solution to the matrix quadratic equation:

2∑

k=0

RkBk = O.
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The boundary equations are given by

y∆B∆0 + y0B00 + y1B10 = 0,

y0B01 + y1[B1 +RB2] = 0,

y∆ =
α

η

∞∑

n1=0

yn1
e.

The normalizing condition (6.2) gives

y∆ + y0e+ y1[I −R]−1e = 1.

6.2.2 Random walk

We consider the model with negligible service time; reservation, cancellation

and realization of common life time on the set {0, 1, 2, ..., S}, the set of possible

states of the inventory level process. No customer joins when the inventory

level is zero and so there will be none in the waiting room and pool. The

arrival process, cancellation and CLT are as described in Section 6.1. Let I(t)

be the inventory level at time t. Then {I(t), t ≥ 0} is a Markov chain on state

space {0, 1, 2, ..., S}
⋃
{

∆̃
}

where
{

∆̃
}

is an absorbing state which denotes

the realization of common life time. Thus the infinitesimal generator is

W̃ =

[

T̃ T̃
0

0 0

]

where

T̃ =















0 1 . . . S − 2 S − 1 S

0 hS Sβ

1 λ hS−1 (S − 1)β
...

. . .
. . .

. . .

S − 2 λ h2 2β

S − 1 λ h1 β

S λ h0















, T̃
0
= αe



Mathematical formulation: Model 2 139

with hi = −(λ+ iβ +α), 0 ≤ i ≤ (S − 1) and hS = −(Sβ +α). The expected

time ET until absorption follows a Phase type distribution with representation

(ξ, T̃ ) where ξ = (0, ..., 0, 1) is the initial probability vector of order (S + 1).

Hence ET = −ξT̃
−1

e.

6.2.3 Expected number of pooled customers getting service in

a cycle

In order to compute the number of pooled customers getting service in a

cycle, we consider the case of a finite pool. For numerical procedure the

truncation level PL (size of the pool) is taken such that the probability

of the number of customers in the pool going above the truncation size is

of the order less than ǫ (here ǫ is taken as 10−6). Consider the Markov

chain {(N (t),N ′
1(t),N 2(t),I(t),N 3(t), u(t)), t ≥ 0} where N (t) = number

of pooled customers who received service upto realization of CLT in the

present cycle and N ′
1(t) = number of customers in the finite pool at time

t. Its state space is

{
∆′
}⋃

{(n, n1, 0, i, n3, k) ;n ≥ 0, 0 ≤ n1 ≤ PL, 1 ≤ i ≤ S, 1 ≤ n3 ≤ i, k = 1, 2}
⋃

{(n, 0, 0, i, 0, 0) ;n ≥ 0, 0 ≤ i ≤ S}
⋃

{(n, n1, n2, 0, 0, 0) ;n ≥ 0, 0 ≤ n1 ≤ PL, 1 ≤ n2 ≤ K}
⋃

{(n, n1, n2, i, i, k) ;n ≥ 0, 0 ≤ n1 ≤ PL, 1 ≤ n2 ≤ K, 1 ≤ i ≤ S, k = 1, 2}

where {∆′} is an absorbing state which denotes the realization of common life

time. The infinitesimal generator of the Markov chain is

ÑPL
=












0 0 0 0 0 . . .

H H1 H0

H H1 H0

H H1 H0

...
. . .

. . .











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where H0,H1 are square matrices of order U3 + PLU4 with H = αe. The

entries in H0 and H1 are as under:

H1 =















B′
00 B01

B′
10 B′

1 B0

B′
2 B′

1 B0

. . .
. . .

. . .

B′
2 B′

1 B0

B′
2 B0

1















,H0 =












M ′
1

M ′
2 M1

M2 M1

. . .
. . .

M2 M1












where

B
′(n2,i,n3,k1:m2,j,m3,k2)
00 =







λ n2 = 0, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2 + 1, j = i,m3 = n3, k2 = k1,

λ n2 = 0, 2 ≤ i ≤ S, 1 ≤ n3 ≤ i − 1, k1 = 1, 2;

m2 = n2, j = i,m3 = n3 + 1, k2 = k1,

λ n2 = 0, 1 ≤ i ≤ S, n3 = 0, k1 = 0;

m2 = n2, j = i,m3 = n3 + 1, k2 = 2,

λ 1 ≤ n2 ≤ K − 1, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2 + 1, j = i,m3 = n3, k2 = k1,

µ n2 = 0, 1 ≤ i ≤ S, n3 = 1, k1 = 2;

m2 = n2, j = i − 1,m3 = n3 − 1, k2 = 0,

µ n2 = 0, 2 ≤ i ≤ S, 2 ≤ n3 ≤ i, k1 = 2;

m2 = n2, j = i − 1,m3 = n3 − 1, k2 = 2,

µ 1 ≤ n2 ≤ K, i = 1, n3 = i, k1 = 2;

m2 = n2, j = i − 1,m3 = n3 − 1, k2 = 0,

µ 1 ≤ n2 ≤ K, 2 ≤ i ≤ S, n3 = i, k1 = 2;

m2 = n2, j = i − 1,m3 = n3 − 1, k2 = 2,

(S − i)β n2 = 0, 0 ≤ i ≤ S − 1, n3 = 0, k1 = 0;

m2 = n2, j = i + 1,m3 = n3, k2 = 0,

(S − i)β n2 = 0, 1 ≤ i ≤ S − 1, 1 ≤ n3 ≤ i, k1 = 1, 2;

m2 = n2, j = i + 1,m3 = n3, k2 = k1,

Sβ 1 ≤ n2 ≤ K, i = 0, n3 = i, k1 = 0;

m2 = n2 − 1, j = i + 1,m3 = n3 + 1, k2 = 2,

(S − i)β 1 ≤ n2 ≤ K, 1 ≤ i ≤ S − 1, n3 = i, k1 = 1, 2;

m2 = n2 − 1, j = i + 1,m3 = n3 + 1, k2 = k1,

−(Sβ + α) 0 ≤ n2 ≤ K, i = 0, n3 = i, k1 = 0;

m2 = n2, j = i,m3 = n3, k2 = k1,

−(λ + (S − i)β + α) n2 = 0, 1 ≤ i ≤ S, n3 = 0, k1 = 0;

m2 = 0, j = i,m3 = n3, k − 2 = k1,

−(λ + µ + (S − i)β + α) n2 = 0, 1 ≤ i ≤ S, 1 ≤ n3 ≤ i, k=1, 2;

m2 = 0, j = i,m3 = n3, k2 = k1,

−(λ + µ + (S − i)β + α) 1 ≤ n2 ≤ K − 1, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2, j = i,m3 = n3, k2 = k1,

−(γλ + µ + (S − i)β + α) n2 = K, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2, j = i,m3 = n3, k2 = k1,

0 otherwise.
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M
(n2,i,n3,k1:m2,j,m3,k2)
1 =







µ n2 = 0, i = 1, n3 = 1, k1 = 1;

m2 = n2, j = i− 1,m3 = n3 − 1, k2 = 0,

µ n2 = 0, 2 ≤ i ≤ S, 2 ≤ n3 ≤ i, k1 = 1;

m2 = n2, j = i− 1,m3 = n3 − 1, k2 = 2,

µ 1 ≤ n2 ≤ K, i = 1, n3 = i, k1 = 1;

m2 = n2, j = i− 1,m3 = n3 − 1, k2 = 0,

µ 1 ≤ n2 ≤ K, 2 ≤ i ≤ S, n3 = i, k1 = 1;

m2 = n2, j = i− 1,m3 = n3 − 1, k2 = 2,

0 otherwise.

B
′(n2,i,n3,k1:m2,j,m3,k2)
10 =







Sβ 0 ≤ n2 ≤ K, i = 0, n3 = i, k1 = 0;

m2 = n2, j = i+ 1,m3 = n3 + 1, k2 = 1,

µ n2 = 0, 2 ≤ i ≤ S, n3 = 1, k1 = 2;

m2 = n2, j = i− 1,m3 = n3, k2 = 1,

0 otherwise.

B
′(n2,i,n3,k1:m2,j,m3,k2)
2 =







Sβ 0 ≤ n2 ≤ K, i = 0, n3 = i, k1 = 0;

m2 = n2, j = i+ 1,m3 = n3 + 1, k2 = 1,

µ n2 = 0, 2 ≤ i ≤ S, n3 = 1, k1 = 2;

m2 = n2, j = i− 1,m3 = n3, k2 = 1,

0 otherwise.

M
(n2,i,n3,k1:m2,j,m3,k2)
2 =







µ n2 = 0, 2 ≤ i ≤ S, n3 = 1, k1 = 1;

m2 = n2, j = i− 1,m3 = n3, k2 = 1,

0 otherwise.

M
′(n2,i,n3,k1:m2,j,m3,k2)
2 =







µ n2 = 0, 2 ≤ i ≤ S, n3 = 1, k1 = 1;

m2 = n2, j = i− 1,m3 = n3, k2 = 1,

0 otherwise.
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B
′(n2,i,n3,k1:m2,j,m3,k2)
1 =







λ n2 = 0, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2 + 1, j = i,m3 = n3, k2 = k1,

λ n2 = 0, 2 ≤ i ≤ S, 1 ≤ n3 ≤ i − 1, k1 = 1, 2;

m2 = n2, j = i,m3 = n3 + 1, k2 = k1,

λ 1 ≤ n2 ≤ K − 1, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2 + 1, j = i,m3 = n3, k2 = k1,

µ n2 = 0, i = 1, n3 = 1, k1 = 2;

m2 = n2, j = i − 1,m3 = n3 − 1, k2 = 0,

µ n2 = 0, 2 ≤ i ≤ S, 2 ≤ n3 ≤ i, k1 = 2;

m2 = n2, j = i − 1,m3 = n3 − 1, k2 = 2,

µ 1 ≤ n2 ≤ K, i = 1, n3 = i, k1 = 2;

m2 = n2, j = i − 1,m3 = n3 − 1, k2 = 0,

µ 1 ≤ n2 ≤ K, 2 ≤ i ≤ S, n3 = i, k1 = 2;

m2 = n2, j = i − 1,m3 = n3 − 1, k2 = 2,

(S − i)β n2 = 0, 1 ≤ i ≤ S − 1, 1 ≤ n3 ≤ i, k1 = 1, 2;

m2 = n2, j = i + 1,m3 = n3, k2 = k1,

(S − i)β 1 ≤ n2 ≤ K, 1 ≤ i ≤ S − 1, n3 = i, k1 = 1, 2;

m2 = n2 − 1, j = i + 1,m3 = n3 + 1, k2 = k1,

−(Sβ + α) 0 ≤ n2 ≤ K, i = 0, n3 = i, k1 = 0;

m2 = n2, j = i,m3 = n3, k2 = k1,

−(λ + µ + (S − i)β + α) n2 = 0, 1 ≤ i ≤ S, 1 ≤ n3 ≤ i, k=1, 2;

m2 = 0, j = i,m3 = n3, k2 = k1,

−(λ + µ + (S − i)β + α) 1 ≤ n2 ≤ K − 1, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2, j = i,m3 = n3, k2 = k1,

−(γλ + µ + (S − i)β + α) n2 = K, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2, j = i,m3 = n3, k2 = k1,

0 otherwise.

