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CHAPTER 1

INTRODUCTION

The dependence of society on the usage of infoomati
technology for everyday tasks makes the establishroé the
identity of a person in a reliable and time-effidienanner a
matter of paramount importance. Biometrics is aficieht
technology with great possibilities in the areaseturity system
development for official and commercial applicagonin
unimodal biometrics, there are challenges such asyndata,
restricted degree of freedom, intra-user variahilithon-
universality, spoof attack and unacceptable ewt®.rit has been
identified that there is a need to combine multipéts to address
these challenges. This chapter touches upon theplie of
biometrics and its evolution towards multimodalrb&trics. The
chapter describes the modes of operations, perfarenmmneasures
and limitations of a unimodal biometric system. &iso
investigates the key issues in multimodal biometyistems along

with various architectures for information integoat

1.1 Introduction

In the current scenario where the society is beognmcreasingly
dependent on the usage of information technologyef@ryday tasks, the
establishment of the identity of a person in aatdé and time-efficient
manner becomes a matter of paramount importancemddrics, a
measurable distinctive physical characteristic erspnal trait such as

fingerprint, face, iris, voice, gait etc. can bedio identify an individual
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or to verify the claimed identity of an individuaind has gained
considerable attention these days due to its robastas well as reliability.
Biometric authentication [1] automatically achievis® establishment of
the identity of an individual based on the physjidal or behavioural

biometric trait rather than knowledge based or @ssion based method.

A biometric trait cannot be easily lost, forgottehared or forged
and is a strong link between a person and his/tentity. Since in
biometric systems, the presence of an individual tla¢ time of
authentication is a necessity, prevention of unangbd access as well as
false refusal claims can be achieved. The biomelygtems which have
two phases, the enrolment as well as the veriticétientification phase,
comprise four main modules [2], [3}iz. a sensor, feature extractor,

matcher and decision components.

In the enrolment phase, which is the process ofisteing
information in a knowledge base, the sensor obt#iesbiometric data
from an individual and the feature extractor modeldracts significant
information regarding the acquired biometric sam#ading to the
generation of a feature vector. The feature vediemg unique for each
person becomes the template for authentication.efnelment phase is as
shown in Figure 1.1. The enrolment can be for eitherification or
positive identification, which is referred to assfiive enrolment or can be

for negative identification, referred to as neganrolment.

Proper authentication is often ensured with biomogtso that only
authorised people have access while unauthorisegleeare prevented.
The matcher module, a part of the authenticatioasph compares the
extracted feature set of the person-seeking as#iown to the template in

the knowledge base. Based on the degree of sityilaetween the
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template and the query, the decision module resadike identity of the

user.
USER Biometric Quality " Feature
—> Sensor >| assessment | Extractor
module
4
User Identity Knowledge
Base

Figure 1.1 Enrolment Phase of the Biometric System

Even though the biometric identification systems-erform their
peer technologies, the unimodal biometric system& o contend with a
variety of problems, namely, noisy data, intra-slasriations, restricted
degrees of freedom, non-universality and spoofchsta Deploying a
multimodal biometric system can address the linuites by integrating the

evidences presented to it by multiple sourcesfofmation.

1.2 Biometric Modes

A biometric system operates either in verificatmmidentification
mode. In verification, the input is compared witie ttemplate of the
claimed identity, while in identification the userbiometric trait is
compared with templates of all the persons enrdlethe database. The
block diagram depicting the two modes of operat®as shown in Figure
1.2.

When used in verification mode, a good degree iofilarity
identifies the claimant as genuine, else is refeas impostor. In the
identification mode, when the query is having adjodegree of similarity
with any one of the templates in the databaseqtieey is authenticated in

the positive enrolment while found ineligible irethegative enrolment.
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Quality

1 US@—V Biometric | 5| Feature
Sensor aslsne;;?:leent Extractor
Claimed l
(@) Identity
\ 4
Knowledge Decision Genuine/
Base 5 > Matcher Module ’( Imposter )
USER Biometric | Quality _»| Feature
s assessment
ensor module Extractor
(b)
Knowledge Decision User
Base —»  Matcher 7 hoque Identity

Figure 1.2 (a) Verification (b) Identification maglen a biometric system

1.3 Performance of a Biometric System

The performance metrics [4] used to quantify thegeance of a

biometric system are

» False Match Rate (FMR)

» False Non Match Rate (FNMR)

* Receiver Operating Characteristic (ROC)

* Equal Error Rate (EER)

» Failure to Enroll Rate (FTER)

» Failure to Capture Rate (FTCR)
1.3.1 False Acceptance Rate (FAR) or False Match Rate (FR)

FAR is the probability that the system incorrectigtches the input
pattern to a non-matching template in the datab#seneasures the
percentage of invalid inputs, which are incorredlycepted. In case of
similarity scale, if the person is an imposter @ality, but the matching

score is higher than the threshold, then he/sheeéed as genuine. This
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increases the FAR, which thus also depends upothteshold value. An
FMR of 0.01% implies that on an average, 1 in 10,00postor attempts

are likely to succeed.

1.3.2 False Rejection Rate (FRR) or False Non-Match Raté&-NMR)

FRR is the probability that the system fails toedéta match
between the input pattern and a matching templat¢hé database. A
measurement of the percent of valid inputs, whighiacorrectly rejected,
is evaluated by this parameter. A 10% FNMR indisdt&at on average, 10

in 100 genuine attempts do not succeed

1.3.3 Receiver Operating Characteristic (ROC)

The ROC plot is a visual characterization of thedé&-off between
the FAR and the FRR. In general, the matching &#lyor performs a
decision based on a threshold, which determines ¢loge to a template
the input needs to be for it to be considered acimadf the threshold is
reduced, there will be fewer false non-matches roote false accepts.
Conversely, a higher threshold reduces the FARraueases the FRR.

1.3.4 Equal Error Rate (EER) or Crossover Error Rate (CER)

EER is the rate at which both acceptance and refeetrors are
equal. The value of the EER can be easily obtafred the ROC curve.
The EER is a quick way to compare the accuracyesfogs with different
ROC curves. In general, the device with the loweER is the most

accurate.

1.3.5 Failure To Enroll Rate (FTER)

FTER is the rate at which attempts to create a lemgrom an

input is unsuccessful. Low quality inputs normad#gult in high FTER.

n
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1.3.6 Failure To Capture Rate (FTCR)

Within automatic systems, the probability that #hestem fails to
detect a biometric input when presented corresthgierred to as Failure to
Capture Rate.

1.4 Challenges in Biometrics

Accuracy, scalability and usability contribute k@ tmain challenges
faced in the implementation of a biometric systedn ideal biometric
system should be highly accurate and secure, caveto use, and easily
scalable to a large population and hence the nudgstacles that hinder the
design and development of such a system are clyrdet thrust areas of

research.

1.4.1 Accuracy

A biometric system rarely encounters 100 percencimaetween
the captured biometric trait of the user and tmaplate in the knowledge
base. The accuracy of a biometric system [5] iscaéfd by:

* Noisy sensor data

* Non-universality

* Inter-user similarity

» Lack of invariant representations

The defective or improperly maintained sensors @arse noise in
the acquired biometric traits. Typically, failuré @amera focus can result
in blurring of face and iris image leading to asyosensor data which can
bring in significant reduction in the Genuine Actdpate (GAR) of a

biometric system [6], [7].

A biometric trait becomes universal if and onlyeifery individual

in the target population is able to submit it asx@ans for identification.

6
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But it is often seen that all the biometric traate not truly universal; for
example, a fingerprint verification system cannoto¢ an individual with
hand related disabilities, manual workers with matyts on their
fingerprint etc. Similarly, people having eye abmalities and diseases
cannot provide good quality eye images for automegcognition. Non-
universality leads to high FTER and FTCR in a bitmeystem.

The features extracted from the biometric traitéwad persons may
not be distinct in some cases, which will leadrttei-user similarity. The
similarity between the biometric samples from twiffedent individuals

leads to an increase in FMR.

Use of different sensors during enrolment and igatiion can result
in variations in the biometric samples. The ambi@mvironmental
conditions, aging of a person, appearance of weskpresence of facial
hair etc can also bring in variations in the repngation of intra-user trait.
There will be a decrease in the GAR of a biometystem due to intra-user

variations.

1.4.2 Scalability

When the authentication is performed by matchirggbery with a
single template, as in the case of a verificatigstesn, the size of the
database is irrelevant. In an identification systdhe query needs a
sequential comparison with all the templates stanethe database, often
resulting in a reduction in the throughput andrarease in the false match
rate. Scaling can be achieved by a process knowiltersng or indexing
where the database is classified based on extarmaternal factors and the
search is restricted to a smaller fraction of tatadase thereby resulting in
the minimisation of errors. Some examples of théermal factors are

gender, age etc. and that of the internal are fprg#, iris pattern etc.
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1.4.3 Security and Privacy

The major issue encountered in biometric systentiseirotection
of the template of a user trait stored in the dadablt is possible that data
obtained during biometric enrolment will be usedways for which the
enrolled individual has not consented. In additi@tplen biometric
templates can affect the security of the systeseireral ways like gaining
fake access using enrolled voice by an impostdreQypical examples of
circumventing a biometric system can be by dodgagfingerprint
biometric system by constructing fake fingers [8Rsy execution of

spoofing of behavioural traits such as signatufef@ voice [10].

One of the major concerns for biometric verificaticand
identification systems is privacy protection. Whee biometric templates
are stored in an unprotected database leavingaiteess to any intruder,
this can result in hacking of the knowledge baggceSeasy modification of
biometric traits is not possible unless it has b&ened using cryptographic
methods, the attack against the stored templatesesaa major security and

privacy threat.

Another important issue associated with biometgisteams is the
privacy of biometric traits. Privacy is the ability lead your life free of
intrusions, to remain autonomous and to controlesscto own private
information. The systematic privacy concerns tbame into play are
unintended functional as well as application scapéd covert recognition.
In unintended functional scope, collectors miglgagl additional (possibly
statistical) personal information from scanned ketme measurements
whereas in unintended application scope, strongéiric identifiers such
as fingerprints allow the possibility of unwantedemtifications. Since

biometric characteristics are not secrets, it igrofpossible to obtain a
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biometric sample, such as a person’s face, wittiaitperson’s permission.
This permits covert recognition of previously etedl people.
Consequently, the biometric recognition can demypthvacy of those who

desire to remain anonymous in any particular sinat

1.5 Multibiometric Systems

Multimodal or Multibiometric utilizes more than omdysiological
or behavioural characteristic for enrolment, vedtion, or identification
purpose [4]. This implies integration of the evides from multiple sources
of biometric information in order to authenticateetidentity of an
individual. The identification process becomes nret@&ble when multiple
traits are being accounted, thereby alleviatinglifmations of unimodal
system [11]. Some of the advantages of multibioimesystems over

unibiometric systems are as follows.

» The overall accuracy of a biometric system improsigmificantly by
combining the evidences obtained from differentnimtric sources
using an effective fusion scheme.

* A multibiometric system addresses the non-univeysgbroblem
thereby achieving a reduction in FTER and FTCR. &ample, if the
enrolment of a person in iris recognition systesighibited due to eye
diseases, he can still be identified using othemigitric traits such as
face, fingerprint etc.

* In a multimodal system, since the user enrols usiifigrent traits,
achievement of a degree of flexibility in user aurtication is possible.
Depending on the nature of the application, it asgible to use the
system with a subset of these traits. For examyhen face, voice and
fingerprint are used to enrol into banking systermss possible to

select one or two traits for authentication basedanvenience.



Chapter 1 Introduction

» The effect of noisy data is reduced in multimodgétem and this
enables reliable determination of identity eveorik of the biometric
samples is noisy.

e Multibiometric systems help to search a large dadabin a
computationally efficient manner. The voluminous tat@se is
minimised by eliminating non-probable personnehgdiess accurate
models and fine tuning is then used to performlfidantification
tasks.

» Since simultaneous spoofing of multiple biometraits is improbable,
they are more resistant to spoof attacks. Furtnenultibiometric can
also check the liveliness of the users by acquiarspubset of traits in

some random order.

Some of the disadvantages associated with multiginensystems
are that they are more expensive as well as need timoe for enrolment.
Expensiveness arises since it requires more ressdioc computation and
storage while the additional time requirement canse inconvenience to
the user. There can also be an accuracy redudtappropriate techniques
are not followed for combining the evidences preddby different sources.
With all these limitations, multibiometric systeroffer features that are
attractive and as a result, they can be used widelgecurity critical

applications.

1.5.1 Multimodal Biometric Fusion Scenarios

A multimodal biometric verification system can bensidered as a
classical information fusion problem i.e. can beutht to combine
evidences provided by different biometrics to imygrahe overall decision
accuracy. Generation of multiple evidences is fbssfrom the same

biometric sample by distinct algorithms, which nidiffer in the manner

10
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the biometric data is pre-processed, or in termsheffeatures extracted
from the pre-processed data, or in the choice @faflgorithm performing
the matching of the biometric sample to one or moser templates.
Repeated application of the same chain of procgssinmore than one
biometric sample of the same modality could yieldset of candidate
decisions. Extension of the range of decision sefossible by collecting
more than one type of biometric from the user.dragon of information
provided by multi biometric systems thus becomegiat for the efficient
performance of the system and this raises a clyatignproblem of

information fusion.

Information fusion in principle can be performeddata, feature or
decision levels. Although there may be merits isirig information at low
levels, from the multi biometric system design padh view, it is most
appealing to focus on the decision level fusionthase will be integration
of decisions by specialists in the respective bimimenodalities. The
logical consequence of this argument is that tkefushould be performed
at the symbolic decision level where each expestdigeady determined the
user’s most likely identity. Some form of voting wd then be sufficient to

resolve any conflicts of opinions from a given seéxperts.

Multiple modalities or Multimodal biometrics, Muttie sensors,
Multiple algorithms, Multiple instances and Repéatestances are some of
the common fusion scenarios [12], [13]. In multipfeodalities or
multimodal biometrics, the biometric traits areragted from two or more
modalities using single or multiple sensors. In tiplé sensor fusion
scenario, different sensors obtain the same instaha biometric trait. The
verification of face image based on an image captwia two sources like
static digital image and video frame is an exangplmultiple sensor fusion

scenario.

11



Chapter 1 Introduction

In multiple algorithms, two or more different alighms process a
single sample captured by a single sensor. Ther&mgnition verification
system utilising feature-based and view-based agees is an example of
multiple algorithm fusion scenario. In multiplestances, the system is
built using a number of biometric samples from eliéint instances of the
same biometric trait. The use of left and right inmages for identity

authentication is an example of multiple instarfasgon scenario.

In repeated instances, the same sensor acquiresithe biometric
modality several times. The sequential frame captdifacial images is an

example of repeated instances fusion scenario.

1.5.2 Multimodal Biometric Architecture

The sequence of acquisition and processing of bigensamples
has a significant impact on the time required farroément and
authentication. A multimodal system operates in ohthe three different
operational modes: serial, parallel or hierarch|@éd] as shown in Figure
1.3.

1.5.2.1Serial mode
In serial or cascade mode, examination of each flitpda
performed before the investigation of the next nlibdalhere can be a
reduction in the overall recognition duration, ax all the multiple
biometric traits need be captured at the same tiBwnetimes a

decision can be arrived at, even before acquirinfe traits.

1.5.2.2 Parallel mode

In this mode of operation, processing of the infation from

multiple modalities is handled concurrently, indegently and all at

12
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once. Then the combination of results yields tmalficlassification
decision.

Classifier 2

(@)

Fusion
Module

Classifier m

Classifier n

P
(b) Classifier 1 H Classifier 2]
_
(
Classifier 1 ] [ Classifier 2 J ——————————————
S

Classifierp | -----------—--- Classifier q

(€)

Figure 1.3 Architecture for several classifier camations
(a) Parallel (b) Serial (c) Hierarchical adapted frd][
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1.5.2.3 Hierarchical mode

In this operational mode, the individual classHiare combined in a
treelike structure. This mode is preferred wheargd number of classifiers

are expected.

Most of the current multimodal biometric system&ige either in
the serial mode or in the parallel mode. The seniadle is computationally
efficient, whereas the parallel mode is more adeuf®4]. The application
requirement determines the choice of the systeimtanoture. A sequential
multibiometric system is used in user-friendly ardw security
applications, whereas a parallel multibiometric teys is preferred in

security-critical applications.

1.5.3 Design Issues in Multibiometrics

The major factors under consideration in the desmn a
multibiometric system are the biometric sourcesjusace of capturing

biometric information and biometric fusion.

The biometric sources include multiple sensordtipie biometric
and processing systems. The factors affecting ¢lecigon of a biometric
sensor are its ease of use and maintenance, thefsaquisition area, the
resolution or the acquisition noise, its relialgiind physical robustness, its
dynamic range or the time it needs to acquire apgamtc. The factors
affecting a processing system are the data foragprithms for data
processing, speed constraints, data compressidgmitgees, which may
degrade the sample or template quality etc. Theofacproposed by

Maltoni et al. [15] for the selection of a biometric are:-

* Universality

+ Distinctiveness

14
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* Permanence
» Collectability
» Performance
e Circumvention
* Acceptability
Universality means that every person using theesysshould
possess that trait. Distinctiveness means thataite should be sufficiently
different for individuals. Permanence relates te thanner in which the
biometric resists aging and other variance oveeti@ollectability relates
to the ease of acquisition for measurement. Pedooa refers to the
accuracy, speed and robustness of the technologg, s well as the
operational and environmental factors that affdent. Circumvention
relates to the resistance to be fooled or copietl farally acceptability

relates to the degree of social and personal aaio#ipt.

The designer needs to decide the sequence (seriadrallel) in
which the multiple sources of information are regdiand processed. The
application scenario decides the selection of gppate acquisition and

processing architecture.

Another main design issue is the integration ofedént biometric
sources, referred to as biometric fusion, as it &agod impact on the
performance of the system. The classificationshef fusion scheme are
sensor level, feature level, score level and decisevel. The choice of
fusion depends on the type of information from tiiemetric sources
namely, raw biometric samples, feature sets, matare and decision

labels.

The trade-off between the additional cost and perémce

improvement is the major concern in the design wiudtibiometric system.
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The cost depends on the number of sensors empldpedtime for
acquisition and processing, the gain in performabge reduction in
FAR/FRR, storage and computational requirementsvels as perceived

convenience to the user [16].

1.5.4 Levels of Fusion
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Figure 1.4 Fusion Levels in multimodal biometrisifan

The main classifications of the fusion scheme amesar level,
feature level, score and decision level as dematestrin Figure 1.4. The
type of information to be fused decides the masues associated with the
design of a multibiometric system. Broad classtimas based on levels of

fusion are fusion prior to matching and fusion aftatching.

The sensor module utilizes the raw biometric datd possesses
high information content. The information decread®gs subsequent
processing from the sensor module to the decisiodute. In the feature
level fusion, the information available from difégit sources may not be
compatible. For example, the feature vectors ofjdiprint minutia and
eigen face coefficients are not compatible for difeision. In most of the

multibiometric systems, it is easy to access ardbine the match score
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generated by different biometric matchers. Theeefonatch score level
fusion offers the best tradeoff in terms of infotioa content and ease of
fusion. In the design of a multibiometric systeime type of information

that is to be fused is one of the main issues.

1.5.4.1 Fusion Prior to Matching

The biometric information fusion prior to matchirgyeither at the

sensor level or at the feature level.

Sensor Level fusion

In the sensor level fusion, the raw data from thessrs are fused
[17]. Either the raw data can be the same biometsait acquired from
multiple compatible sensors or multiple instancéshe same biometric
trait obtained using a single sensor. In sensal lsion, the multiple data
must be compatible and correspondence betweenspoinst be estimated

reliably.

Feature Level fusion

The different feature sets extracted from multiplemetric sources
are combined in feature level fusion. The fusiom ¢e applied to the
extraction of different features from the same nhibdaor different
modalities to construct a joint feature vector. Appiate feature
normalization, selection and reduction techniquesstnibe applied before
combining the extracted features into one sing&ui@ vector [18]. The
concatenation of the feature vectors extracted ffioigerprints and palm

print modalities is an example of a feature-le\addad system.

The feature level fusion is difficult to achieve sSome cases. It is
difficult to fuse two incompatible feature sets.eT¢oncatenation of feature
vectors may lead to ‘curse of dimensionality’ peshl [19]. This reduces

the accuracy of the system. It is not possiblecitess features sets in the

17
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commercial biometric systems due to proprietarysoea. The success in
the use of feature level fusions is limited dugh® constraints mentioned

above.

1.5.4.2 Fusion After Matching

Fusion after the matching stage can be divided sion at the

match score level, fusion at the rank level anéfuat the decision level.

Score Level Fusion

The measure of similarity between the input anclzde template
is the match score. These match scores are intelgnatorder to achieve

the final recognition decision and is carried dutha match score level.

The score level fusion is also referred to as dmtisconfidence,
expert or opinion level fusion. In the score letigdion, it is possible to
combine scores obtained from the same biometrit daradifferent ones
using one or more classifiers. The divisions ofdndevel are combination
and classification. In the former approach, theasgie matching scores are
gathered to yield one score, which is used to niagdinal decision. In the
latter approach, the input matching scores areiderex as input features
for a two-class pattern recognition problem, white subject is classified
as legitimate or not. The classifier presents dadie measure or a
similarity measure between the input feature veend the templates

previously stored in the database.

Normalization must be carried out prior to scoreelefusion. The
range of match scores may bd [ +1] for one trait and [0, 100] for another
trait. The match scores after minmax normalizatios combined using the
sum of scores fusion rule. Figure 1.5 shows tbev fbf information in a

match score level fusion scheme.
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The match scores generated by individual matcheag not be
homogeneous. For example, the output of one matoiaer indicate a
dissimilarity measure whereas that of another meyeal a similarity
measure. In dissimilarity measure, a smaller destaimdicates a better
match whereas in similarity, a larger distancedatis a better match. This
discrepency should be considered in the match sewetfusion.

Rank Level Fusion

In this, a rank is assigned to the top matchingtiies. Match

scores are sorted in a decreasing order, whicheiooutput of rank level
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fusion. There are three methods to combine thesraskigned by different
matchers [20]. In the highest rank method, eachsiples identity is
assigned the best (minimum) of all ranks computediiferent systems.
Ties are broken randomly to arrive at a strict nagkorder and the final
method utilises the sum of the ranks assigned dyrtthividual systems to a
particular identity in order to calculate the fuseahk. The logistic
regression method is a generalization of the Bamlant method where a
weighted sum of the individual ranks is used. Treghts are determined

using logistic regression.

Decision Level Fusion

The commercial biometric matchers provide acce$storthe final
recognition decision. In such cases, the feasibletisn is decision level
fusion. In the literature, the methods used fos thision include ‘AND’
and ‘OR’ rules [21], majority voting [22], weightedajority voting [23],
Bayesian decision fusion [24] and Dempster Shdfieory of evidence
[24].

1.5.5 Challenges in Multibiometrics System Design

The design of a multibiometric system is a difficthsk even
though it offers several advantages such as laggmilgtion coverage,
greater security and flexibility. The challengingroplem in a
multibiometric system is that it is difficult to gdict the optimal sources of
biometrics information and the optimal fusion st for a particular

application. The reasons for these difficulties are

» Heterogeneity of information sources

The fusion at sensor level and feature level ifcdit due to

the incompatibility or heterogeneity of informatiocontent. For
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example, in multibiometric systems it may be impassto fuse either

the raw images or the features extracted from them.
Fusion Complexity

The complexity of the fusion algorithm may nullifthe
advantages of fusion. For instance, fusion at #wessr or feature
levels involves additional processing complexisesh as registration
and design of new algorithms to match the fused.dairther, the raw
data from the sensor and the extracted feature aetsusually
corrupted by various types of noise (e.g., backgdociutter in a face
image, spurious minutiae in fingerprint minutiaet s¢c.). Hence,
fusion at the sensor and feature levels may ndtt@any performance

improvement.
Varied discriminative ability

The unique information provided by each biometdarse can
be different. Simple fusion rules utilising equatightage for matchers
having higher and lower accuracy may yield lowetgrenance for the
combined system. Hence, it is also necessary tigrasgpropriate
weights to the different biometric sources basedhair information
content.

Correlation between sources

There may be some statistical dependency amonegreiiff
biometric sources. For example, the speech anddyement of a user
are physically related traits. Similarly, multipfamples of the same

biometric trait are correlated. In general, it ¥pected that the fusion
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of dependent evidences provides a large improvenrergccuracy

compared to the fusion of correlated sources.

1.6 Motivation and phases of the work

Biometrics is an efficient technology with greatspiilities in the
area of security system development for officiald asommercial
applications. The biometric systems, employing raglsi biometric trait,
referred to as unimodal biometric systems, face ¢dtchallenges such as
noisy data, restricted degree of freedom, intra-ugariability, non-

universality, spoof attack and unacceptable eats.r

A need has been identified to combine multipletéréo address the
challenges presented in the earlier section. Imibrx carried out, multiple
biometric traits are combined to enhance the pexdoice of automatic user
authentication systems. The development of the imodtal biometric
system that utilizes both behavioural as well agspiogical traits viz.

speech, face, signature and iris is discussedtail de this thesis.

Development of a personal authentication systemguspeech as
the behavioral biometric modality utilizing a hydbrspeaker recognition
system that incorporates both spectral and cepstmamation was the first
phase of the prototype development. The performanpeovement due to
the use of spectral features along with the cep$ta@ures has been
identified. The spectral features extracted wermecspl centroid, spectral
range, spectral rolloff and spectral flux while depstral features comprise

the Mel Frequency Cepstral Coefficients (MFCCs).

Development of a biometric system using face, wisctonsidered
as the essential, natural and unique characterigtiedentify a particular

person, was the second stage. The eigen face @pphas been used to
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extract features from the face. The Principal Conemd Analysis (PCA)
technique has been employed for the reductionroédsions of the feature
vector. The computational time efficiency has bemmpared for the
system with and without reduced dimensionality.e Huclidean distance
between the eigen face coefficients of the tempdae the detected face

has been utilized as the measure of identification.

Development of a system that utilizes signatumgesiit has been a
traditionally accepted longstanding method of ideattion, was the next
phase of the research. The static signature imiage avas insufficient for
identification of a forged signature. The improvemef the system by
using dynamic features of the signature has begbleshed in this work.
The static features have been derived using Galliersf and dynamic
features, namely, average stroke velocity and iawréa and Y- global axis
have been considered for the system. The reassele¢ct these features is

that they are simple to compute with minimum preegssing effort.

Development of an identification system using trigit, which is
least affected by genetic developmental processtisdast phase of the
prototype development. The most suitable edge tietetcechnique has
been identified for iris texture extraction. Thenmum feature based
representation has been used for complex iris imeage Haar wavelets

have been utilized for extracting iris code.

The performance of a bimodal, tri-modal and tet@dal biometric
has been evaluated separately. The performanckeo$ytstem with trait
specific score level fusion technique has been ewetp with that of a
system with equal weight score fusion techniquee H®ifect of user
dependencies found at the score level in individsidtems has been

identified. It is expected that the results of firesent work will help a
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system designer to choose the appropriate combmatfi the traits within

the scope of this study to achieve the specifiedllef performance.

1.7 Organization of the Thesis

The thesis is organized into nine chapters. A bdie$cription of

each of these chapters is given below:

24

The first chapter introduces the discipline of beirits and its
evolution towards multimodal biometrics. The chaplescribes the
modes of operations, performance measures andations of a
unimodal biometric system. It also investigates ey issues in
multimodal biometric systems along with various hatectures for

information integration.

In the second chapter, a review of work carried iouthe fields

related to the unimodal biometrics such as voiaegef signature and
iris available in open literature is discussedaldo summarizes the
related works of multimodal biometrics and the casnnapproach of

information integration in multimodal systems.

The third chapter discusses on the methodologytter proposed
multimodal biometric system. The logic behind chogsspeech,
face, signature and iris as biometric traits fas g#ystem is described.
It also gives an overview of the data acquisiticetimd, development
of the knowledge base, the feature component seldot each trait,
the fusion strategy and the parameters used fofonpesince

evaluation.

The fourth chapter focuses on the results of atiteting speaker

recognition using MFCC and Vector Quantization. e Ttechniques
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and procedures involved in extracting the variaatidre components
for speech are highlighted in this chapter. Theoiporation of
additional spectral features in the feature vesdopund to improve

the overall performance of the system.

In the fifth chapter, face recognition using Eidganes is explained.
The chapter also discusses the computational tffreeeacy of PCA
estimated through covariance matrix with and withthe use of

dimensionality reduction.

In chapter six, the suitability and effectivene§sambining the Grid
based Gabor Wavelet Transform approach and dynfeaiares in a
signature biometric system are demonstrated. Ttimom size of the
grid is determined based on the analysis of EER awerage

verification time.

In chapter seven, segmentation for iris authentinatising canny
operator is investigated. The effect of the eyebasl eyelashes is
minimized by trimming the area of the iris above tipper and below
the lower boundaries of the pupil. The Haar wavélahsform is
extracted from the iris image and used to imprdwe tecognition

accuracy.

Chapter eight deals with the possibility of fusitige information
contained in the voice signal, face image, sigmaiorage and iris
image for the purpose of personal identificatiortheg match score
level. The novel fusion strategy used in this wizrkalso discussed.
The results of the performance analysis of a moldah identification

system developed in this work are also presentgusrchapter.
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* Finally, chapter nine contains the summary of therkyw and the

directions for future work.

1.8 Summary

The biometrics has recently become a significant & any
efficient person authentication solution. The adaga of using biometric
traits is that they cannot be stolen, shared on éegotten. A background
on biometric and multimodal biometric is discusgadthis chapter. A
majority of the currently used biometric systemfemed as unibiometric
systems utilise a single biometric feature. Theyehaeveral limitations,
regardless of the significant advances in the fieldbiometrics. . The
limitations of unibiometric systems can be allegthby integrating various
biometrics into one unit. Multimodal biometric sgsts are those which
utilize more than one physiological or behavioubabmetric trait for
authentication purposes. The biometric data cafused at various levels,
namely, sensor, feature, matching score and deci$tee challenges in the
biometric systems and research needs in the cusoemario are reviewed

in this chapter.
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CHAPTER 2

REVIEW OF LITERATURE

This chapter is devoted to the review of the radeawork
reported in open literature in the areas of speadargnition, face
recognition, handwritten signature recognitions irecognition,
multimodal biometrics, normalization methods, difiet fusion
techniques, etc. The consolidated results by vaniesearchers on
the success rates of the different methods areusied. This
chapter also covers the recent trends in the fusiohnology of

various biometric traits.

2.1 Introduction

Multimodality forms the core of human-centric irfteres,
extending the access to a diverse number of usetsradifferent usage
contexts. The security that safeguards proper acdes computers,
communication networks and private information thesomes an issue of
prime importance in our everyday lives. The claasicser authentication
relies on tokens and passwords that may be easilyol forgotten. Use of
biometric authentication can overcome this prob&mit verifies the user’'s
identity based on his/her physiological or beharabeharacteristics such
as facial features, voice and fingerprints. Usethewtication should be
transparent to human-computer interaction to maemisability. In this
regard, multimodal human inputs to the computeeroffiultiple biometric

information sources for user authentication.