B
0(n2,i,n3,k1:m2,j,m3,k2)
1 =







λ n2 = 0, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2 + 1, j = i,m3 = n3, k2 = k1,

λ n2 = 0, 2 ≤ i ≤ S, 1 ≤ n3 ≤ i − 1, k1 = 1, 2;

m2 = n2, j = i,m3 = n3 + 1, k2 = k1,

λ 1 ≤ n2 ≤ K − 1, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2 + 1, j = i,m3 = n3, k2 = k1,

µ n2 = 0, i = 1, n3 = 1, k1 = 2;

m2 = n2, j = i − 1,m3 = n3 − 1, k2 = 0,

µ n2 = 0, 2 ≤ i ≤ S, 2 ≤ n3 ≤ i, k1 = 2;

m2 = n2, j = i − 1,m3 = n3 − 1, k2 = 2,

µ 1 ≤ n2 ≤ K, i = 1, n3 = i, k1 = 2;

m2 = n2, j = i − 1,m3 = n3 − 1, k2 = 0,

µ 1 ≤ n2 ≤ K, 2 ≤ i ≤ S, n3 = i, k1 = 2;

m2 = n2, j = i − 1,m3 = n3 − 1, k2 = 2,

(S − i)β n2 = 0, 1 ≤ i ≤ S − 1, 1 ≤ n3 ≤ i, k1 = 1, 2;

m2 = n2, j = i + 1,m3 = n3, k2 = k1,

(S − i)β 1 ≤ n2 ≤ K, 1 ≤ i ≤ S − 1, n3 = i, k1 = 1, 2;

m2 = n2 − 1, j = i + 1,m3 = n3 + 1, k2 = k1,

−(Sβ + α) 0 ≤ n2 ≤ K, i = 0, n3 = i, k1 = 0;

m2 = n2, j = i,m3 = n3, k2 = k1,

−(λ + µ + (S − i)β + α) n2 = 0, 1 ≤ i ≤ S, 1 ≤ n3 ≤ i, k=1, 2;

m2 = 0, j = i,m3 = n3, k2 = k1,

−(λ + µ + (S − i)β + α) 1 ≤ n2 ≤ K − 1, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2, j = i,m3 = n3, k2 = k1,

−(µ + (S − i)β + α) n2 = K, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2, j = i,m3 = n3, k2 = k1,

0 otherwise.
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M
′(n2,i,n3,k1:m2,j,m3,k2)
1 =







µ n2 = 0, 1 ≤ i ≤ S, n3 = 1, k1 = 1;

m2 = n2, j = i− 1,m3 = n3 − 1, k2 = 0,

µ n2 = 0, 2 ≤ i ≤ S, 2 ≤ n3 ≤ i, k1 = 1;

m2 = n2, j = i− 1,m3 = n3 − 1, k2 = 2,

µ 1 ≤ n2 ≤ K, i = 1, n3 = i, k1 = 1;

m2 = n2, j = i− 1,m3 = n3 − 1, k2 = 0,

µ 1 ≤ n2 ≤ K, 2 ≤ i ≤ S, n3 = i, k1 = 1;

m2 = n2, j = i− 1,m3 = n3 − 1, k2 = 2,

0 otherwise.

If pk is the probability that absorption occurs with exactly k pooled customers

getting service, then

pk = δPL
(−H−1H0)

k(−H−1
1 H), k ≥ 0

with δPL
= (x0,x1,x2, ...,xPL

) is a row vector of order U3+PLU4. Therefore

the expected number of pooled customers getting service before realization of

common life time is

EPL
(N) =

∞∑

k=0

kpk

(see Krishnamoorthy et al. [22]).

6.2.4 Additional performance measures

1. Expected number of customers in the pool before realization of CLT

EP (N) =
∞∑

n1=1

n1yn1
e.

2. Expected number of customers in the waiting room before realization of

CLT

EW (N) =

∞∑

n1=0

K∑

n2=1

n2

(

yn1(n2, 0, 0, 0) +

S∑

i=1

[

yn1(n2, i, i, 1)
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+yn1(n2, i, i, 2)
]
)

.

3. Expected number of customers in the buffer before realization of CLT

EB(N) =
∞∑

n1=0

(
K∑

n2=1

S∑

i=1

i
[

yn1(n2, i, i, 1) + yn1(n2, i, i, 2)
]

+
S∑

i=1

i∑

n3=1

n3

[

yn1(0, i, n3, 1) + yn1(0, i, n3, 2)
]
)

.

4. Expected number of items in the inventory before realization of CLT

EI(N) =
∞∑

n1=0

S∑

i=1

i

(
K∑

n2=1

[

yn1(n2, i, i, 1) + yn1(n2, i, i, 2)
]

+

i∑

n3=0

[

yn1(0, i, n3, 1) + yn1(0, i, n3, 2)
]
)

+

S∑

i=1

iy0(0, i, 0, 0).

5. Expected number of items in the inventory immediately on realization

of CLT

E′
I(N) =

∞∑

n1=0

S∑

i=1

i
α

α+ λ+ µ+ (S − i)β

(
K∑

n2=1

[

yn1(n2, i, i, 1)

+yn1(n2, i, i, 2)
]

+
i∑

n3=0

[

yn1(0, i, n3, 1) + yn1(0, i, n3, 2)
]
)

+
S∑

i=1

i
α

α+ λ+ (S − i)β
y0(0, i, 0, 0).

6. Rate of addition to the pool is

γλ
∞∑

n1=0

S∑

i=1

[

yn1(K, i, i, 1) + yn1(K, i, i, 2)
]

.
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7. The probability that a customer enters service immediately on arrival

S∑

i=1

y0(0, i, 0, 0).

8. The rate at which pooled customers are transferred to the buffer

EPB(R) =
∞∑

n1=1

(
S∑

i=2

µ
[

yn1(0, i, 1, 1) + yn1(0, i, 1, 2)
]

+
K∑

n2=0

Sβyn1(n2, 0, 0, 0)

)

9. The rate at which customers abandon the system on arrival

EWL(R) = (1− γ)λ
∞∑

n1=0

S∑

i=1

[

yn1(K, i, i, 1) + yn1(K, i, i, 2)
]

.

10. Expected cancellation rate

EC(R) =
∞∑

n1=0

S−1∑

i=1

(S − i)β

(
K∑

n2=1

[

yn1(n2, i, i, 1) + yn1(n2, i, i, 2)
]

+
i∑

n3=1

[

yn1(0, i, n3, 1) + yn1(0, i, n3, 2)
]
)

+
∞∑

n1=0

K∑

n2=0

Sβyn1(n2, 0, 0, 0)

+
S−1∑

i=1

(S − i)βy0(0, i, 0, 0)

11. Expected inventory depletion rate

EP (R) = µ
∞∑

n1=0

S∑

i=1

(
K∑

n2=1

[

yn1(n2, i, i, 1) + yn1(n2, i, i, 2)
]

+
i∑

n3=1

[

yn1(0, i, n3, 1) + yn1(0, i, n3, 2)
]
)

.
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12. Expected number of cancellations in a cycle

ENC =
1

α
EC(R)

13. Expected number of purchases in a cycle

ENP =
1

α
EP (R)

14. Expected number of transfers from the pool to the buffer

EPB(N) =
1

α
EPB(R)

15. The probability that the system has S items in the inventory at the time

of realization of CLT

Pvacant =

∞∑

n1=0

(
S∑

n3=1

[

yn1(0, S, n3, 1) + yn1(0, S, n3, 2)
]

+
K∑

n2=1

[

yn1(n2, S, S, 1) + yn1(n2, S, S, 2)
]
)

+ y0(0, S, 0, 0)

16. The probability that the system is left with no item in the inventory at

the time of realization of CLT

Pfull =
∞∑

n1=0

K∑

n2=0

yn1(n2, 0, 0, 0)

6.3 Numerical illustration

In this section we provide numerical illustration of the system performance

with variation in values of underlying parameters.
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Model 1

Effect of γ on EPW (R) and EWL(R)

We consider the following values for the parameters S = 12,K = 10, L =

6, λ = 20, µ = 25, p = 0.75, α = 0.25, β = 5, η = 5. For this set of param-

eter values, Figure 6.1a shows the impact of the probability γ on measures

EPW (R) and EWL(R). From Figure 6.1b, it is clear that EPW (R) is increas-

ing and the loss rate EWL(R) is monotonically decreasing in γ. This is due

to the fact that as γ increases inflow rate to the pool increases, thus the loss

rate decreases. Also, as γ increases transfer rate from pool to waiting room

increases. However, this increase is marginal because of the constrains in the

transfer policy.
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(a) Effect of γ on EPW (R)
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(b) Effect of γ on EWL(R)

Figure 6.1: Effect of γ on EPW (R) and EWL(R)

Effect of the arrival rate λ

From Table 6.1, we observe that an increase in the arrival rate makes a decrease

in measures like expected number of items in the inventory before realization

of common life time and expected number of items in the inventory immedi-

ately on realization of common life time. However, the expected number of
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λ EP (N) EW (N) EB(N) EI (N) E′

I (N) EPW (R) ENP ENC

15 60.1708 5.0662 0.6412 0.9744 0.0069 1.3788 7.3557 2.6579

20 74.3319 5.1698 0.6746 0.9534 0.0059 1.4108 7.5985 2.6662

25 88.5280 5.2447 0.7000 0.9397 0.0052 1.4321 7.8095 2.6717

30 102.7461 5.3015 0.7198 0.9301 0.0046 1.4470 7.9834 2.6756

35 116.9786 5.3460 0.7357 0.9230 0.0042 1.4578 8.1304 2.6784

40 131.2199 5.3819 0.7488 0.9176 0.0038 1.4660 8.2517 2.6806

Table 6.1: Effect of the arrival rate: S = 8,K = 6, L = 4, µ = 10, η = 5, α =

0.25, β = 0.1, p = 0.75, γ = 0.75

customers in the pool, waiting room and buffer, expected number of cancel-

lations, expected number of purchases and rate of transfer from the pool to

waiting room increase. These are on expected lines.

Effect of the service time parameter µ

Table 6.2 indicates that increase in µ makes expected number of customers in

the pool, waiting room and buffer, expected number of items in the inventory

before realization of common life time and expected number of items immedi-

ately on realization of common life time, all decrease. However, as µ increases,

rate of transfer from pool to waiting room, expected number of purchases and

expected number of cancellations increase: higher the common life realization

time more the number of customers served out.

µ EP (N) EW (N) EB(N) EI (N) E′

I (N) EPW (N) ENP ENC

15 74.2543 5.1679 0.4101 0.6893 0.0038 1.4461 7.4800 2.7719

20 74.2166 5.1666 0.2804 0.5599 0.0028 1.4576 7.5623 2.8237

25 74.1952 5.1658 0.2061 0.4858 0.0022 1.4619 7.8061 2.8533

30 74.1818 5.1651 0.1595 0.4398 0.0018 1.4636 8.1040 2.8719

35 74.1729 5.1647 0.1281 0.4081 0.0016 1.4644 8.3909 2.8844

40 74.1667 5.1644 0.1061 0.3862 0.0014 1.4649 8.6412 2.8931

Table 6.2: Effect of the service time parameter: S = 8,K = 6, L = 4, λ =

30, η = 5, α = 0.25, β = 0.1, p = 0.75, γ = 0.75
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Effect of the common life time parameter α

From Table 6.3, we observe that an increase in α results in a decrease in

measures like expected number of customers in the pool and also in the waiting

room, expected number of purchase, expected number of cancellation and

rate of transfer from pool to waiting room. This is so since the mean value of

common life time decreases with increase in value of α. However, the expected

number of customers in the buffer, expected number of items in the inventory

immediately on realization of common life time and expected number of items

in the inventory before realization of common life time, all increase. These are

also on expected lines.