External conditions and variabilities often afféoe performance in

biometric verification due to the mismatched coiodis between enrolment
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and verification sessions, e.g. handset/microphdoesecording speech,
cameras for capturing facial images and fingerpeaders. In addition, the
user's speech may vary according to the ambiensenaonditions,
speaker’s health or speaking styles. The userialfanages may vary due
to changes in backgrounds, illuminations, headtjposi and expressions.
While none of the biometrics alone can guarantemlake reliability, they
can reinforce one another when used jointly to mdize the verification
performance. This motivates multimodal authenibcgtwhere decisions

based on individual biometrics are fused.

2.2 Speech

Shanehet al. 009) [25] designed a system to recognize voice
using MFCC and Vector Quantization (VQ) techniquehe feature
extraction is carried out using MFCC algorithm wdhethe cepstral
coefficients are calculated on a mel frequency escalQ (vector
guantization) method is used to minimize the comafom time by reducing
the amount of data. In the feature matching st&gelidean distance is
applied as the similarity criterion. The changeshi@ shape of the human
vocal tract cause variations in resonant frequenaiel formants. Utilizing
this phenomenon, the voice features of each utterare extracted. In the
training session, the user repeatedly utters theesaord five times. The
system then recognizes the user after receivingitieeance twice in each

testing session.

Zhou et al. 006) [26] developed a speaker identification syste
based on adaptive discriminative vector quantizatioAdaptive
Discriminative Vector Quantization technique foreaker identification
(ADVQSI) is found to have improved performance iomparison with
conventional VQ techniques. The ADVQSI techniquieetaadvantage of
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the inter-speaker variations between each indiVidpaaker and all the
speakers in the speaker identification group. &ntthining mode, for each
speaker, the speech feature vector space is dividgteda number of
subspaces on the basis of inter-speaker variatidhen, an optimal
discriminative weight is adaptively acquired forckaspeaker and each
subspace. The template differences between ditfesgeakers are
maximised. In the test mode of ADVQSI, discriminatweighted average
VQ distortion is used as the similarity measuremiesttween speakers’
templates and each testing waveform. The speakesevtemplate leads to

the highest similarity score will be identified.

Shi. Huanget al. 009) [27] studied the use of MFCCs and Support
Vector Machines (SVMs) for text-dependent speakerification. The
MFCCs are extracted from the password spoken byske These MFCCs
are then normalized and used as the speaker fedtur&aining a claimed
speaker model via SVM. Experiments were conductedhe Aurora-2
database with various orders of MFCCs. The experiateesults indicated
the average accuracy rate of the text-dependeakspeerification system
based on the 22order MFCC and SVM to be 95.1 percent.

Jablounet al. (1999) [28] developed a speech recognition system
based on multirate signal processing and the Teagenrgy operatorThe
speech signal is divided into nonuniform subbamdsniel-scale using a
multirate filterbank. After estimating the Teageeegies of the subsignals,
computation of the feature vector by log-comprassiad inverse discrete
cosine transform (IDCT) is carried out. The featpegameters derived in
this study seems robust even in the presence ofengmne noise. A
continuous density Hidden Markov Model (HMM) basespeech
recognition system with five states and three Ganssiixture densities is

used. The recognition performances of the Teagerggnoperator feature
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parameters are evaluated using the TI-20 speeeabalse of TI-46 Speaker
Dependent Isolated Word Corpus after incorporatagious types of

additive noise.

Revathiet al. 009) [29] presented the effectiveness of percéptua
features and iterative clustering approach in alsperecognition system.
Clustering models are utilized and the performaontethe system is
evaluated using isolated digits and continuous dpee from TI digits_1,

Tl digits_2 and TIMIT database. The statistical lgsia results of F-ratio
and by usingy? distribution are discussed. The accuracies of kspea
identification using isolated digit recognition amtbntinuous speech
recognition are found to be 91 and 99.5 percenpedsely. The
performance of the speaker verification systemveuated and its equal

error rate is found to be 9 percent.

Shafranet al. (2003) [30] proposed a HMM based classifier to
identify the speaker. SVMs with rational kernelg aised to identify the
content of the speech. Mirgg al. 007) [31] investigated the problem of
speaker recognition in noisy conditions assumingeabe of information
about the noise. The multicondition model trainiagd missing-feature
theory are combined to model noise with unknown peral-spectral
characteristics. Multicondition training is carriedt using simulated noisy
data and the missing-feature theory is applieéfioe the compensation by
ignoring noise variation outside the given trainimgnditions. The
algorithm was tested using two databases with sitedland realistic noisy
speech data. The first database is a redevelopofighe TIMIT database
by rerecording the data in the presence of vartypes of noise. The
second database is a handheld-device databasetedli@ realistic noisy
conditions. The new model is compared to baselipgtesms and is

observed to achieve lower error rates.
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Togneriet al. (2011) [32] presented speaker identification inhbo
noisy as well as noiseless environments. In cleanr@ments, a high
recognition rate of 95 percent on 64 speakers ligseged. The Gaussian
Mixture Model- Universal Background Model (GMM-UBMnd GMM-
SVM systems are found to be robust when confrowii#d limited training
data. It is found that the missing data methods @ampensate against
arbitrary disturbances and remove environmental nraishes.The
significance of combined approaches involving botigp estimation and

top-down processing is reviewed.

Campbell (1997) [33] designed an automatic speaieognition
system. The information, theoretic shape measudelame Spectral Pair
(LSP) frequency features are used to discriminatsvdien the speakers.
The divergence shape isterpreted geometrically as the shape of an
information-theoretic measure. The LSP frequenaes found to be
effective features in this divergence-shape meastlile high-quality
telephone-bandwidth is used to collect the spedcBOoseconds in real
world office environments. The accuracy of the &peadentification

system is found to be 98.9 percent.

Cui and Alwan (2005) [34] proposed a feature corsp&on
algorithm based on polynomial regression of utteeanThe bias between
the clean and noisy speech features is approximateda set of
polynomials. The feature vector is derived usingestation-maximization
(EM) algorithm under the maximum likelihood (ML) itrion. In
Automatic Speaker Recognition (ASR), Signal to MoRatio (SNR) for
the speech signal is first estimated and the nsp®ech features are then
compensated using regression polynomials. The cosaped speech

features are decoded via acoustic HMMs trained alghn data.
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Lee et al. @990) [35] developed a speaker recognition system,
SPHINX, which accounts for large vocabulary andttwous speech. It is
based on discrete HMMs with Linear Predictive Cgdii.PC) derived
parameters. It provides speaker independence lyrpgacating multiple

codebooks of fixed-width parameters into HMM.

Chulheeet al. 003) [36] proposed a method to minimize the loss
of information during the feature extraction stagéis is achieved by
optimizing the parameters of the mel-cepstrum fansation. Typically,
the mel-cepstrum is obtained by critical band fdtevhose characteristics
play an important role in converting a speech dign® a sequence of
vectors. The performance of the mel-cepstrum isyaed by changing the
parameters of the filters such as shape, centqudrey and bandwidth.
Experiments with Korean digit words show that tleeagnition rate is

improved by 4 to 7 percent.

Reynoldset al. 000) [37] described the major elements of GMM
used for speaker verification system. The systenbust around the
likelihood ratio test for verification. The Bayesiadaptation technique is
used to derive speaker models from the UBM andesoormalization is
employed to improve the verification performanceneTrepresentative
performance benchmarks and system behavior expaismen Speaker

Recognition Evaluations are presented.

Furui (1981) [38] developed an automatic speakeifization
system for telephone speech data. The operatitredfystem is based on a
set of functions of time obtained from acoustic lgsia of a fixed and
sentence-long utterance. Cepstrum is extracted dgnmof LPC analysis
successively throughout an utterance and the frexyuesponse distortions

introduced by transmission systems are removed. tifilne functions are
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expanded by orthogonal polynomial representations #e overall
distance between registration and the stored mteres calculated. This is
accomplished by a new time warping method using yamauwhic
programming technique. Aecision is made to accept or reject an identity
claim, based on the overall distance. The referemcetions and the
decision thresholds are updated for each custorBexeral sets of
experimental utterances, which include male and afemutterances
recorded over a conventional telephone connectare, used for the
evaluation of the system. Results thfe experiment indicated that a
verification error rate of one percent or less ddo¢ obtained even if the
reference and test utterances are subjected tereliff transmission

conditions.

Markel and Davis (1971) [39nalysed a database consisting of
unconstrained extemporaneous speech of 36 hoursdezt over a period
of more than three months from 17 speakers. Theererpnts
demonstrated that a monotonic increase in the pifityaof correct
identification and a monotonic decrease in the kegquar probability for
speaker verification could be obtained using logmgrt average feature
vectors.The accuracy of the system is found to be 98 pénvben tested
with text independent speech data (without linguisbnstraints) of 39

seconds.

Soonget al. (1985) [40] used VQ codebook for characterizing th
short-time spectral features of a speaker. A setoafebooks is used to
recognize the identity of an unknown speaker. Thaimum distance
(distortion) classification rule is used. A seriek speaker recognition
experiments is performed using a 100 talker (50ereid 50 female)
telephonically recorded database consisting oatedl digit utterances. The

effects on performance of different system paramseseich as codebook
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sizes, the number of test digits, phonetic richriésbe text and difference
in recording sessions are studied. The speaketifidation accuracy of the
system is found to be 98 percent for ten random diifierent isolated

digits.

Lin et al. (1994) [41] explored the use of an array of mitwapes to
capture speech under adverse acoustic conditioas iautomatic speaker
identification system. The system is evaluated gis@verberated speech
signals, generated by a computer model of room siimsuand transduced
by different simulated microphone arrays. The iefloe of vector
guantization techniques, codebook size and the romfe cepstrum
coefficients on the performance of the speaker tifiestion system is
evaluated. It is found that the 2-D matched-filbeicrophone arrays are
capable of producing high speaker identificatioores in a hostile acoustic

environment such as multipath distortion and coingatoise sources.

Reynoldset al. (1995) [42] used GMM for robust text-independent
speaker identification. The individual Gaussian ponents of a GMM are
shown to represent some general speaker-deperpiited shapes that are
effective for modeling speaker identity. The progmbsnodel is found to
yield high identification rates for short utterasc&om unconstrained
conversational speech. A telephone speech databa8speakers is used
for testing the system. The algorithmic issues sash initialization,
variance limiting and model order selection are ngixed. The system
performance is compared with other speaker modé&ngniques such as
uni-modal Gaussian, VQ codebook, tied Gaussianurexand radial basis
functions. The Gaussian mixture speaker model ismdoto provide an
identification accuracy of 96.8 percent when clepeech utterances of 5
seconds are used and an accuracy of 80.8 percen¢léphone speech
utterances of 15 seconds.
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Maleh et al. (2000) [43] proposed a speech/music classification
technique based on the line spectral frequenci&Fg). Two different
classification methods such as quadratic Gaussi@nnaarest neighbour
are used. The feature vector for a one-second wingl@alculated and the
correct classification rate is obtained as 90.Zgar When LSF features
are used in conjunction with Zero Crossing RateRY,Ghe performance of

the system is found to be 94.8 percent.

Meindo and Neto (2003) [44] carried out audio segtaton,
classification and clustering. The symmetric Kutlkd_iebler, KL2 is used
for audio segmentation and it is calculated overc&gual Linear
Prediction (PLP) coefficients extracted from an iausignal. The same
features are used for the purpose of speech/n@tkpdassification. For
analysis window of 0.5 seconds, a correct clasgifio rate of around
92.6% is obtained.

Panagiotakis and Tziritas (2004) [45] developedpaesh/music
discriminator based on RMS and Zero-crossings. &ecd classification

rate of about 95 percent is obtained in this study.

Zhang and Kuo (1999) [46] proposed a system tlestsdies audio
recordings into basic audio types using simple @déatures such as the
energy function, average zero crossing rate andtigppepeak track. An
accuracy rate of more than 90 percent is obtained this audio

classification system.

Sourjya Set al(2014) [47], in the paper demonstrated the
significance of stochastic feature compensatiorhous for robust speaker
verification in noisy environment. The performanmethese data-driven

methods was studied for speaker verification on MIST-2003-SRE
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database, in different simulated noisy environmé&hie algorithms based
on joint GMM modeling of clean and noisy data (e.§tereo based
Stochastic Mapping (SSM), Trajectory based stoahastiapping

(TRAJMAP)) were found to outperform well-known atgbms like Stereo
Piece-Wise Linear Compensation for Environment (8B) and

Multivariate Model Based Cepstral Normalisation (Ii@M) in terms of

EER and minimum Decision Cost Function (minDCF) nastof speaker
verification. The overall best performance was obs# in case of the
TRAJMAP algorithm, which thereby suggests significa of dynamic
feature correlation and robustness of long termeratices towards

background noise.

Mohan A et al(2014) [48] presented an experimental study that
investigated acoustic modelling configurationsdpeech recognition in the
Indian languages — Hindi and Marathi. The experi@erstudy was
performed using data from a small vocabulary aditical commodities
task domain that was collected for configuring sgoklialogue systems.
Two acoustic modelling techniques for mono-lingA&R were compared
namely — the conventional Continuous Density HMMDHMM) and the
Subspace GMM (SGMM) acoustic modelling techniquéie TSGMM
mono-lingual models were seen to outperform th&HM™MM counterparts
when there is insufficient acoustic training dafdne best performing
system at 77.77% is obtained when the Hindi langusgtes are weighted
at 0.8. At this point, an improvement of 1.57% dbtois seen with respect
to the SGMM baseline of 76.2%.

Dufour Ret al(2014) [49], proposed an analysis of various agoust
and linguistic features extracted from an automapeech recognition
processing in order to characterize and detecttapenus speech segments

from large audio databases. This classificationhodt performed at the
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segment level, allowed the system to associateass abf spontaneity to
each speech segment. It is then extended to tissifatation process by
using a probabilistic contextual tag-sequence moithalt takes into
consideration information of surrounding segmerttse classification
becomes a global process. This method improved réiselts: 73.0%
precision in the detection of high spontaneous @pesgments, with a
73.5% recall measure, and a 66.8% precision an®.8%6 recall on

prepared speech segments.

Sahidullah M.et al(2012) [50], proposed a block based MFCC
computation schemes for speaker recognition inynaisndition. The
feature extraction schemes using non-overlapped awerlap block
transformation are analytically formulated. The exmental evaluation is
performed on standard databases, and this showsfdiraant specific
block transformations perform better.The EER 018286% and minDCF
of 5.9546% are achieved.

2.3 Face

Phillips et al. 005) [51] described the challenge problem and data
corpus in respect of face recognition system. Tdselne performance and
preliminary results on natural statistics of fadiahagery are presented in
this paper. The Face Recognition Grand ChallengeGE) problem
consists of experiments, which include performamsasurement on still
images, 3D imagery, multi-still imagery as well lastween 3D and still
images. The influence of images taken with and autltontrolled lighting

as well as background is to be studied.

Prakashet al. 008) [52] proposed a human face segmentation

using the elliptical structure of the human helidmakes use of the
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information present in the edge map of the imagethls approach, the
eigen values of the covariance matrix represeritiggelliptical structure
are used. Additional parameters are also useddntifgl the centre and
orientation of the face. The Circular Hough Tramsfq CHT) is used to
evaluate the elliptical parameters. Sparse matgkrtique is employed to
perform CHT, as it squeezes zero elements, andriigs® small number of
non-zero elements, thereby having an advantagessf $torage space as
well as computational time. Neighborhood suppressicheme is used to
identify the valid Hough peaks. The accurate posgiof the circumference
pixels for occluded and distorted ellipses are tified using Bresenham’s
Raster Scan Algorithm, which uses the geometrigainsetry properties.
This method does not require the evaluation of d¢atg) for curvature
contours, which are very sensitive to noise. lioisnd that increasing the

training set improves the performance of the system

Kim et al. 002) [53] proposed Kernel Principal Component
Analysis (KPCA), which is a nonlinear extension afnventional PCA
technique. The input space is mapped into a feapaee via nonlinear
mapping and the principal components in the feaspace are computed.
By adopting a polynomial kernel, the principal campnts are computed
within the space spanned by high-order correlatadniaput pixels making
up a facial image, thereby resulting in a good grenince. The error rate

reported for the proposed method is 2.5 percer2@mimulations.

Demirel and Anbarjafari (2008) [54] proposed a hmgrformance
pose invariant face recognition system based ompibieability distribution
functions (PDF) of pixels in different color chatseThe PDFs of the
equalized and segmented face images are usediascstbfeature vectors.
The Kullback—Leibler distance (KLD) between the P@ifa given face and

that in the database is computed and the minimunselgcted for
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recognition. Feature vector fusion (FVF) and ma&orvoting (MV)
methods are employed to combine the feature veabbtained from
different color channels in HSI (Hue Saturation amignsity) and YCbCr
color spaces. The proposed system is tested oRERET and the Head
Pose face databases. The recognition rate obtasird FVF approach for
FERET database is 98.00% compared with 94.60% &®0% for MV
and PCA based face recognition techniques, respécti

Spies and Ricketts (2000) [55] developed a facegm®ition system
using Fourier spectra analysis. Recognition is ead by finding the
closest match between feature vectors containied-turier coefficients at
selected frequencies. In Fourier spectra of famabe analysis, every pixel
in the image contributes to each value of its spect The Fourier
spectrum is a plot of the energy against spatgjudencies, which is related
to the spatial relations of intensities in the imadn the case of face
recognition, this translates to distances betweesasa of particular
brightness, such as the overall size of the heatheodistance of the eyes.
Higher frequencies describe finer details, whicle dess useful for
identification of a person. The Euclidean distanaes calculated between
feature vectors with entries that are the Fouriean$form values at
specially chosen frequencies. The faces are repednby finding the
minimum Euclidean distance between a newly presefatee and all the
training faces. It is found that as low as 27 fesgies yield an accuracy
rate of 98 percent. Moreover, this small featuretmecombined with the

efficient Fast Fourier Transform (FFT) makes tlyistam extremely fast.

Temdeeet al (1999) [56] presented a frontal view face rectigni
method by using fractal codes. The fractal codesdatermined from the
edge pattern of the face region covering eyebr@yss and nose. In this

recognition system, the obtained fractal codes fark as inputs to a
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backpropagation neural network for identifying adividual. The system
performance is tested on the ORL face database.c®irect recognition
rate of the proposed sytem is found to be 85 péracenhe ORL face
database.

Wiskott et al. (1997) [57] presented a geometrical local feature
based system for face recognition. Elastic BuncipGmMatching (EBGM)
is used in this system. The faces are represemntdabieled graphs, based
on a Gabor Wavelet Transform (GWT). Image graphsiek faces are
extracted by an Elastic Graph Matching processcamdpared by a simple
similarity function. The phase information is uséal accurate node
positioning and object-adapted graphs are use@ndlé large rotations in
depth. The image graph extraction is based on timelb graph, which is
constructed from a small set of sample image grajphsontrast to many
neural-network systems, no extensive training ®w riaces or new object
classes is required in this system. The systenbitshinost of the variance
caused by position, size, expression and pose ebdngextracting concise
face descriptors in the form of image graphs. Es¢éhimage graphs, some
predetermined points on the face (eyes, nose, netathare described by
sets of wavelet components (jets). The recogniba of the architecture is

found to be 98 percent when tested using a gatiePp0 individuals.

Chunget al (1999) [58] suggested the combined use of PCA and
Gabor Filters in face recognition system. GaboteFsl are used to extract
facial features from the original image on prededirfiducial points and
PCA is used to classify the facial features optiyndihe combined system
is suggested to overcome the shortcomings of aatane PCA. When raw
images are used as a matrix of PCA, the eigenspacrot reflect the
correlation of facial features well because theyinel face images have

deformation due to in-plane and in-depth rotatithamination and contrast
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variation. Gabor Filters are used to overcome thpssblems. The
experimental results show an improvement in redagnirates of 19 and
11 percent when compared to conventional PCA metho@&AIT dataset

and Olivetti dataset respectively.

Jooet al. (1999) [59] suggested the use of Radial Basis ffwmc
(RBF) Neural Networks for the extraction of discmant eigenfeatures of
a face image. Hybrid learning algorithm is usedi¢srease the dimension
of the search space in the gradient method, whscterucial for the
optimization of high dimension problems. The fadedtures are extracted
by both the PCA and LDA methods and the Hybridesy algorithm is
used to train the RBF Neural Networks. The expeniaderesults on the
ORL database image of Cambridge University showear rate of 1.5
percent, which is a tremendous improvement oveb#st existing result of

3.83 percent.

Panet al. (2005) [60] developed a 3D face recognition systesing
the facial shape. The Region of Interest (ROI) fr@an image is
automatically extracted and it is flattened usisgmorphic mapping to get
the relative depth image. The eigen face vectoes camputed for the

recognition.

Belhumeuret al. (1997) [61] demonstrated that the Fisherface error
rates are lower than those of the Eigen face tgclenihe PCA is used to
reduce the dimensionality of the input space amdLlilnear Discriminant
Analysis (LDA) is applied to the PCA reduced spat®rder to perform
the real classification. However it has been derratexdd in the recent
works of Chenet al. (2000) [62] that the discriminant together witte th
redundant information gets discarded by combini@§Rnd LDA. Hence,

it is suggested to apply the LDA directly on thput space in some cases.
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Chen et al (2005) [63] developed a feature vector generation
scheme based on multi-class mapping of Fisher doorkace recognition.
The HMM method is employed to model the classefaoé images. A set
of Fisher scores is calculated through partial vdgive analysis of the
parameters estimated in each HMM. These Fisherescare further
combined with some traditional features such as-lilk@jihood and
appearance based features. The feature vectomitetkig! strengths of both
the local and holistic features of human face. LBAapplied to analyze
these feature vectors for face recognition. Expenital results on a public

available face database are used to demonstrawathikty of this scheme.

Graf et al (1995) [64] developed a method to locate the facial
features and faces in gray scale images. After bpass filtering,
morphological operations are applied to enhancer#éggons with high
intensities that have certain shapes (e.g., eyE®. histogram of the
processed image typically exhibits a prominent pédsed on the peak
value and its width, adaptive threshold values sekected in order to
generate two binarized images. The connected coemeare identified in
both the binarized images to locate the areas wdidate facial features.
Combinations of such areas are then evaluatedola#sifiers to determine
whether and where a face is present. The propogsdns is tested with
head-shoulder images of 40 individuals and withe fiideo sequences

where each sequence consists of 100 to 200 frames.

Hanet al. (1998) [65] developed a morphology-based technique
extract eye-analogue segments for face detectios.suggested that eyes
and eyebrows are the most salient and stable &satfrhuman face and
thus, useful for detection. The eye-analogue setgrame defined as edges
on the contours of eyes. The morphological opematisuch as closing,

clipped difference and thresholding are applie@xtract pixels at which
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the intensity values change significantly. Theseelsi become the eye-
analogue pixels in this approach. The labeling @sscis performed to
generate the eye-analogue segments and these segmemused to guide
the search for potential face regions with a gedoatcombination of

eyes, nose, eyebrows and mouth. The candidatedgams are verified by
neural network techniques. The experiments dematestithat the accuracy

rate is 94 percent when tested with a set of 12@jems.

Amit et al. (1998) [66] presented a method for shape detectidn a
applied it to detect frontal-view faces in stiltensity images. Detection is
carried out in two stages namely, focusing andnsitee classification.
Focusing is based on spatial arrangements of edggnénts extracted
from a simple edge detector using intensity diffieee From a set of 300
training face images, particular spatial arrangamenfh edges, which are
more common in faces than backgrounds, are selesieg an inductive
method developed by Amitet al. (1998) [66]. Meanwhile, the
Classification and Regression Trees (CART) algaoritiproposed by
Breimanet al.(1984) [67] is applied to develop a classificatioset from
the training images. Given a test image, the regannterest are identified
from the spatial arrangements of edge fragmentsh [Eegion of interest is
then classified as face or background using thenéeh CART tree. The
experimental results on a set of 100 images froenQkivetti data set of
Samaria, (1994) [68] indicated a false positive 1@t0.2 percent per 1,000

pixels and a false negative rate of 10 percent.

Augusteijn and Skufca (1993) [69] developed a mettiat infers
the presence of a face through the identificatibface-like textures. The
textures are computed using second-order statisgatures proposed by
Haralicket al. (1973) [70] for sub images of 16 x16 pixels. Thtgees of

features are considered, namely, skin, hair, angerst A cascade
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correlation neural network developed by Fahiman lagliere (1990) [71]
for supervised classification of textures is use&ohonen self-organizing
feature map [72] is employed to form clusters fiffedent texture classes.
To infer the presence of a face from the textubels the occurrences of

hair and skin textures are suggested.

Dai and Nakano (1996) [73] applied Space Gray L®egendence
(SGLD) model to face detection, where color infofior is incorporated
with the face-texture model. Using the face-textumedel, a scanning
scheme for face detection in color scenes is dedigmd the skin colour
regions in the face areas are enhanced. One adeaotahis approach is
that it can detect faces, which are not uprighhave anomalies such as
beards and glasses. The detection rate is found 88 percent for a test set

of 30 images with 60 faces.

Adini et al. 1997) [74] suggested that the differences between
images of one face under different illumination ditions are greater than
the differences between images of different facemleu the same
ilumination conditions. A method is proposed tendify and compensate

for the effect of lighting conditions in variouscErecognition systems.

Zhao and Chellappa (2000) [75] used a generic 3HPace of a
face, together with a varying albedo reflectancaleh@and a Lambertian
physical reflectance model to compensate for bbéhlighting and head
orientation. A recognition system based on lindgacriminant analysis is

developed.

Cutler (1996) [76] showed that infrared images barsuccessfully
applied to decrease the error rate. An artifiaiédared light source is used

to reduce the effect of external light sources. Tieposed system is
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suggested to be used in security applications ascdite access. However,
the use of such a light source is not always praktparticularly if the

camera is far from the subject.

Pentlandet al. (1994) [77] developed an eigen face system by
including multiple viewing angles of a person’sdaé modular eigenspace
system is incorporated to improve the overall pannce of the system

subjected to varying lighting conditions.

Liu H.D et al. (2014) [78] proposed two methods based on Local
Histogram Specification (LHS) to preprocess faoades under varying
lighting conditions. A high-pass filter is applied a face image to filter the
low frequency illumination.Then, local histogramadalocal histogram
statistics are learned from normal lighting imagBse LHS is applied on
the entire image. By fusing Local Binary Patterh8F), Gabor and
Monogenic Binary Code — Orientation (MBC-O) feaguget recognition

rates over 76%.

Gaidhane V. Het al(2014) [79] proposed a technique for face
recognition based on the polynomial coefficientsyariance matrix and
algorithm on common eigen values. In the proposegraach the
identification of similarity between human faces aarried out without
computing actual eigen values and eigen vectorsthis approach, a
companion matrix, which is obtained using the potwal coefficients,
represents the features of images. A symmetricixntrcalculated using
the proposed approach and the nullity of such sytmemaatrix is used as a
similarity measure for classification. The numelricalue of nullity is zero
for dissimilar images and distinctly large for diani images. The

recognition rate of 98.00% is achieved.
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Zhou C.et al(2013) [80], proposed a method based on PCA image
reconstruction and LDA for face recognition. Thaen-classes covariance
matrix for feature extraction is used as generatirggrix and then eigen
vectors from each person is obtained, then thetagied images are
obtained. The residual images are computed by attbtg reconstructed
images from original face images. Furthermore, id&dual images are
applied by LDA to obtain the coefficient matricéBhe two classifiers,
minimum distance classifier and SVM are used. Thmultion
experiments illustrate on the ORL face databaseerwthe minimum
distance classifier is used, the average recognitade is 97.48%, and

while using SVM, the average recognition rate i8%.

2.4 Signature

Guo et al(1997) [81] proposed a model-based segmentation
approach for the verification of static (off-lingjgnature images and the
detection of forgeries. The segmentation involdentification of junction
points and recovery of strokes consistent withntleglel. For verification, a
guestioned signature is segmented based on the iefigenation. The
features of the segments suchvadth, direction and type (loop, retrace
etc.) are obtained. In thmatching process, the correspondence between
the test image and the model is established. Tlantidied one-to-one
correspondence is used for detecting forgeriesigAificant feature of the
approach is that a segment-wise correspondenceeettie model and the
guestioned signatures is obtained. This enablexamine both the global

and local features of the questioned signature.

Justinoet al. 2001 [82] used a grid segmentation scheme toatolle
the features of the signature image. HMM is empioyer identifying
intrapersonal and interpersonal variations of digeamodels. Both static
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and pseudodynamic features are used to charactagzsignal. The pixel
density in each of the grid cells called the Exesh@&hadow-Code (ESC) is
obtained as the static feature. A signature skelet@ge projected into the
grid is used to determine the predominate stroketsh each cell. The
axial slant is recorded as the pseudodynamic feattithe signature. A set
of codebooks for each feature is generated usingto¥eQuantization
process, based on the k-means algorithm. The HMjhasire model
adapted to each writer is generated and it has shwamising results for

random forgery identification.

Mizukami et al. 999) [83] proposed a method using an extracted
displacement function originally proposed by Fatgl. 003) [84]. The
method consists in minimization of a function, defil as the weighted sum
of a squared Euclidean distance between two siggmand a penalty term
for the smoothness of the displacement functiorrtter to avoid stopping
at local minima, the signatures are transformed itbarse images by
Gaussian filtering technique. The performance efdhtoassociator neural
network based on the constructive cascade cowalatrchitecture
(CASCOR) method is compared with a multilayer pptean network
(MLP) with back propagation. The set of 12 featuie®xtracted by the
method of moments and PCA. Skeleton image prodsizesioments and
edge images give signature global slopes. Fronptessure response, the
pressure threshold and pressure factor are exdraatbile using PCA, first
forty eigen values and eigen vectors are usedeafetiture vector. The test
results indicated that CASCOR performs significamiétter than MLP in

the signature verification tasks of simple and mndorgeries.

Sato and Kogureg(1982) [85] proposed the use of Dynamic
Programming Matching (DPM) to align the shape ghatures consisting

of pen-down strokes. After having normalized the¢adwith respect to
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translation, rotation, trend and scale, the sigeaisi aligned. The DPM is
also used to compute the alignment of the pregsntion and to calculate
a measure of the difference in writing motion. Tdlassification of the

signature is carried out based on three measurensech as the residual
distance between shapes after time alignmentegidual distance between

pressure functions and the distance between wiitiogons.

Parizeau and Plamond@f990) [86] evaluated the use of DPM for
signature verification by aligning either the pmsi{ velocity or
acceleration in the horizontal or vertical direntiofThe complete signing

trajectories consisting of both pen-down and pestupkes are used.