α EP (N) EW (N) EB(N) EI (N) E′

I (N) EPW (N) ENP ENC

0.1 204.8010 5.6348 0.3449 0.4618 0.0011 1.5978 12.8634 7.3807

0.2 95.9983 5.3198 0.5721 0.7985 0.0039 1.4703 8.5541 3.4469

0.3 59.9611 5.0246 0.7703 1.1000 0.0081 1.3541 6.9144 2.1491

0.4 42.1545 4.7481 0.9430 1.3697 0.0135 1.2481 5.9629 1.5094

0.5 31.6269 4.4891 1.0931 1.6112 0.0198 1.1513 5.3009 1.3231

0.6 24.7288 4.2463 1.2233 1.8273 0.0269 1.0629 4.7939 0.8859

Table 6.3: Effect of α: S = 8,K = 6, L = 4, λ = 30, µ = 10, η = 5, β = 0.1, p =

0.75, γ = 0.75

Effect of the cancellation rate β

β EP (N) EW (N) EB(N) EI (N) E′

I (N) EPW (R) ENP ENC

0.15 73.3620 5.1572 0.7203 0.9996 0.0062 0.5527 8.8455 3.9717

0.20 72.4069 5.1446 0.7682 1.0479 0.0064 0.7368 10.0703 5.2596

0.25 71.4672 5.1320 0.8182 1.0984 0.0067 0.9208 11.2715 6.5207

0.30 70.5440 5.1195 0.8705 1.1510 0.0070 1.1048 12.4478 7.7616

0.35 69.6382 5.1070 0.9250 1.2060 0.0073 1.2888 13.5977 8.9783

0.40 68.7507 5.0946 0.9817 1.2632 0.0076 1.4727 14.7199 10.1694

Table 6.4: Effect of β: S = 8,K = 6, L = 4, λ = 30, η = 5, α = 0.25, µ =

10, p = 0.75, γ = 0.75

Table 6.4 shows that the expected number of customers in the pool and
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that in the waiting room and rate of transfer from pool to waiting room

decrease with increase in β value. Here expected number of customers in

the buffer, expected number of purchase, expected number of cancellation,

expected number of items in the inventory before realization of common life

time and immediately on realization of common life time show a sharp upward

trend. This is expected for large cancellation rates.

Effect of α, β on Pfull and Pvacant

For β = 0, varying over α, we notice from Table 6.5 that, Pfull decreases with

increasing value of α – shorter the life time, lesser the chance for inventory

being completely sold. Thus Pvacant increases with increasing value of α.

α 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

Pfull 0.9398 0.9283 0.9169 0.9057 0.8947 0.8838 0.8730 0.8624 0.8520

Pvacant 0.0081 0.0097 0.0112 0.0128 0.0143 0.0158 0.0173 0.0188 0.0203

Table 6.5: Effect of α for β = 0, S = 7,K = 5, L = 3, λ = 30, η = 5, µ =

20, p = 0.75, γ = 0.75

Table 6.6 shows the effect of β for fixed α value. It tells that higher

cancellation rate results in reduction in probability of system being full (in

the context of the bus / train / air plane, leaving with all seats occupied).

However, the extreme case of Pvacant does not increase with increase in value

of β. Rather Pvacant stays constant. This could be attributed to high arrival

rate (λ = 30) and moderately high service rate (µ = 20); cancelled items are

resold before common life time realization.

β 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

Pfull 0.9066 0.9000 0.8935 0.8869 0.8804 0.8739 0.8674 0.8609 0.8545

Pvacant 0.0082 0.0082 0.0082 0.0082 0.0082 0.0082 0.0082 0.0082 0.0082

Table 6.6: Effect of β for α = 0.1, S = 7,K = 5, L = 3, λ = 30, η = 5, µ =

20, p = 0.75, γ = 0.75
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Model 2

Effect of the arrival rate λ

Table 6.7 indicates that the increase in λ makes a decrease in measures like

expected number of purchases, expected number of items in the inventory be-

fore realization and also immediately on realization of common life time. As λ

increases there is a moderate increase in the expected number of cancellations,

expected number of customers in the pool and waiting room. The column on

EPB(R) shows increase in value with λ increasing which could be attributed

to increase in number of customers in the pool. There are some surprises in

the column corresponding to ENP . It shows an increasing trend with increase

in value of λ upto a certain level and then it starts decreasing with further

increase in value of λ. Still surprising is that the expected number of cancel-

lations (ENC) monotonically increase with λ. We do not have an explanation

for these strange behaviour of ENP and ENC . However, in Model 1 this trend

is not seen.

λ EP (N) EW (N) EB(N) EI (N) E′

I (N) EPB(R) ENP ENC

5 0.0001 0.1987 0.3052 1.3901 0.0522 0.0001 7.3867 2.1106

10 0.0109 0.7014 0.3044 0.8075 0.0140 0.0045 8.1730 2.3437

15 0.1044 1.4440 0.2974 0.6139 0.0068 0.0333 8.2475 2.4211

20 0.4091 2.2433 0.2928 0.5250 0.0043 0.1002 7.8961 2.4567

25 1.0033 2.9272 0.2910 0.4772 0.0032 0.1908 7.2815 2.4758

30 1.8779 3.4396 0.2911 0.4486 0.0025 0.2819 6.5808 2.4872

35 2.9776 3.7991 0.2924 0.4301 0.0021 0.3597 5.9085 2.4946

40 4.2413 4.0449 0.2943 0.4174 0.0019 0.4205 5.3123 2.4997

Table 6.7: Effect of the arrival rate λ: S = 7,K = 5, µ = 20, η = 5, α =

0.25, β = 0.1, γ = 0.75

Effect of the service time parameter µ

From Table 6.8 we observe that as µ increases there is a moderate decrease in

expected number of customers in the pool, waiting room and buffer, expected
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number of items in the inventory before realization of common life time and

immediately on realization of common life time. But as µ increases there

is a sharp increase in expected number of purchases and expected number

of cancellations. EPB(R) decreases with increase in value of µ (see column

EPB(R) of Table 6.8). The reason for this is the increase in probability of the

server becoming idle with positive inventory in the system.

µ EP (N) EW (N) EB(N) EI (N) E′

I (N) EPB(R) ENP ENC

22 1.3822 3.2058 0.2655 0.4219 0.0024 0.2367 7.0040 2.4979

24 1.0221 2.9720 0.2443 0.4002 0.0022 0.1962 7.3616 2.5066

26 0.7597 2.7450 0.2266 0.3823 0.0021 0.1610 7.6591 2.5137

28 0.5678 2.5292 0.2115 0.3674 0.0020 0.1312 7.9034 2.5197

30 0.4268 2.3277 0.1985 0.3549 0.0020 0.1065 8.1022 2.5247

32 0.3229 2.1417 0.1871 0.3443 0.0019 0.0862 8.2690 2.5290

Table 6.8: Effect of µ: S = 7,K = 5, λ = 30, η = 5, α = 0.25, β = 0.1, γ = 0.75

Effect of common life time parameter α

From Table 6.9 we observe that as α increases there is high decrease in expected

number of customers in the pool and that in the waiting room, rate of transfer

from pool to buffer, expected number of cancellations and expected number

of purchases. However, expected number of customers in the buffer, expected

number of items in the inventory before and also immediately on realization

of common life time, show a sharper upward trend. This is a consequence of

higher rate of realization of CLT.

α EP (N) EW (N) EB(N) EI (N) E′

I (N) EPB(R) ENP ENC

0.1 2.8942 3.9126 0.1443 0.2108 0.0005 0.3610 8.4422 6.6519

0.2 2.0721 3.5680 0.2441 0.3723 0.0017 0.3009 6.9775 3.1792

0.3 1.7348 3.3261 0.3361 0.5221 0.0035 0.2662 6.2731 2.0272

0.4 1.5289 3.1281 0.4208 0.6610 0.0060 0.2409 5.8045 1.4551

0.5 1.3794 2.9555 0.4989 0.7900 0.0090 0.2204 5.4446 1.1147

0.6 1.2607 2.8005 0.5707 0.9097 0.0124 0.2029 5.1467 0.8901

Table 6.9: Effect of α: S = 7,K = 5, λ = 30, µ = 20, η = 5, β = 0.1, γ = 0.75
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Effect of the cancellation rate β

Table 6.10 indicates that an increase in β makes expected number of cus-

tomers in the pool, waiting room and buffer, expected number of items in the

inventory before realization of common life time, rate of transfer from pool to

buffer, expected number of cancellations and expected number of purchases,

all increase. The high rate of arrival of customers results in the waiting room

always occupied. Consequently pooled customers get very little access to the

buffer as per the transfer policy.

β EP (N) EW (N) EB(N) EI (N) E′

I (N) EPB(R) ENP ENC

0.05 1.6070 3.3412 0.2738 0.4302 0.0025 0.1326 6.0277 1.2473

0.06 1.6617 3.3636 0.2772 0.4339 0.0025 0.1616 6.1444 1.4959

0.07 1.7158 3.3845 0.2807 0.4375 0.0025 0.1909 6.2579 1.7442

0.08 1.7700 3.4040 0.2841 0.4412 0.0025 0.2208 6.3684 1.9921

0.09 1.8240 3.4223 0.2876 0.4449 0.0025 0.2511 6.4759 2.2398

0.10 1.8779 3.4396 0.2911 0.4486 0.0025 0.2819 6.5808 2.4872

Table 6.10: Effect of β: S = 7,K = 5, λ = 30, η = 5, α = 0.25, µ = 20, γ = 0.75

Effect of α, β on Pfull and Pvacant

α 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

Pfull 0.9398 0.9283 0.9169 0.9057 0.8947 0.8838 0.8730 0.8624 0.8520

Pvacant 0.0114 0.0136 0.0158 0.0179 0.0201 0.0222 0.0243 0.0264 0.0284

Table 6.11: Effect of α for β = 0, S = 7,K = 5, λ = 30, η = 5, µ = 20, γ = 0.75

β 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

Pfull 0.9057 0.8990 0.8923 0.8857 0.8790 0.8724 0.8658 0.8592 0.8526

Pvacant 0.00114 0.0114 0.0114 0.0115 0.0115 0.0115 0.0115 0.0115 0.0116

Table 6.12: Effect of β for α = 0.1, S = 7,K = 5, λ = 30, η = 5, µ = 20, γ =

0.75

The interpretation of results in Tables 6.11 and 6.12 are on the same lines

as in Model 1 (see Tables 6.5, 6.6).
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6.3.1 Cost analysis

Based on the above performance measures we construct a cost function for

checking the optimality of the waiting room capacity K. It may be noted that

we cannot arrive at an analytical form for the cost function since system state

probabilities are not available in compact form.

We define a profit/revenue function as F(K,S) as

F(K,S) = C1EC(R)+C2EP (R)−C3EB(N)−C4EW (N)−C5EP (N)−C6EI(N)

where

C1 =Revenue to the system due to cancellation of an inventory purchased

C2 =Revenue to the system due to unit purchase of item in the inventory

C3 =Holding cost of customer per unit per unit time in the buffer

C4 =Holding cost of customer per unit per unit time in the waiting room

C5 =Holding cost of customer per unit per unit time in the pool

C6 =Holding cost per unit time per item in the inventory

In order to study the variation in different parameters on profit function

we first fix the costs C1 = $50,C2 = $200,C3 = $4,C4 = $7,C5 = $2,C6 = $10.

Effect of variation in S and K in Model 1

P
P
P

P
PPK

S
6 7 8 9 10

5 121.2477 179.2218 237.3408 295.4081 353.2731

6 106.9024 163.3576 220.0913 276.9073 333.6499

7 94.3398 149.3635 204.7516 260.3190 315.9145

8 83.2438 136.9571 191.0771 245.4376 299.8984

9 73.3350 125.8753 178.8292 232.0525 285.4205

10 64.3745 115.8827 167.7849 219.9586 272.2969

Table 6.13: Effect of S and K on expected revenue

We assign the following values to the parameters: λ = 30, µ = 20, β =

0.1, η = 5, α = 0.25, p = 0.75, γ = 0.75, L = 3. For different values of S and
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K, the expected profit is calculated and presented in Table 6.13. This table

shows that the profit function decreases when K increases and increases with

increasing value of S.

Effect of variation in p, γ on expected revenue in Model 1

We assign the following values to the parameters: S = 8,K = 6, L = 3, λ =

30, µ = 20, β = 0.1, η = 5, α = 0.25, p = 0.75, γ = 0.75. In Fig. 6.2, each curve

is drawn keeping the other parameters fixed; these graphs show that there is

decrease, though marginal, in revenue with increase in value of p. With γ

increasing F(K,S) shows an increasing trend.
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Figure 6.2: Effect of p and γ on expected revenue

Effect of variation in S and K in Model 2

We assign the following values to the parameters: λ = 30, µ = 20, β = 0.1, η =

5, α = 0.25, γ = 0.75. For different values of S and K, the expected revenue is

calculated (see Table 6.14). This table shows that the profit function increases

when S and K increase.
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P
P
P

P
PPK

S
3 4 5 6 7

5 157.9565 204.3360 247.6024 288.2351 326.6477

6 163.5330 212.5247 258.3252 301.3083 341.8402

7 167.6997 218.9368 267.0368 312.2501 354.8707

8 170.7896 223.9125 274.0451 321.3158 365.9338

9 173.0665 227.7434 279.6345 328.7579 375.2396

10 174.7352 230.6729 284.0582 334.8184 383.0017

Table 6.14: Effect of S and K on expected revenue

A comparison between Model 1 and 2 is in order. A look at the values

in Tables 6.13 and 6.14 indicate that the expected revenue is lower for Model

1. This is due to the transfer policy. In Model 1 the expected number of

customers in the pool is relatively larger than that in Model 2. This results in

higher holding cost of customers in the former and hence a reduced revenue

from that results (see columns 2 and 3 of Table 6.13 and last two columns of

Table 6.14). It is interesting to note that in Model 1, F(K,S) decreases with

increase in value of K; however, this trend is reversed in Model 2. These are

consequences of the transfer policies adopted: Model 1: based on number of

customers in the waiting room and Model 2: transfer from the pool only when

server is idle with positive level of inventory on hand. With β = 0, Pfull have

the same values for different α values for both models; however, Pvacant does

not show any similarity in behaviour.



Chapter 7

On a queueing-inventory

system with postponed work,

reservation, cancellation and

common life time

In the present chapter we consider a single server queueing-inventory system

in which items in the inventory have a random common life time. On real-

ization of common life time, customers are flushed out from the finite buffer

and waiting room, but not from the pool of postponed work. Subsequently

the inventory reaches its maximum S through an instantaneous (zero lead

time) replenishment for the next cycle. Through cancellation of purchases,

inventory gets added until their expiry time, where inter cancellation time

Some results of this chapter are included in the following paper.

A. Krishnamoorthy, Dhanya Shajin and B. Lakshmy : On a queueing-inventory system

with postponed work, reservation, cancellation and common life time (communi-

cated).
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follows exponential distribution. Customers arrive according to a Poisson pro-

cess and service time is exponentially distributed. On arrival if a customer

finds the server busy, then he joins a buffer of varying size. If there is no

inventory, the arriving customer first try to access a finite waiting room of

capacity K. If that is found full, he joins a pool of infinite capacity with

probability γ (0 < γ < 1); else it is lost to the system forever. When, at a

service completion epoch the waiting room size drops to a preassigned level

L − 1 (1 < L < K) or below, a customer is transferred from pool to waiting

room with probability p (0 < p < 1) and positioned as the last among the

waiting customers. If at a departure epoch the waiting room turns out to be

empty and there is at least one customer in the pool, then the one ahead of

all waiting in the pool gets transferred to the waiting room with probability

one.

7.1 Mathematical formulation

We have a single commodity inventory system with S items at the beginning

of a cycle. Customers arrive according to a Poisson process of rate λ, each

demanding exactly one unit of the item. To deliver one unit of the item to the

customer in service, it requires an exponentially distributed time with param-

eter µ. The inventoried items have a CLT which means that they all perish

together on realization of this time. We assume that this CLT is exponentially

distributed with parameter α. On realization of CLT, the inventory reaches its

maximum level S (for identification purpose denoted by S∗) for the next cycle

to commence, through an instantaneous replenishment. A buffer of varying

size, depending on the number of items in the inventory is available at the

service counter. We call it varying size because at most as many customers

as the number of items in the inventory are allowed to be in this buffer. In

addition, as in chapter 5 and 6, the possibility of cancellation of purchased
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item (return / cancellation of the item with a penalty) is permitted here also.

Inter cancellation time follows exponential distribution with parameter iβ,

when there are (S− i) items present in the inventory. Next in order is a finite

waiting space of capacity K. When the buffer is full, further arrivals wait

in this room; as and when inventory level in the buffer goes one step above

(due to cancellation), the head in the waiting room moves to the buffer and

positions himself as the last there. When the waiting room is also full, further

arrivals are directed to a pool (of customers) having infinite capacity. Whereas

customers join with probability one in the buffer and waiting room whenever

there is a vacancy, it is not the case with the pool. An arrival, finding waiting

room also full, joins the pool with probability γ(0 < γ < 1) or balks with com-

plementary probability. When, at a departure epoch the number of customers

in the waiting room drops to a preassigned level L− 1, (1 < L < K) or below,

a customer is transferred from the pool to the waiting room with probability

p (0 < p < 1) and positioned as last among the waiting customers. If at a

service completion epoch the waiting room turns out to be empty and there is

at least one customer in the pool, the one ahead of all waiting in the pool gets

transferred (with probability one) to the waiting room. Transfer of customers

from a pool of postponed work is introduced and analyzed in Deepak et al.

[13]. Customers are flushed out from the finite buffer and waiting room, but

not from the pool when the CLT is realized. Subsequently, S + K pooled

customers, if that many are available or all in the pool, whichever is less, are

immediately transferred to the buffer and waiting room.

In the sequel we use the following notations:

L(t) Level of the system at time t

N 1(t) Number of customers within each level at time t

N 2(t) Number of customers in the waiting room at time t

N 3(t) Number of customers in the buffer at time t

I(t) Number of items in the inventory at time t
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Cycle : The time duration from the epoch at which we start with

maximum inventory level S at a replenishment epoch, to the

moment when the common life time is realized

U1 = (S + 1)(S + 2)/2 +K(S + 1) +K + S + 1

U2 = (S +K)(K(S + 1) + 1)

By the above assumptions Ω = {(L(t),N 1(t),N 2(t),I(t),N 3(t)) , t ≥ 0} is

a CTMC which is not a LIQBD when L(t) is the number of customers in

the pool. We redefine the state space to make the Markov chain a QBD.

The level L(t) = ℓ, ℓ ≥ 1, of the system at time t, represent the pool having

n = (ℓ− 1)(S +K) + a; a = 1, 2, ..., S +K customers. That is, the level ℓ = 1

means the pool contains n = 1, 2, ..., S +K customers, level ℓ = 2 represents

the pool as having n = S+K+1 to n = 2(S+K) customers and so on. Level

ℓ = 0 means no customer in the pool. Thus the state space

{∆}
⋃

{(0, 0, 0, i, n3) ; 0 ≤ i ≤ S, 0 ≤ n3 ≤ i}

⋃

{(0, 0, n2, i, n3) ; 1 ≤ n2 ≤ K, 0 ≤ i ≤ S, n3 = i}

⋃

{(ℓ, n1, n2, i, n3) ; ℓ ≥ 1, 1 ≤ n1 ≤ S +K, 1 ≤ n2 ≤ K, 0 ≤ i ≤ S, n3 = i}

where

{∆} = {(0, 0, 0, S∗, n3); 0 ≤ n3 ≤ S}
⋃

{(0, 0, n2, S
∗, S∗); 1 ≤ n2 ≤ K}

⋃

{(ℓ, n1,K, S
∗, S∗); ℓ ≥ 1, 1 ≤ n1 ≤ (S +K)}

denotes the temporary absorbing state. Thus the infinitesimal generator Q is

of the form

Q =










A00 A01

A10 A1 A0

A2 A1 A0

. . .
. . .

. . .










.
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The matrices A0, A1, A2 are square matrices of the same order U2 with entries

in A0 representing transition rates from level ℓ to ℓ+1, ℓ ≥ 1, A1 represents the

transition rates within the level ℓ, ℓ ≥ 1 and A2 contains transition rates from

level ℓ to ℓ − 1, ℓ ≥ 2. Dimension of matrices A00, A01, A10 are U1 × U1, U1 ×

U2, U2 × U1 respectively.

Define non-diagonal entries of A
(m1,m2,j,m3)
k(n1,n2,i,n3)

, k = 00, 01, 10, 0, 1, 2 as the

transition rates from (n1, n2, i, n3) → (m1,m2, j,m3) where n1,m1 represent

the number of customers within the level, n2,m2 represent the number of cus-

tomers in the waiting room, i, j represent the number of items in the inventory

and n3,m3 represent the number of customers in the buffer. These transition

rates are

A
(m1,m2,j,m3)
0(n1,n2,i,n3)

=







γλ n1 = S +K,n2 = K, 0 ≤ i ≤ S, n3 = i;

m1 = 1,m2 = K, j = i,m3 = j

γλ n1 = S +K,n2 = K, i = S∗, n3 = S;

m1 = 1,m2 = K, j = S,m3 = S

0 otherwise.

A
(m1,m2,j,m3)
01(n1,n2,i,n3)

=







γλ n1 = 0, n2 = K, 0 ≤ i ≤ S, n3 = i;

m1 = n1 + 1,m2 = n2, j = i,m3 = n3

γλ n1 = 0, n2 = K, i = S∗, n3 = S;

m1 = n1 + 1,m2 = n2, j = S,m3 = S

0 otherwise.

A
(m1,m2,j,m3)
10(n1,n2,i,n3)

=







α 1 ≤ n1 ≤ S, 0 ≤ n2 ≤ K, 0 ≤ i ≤ S, n3 = i;

m1 = 0,m2 = 0, j = S∗,m3 = n1

α S + 1 ≤ n1 ≤ S +K, 0 ≤ n2 ≤ K, 0 ≤ i ≤ S, n3 = i;

m1 = 0,m2 = n1 − S, j = S∗,m3 = S

(S − i)β n1 = 1, n2 = 1, 0 ≤ i ≤ S − 1, n3 = i;

m1 = 0,m2 = n2, j = i+ 1,m3 = j

p(S − i)β n1 = 1, 2 ≤ n2 ≤ L, 0 ≤ i ≤ S − 1, n3 = i;

m1 = 0,m2 = n2, j = i+ 1,m3 = j

0 otherwise.
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A
(m1,m2,j,m3)
2(n1,n2,i,n3)

=







α 1 ≤ n1 ≤ S +K, 0 ≤ n2 ≤ K, 0 ≤ i ≤ S, n3 = i;

m1 = n1,m2 = K, j = S∗,m3 = S

(S − i)β n1 = 1, n2 = 1, 0 ≤ i ≤ S − 1, n3 = i;

m1 = S +K,m2 = n2, j = i+ 1,m3 = j

p(S − i)β n1 = 1, 2 ≤ n2 ≤ L, 0 ≤ i ≤ S − 1, n3 = i;

m1 = S +K,m2 = n2, j = i+ 1,m3 = j

0 otherwise.