Hastieet al. (1991) [87] obtained a statistical model of sigmes
that allows for variations in the speed of writigg well as affine
transformations. DPM is used to find the correspore between speed
signals of pairs of signatures. The distance meaptovided by DPM is
used as the classification parameter. During tnginihe signature with the
lowest distance to all the others is chosen asdference and its speed
signal is used to perform letter segmentation.ofiler signatures are also
segmented into letters by using velocities and lacagons of the
individual strokes. Pen-up strokes are merged thighpen-down strokes in

the pre-processing phase.

Nalwa (1997) [88] parameterized the pen-down ssoké the
signature using arc length instead of time; a numife characteristic
functions such as the coordinates of the centemaesfs, torque and
moments of inertia are computed using a sliding matational window
and a moving coordinate frame. A simultaneous DR arc-length of all
these characteristic functions for the two sigreguander comparison is

taken as the measure of similarity for classifmati
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Hairong et al. (2005) [89] proposed a novel off-line Chinese
signature verification method based on support orechachine. The
method uses both static and dynamic features. i $eatures include
moment features and 16-direction distribution wherehe dynamic
features include gray distribution as well as stwokith distribution. The
support vector machine is used to classify theadiges. The experiments
on real data sets revealed an average error rate mdrcent, which is

obviously satisfactory.

Kaleraet al. 004) [90] used a combination of Gradient, Struadtur
and Concavity features to extract the significaattéires of a signature. The
global, statistical and geometrical features of signature are obtained.
The Bayes and k-nearest neighbor classifiers aesl us the online
signature verification and identification domaiespectively. It is claimed
that an accuracy of 78.1 percent for verificatiomd @3.18 percent for

identification can be obtained for the system.

Munich et al. 003) [91] proposed a new camera based biometric,
visual signature identification system. The impoca of the
parameterization of the signatures to achieve gdedsification results
independent of the variations in the position & damera with respect to
the writing surface is discussed. It showed thdinaf arc length
parameterization is better than Euclidean arc lenghe verification error
rate of the system is found to be 4 percent omeskibrgeries and 1 percent

on random forgeries, better than camera-based bimsie

Jayasekaraet al. 006) [92] proposed a signature recognition
method based on the fuzzy logic and genetic algorit (GA)
methodologies. It consists of two phases; the fugdgrence system

training using GA and the signature recognitione Tieature extraction
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process follows selective pre-processing. The ptige profiles, contour
profiles, geometric centre, actual dimensions, aigre area, local features
and the baseline shift are considered as the teatetr in this study. The
input feature set is divided into five sections and five separhatezy
subsystems are used. The results are combined asegond stage fuzzy
system. The fuzzy membership functions are optithize&ing the GA. The
genuine signatures, random forgeries, skilled foege of a particular
signature and different signatures are used fdnitrgqe The optimized
recognition system is used to identify the sigmatdt is found that the
signature recognition accuracy rate of the systerabiout 90 percent for
genuine signatures, 77 percent for random forgeaies 70 percent for

skilled forgeries.

Vargaset al. 009) [93] represented information about pressure
distribution from a static image of a handwritteégnsiture as histogram.
The pseudo-cepstral coefficients are calculatedh fitee histogram. Finally,
the unique minimum-phase sequence is estimatecused as the feature
vector for signature verification. The optimal nunbof pseudo-
coefficients is estimated for best system perfomearExperiments are
carried out using a database containing signatiroes 100 individuals.
The robustness of the analyzed system for simpigefees is tested out
with a Least Square Support Vector Machine (LS-SViMpdel. The
experimental results showed that using pseudo-caits, the equal error

rate is found to be 6.2 percent.

Mohamadi (2006) [94] presented a Persian staticnasige
identification system using PCA and MLP neural raky In training
phase, PCA is used to construct some eigen vebt@sed on training
database images. In test phase, the eigen vakeacbfeigen vector from a

new signature image is extracted using PCA. Thegmevalues are used
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as features and are fed to a MLP classifier. Fereperiment, 20 classes
of Persian signatures comprising 10 signatures tfaming and 10
signatures for testing are used. Identificatioe i@t the system is reported

to be 91.5 percent.

Sigari and Pourshahabi (2006) [95] investigated natigre
identification and verification using signal-proseg) approaches. The
performances based on Discrete Cosine Transform TY{DGough
transform, Radon transform and Gabor Wavelet Taansf(GWT) are
compared. It is reported that the GWT system per$obetter than the
other systems. GWT is used as the feature extraawEuclidean distance
as the classifier in both identification as wellasification. A virtual grid
is placed on the image of the signature and sorefficients are computed
by GWT on each point of the grid. A Persian signratlatabase is used for
experimentation. ldentification and equal erroesatre reported to be 99.5

percent and 15 percent respectively.

Ozgunduz et al. (2005) [96] presented an off-line signature
verification and recognition system using globaltectional and grid
features. SVM is used in order to verify and cligsthe signatures. For
recognition, the signatures are accounted as d-oha#ts problem of one-
against-all SVM. The performance of the systemaspgared with MLP
and the results showed that SVM has better perfocetghan MLP.

Martinez et al. (2006) [97] presented an efficient offline human
signature recognition system based on SVM and e¢kslts are compared
with an MLP system. Two approaches are used in twhcases:- In the
first approach, each feature vector is construatsithg a set of global
geometric and moment-based characteristics frorh smmature while in

the second approach, the feature vector is costtugsing the bitmap of
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the corresponding signature. Signature databasminorg 228 signatures
in 38 classes is used for performance analysisulBeshowed that the
recognition rate of SVM is 71 percent while thatifP is only 47 percent.

Coetzeret al. (2004) [98] presented an offline signature veaifion
system using Discrete Radon transform as featuractgr and HMM as
classifier. A database containing 924 English digres of 22 writers is
used. The experimental results showed that EERB ipetcent for skilled

forgery and 4.5 percent for casual forgery.

Fakhlaiet al. 011) [99] proposed a new offline Persian sigreatur
recognition system based on the contourlet trams{@T). SVM is utilized
as a tool to evaluate the performance of the pexgbamethod. In the
proposed method, the first signature image is nlbzedh by size and the
image is enhanced to remove the noise. After poegssing, the signature
image is divided into four regions and contourle¢fticients are computed
on each region. The histogram of orientation arel direction of each
region are computed. The histograms are fed tyex laf SVM classifiers
as the feature vector. The Persian dataset comgisti400 genuine images
and 200 forgery images is used for testing theoperdnce of the system.

The recognition rate is found to be 98 percent.

Yang et al. (1995) [100] used HMM to model the sequence of
normalized angles along the trajectory of the digrea For the individual
HMM, the Baum-Welch algorithm was used for estimgtthe parameters
of the HMM during training and testing. A single HiWhaving left-to-right
skip topology with 6states models each signaturachE individual
contributed 16 signatures, eight of them are usedréining and the rest
eight kept for testing. The model is tested on tluese of 496 signatures
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gathered from 31 users. The FAR and EER of theesystre found to be
6.45 and 1.18 percent respectively.

Shafiei and Rabiee (2003) [101] proposed a systased on
segmenting each signature and identifying percdptumportant points. A
vector consisting of seven features, four dynammd #hree static, is
computed for each segment. The feature vectarake sand displacement
invariant. The resulting vectors are used for tragran HMM to achieve
signature verification. A database consisting d@ §2nuine signatures and
1010 forgery signatures collected from a populatb®9 users is used for
testing the proposed system. The False Acceptaate iR found to be 4

percent and False Rejection Rate is 12 percent.

Lee (1996) [102] investigated the use of three alemetwork
approaches for classifying signatures. Bayes Myt Perceptrons
(BMP), Time Delay Neural Networks (TDNN) and Inpdtiented Neural
Networks (IONN) are the various approaches consitlér this study. The
input to the neural networks is a sequence of miateous absolute
velocities extracted from the spatial coordinat€onsequently, the
database used consists of 1000 genuine signatar@sonly one user and
450 skilled forgeries from 18 trained forgers. Thack propagation
algorithm is used for network training. In this exijment, BMP is found to
provide the lowest misclassification error rate,ickhis equal to 2.67

percent.

Lejtmanet al. (2001) [103] applied wavelets and back-propagation
neural network together for the on-line signatueeification purpose. The
feature vector comprises functions such as the gressure, x and y
velocity and the angle of pen movement. The Daubseh wavelet

transform with 16 coefficients is applied to congwehe feature vector.
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The end coefficients are given as the input towalenetwork. The FRR is
found to be 0.05 percent and False AcceptanceiRéss than 0.1 percent
when a database of 922 genuine and forged sigsagathered from 41

persons is used.

Zanuy (2007) [104] studied the performance of VQN&arest
Neighbor(KNN), Dynamic Time Wrapping (DTW) and HMM database
of 330 users, which includes 25 skilled forgeriesrf@rmed by five
different impostors, is used. The experimental ltesshowed that the first
proposed combination of VQ and DTW outperformed tbéher
combination of DTW and HMM. The minimum detectionst function
value is found to be 1.37 percent for random faggeand 5.42 percent for

skilled forgeries.

Nanni and Lumini (2008) [105] proposed an on-lingnature
verification system using Linear Programming Dgstori (LPD) classifier.
The information is extracted as time functions darious dynamic
properties of the signatures. The discrete 1-D Veaweansform (WT) is
performed on the extracted features and the DisdBasine Transform
(DCT) is used to reduce the approximation coeffitsevector obtained by
WT to a feature vector of a given dimension. Tesing all the 5000
signatures from the 100 subjects of the SUBCORPQEBMCYT Bimodal
Biometric Database yielded an Equal Error Rate o6 3 percent in the

skilled forgeries and 1 percent in random forgeries

Roy S.et al(2014) [106], presented a grid based, contour ase
and area based approach for signature verificaligarsecting points and
centroids of two equal half of the signature isngecalculated and then
those centroids are connected with a straight dineé the angles of these

intersecting points with respect to the centroidsnecting lines are
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calculated. In this paper simple forgery and sHilllorgery both are
considered, simple forgery case produce a low FARskilled forgery case
produces 11-20% FAR. on the other hand FRR wascestio 7-19%.

Kumar R.et al.(2012) [107], proposed a writer-independent aféli
signature verification scheme based on surroundedfeatures extracted
from the binary image of signatures. The featurd based on
surroundedness property of a signature represduttdshape and texture
attributes of the signature. Two classifiers nametyltilayer perceptron
and support vector machine are implemented anddest two publicly
available database namely, GPDS300 corpus and CEDBR®Rature
database.The best accuracy of the proposed sységngorup to 93.46%.

Vargas J.Fet al(2011) [108] , described a method for conducting
off-line handwritten signature verification. It war at the global image
level and measures the grey level variations inittiege using statistical
texture features. The co-occurrence matrix andllbozary pattern are
analysed and used as features. A histogram ispateessed to reduce the
influence of different writing ink pens used by regs. Genuine samples
and random forgeries have been used to train an $\del and random
and skilled forgeries have been used for testinghie experimental results
for skilled forgeries show that using grey levefommation achieves a

reasonable system performance of EER, 16.27%.

Shukla A.Ket al(2014) [109], process the scanned hand written
signature and it is verified on the following paeters such as Permissible
boundary, Hand pressure, Euclidian distance, Caiteylinder generated
from minimum spanning tree, Delaunay triangulatioin the signature,
Angle between base line and center of gravity. Tust of Delaunay

Triangulation gives FAR, 5.25%.



Chapter 2 Review of Literature

2.5 lris

Daugman (2004, 1993) [110],[111], applied Gabor elets
filtering to encode the iris regions and extra& fihase information of iris
textures to create a 2048 bit (256 bytes) of iemplate. Only phase
information is used for recognizing irises becaas®litude information is
not very discriminating, and it depends upon exoars factors such as
imaging contrast, illumination and camera gain. Tenefit that arises
from the fact that phase bits are set also foralpdocused image, even if
based only on random CCD thermal noise, is thé¢miht poorly focused
irises never become confused with each other wheim phase codes are
compared. The Hamming Distance (HD) is used to @mthe stored iris
template with the claimed iris. Since the seardalgse contains 1 million
different iris patterns, it is only necessary foe tHD match criterion to
adjust downwards from 0.33 to 0.27 in order to rraamstill a net false
match probability of 18 for the entire database. The complete execution
time of this 2-D focus assessment algorithm, imgetad in C using
pointer arithmetic, operating on a (480 x640) imagel5 ms on a 300-
MHz RISC processor.

Wildeset al. (1997) [112] proposed another iris recognitiontays
that decomposed the distinctive spatial charatiesi®f the iris into four

levels Laplacian pyramid and used a normalizedetation for matching.

Boles and Boashash (1998) [113], detected zerssitrgs of one-
dimensional dyadic wavelet transform with varioesalution levels over
concentric circles on the iris. Both the positiord anagnitude information
of zero-crossing representations were used to meathe similarity
between the recognition and enrolment images. Tieeteof noise on the

classification ability of the algorithm was testading images corrupted
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with varying degrees of white Gaussian noise. &susnly a few selected
intermediate resolution levels for matching, thuskmg it computationally

efficient as well as less sensitive to noise arehtjgation errors.

Ma et al. (2004) [114] proposed an iris texture analysis hoet
based on using multi-channel Gabor filtering totuap both global and
local details in the iris. Mat al. considered the characteristics of the iris as
a sort of transient signals and identified the ll@terp variation points as
iris features. This method regards the texture hef iris as a kind of
transient signals and uses the wavelet transforpracess such signals.
The local sharp variation points, good indicatoffs important image
structures, are extracted from a set of intensiignas to form
discriminating features. The basic idea is thaal@harp variation points,
denoting the appearance or vanishing of an impbitaage structure, are
utilized to represent the characteristics of tie ifhe whole procedure of
feature extraction includes two steps: The firgpsis, a set of one-
dimensional intensity signals is constructed te@ffely characterize the
most important information of the original two-dingonal image. In the
second step, using a particular class of wavetetgosition sequence of
local sharp variation points in such signals isorded as features. A fast
matching scheme based on exclusive OR operati@ise presented to
compute the similarity between a pair of positioaqeences. The
performance of the algorithm is very high and tleREs only 0.09% for
different session comparisons. In particular, & @md only one false match
occurs in 1 000 000 trails, the false nonmatchisakess than 1.60%.

Tan et al. (2009) [115] presented an efficient and robusotigm
for noisy iris image segmentation in the contextnoh-cooperative and
less-cooperative iris recognition. The main conifitns are summarized as

follows. Firstly, a novel region-growing scheme rredy, eight-neighbor
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connection based clustering) is proposed to clukegeewhole iris image into
different parts. The genuine iris region is thetraoted with the assistance
of several semantic priors, and the non-iris regjiqe.g. eyelashes,
eyebrow, glass frame, hair etc.) are identified excluded as well, which
greatly reduces the possibility of mis-localizasoon non-iris regions.
Secondly, an integrodifferential constellationrigr@duced to accelerate the
traditional integrodifferential operator, meanwhiémhancing its global
convergence ability for pupillary and limbic boungl#éocalization. Thirdly,

a 1-D horizontal rank filter and an eyelid curvatumodel are adopted to
tackle the eyelashes and shape irregularity, réispc during eyelid
localization. Finally, the eyelash and shadow a&iolus are detected via a
learned prediction model based on intensity stasigietween different iris
regions. Extensive experiments on the challengi®jRIS iris image
databases resulted in an accuracy rate of 99.@merc

Proencaet al. @010) [116] announced the availability of the
UBIRIS.v2 database. It is a database that contamsiltisession iris image,
which singularly contains the data captured inuiséble wavelength, at a

distance and on-the-move.

Pillai, J.K. et al. 011) [117] in their paper, proposed a unified
framework based on random projections and sparsegentations, that
can simultaneously address the ability to handtmonstrained acquisition,
robust and accurate matching as well as privacyamcgment without
compromising security. The proposed system quatigasure can handle
segmentation errors and a wide variety of poss@stdacts during iris
acquisition. It also demonstrates how the propaggatoach can be easily
extended to handle alignment variations and retiognfrom iris videos,
resulting in a robust and accurate system. Theqgsexb approach includes

enhancements to privacy and security by providingysvto create
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cancelable iris templates. Results on public da&ts show significant

benefits of the proposed approach.

Lim et al. (2001) [118] proposed an iris recognition systerhjciw
includes a compact representation scheme for mitems by the 2-D
wavelet transform, a method of initializing weigletctors, and a method of
determining winners for recognition in a compeéttiearning method like
Learning Vector Quantization (LVQ). Two methods—@atransform and
Haar wavelet transform, which are widely used fdracting features,were
evaluated. From this evaluation, it is found thaaHwavelet transform has
better performance than that of Gabor transforrm et al. (2001)[118]
used 2D Haar wavelet transform to decompose tiseirmage into four
levels and quantized the fourth-level high-frequeinéormation to form an
87-bit code. Secondly, the Haar wavelet transforms wsed for optimizing
the dimension of feature vectors in order to redpoEcessing time and
space. With only 87 bits, an iris pattern coulddresented without any
negative influence on the system performance. yastle accuracy of a
classifier, a competitive learning neural netwomkas improved by
proposing an initialization method of the weightters and a new winner
selection method designed for iris recognition. Tasearchers improved
the efficiency and accuracy of the proposed systgnusing a modified
competitive learning neural network. With these moes, the recognition

performance could be increased to 98.4%.

Donald Met al. (2007) [119], described an approach to human iris
recognition based on the 1D Discrete Cosine Trans{®CT). The work
was motivated by the near-optimal decorrelatingpprtes of the DCT
compared to the Karhunen-Loeve transform, and #wmulis achieved
indicate the good performance of the approach iithvthere are no False
Accepts/Rejects on the CASIA and Bath data setsl.uBbBe method as
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implemented also has low complexity, making it sigreto the other
methods evaluated in terms of both speed and apcutalemonstrated the
use of novel patch encoding methods in capturilsgtéxture information,
proposed the worst-case (nearest nonmatch) EERhaw @ractical metric
for evaluating systems and investigated bettersitlas designs for wider
interclass separability. EER is predicted to béomsas 2.59 x 10 on the
available data sets. Statistical analysis hasl@sm carried out to find the
best models for matching and nonmatching probgbdistributions in

order to predict the worst-case equal error ratbgre no failures occur.

Kang and Park (2007) [120] suggested that conwvealiaris
cameras have small depth-of-field (DOF) areas,nguiti iris images can
easily be blurred, which can lead to lower recagniperformance. In the
paper, it is proposed that by using a constraieastl square restoration
filter, where noise is considered, the performacere be greatly enhanced.
Experimental results showed that the iris recognigrrors when using the
proposed restoration method were greatly reducedoagpared to those
results achieved without restoration or those adueusing previous iris-
restoration methods. Because the algorithm estohifee MTF parameters
and the weight value of the noise-regularizatiomi based on camera
optics and focus scores, the processing time wastlgr reduced. In
addition, it was able to reduce the recognitioomsrby defocusing with the
proposed restoration algorithm. The total processime was 98 ms, which

is much faster than conventional iterative imaggamtion methods.

Zhou et al. (2009) [121] proposed a method to upgrade the
traditional iris recognition system to work on then-ideal situation using a
video-based image approach. This method will qyiakdiminate poor-
quality images, evaluate the segmentation accumadymeasure if the iris

image has sufficient feature information for reatign. In addition, the
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system combines the segmentation and quality measares together to
predict the system performance. ICE and IUPUI degab have been used
to test and validate the proposed method. The r&seasults show that the
proposed method can work effectively and objectivdlhe experimental
results show that the evaluation score is indeparidem the quality score
and is an important component to improve the aocguréhe combination
of segmentation and quality scores is highly catesl with the recognition
accuracy and can be used to improve and predicpeénf®rmance of iris
recognition systems. The proposed method has aso bpplied to the
commercialized system (LG lIrisAccess 4000), withmtérvening in the
operation of the existing system. The experimergallts using MBGC
2008 NIR-iris still images and MBGC 2008 NIR faddeos show that the

proposed system can predict the system performacmeately.

Rakvic et al. 009) [122] presented a more direct and parallel
processing alternative by using field-programmaidt¢e arrays (FPGAS),
offering an opportunity to increase the speed astdrgially alter the form
factor of the resulting system. In particular, thp®ortions of iris
segmentation, template creation and template nmragcduie parallelized on
an FPGA-based system, with a demonstrated spedd$,0324 and 19
times, respectively, when compared to a state®faith CPU-based
version. Furthermore, the parallel algorithm on tRGA also greatly

outperforms the calculated theoretical best InfRUGesign.

Chou et al. (2010) [123], proposed a non-orthogonal view iris
recognition system comprising a new iris imaging dule, an iris
segmentation module, an iris feature extractionutednd a classification
module. A dual-charge-coupled device camera wa®ldped to capture
four-spectral (red, green, blue and near infraneslimages which contain

useful information for simplifying the iris segmation task. An intelligent
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random sample consensus iris segmentation methmopesed to robustly
detect iris boundaries in a four-spectral iris igalg order to match the iris
images acquired at different off-axis angles, aleirectification method is
proposed to reduce the off-axis iris distortioneTRctification parameters
are estimated using the detected elliptical pupillboundary. An iris

descriptor, which characterizes an iris patterrhwitulti scale step/ridge
edge-type maps, is also proposed. The edge-typs ar@pextracted with
the derivative of Gaussian and the Laplacian of SSan filters. The iris

pattern classification is accomplished by edge-tyggching which can be
understood intuitively with the concept of clagsifi ensembles.
Experimental results show that the equal error oatine approach is only
0.04% when recognizing iris images acquired atedéit off-axis angles
within £30°.

Kekreet al. 010) [124] proposed an iris recognition systerseda
on vector quantization. The proposed system dodsneed any pre-
processing and segmentation of the iris. Linde-BGray (LBG), Kekre’s
Proportionate Error Algorithm (KPE) & Kekre's Fastodebook
Generation Algorithm (KFCG) have been tested ferthustering purpose.
From the results, it is observed that KFCG requi@xs79% less
computations as that of LBG and KPE. Further, ti#C& method gives
best performance with an accuracy of 89.10%, ofdpeing LBG that
gives accuracy around 81.25%. The performance dividtual methods is

evaluated and presented in this paper.

Dong et al.011) [125], in their paper, presented a novel
personalized iris matching strategy based on weitdp. The weight map
of each iris class is learned based on intra-dt&ssnatches among many
registered templates. This weight map is updated stabilized with

increase in the number of training images. It pegsoa personalized iris
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matching strategy using a class-specific weight negrned from the
training images of the same iris class. The weighp can be updated
online during the iris recognition procedure whelme tsuccessfully
recognized iris images are regarded as the newirigadata. The weight
map reflects the robustness of an encoding algoritin different iris

regions by assigning an appropriate weight to daalture code for iris
matching. Such a weight map trained by sufficien$ itemplates is
convergent and robust against various noises. Exeand comprehensive
experiments demonstrate that the proposed pergedaliris matching

strategy achieves much better iris recognition grerhnce than uniform

strategies, especially for poor quality iris images

Tan Tet al.012) [126], described a scheme for matching nivisy
images under visible lighting. It consists of imggeprocessing, feature
extraction and matching, and multi-modal fusioninige preprocessing, a
decision level fusion method is proposed to loealimbic and pupillary
boundaries using the original iris images and tberesponding mask
images. For feature representation and matchindtjpleucues, including
ordinal measures, color histogram, texton represem, and semantic
information, are adopted for noisy iris image matgh In multimodal
fusion, a score level fusion strategy is used tml@ae the four matching
scores into the final dissimilarity measure. The IRIES.v2 database

training dataset are used for testing.

2.6 Multimodal

A number of multimodal biometric systems proposed the
literature are presented in the following sectiongable 2.1 presents a
comparison of these multimodal systems in termthefdesign parameters

and recognition performance.
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Table 2.1 Comparison of multimodal biometric system

Authors Traits usec Accurac) Archite  Fusion Fusion
cture level Strategy
Hong and Fingerprint,| FRR: 4.4% | Serial Matching | Bayes
Jain(1998) Face at 0.1% score/Rank
[127] FAR
Jain, Hong, Fingerprint,| FRR: 3% Parallel | Matching Neyman—
and Voice, (15%) at score Pearson
Kulkarni Face 0.1% FAR
(1999) [129]
Jain and Ross | Fingerprint,| FRR: 4% Parallel | Matching Weighted
(2002) [131] Handgeom | (18%), score sum score
etry, Face | at 0.1%
FAR
Ross and Jain | Fingerprint,| FRR: 1% Parallel | Matching Sum score,
(2003) [132] Hand (18%) score Decision
geometry, | at0.1% trees,

Face FAR Linear
discriminant
function

Snelicket al. Fingerprint,| FRR: 5% Paralle | Matching Sum score
(2003)[133] Face (18%) score Min score,
at 0.1% Max score,
FAR Sum rule,
Product rule
Snelicket al. Fingerprint,| FRR: 1% Paralle | Matching Sum score
(2005)[135] Face (3.3%)at score Min score,
0.1% FAR Max score,
Weighted
sum score
Brunelli and Voice, FRR: 1.5% | Parallel | Matching Geometric
Falavigna Face at 0.5% score/ weighted
(1995)[137] FAR (FRR: Rank average /
8% HyperBF
at 4% FAR)
Bigunet al. Voice, FRR: 0.5% | Parallel | Matching Model based
(1997)[138] Face at< 0.1% score on Bayesian
FAR Theory
(FRR: 3.5%
at< 0.1%
FAR)
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Comparison omultimoda biometric syster (Contd..

Authors Traits used Accuracy Archite | Fusion Fusion
cture level Strategy
Verlinde an Voice, TER: 0.1% | Paralle | Matching k-NN,
Chollet (1999) | Face (TER: 3.7%) score Decision tree,
[140] Logistic
regression
Chatziset al. Voice, FRR: 0.68% | Parallel | Matching Fuzzy k-
(1999) [141] Face at score means, Fuzzy|
0.39% FAR vector
(FRR: 0.0% guantization,
at Median radial
6.70% FAR) basis function
Ben-Yacoulet | Voice, TER: 0.6% | Parallel | Matching SVM,
al. (1999)[142] | Face (TER: score Multilayer
1.48%) perceptron,
C4.5 decision
tree, Fisher’s
linear
discriminant,
Bayesian
Frischholz and| Voice, Lip | N/A Parallel | Matching Majority
Diechmann Movement, score/ voting,
(2000)[148] Face Abstract Weighted-
sum score
Wanget al. Iris, Face TER: 0.27% | Parallel | Matching Sum score,
(2003) [150] (TER: score Weighted
0.3%) sum
score,
Fisher’s
linear
discriminant,
Neural
network
Kale et al. Gait, Face | ROA: 97% | Cascade| Matching Sum rule,
(2005) [156] (ROA: /Parallel | score Product rule
93%) for (probabiliti
cascade es)
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Hong and Jain (1998) [127] proposed an identiftcasystem that
integrates face and fingerprint modalities. Afteoting that the face
recognition is relatively fast but not very reliapbland fingerprint
recognition is reliable but slow (hence not venadible for database
retrieval), the authors have cited that these twdatities can be combined
to design a system that can achieve both high pedioce and acceptable
response time. Their face-recognition module wastan the eigen faces
method [128] and an elastic-string minutiae-matghatgorithm [129] was
used for fingerprint recognition. The multimodals®m operates by
finding the topn identities using the face-recognition system alané then
verifying these identities using the fingerprintifieation subsystem.
Hence, this system had a serial architecture. ltopadistributions for
fingerprint and face subsystems were estimatedused for selecting at
most one of then possible identities as the genuine identity, hetime
system did not always correctly retrieve an idgnitibom the database. In
their experiments, Hong and Jain [127] used a das&f 1500 images

from 150 individuals with 10 fingerprints each.

The face database contained a total of 1132 imanfes36
individuals, resampled to size 92 x 112. A total6df individuals in the
fingerprint database were used as the training aset, the remaining 86
users were used as the test set. Virtual subjeets wreated by assigning
an individual from the fingerprint database to adividual from the face
database consistently. The face-recognition sysétneved the top fiven
= 5) matches among the 86 individuals and the fipgat system provided
the final decision. FRR of unimodal face and fingart systems as well as
the multimodal system were 42.2%, 6.9% and 4.4%paetively, at the
FAR of 0.1%. Figure 2.1 shows the associated RO®esu These results
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indicate that a multimodal system can significantijmprove the
performance of a face-recognition system.
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Figure 2.1 ROC curves for unimodal and multimogatems [127].

Jain et al. (1999) [129] combined face, fingerprint and speech
modalities at the matching-score level. This speskt of traits was chosen
because these traits are frequently used by laorerhent agencies. The
parallel fusion scheme submits the matching scooe®sponding to these
three modalities as inputs to the Neyman—Pearsoiside rule to arrive at
the verification result. The face-recognition swdieyn was based on the
eigen faces approach and the fingerprint veriftcatwas based on
minutiae-based elastic-string matching [130].

Linear-prediction coefficients (LPC) were extracteazm the speech
signal and modeled using a HMM. The speaker vetifim was text
dependent (four digits, 1, 2, 7 and 9 were usetlp Fraining database
consisted of 50 individuals, each one providingfib@erprint images, 9
face images and 12 speech samples. The test databasisted of 15
fingerprint images, 15 face images and 15 speextples collected from
25 individuals. The fused system attained nearBt 3fnuine-acceptance
rate (GAR) at an FAR of 0.1%. This translates tarlye12% improvement
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in GAR over the best individual modality (fingenp)i at 0.1% FAR. The
associated ROC curves are shown in Figure 2.2.
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Figure 2.2 ROC curves for unimodal and multimogatems [130].

Jain and Ross (2002) [131] proposed algorithmeg$&timating user-
specific decision thresholds and weights associanath individual
matchers for a face—fingerprint—-hand geometry bapathllel fusion
system. The face module used the eigen face agprdde algorithm,
minutiae-based elastic-string matching [129], waedu for fingerprint
verification. The hand-geometry subsystem [130] dusk4 features
comprising lengths and widths of fingers and palndtlns at several
locations of the hand. The user-specific threshtddsach modality were
computed with the help of cumulative impostor ssor€he weights for
individual modalities were found by an exhaustieessh algorithm: all
three weights were varied over the range (0, 1 witrements of 0.1, and
the best combination resulting in the smallestl teteor rate (sum of false
accept and false reject rates) was selected fdr eser. The database used
in these experiments had 50 users, 40 of them gedvb samples of each
biometric and 10 users provided around 30 sampee-third of the

samples were used in the training phase, whileg¢h®ining was used in
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the testing phase. At an FAR of 0.1%, user-spetifiesholds resulted in
nearly 2% GAR improvement; at the same operatingtposer-specific
weights improved the GAR by nearly 4%. Figure 2I3ows these

performance improvements.
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Figure 2.3 ROC curves for user-specific threshalus$ user-specific
weights in a multimodal s [131]

Ross and Jain (2003) [132] further investigated #fiiect of
different fusion strategies on the multimodal syst@roposed in Jain and
Ross, 2002. They employed three methods of fusiamely, sum rule,
decision trees and linear discriminant function.eTéimple sum fusion
outperformed the other two methods, resulting irarlye 17% GAR
improvement at an FAR of 0.1%. Figure 2.4 shows dksociated ROC

curves.