A
(m1,m2,j,m3)
00(n1,n2,i,n3)

=







α n1 = 0, 1 ≤ n2 ≤ K, 0 ≤ i ≤ S, n3 = i;

m1 = 0,m2 = 0, j = S∗,m3 = 0

α n1 = 0, n2 = 0, 0 ≤ i ≤ S, 0 ≤ n3 ≤ i;

m1 = 0,m2 = 0, j = S∗,m3 = 0

λ n1 = 0, 0 ≤ n2 ≤ K, 0 ≤ i ≤ S, n3 = i;

m1 = 0,m2 = n2 + 1, j = i,m3 = n3

λ n1 = 0, n2 = 0, 1 ≤ i ≤ S, 0 ≤ n3 ≤ i− 1;

m1 = 0,m2 = n2, j = i,m3 = n3 + 1

µ n1 = 0, 1 ≤ n2 ≤ K, 1 ≤ i ≤ S, n3 = i;

m1 = 0,m2 = n2, j = i− 1,m3 = n3 − 1

µ n1 = 0, n2 = 0, 1 ≤ i ≤ S, 1 ≤ n3 ≤ i;

m1 = 0,m2 = n2, j = i− 1,m3 = n3 − 1

(S − i)β n1 = 0, 1 ≤ n2 ≤ K, 0 ≤ i ≤ S − 1, n3 = i;

m1 = 0,m2 = n2 − 1, j = i+ 1,m3 = n3 + 1

(S − i)β n1 = 0, n2 = 0, 0 ≤ i ≤ S − 1, 0 ≤ n3 ≤ i;

m1 = 0,m2 = 0, j = i+ 1,m3 = n3

λ n1 = 0, n2 = 0, i = S∗, 0 ≤ n3 ≤ S − 1;

m1 = 0,m2 = 0, j = S,m3 = n3 + 1

λ n1 = 0, 0 ≤ n2 ≤ K − 1, i = S∗, n3 = S;

m1 = 0,m2 = n2 + 1, j = S,m3 = S

µ n1 = 0, n2 = 0, i = S∗, 1 ≤ n3 ≤ S;

m1 = 0,m2 = 0, j = S − 1,m3 = n3 − 1

µ n1 = 0, 1 ≤ n2 ≤ K, i = S∗, n3 = S;

m1 = 0,m2 = n2, j = S − 1,m3 = S − 1

0 otherwise.
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A
(m1,m2,j,m3)
1(n1,n2,i,n3)

=







γλ 1 ≤ n1 ≤ S + K − 1, n2 = K, 0 ≤ i ≤ S, n3 = i;

m1 = n1 + 1,m2 = K, j = i,m3 = j

γλ 1 ≤ n1 ≤ S + K − 1, n2 = K, i = S∗, n3 = S;

m1 = n1 + 1,m2 = K, j = S,m3 = j

(S − i)β 2 ≤ n1 ≤ S + K,n2 = 1, 0 ≤ i ≤ S, n3 = i;

m1 = n1 − 1,m2 = n2, j = i + 1,m3 = j

p(S − i)β 2 ≤ n1 ≤ S + K, 2 ≤ n2 ≤ L, 0 ≤ i ≤ S, n3 = i;

m1 = n1 − 1,m2 = n2, j = i + 1,m3 = j

λ 1 ≤ n1 ≤ S + K, 1 ≤ n2 ≤ K − 1, 0 ≤ i ≤ S, n3 = i;

m1 = n1,m2 = n2 + 1, j = i,m3 = n3

µ 1 ≤ n1 ≤ S + K, 1 ≤ n2 ≤ K, 1 ≤ i ≤ S, n3 = i;

m1 = n1,m2 = n2, j = i − 1,m3 = n3 − 1

µ 1 ≤ n1 ≤ S + K,n2 = K, i = S∗, n3 = S;

m1 = n1,m2 = n2, j = S − 1,m3 = S − 1

(1 − p)(S − i)β 1 ≤ n1 ≤ S + K, 2 ≤ n2 ≤ L, 0 ≤ i ≤ S − 1, n3 = i;

m1 = n1,m2 = n2 − 1, j = i + 1,m3 = n3 + 1

(S − i)β 1 ≤ n1 ≤ S + K,L + 1 ≤ n2 ≤ K, 0 ≤ i ≤ S − 1, n3 = i;

m1 = n1,m2 = n2 − 1, j = i + 1,m3 = n3 + 1

0 otherwise.

The diagonal entries are determined by the fact that each row sum is zero.

7.2 Steady-state analysis

In this section, we perform the steady-state analysis of the queueing-inventory

model under study by first establishing the stability condition of the queueing

system.

7.2.1 Stability condition

To establish the stability condition, we consider the Markov chain

{(N 1(t),N 2(t),I(t),N 3(t)), t ≥ 0} on the finite state space {(n1, n2, i, n3), 1 ≤

n1 ≤ S+K, 1 ≤ n2 ≤ K, 0 ≤ i ≤ S, n3 = i}
⋃
{(n1,K, S

∗, S), 1 ≤ n1 ≤ S+K}.

Let π = (π1,π2, ...,πS+K) be the steady-state probability vector of this

Markov chain. Its infinitesimal generator is

A(= A0 +A1 +A2) =












B1 B0 B2

B2 B1 B0

. . .
. . .

. . .

B2 B1 B0

B0 B2 B1











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where B0, B1, B2 are square matrices of order K(S + 1) + 1.

DefineB
(n2,i,n3:m2,j,m3)
k , k = 0, 1, 2 as the transition rates from (n2, i, n3) →

(m2, j,m3) where n2,m2 represent the number of customers in the waiting

room, i, j represent the number of items in the inventory and n3,m3 represent

the number of customers in the buffer. These transition rates are

B
(n2,i,n3:m2,j,m3)
1 =







λ 1 ≤ n2 ≤ K − 1, 0 ≤ i ≤ S, n3 = i;

m2 = n2 + 1, j = i,m3 = n3

µ 1 ≤ n2 ≤ K, 1 ≤ i ≤ S, n3 = i;

m2 = n2, j = i − 1,m3 = n3 − 1

µ n2 = K, i = S∗, n3 = S;

m2 = n2, j = S − 1,m3 = S − 1

(1 − p)(S − i)β 2 ≤ n2 ≤ L, 0 ≤ i ≤ S − 1, n3 = i;

m2 = n2 − 1, j = i + 1,m3 = n3 + 1

(S − i)β L + 1 ≤ n2 ≤ K, 0 ≤ i ≤ S − 1, n3 = i;

m2 = n2 − 1, j = i + 1,m3 = n3 + 1

α 1 ≤ n2 ≤ K, 0 ≤ i ≤ S, n3 = i;

m2 = K, j = S∗,m3 = S

−(λ + α + Sβ) 1 ≤ n2 ≤ K − 1, i = 0, n3 = 0;

m2 = n2, j = i,m3 = n3

−(γλ + α + Sβ) n2 = K, i = 0, n3 = 0;

m2 = n2, j = i,m3 = n3

−(λ + α + µ + (S − i)β) 1 ≤ n2 ≤ K − 1, 1 ≤ i ≤ S, n3 = i;

m2 = n2, j = i,m3 = n3

−(γλ + α + µ + (S − i)β) n2 = K, 1 ≤ i ≤ S, n3 = i;

m2 = n2, j = i,m3 = n3

−(γλ + µ) n2 = K, i = S∗, n3 = S;

m2 = n2, j = i,m3 = n3

0 otherwise.

B
(n2,i,n3:m2,j,m3)
0 =







γλ n2 = K, 0 ≤ i ≤ S, n3 = i;

m2 = K, j = i,m3 = j

γλ n2 = K, i = S∗, n3 = S;

m2 = K, j = S,m3 = S

0 otherwise.

B
(n2,i,n3:m2,j,m3)
2 =







(S − i)β n2 = 1, 0 ≤ i ≤ S − 1, n3 = i;

m2 = n2, j = i+ 1,m3 = n3 + 1

p(S − i)β 2 ≤ n2 ≤ L, 0 ≤ i ≤ S − 1, n3 = i;

m2 = n2, j = i+ 1,m3 = n3 + 1

0 otherwise.

This finite state space Markov chain with infinitesimal generator A, has steady

state probability given by

πA = 0, πe = 1. (7.1)
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Now the original Markov chain of the whole system is stable if and only if the

left drift rate is higher than that to the right.

That is,

πA0e < πA2e (7.2)

where

A0 =










0 0 . . . 0
...

... . . .
...

0 0 . . . 0

B0 0 . . . 0










, A2 =










B′
2 0 · · · B2

0 B′
2 · · · 0

...
. . .

. . .
...

0 . . . 0 B′
2










with

B
′(n2,i,n3:m2,j,m3)
2 =







α 1 ≤ n2 ≤ K, 0 ≤ i ≤ S, n3 = i;

m2 = K, j = S∗,m3 = S

0 otherwise.

Partition πn1 for 1 ≤ n1 ≤ S +K as

πn1 = (πn1(n2, i, n3); 1 ≤ n2 ≤ K, 0 ≤ i ≤ S, n3 = i)
⋃

(πn1(K,S
∗, S)).

From equation (7.1) we get

π1B1 + π2B2 + πS+KB0 = 0,

πi−1B0 + πiB1 + πi+1B2 = 0, 2 ≤ i ≤ S +K − 1,

π1B2 + πS+K−1B0 + πS+KB1 = 0

Solving these equations we get

πi = πS+KW iV i, 1 ≤ i ≤ S +K − 1

where

V i =

{

B−1
1 , i = 1

(B1 −B2V i−1B0)
−1 , 2 ≤ i ≤ S +K − 1

W i =







−[W2V2B2 + (−1)2B0], i = 1

−[W i+1V i+1B2 + (−1)i+1B0U i−1], 2 ≤ i ≤ S +K − 2

−[B2 + (−1)S+KB0US+K−2], i = S +K − 1
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with

U i =

{

V1B0, i = 1

U i−1V iB0, 2 ≤ i ≤ S +K − 2

From the normalizing condition πe = 1 we have

πS+K

[

I +

S+K−1∑

i=1

W iV i

]

e = 1.

Inequality (7.2) gives the stability condition as

πS+KB0e < πS+K

[(

I +
S+K−1∑

i=1

W iV i

)

B′
2 +W1V1B2

]

e. (7.3)

7.2.2 Steady-state probability vector

Assuming that (7.3) is satisfied, we briefly outline the computation of the

steady state probability of the system state. Let x denote the steady-state

probability vector of the generator Q. Then

xQ = 1, xe = 1. (7.4)

Partitioning x as x = (x0,x1,x2, ...) we see that x, under the assumption that

the stability condition (7.3) holds, is obtained as (see Neuts [33])

xi = x1R
i−1, i ≥ 2 (7.5)

where R is the minimal nonnegative solution to the matrix quadratic equation:

A0 +RA1 +R2A2 = O (7.6)

and the boundary equations are given by

x0A01 + x1[A1 +RA2] = 0,

x0A00 + x1A10 = 0. (7.7)

The normalizing condition (7.4) gives

x0

[

I −A01 (A1 +RA2)
−1 (I −R)−1

]

e = 1. (7.8)

Now we look at a few of the system performance measures.
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7.2.3 Probability of a tagged customer in the pool being served

in a cycle

Assume that at the time of realization of CLT there are at least r customers

in the pool. We compute the probability that rth customer in the pool get

served before realization of CLT in the following cycle.