Snelicket al. (2003) [133] fused the matching scores of comraérci
face and fingerprint verification systems. They sidered the min-max, z-
score, MAD (median absolute deviation) and tanhhnepes for
normalizing the matching scores. In the fusion etdbey investigated the
sum-score, min-score, max-score, sum-of probaslitind the product-of-

probabilities rules. The database consisted of liAf@kviduals, each one
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providing 2 face and 2 fingerprint images. The fanages were selected
from the FERET database [134], but the authors rditl provide any
information about the characteristics of the fipgart images. Their results
showed that while every normalization method resulin performance
improvement, the min-max normalization outperforntieel other methods.
Further, the sum score fusion gave the best pedoce among all the
fusion methods considered in this study. At 0.1%RRAlue, the min-max
normalization followed by the sum-score fusion ruésulted in a GAR
improvement of nearly 13% compared to the bestoperhg individual
modality (fingerprint) at the same operating polntaddition, the authors
reported a considerable decrease in the numberalskly rejected
individuals (248 for face, 183 for fingerprint arB for multimodal
system), indicating that the multimodal systems ehdke potential to
increase user convenience by reducing false rejastsvell as reducing

false acceptances.
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Figure2.4 ROC curves for unimodal and multimo«systems[132].

Snelick et al. (2005) [135] again used commercial face and

fingerprint systems from four vendors in a paratfetching-score fusion

framework. They experimented with several normélira and fusion
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techniques to study their effect on the performaiocea database of 972
users. A number of normalization techniques, incigdnin-max, z-score,
and tanh schemes were considered along with a nadzptive
normalization technique. The adaptive normalizatsmmeme transforms
the min-max normalized scores with the aim of iasieg the separation
between the genuine and impostor score distribsitiofihe fusion
techniques considered in this study included the efiscores, max score,
min score, matcher-weighted sum rule and weighted ef scores using
user-specific weights. The authors used the r&aiscuracy of individual
matchers, indicated by their EER, to determinentfa¢écher weights. Their
user-weighting scheme made use of the wolf-lambcegoin [136],
originally proposed in speaker-recognition commynithe set of weights
for each user was found by considering the chahdelse accepts for the
respective (user, matcher) pairs. The results atddtthat the min-max and
adaptive normalization techniques outperformed dtieer normalization
methods, while the sum score, max score and mategighted sum score
outperformed the other fusion methods. The multiah@gstem had nearly
2.3% GAR improvement at an FAR of 0.1%.

Brunelli and Falavigna (1995) [137] presented a sper
identification system combining acoustic and vis(facial) features. A
rejection option was also provided in the systenmgisgwo different
methods. A HyperBF network was used as the ranidurement level
integration strategy. The speaker-recognition sstiesy was based on
vector quantization of the acoustic-parameter spacd included an
adaptation phase of the codebooks to the test@magnt. Two classifiers
were used for static and dynamic acoustic featlrase identification was
achieved by analyzing three facial components: ,ayese and mouth. The

basic template matching technique was applieddoe imatching. Since the
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matching scores obtained from the different classf were non-
homogeneous, the scores were normalized based eorcatiesponding
distributions. The normalized scores were combinevo different ways:
a weighted geometric average and a HyperBF netwidnk. acoustic and
visual-cue-based identification achieved 88% anth @brrect recognition

rates individually, while the fusion achieved 98étuaracy.

Bigun et al. (1997) [138] introduced a new model based on
Bayesian theory for combining the matching scoregaoe and voice-
recognition systems. Experiments on the M2VTS dedalf139], showed
that their model resulted in higher accuracy th@dum score rule. For a
false-acceptance rate of less than 0.1%, the Bayesiodel accepted
99.5% of the genuine users. This was substantigiier than the accuracy
of the unimodal face and speaker recognition systémat were reported to
be 94.4% and 96.5%, respectively.

Verlinde and Chollet (1999) [140] formulated the Itimiodal
verification as a classification problem. The irpwrere the matching
scores obtained from the individual modalities @imel output was a label
belonging to the set {reject, accept}. The KNN sléisr using vector
guantization, the decision-tree-based classifiertae classifier based on a
logistic regression model were applied to this sifeation problem. The
modalities were based on profile face image, fidiaize image and speech.
The experiments were carried out on the multimadaVvTS database
[139] and the total error rate (sum of the falseeat and false reject rates)
of the multimodal system was found to be 0.1% wtienclassifier based
on a logistic regression model was employed. Tha&l &rror rates of the
individual modalities were 8.9% for profile face7%o for frontal face and
3.7% for speaker verification. Hence, the multimosigstem was more

accurate than the individual modalities by an oafenagnitude.
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Chatziset al. (1999) [141] used classical algorithms basedkon
means clustering, fuzzy clustering and median rabesis functions
(MRBFs) for fusion at the matching score level.d=imethods for person
authentication that were based on gray-level aagheslinformation of face
image as well as voice features were explored. Ajrtbe five modalities,
four used the face image as the biometric andahmaining one utilized the
voice biometric. Table 2.2 shows the algorithmsdusethis work along
with the features used and the rates of genuineelisas false acceptance.
Each algorithm provided a matching score and aityuahetric that
measures the reliability of the matching score. uRgsfrom the five
algorithms were concatenated to form a 10-dimemsivactor. Clustering
algorithms were applied on this 10-dimensionaldeatector to form two
clusters, namely, genuine and impostor. The M2Vatalhse was used to
evaluate the fusion algorithms. Clustering of tlesufts obtained from
Morpholgical Dynamic Link Architecture (MDLA), Gabdynamic Link
Architecture (GDLA), Profile Shape Matching (PSM)nda Speech
authentication based on HMM (MSP) algorithms by khmeans method
had the best genuine accept rate of 99.32% at & d¥A.39%.

Table 2.2 Characteristics of the five modalitie$[JL

Algorithm Features GAR (%) | FAR (%)
Morphologicaldynami( Gray-level and 91.¢ 10.£
link architecture Shape

(MDLA)

Profile shape matching Shape 84.5 4.6
(PSM)

Gray-level matching Gray-level 73.7 1.3
(GLM)

Gabor dynamic link | Gabor featureg  92.6 3.7

architecture (GDLA)

Hidden markov model Speec 10C 6.7

(MSP)
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Ben-Yacoubet al. (1999) [142] considered the fusion of different
modalities as a binary classification problem, ieecepting or rejecting the
identity claim. A number of classification schemasre evaluated for
combining the multiple modalities, including SVM ti polynomial
kernels, SVM with Gaussian kernels, C4.5 decisioged, multilayer
perceptron, Fisher linear discriminant and Bayesidassifier. The
experiments were conducted on the XM2VTS databb48] [consisting of
295 subjects. The database included four recordimigseach person
obtained at one-month intervals. During each sass$wo recordings were
made: a speech shot and a head rotation shot. péects shot was
composed of the frontal face recording of eachesttlijuring the dialogue.
The two modalities utilized in the experiments wiree image and speech.
The face recognition was performed by using elagtiaph matching
(EGM) [144]. Two different approaches were usedsipeaker verification.
Asphericity measure [145] was used for text-indeleenn speaker
verification and HMM were used for text-dependepeaker verification.
The total error rate of 0.6% achieved by the Bamesilassifier was
significantly lower than the total error rate o#8% achieved by the HMM
based speaker recognition system, which was theitdisidual modality

in terms of total error rate.

Fierrez-Aguilar et al. (2003) [146] developed a multimodal
approach including a face verification system based global appearance
representation scheme, a minutiae-based fingengenification system and
an online signature verification system based onMihodeling of
temporal functions. The scores were combined by nsieaf SVM
classifiers, from which user-independent and uspeddent strategies
were applied at the score level. Results indic#tat appropriate selection

of parameters for the learning-based approach efelivbetter verification
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performance than the rule-based approach. The BER® unimodals of

face, online signature and fingerprint verificatisystems were 10%, 4%
and 3%, respectively. Results showed that the Sute RRduced the EER
to 0.5% and the Radial Basis Function (RBF) SVMdusstrategy reduced
the EER to 0.3% and 0.05% respectively for the-us#gpendent and user-

dependent fusion strategies.

Kumar et al. (2003) [147] proposed a multimodal approach for
palmprint and hand geometry images. Two scheméssafn were applied,
one at the feature level by concatenating the featactors, and the other
at the matching score level by max rule. Only thgidn approach at the
matching score level outperforms the unimodal systeThe multimodal
approach obtained an FAR of 0% and an FRR of 1.44RPte the best
unimodal approach in this study, the palmprint-dagerification system,
obtained an FAR of 4.49% at an FRR of 2.04%.

Frischholz and Diechmann (2000) [148] developedomroercial
multimodal identification system utilizing threefférent modalities: face,
voice and lip movement. Unlike other multimodal bitric systems, this
system not only included the static features sucfaee images, but also a
dynamic feature, namely, the lip movement. The faes located in an
image using an edge-based Hausdorff distance mdtmie lip movement
was calculated by the optical-flow approach. Theesgetic computer
[149] was used as the learning classifier for tlogtital” biometrics,
namely, face and lip movement. Vector quantizatwas applied for
acoustic biometric-based recognition. The inputgamvas rejected when
the difference between the highest and the secmfeb$t matching scores
was smaller than a given threshold. The sum rulé @ajority voting
served as the two fusion strategies according e@ostturity level of the

application. The proposed system was tested onadbase of 150 subjects
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for three months and the false-acceptance raterepmsted to be less than

1%. However, the corresponding genuine-acceptaateenas not reported.

Wanget al. (2003) [150] studied the usefulness of combiniacef
and iris biometric traits in identity verificatiorris-recognition systems
generally have a relatively high failure-to-enna@te [151], so using face as
an additional biometric trait can reduce the FTEe raf the multimodal
system. Further, some of the commercial iris-aggois equipments can
also capture the face image of the user. Therefaregdditional sensor is
required for obtaining the face image along with itis image. The authors
used the eigen face approach for face recognitidndgveloped a wavelet-
based approach that identifies local variationghia iris images [152].
Fusion was carried out at the matching-score lasilg strategies like the
sum rule, the weighted-sum rule, Fisher’s discramtranalysis classifier
and neural network classifier using radial basiscfions (RBFNN). Both
matcher weighting and user-specific weighting oé timodalities were
attempted for fusion using the weighted-sum rulgsién using learning-
based methods like weighted-sum rule, discrimirzaralysis and RBFNN
was found to perform better in terms of their apito separate the genuine
and impostor classes. Since the iris-recognitiodut®was highly accurate
(total error rate of 0.3%), the error rate was meoluced significantly after

fusion.

Metallinouet al. (2008) [153] recognised the emotional information
by facial and vocal modalities using Bayesian df@ssand SVM.
Kumataniet al. (2007 ) [154] presented a method for modelling stede
transition between product HMMs for audio visualtamatic speech
recognition (AV-ASR). Kauret al. 010) [155] described a bimodal

system which combines speech and signature. A stfidige product of

76



Improved Biometric Authentication System Using Multimodal Cue Integration

likelihoods fusion, sum fusion and z-norm fusionperformed in this

paper.

A view-invariant gait-recognition algorithm [156] nd a
probabilistic algorithm for face recognition [15&Ere employed by Kale
et al. (2005) [158] to build an integrated recognitiorsteyn that captures a
video sequence of the person using a single caréey explored both
cascade and parallel architectures. In the cascagsttm, the gait-
recognition algorithm was used as a filter to prthne database and pass a
smaller set of candidates to the face-recognitignraghm. In the parallel
architecture, the matching scores of the two allgors were combined
using the sum and product rules. Experiments wenelicted on the NIST
database consisting of outdoor face and gait d&t&80osubjects. No
recognition errors were observed when the multirhddametric system
operated in the parallel mode. In the cascade ntbderank-one accuracy
was 97% and the number of face comparisons waseéddiw 20% of the

subjects in the database.

A recent trend in multimodal biometrics is the conabion of 2D
and 3D facial informations. Beumier and Acheroy(Q@P[159], Wanget
al. (2002) [160] and Chanet al. (2003) [161] have proposed systems that
employ fusion of 2D and 3D facial data. Lu and J&©05) [162] proposed
an integration scheme to combine the surface majchnd appearance-
based matching for multiview face recognition. tiese studies show that
the multimodal 2D-3D face recognition can achie&gaificantly higher
accuracy compared to the current face-recognitysiesns operating on

either 2D or 3D information alone.

Xiuquin (2008) [163] proposed a multimodal biometsystem

using face and ear at feature level. Kernel discamt analysis was
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employed as the feature extraction method to olbterieatures of face and
ear independently and then concatenate the twarteaectors to form a
single feature vector. Rattaet al. (2009) [164] proposed a multimodal
biometric system of iris and face in which Scalevaliant Feature
Transform (SIFT) features of individual modalitiegere extracted and

concatenated to form the fused feature space.

Ross and Govindarajan (2004) [165] proposed a matial
biometric system utilising face and hand geometryeature level. Face
was represented using PCA and LDA while 32 distheettures of hand
geometry were extracted and then concatenatedrin &fused feature.
After that, Sequential Feed Forward Selection (FF&s employed to

select the most valuable features from the fusatlife space.

Toh et al. (2004) [166] integrated fingerprint, hand geomeind
voice biometrics using weighted-sum-rule based hatore-level fusion.
They addressed the multimodal decision fusion gmbhs a two-stage
problem: learning and decision. They introducededuced multivariate
polynomial model to overcome the tedious recursaagning problem in
multimodal biometrics in order to achieve good dixi accuracy. Four
global and local learning as well as decision pigrad were suggested and
explored to observe their decision capability. Tioair learning and
decision paradigms were investigated, adopting rédiced polynomial
model for biometric decision fusion. Experimentowkd that the local
learning alone could improve ERRs of about 50%.yTia&ve noticed that
the local decision can be improved once the thidslsettings are

appropriately selected for each user.

Veeramachaneniet al. @QO005) [167] proposed an approach

supporting highly secure systems that utilize reatisor fusion to improve
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the security level of a system by combining biomsetnodalities. An
algorithm is presented that adaptively derivesopiggmum Bayesian fusion
rule as well as individual sensor operating poiimtsa system.The
evolutionary nature of adaptive, multimodal bionetmanagement
(AMBM) allows it to react in pseudo real time toactying security needs
as well as user needs. Error weights are modiGeéftect the security and
user needs of the system. The AMBM algorithm seléw fusion rule and
sensor operating points to optimize the systemopmdnce in terms of
accuracy. Cost of false acceptance is a weightargrpeter that is used to
adaptively control the system’s performance in rexe. The AMBM
algorithm uses the given error costs and seardiresgh the space of all
possible rules and the sensor operating pointsséhsor operating point is
defined by a decision threshold that determinesémsor’'s FARand FRR.

Lupu et al. @007) [168], in their paper presented the use of
multimodal biometrics in order to identify or tonfg a person who wants
to start the engine of a car. First of all, a fimyat sensor was posted on
the car’'s door, one on the steering wheel, a cafoeriais recognition was
developed on the car’'s main mirror, and finally &nwphone for voice
recognition was included. There are two possib#itiif the person is
identified as the car owner or a known user, thefstte can take control
over the car; if it is an intruder, the car can@mmce the security service or

the police using a complex GPRS system.

Yuan Set al(2013) [169], proposed a multimodal biometricteys
consisting of face, fingerprints and palmprintssdzhon the characteristics
of multi-dimensional in optical technique. This tm combines the optical
encryption with multimodal biometric authenticatidechnique, changes
one-to-many matching into one-to-one matching, e rhatching time is

reduced significantly. With the aid of the encrgptisystem and biometric
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verification, the verification keys are difficulo tbe forged and even the
keys are lost or stolen, they are useless for gtkeson. In addition, the
standard biometric templates are generated reaélyti by the verification

keys owned by legal user so that they are unnecgessae stored in a
database. The results show that the FAR is 0%hieuERR is 12%.

Huang Z.et al(2013) [170] developed a robust face and ear based
multimodal biometric system using Sparse RepresientgSR), which
integrates the face and ear at feature level, andeffectively adjust the
fusion rule based on reliability difference betwettie modalities. The
Sparse Coding Error Ratio (SCER) is utilized to elep an adaptive
feature weighting scheme for dynamically reducing hegative effect of

the less reliable modality. A recognition rate @f&887% is achieved.

Emerich Set al(2013) [171], presented a set of features for a

biometric system based on speech and on-line signathe feature vector
is nonhomogeneous and it comprises using TESPAR cbefficients,

wavelet energy coefficients and also some additifezures resulted from
the time domain analysis in the case of speech.edtufe selection
procedure is then applied to reduce the featurdowvedimension. A
modified symbols alphabet for the TESPAR DZ methsdpresented.
Experimental results were reported using the SV@20@@atabase for
signature and a bimodal database, for on-line sigeaand speech. A

feature level fusion strategy was adapted.

Poh N. et al(2013) [172], investigated a relatively new fusion
strategy that is both user-specific and seleclivaiser-specific, each user
in a biometric system has a different set of fugiarameters that have been
tuned specifically to a given enrolled user. Inestle, only a subset of

modalities may be chosen for fusion. The reasonttia@ is that if one
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biometric modality is sufficiently good to recogeia user, fusion by

multimodal biometrics would not be necessary.

2.7 Summary

In this chapter, a review of work carried out ie tields related to
the unimodal biometrics such as voice, face, sigeaand iris available in
open literature is discussed. It also summarizes rédated works of
multimodal biometrics and the common approach oformation

integration in multimodal systems.
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CHAPTER 3

METHODOLOGY

This chapter addresses the methodology that piynawvolves
the extraction of feature vectors of different beinc traits and
the compilation of the knowledge base, which fothesbackbone
of the authentication system. In the proposed systbe main
goal is to evaluate the performance of the multiahddometric
system based on score level fusion using user-depenveighted
fusion method, over the unimodal biometric syst&he different
biometric traits from which features are extracesd voice,
face, signature and iris since they include bothspogical as
well as behavioral type. Inorder to form the featwector of
speech, features such as spectral centroid, spéottaspectral
rolloff and MFCC coefficients have been extracteuilevfeature
vector of face has been formed using their eigeators. A
combination of static as well as dynamic featureguaed from
signature and binary code using Haar wavelet géstfaom iris
constitute their feature vector respectively. Tharfscore list is
combined using the user specific weighted scorelldusion
approach to find out a consensus score of theitgeEnand the
identity at the top of the consensus score lisk bl identified as

the desired identity.

3.1 Introduction

The methodology of the proposed multimodal bionceBystem

based on user dependent weighted fusion utiliziageétric traits of voice,
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face, signature and iris is addressed in this @magince no single
biometric can be said to be the best, the need fmultimodal biometric
system is one of the leading areas of researctenctirrent era. In a
multimodal system identifying and selecting propametric traits is one
of the main tasks. The appropriate biometric typed given application
depends on many factors including the type of bioimaystem operation
(identification or verification), perceived riskigpes of users, and various
need for security. A single biometric trait mayt nteet these requirements
needed by different applications as each biometi@t has its own

associated advantages and limitations.

In the proposed system, the main goal is to evalutite
performance of the multimodal biometric system Has@ score level
fusion using user-dependent weighted fusion metingl the unimodal
biometric system and other multimodal systems. Gibenetric traits under
consideration are voice, face, signature and isistteese includes both

physiological as well as behavioural type.

The methodology primarily involves the extractioi feature
vectors of different biometric traits and the colaton of the knowledge
base, the backbone of the authentication systere. &iirolment phase
involves the acquisition of the biometric traits wsell as extraction and
compilation of feature vector. Inorder to form fleature vector of speech,
features such as spectral centroid, spectral fipgctral rolloff and MFCC
coefficients have been extracted while feature orectf face has been
formed using their eigen vectors. A combination stditic as well as
dynamic features acquired from signature and bin@ogle using haar

wavelet generated from iris constitute their featugctor respectively.
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The identification phase recognizes speech and igceeasuring
the Euclidean distance between the query tempfatele knowledge base
template. However for iris, the Hamming distancéween the codes
generated from the test iris and the iris codehi@ knowledge base is
calculated. For signature identification, Mahalasdtistance between the

test signature template and knowledge base temiplateasured.

Although information fusion in a multimodal systeman be
performed at various levels, integration at theamiaiy score level is the
most common approach due to the ease in accessthganbining the
scores generated by different identifiers. We fina consensus score of the
identities and the identity at the top of the corsses score list will be
identified as the desired identity.

3.2 System Overview

The main steps involved in the development of tteeqtype are as
follows.

* Acquisition of biometric trait data

» Development of knowledge base

» Enrolment/training of multimodal biometric system

» ldentification/testing of multimodal biometric system

» Performance analysis

0 FAR, FRR & EER
In the enrolment phase, the knowledge base is mdpgaom the

features extracted from biometric data acquiredgudiedicated equipment.
The test database is used for the performance sasapd the FAR, FRR
and EER are determined for various combinationtheftraits used in this

study.
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3.3 Data Acquisition

The speech, face, signature and iris data are r@chusing different
acquisition device. The Table 3.1 shows the actipiisidevices and their

specifications.

Table 3.1 Acquisition method and specifications

Biometric Acquisition method Specifications

Trait

Speech Sensitivity : 60dB
Impedence :2K ohms

Frequency :100Hz-11kHz

Features :360
Rotatable

Direction : Omni-
directional

Output Imp  : 2K ohms
Microphone MIC 01A

Connector :3.5mm

Type :.CMOS

Megapixels :15MP

USB :2.0 por
Face

Optical :15MP

resolution:

Focal Lengt :3.67mn

Logitech HD Pro Webca
C920 Diagonal Field: 78 deg
of View

Frame rate :1080@30fps
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Dimensions W :141.4 x 166.

XxDxH X 4.5-15. mm
Weight (excl. :145¢

cable)

Capturing :109 x 67 mn

Active Area : W\ (16:10)
XH

Capturing Rate.: 200 points

Signature
per sec
Resolution :508 Ipi
Coordinate :+0.5mm/
Wacom Baboo Pad US aecuracy 0.02 inch
Pen Pad without Reading height :16 mm
Display (0.63")

Data Interface :USB, alsc
available
wireless

Power Source  :Via USB

Camera Model :Nikon E5700

Software :E5700v1.0

Color ‘RGB

' Representation
‘A Focal Length  :71 mm
Exposure Time :1/30 sec.
ISO Speet :1ISC-20C
Iris Images Widtt  :2560 pixel:

Height :1704 pixels
Horizontal :300 dpi

2OOOOOOO0 Resolution

UBIRISVL  Vertical :300 dpi

Resolution

Bit Depth 24

Format :JPEC
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3.4 Unimodal Processing

3.4.1 Speech Processing

In speech, preprocessing is performed by sliciegviice data into
different records of fixed length of 30 millisecand o remove undesirable
undulations, the frames are windowed using a Hamgmimdow. The
windowing also smoothen the edges of each datadeceduce spectral
distortion, discontinuities or abrupt changes a #nd. This windowed
voice data are transformed into the frequency domEte feature vectors
are generated using Spectral and Cepstral feawmiremice data. The
spectral features used in this study are Speceatraid (Brightness),
Spectral range (Bandwidth), Spectral roll-off anmb&ral flux. MFCCs are
taken as Cepstral features. The MFCC are computadking the Fourier
transform of the windowed signal. The powers of sipectrum obtained
above is mapped onto Mel scale using triangularlapping windows. The
logs of the powers at each of the Mel frequenciegaken and the discrete
cosine transform of the list of Mel log powers @arputed. The MFCCs are
the amplitudes of the resulting spectrum. The featectors thus obtained
are coded using vector quantization. In vector tjmation the LBG
algorithm is used to generate codebooks for eaebkgp. The decision is
performed from the Euclidean distance, which is potad between the
feature components of the unknown target and thiteovarious templates

in the knowledge base.

3.4.2 Face Processing

For improved face recognition performance, the aeduface
image is preprocessed starting with the image s@enalization so that
acquired image size is modified to a default imsige. As the next step of

preprocessing, histogram equalization is perfornoed dark or bright
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images so that face image quality is enhanced ant smportant facial
features become more apparent. While median filgeis used for reducing
the noises in the images. The eigen face approachsed for face
recognition. In the Eigen face approach, PCA isdue derive the low
dimensional representation of faces by applyingoita representative
dataset of images representing faces. The systemmptemented by
projecting face images onto a feature space thahssghe significant
variations among known face images. These sigmifieeatures are called
Eigen faces. After enrolling the face images, tkeognition phase is
performed by projecting the test face image inte Higen space. The
Euclidean distance is measured between the unkrfageimage and the

mean of all the known face images in the Eigenepac

3.4.3 Signature Processing

Following the preprocessing steps of binarizatdilation, thinning
rotation invariance and scaling invariance, sti#tures are extracted from
the acquired signature image. Binarization convantsmage of up to 256
gray levels to a black and white image while ddatifills the gaps and
broken necks and the pixels from the outside edwesremoved by
thinning. The rotation invariance aligns the mairertia axis of the
signature with the horizontal axis and the scaiimgriance, normalizes the
original signature in size to preserve the aspatb rof the signature. In
signature recognition the feature vector is the lwoation of static and
dynamic features. While the static features areeggad using 2D Gabor
filter, the dynamic features is the x- and y- seakverage velocity. The
feature vector of the signature image is storedhastemplate in the
knowledge base. In the identification phase, thé&chiag score of the test
template and the training templates are derivedhaéaobis distance is

used for calculating the matching score of sigreainmage.
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3.4.4 Iris Processing

In iris recognition system, the pre-processing estagquires the
localization of the iris which generally involvdsetdetection of the edge of
the iris as well as that of the pupil. Since vagylavels of illumination can
result in dimensional inconsistencies between awages due to the
stretching of the iris, normalization needs to @fgrmed so that iris
region is transformed to have fixed dimensions.eAfunwrapping the
normalized iris region into a rectangular regianisiencoded using Haar
wavelets to generate the iris code. In the rectmgnistage, Hamming
distance is used for comparison of the iris colle, most discriminating

feature of the iris pattern, with the existing tésnplates.

3.4.5 Multimodal Fusion

The match scores at the output of the individuait tmay not be
homogeneous and need not be on the same numexniggd.rDue to these
reasons, it is necessary to normalize the scoradifferent traits before
combining the scores. The min-max normalizatiorhitégue is employed
in this work to normalize the matching score. Thesidn technique
employed in this work is on the basis of the ddfgrweights assigned to
each biometric trait. These different weights aoenputed based on the
Equal Error Rate. The fused similarity score isaoi®d using user-
dependent fusion method. This score is comparaddecision threshold in
order to accept or reject the identity claim. Ire tecision module, an
individual is recognized by searching the templatesll the users in the
database for a match. One- to- many comparisoariged out to accept the
identity of an individual or reject if the individiiis not enrolled in the
system database. The Figure 3.1 shows overall btbagram of the

multimodal biometric system based on user deperfdsian.
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Figure 3.1 Block diagram of the proposed multimdalametric system.

3.4.6 Development of knowledge base

Training data: 4000 (=100x4x10) biometric data, ten samples efd¢bur
traits, namely, speech, face, signature and iriseve®llected from 100
users for training. After pre-processing, the aule data, features were

extracted and the feature vector was stored ifrba/ledge base.
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Testing data: 2000 (=100x4x5) traits each of registered and gistered
users are used for testing. In the case of regidteandidates, two samples
acquired newly of each trait and three samples ttorknowledge base are
used. The five samples acquired afresh from thegistered users formed
part of the testing data. The equal number of drait registered and
unregistered users minimizes the bias in the pedoce analysis. The
newly acquired data for the registered users usdtida testing simulates

the possibility of accounting for the variationtive ambient conditions.

3.5 Performance Analysis

The performance of the proposed biometric systeam@édysed. The
type of decision made by a biometric system foriradividual is either
genuine or impostor [4] and for each type of decisof genuine and
impostor case, there are two possible outcomes,ardalse. Therefore, all
together, there are four possible outcomes, nangdEpuine acceptance
(genuine individual is accepted), false rejectigenuine individual is
rejected), genuine rejection (impostor is rejectadyl false acceptance
(impostor is accepted). The genuine distributiond atme impostor
distribution ascertains the confidence associatét different decisions
and can be established by minimizing two errorgat@amely, False Accept
Rate (FAR) and False Reject Rate (FRR).

By definition, FAR, is “the probability of an impws being
accepted as a genuine individual” [4]. That isaibiometric authentication
system, the FAR is the rate of number of imposatsdly accepted over the

total number of enrolled people for a predefineeghold.

FRR, is defined as “the probability of a genuindiwidual being

rejected as an impostor” [4]. That is, in a bioneeauthentication system,

91



Chapter 3 Methodology

the FRR is the rate of number of genuine peopleefalrejected over the

total number of enrolled people for a predefineeéghold.

FAR and FRR can be changed by a significant amdapénding
on the threshold used in the system. On usageloWer threshold in a
similarity based biometric matching system, FARIv# higher and the
FRR will be lower while a higher threshold resuitslower FAR and
higher FRR. The Genuine Acceptance Rate (GAR) wmthem approach
used to measure the accuracy of a biometric syskemrate of number of
people accepted in the case of genuine users gacte@ in the case of
impostors over the total number of enrolled peofde a predefined
threshold defines GAR. Mathematically, genuine ptaece can be
determined by subtracting the number of falselgaigjd people from the
total number of genuine people. Yet another evalnatriterion is the
Equal Error Rate (EER), which refers to that pama ROC curve where
the FAR equals to the FRR and a lower EER valus thdicates better

performance.

3.6 Summary

In this chapter, the methodology for the proposeditimodal
biometric system as well as the rationale for chwpsspeech, face,
signature and iris as biometric traits has beeri@a The data acquisition
methods of each traits as well as, the procesdimgich biometric traits is
explained briefly. Identification of the variousraponents of the feature
vector as well as combination of outcomes of uniatomatchers were
through user specific fusion methods is discussedvelopment of
knowledge base of the biometric traits and the rpatars used for the
performance analysis is discussed. The detailbetievelopment of uni-,

bi-, tri- and tetra-modal biometric system is déseal in the next chapters.
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CHAPTER 4

SPEAKER RECOGNITION

This chapter highlights the technology involvedextracting the
feature components of speech required for gengratime
identification clues. During the speaker enrolmghase, speech
samples that contain the discriminating featurescatlected from
the speakers and feature vectors are generatedrin the
knowledge base of the model. In the recognitiorsphthe feature
vectors extracted from the unknown person’'s utsgamre
compared with the knowledge base of the model mal fihe
similarity score, for the purpose of decision magkin Since
accuracy of identification is highly dependent ¢ ttype and
number of features used, feature selection is edtgsignificance.
Features are computed from the spectrogram omeeftay-frame
basis and relates directly to some perceptual cterstics of
sound, such as loudness, pitch etc. This chapertaliches upon
a more systematic approach for computing the calpstr
coefficients achieved by estimating the Mel Freqye@epstral
Coefficients (MFCC). The performance analysis of #ystem
was carried out and it was found that along with QMF the
incorporation of additional spectral features ie thature vector

improved the overall performance of the system.