Case 1: 1 ≤ r ≤ S

When the number of customers in the pool r, 1 ≤ r ≤ S, we need not consider

new arrivals nor cancellations in the cycle that commences at this epoch. At

the time of realization of CLT, customers are flushed out from the buffer and

waiting room. Subsequently pooled customers are transferred immediately to

the buffer and to waiting room, subject to a maximum of S+K. If 1 ≤ r ≤ S,

then at the time of realization of CLT the tagged customer gets transferred

to the buffer. Thus we need look at the Markov chain with the state space

Ω1 = {(N 3(t),I(t)) , t ≥ 0} is {(r, S), (r − 1, S − 1), ..., (1, S − r + 1)}
⋃
{∆}

where {∆} is the absorbing state which denotes the realization of CLT. Thus

the infinitesimal generator H1 of the Markov chain Ω1 is of the form

H1 =

[

T 1 T 0
1

0 0

]

where

T 1 =












r r − 1 r − 2 · · · 2 1
r −(µ+ α) µ
r − 1 −(µ+ α) µ
...

. . .
. . .

2 −(µ+ α) µ
1 −(µ+ α)












, T 0
1 = αe

with initial probability vector ζ1 = (1, 0, ..., 0). T 1 is a square matrix of order

r and ζ1 has r elements. Therefore, when 1 ≤ r ≤ S, the time till absorption
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to {∆}, denoted by τ1, follows Phase-type distribution having representation

(ζ1,T 1) and expected value E(τ1) = −ζ1T
−1
1 e.

Case 2: S + 1 ≤ r ≤ S +K

If the number of customers in the pool is such that r = S + k, 1 ≤ k ≤ K

then again external arrivals need not be considered. Here at the time of

realization of CLT, S pooled customers are transferred to the buffer and the

tagged customer gets transferred to the waiting room. The Markov chain that

we have to now analyze has state space Ω2 = {(N 2(t),I(t),N 3(t)) , t ≥ 0} is

{(n2, i, n3); 1 ≤ n2 ≤ k, 0 ≤ i ≤ S, n3 = i}
⋃
{(0, i, n3); 1 ≤ i ≤ S, 1 ≤ n3 ≤

i}
⋃
{∆} where {∆} is the absorbing state which denotes the realization of

CLT. Thus the infinitesimal generator H2 of the Markov chain Ω2 is of the

form

H2 =

[

T 2 T 0
2

0 0

]

where

T 2 =















k k − 1 k − 2 · · · 2 1 0
k D1 D2
k − 1 D1 D2

k − 2 D1
. . .

...
. . .

. . .
2 D1 D2
1 D1 D10
0 D00















, T 0
2 =

















D0

D0

D0

...

D0

D0

D′

0

















with initial probability vector ζ2 = (0, ..., 0, 1, 0, ..., 0) where 1 is in the (S+1)th

place. T 2 is a square matrix of order k(S+1)+S(S+1)/2. Unlike in case 1,

the present situation requires consideration of cancellation.

Define D
(j,m3)
m(i,n3)

, for m = 1, 2, 10, 00 as the transition rates from (i, n3) →

(j,m3) where i, j represent the number of items in the inventory and n3,m3
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represent the number of customers in the buffer. These transition rates are

D
(j,m3)
1(i,n3)

=







µ 1 ≤ i ≤ S, n3 = i; j = i− 1,m3 = j

−(α+ Sβ) i = 0, n3 = i; j = i,m3 = n3

−(α+ (S − i)β + µ) 1 ≤ i ≤ S, n3 = i; j = i,m3 = n3

0 otherwise

D
(j,m3)
2(i,n3)

=

{

(S − i)β 0 ≤ i ≤ S − 1, n3 = i; j = i+ 1,m3 = j

0 otherwise

D
(j,m3)
00(i,n3)

=







µ 2 ≤ i ≤ S, 2 ≤ n3 ≤ i; j = i− 1,m3 = n3 − 1

(S − i)β 1 ≤ i ≤ S − 1, 1 ≤ n3 ≤ i; j = i+ 1,m3 = n3

−(α+ µ+ (S − i)β) 1 ≤ i ≤ S, 1 ≤ n3 ≤ i; j = i,m3 = n3

0 otherwise;

D
(j,m3)
10(i,n3)

=

{

(S − i)β 0 ≤ i ≤ S − 1, n3 = i; j = i+ 1,m3 = j

0 otherwise;

D∆
0(i,n3)

=

{

α 0 ≤ i ≤ S, n3 = i

0 otherwise;

D
′∆
0(i,n3)

=







α 2 ≤ i ≤ S, 2 ≤ n3 ≤ i

(α+ µ) 1 ≤ i ≤ S, n3 = 1

0 otherwise.

Therefore, when S + 1 ≤ r ≤ S + K, the time till absorption to {∆}, de-

noted by τ2, follows Phase-type distribution having representation (ζ2,T 2)

and expected value E(τ2) = −ζ2T
−1
2 e.

Case 3: r > S +K

When the number of customers in the pool is such that the tagged customer

is in the rth position with r = S + K + k, k ≥ 1, we have to consider

the future arrivals also. At the time of realization of CLT , customers are

flushed out from the buffer and waiting room. At the beginning of the new

cycle, S +K customers from the pool are transferred to the buffer and to the
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waiting room. The state space Ω3 = {(N 1(t),N 2(t),N 3(t),I(t)) , t ≥ 0} is

{(n1, n2, i, n3); 0 ≤ n1 ≤ k, 1 ≤ n2 ≤ K, 0 ≤ i ≤ S, n3 = i}
⋃
{(0, 0, i, n3); 1 ≤ i

≤ S, 1 ≤ n3 ≤ i}
⋃
{∆} where {∆} is the absorbing state which denotes the

realization of CLT. Thus the infinitesimal generator H3 of the Markov chain

Ω3 is of the form

H3 =

[

T 3 T 0
3

0 0

]

where

T 3 =















k k − 1 k − 2 · · · 2 1 0
k E1 E2
k − 1 E1 E2

k − 2 E1
. . .

...
. . .

. . .
2 E1 E2
1 E1 E10
0 E00















, T 0
3 =

















E0

E0

E0

...

E0

E0

E′

0

















with initial probability vector ζ3 = (0, ..., 0, 1, 0, ..., 0) where 1 is in the (K(S+

1))th place. T 3 is a square matrix of order (k+ 1)K(S + 1) + S(S + 1)/2 and

ζ3 has (k + 1)K(S + 1) + S(S + 1)/2 elements.

Define non-diagonal elements of E
(m2,j,m3)
m(n2,i,n3)

, form = 1, 2, 10, 00 as the tran-

sition rates from (n2, i, n3) → (m2, j,m3) where n2,m2 represent the number

of customers in the waiting room, i, j represent the number of items in the

inventory and n3,m3 represent the number of customers in the buffer. These

transition rates are

E
(m2,j,m3)
2(n2,i,n3)

=







p(S − i)β 2 ≤ n2 ≤ L, 0 ≤ i ≤ S − 1, n3 = i;

m2 = n2, j = i+ 1,m3 = n3 + 1

(S − i)β n2 = 1, 0 ≤ i ≤ S − 1, n3 = i;

m2 = n2, j = i+ 1,m3 = n3 + 1

0 otherwise;
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E
(m2,j,m3)
10(n2,i,n3)

=







p(S − i)β 2 ≤ n2 ≤ L, 0 ≤ i ≤ S − 1, n3 = i;

m2 = n2, j = i+ 1,m3 = n3 + 1

(S − i)β n2 = 1, 0 ≤ i ≤ S − 1, n3 = i;

m2 = n2, j = i+ 1,m3 = n3 + 1

0 otherwise;

E
(m2,j,m3)
1(n2,i,n3)

=







λ 1 ≤ n2 ≤ K − 1, 0 ≤ i ≤ S, n3 = i;

m2 = n2 + 1, j = i,m3 = n3

µ 1 ≤ n2 ≤ K, 1 ≤ i ≤ S, n3 = i;

m2 = n2, j = i− 1,m3 = n3 − 1

(1− p)(S − i)β 2 ≤ n2 ≤ L, 0 ≤ i ≤ S − 1, n3 = i;

m2 = n2 − 1, j = i+ 1,m3 = n3 + 1

(S − i)β L+ 1 ≤ n2 ≤ K, 0 ≤ i ≤ S − 1, n3 = i;

m2 = n2 − 1, j = i+ 1,m3 = n3 + 1

0 otherwise;

E
(m2,j,m3)
00(n2,i,n3)

=







λ 1 ≤ n2 ≤ K − 1, 0 ≤ i ≤ S, n3 = i;

m2 = n2 + 1, j = i,m3 = n3

λ n2 = 0, 1 ≤ i ≤ S, n3 = i;

m2 = n2 + 1, j = i,m3 = n3

λ n2 = 0, 2 ≤ i ≤ S, 1 ≤ n3 ≤ i− 1;

m2 = n2, j = i,m3 = n3 + 1

µ 1 ≤ n2 ≤ K, 1 ≤ i ≤ S, n3 = i;

m2 = n2, j = i− 1,m3 = n3 − 1

µ n2 = 0, 2 ≤ i ≤ S, 2 ≤ n3 ≤ i;

m2 = n2, j = i− 1,m3 = n3 − 1

(S − i)β 2 ≤ n2 ≤ K, 0 ≤ i ≤ S − 1, n3 = i;

m2 = n2 − 1, j = i+ 1,m3 = n3 + 1

(S − i)β n2 = 1, 0 ≤ i ≤ S − 1, n3 = i;

m2 = n2 − 1, j = i+ 1,m3 = n3 + 1

(S − i)β n2 = 0, 1 ≤ i ≤ S − 1, 1 ≤ n3 ≤ i;

m2 = n2, j = i+ 1,m3 = n3

0 otherwise;
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E∆
0(n2,i,n3)

=

{

α 1 ≤ n2 ≤ K, 0 ≤ i ≤ S, n3 = i

0 otherwise;

E
′∆
0(n2,i,n3)

=







α 1 ≤ n2 ≤ K, 0 ≤ i ≤ S, n3 = i

α n2 = 0, 2 ≤ i ≤ S, 2 ≤ n3 ≤ i

(µ+ α) n2 = 0, 1 ≤ i ≤ S, n3 = 1

0 otherwise.

The diagonal entries are such that each row sum is zero.

Thus, when r ≥ S+K+1, the time till absorption to {∆}, denoted by τ3,

follows Phase-type distribution having representation (ζ3,T 3) and expected

value E(τ3) = −ζ3T
−1
3 e.

Thus the probability that the customer who was occupying the rth position

in the pool at the time of realization of CLT in a cycle, gets served before the

completion of the realization of immediately following cycle (realization of

CLT)

=
S∑

r=1

P (n3 = r)P (at least r services completed before CLT realization

+
K∑

k=1

P (n2 = k)

︸ ︷︷ ︸

r=S+k, 1≤k≤K

P (at least r services completed before CLT realization

+
∞∑

k=1

P (n1 = k)

︸ ︷︷ ︸

r=S+K+k, k≥1

P (at least r services completed before CLT realization

=
S∑

r=1

P (n3 = r)P (τ1 ≤ CLT ) +
K∑

k=1

P (n2 = k)P (τ2 ≤ CLT )

+
∞∑

k=1

P (n1 = k)P (τ3 ≤ CLT )
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=
S∑

r=1

P (n3 = r)PH(ζ1,T 1) +
K∑

k=1

P (n2 = k)

︸ ︷︷ ︸

r=S+k, 1≤k≤K

PH(ζ2,T 2)

+
∞∑

k=1

P (n1 = k)

︸ ︷︷ ︸

r=S+K+k, k≥1

PH(ζ3,T 3)

=
S∑

r=1

x0(0, 0, S, r)PH(ζ1,T 1) +
K∑

k=1

x0(0, k, S, S)PH(ζ2,T 2)

+
∞∑

ℓ=1

S+K∑

h=1

xℓ(h,K, S, S)

︸ ︷︷ ︸

k=h+(ℓ−1)(S+K), k≥1

PH(ζ3,T 3).

7.2.4 Expected sojourn time in zero inventory level in a cycle

In order to compute the sojourn time of the system in a cycle, with no in-

ventory, we consider the case of a finite pool. For numerical procedure the

truncation level K ′ (size of the pool) is taken such that the probability of

the number of customers in the pool going above the truncated size is of

order less than ǫ (here ǫ is taken as 10−6). Consider the Markov chain

{(N ′
1(t),N 2(t),I(t)), t ≥ 0} where N ′

1(t) = number of customers in the finite

pool at time t. Its state space is {(0, n2, 0); 0 ≤ n2 ≤ K}
⋃
{(n1, n2, 0); 1 ≤

n1 ≤ K ′, 1 ≤ n2 ≤ K}
⋃
{∆} where {∆} is an absorbing state which de-

notes either the realization of CLT or cancellation of purchased item. The

infinitesimal generator of the Markov chain is

WK′ =

[

T K′ T 0
K′

0 0

]
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where

T K′ =












G0
1 G0

0

G1 G0

. . .
. . .

G1 G0

G′
1












, T 0
K′ =












G0

G
...

G

G












with

G0 = (Sβ + α)e, G = (Sβ + α)e,

G0
1 =












bS λ

bS λ
. . .

. . .

bS λ

b′′S












, G′
1 =












bS λ

bS λ
. . .

. . .

bS λ

b′S












,

G0
0 =





0

. . .

0

γλ



 , G1 =







bS λ

bS λ

. . .
. . .

bS λ

b′′S






, G0 =





0

. . .

0

γλ





where bS = −(Sβ + α + λ), b′S = −(Sβ + α), b′′S = −(Sβ + α + γλ). Matrices

G1, G0, G
′
1 are square matrices of order K and G0

1 is of order K + 1. G0
0 is of

dimension (K + 1) × K. G0, G are column matrices of order K + 1 and K,

respectively.

Expected sojourn time in zero inventory level during a cycle is given by

E0
T
= −ηK′T −1

K′e where ηK′ = {x0(0, n2, 0, 0); 0 ≤ n2 ≤ K}
⋃
{xℓ(n1, n2, 0, 0);

1 ≤ ℓ ≤ m+1, 1 ≤ n1 ≤ h, 1 ≤ n2 ≤ K} is a row vector of order (K ′+1)K+1.

7.2.5 Expected number of revisits to S in a cycle

Next we compute the expected number of revisits of inventory level to S in a

cycle. For this we have to consider a Markov chain {((N ),N ′
1(t),N 2(t),I(t),

N 3(t)), t ≥ 0} on the states {∆}
⋃
{(n, 0, 0, i, n3);n ≥ 0, 0 ≤ i ≤ S, 0 ≤ n3 ≤
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i}
⋃
{(n, n1, n2, i, n3);n ≥ 0, 0 ≤ n1 ≤ K ′, 1 ≤ n2 ≤ K, 0 ≤ i ≤ S, n3 = i}

where {∆} is an absorbing state which denotes the realization of the CLT.

Here N (t) = number of revisits to S up to time t (within the same cycle).

Thus the infinitesimal generator is

FK′ =












0 0 0 0 0 . . .

H H1 H0

H H1 H0

H H1 H0

...
. . .

. . .












where H = αe.

DefineH
(m1,m2,j,m3)
m(n1,n2,i,n3)

, form = 0, 1 as the transition rates from (n1, n2, i, n3) →

(m1,m2, j,m3) where n1,m1 represent the number of customers in the pool,

n2,m2 represent the number of customers in the waiting room, i, j are the

number of items in the inventory and n3,m3 the number of customers in the

buffer.

The non-diagonal elements of H1 are

H
(m1,m2,j,m3)
0(n1,n2,i,n3)

=







β n1 = 0, n2 = 0, i = S − 1, 0 ≤ n3 ≤ S − 1;

m1 = n1,m2 = n2, j = i+ 1,m3 = n3

β n1 = 0, 1 ≤ n2 ≤ K, i = S − 1, n3 = i;

m1 = n1 − 1,m2 = n2 − 1, j = i+ 1,m3 = n3 + 1

β 1 ≤ n1 ≤ K ′, n2 = 1, i = S − 1, n3 = i;

m1 = n1 − 1,m2 = n2, j = i+ 1,m3 = n3 + 1

pβ 1 ≤ n1 ≤ K ′, 2 ≤ n2 ≤ L, i = S − 1, n3 = i;

m1 = n1 − 1,m2 = n2, j = i+ 1,m3 = n3 + 1

(1− p)β 1 ≤ n1 ≤ K ′, 2 ≤ n2 ≤ L, i = S − 1, n3 = i;

m1 = n1,m2 = n2 − 1, j = i+ 1,m3 = n3 + 1

β 1 ≤ n1 ≤ K ′, L+ 1 ≤ n2 ≤ K, i = S − 1, n3 = i;

m1 = n1,m2 = n2 − 1, j = i+ 1,m3 = n3 + 1

0 otherwise.
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H
(m1,m2,j,m3)
1(n1,n2,i,n3)

=







λ 0 ≤ n1 ≤ K′, 1 ≤ n2 ≤ K − 1, 0 ≤ i ≤ S, n3 = i;

m1 = n1,m2 = n2 + 1, j = i,m3 = n3

λ n1 = 0, n2 = 0, 0 ≤ i ≤ S, n3 = i;

m1 = 0,m2 = n2 + 1, j = i,m3 = n3

λ n1 = 0, n2 = 0, 1 ≤ i ≤ S, 0 ≤ n3 ≤ i − 1;

m1 = n1,m2 = n2, j = i,m3 = n3 + 1

γλ 0 ≤ n1 ≤ K′ − 1, n2 = K, 0 ≤ i ≤ S, n3 = i;

m1 = n1 + 1,m2 = n2, j = i,m3 = n3

µ 0 ≤ n1 ≤ K′, 1 ≤ n2 ≤ K, 1 ≤ i ≤ S, n3 = i − 1;

m1 = n1,m2 = m2, j = i − 1,m3 = j

µ n1 = 0, n2 = 0, 1 ≤ i ≤ S, 1 ≤ n3 ≤ i;

m1 = n1,m2 = n2, j = i − 1,m3 = n3 − 1

(S − i)β n1 = 0, 1 ≤ n2 ≤ K, 0 ≤ i ≤ S − 2, n3 = i;

m1 = 0,m2 = n2 − 1, j = i + 1,m3 = n3 + 1

(S − i)β 1 ≤ n1 ≤ K′, n2 = 1, 0 ≤ i ≤ S − 2, n3 = i;

m1 = n1 − 1,m2 = n2, j = i + 1,m3 = n3 + 1

p(S − i)β 1 ≤ n1 ≤ K′, 2 ≤ n2 ≤ L, 0 ≤ i ≤ S − 2, n3 = i;

m1 = n1 − 1,m2 = n2, j = i + 1,m3 = n3 + 1

(1 − p)(S − i)β 1 ≤ n1 ≤ K′, 2 ≤ n2 ≤ L, 0 ≤ i ≤ S − 2, n3 = i;

m1 = n1,m2 = n2 − 1, j = i + 1,m3 = n3 + 1

(S − i)β 1 ≤ n1 ≤ K′, L + 1 ≤ n2 ≤ K, 0 ≤ i ≤ S − 2, n3 = i;

m1 = n1,m2 = n2 − 1, j = i + 1,m3 = n3 + 1

0 otherwise;

The diagonal entries ofH1 are such that each row sum of FK′ is zero. Matrices

H0, H1 are square matrices of order (K ′ + 1)(S + 1)K + S(S + 1)/2.

If qv is the probability that absorption occurs with exactly v revisits, then

qv = ςK′(−H−1
1 H0)

v(−H−1
1 H), v ≥ 0

with ςK′ = {x0(0, 0, i, n3); 0 ≤ i ≤ S, 0 ≤ n3 ≤ i}
⋃
{x0(0, n2, i, n3); 1 ≤ n2 ≤

K, 0 ≤ i ≤ S, n3 = i}
⋃
{xℓ(n1, n2, i, n3); 1 ≤ ℓ ≤ m+ 1, 1 ≤ n1 ≤ h, 1 ≤ n2 ≤

K, 0 ≤ i ≤ S, n3 = i} is a row vector of order (K ′ + 1)(S + 1)K + S(S + 1)/2.

Therefore the expected number of revisits to S before realization of CLT is

Erevisits(S) =
∞∑

v=0

vqv.

7.2.6 Additional performance measures

1. Expected number customers in the pool before realization of CLT

EP (N) =
∞∑

ℓ=1

S+K∑

n1=1

K∑

n2=1

S∑

i=0

[(ℓ− 1)(S +K) + n1]xℓ(n1, n2, i, i).
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2. Expected number of customers in the waiting room before realization of

CLT

EW (N) =
∞∑

ℓ=1

S+K∑

n1=1

K∑

n2=1

S∑

i=0

n2xℓ(n1, n2, i, i) +
K∑

n2=1

S∑

i=0

n2x0(0, n2, i, i).

3. Expected number of customers in the buffer before realization of CLT

EB(N) =
∞∑

ℓ=1

S+K∑

n1=1

K∑

n2=1

S∑

i=1

ixℓ(n1, n2, i, i) +
S∑

i=1

(
K∑

n2=1

ix0(0, n2, i, i)

+
i∑

n3=1

n3x0(0, 0, i, n3)

)

.

4. Expected number of items in the inventory before realization of CLT

EI(N) =
∞∑

ℓ=1

S+K∑

n1=1

K∑

n2=1

S∑

i=1

ixℓ(n1, n2, i, i) +
S∑

i=1

i

(
K∑

n2=1

x0(0, n2, i, i)

+
i∑

n3=0

x0(0, 0, i, n3)

)

.

5. The rate at which pooled customers are transferred to the waiting room

EPW (R) =
∞∑

ℓ=1

S+K∑

n1=1

S−1∑

i=0

(S − i)β

(

xℓ(n1, 1, i, i) + p
L∑

n2=2

xℓ(n1, n2, i, i)

)

.

6. Expected cancellation rate

EC(R) =
∞∑

ℓ=1

S+K∑

n1=1

K∑

n2=1

S−1∑

i=0

(S − i)βxℓ(n1, n2, i, i) +
S−1∑

i=0

(S − i)β

(
K∑

n2=1

x0(0, n2, i, i) +
i∑

n3=0

x0(0, 0, i, n3)

)

.
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7. Expected inventory depletion rate

EP (R) = µ

[
∞∑

ℓ=1

S+K∑

n1=1

K∑

n2=1

S∑

i=1

xℓ(n1, n2, i, i) +
S∑

i=1

(
K∑

n2=1

x0(0, n2, i, i)

+
i∑

n3=1

x0(0, 0, i, n3)

)]

.

8. The probability that the system is left with no item in the inventory at

the time of realization of CLT

Pfull =
K∑

n2=0

x0(0, n2, 0, 0) +
∞∑

ℓ=1

S+K∑

n1=1

K∑

n2=1

xℓ(n1, n2, 0, 0).

9. The probability that the system has S items in the inventory at the time

of realization of CLT

Pvacant =
∞∑

ℓ=1

S+K∑

n1=1

K∑

n2=1

xℓ(n1, n2, S, S) +
K∑

n2=1

x0(0, n2, S, S)

+
S∑

n3=0

x0(0, 0, S, n3).

7.3 Numerical illustration

In this section we provide numerical illustration of the system performance

with variation in values of underlying parameters.