4.1 Introduction

Speaker recognition or voice recognition is thé talsrecognizing

people from their voices. Fundamental technologyirmk a speaker

93



Chapter 4 Speaker Recognition

recognition biometric system is that informatioriragted from the speech
signal is unique leading to signal characterisati®his information can be
represented using a number of different featurs. iometric system
extracts features from speech, model them andhee to recognize the

person from his/her voice.

Speaker recognition can be achieved through thasticofeatures
of speech that differs among individuals. Theseuatio patterns reflect
both anatomy (e.g., size and shape of the throatithmetc.) and learned
behavioural patterns (e.g., voice pitch, speakiyte stc.) [173]. Since
both anatomy as well as the behavioural patterrferdif between
individuals, these acoustic patterns can be andligespeaker recognition

and its classification.

The various technologies used to process and stoiEprints
include many complex technologies like Frequencyinkion, Hidden
Markov Models, Pattern Matching Algorithms, Neulstworks, Matrix
Representation and Decision Trees [174]. Spea&sdfication purposes

also use anti-speaker techniques such as cohoslshadd word models.

Biometrics security system based on voice datanisemerging
reliable method and is being highly popularizedoicé is a very intuitive
behavioural and ubiquitous biometric which can lagtered by modern
personal computers. Further, it requires no expenspecial hardware

other than a microphone.

The two main phases of speaker identification leettaining phase
or enrolment phase and the testing phase or iditdn phase. During the
speaker enrolment phase, the model is trained atture vectors

generated from speech samples collected from teaksps as they are
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containing the discriminating features. Recognifitrase is comparison of
the feature vectors extracted from the unknowngressutterance with the
model in the system database to find the similasitpre, for decision-
making. Feature selection is of great importamcspieech recognition, as
accuracy is highly dependent on the type and nurobdeatures used.
Features generated from the spectrogram of theckmgnal on a frame-
by-frame basis relates directly to some percepthatacteristics of sound,
such as loudness, pitch etc. [33]. The block dimgraf a speaker
identification system is shown in Figure 4.1.

UsedID +

Speech Enrolment Phase - Training
Utterance

Feature Build Speaker
l.”H,.L ADC H Extraction }_’L_M

‘ v
Heaine Pattern Matching Speaker
'”H/{ ADC H Extraction H classifier Identified

Speech
Utterance

Speaker
Models

Identification Phase - Testing

Figure 4.1 Block Diagram of a Speaker Identificat®ystem

A speaker recognition system can be categorisedtéxt-dependent
or text-independent. In the text-dependent, a knatterance is presented
to the recognizer, while in text-independent calse,text being spoken is
unknown. The identification of a speaker using tedependent utterance
is more complex than that utilising text dependstgrance. In this work,

text independent utterance has been utilised ttifglea speaker.
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4.2 Dimensions of Difficulty

The sources of error lead to a broad classificatibdimensions of
difficulty in a speaker recognition system. Theoesrin a system can be
associated either with the speaker or with thertieeth component of the
system. The typical dimensions of difficulty in spler recognition are
Intra-Individual Variations, Voice Disguise and tations and Technical

Error Sources

* Intra-Individual Variations

Variations in a speaker’s voice can happen not dolg to aging
and other physiological changes but also by hisgtersical as well as
mental states [175]. A phonetically balanced trgjndata containing
instances of all the sounds of the language irdfit contexts is one of the
major challenges in the consistent performance speaker recognition

system.

» Voice Disguise and Imitations

A deliberate changing of one’s voice to hide his/hdentity
referred to as Voice disguise and mapping of oweise to sound like
another speaker referred to as imitation or mimiesults in degradation of

the performance of a speaker recognition syster®][17

+ Technical Error Sources

The environmental noise can be added up with speesie when
recorded with a microphone or telephone handsetaratberation can add
a delayed version of the original signal to theorded signal [177]. Poor
quality microphones introduce nonlinear distortionsthe true speech

spectrum [178] and the A/D converter may introdadditional distortions
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in the original signal. The coding of speech degsathe performance of
speaker recognition significantly [179],[180]. Thmurces of technical
errors are mismatch in the environmental acousticgyunt of background
noise, microphone type and recording quality [188R]. Technical errors
arise when the user speaks training utteranceleaa environment while

using the recognition system in a noisy environment

4.3 Speaker Recognition Techniques

Speaker recognition techniques, as shown in Figl® are

composed of the following modules.

Speaker #2
Speaker #n

D ol H

Speaker #1
E Front-end
Processing
N
H}H # < Front-end
_/ Processing

- J— —
? Speaker

Decision Logic | Database

{

Speaker ID#

Figure 4.2 Speaker Recognition Technique

4.3.1 Front- End Processing

In front end processing, the spectral features t&gle€entroid,
Spectral Range, Spectral Rolloff, Spectral Flux arepstral features
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evaluated as MFCCs from the signal spectrum foitmesfé¢ature set. The

spectrogram on a frame-by-frame analysis givespleetral features.

4.3.1.1 Spectral Centroid

The spectral centroid, which may also be refercedst the spectral
brightness, gives an indication of the spectrapshand is defined as the
amplitude-weighted average or centroid of the spet{183],[184]. Itis a
simple, yet efficient parameter, estimated by sungmogether the product
of each frequency component of the spectrum anohdtgnitude, which is
further normalized by dividing with the sum of #lke magnitudes. Thus the

spectral centroi®&Cis given by

N/2-1

PIRAS?

SC=k0 (4.1)

N/2-1
> S
k=0
where& is the magnitude spectrum of tkafrequency component

fx andN is the record size.

4.3.1.2 Spectral Range

The spectral range or bandwidth refers to the raigeequencies
that are present in the signal. It is computedqu#ire spectral magnitude
weighted average of the difference between eacjuémecy component and

the centroid, SC. Thus the spectral rar@feis expressed as

SR=t0 (4.2)
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4.3.1.3 Spectral Rolloff

Another spectral feature, which gives a measurahef spectral
shape, is the spectral rolloff and is defined &sftequency below which
85% of the magnitude distribution of the signatasmcentrated [183].

e RO= Minimum(R), suchthat

s, = 085 S, (4:3)

4.3.1.4 Spectral Flux

This is a measure of the amount of local spectnainge. This is
defined as the squared difference between the ni@edamagnitude

spectra of successive frames.

Flux =" (norm,[i] - norm,_[i])? (4.4)

where normis the magnitude spectrum of the current framalesc
to the range 0 to 1 and natnis the normalised magnitude spectrum of the
previous frame. Spectral flux is a measure of havicldy the power
spectrum of the signal is changing and is computgdcomparing the

power spectrum of one frame with that of the prasitrame.

4.3.2 Cepstral Features

The extracted features using spectral estimatidchetpeech signal
alone cannot always perform reliable identificatiespecially, in the
presence of external noise and varying environnhgatameters. To make
the identification process more robust and relialddditional feature
components are incorporated by exploiting the otimexxplored features of
the noise sources. A variety of signal processipglieations use the
collection of nonlinear techniques known as cepsralysis, which is

capable of yielding potential features that, cad & the process of
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identification. One of the important propertiestioé cepstrum is that it is a
homomorphic transformation, in which the outpuéisuperposition of the

input signals.

The spectrum of a waveform consists of two compt®ethe
slowly varying part, referred to as the filter grestral envelope and the
rapidly varying part, referred to as the sourceharmonic structure.
Separation of these two components can be achidyedaking the
cepstrum, an anagram of the word spectrum. Theroepss defined as the
inverse Fourier transform of the log magnitude kauspectrum of the
signal and is said to be in the quefrency domainasagram of frequency
[185]. The cepstral values are stored as disci@tgonents referred to as
the cepstral coefficients, where th® cepstral coefficient is the amplitude

of then™ component along the quefrency axis.

4.3.2.1 Mel Frequency Cepstral Coefficients

A more systematic approach for extracting the capdeatures
makes use of the estimation of Mel Frequency Cab<Doefficients
(MFCC), which is a measure of the perceived harmstructure of sound
[186], [187]. A Mel is a psychoacoustic unit oéfuency which relates to

the human perception and is approximated usingxpeession

f
m = 2595lo 1+— 4.5
gl{ 700} (4.5)

wheref is the frequency in Hz. The spectrum can be transd
into a spectrum emphasized at Mel intervals usirgy filter banks, which
is a row of triangular filters overlapping at Mglexed intervals [188]. The

cepstrum of this transformed spectrum yields MFCCs.
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The term MFCC was coined by Davis and Mermelstairl980
[187] when they combined nonuniformly spaced fiitasith discrete cosine
transform (DCT) [188] as a front-end algorithm fAutomatic Speech

Recognition System.

Frames
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Speech s TR cking »  Windowing > FFT
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« Cepstrum <« Frequency <
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Figure 4.3 Speech process models
The spectral decomposition approach, as shown gnr&i4.3, is

used to improve the accuracy of operation.

4.3.2.2 MFCC Estimation - Mel frequency scaling and Cepstrm

The cochlea of the inner ear acts as a spectrulgsenand hence
researchers have undertaken psychoacoustic expdaimeork to derive
frequency scales that attempt to model the natesgionse of the human
perceptual system. The perceptual attributes ohdaignal at different

frequencies are not entirely simple or linear itura

2500 . : .

anoo /
2500 T
Ezc:cu:- ..' ]
1500 E
1000 E
soof — -

u 1 1 1
10" 10 10° 10 10"

Frequency (Hz)

Figure 4.4 The Mel-scale
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The cochlea in the auditory system acts as if imade up of
overlapping filters having bandwidths equal to tngical bandwidth. The
frequency scaling is used to map the linear fregesninto human
perception. Mel frequency scale is a perceptualhyivated scale, which is
linear below 1 kHz and logarithmic at higher fregcies as shown in

Figure 4.4.

The Mel scale more closely models the sensitivitthe human ear
than a purely linear scale and provides for gredigariminatory capability
between audio segments. The Mel-scale frequencyysasahas been

widely used in current speech recognition systems.

The Discrete Fourier Transform (DFT) of an inpursil is given
by Eq.(4.6).
N_

X(K) = x(n)exp(-j2mk/ N) k=01,2,..N-1  (4.6)

=0

LN

>

where x(n) is the input signal. The Mel-frequency filter baiii88], [189]

comprising ofp filters can be represented as shown in Figure 4.5

Triangular filter bank
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Figure 4.5 Mel-Frequency filter bank on a linea&gnency (Hz) scale

102



Improved Biometric Authentication System Using Multimodal Cue Integration

The energy in each band is givenry(j=1, 2,...,p) and is computed as
detailed in EQ.(4.7). The Fourier Transform magatucoefficient is

multiplied by the corresponding filter gain and tlkeults are accumulated.

N-=

m, = Y [X (k)] H, () 0<jsp  (47)

where H;(k) is the transfer function of" filter and X(k) is given by

Eq.(4.6). The Mel-frequency cepstrum is the digrebsine transform

[188] of thep filter outputs and is represented as in Eq. (4.8).

C = %Zp: m; co{ﬂj (4.8)

= p
where ¢ is thei'” MFCC coefficient

MFCCs are extracted from the noise data waveforime key
difference between MFCCs and cepstral coefficidigts in the process
involved in extracting the characteristics of aseosignal [190]. With a
sampling frequency of 11025 Hz, a filter bank of d@ual area filters,
which cover the frequency range [50, 6400] Hz iplemented. The centre
frequencies of the first 13 of them are linearlyasgd in the range [50,
1000] Hz with a step of 73.077 Hz and that of thextn27 are
logarithmically spaced in the range [1001, 6400] With a logStep =

1.071103. ThdogStepis computed using Eq.(4.9).

559

Inj —¢

1000 4.9
logStep= ex NumLogFilt (4.9)

where f_,, is 6400, which is the centre frequency of the as¢ in the

logarithmically spaced filters. ThBlumLogFiltis equal to 27which is the
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number of logarithmically spaced filterach one of these equal area
triangular filters is defined as in Eq.(4.10). thee equation, i takes the
values 1,2.....p and stands for tiilter, f,; is the width of the filter bank

and is defined at p + 2 boundary points.

0 for k< f,._
2(k - f,4) bi-1
(fb' - fb'—l)(fb'ﬂ . fb'—l) for fuasks<t,
H; (k) = 2(f. —k) ks (4.10)
or f.<k<f,_
(fbi+l h 1:bi )( 1:bi+1 - fbi—l) bi bi+1
0 for k> f,.,

Here,k is equal to 1,2,.N andcorresponds to the" coefficient of
the N point DFT. The boundary point§,; are expressed in terms of the
position. The filter bank given by Eq.(4.10) is malised in such a way
that the sum of the coefficients for every filteraqual to one. Thus, th&
filter satisfying the Eq. (4.11) is used.

ZNHi(k)=1fori=1,2 ...... p (4.11)

k=1

The equal area filter bank given by Eq.(4.10) ispkyed for
generating the log-energy output. The MFCCs arainet by performing
Discrete Cosine Transform on the logarithm of Medaral coefficients
[191]. Of the many MFCCs, only the first 20 coeiffiats of each frame are
considered, since most of the features of the rsmsece can be extracted
from these coefficients. The use of DCT minimizdstortion in the
frequency domain and results in high computatiditieficy, since an N-

point DCT can be evaluated using a symmetric 2ok T.

4.3.2.3 Window function

When the spectral analysis techniques like the BFTapplied to

the segments as a whole, it behaves as if it isatipg on a data signal
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waveform that is zero just before the segment aed abruptly jumps to
the signal during the segment and then back towbem the segment ends.
This introduces significant distortion of the sibaad warrants the need for

windowing.

The windowing operation removes the undesirablaulatibns and
smoothens the edges of each data record. It redspmgral distortions,
discontinuities or abrupt changes at the end poitse specifically, if the
original signal level iss(i) at time i, then the windowed signal can be
represented as(i) * W(i) whereW(i) is the window function. In this study,
the windowing function is performed by Hamming waond defined by Eq.
(4.12).

W(n) = 054 - O.46cos(2—mj (4.12)

When the cepstral coefficients are extracted, dhiserved that the
MFCCs for different records vary over a wide ramge/alues. Hence, the
optimum set of values for the cepstral coefficiearts to be synthesized by

a technique referred to as vector quantization][191

4.3.3 Speaker Modeling

In the speaker modeling module, the dimension afuie data is
reduced by vector quantization technique. The vapiantization is a lossy
data compression method based on the principldogklroding. It codes
the values from a multidimensional vector space idlues in a discrete
subspace of lower dimension. In this work, the LB@de, Buzo, Gray)
design algorithm [192] for vector quantization ised for trimming the

cepstral coefficients to the nearest value.
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The MFCC matrix is vector quantized by passing esalmn of
this matrix through a vector quantizer. In veajaantization, the columns
of the MFCC matrix are taken as source vectorschviwill generate the
guantized code vectors comprising of the varioyssttal coefficients at
different quefrencies. If the source vectors agirkensional, then Xm can

be represented by Eq.(4.13).

4.3.3.1 Vector Quantization and Optimization with LBG

The MFCC matrix is vector quantized by passing ezsalmn of
this matrix through a vector quantizer. In veaaeantization, the columns
of the MFCC matrix are taken as source vectorsclwhwill generate the
guantized code vectors comprising of the varioysstal coefficients at
different quefrencies. If the source vectors adirkensional, then Xcan

be represented by Eq.(4.13).

Xy = (Kygs Xopgsee s X ) Wherem=1,2,...... M. (4.13)
Let P be the number of code vectors, which arehegited from
the M source vectors. The average of the entimehes in a row of the

MFCC matrix is computed and a code vector is geadra

{C}={cy, ¢, ...., &} represents a set of k-dimensional code vectors
with cp given by €p1, G, -.... ,Co) Wherep=1, 2, ..... P.P represents the
number of code vectors that are to be synthesized the source vectors

and specified at the time of initialization.

The LBG algorithm requires an initial codebook @ining one
code vector obtained by evaluating the row wise et the MFCC
matrix. The initial code vector is split into twelamn vectors by adding

and subtracting an error term [193]. From theseurool vectors, the
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minimum distance to the various columns of the MRG&rix is computed

by the Euclidean distance technique using the Bdgtj4

eenthe newand
previous code vectors

D= i(xm—\(m)2 (4.14)

where D is the Euclidean distant )(m is the source vector arYﬂrn is the

code vector. The stipulated procedure for trimnthg cepstral coefficients
using vector quantization is illustrated in theafhart shown in Figure 4.6.

The column vectors of the MFCC matrix are identifiby using this
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minimum distance criterion. The index and new ceeetors are generated

from the average values of the feature vector.

The new code vectors, so generated, are compatiedhei previous
code vectors. If the difference is greater than en@r term, minimum
distances between these code vectors and the MF@@ixms again
computed by the same method. The codebook is uwpdaidil the
difference is less than the error term. The proadssplitting the code
vectors is continued until the number of iteratisequal to that specified

at the time of initialisation.

4.3.4 Decision logic

A conceptual diagram to illustrate the recognitmocess is shown
in Figure 4.7. In the figure, only two speakers &vd dimensions of the
acoustic space are shown [194]. The circles refethé acoustic vectors
from speaker 1 while the triangles represent tletore from speaker 2. In
the training phase, a speaker-specific VQ codebsalenerated for each
known speaker by clustering his/her acoustic trginrectors. In Figure
4.7, black circles and triangles represent the ltasu codewords or
centroids for speaker 1 and 2, respectively. Tis¢adce from a vector to
the closest codeword of a codebook is called V@odisn [195]. VQ
distortion is the Euclidean distance between the\tectors and is given by
Eq. (4.14). In the recognition phase, an inputratiee of an unknown
voice is “vector-quantized” using each trained dmmi¥k and the total VQ
distortion is computed. The speaker in the datalcasesponding to the

VQ codebook with the smallest total distortiondsritified.
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4.4 Results and Discussions

Hundred users have been considered for the tragfitige proposed
system. Altogether, 1000 sound records have bakredtfor the training
purpose. For the testing purpose, in addition & gbund records of 100
users who had been considered for training, souafis100 new
unregistered users have been employed. Hence thetype accounts for

the attempts of unregistered users in the system.
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Figure 4.7 Conceptual diagram illustrating \@@debook formation.

The speech signal of speakerl is plotted in Figlu& The signal
characteristics are found to be stationary whenmaxad over a short
period ranging between 5 and 100 milliseconds. Hewneover longer time
intervals, the magnitudes of the signal charadtesichange, reflecting the
different speech sounds. Therefore, in this stuslyort-time spectral
analysis has been used to characterize the spegaal.s The MFCC
representing the speech signal has been utilizethéospeaker recognition
task.
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In the frame-blocking step, the continuous speéghas is blocked
into frames of N samples, with adjacent frames dpeseparated by M,
where M is less than N. The first frame consisttheffirst N samples; the
second frame begins M samples after the first fraand overlaps it by N-
M samples. Similarly, the third frame begins 2M gtas after the first
frame and overlaps it by N-2M samples. This proaes#inues until the

whole speech is accounted for within one or maenfs.
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Figure 4.8 Speech signal of Speaker 1

The values of N and M are chosen as 256 and 8®cteply. The
magnitude of N = 256 is equivalent to ~30 millisedawvindowing. Frame
blocking of the speech signal is done sufficieftliya short period of time
because its characteristics are found to be fatdyionary. The magnitude
of N is taken as 256 inorder to compromise betwberime resolution and
frequency resolution. These time and frequency luésos can be
observed from the corresponding power spectrunpeésh files, as shown

in Figure 4.9. In each case, frame increment Mken as N/3.

The resolution of time is found to be high whensN\equal to 128.
Furthermore, each frame lasts for a very shortopgeThe analysis result

shows that the signal for a frame doesn’t chargaature (Figure 4.9). On
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the other hand, there are only 64 distinct frequesaanples which indicates
that the frequency resolution is poor. When N igad¢do 512, there is good
frequency resolution and 256 different values dioed. The number of
frames in this case is relatively small, which ne#mat the resolution in
time is strongly reduced. When the value of N bee®266, the number of
frames is relatively small, which reduces the cotimgutime. For N equal

to 256, there is a compromise between the resaolutiotime and the

resolution in frequency. Hence, N = 256 is adojietthis study.
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Figure4.9 Pcwer spectral analysis speec signal ofSpeakeil
(a) M= 43, N= 128, Frames = 303
(b) M= 85, N= 256, Frames = 152
(c) M=171, N=512, Frames =74
The next step in processing is the windowing ofivildial frame
which is done to minimize the signal discontinugtiat the beginning and
the end of each frame. The Hamming window is usadwindowing

operations and its plot is given in Figure 4.10.
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The next step is the determination of FFT. Eacm&af N samples
from the time domain is converted into the freqyedomain using FFT.
The result of this step is often referred to axspen or periodogram. The
next step is the mel-frequency wrapping. The makeg filterbank, which
operates with triangle-shaped windows, is applmethe frequency domain,

and the results are given in the Figure 4.11.

Hamming window
L0

s

a6

Amplitude

04

0 10 0 0 40 0
Sample

Figure 4.10 Hamming Window

In the final step, the log Mel spectrum is converteck to time
domain. The result is called the MFCC. The cepsaptesentations of the
speech spectrum provides a good representatiorhefldcal spectral
properties of the signal. The Mel spectrum coegfits, which are real
numbers, can be converted to the time domain uBi@F. The first
component of MFCC calculated from DCT is excludettes it represents
the mean value of the input signal, which carrigie linformation about the

specific speaker.

The resulting acoustic vectors of MFCCs correspamdd fifth and
sixth filters are plotted in the Figure 4.12. Theetors corresponding to two

signals overlap in some regions. Certain regionemsdo be used
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exclusively by one or the other speaker. This iedut distinguish the
different speakers. The vectors don't form actdasters, but there are
areas where their density is higher. The figurewshmnly a two-

dimensional plot whereas the actual vector contaihdimensions.
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Figure 4.12 MFCCs corresponding to speakerl thrétiggnd &' filters.
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For each speech frame of 30 milliseconds, a seMBCCs is
computed. These are the result of cosine transtmmnthe logarithm of
short-term power spectrum expressed on a mel-frayuscale. This set of
coefficients is called an acoustic vector. Theref@ach input utterance is
transformed into a sequence of acoustic vectorfie Jpeaker specific
codebook is formed using LBG VQ algorithm. The kssu codebooks
along with the MFCCs are shown in Figure 4.13.

The speech signals corresponding to the speaketiseiriraining
folder are compared with the speech files of thmesapeakers in the
testing folder. The Euclidean distance is small nvtiee test data matches

with the template in the database.
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Figure 4.13 Codebooks and MFCCs correspondingdalsy 1 and 2.

4.5 Performance analysis of speaker recognition system

The system is tested to find out the False Accegtd®ate (FAR)

and False Rejection Rate (FRR). False acceptanemsnacceptance of
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impostors whereas false rejection means rejectientnue claimant. These

parameters are used to evaluate the performartbe si/stem.

The false acceptance and false rejection rateheofspeaker and
face unimodal systems are computed and shown urd=ig.14. In speaker
unimodal system, the optimum value of thresholétbisnd to be 1.2. The
magnitudes of FAR and FRR are found to be 20%e&bfitimum value of

threshold when cepstral features alone is considere
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Figure 4.14 Influence of Cepstral & Spectral feasu

It is found from the literature that Shanehal (2009) [25]and
Shi. Huanget al. 009) [27] considered MFCC alone as the feature
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vector for modelling their speaker recognition syst In the present
study, in addition to MFCC, other features like cpa rolloff, spectral
centroid and spectral flux are used for constrgctime feature vector.
The speaker recognition system developed in thidysts found to be
more robust with distinct feature matrix. The sssceate with MFCC
alone is 80%. It is found that the success rateeases by 10% after the
inclusion of spectral features such as spectratraigly spectral flux,
spectral rolloff and spectral range as shown inufeigt.14. The success
rate stays at 90% after including the other spetdetures like number
of peaks, spectral crest etc. This result is asvsho the Figure 4.15.
Hence, in the proposed system, 20 MFCC coefficiant$ four spectral

features are considered..
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Figure 4.15 Success Rate of Cepstral and Speetatlres

4.6 Summary

The techniques and procedures involved in extrgdtie various
feature components for speech are highlightedignahapter. The classical

and a parametric model based power spectral estisnéir extracting the
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spectral features are presented in this chapters kbserved that the
parametric model based estimators give better teesolr short data
segments and yield better frequency resolutionsn tltanventional
estimators. This chapter also describes the cosmoafptepstral analysis
which belongs to an area of signal processing knasrhomomorphic
analysis. The cepstral coeffecients are computeeshynating the MFCCs,

which is a measure of the perceived harmonic straatf sound.

The performance analysis of speaker recognitioriesysis also
carried out. The incorporation of additional spaicteatures in the feature

vector is found to improve the overall performantéhe system.

117



Chapter 5 Face Recognition

CHAPTER 5

FACE RECOGNITION

In this chapter, human face has been identifieal keey to security
and can be used for a wide variety of application®oth law
enforcement as well as non-law enforcement. Fae@gnition
records the spatial geometry of distinguishingudesg of the face.
Face images are identified based on Eigen faceoapprusing
PCA. PCA extracts only the components with the datg
magnitudes and the dimensionality reduction removks
unwanted information. The face structure is prégidecomposed
into uncorrelated components known as eigen fandswall be
stored as a 1-D array which is actually a weightath of the
components. In eigen face approach, after the diorality
reduction of the face space, the distance is medsugtween the
image under consideration and the template. Whenligtance is
less than some set threshold value, then it idifiehas a known

face.

5.1 Introduction

Due to the easiness in collection of data, facegeition, which
started to evolve as early as 1936 focusing jusitiinmages, is a widely
accepted biometric. Decades of research efforte baought out feasible,
machine recognition based techniques that use cempo work more
systematically even for video images and is usedaimumber of

applications including crowd surveillance, crimimdéntification, access to
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entry etc. The state-of-the-art face recognitiochteques have reached a
certain stage of maturity but are still limiteddpecific environments with
constraints like illumination change or pose vaoiat

In general, the human recognition system utilizésaad spectrum
of stimuli, obtained from many senses viz. visaalditory, tactile etc., in
individual or collective manner for the purpose wdcognition. For
contextual knowledge, the surroundings play an mam role implying
that holistic and feature information are crucial the perception and
recognition of faces. When dominant features aresgmt, holistic
descriptions may not be used. For example, haie fatline and mouth are
determined to be important for perceiving and refpenmg front view
faces and when it comes to the side view, nosesg@agignificant role. The
original look of the face changes with the variasian hairstyle, wearing
spectacles, facial hair like beards, aging etcfa® is quite complex, a
single change in a feature of the face can akdodk considerably making
face recognition a really complex task involvingual techniques [130].

Face recognition is a part of a wide area of pattecognition
technology [196]. The process includes mainly thiasks - acquisition,
normalization and recognition. The term acquisitiefers to the detection
and tracking of face-like image patches in a ststiene. Normalization is
the segmentation and alignment of face images wiit®gnition is the
representation and modelling of face images astittksnas well as the
association of novel face images with known modalgomation of face
recognition algorithms mostly deals with digitalage processing, which is
a quite complex field that poses many problems.

The machine recognition of face from stills is astivee research
area spanning several disciplines such as imageegsmg, pattern
recognition and PCA computer techniques. Althougiméins seem to

recognise faces in cluttered scenes with relatiffeciency, machine
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recognition is a much more complex task. Face mn@itiog from a single
image is a challenging task because of variabilityscale, location,
orientation and pose. Face localization is an iabde step towards the
process of face detection, which aims to deterntireeimage position of
single faces with the assumption that an input ena@ntains only one face.
The face recognition compares an input image agairgatabase and in

turn, reports matched cases.
5.2 Face Recognition Algorithms

Face recognition systems received considerablatetein recent
years, both from industry and the research commuAinong the popular
biometric technologies, facial features scoredhigbest compatibility in a
Machine Readable Travel Documents (MRTD) system/]1%nd the
details are given in Figure 5.1. There has beersiderable amount of

research in this field and many techniques haven be®posed and

implemented.
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Figure 5.1 Comparison of various biometrics baseM&TD
compatibility

The four main categories of current face recognitechniques are shown
in Figure 5.2. They are

» Appearance basedvhich uses holistic texture features.
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* Model-basedwhich employs shape and texture of the face,galon
with the 3D depth information.
» Template-basethce recognition.

» Techniques usingeural networks
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Figure 5.2 Classification of face recognition teicjues
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5.2.1 Template-based Face Recognition

Template matching uses pixel intensity informatiaither as
original gray-level or as processed data to higligpecific aspects. The

template can be either the entire face or regi@mssponding to general

—_
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feature locations such as the eyes or the moutbssCeorrelation of test
images with all the training images identifies best match.

Brunelli and Poggio (1993) [137] compared featunel Zemplate-
based methods directly with the same databas@wfdrface views. In this
work, feature-based templates of mouth, eyes asd n@re automatically
detected. The test results indicated that the tatejidased techniques

outperform feature-based techniques.

5.2.2 Appearance-based Face Recognition

The faces are stored as two-dimensional intenseyrioes. Each
image is a point in a high-dimensional vector spaterder to identify the
different faces, depending on the application ¢énest, an efficient and
effective representation of feature space is ddrigad for a given test
image, the similarity between the stored prototyped the test image is
carried out in this space. This technique can lieeeiLinear (subspace)

Analysis and Nonlinear (manifold) Analysis.

5.2.2.1 Linear (Subspace) Analysis
PCA [128], ICA [198] and LDA [61][199] are classicéinear

subspace analysis techniques used in face reamgniiach classifier has
its own representation of high-dimensional facetmespaces called basis
vectors. Some statistical considerations formshhekbone for the basis
vectors and feature vector is obtained, after ptojg the faces on to this.
The matching score between the projected test inaangethe projected
training images is calculated and face identifarais carried, based on the

magnitude of matching score.

5.2.2.2 Nonlinear (Manifold) Analysis

The nonlinear manifold is more complicated tharedin models.

Actually, linear subspace analysis approximates tionlinear manifold.
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Direct nonlinear manifold modelling schemes helps I€arning this
nonlinear manifold. Kernel Principal Component Arsid (KPCA) is a

nonlinear analysis technique.