Effect of γ on EPW (R)

We consider the following values for the parameters S = 8,K = 6, L = 4, λ =

7, µ = 10, p = 0.75, α = 0.25, β = 1.5. For this set of parameter values, Table

7.1 shows the impact of the probability γ on measure EPW (R). From Table

7.1, it is clear that EPW (R) is monotonically increasing in γ.
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γ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

EPW (R) 0.0150 0.0286 0.0413 0.0534 0.0650 0.0763 0.0875 0.0985 0.1097

Table 7.1: Effect of γ on EPW (R)

Effect of the arrival rate λ

Table 7.2 indicates that increase in λ value makes expected number of cus-

tomers in the buffer, expected number of items in the inventory before realiza-

tion of common life time and expected purchase rate, all decrease. However,

as λ increases, expected number of customers in the pool and waiting room

increase.

λ EP (N) EW (N) EB(N) EI (N) EP (R) EC(R)

1 0 0.0002 2.5689 5.1026 6.6592 0.6487

2 0.0014 0.0239 2.3807 4.5328 8.1841 1.2877

3 0.0647 0.2594 1.8511 3.6279 7.5471 1.8192

4 0.5942 0.9429 1.5312 2.8534 6.6355 1.9446

5 2.5597 1.9519 1.4145 2.0790 5.9835 1.5755

6 8.4346 3.0149 1.3611 1.8237 5.4780 0.9497

Table 7.2: Effect of λ: S = 8,K = 5, L = 3, µ = 10, α = 0.25, β = 0.5, p =

0.75, γ = 0.75

Effect of the service time parameter µ

µ EP (N) EW (N) EB(N) EI (N) EP (R) EC(R)

11 52.4543 4.0173 1.1372 1.2172 5.6964 0.2905

12 43.6491 3.9545 1.0346 1.1300 5.8441 0.3600

13 37.7957 3.8986 0.9496 1.0589 5.9782 0.4248

14 33.6765 3.8491 0.8784 0.9998 6.1017 0.4840

15 30.6459 3.8056 0.8181 0.9501 6.3251 0.53376

16 28.3361 3.7671 0.7665 0.9079 6.3251 0.5859

Table 7.3: Effect of µ : S = 7,K = 5, L = 3, λ = 8, α = 0.25, β = 0.75, p =

0.75, γ = 0.75

From Table 7.3, we observe that an increase in µ makes a decrease in
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measures like expected number of items in the inventory before realization of

common life time, expected number of customers in the pool, waiting room

and buffer: higher the realization time more the number of customers served

out. However, the expected rate of purchase and cancellation increase. These

are on expected lines.

Effect of common life time parameter α

Table 7.4 shows that an increase in α results in a decrease in expected number

of customers in the pool and waiting room. However, expected number of

items in the inventory before realization, expected number of customers in the

buffer, expected cancellation rate, all show an increasing trend: the shorter

the life time, lesser the number of cancellations.

α EP (N) EW (N) EB(N) EI (N) EP (R) EC(R)

0.3 22.1746 3.7151 1.3311 1.5223 5.7504 0.5789

0.4 7.5199 3.0006 1.4159 1.8945 6.0592 1.1647

0.5 3.9765 2.4532 1.4602 2.2005 6.2141 1.5101

0.6 2.4562 2.0322 1.4816 2.4523 6.2717 1.7054

0.7 1.6455 1.7034 1.4892 2.6616 6.2676 1.8075

0.8 1.1604 1.4424 1.4884 2.8372 6.2237 1.8506

Table 7.4: Effect of α: S = 7,K = 5, L = 3, λ = 8, µ = 10, β = 0.75, p =

0.75, γ = 0.75

Effect of cancellation rate β

β EP (N) EW (N) EB(N) EI (N) EP (R) EC(R)

0.6 40.8548 3.9731 1.0824 1.1931 4.8864 0.3044

0.8 7.8415 3.0149 1.2846 1.6709 5.9967 1.2864

1 2.7985 2.1952 1.4792 2.1503 6.8642 2.4426

1.2 1.2410 1.5751 1.6510 2.5940 7.4822 3.4656

1.4 0.6360 1.1391 1.7908 2.9905 7.8652 4.2263

1.6 0.3681 0.8460 1.8972 3.3376 8.0454 4.7440

Table 7.5: Effect of β: S = 7,K = 5, L = 3, λ = 7, µ = 10, α = 0.25, p =

0.75, γ = 0.75
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From Table 7.5, we observe that the expected number of customers in the

pool and that in the waiting room decrease with increase in β value which is

a consequence of presence of positive inventory in the system over a longer

duration of time in a cycle. Here expected number of customers in the buffer,

expected number of items in the inventory, expected cancellation rate, and

expected purchase rate show a sharper upward trend on realization of common

life time. This tendency is a natural consequence of higher cancellation rate

for the same common life time parameter value.

Effect of α, β on Pfull and Pvacant

α Pfull Pvacant

0.4 0.6533 0.0200

0.45 0.5868 0.0260

0.5 0.5288 0.0318

0.55 0.4742 0.0373

0.6 0.4542 0.0426

0.65 0.3953 0.0476

Table 7.6: Effect of α for β =

0, S = 7,K = 5, L = 3, λ =

5, µ = 9, p = 0.75, γ = 0.75

β Pfull Pvacant

0.75 0.4539 0.0106

1 0.2878 0.0184

1.25 0.1728 0.0260

1.5 0.1016 0.0345

1.75 0.0600 0.0448

2 0.0361 0.0571

Table 7.7: Effect of β for α =

0.2, S = 7,K = 5, L = 3, λ =

7, µ = 11, p = 0.75, γ = 0.75

For β = 0, varying over α, we notice from Table 7.6 that, Pfull decreases

with increasing value of α – the shorter life time, lesser chance for inventory

being completely sold. Pvacant increases with increasing value of α.

Table 7.7 shows the effect of β for fixed α value. It tells that higher cancel-

lation rate results in reduction in probability of system being full. However,

Pvacant increases with increase in value of β.

7.3.1 Optimization problem

Based on the above performance measures we construct a cost function for

checking the optimality of the waiting room capacity K and the maximum

inventory level S. It may be noted that cancellation to some extent prior to
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common life realization results in higher profit to the system since there is a

cancellation penalty imposed on the customer. We define a revenue function

F(K,S) = CCEC(R)+CPEP (R)−CBEB(N)−CWEW (N)−CPEP (N)−CIEI(N)

where

CC = revenue to the system due to per unit cancellation of inventory pur-

chased

CP = revenue to the system due to per unit purchase of item in the inventory

CB = holding cost of customer per unit per unit time in the buffer

CW = holding cost of customer per unit per unit time in the waiting room

CP = holding cost of customer per unit per unit time in the pool

CI = holding cost per unit time per item in the inventory

In order to study the variation in different parameters on profit function we

first fix the costs CC = $25,CP = $125,CB = $4,CW = $6,CP = $2,CI = $8.

Effect of variation in S and K

P
P
P
P

PPK

S
4 5 6 7 8

4 676.2926 846.0144 997.8604 1091.2001 1236.7100

5 676.6111 846.3291 998.0183 1091.3711 1236.7987

6 675.3351 845.7577 998.0245 1091.4225 1237.0284

7 674.3501 845.7024 997.9805 1091.4302 1237.0879

8 673.5696 845.6392 997.9242 1091.4287 1237.1224

9 672.9314 845.5666 997.4116 1091.4116 1237.1021

Table 7.8: Effect of S and K on expected revenue for λ = 5, µ = 11, α =

0.2, β = 1.5, p = 0.75, γ = 0.75

For different values of S and K, the expected revenue is calculated and

presented in Table 7.8. This table shows that the revenue function increases

when S increases whereas the expected revenue function increases first with

K and then keep going down.
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Concluding remarks:

In this thesis we discussed several queueing-inventory models with blocking

sets (partial or complete). In certain cases explicit product form solution of

the system state could be arrived at, despite high correlation between the

component random variables. Below we give a sketch of the findings in this

thesis:

In chapter 2 we studied three queueing-inventory systems with positive

service time, partial blocking and another model with complete blocking. In

the case of partial blocking sets, stochastic decomposition turned out to be

impossible. Product form solution was obtained only when completely block-

ing set was introduced, which was done in Section 2.6. We obtained steady

state probability vector. Cost functions were constructed in each case to nu-

merically investigate their optimal values. The effect of various parameters on

the system performance measures were also investigated. Even when the lead

time follows general distribution the product form solution is possible when a

complete blocking is introduced. In a future work we propose to extend the

present work to the case when the service process is arbitrarily distributed.

Chapter 3 considered a single server supply chain model with a (rQ,KQ)-

production inventory system and a distribution centre which adopts (s,Q)-

policy. All underlying distributions were assumed to be exponential that are

independent of each other. In this model, the steady state distribution was

obtained in product form. The effects of various performance measures were

investigated. A cost function in s,Q, r and K was constructed to numerically

investigate their optimal values. We also obtained the waiting time distribu-

tion of the distribution centre for realizing the replenishment order. Measures

such as the expected number of up and down crossings of rQ at the production

centre while production was on was of interest.

The model discussed in this chapter could be extended to consider supply
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of raw materials at the production centre. Further exponential distributions

could be replaced by Erlang or even phase type distribution. This would be

at a cost, namely, the product form nature of the solution will be extremely

hard, if not impossible. So one has to resort to algorithmic approach for the

analysis of the problem. These are a few of the proposed line of future work.

In the next chapter we analyzed two queueing-inventory models. In model

II we assumed that the LP-customers joint he system only when the on-hand

inventory was positive and no HP-customer present in the system. We ob-

tained a product form solution for the steady-state probability vector for this

system. But in model I, we assume LP-customers did not join only when

the on-hand inventory was zero. The result was loss of stochastic decomposi-

tion of the system state. A relaxation of assumptions in model II resulted in

major analytical loss, namely, the product form solution (see model I). Thus

the blocking set was of highly specialized characteristic. For both models we

derived several performance characteristics. We compared the two models by

constructing a cost function. We can see form Table 4.4 that the cost involved

in model I is much higher than that in model II. We can attribute the lost

sales assumption (for LP-customers) in model II for this trend. In a follow up

paper we study priority queueing-inventory with retrial of LP-customers and

infinite capacity for the waiting space of HP-customers.

In chapters 5, 6 and 7 we considered an inventory problem where inven-

toried items had a common life time. The demands formed a Poisson process

and service time exponentially distributed as well as negligible were consid-

ered. A finite buffer of varying size (with inventory depletion/ increase due

to demand/ cancellation) was provided. The buffer size varied since at any

time, number of customers sure of receiving inventory depends on number of

items in the inventory at that moment. Further, a finite capacity waiting room

and an orbit of infinite capacity for unsatisfied customers were provided. We

obtained the system state distribution. A profit function was constructed and
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numerically analyzed.

It is interesting to note that in a recent investigation of a queueing-inventory

system with reservation, cancellation and common life time having only one

infinite capacity waiting line we could arrive at product form solution. In a

way it looks surprising since a 2-dimensional object yields analytical solution

whereas the more than 2-dimensional processes discussed in chapters 5 to 7

were not amenable to product form solution.

In yet another recent investigation where we introduced two distinct service

rates of service - a higher rate when inventory level is above s and a lower rate

when inventory level is below the reorder level s. With positive lead time for

replenishment, we obtain the stability condition which involves the lead time

parameter also; this is not the case for models discussed in chapter 2 to 4 of

this thesis.

Further extensions of the problems discussed in this thesis to the case of

Markovian arrival process, phase type service and / lead time are on the anvil.
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