5.2.3 Model-based Face Recognition

This approach uses a model formed from a prior kedge of the
facial features of the face performs the recognitithe tool developed by
Wiskott et al. (1997) [57] utilizes the elastic bunch graph matching
technique. Cootest al. (1998) [200] integrated both shape, texture and
developed a new technique called the 2D morphadde model, which
measures the face variations. The 3D morphable rfamgel is one of the
latest developments in which a true 3D structurthefhuman face surface
helps in recognition. The model-based approach llysiavolves four
steps:

* Model development
* Model fitting
» Development of feature vector

* Matching

5.2.3.1 The Feature-based Elastic Bunch Graph Matching Tedlique

Figure 5.3 Multiview faces overlaid with labelecghs

All human faces share a similar topological struetu

Wiskott et al. (1997) [57] presented a general sleecognition

123



Chapter 5 Face Recognition

method for classifying members of a known classljécts. Faces
represented as graphs, with nodes positioned atifilpoints and

edges labelled with 2D distance vectors, are showagure 5.3.

5.2.3.2 The 3D Morphable Model

Database of 3D scans
esod -

Gallery

! 1

Fitting > 4|

Fitting

Probe

»

i
@El:ity

Figure 5.4 3D morphable face mog201]

& BR
10

A labelled graph is a set of nodes connected begdgith nodes
labelled with jets and edges labelled with distand&gach node contains a
set of 40 complex Gabor wavelet coefficients, idatg both phase and
magnitude, commonly known as ‘jet’. The edges eadbé geometry of an
object, while nodes encode gray-value distributmatch-wise. A face
bunch graph is a stack-like structure that combigegphs of individual
sample faces. A human face can be representedsadaze lying in 3D
space which implies that the 3D model is better rfepresenting faces
especially while handling facial variations suchpase and illumination.
Blanz et al. (2003, 2002) [201],[202] proposed a method base@ @D
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morphable face model that encodes the shape atgtdéer terms of the

model parameters, the details of which are in Edu4.

5.3 Linear Subspace Techniques

Linear subspace technique helps in the dimensiyraduction of
facial features. Since a large number of featurebtes in the database are
to be analysed in a face recognition system, iikisly that subsets of
variables are highly correlated with each othere &lbcuracy of classifiers
suffers when highly correlated variables are usatk of the key steps in
face recognition is finding ways to reduce dimenality without
sacrificing accuracy.

PCA, LDA and Independent Component Analysis (IC2)3] fall
under the broad class of linear transformations titaasform a number of
possibly correlated variables into a smaller numbérvariables. The
objective is to reduce the dimensionality or thenber of variables in the
dataset, but retain most of the original variapilih the data. Linear
subspace techniques forms the feature extractwmigue used to reduce
or remove redundant or irrelevant information frbra data.

The reduction of dimensionality in face recognitia® more
complex when the important measurement of featwe d given
application is unknown. In the work, PCA is theelm subspace technique
used for dimensionality reduction and Euclideanasise calculates the

matching score between training and test image.

5.3.1 Principal Component Analysis

Principal Component Analysis (PCA) is a construetstatistical
technique with many application areas such as facegnition, image
compression, security access control, criminal tifleation, law

enforcement etc. and is a common technique foirfqn@atterns in data of
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high dimension. In communication theory, it is kmowas the Karhunen-
Loeve transform [204]. The main idea is to findet sf M orthogonal
vectors in the data space that account for maxirpossible variance of
data. Projecting the data from their original N-dimsional space onto the
M-dimensional subspace spanned by these vectons timelergoes a
dimensionality reduction that often retains mosthaf inherent information
in the data. The first principal component is aldhg direction with the
maximum variance and the second principal compoisenbnstrained to
lie in the subspace perpendicular to the first.HiMithat subspace, it points
in the direction of maximal variance. Then, thedtprincipal component is
taken along the maximum variance direction in thiespace perpendicular
to the first two, and so on. PCA is the best knalivnensionality-reduction
tool that helps to reduce a large dataset to alensdt while retaining the
information in the larger set simultaneously. Thiid#-and-conquer
method minimizes the inherent complexity of dealvith a large problem
in a given time. Similarly, the dimension of diféeice information
embodied in large covariance matrix is brought douwsing PCA to
enhance the subsequent computations in face iaeiiin. Eigen face
approach utilises this technique to compute the&trans in similarities of
the faces in the database and project them onecedpace. PCA is a
technique used to remove the correlated fractiorthef input data and
provides an insight into the information contenttioé input facial image
data, emphasizing the significant features. Thea&fes are not related to
the conventional notion of facial features suchegss, nose and mouth.
The algorithm is a decomposition algorithm basegoncipal component
analysis that finds the vectors, which best accdonthe distribution of

facial images within the entire face database.
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The main reason for using the approach for facegeition is
actually the outcome of the dilemma of what aspetthe face are to be
considered for identification - whether the facetrisated as a uniform
pattern or the positions of features are adequateDepending too much
on feature representation is not sufficient to suppbust face recognition
because it causes problems when the image is agfjladnoise or when
the features are occluded. This led to the conoépising the approach,
which treats the whole face as a uniform patterrfdoe recognition. The
eigen face approach is the first real successiulothstration of automation
of human face recognition. PCA is used to derive fitww dimensional
representation of faces in the eigen face apprbgapplying it to a dataset
of images representing faces. The system implement& achieved by
projecting the face images onto a feature spadesihens the significant
variations among known face images. These sigmifiteatures are called
eigen faces. However, these features do not regtlsesent the individual
facial features such as eyes, nose and ears. Tiseycgpture the image
points that cause meaningful variations amongdled in the database and
in turn differentiates them.

The eigen face approach is a simple and effecty@righm that can
be applied on test images unaffected by illumimatbanges, provided that
the faces are recorded under similar illuminati@nditions. Formally,
eigen faces are the principal components of thieilgigion of faces or the
eigen vectors of the covariance matrix from theo$éace images. A linear
combination of eigen faces represents each facetlgxay using eigen
vectors corresponding to the largest eigen valéggen vectors are the
coordinates that define the direction of the andgse lengths are given by
the eigen values. To account for different lightiognditions, modular

eigen space approach, which is less sensitive pjeaapnce changes when
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compared to the standard eigen face method, is. 0wl evaluation of
eigen values and eigen vectors is a unique mapexation.

Recognition of images using PCA involves three baseps. The
first step is creation of transformation mattix using training images,
while the next is projection of the training imaga® projected onto the
matrix 2. Finally, identification of the test images by jaating them onto
the subspace and comparing them with the trainegy@® in the subspace

domain. Figure 5.5 gives an overview of the fac®gaition system.

Match/No Match

Figure 5.5 Overview of the face recognition system
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5.3.1.1 Creating Matrix 2

The steps like removing the mean,computing of theamiance
matrix, eigen values and eigen vectors are caaugdo compute matrig.
Removing the mean

Each of the training images is first mean adjust®dsubset of
training face database is shown in Figure 5.6.Mkan image is subtracted
from each training image. A two-dimensional image defined as a
function ofi, ,, the intensity of the image at any pair of cooati&s(x, y)
and the details are shown in Figure Fvery imagel; is expressed as a
matrix of intensity at every pixel in the chosersaleitionm X n and is
given in Eg. (5.1). These M images forms |-D vest&y as in Eq.(5.2).
Thus, the whole face is considered as a colleatfopixels and coded by
many vector components, arranged sequentially bgatenating one to the
other. The face spadeconsists of all thé/ images ofX; in the training as

given in Eq.(5.3).
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Figure 5.6 Subset of Training face database
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\!II

L(1,1)

Lim,n)

Figure 5.7 Schematic representation of mappingnofies
image into intensity matrix.

L) Lan)
L=l ; (5.1)
im0 lomm
f1,1)
Lim,n)
(5.3)

F=X - Xy

The mean image as shown in Figure 5.8, is the average informatioall
the images representing the mean value of evergl pix N-dimensional

vector as in Eq. (5.4) and Eq. (5.5)

M
1
= MZ X, (5.4)
P1,1)
p=| (5.5)
P (mn)
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MeanInege

Figure 5.8 Mean image of face database

The difference imag®, representing the deviation from the average image
@, is given by Eq. (5.6).
O=Xi— @ (5.6)
The matrixA is developed by assembling the value@’sfand is given in
Eq. (5.7).

a1 Pam

A= (5.7)

Q)(mn,l) Q)(mn,M)

Compute the covariance matrix (C)

The main idea behind the eigen face technique isxqoit the
similarities among various images. Separation @raye information and
deviation from the mean will be the first step mnstapproach. Eigen faces
are extracted from the difference information. Rbis purpose, the
covariance matrix C with dimensiak x N is computed as in Eq. (5.8),

where N is equal to the productmafandn.

M
_1 T _ gaT
c= le 007 = 44 (5.8)

Where, A is of the dimensioW x M. This covariance matrix

dimension is normally large and full eigen vectafcalation is done with
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practical difficulty in dimension. Without loss generality of the whole
training set, it is possible to reduce the dimemsiity of the covariance
matrix. The reduced dimensionality matidix of sizeM x M, is given by
Eq.(5.9).

M
1

_ar __E Tg.

L=A"A= ._I(D,(D, (5.9)

Computing the eigen values and eigen vectots of
The eigen vectors of the covariance maftiare computed by using
the matrix L. Then the eigen vectgs; and the eigen valu@; of L are
obtained by solving the characteristic equatione@fen value problem
|L —All = 0.
L.p; = A;.p; (5.10)

Substituting the value of L in Eqg. (5.10),
ATA.pi = Ai'pi (511)

Multiplying both sides of Eq. (5.11) by A,

Since); is a scalar quantity, Eq. 5.12 can be rearranged a
Let

Hi Pi (5.14)

Then from Eg. (5.8) and (5.14),

Cp; = Ay, (5.15)
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wherepu; and); are theM eigen vectors and eigen valueakespectively.
In practice, a subséM’ of face spac#/ is sufficient for face reconstruction
because the subspace of eigen faces can be temsathd basis for the face
space.

Figure 5.9 Eigen faces of the Training Image Séictvis a subset
of the face database.

The original face can be represented as a linearbrw@tion of
theseM’ vectors. The remainingV — M') eigen vectors that are associated
with eigen values play insignificant role in rectvastion computation.
Figure 5.9 displays the eigen faces computed waighatbove equation. The
eigen faces are the vectors that describe facdbeirface space. These
vectors are perceived as limited points in delimensional space. Each

face is recorded as a matrix of dimension 640 xid&fyay scale mode.
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5.3.1.2 Reconstruction of image from PCA model
The weight wy) is simply the dot product of each image with eatkhe
eigen vectors as in Eq.(5.16).

wie=uk o, =pul.X;—9), k=12,..M (516)
where 11, is the K eigen vector of the covariance matrig; is the I
difference image, Xis the " image andp is the mean image.
All the weights are converted in the form of a maff2) with dimension
M'x | as in Eq.(5.17).

Q= [wy,wy,ws, ... w7 (5.17)

Reconstructed imagk; is obtained by multiplying the weight matrig )

of the unknown image with the eigen vector matgy &nd adding the

mean face imagep( to it as in Eq. (5.18). The trained images ar¢egted

onto the eigen face space and the weight of ea&meiector is evaluated.
Xg = w2+

Wiy

= [p1 p2 ] +¢

M’
Z Hiw; +¢@
i=1

The reconstructed imagdg; is shown in Figure 5.10.

WM’

(5.18)

As seen from Eq.(5.18), reconstruction of the fat&ge is obtained
by adding each eigen face along with its weightht® mean face of the
training set. Error estimation is carried out witle number of eigen values
and the Root Mean Square (RMS) error of the recoct&®d image using
Eq. (5.19).

Error = || Xz — X|| (5.19)
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Input image Reconstructed image

Figure 5.10 Sample reconstructed image of thermlghput image.

5.3.2 Recognition Procedure from PCA Model

The test image is also projected onto the samesface and its
weight is calculatedThe weight vector defined in Eq. (5.208 used for
face recognition. To recognize a new test imaxyp),(its weight wy;) is
evaluated first by multiplying the eigen vector)(pf the covariance matrix

(C) with difference imagéXr — ¢).
wri = 1 Xy — @) (5.20)

Now the weight matrix of the test imag@;) becomes as in Eq.
(5.22).
Qr = [wywy, ..wy]T (5.21)
Then the Euclidean distane®, between weight matrices of the

unknown imagé&2;) and each face clas8)is obtained from Eqg. (5.22).
€i= 127 — Ql1? (5.22)

Calculating the Euclidean distance between two dpténts

involves computing the square root of the sum @& #guares of the
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differences between corresponding values of weigharder to identify a
test image, the distance between the image datatraming data is
computed. Then, this distance is compared with @estiold value.
Threshold value is the maximum allowable distanegvben the test and

training image for confirmation.
5.4 Results and Discussions

Observations have revealed the fact that the r@atmsquare error
increases as the training set members differ fracheother with more
variation. This is because of the addition of theamface image. So, when
there is a lot of variation among the members eftthining set, the mean
face image becomes cluttered, which in turn in@gdise root mean square
error. Since identification is a pattern recogmtidask, accurate
reconstruction of the image is not necessary. Allemset of faces with the
maximum variation is sufficient for identificatiorSirovich and Kirby
(1987) [205] evaluated a limited version for ars@mble of 115 images
and found that about 40 eigen faces were sufficfenta very good
description of the set. Turk and Pentland (19928]1observed that for a
training set of 16 face images, 7 eigen faces wssal to identify a face.
Also, Tat Jun Chin and David Suter (2004) [206] énadome with an
inference from their experiments that 8 eigen fagese enough to account
for more than 90% of the variations among a trgjrsat of 20 images. The
inference drawn from the graph in Figure 5.11 rév/#wat as the number of
eigen faces increases, the root mean square @tcgabes. This means that
the root mean square error is inversely proportitmséhe number of eigen
faces in the training set. RMS error for two humidmaages is found to be
0.2082 where as for the other eight hundred imatpesroot mean square

error is approximately the same. The error grapRigure 5.11 is plotted
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by taking the number of eigen faces on the X-aoaslD0O0 eigen faces and

root mean square error on the Y-axis.

Root Mean Square Error for reconstructed
images
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Figure 5.11 Root mean square error for reconstiuactages

It means that the first two hundred eigen facesigeothe principal
components with prominent information and the neigen faces contain
insignificant information for the identification geess. This is almost 20%
of the entire training set, which implies that secemall number of eigen
faces is enough for face recognition. In a datalbds0 face images, just
40 images of the training set would suffice forefaecognition. From this,
the root mean square error reduces to be aroundf2®e training image
set. The graph represented in Figure 5.11 is a sdample of heuristic

implementation of the above propositions.

5.4.1.1 Analysis of Eigen values

Eigen faces represent prominent features of facagéw in the
training set. The highest eigen value of an eigaee fis treated as the
principal component of that face. The vector repnéisg the highest eigen
values of every eigen facek,(A,, A3,.....,Ay) in the facespace is plotted in

Figure 5.12. Figure 5.12 shows a training set @0L8igen faces with the
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associated principal components (one from eachdaee). The first eigen
face with its associated eigen value as 183.572€hesfirst principal
component of the entire facespace. Th& 56igen face has the highest
eigen value variation of 78.9040, which is apprcadiety half of the first.
The 250" eigen face is having 16.8500 as the principal amept, which

is only one eleventh of the first one.
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Figure 5.12 Number of Eigen faces vs Eigen valu@atian

The variation of execution time (for the collectioh 1000 images
for the entire face database) versus the numbeigeh faces is illustrated
in the Figure 5.13. The figure shows timing plats both the cases- with
covariance matrix reduction and without it. Thepras plotted with the
number of eigen faces for 1000 images on the X-aen interval of 100
and the execution time on the Y-axis. It is cleanf the graph that with
covariance matrix reduction the timing for faceagmwition is around 34
seconds while without the reduction, it is arou® seconds. This shows
that without covariance matrix reduction, the exmcutime for the face
recognition algorithm is almost five times thatwith covariance matrix

reduction. For 10 eigen faces, the execution tinth wovariance matrix
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reduction is observed to be 6.1 seconds while 80d seconds without
covariance matrix reduction. Similarly, for 250 engfaces, it is 11.3
seconds with covariance matrix reduction and 5%8osds without
covariance matrix reduction. For 500 eigen facess 9.4 seconds with
covariance matrix reduction and 101.01 secondsowtitbovariance matrix
reduction. For 1000 images, the execution time bm&s034.2 seconds with
covariance matrix reduction and 171.2 seconds witlcovariance matrix

reduction.

s
[
o

=O=Wwith covariance matrix
160

-
B
o

={J=without covariance matrix

B
o N
o o

Execution time

0 100 200 300 400 500 600 700 800 900 1000
Number of Eigenfaces

Figure 5.13 Execution time with and without covada matrix
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Figure 5.14 PCA Recognition Rate

The rate of recognition versus the number of Eifg@mes is shown

in Figure 5.14. It is observed from the graph tiet recognition rate for
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PCA is 25.455 with an eigen face. As the numbdacés increases to five,
the recognition rate becomes 57.2310. As the nundbeeigen faces

increases further, the recognition rates are fdoridcrease constantly and
uniformly with a little difference from there untihey reach the maximum
value of 91.5480. It is noticed from the figure ttf®0 eigen faces are

sufficient to reach a recognition accuracy of 80@5.
5.5 Summary

The problem of face recognition in a large dataleasg a model
that uses PCA approach have been proposed. Theged@CA is found
to result in a recognition efficiency of 91.548% ewhtested for 1000
training images. The computational time efficierufythe present PCA is
estimated through covariance matrix with and with@imensionality

reduction.

The computational time with reduced dimensionattyound to be
34.2 seconds (for 1000 face images) where agauisd to increase by five
times i.e. 171.2 seconds for the case without d#iomality reduction.
Hence, the reduction of dimensionality resultseduced computation time.
The proposed model is tested using faces with pas@tions. The
limitation of the present work is that the trainiagd testing images have
been assumed to be of the same dimension, whehe asal world images
differ in dimensionality. Similarly, gray scale asthtic images have been
used for the present evaluation procedure but diégr very much from
the realistic environment. Since the proposed Rgorithm does not
possess a recognition accuracy of 100% due tohisrent disadvantage of
selecting prominent but holistic features, thisoalipm can be combined
with any other algorithm like support vector maa&hifisher faces etc. in

future to achieve 100% recognition efficiency.

140



Improved Biometric Authentication System Using Multimodal Cue Integration

CHAPTER 6

SIGNATURE IDENTIFICATION

In this chapter, identity of a person based on’siggndwritten

signature is discussed. A signature, widely acceasea means of
identity authentication in legal and commercialngactions, is
remarked as a consistent non-invasive authenticgirocedure
by the majority of the users, thereby overcominghneoof the

privacy issues. The distinct features are extrafrted the image
of the signature trajectory captured by electrangmature tablet,
after pre-processing. In signature recognition, fereture vector,
which forms the signature template in the knowletgese, is
selected as a combination of static and dynamitufes. The
static features are generated using 2D Gabor fillbile the

dynamic features under consideration are the xyasttoke as
well as the average velocity in x and y directioidahalanobis
Distance (MD) computed based on correlation betwégo

signatures is used to verify the similarity of inreag When the
Mahalanobis distance between the feature vectoesuafled and
test signature is smaller, the similarity betwebr tompared

signatures is higher.

6.1 Introduction

Signature is a socially accepted method alreadysenin bank and
credit card transactions. Based on the method usedapture the

signatures, handwritten signature biometrics systerdivided into two
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categories, namely, offline and online [207]. Qffel or static is the
analysis of features extracted from scanned imageshandwritten
signatures while on-line or dynamic is the analysis handwritten
signatures captured via digitizing tablets or othlectronic devices, which
capture the trajectory, pressure and velocity aidmaiting. The offline
method does not verify the physical presence ahesrenly on features,
extracted from the scanned signature image. Ordigeatures can be
captured using a variety of input devices suchiggizing tablets [208],

specially designed pens, hand gloves [209] anditigecamera.

Signature authentication is the process of venftime identity of a
person based on the user’'s handwritten signatugeodizing people by
their handwritten signature involves intense rese§207], [208] because

of the following reasons [104]:-

* Signature is resistant to fraudulent access at@mipven though,
hypothetically, no person writes his/her signatheesame each time, in
practice, it is very difficult to forge the dynamitata (such as speed,

pen-up movement, pressure, etc.) for every digiteignature point.

» Signature has been widely accepted as a meangadfdad commercial
transactions identity authentication [87]. Signeturhave played a
historical role in authenticating documents. Sigmat based
authentication is a consistent non-invasive autbation procedure by
the majority of the users, therefore, it can helmvercoming some of
the privacy difficulties [102], [103].

 The main drawback of biometrics when compared withventional
methods is that many biometrics can be copied agefb [2],

[15],[132]. Whereas it is always possible to obt@inew key or another
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password, it is not possible to replace any bioimetata [210]. The
user may change a signature, while it is not ptsstb change

fingerprint, iris or retina pattern.

However, signature authentication is still a chadieg issue for a

number of reasons.

» A signature reflects people's writing habits. Hoeresome people may
experience a lot of inconsistency between theinagres, mostly
because of lack of signing habit. One possibletgmito cope with this
limitation is to acquire multiple signature instascduring enrolment
instead of relying on a single instance as wellaathentication under

conditions similar to those practiced during enrertmn

* While each ordinary literate human being has hislireque style of
writing the signature, the signatures tend to exoMith time and the
process of signing is influenced by the physical amotional states of

the signatories.

The main task of any signature verification tastoisletect whether
the signature is genuine or forged [211]. The twainmcategories of

forgeries are casual or random forgeries and skdletraced forgeries.

Casual or random forgeries are the attempts tceagersignature
trajectory without prior knowledge of the signatweiyle whereas skilled
forgery is a suitable imitation of the genuine sigme [212]. The skilled
forgeries are more difficult to detect than randdargeries, as the
characteristic features of a skilled forgery reskemtiosely those of the
original signature. Thus, it is difficult to disorinate skilled forgeries from

authentic signatures by an offline system.
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6.2 Signature Identification Methodology

The four modules of Image acquisition, Preprocessheature extraction
and Enrolment and identification constitute thetesys developed in the
study. The image of the signature trajectory igtweed using electronic
signature tablet while the preprocessing module rasponsible for
preconditioning of the signature image. The didtifeatures of the
signature image extracted in the feature extractiwodule helps in
developing the knowledge base of the signatureenthie identification
module authenticates. An architecture for an ordilg@ature identification
system is shown in Figure 6.1.

Figure 6.1 Architecture for an online signaturenidfecation system

6.2.1 Data Acquisition

Data acquisition is the process of recording tigaature trajectory

as well as dynamics and converting them to a difptan. In this study, the
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signature information has been acquired using WACBK&mMboo pad

graphic tablet as shown in Figure 6.2. When ogesson a graphic tablet,
capturing of the location coordinates as well as timing information

tagged to each pair of the x and y coordinatesrgsc&ignatures captured
using inking pens on the Bamboo Pad reflect the&ysigning behaviour
as users sign on paper in the way they are usethonly difference is
that there is a sensor underneath the paper digjtidata throughout the
writing process. This capturing procedure requir@shange in the signing

behaviour of the user.

Figure 6.2 Signature acquisition device -WACOM Bamlpad

6.2.2 Preprocessing

The images need to be preprocessed prior to progesAfter
binarizing the image, dilation is applied to fiiet gaps and broken necks
and the image is then thinned and the edges aregrdhe simplest way
to use image binarization is to choose a threskalde, and classify all
pixels with values above this threshold as whited éhe remaining as
black.
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Thinning intends to reduce objects to the thicknelssne pixel,
generating a minimally connected axis that is egtadt from the object
edges. Digital skeleton, generated by thinning réitlgms, is often used to
represent objects in a binary image for shape aisagnd classification.
The thinning process removes pixels from the oetgidges of an object.
The designed structuring elements find those edgelsowhose removal
will not change the object’s connectivity. On coetn of thinning for the
first pass with the eight structuring elements, #mire process for the
second pass is repeated until no further changear.oéfter thinning,
pruning which is cleaning up of extra short noisgrizthes that appear in
the skeleton of a pattern is taken up. The se¢hefshort noisy branch is
located using ends that have only one neighbouyixgl and moves along
the path until touching another branch within ayvémited number of
pixels. The length of a noisy branch when related the object
characteristics and image size; is often given tasi@st three pixels. A
branch junction is considered as the pixel havirigast three neighbouring
pixels. The rotation invariance of all the imageschieved by calculating
the angleo, of least second moment of the binary image Sortier to
obtain some degree of invariance w.r.t. rotatiadghe, main inertia axis of
the signature is aligned with the horizontal aXise signature when rotated
about the centre of the area of the image elimstte influence of skew
angle of the signature. Finally, normalize the iemgn size to achieve
scaling invariance preserving the aspect ratiohef gignature. Figure 6.3
(a) shows the binary image of a genuine signatreprocessing involves
finding the angle of least second moment, rotativgy images as well as
smoothing and thinning of the signature. The odgimage and the image
after rotation are shown in Figure 6.3 (a) andréspectively.
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(a) Original image (b)mage after rotation
Figure 6.3 Signature before and after rotation.

6.2.3 Feature Extraction

The discriminative power of the features in theerefice set plays a
major role in the entire identification processislitimportant to find the
features that are invariant with respect to slighanges in intra-class
signatures. The features should be powerful endagtiscriminate other

signatures in the knowledge base.

6.2.3.1 Static Features

The features from signature images are extractedgu&abor
Wavelet Transform (GWT) [213]. Gabor filters usedemsively in image
processing, texture analysis etc. are based oneaasi cosine wave as in
Eq.(6.1). The cosine wavelets are the real partkeivavelet and the sine
wavelets are the imaginary parts of the wavelg@resented in Eq.(6.2) and
(6.3) respectively. Therefore, a convolution witittbthe phases produces a

complex coefficient.

Complex

240202 ] '
9(x,y;2,6,0,0,7) = exp (- 2L ) exp <l (== + <p)) (6.1)

Real

12422 P
9(x,y;2,6,0,0,7) = exp (- 2L ) cos (= + ¢) (6.2)
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Imaginary

g(x,y;1,0,9,0,7) =exp (— M) sin (21?' + (p) (6.3)

202

In the two dimensional GWTx’ and y' are given in Eq.(6.4) and

(6.5) respectively.

x' = xcosO + ysinf (6.4)

y' = —xsinb + ycoso (6.5)

where@ is the orientation of the normal to the paralleipgs of a
Gabor function. The wavelet is rotated about it#eeusing this parameter.
The wavelet values from to 2t are redundant due to symmetry. So, in

most of the cases§,is assumed to take values between Omand

In Eq.(6.1),4 is the wavelength of the cosine wave. The gradual
changes in the intensity of the image is charaszdrby a wavelet of large
wavelength. The sharp edges and bars are reprdsbptevavelets with

short wavelengths.

@ given in Eq.(6.1) is the phase offset in the argotrof the cosine
factor of the Gabor function and is specified ig@es. Valid values are
the real numbers between -180 and 180. The valwasl80 correspond
to center-symmetric functions ‘center-on' and teeaff', respectively,
while -90 and 90 correspond to anti-symmetric fiomg. All other cases
correspond to asymmetric functions. If one singidug is specified, one
convolution per orientation will be computed andhifist of values (e.g. O,
90 which is default) is given, multiple convolutgper orientation will be

computed, one for each value in the phase offseet li

o given in Eq.(6.1) is the radius of the Gaussiame Fize of the

Gaussian determines the fraction of the image emided by convolution.
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The computational effort becomes negligible whes ¢bnvolution moves
further from the center of the Gaussian. The raditishe Gaussian is
proportional to the wavelength and is given doy cA. This means that

wavelets of different size and frequency are sceégdions of each other.

In Eq.(6.1),y is the spatial aspect ratio of the Gaussiaspecifies
the ellipicity of the support of the Gabor functidfory = 1, the support is
circular. Fory < 1, the support is elongated in orientation & garallel

stripes of the function. Default valueyis- 0.5.

The feature is extracted from the signature imageplacing a
virtual grid on the signature image and Gabor ¢oeeffts are computed on
each point of the grid by convolution. Convolutibetween Gabor filter

and a sub image around point (X, y) is calculated.

At each point of the virtual grid, 6 complex Galoefficients are

computed corresponding to€ {2,2v2} and 96{0,%,%}. Other Gabor

filter parameters are assumed to take valueg ef0, %}, o =21 and

y = 0.5. This means that for each grid point, two frequescin three
orientations and two phases are computed. Thetdforall the grid points
of an image, Gabor coefficients are computed. Fatufre vector of the

signature image consists of absolute values oGtigor coefficients.

6.2.3.2 Dynamic Feature

The forging of the static image of the signatureaopaper is easy.
The forgers can reproduce the image (or shape) fifrature, but it is
difficult to forge the motions that caused the im485]. When a signature
is captured with a signature tablet, the pen mastiavhich is dynamic in

nature, are recorded. The features that are imtawéh respect to slight
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changes in intra-class signatures are used toirdisate other signature's
classes. The dynamic features is broadly classiiedocal and global.
Global features refer to the parameters extractad i complete signature
signal, such as average writing speed, total sggminration, number of
pen-ups, number of strokes and standard deviatfothe velocity and

acceleration. Whereas, local features analyse siggmbased on specific
sampling points, such as the slope of the tangesdi@h point, velocity, the
centre of mass and average speed within a strolselitAble set of global
dynamic features [214] which is found to be rekal@dre used in our
approach. Such features are simple to compute wittminimum pre-

processing effort, and there is no need to mairtaénoriginal signatures
once the features are extracted. The values iodlgut stream produced
by the signature tablet are equidistant in timecdhtains the x and y
coordinates sampled at timestamp t and is repredess x(t) and y(t),
respectively. At each sample point, the signatla& as S(t) = [x(t), y(t),

timestamp(t)], t = 1,...,N , where N is total the rhen of samples of the

signature trajectory along with the timestamp.

The explanation of dynamic features such as X-strokstroke,
average of velocity over all coordinates in the [XAe (Svx) and average of
velocity over all coordinates in the Y-plane (Seyg given in Eq.(6.6) and

(6.7) respectively.

Average velocity in the X plane
Svx = =TI ((igs = %)/ (tir — 1) (6.6)
Average velocity in the Y plane

Svy =~ 2T (Gier = ¥/ (Eia — £) (6.7)
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6.2.4 Classification

Mahalanobis Distance (MD) computed based on cdioala
between two signatures verifies the similarity ohages. When the
Mahalanobis distance between the feature vectorenoblled and test
signature is smaller, the similarity between thenpared signatures is

higher. The signature raw matching scosg,) is the MD between two

signatures. s, is computed as in Eq.(6.8).

Sg@ N =& — ¥ ST & - ) (6.8)

where S is the covariance matrixand y denote the enrolled and

test feature vector respectively..

6.3 Enrolment and ldentification

Twelve signature samples each collected from huhdsers forms
the data set. Ten signature images of hundred wsses used for training
in enrolment module. Three types of impostors apeady likely in the
case of signature identification, namely, unregeste skilled forgery and
random forgery signature images. The unregistesstsuare those who
produce their own signature but not enrolled. Peotlyisignature image of
another person with and without prior knowledgecaled skilled and

random forgery respectively.

Additional hundred signature samples of skilled eamtdlom forgery
were collected. A total of four hundred signatusenples were used for
testing the system. Out of four hundred, two huddi@mples (100x2) from
registered users, fifty each from unregisteredleskiunskilled and random

forgery were used. Thus, equal probability of absible impostor attempts
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was considered. The details of the number of sigeaimages used at

various stages are given in Table 6.1.

Table 6.1 Details of the number of signature images

Type of users Number of samples
Training Testing

Registered (100 persons) 100x 10 = 1000 100 x 2=200
Unregistered 50 x 1=50

» Skilled forgery - 50 x 1=50

* Unskilled forgery | -- 50 x 1=50

« Random forgery |- 50 x 1=50

TOTAL | 100C 40C

6.4 Results and Discussions

The effect of static and dynamic features extrachemn the

signature are illustrated in the following sections

6.4.1 Effect of static features

The Gabor wavelet transform was used to find tlaufe vector of
signature images. The feature vector at varioustpan the virtual grid on

the signature image was computed.

1,05 07854 1,2,07884 1.0.25,0.7854 1,08, 1.5708

1,2, 1.6708 1,025, 15708 40507854 42,0785

4,025, 07854 40515708 4215708 4,0.25; 15708

Figure6.4 The real and imaginary part of Ga Filters
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The real and imaginary parts of gabor filters aiotss frequencies
and orientations are shown in Figure 6.4 and Figuse The amplitude and
phase response of a particular sample signaturgharen in Figure 6.6 and

Figure 6.7.

1,05 0.7850 1,2, 07854 1, 0.25,0.7850 1,05, 1.5708

0o (U] (U]
1,025, 15708 4,05, 07854 4,2,0.7854

oo oo (U] (U]

4,025, 0.7854 40515708 4,2,1.5708 4,025, 15708

Figure 6.6 Amplitude Response of Gabor features
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Figure 6.7 Phase Response of Gabor filters

The optimum number of grid points was identifieddnalysing the
overall peformance of the system in terms of Edtrabr Rate (EER). The
EER is defined as the rate at which FRR is equalF&R, which
corresponds to an optimum value of threshold fagiveen system. The
normalized boxes of size 8 x 16, 16 x 32, 24 x3Bx 64, 40 x 80, 48 x
96, 56 x 112 and 64 x 128 pixels were considerée. threshold factor in
decision making for Mahalanobis Distance (MD) wasied between 0 and

3 in increments of 0.05.

The magnitudes of false rejection rate (FRR) anskefacceptance
rate (FAR) change against threshold for differend gizes of bounding
box were computed and are shown in Figure 6.8.hasshold increases,
FRR reduces and FAR increases. The EER, whichei€tbssing point of
FRR and FAR, was determined. The variation of EEResponding to the
size of the normalization box is presented in Fegi9. It is observed that
EER decreases with increase in size of the grig Widriation in EER is

found to be small when the grid is greater thanx3@4. The average
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verification time corresponding to different gridess was determined and

is demonstrated in Figure 6.10. It is observed tihe increase in average

verification time of the system is significant whtre size of the grid is

greater than 32 x 64 pixels. Hence, the grid of 82 x 64 pixels was used

for this study.

e FAR
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e FAR
(b) 16x32 normalization box
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Figure 6.8 Influence of the size of the normalmathox on false rejection

and acceptance rates against threshold.
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Figure 6.9 Equal error rate against size of thenadization box.
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Figure 6.10 Average verification time versus sifzéhe normalization box.

6.4.2 Effect of dynamic features

A sample of a dynamic signature, its x and y pldhwespect to
time as well as its normalised x versus time ptetshown in Figure 6.11.

The success rate of the system with static feail@®e is 76 percent and
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by the addition of dynamic features, the success i increased to 84

percent as shown in Figure 6.12.

0.5 0.8
0.6 1 0.6
0.4 1 w04
0.2 1 0.2
D 1 1 1 D 1 1 1
0 0.2 0.4 0.6 0.8 0 100 200 300 400
time
0.8 1
]
0B -
[E]
L]
b 0.4 =105
0.2 S
=
0 : - - 0 : - - :
0 100 200 300 400 0 02 04 0B 08 1
time normalized time

Figure 6.11 Example of a signature, its x and y atowell as its
normalised x plot against time.
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Figure 6.12 Effect of dynamic feature on the suscate.
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6.5 Summary

A simple and effective signature identification hmed using grid
based GWT and dynamic features is proposed. Thimrpeance of the
signature identification is investigated. The optimsize of the normalised
grid box is determined based on the analysis oéleguor rate (EER) and
average verification time. Three types of imposto@mely unregistered,
skilled forged and random forged users, were adeounin the
identification process. It is found that by indlugl the dynamic features
along with static features of the signature, thecess rate is increased by 8
percent. The test results demonstrate the suitalaihd effectiveness of
combining the grid based Gabor Wavelet Transforpr@xch and dynamic

features in a signature biometric system.
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CHAPTER 7

IRIS RECOGNITION SYSTEM

This chapter, brings out the importance of irisr@cognition
systems as iris patterns are believed to be undpe to the
complexity of the underlying environmental and genprocesses
that influence its generation. These factors raaudtxtraordinary
textural patterns that are unique to each eye dhdiridual and
are even distinct between twins. The pre-processtimge requires
localization of the iris which generally involvelset detection of
the edge of the iris as well as that of the pupihce varying
levels of illumination can result in dimensionakcamsistencies
between eye images due to the stretching of teenarmalization
needs to be performed so that iris region is t@nstd to have
fixed dimensions. After unwrapping the normalize iregion
into a rectangular region, it is encoded using Haavelets to
generate the iris code. It was also observed that Ganny
operator is best suited to extract most of the edg@enerate the
iris code for comparison. In the recognition stagimming
distance is used for the comparison of the irisecdtie most
discriminating feature of the iris pattern, withetexisting iris

templates.

7.1 Introduction

Among biometric technologies, iris-based authetibicasystems

possess more advantages than other biometric tleghe®. Iris offers an
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excellent recognition performance when used asomdiric. Iris patterns
are unique due to the complexity of the underlygmironmental and
genetic processes that influence the generatioanofris pattern. These
factors result in extraordinary textural patterhattare unique to each eye
of an individual and even distinct between twins(JL

Iris is a delicate circular diaphragm that lieswesn the cornea and
the lens of the human eye. The human iris pattarres among different
individuals. The iris is one of the most stablenbédric [2], [4], [211] as it
does not alter significantly during a person’s tlifee. While Iris
recognition is the most precise personal identiicabiometric, compared
to other biometrics, such as fingerprints and faigbased authentication
has a fairly short history of use. The idea of atomatic iris authentication
procedure was conceptualized and patented by Flodn Safir in 1987
[215]. Most of the common approaches reported énliterature are based
on iris code and integral-differential operatorggested by Daugman
[216], [217].

7.1.1 Iris Anatomy

Iris is the coloured ring of tissue around the pdipiough which
light enters the interior of the eye [217]. It iscated in front of the
crystalline lens, and divides the anterior aquemis the anterior and
posterior chambers. The pigmented fibro vascutsug known as stroma
characterizes the iris. It's role is to help inukging the amount of light
that enters the eye. The iris made up of smoothclautbres known as
sphincter and dilator, adjust the pupil size wiile purpose of controlling
the amount of light passing through the pupil. Bokera often referred to
as white or white of the eye, is the outer whitataaf connective tissue and

blood vessels that surround the iris. Together wthrnal fluid pressure, it
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maintains the eye shape and cares for its delicagznal components

[218].

Eye lid
Lacrimal caruncle

Tear duct
Fardy Lateral rectus muscle

Choroid
Refina
| Macula lutea

Fovea ceniralis
{central depression)

Pupil
Comea ——
Anterior chamber

(filled with
aqueous humor)

Posterior chamber
Suspensory ligaments
Ciliary body and muscle

Medial rectus muscle
Right Eye (viewed from above)

Figure 7.1 Diagrammatic view of anatomy of an egeed from [218].

A curved band of strong, clear tissue called thenea covers the
surface of the eye. It is the most powerful lensh@ human eye's optical
system. The cornea is a transparent window of yeetlerough which light
passes. The transparency of the cornea is beamlge most tissues in the
body, it does not contain any blood vessels. Howedwe cornea receives
its nourishment from the tears and aqueous humihreithamber behind it.
Figure 7.1 shows the anatomy of the eye. Iris @dljurhas a rich,
distinctive and complex pattern of crypts, furrowsghing, collarette and
pigment spots [217]. Each human iris has a distiactexture which is
believed to be determined randomly during the ey development of
the eye [110]. Although iris colour can change dasa the levels of
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melanin concentration and distribution within theési stroma, the
appearance of an iris is relatively constant fostmaf a human’s lifetime
[219] .

7.1.2 lIris as a Biometric

Iris recognition, a reliable method for identitytila@ntication, plays an
important role in many mission-critical applicatiosuch as access control

and border checkpoints due to several reasons:[113]

» lIrisis an internal organ of the eye, physicallgtected from external
environment by the cornea. This makes it more cbasi than
fingerprints that are more susceptible to worn dué to age or
manual labour.

* Iris starts to develop in the third month of gdstatand the
structures creating its pattern reach completiomiydy the eighth
month [219] and does not vary throughout one's titife.
Furthermore, the formation of iris depends on tiigal environment
of the embryo. Therefore, the texture patternshaf iris do not
correlate with genetic determination. Consequerglen irises of
genetically identical twins are extremely distin8ttually, the left
and the right irises of the same person are urj2R@.

* Since iris is stable, iris-based technologies hdemonstrated high
levels of performance [221]. Moreover, surgical mfiodtion of the
pigmentation and/or colour of the iris without uceptable risk to
damage the vision is also impossible.

» The physiological reaction of the iris to light soes provides one of
the easiest aliveness detection practices agaioefiag attacks.

» Glasses or contact lenses rarely hinder Iris reitiognefficacy

[222]. In addition, the non-contact acquisition gedure used in
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capturing iris images makes it more convenient tfingerprints,
which mostly use optical touch based sensors.

* Among biometrics, iris has one of the smallestieutbopulations,
where few people cannot use or enrol using thisrtelogy.

Despite the aforementioned advantages of usingddsgnition, the
acquisition of satisfactory quality iris images fios recognition is a critical
yet challenging step [111]. It may act very poosligen deployed in real-
time applications, especially for recognition adistance. Besides, the iris
is usually located at the back of a curved ancectifig surface, typically

covered by eyelashes and partially occluded byigsel
7.2 Iris recognition system

Since the beginning of the iris recognition reskaroany different
iris recognition systems have been developed [234] . Perhaps the
most successful and most well-known iris recognitgorithms, on which
the state-of-the-art systems are based, are tlwitalgs developed by
Professor John Daugman. The main stages of angalypis recognition
system include iris pre-processing, feature extacand classification.
Figure 7.2 illustrates the key phases of an it®gaition system based on

the approach of Daugman [225].

The initial stage involves iris localization, irisormalization and
image enhancement. The first step consists of ilongl the iris area
between the inner (pupillary) and the outer (limidoundaries, with the
prior assumption that each border is either circua elliptical. This
process also obliges detection and removal of amgidar reflection as
well as eyelash or eyelid noise from the imagerpiosegmentation. In
order to overcome the differences in the pupil sizd the acquired images

as well as to ensure consistency between eye imagessured using
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Daugman’s Rubber Sheet method, which maps thenatigegmented iris
region into a fixed length and dimensionless psepmlar coordinate
system. The next step is to extract distinctiveuiess from the iris texture
pattern, with the intention of comparisons betwesnplates.

Figure 7.2 Block diagram for an Iris Recognitiors&m

As stated before, segmentation plays a crucial mol¢he overall
performance of the iris recognition system. Thkofwing sub-sections,
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describes the proposed technique, starting withdetection of pupil as
well as iris boundary regions, the isolation of l&lge together with
eyelashes, feature extraction and finally matchiregprocessed iris pattern

with those in the knowledge base.

7.2.1 Iris Pre-processing

The primary step in iris pre-processing is to dgtiish the iris
texture from the input eye image. The first stepaimy iris recognition
system is to localize the iris area between therifpupillary) and the outer
(limbic) boundaries, usually with a prior assumptithat each border is
either circular or elliptical. Researchers havepps®ed different algorithms
for iris detection [111],[112],[226],[227]. This @ress also obliges
detection and removal of any specular reflectidniiomination as well as
eyelash or eyelid occlusions from the image prior segmentation.
Segmentation plays an essential role in the ovemadlcess of any iris
recognition process, as image parts that are iactyr considered as iris

pattern data will eventually lead to poor recogmitrates.

7.2.2 lIris localization or segmentation

Implementation of an iris biometric system needsitfs region to
be isolated from other parts of the image. A riefjrced by the iris/sclera
(limbic) boundary and the iris/pupil (pupilary) bailary approximates the
iris region. In iris localization, a technique equired to locate and isolate
the iris region as well as to remove the eyelidd ayelashes [228]. The
primary step in any iris recognition system is tmdlize the iris area
between the inner and outer boundaries. The kes $826] involved are
Dimension Reduction, Pupil and Outer iris locai@at Eyelids and
Eyelashes as well as Boundary Detection. The diffesteps involved in

iris segmentation are shown in Figure 7.3.
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Figure 7.3 Iris Segmentation Stages

7.2.2.1 Dimension Reduction and Iris Extraction

The database used for the implementation had thgerdimensions
as 600 x 800 with coloured JPEG of bit depth 24en24 bits represent
each pixel of the image. Therefore, to reduce tmeputational complexity,
the iris image is first converted into grayscalduang the bit depth to 8
and since it is the only region of interest the aernmg region is removed.
In the grayscale image, summation of the pixel @slin the iris region
when compared to that in the other regions willdss and so for extraction
of the iris region, threshold technique based enctiiour of the iris is used.
The gray level values of the pixels for a dark wil be lesser compared to
that of a light iris. Two threshold values can le¢ ® determine the iris

region using the histogram of the eye image.

7.2.2.2 Removal of eyelids and eyelashes

After extracting iris from the input image, the uanted

information, such as eyelashes and eyelids, need® removed from it.
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The Sobel operator [229], which performs a 2D spatjradient
measurement on an image, helps in detection ottlges of eyelids and
eyelashes. An edge is characterised by a noticeablege in the intensity
and the Sobel operator returns edges at those speihere there is
maximum gradient of the image. The two 3 x 3 masSksand G of the

operatorare given in Eq.(7.1) and (7.2) respectively.

-1 0 1 (7.1)
G,=|-2 0 2
-1 0 1
[1 2 1‘
G,=|0 0 0
y
1y 1 (7.2)

Applying the masks to the image and computing égnitude as in
Eq.(7.3), approximates the gradient.

To compute the gradient for the pixeli, j) of the input image, | is
given in Eq.(7.4).

Ii-1j-1) I(i-1j) Ii-1j+1)
1G,j)=| I(ij—-1) I(,)) I(i,j+1) (7.4)
Ii+1j—-1) i+1j) Ii+1j+1)

Eqg.s (7.5) and (7.6) evaluateg &hd G respectively. Determination
of the Gradient magnitude at each pixel and comspariwith some
threshold determines whether it is an edge pixatair Sobel operator is

less sensitive to noise due to its large convatubiasks.
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HGE—1,j+1)+2+I@{,j+1)+IG+1,j+1)]

Gx(L)) = {—[I(i oD +2<I@j-D+Ii+1j-1)] D
o (U= 1j-D 421 —1,)) + I —1,j+ D]
Gy("’)_{—[1(i+1,j—1)+2*1(i+1,j)+1(i+1,j+1)] (7.6)

7.2.2.3 Boundary Detection

For boundary detection, the centre pixel of thdasferemoved iris
image is located and based on the centre co-oadirtdtthe pupil a circular
strip is extracted. For detecting the inner ancobbundarie$B;, or out)
of the iris, Integro-Differential operator [216]s alefined in EQ.(7.7) is
used.

ad I(x,y)
G, (1) * aj‘g oy ds’ (7.7)

Xo,Y0

Binor out = max . x,,yy)

wherel(x, y) is the original grayscale eye image. The paranieter
Xo, Yo) represents a circle of radius r with centre coats (%, Yo). The
symbol * denotes convolution an@;(r)is a radial smoothing Gaussian
function with centre r and standard deviatigrlefined as in Eq.(7.8).

(r-ro)”

G;(r) = \/%eT (7.8)

The assumption that both pupil and iris have cacdoundaries
justifies the usage of Gaussian filter for smoaghiand integration
operation along the iris circle. This method triedind a circle in the eye
image with maximum change in gray level differemdth its neighbours.
Due to significant contrast between iris and puggbions, initially
localization of the pupil boundary and then, using same operator with
difference radius and parameters, detection obther boundary is carried

out. Applying the operator iteratively attains pseclocalization.
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7.2.3 Iris Normalization and Unwrapping

On successful segmentation of iris regions froneys images, the
resulting iris regions will have dimensional inc@tencies, mainly due to
stretching of the iris caused by pupil dilation rfrovarying levels of
illumination. The normalization process will produais regions, which
have the same constant dimensions, so that twmgtaghs of the same

iris under different conditions will have the saofaracteristic features.

In fact, the homogenous rubber sheet model devigeDaugman
remaps each poiffk,y) within the iris region to a pair of polar co-
ordinateqr, 8), wherer is in the interval0, 1) andé is the angl€0, 2).
The normalized iris region is then unwrapped intoeetangular region.

Figure 7.4 illustrates the mechanism of Daugmauxer sheet model.

O = 1=

Figure 7.4 Unwrapping: Daugman’s Rubber Sheet Model

The normalized remapping of iris region from Cagas co-

ordinateg(x, y) to non-concentric polar representation is giverEqQy(7.9).
(7.9)
I1(X(r.6), Yr0)) = L(r0)

where x¢.9) = (1 —71) x,(0) + 1 x,(0)
}’(r,a) = (1 - T) yp(e) +r yl(e)
wherel(x, y) is the iris region imagdyx, y)is the original Cartesian

co-ordinate(r,8) is the corresponding normalized polar co-ordinate,
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(xp,¥») and(x;, ;) are the pupil and iris boundary respectively altme

¢ direction, as represented in equations from (7d().13).

x,(0) = x,0(0) + 1, CosO (7.10)
Yp(0) = ypo(0) + 1, Sind (7.11)
x(0) = x;0(0) + 1, CosO (7.12)
Y1(0) = y10(6) + 1, Sind (7.13)

After getting the normalized polar representatibthe iris region,
this region is unwrapped by choosing a constantbanof points along
each radial line, irrespective of how much narrowvale the radius is at a
particular angle. The 2D array produced will haestical dimensions as

radial resolution and horizontal dimensions as krgresolution. Figure

7.5 shows the unwrapped normalized iris image.

—— S .

Figure 7.5 Unwrapped Normalized iris image

7.2.4 Feature Extraction

In order to provide an accurate recognition ofwtiial, though the
most discriminating information present in an pitern is extracted, only
the significant features of the iris need to beogled. In the feature
extraction stage, histogram equalization is doitelly to enhance the iris
texture in the normalized image followed by exti@ctof iris texture using
the canny edge detector [230]. For dimensionadijuction of the resulting
2D image, it is converted into a 1D energy signaMertical projection.

Discrete wavelet transform applied to the resulfibgenergy signal results
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in a set of low frequency and high frequency ceoedfits. High frequency
coefficients can be discarded due to the lack ghiicant information

while iris templates are selected from the low frexgy coefficients, each
of which has a dimension of 64 bytes. Figure 7 @shthe different steps

involved in the feature extraction stage.

Normalised \ p - p | Iris Features
ogram '
Image quaisation ection jection } —)

Figure 7.6 Feature Extraction Stages

7.2.4.1 Histogram Equalization

The intensities are better distributed on the histm through a
process known as histogram equalization, alloworgafeas of lower local
contrast to gain a higher contrast without affegtime global contrast. This
is accomplished by effectively spreading out thestrfoequent intensity
values in the image. Figure 7.7 shows the imaghk aithanced iris texture
obtained after histogram equalization. The domehénunwrapped image

are due to the eyelid occlusion.

Figure 7.7 Histogram Equalized image

7.2.4.2 Edge Detection

Edge detection is performed to extract the iristuex from the

histogram equalized image using available techigsech as Sobel,
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Canny, Prewitt etc. It is observed that Canny edggection technique is

able to extract most of the iris texture from ti@nced image.

The Canny operator, an optimal edge detector, tajkagscale
image as input producing an image showing the ipositof tracked
intensity discontinuities. The Canny operator woiks a multi-stage
process. After smoothing the image by Gaussianaatien, a simple 2-D
first derivative operator (somewhat like the Robedrross) is applied to
highlight regions of the image with high first si@derivatives. Edges give
rise to ridges in the gradient magnitude image. algerithm then tracks
along the top of these ridges and sets to zenpixadls that are not actually
on the ridge top to give a thin line in the outputprocess known as non-
maximal suppression. The tracking process exhibysteresis controlled
by two thresholds: Tand T, with T; > T,. Tracking can begin only at a
point on a ridge higher tham &nd it continues in both directions out from
that point until the height of the ridge falls b&ld,. This hysteresis helps
to ensure that noisy edges are not broken up indtipie edge fragments.
The effect of the Canny operator is determinedtrgd parameters - the
width of the Gaussian kernel used in the smootpimgse and the upper as
well as lower thresholds used by the tracker. msirgg the width of the
Gaussian kernel reduces the detector’s sensitwihpise, at the expense of
losing some of the finer details in the image. Tawalization error in the
detected edges also increases slightly as the @aaus&dth is increased.
Usually, the upper tracking threshold can be s&edugh and the lower
threshold quite low for good results. Setting tbhevdr threshold too high
will cause noisy edges to break up while settirgupper threshold too low
increases the number of spurious and undesirable fedgments appearing

in the output. The Gaussian smoothing in the Caedne detector fulfils
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two purposes: first, it can be used to control #mount of detail that

appears in the edge image and second, it can bdeaiseppress the noise.

The Canny method [230] locates edges by lookinddoal maxima
of the gradient of (i, j). The gradient is calculated using the derivativa o
Gaussian filter. The method uses two threshold$etect strong as well as
weak edges, and the weak edges are included ioutipeit only if they are
connected to strong edges. This method is therédéseelikely to be fooled
by noise compared to the others and more likelyetect true weak edges.

Figure 7.8 shows the edge-detected image using/agarator.

Figure7.8 Canny edgedetected imae
7.2.4.3 Vertical Projection

Vertical projection is a method used to convert 2iiesignal to a
1D signal in order to reduce the system complekity. vertical projection,
energy of each row of the edge-detected image lsuleéed and is

transformed into a row vector. The generalized fargiven in Eq.(7.14).

The dimension of the normalized image #% X n and is taken
as128 x 512. Hence, after vertical projection, its dimensicgcbmesn,

which is equal td28.

X11 . X1n n n
[ P ]a[Zmnz Z|xmi|2] (7.14)
Xm1 - Xmn i=1 i=1
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7.2.4.4 Discrete Wavelet Transform

At low data rates, the Discrete Cosine Transforn€TR suffer
from ablockingeffectdue to the unnatural block partition that is reediin
the computation. Other drawbacks include mosquisa) a distortion that
appears as random aliasing occurring close to thjects edges, and
aliasing distortions. Due to the shortcomings of TDGiscrete wavelet
transform (DWT) has become increasingly importdite main advantage
of DWT is that it provides space-frequency decontjmss of images, in
comparison to the DCT and Fourier transform thdy pnovide frequency
decomposition. By providing space-frequency decasitjom, the DWT
allows energy compaction at the low-frequency sabels and the space
localization of edges at the high-frequency subdsari-urthermore, the
DWT does not present a blocking effect at low dati@s. Wavelets are
functions that integrate to zero, waving above balbw the x-axis. Like
sine and cosine in the Fourier transform, wavedets used as the basis
functions for signal and image representation. Shakis functions are
obtained by dilating and translating a mother wetve(x) by amounts

andrt, respectively as given in Eq.(7.15).
Y, (x) = {w (?) (1,s) € R % R+} (7.15)

The translatiomr and dilations allow the localization of wavelet
transform in time and frequency. The discrete wetvailansform (DWT)
decomposes the signal into mutually orthogonabéetavelets [113]. The
DWT of signal x is calculated by passing it througseries of filters. The
samples are passed through a low pass filter witpuise responsg
resulting in a convolution as given in Eq.(7.16)das simultaneously

decomposed using a high pass fitier
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Y] = (e g)lnl = ) xlk] g[n - k| (7.16)

The 64 byte detall coellgfzigioénts from the high péiker and the 64
byte approximation coefficients from the low patef form the 1D signal
of 128 bytes. The two filters are related to eatter and are together
known as a quadrature mirror filter. The Haar DWZ31],[232], the
simplest of all wavelets have simpler boundary ¢omus, is orthogonal as
well as symmetric and their minimum support propetiows arbitrary
grid intervals. In the proposed work Haar DWT isdssince it works
efficiently to detect the characteristics such dges and corners. By using
the quadrature mirror filter, wavelet coefficieftdm ann x nimagel are

computed as discussed below.

FiltersH andG are applied on the rows of an image, splitting the
image into two sub images of dimensiar® x n (half the columns) each.
One of these sub imagéds;l (where the subscriptdenotes row), contains
the low-pass information and the othegl, contains the high-pass
information. Next, the filter$d andG are applied to the columns of both
the sub images. Finally, four sub images with disi@ms n/2 x n/2 are
obtained. Sub image$H,l, GcH:l, H.GI, andG.G;l (where the subscrijat
denotes column) contain the low-low, high-low, Itvgh and high-high
pass information, respectively. The same procedarespplied iteratively
to the sub image containing the most low band m#dion until the sub
image’s size reaches 1x1. Therefore, the initiadatisions of the image are
required to be powers of 2. In practice, it is netessary to carry out all
the possible decompositions until the size of kxfeached. Usually, just a
few levels are sufficient. After wavelet transforenset of low frequency
coefficients and high frequency coefficients, eatdimension 64 bytes, is
obtained. After DWT, it is observed that the appm¢ion coefficients
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contain information while the detailed coefficient®® not hold any
information. Hence, approximation coefficients, lwié dimension of 64
bytes, are selected as the feature vector anddstorthe database. Since
the wavelet functions are compact, the waveletfments only measure
the variations around a small region of the datayarThis property makes

wavelet analysis very useful in signal or imagecpssing.

7.2.5 Matching

In the recognition stage, the features of the ingyg image are
compared with those of the images already storethéndatabase and if
they match, the corresponding eye image is idedtifotherwise it remains
unidentified. Since a bitwise comparison is neagss$damming distance is

chosen for identification.

7.2.5.1 Hamming Distance

The Hamming distance [111] gives a measure of h@amynbits are
the same between two patterns. It is used for tmparison of iris
templates in the recognition stage. Hamming digacis given by Eq.
(7.17).

1
D =%k, %, 0y (7.17)

where x and y are the two bit patterns of the @ugle while n
indicates the number of bits. Hamming distance & giout the number of

disagreeing bits between x and y.

Ideally, the hamming distance between two iris sogenerated for
the same iris pattern should be zero. However, \whik not happen in
practice because normalization is not perfect. Tdrger the hamming

distance (closer to 1), the more probable the tatiems are different
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whereas the smaller the hamming distance (clos8) the more probable
the two patterns are identical. By properly chogsihe threshold upon
which the matching decision is made, good iris gedtion results with

very low error probability can be obtained.

7.3 lris Database

Figure 7.9 Subset of UBIRIS eye database useddmning

The system has been tested against the UBIRIS aksaf225].
UBIRIS database includes 1877 images from 241 persollected in two
sessions. The images collected in the first phafiyy session were low
noise images. On the other hand, images collectdtia second session
were captured under natural luminosity factor, tbossidering reflections,

different contrast levels as well as luminosity dodus problems. Such
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images might be a good model for realistic situstidFigure 7.9 shows a

subset of the UBIRIS eye database used for training

7.4 Results and Discussions

The data sets used for identification purpose wieeehundred sets
of eye images from the UBIRIS database, each setisting of ten eye
images of a person taken at different times. Frauheset, randomly
selected ten eye images and their features weredsio the database. The
1000 images used for simulation are referred toegsstered images since
their features were stored in the database. Then nchiallenge in
identification was to recognize the other imagesanh set whose features
were not stored. The unregistered images are fitye ifnages whose
features were not stored in the database but vem@ to test the algorithm.
The performance of iris acceptance algorithm isdeaéd using Fscore,
precision and recall. Figure 7.10 displays iriseedgtection using various
edge detection operators. In Figure 7.11, it canséen that the canny
operator gives the lowest EER at a threshold of 0Ohe Table 7.1 shows

the EER percent and its corresponding hammingrdista

Table 7.1 EER of different operators

Operators EER (%) | Hamming distance
Canny 7.00 0.40
Sobel 19.25 0.45
Prewiti 16.5( 0.5C
Roberts 22.50 0.40
log 15.50 0.50
Zerocross 14.50 0.45
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Figure 7.11 Decision making in iris biometric syste
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7.4.1 F, Score

In pattern recognition and information retrieval thwibinary
classification, precision, or positive predictivalye, is the fraction of
retrieved instances that are relevant, while recallsensitivity is the
fraction of relevant instances that are retrievédble 7.2 shows the
condition and test outcome to calculate F1 score gerformance
measurement. Both precision as well as recall lageetore based on an
understanding and measure of relevance. Precistom be seen as a
measure of exactness or quality, whereas recalla isneasure of

completeness or quantity.

Table 7.2 Performance measures fos€ore

Condition
Condition Condition
positive(cp negative(cr
Test True positive(tp) False
g outcome positive(fp) .. utp
S | positive (Type lerror) | Prectston= sz,
5 | (top)
S [ Test False True Negative predictivity
7] . .
2 outcome negative(fn) negative(tn) |  Xitn
negative| (Type Il error) ~ Yton
(ton)
sensitivity specificity | Accuracy
>tp >tn Ytp+Ytn
~ Yep ~ Yen Y Total population

In a classification task, the precision for a classthe ratio of
the number of true positives to the total numberel@ments labelled as
belonging to the positive class or say the sumrwé positives and false
positives. Recall is defined as the ratio of numiietrue positives to the
total number of elements that actually belong ® positive class, say the

sum of true positives and false negatives, whi@itms not labelled as
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belonging to the positive class but should havenbé&estatistical analysis
of binary classification, the F1 score (also F-samr F-measure) is a
measure of a test's accuracy. It considers both pitkeision and
the recall of the test to compute the score as qr(7EL8). Figure 7.12

shows the comparison of different edge detecti@raiprs using £score.

F1 =2 precision * recall (7.18)

precision + recall

0.5 1
0.4 4
@ 0.3 -
o
a
T 0.2 4
0.1 4 I
0.0 " T T T T T
> 5 b 4] =Y a
£ & £ 5 ° g
8 8 o Qo Q
o 2 g
Edge detection operators ™

Figure 7.12 Comparison of edge detection operators

Using MATLAB, a comparison study between differetassical
operators like Canny, Sobel, Prewitt, Roberts,dnd zero cross was done.
The operators were applied to the enhanced norethliinage. From the
results, which reveal the performance of each efdperators, it is found
that the Canny operator outperforms the othersfauot it is the only
operator which is able to extract most of the teisture. It is observed that
an optimum result is obtained at a hamming distahoeshold of 0.4 for

the canny operator.
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7.5 Summary

The iris images are segmented and projected intsidials by the
process of vertical projection. The 1D signal feasuare then extracted by
the Haar wavelet transform. The complexity of fleature extraction
method for iris recognition is low and thus achi&va considerable

computational reduction while maintaining good pariance.

A low dimensional feature extraction algorithm theen developed
and tested with thousand eye images from the de¢abs varying the
parameters such as dimension of the feature vacwrhamming distance
threshold. It is found that an optimum result igadted at a hamming
distance threshold of 0.4 and a feature vector dgioe of 64 bytes. It is
also observed that the Canny operator is bestdstot@xtract most of the
edges to generate the iris code for comparison. tldy method, a

recognition rate of 93% has been achieved.
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CHAPTER 8

MULTI-MODAL BIOMETRIC SYSTEM

In this chapter, the implementation of a prototggstem for user
authentication using the multimodal biometrics imitilg four
traits i.e., speech, face, signature and iris sewtised. The final
decision is made by fusion at matching score lewvehitecture,
in which the feature vectors of query images amapmared with
the templates in knowledge base. Based on thamityxof the
feature vector and template, each subsystem cospisteown
matching score. Finally, the individual traits émeed at matching
score level using user dependent weighted sumonégechnique
and is then passed to the decision module. Thiemsys tested
on our knowledge base and the overall accurachesystem is

found to be more than 98%.

8.1 Introduction

The basic aim of pattern recognition is to devicgtomatic
procedures that maximize the recognition perforreafitie comparison of
different pattern recognition algorithms on the Gfie problem and
selecting the best of them can lead to the requiedlt. Some recognition
errors committed by the best biometric trait apphoenay be resolved by
the use of inferior trait methods. This observatiomtivated the interest in
combining the different biometric traits and thelassifiers, which results
in a multi-modal biometric system. The performan€@ unimodal system

can drop significantly under noisy conditions whhe multimodal systems
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overcome these challenges by combining the evidgmogided by a

number of biometric traits.

8.2 Score Level Fusion

Score fusion methods can be divided into two categpadaptive
and non-adaptive fusion [233]. Non-adaptive fusiman employ fixed
weights that is heuristically determineal priori, and place a higher
weighting on the higher performing modalities. Hoee under adverse
testing conditions, it is impossible to place adowveighting on a degraded
modality. Non-adaptive fusion can be without the o$ any weights, i.e.,
equal weights are placed on each source of infeomate.g., simple
additions of scores. Adaptive fusion is required aiber the weights
according to the confidence of each modality. Tdosfidence will vary

dynamically as the testing conditions for each niibdeary.

8.2.1 Non-weighted Fusion

In non-weighted fusion, the classifier probabittigre fused from a
purely theoretical level, without the use of wegjhThe commonly used
fusion methodologies to combine multiple modalities the matching
scores level are the sum, product, min and max][284; is the matching

score from ' modality, S represents the resulting fused score.

The Simple Product Rule combines the scores by multiplying all

the individual scores as given in Eq.(8.1).

S=85X%X85X%X..%X8, (8.1)

The Simple Sum Rule combines the scores as a linear

transformation as given in Eq.(8.2).
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S =(a,8; — b)) + -+ (a,S, — by) (8.2)
wherea; andb; represent the weight and bias, respectively, which

can be specified by the user.

The Simple Max Rule is the maximum score from the different

modalities as given in Eq.(8.3).

S = Max (Sl' Sz, ...,Sn (83]
The Simple Min Rule is the minimum score from the different

modalities as given in Eq.(8.4).

S = Min (51,53, ..., S (8.4)
8.3 User-Dependent Fusion Strategy

In user-dependent fusion [235], the training scaeboth authorized and

unauthorized persons are employed. While in thet §tage, the biometric
samples of known users are employed for testinghensecond stage, the
biometric samples of unknown users are used ftintesThe results of the

two sets of users are considered for determiniegRAR and FRR of the

system. The EER of the system and the correspontirgshold are

determined. The general information provided by gbel of users can be
exploited in user-dependent fusion schemes [23&. three types of user
dependent strategies are Global, Local and Adapted.

In global type, only the scores from the pool ofngs(both genuine
and impostors) are used for training. In the ldgpé, only the scores from
the user at hand (both genuine and impostors) sed for training. In the
adapted type, the scores from both the pool ofsuaed the user at hand
(both genuine and impostors) are used for traininghis study, adapted

fusion strategy is used.
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The match scores at the output of the individuait tmay not be
homogeneous and need not be on the same numesdoge.r The
dissimilarity scores or similarity scores may be tutputs obtained by
different traits. The statistical distribution the match scores at the output
of different traits may be different. Due to thesasons, it is necessary to

normalize the scores of different traits before bommg the scores.

8.3.1 Score Normalization Technique

Classifier scores can take many forms such as mase
likelihoods and distance measures. The scale, itwcadnd statistical
distribution will vary across classifiers. Furthema, the classifier scores
may be heterogeneous, for example, a small distare@sure indicates a
good match, whereas a low posterior indicates a p@ach; both similarity
and dissimilarity scores can be given. Non-norredliscores cannot be
integrated sensibly in their raw form, as it is ospible to fuse
incomparable numerical scales. A score distributvith a relatively higher
scale or dynamic-range will dominate the fused ecbr order to combine
these scores in an intelligible way at the scovellghe score outputs from
the various classifiers must first be normalisetb ia common domain.
Various normalization methods exist in which essdigt each method
consists of changing the location and scale ofdis&ribution. Examples
include the min-max, Z-norm, decimal-scaling, MedMAD and thetanh

transformation.

8.3.1.1 Min-max Normalization

For normalizing the matching score the min-maxnradization
technique is employed in this work. Min-max normation is a
straightforward approach when compared to Z-scamd tanh [233]

normalization techniques. The minimum and maximuourgs of the
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scores produced by a biometric trait are mappe@d amd 1, respectively.

The min-max technique is computed as in Eq. (8.5).

B x — min(S,) (8.5
Y= max(S,) — min(S,)

where x is the matching score before normalizatipnis the
matching score after normalization adg is the set of all possible
matching scores generated by particular traits. -iaéx normalization
transforms all the scores into a common range][@nd retains the original
distribution of scores. The dissimilarity score che transformed into

similarity score by subtracting the normalized eaitom 1.

8.3.1.2 Decimal Scaling

If the scores of different classifiers exhibit disgte logarithmic
scales e.g.[0, 1] and [0, 100], then the scores hmmormalised using
Eq.(8.6)

_ Si (8.6)
- 1olog10(max(5i))

i
S; € [0,1], which essentially is a specific case of the min-masm.

8.3.1.3 Z-norm

The zero-normalisation (Z-norm) method is the ntmshmon form
of score normalisation. The list of N scores}{ i=1,..., N is transformed
such that the new score distribution has zero naganunity variance, i.e.,
the standard normal distribution. To carry out tkiie locatioru, and scale

o, parameters are calculated using Egs. (8.7) a8l i@pectively.
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N (8.7)

1 = (8.8)
0l = mZ(si — us)?

i=1
whereu, and o, are the mean and standard deviation of the pre-

normalised score. Each score is normalised using 2.

Si — Us (89)
Os

S =

1

8.3.1.4 Median-MAD

Robust statistical methods are employed to estirtteteaverage or
location parameter using the median. The mediaor@mthe outlier score
values at the distribution tails, which could bdairtly employed in skew
Uus above. The standard deviation or scale is estonasing the Median
Absolute Deviation (MAD). The MAD value is calcutat using
MAD=median(|S-median|). These form the median-MADcore

normalization scheme as in Eq.(8.10).

. S; —median (8.10)
YT MAD

8.3.1.5 Tanh transformation

A hyperbolic tangent mapping is used to map a sd@&ibution
into the interval [-1, +1]; combined with a scaliagd a shift results in the
standard interval [0, 1]. For a specific classifigiven a list of N scores

{Si}i=1..n, the tangent normalised score [233] list is giwrekq.(8.11).
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(Si — Heann) (8.11

1
S/ == [tanh (0.01
2 Otanh

)+ 1]; S!e[0,1]

wherepq,, ando.,, respectively, are the Hampel tanh-estimator’'s eslu

for the mean and standard deviation £f{

In conclusion, the basic min-max and z-norms ap@piate when
the location and scale are known in advance. Bahgarameters are to be
estimated on noisy training data, the robuasth norm is more suitable.
Also, different classifiers exhibit different scodistributions, suggesting
that a mixture of various normalization methodslddoe employed in a

multi-modal system.

8.4 Multimodal Technique of identification

In a multimodal biometric system, various biomettraits are
obtained from an individual. The use of multiplaits results in greater
protection against fraudulent attacks. The diffeieput traits are captured
using separate sensors. The sensor module, feakiraction module,
matching module, database and normalization modaleesponding to
each of the traits are different. The score ofitiokvidual trait is combined
in the fusion module and passed to the decisionuheod he identity of the
user is accepted or rejected based on the deastena with respect to the

combined score in the decision module.

The acquisition sequence in a multimodal biomedgistem is the
order in which the various biometric traits areadhéd. In this study, the
biometric trait is obtained sequentially. That m®gareach trait is
independently acquired with a time interval betwesnccessive
acquisitions and the corresponding algorithm preceéke acquired

biometric information. The results acquired frontledrait are combined
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by an appropriate fusion scheme and the final detis taken based on the
combined results of all the traits. This approauiproves the accuracy of
the system. The mode of operation of multimodahidieation is shown in

Figure 8.1.

Decision

>

YES

4 . .
4 >
YES

Decision
»

(0]

Decision
»
NO

Figure 8.1 Mode of operation of a multimodal id&oéition system

In this study, the system provides an option tecethe number of
biometrics depending on the availability, necessiymd security
requirements. At each stage, the system decidetheihthe individual is
authorized or unauthorized. The authorized-unaizbd frequency
distribution curve for unimodal and multi-modal & is shown in Figure
8.2. This curve shows the distribution of authatised unauthorised match
scores of a particular biometric trait. The systespects the claimed

identity if the score is less than ‘minA’, as giverFigure 8.2.

The reject zone essentially consists of two regimesmely,
confusion zone and true reject zone. The confugmme is the overlap
between true reject and accept zone. The regimnespwnding to match

score of unauthorized score less than ‘maxU’ artlaized score greater
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than ‘minA’ is the confusion zone. Therefore, forparticular biometric
trait, if the resulting score is greater than ‘mgxtle system will recognize
the person as authorized; similarly, if the resgjtiscore is less than
‘minA’, the system will recognize the person as utharized. If the value
is in between ‘minA’ and ‘maxU’, the decision iszfay. It is observed that

the width of the confusion zone decreases, whemtimeber of biometric
traits is increased.
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Figure 8.2 Authorized-Unauthorized frequency dittion curve

8.4.1.1 Fusion Strategy

Two fusion strategies considered in this studyeaeal weight for
each traits and user dependent trait specific vieighe cases differ in
computing the weight of the trait. In equal weiglystem, the weight for
each trait in the system is taken as equal andehéfria’ traits are used, the
weight of each trait will be ‘1/n’. In user dependldrait specific weight

system, the average performance of each trait kas lbonsidered. The
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EER corresponding to the ROC curve of the perfoceaof all the users is
used for the computation of the user dependertspaicific weight system.
The different weight is considered for varioustgdbr compensating the
poor average performance of the particular traot. €&ample, in general,
the success ratio of the signature trait is lovantthe iris, which can be
compensated in the system by considering higheghwéor iris and lower

weight for signature.
a) Equal weight fusion strategy

This is the simplest form of fusing various trartswhich the equal
importance is given to all traits considered. Iis thtudy, four traits are
used. The weight of thg‘;traith to be used is ¥2, 1/3 and % corresponding
to bi-, tri- and tetra-modal system respectivelylhe fused scoréy, is

calculated as in Eq.(8.12).
Spus = Zj=1 Wj X S (8.12)

whereS; is the match score df jrait. The range of the fused score
is [0, 1]

b) User dependent trait specific weight fusion strateg

In this strategy, 1000 data corresponding to eaelit tn the
knowledge base is used. The ROC curve for eachisrgrepared and the
EER is determined. The weight; for the I" particular trait is calculated
using the Eq.(8.13).

YeER,

W, = —‘EERi
l Z7=1(1/EERj)

(8.13)
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where EER; represents the Equal Error Rate f8r tfait and n

represents the number of traits participating isidn. The fused score is
calculated as in EQ.(8.12). The weights correspundio each trait

calculated for 1000 training data are given in €ahll.

Table 8.1 Weights calculated for each trait irtladl possible fusions

Multi- Trait
modal | combinations Face (f Iris (i) Signature (s) | Voice (v)
Bi- .
modal f+i 0.4375( 0.5625(
f+s 0.727273 0.272727
f+v 0.52631! 0.47368:
i+s 0.77419. 0.22580iI
i+v 0.588235 0.411765
s+y 0.29411: 0.70588:.
Tri- . ‘
modal f+i+s 0.37583' | 0.48322: 0.140941
f+i+v 0.313901 0.403587 0.282511
f+s+v 0.43956! 0.16483! 0.39560:-
i+s+v 0.502009: 0.14644. 0.35146-
Tetra-
modal | f+i+s+v 0.280843 0.361083 0.105316 0.25275

8.4.2 User-Dependent Decision

Once a fused similarity score is obtained usingr-dependent
fusion method, this score is compared to a decigioeshold in order to
accept or reject the identity claim. In the deaisinodule, an individual is
recognized by searching the templates of all tieesus the database for a
match. One-to-many comparison is carried out tepicthe identity of an
individual or reject if the individual is not entkedl in the system database.

The decision rule is stated as follows in Eq.(8.14)
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Accept if Spyus = Trys
Reject  Otherwise
wheret, is a threshold of fusion score ajg is a fused score.

Decision = { (8.14)

8.5 Results and Discussions

In the multimodal system, four biometric traits,mm&ly, speech,
face, signature and iris are used. Face and eigphysiological biometric
traits whereas signature and voice are behaviobi@hetric traits. A
biometric authentication system makes decisionsgugtie threshold and
the matching score obtained by comparing the etddadeature of the
query sample with the reference model of the cldindentity. During the
decision making process, two types of error maypkapFalse Acceptance
(FA) Error, which occurs when a system falsely ateean impostor (a
person claiming an identity other than his/her ownjl False Rejection
(FR) Error, which occurs when a system falselyatsje client (a genuine
user). In the literature, FA and FR errors are a$erred to as False Match
Error and False Non-Match Error, respectively. fibemalized versions of
FA and FR errors are often used and are known B& Paceptance Rate
(FAR) and False Rejection Rate (FRR), respectivEtey are defined as in
Egs. (8.15) and (8.16) respectively.

FA
FAR = ‘ (8.15)
Number of Unauthorised
FR .
FRR = (8.16)

Number of Authorised

It is observed that if the threshold is increaskd,False Acceptance
Rate (FAR) will decrease but the False Rejectiote RBRR) will increase
and vice versa. Hence, for a given biometric systéns not possible to
decrease both these errors simultaneously by \@nyia threshold. This

has led to a threshold setting that produces Bfual Rate (EER), a point
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where FAR and FRR become equal on the trainingdaabn) data set.

The lower the EER, the better the system performanc

8.5.1 Calculation of weights for fusion

There are various possible fusions depending onntimaber of

biometric traits. In this work, four biometric ttaiare used. Hence, there

are 6 possible fusions of two traits, 4 fusion8dfaits and 1 fusion of all

the 4 traits. The weights assigned to differenitdran all the possible

fusions are shown in Table 8.1 given above.
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8.5.1.1 Calculation of minimum Authorised and maximum Unauthorised
Score

The authorized-unauthorised distribution curveseiach of the four
traits and for each of the 11 fusion results areduto calculate the
minimum authorized and maximum unauthorized sc®te authorized-
unauthorised curves for all the traits, the unino&&ure 8.3, possible
fusions of trimodal Figure 8.4, bimodal, Figure 885 well as tetramodal
Figure 8.6 has been plotted. The minimum authoriaad maximum

unauthorized score for each trait and their fugiesults are shown in
authorized-unauthorised distribution curve as mindnd maxU,
respectively.
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8.6 System Performance and Evaluation

The performance of the multimodal biometric idgoéifion system
is evaluated using width of the confusion zonehasvs in Figure 8.4. The
width of the confusion zone is the width betweea tontrol limit of the
minimum authorized point (minA) and the maximum wth@rized point
(maxU) in the authorized-unauthorized distributcamve. The width of the
confusion zone is an indication of the effectivene$ the system. If the

width is less, the system will be able to clasdife test sample more

correctly.

The authorised and unauthorised zones are distamzt the
confusion in identifying the test sample is lowsuch cases. The system is
more reliable and robust if the width of the combuszone is lower. In
general, the fusion of biometric traits in the itigécation system reduces
the width of the confusion zone. The width of tfenfusion zone in the
score-frequency response of a tetramodal systespasch, face, signature

and iris is found to be as low as 0.1.
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The performance of the multimodal biometric idaosfion system
is also evaluated using the Success Ratio (SR)eSads defined as the
approval of a known person or the rejection of aknown person. SR is

found as given in Eq.(8.17).

ke + u, (8.17)

SR =
k, + kr+u,+u,

wherek, is the total number of acceptance of the knowsgegrk,

is the total number of rejection of the known persa, is the total number

of acceptance of the unknown person amd is the total number of

rejection of the unknown person.

The success ratio of the user identity is recorftiedunimodal,
bimodal, trimodal and tetramodal biometric systexagjiven in Table.8.2.
The success ratio of unimodal is found to be betw&e and 93 percent.
The highest success ratio is found to be for ind ence the iris system is
relatively robust when compared to the other uniahoslystems. The
success ratio of the bimodal system is found tdrtwe 88 to 94 percent.
The maximum increase in the success ratio by fusuagtraits is found to
be 1 percent and is for the combination of face iasdraits. This may be
attributed to various factors such as the qualftyghe sensor units, noise

levels, algorithms used for extracting feature eextselected features etc.

The signature trait is found to have the lowestess ratio. This is

attributed to the variations and noise associatéutive signature.

Two fusion technologies are adopted in this stutymely equal
weight and user dependent trait specific weight@ggh. In equal weight
approach, the maximum success ratio of bimodahaial and tetra modal
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is found to be 91, 94 and 96 percent. In genewakesss ratio of multimodal
fusion system is greater than the unimodal system.

Width of confusion zone
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Figure 8.7 Width of the confusion zone.

The success ratio of the trimodal user dependext $pecific
weight system is found to be between 92 and 96eperdhe maximum
increase in the success ratio of trimodal when @b to the bimodal is
found to be 2 percent. Thus, the trimodal systetyretser than the bimodal
system. The success ratio of the tetramodal syssefound to be 98
percent. Hence, it is concluded that the tetramddakloped in this study

is significantly better than the unimodal, bimodatl trimodal systems.
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Table 8.2 Success Ratio (SR) of Biometric iderdifizn system

Modal Trait Success ratio
(percent)
Unimodal Face(F) 91.32
Signature (S) 84.45
Voice (V) 90.48
Iris (1) 93.26
Bimodal F+S 88.37
F+V 91.40
F+l 94.84
S+V 88.74
S+l 91.1¢
V+I 93.2¢
Trimoda F+S+V 92.7¢
F+V+ 96.81
F+1+S 93.35
S+V+ 94.50
Tetramodal F+S+V+I 98.54

It is found that the success ratio of equal wegysgtem is lower
than the success ratio of the user dependentgpaitific weight fusion
method. This is attributed to the fact that ther uspendent trait specific
weight fusion method accounts for the relative atwn of the average
performance of the particular trait. The chart ofccess ratio of the

biometric identification system is shown in Fig@&.&.

8.7 Summary

Multimodal biometric systems elegantly address ssdveroblems
in unimodal systems. By combining multiple souroésnformation, these
systems improve the accuracy, increase populatorerage and deter
spoofing. Various fusion levels and scenarios aresible in multimodal
systems. Fusion at the match score level is thé pogmilar due to the ease

in accessing and consolidating matching scores.this chapter, a
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multimodal biometric system, which integrates thecisions made by
speaker recognition, face recognition, handwritsiggnature recognition

and iris recognition for personal identificatios,developed.

u UNIMODAL
B MULTI-MODAL-EQUAL WEIGHT
MULTI-MODAL-USER DEPENDENT TRAIT SPECIFIC WEIGHT

9100-
é95
Z
£j90
2 85 -
80 - I
T T T
Ft’ Z I 3 & 3 E = 2 ; ;
# + + + *
o w w wv ci)
BIOMETRIC TRAITS u

Figure 8.8 Chart of Success Ratio of the biomateatification system

The four biometric traits are fused at the matocbresdevel using
weighted fusion strategy. These different weights @alculated based on
the Equal Error Rate (EER). The system perform@nesgaluated using the
width of the confusion zone and success ratio. Gommg the four
scenarios of unimodal, bimodal, trimodal and tetvdal systems, it can be
concluded that the fusion of tetra modalities ysel@ significant

improvement in the performance than the other three
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

The thesis addresses one of the emerging topigstimentication
System, viz., the implementation of Improved Biortet
Authentication System using Multimodal Cue Integnat as the
operator assisted identification turns out to lohotes, laborious
and time consuming. In order to derive the besgiopmance for
the authentication system, an appropriate featlexson criteria
has been evolved. It has been seen that the selatioo many
features lead to the deterioration in the authatito
performance and efficiency. In the work reportedhis thesis,
various judiciously chosen components of the bioimétaits and
their feature vectors are used for realizing the/lpeproposed
Biometric Authentication System wusing Multimodal eCu
Integration. The feature vectors so generated fthm noisy
biometric traits is compared with the feature vestavailable in
the knowledge base and the most matching patteiergtified
for the purpose of user authentication. In an gitetm improve
the success rate of the Feature Vector based digtéon
system, the proposed system has been augmentedheithser

dependent weighted fusion technique.

9.1 Highlights of the Thesis

The dependence of society on the usage of infooma&chnology
for everyday tasks makes the establishment ofdéetity of a person in a

reliable and time-efficient manner a matter of pawant importance.

203



Chapter 9 Conclusion and Future Work

Biometrics is an efficient technology with greatspibilities in the area of
security system development for official and coneiarapplications. The
thesis addresses one of the emerging topics inehtitation System, viz.,
the implementation ofmproved Biometric Authentication System using
Multimodal Cue Integrationas the operator assisted identification turns out
to be tedious, laborious and time consuming. lbfeoito derive the best
performance for the authentication system, an gpjat® feature selection
criteria has been evolved. It has been seen teasdlection of too many
features lead to the deterioration in the authatiba performance and
efficiency. In the work reported in this thesigyious judiciously chosen
components of the biometric traits and their featuectors are used for
realizing the newly developed prototype of the Babric Authentication
System. The feature vectors so generated fromdlsy biometric traits is
compared with the feature vectors available inkihewledge base and the
most matching pattern is identified for the purpo$aiser authentication.
In an attempt to improve the success rate of tiveldped Feature Vector
based Biometric Authentication System, the proposgstem has been
augmented with the user dependent weighted fusemhnique. The

following are the salient highlights of this thesis

9.1.1 Need and Requirement of a Biometric AuthenticatiorSystem

Biometric authentication automatically achieves #stablishment
of the identity of an individual based on the pbi®gical or behavioural
biometric trait rather than knowledge based or gssi®sn based method.
The introductory chapter of the thesis throws lightthe various biometric
traits as well as different models of the authextitln system. Even though
the biometric identification systems out-perforneithpeer technologies,
the unimodal biometric systems have to contend aitlariety of problems,

namely, noisy data, intra-class variations, restdcdegrees of freedom,
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non-universality and spoof attacks. Deploying a timddal biometric
system can address the limitations by integrategetvidences presented to
it by multiple sources of information. The undenlyiprinciple of operation
of the proposed multimodal biometric system is digefly introduced in

this chapter.

9.1.2 Preparation of a State-of-the-art Literature

As a part of the work, a state-of-the-art literatsurvey report has
been prepared in the topic covered in the thesghlighting the
characteristic signatures of different biometraits, principles underlying
speaker recognition, face recognition, handwritbggnature recognition,
iris recognition, multimodal biometrics, normalimat methods, different
fusion techniques, etc. The consolidated resultydrnous researchers on
the success rates of the different methods areigisd. This chapter also

covers the recent trends in the fusion technoldgsadous biometric traits.

9.1.3 Feature Vector Based Authentication System

The methodology suggested to be adopted for raglizihe
proposed authentication system in speaker recogniinvolves the
extraction of source features by analysing the dpesaveforms and
identifying the most matching feature vector usitegnplate matching
technique leading to the identification of the dmra Feature vector
compiled includes spectral centroid, spectral flepectral rolloff and
MFCC coefficients retrieved from speech. For makihg system fool
proof and full-fledged one, the knowledge basetbdse updated with the
feature vectors comprising of eigen vector fromefatombination of static
and dynamic features from signature and binary aesle using Haar

wavelet generated from iris.
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9.1.4 Extraction of Feature Vector Element from Speech

The thesis addresses the speaker enrolment phasee 8peech
samples that contain the discriminating features @ollected from the
speakers and feature vectors are generated totf@rknowledge base of
the model. In the recognition phase, the featurdove extracted from the
unknown person’s utterance are compared with tlmvledge base of the
model to find the similarity score, for the purposk decision making.
Since accuracy of identification is highly depertdem the type and
number of features used, feature selection iseditgsignificance. Features
are computed from the spectrogram on a frame-bwpdraasis and relates
directly to some perceptual characteristics of gognch as loudness, pitch
etc. This chapter also touches upon a more sysitengproach for
computing the cepstral coefficients achieved byineging the Mel
Frequency Cepstral Coefficients (MFCC). The periamoe analysis of the
system was carried out and it was found that alafith MFCC, the
incorporation of additional spectral features ia fhature vector improved
the overall performance of the system. Since tlveesss rate stayed at 90%
even after including the other spectral featurés Inumber of peaks,
spectral crest etc., those features were not cersidto be a part of the

Feature Vector.

9.1.5 Extraction of Feature Vector Element from Face

In the face recognition system, the proposed PCiauad to result
in a recognition efficiency of 91.5% when tested T000 training images.
The computational time efficiency of the present?RE estimated through
covariance matrix with and without dimensionaliteduction. The
computational time with reduced dimensionality surid to be 34.2

seconds (for 1000 face images) where as it is fadonohcrease by five
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times i.e. 171.2 seconds for the case without dsio@ality reduction.

Hence, the reduction of dimensionality resultseduced computation time.

9.1.6 Extraction of Feature Vector Element from Signature

A signature, widely accepted as a means of ideatityentication
in legal and commercial transactions, is remarkedaaconsistent non-
invasive authentication procedure by the majorityttee users, thereby
overcoming some of the privacy issues. The disfieatures are extracted
from the image of the signature trajectory capturgalectronic signature
tablet, after pre-processing. In signature recogmitthe feature vector,
which forms the signature template in the knowleldgse, is selected as a
combination of static and dynamic features. Theesss rate of the system
with static features alone is 76 percent and by atidition of dynamic
features, the success rate is increased to 84 miercdoreover, the
procedures to be adopted for generating statiaufeatusing 2D Gabor
filter as well as the dynamic features under caersition are the x and y
stroke as well as the average velocity in x andrgctions is described in
this chapter. Mahalanobis Distance (MD) which catep the correlation
between two signatures used to verify the simyadt images is also

described in the thesis.

9.1.7 Extraction of Feature Vector Element from Iris

The thesis also addresses the various steps ird/oine the
extraction of binary code from Iris pattern. Thee4qprocessing stage
requires localization of the iris which generalhwalves the detection of
the edge of the iris as well as that of the pupihce varying levels of
illumination can result in dimensional inconsistescbetween eye images

due to the stretching of the iris, normalizatioed®to be performed so that
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iris region is transformed to have fixed dimensioffier unwrapping the
normalized iris region into a rectangular regidnisiencoded using Haar
wavelets to generate the iris code. It was alsemesl that the Canny
operator is best suited to extract most of the edgeenerate the iris code
for comparison. In the recognition stage, Hammirggathce is used for the
comparison of the iris code, the most discrimirgtfeature of the iris

pattern, with the existing iris templates.

9.1.8 Authentication System Based on Multi-modal Approach

In this doctoral thesis, a multimodal biometricteys using speech,
face, signature and iris biometric identifiers regented. To combine the
information from these four biometric identifietsser dependent weighted
fusion approaches are introduced. The final detigomade by fusion at
matching score level architecture, in which thetdea vectors of query
images are compared with the templates in knowldzge. Based on the
proximity of the feature vector and template, eaghsystem computes its
own matching score. Finally, the individual traéiee fused at matching
score level using user dependent weighted sum aksechnique and is
then passed to the decision module. This systeesied on our knowledge

base and the overall accuracy of the system isfféaibe more than 98%.

9.1.9 Towards Improving the Performance of the Prototype

The user dependent weighted fusion approach Sigumifily
enhances recognition performance of the multimbdahetric system. The
weighted fusion strategy provides more confidenofrimation of the
outcomes for the developed multimodal biometrictesys The extensive
experimentations with multimodal databases indidhtzt the proposed

multimodal system outperforms other commonly usesthods and can
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help government or public/private sectors to proteduable property or

information and also ensure the overall securitshefregion or country.
9.2 Future Scope for Research

The work presented in this thesis has a significate to play in
view of its practical applications. This work alkas substantial scope for
further research for improving the overall systerarf@rmance. A
significant progress in the development of fusitrategies schemes that
facilitate the design of reliable and secure midtietric systems is
achieved in this work. To begin with, the autheation results presented
in this thesis should be validated using other jgublultimodal real-user
databases. Specifically, it would be necessary éasure the performance
of the suggested approaches with a larger datasettaining more
individuals. A formal model for cost-benefit anaty®f a multibiometric
system based on parameters such as performance (ig@inction in
FRR/FAR), throughput, physical cost of the systemd aecurity needs to
be developed in order to enable biometric systeneldpers to rapidly
design a multibiometric system that is most appaterfor the application
on hand. More research can be conducted to fincogienum matching
algorithms for unimodal biometrics to enhance therall performance of
the multimodal system. Dual or tri-level fusion sagos (different fusion
in different levels of the system) can be invesddato make the system

faster and significant reduction in the error rate.

9.3 Summary

An attempt has been made in this chapter to bringtlee salient
highlights of the work and the general inferenceshgred along with

enlisting of the scope and direction for futureemash in this area. When
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the real-time authentication system augmented wathfull-fledged
backbone knowledge base becomes a reality, themsysin outperform the

state-of-the-art authentication systems with angphigh success rates.
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