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CHAPTER 1  

INTRODUCTION 

The dependence of society on the usage of information 

technology for everyday tasks makes the establishment of the 

identity of a person in a reliable and time-efficient manner a 

matter of paramount importance. Biometrics is an efficient 

technology with great possibilities in the area of security system 

development for official and commercial applications. In 

unimodal biometrics, there are challenges such as noisy data, 

restricted degree of freedom, intra-user variability, non-

universality, spoof attack and unacceptable error rate. It has been 

identified that there is a need to combine multiple traits to address 

these challenges. This chapter touches upon the discipline of 

biometrics and its evolution towards multimodal biometrics. The 

chapter describes the modes of operations, performance measures 

and limitations of a unimodal biometric system. It also 

investigates the key issues in multimodal biometric systems along 

with various architectures for information integration. 

1.1 Introduction 

In the current scenario where the society is becoming increasingly 

dependent on the usage of information technology for everyday tasks, the 

establishment of the identity of a person in a reliable and time-efficient 

manner becomes a matter of paramount importance. Biometrics, a 

measurable distinctive physical characteristic or personal trait such as 

fingerprint, face, iris, voice, gait etc. can be used to identify an individual 
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or to verify the claimed identity of an individual and has gained 

considerable attention these days due to its robustness as well as reliability. 

Biometric authentication [1] automatically achieves the establishment of 

the identity of an individual based on the physiological or behavioural 

biometric trait rather than knowledge based or possession based method.  

A biometric trait cannot be easily lost, forgotten, shared or forged 

and is a strong link between a person and his/her identity. Since in 

biometric systems, the presence of an individual at the time of 

authentication is a necessity, prevention of unauthorised access as well as 

false refusal claims can be achieved. The biometric systems which have 

two phases, the enrolment as well as the verification/identification phase, 

comprise four main modules [2], [3], viz. a sensor, feature extractor, 

matcher and decision components.   

In the enrolment phase, which is the process of registering 

information in a knowledge base, the sensor obtains the biometric data 

from an individual and the feature extractor module extracts significant 

information regarding the acquired biometric sample leading to the 

generation of a feature vector. The feature vector, being unique for each 

person becomes the template for authentication. The enrolment phase is as 

shown in Figure 1.1. The enrolment can be for either verification or 

positive identification, which is referred to as positive enrolment or can be 

for negative identification, referred to as negative enrolment.  

Proper authentication is often ensured with biometrics so that only 

authorised people have access while unauthorised people are prevented. 

The matcher module, a part of the authentication phase, compares the 

extracted feature set of the person-seeking authorisation to the template in 

the knowledge base.  Based on the degree of similarity between the 
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template and the query, the decision module resolves the identity of the 

user.  

 

Figure 1.1 Enrolment Phase of the Biometric System 

Even though the biometric identification systems out-perform their 

peer technologies, the unimodal biometric systems have to contend with a 

variety of problems, namely, noisy data, intra-class variations, restricted 

degrees of freedom, non-universality and spoof attacks. Deploying a 

multimodal biometric system can address the limitations by integrating the 

evidences presented to it by multiple sources of information.    

1.2 Biometric Modes 

A biometric system operates either in verification or identification 

mode. In verification, the input is compared with the template of the 

claimed identity, while in identification the user’s biometric trait is 

compared with templates of all the persons enrolled in the database. The 

block diagram depicting the two modes of operation is as shown in Figure 

1.2. 

 When used in verification mode, a good degree of similarity 

identifies the claimant as genuine, else is rejected as impostor. In the 

identification mode, when the query is having a good degree of similarity 

with any one of the templates in the database, the query is authenticated in 

the positive enrolment while found ineligible in the negative enrolment. 

Biometric 
Sensor 

Quality 
assessment 

module 

Knowledge 
Base 

Feature 
Extractor USER 

User Identity 
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(a) 

(b) 

Figure 1.2 (a) Verification (b) Identification modes in a biometric system 
 

1.3 Performance of a Biometric System 

The performance metrics [4] used to quantify the performance of a 

biometric system are  

• False Match Rate (FMR)  

• False Non Match Rate (FNMR)  

• Receiver Operating Characteristic (ROC) 

• Equal Error Rate (EER) 

• Failure to Enroll Rate (FTER)  

• Failure to Capture Rate (FTCR) 

1.3.1 False Acceptance Rate (FAR) or False Match Rate (FMR) 

FAR is the probability that the system incorrectly matches the input 

pattern to a non-matching template in the database. It measures the 

percentage of invalid inputs, which are incorrectly accepted. In case of 

similarity scale, if the person is an imposter in reality, but the matching 

score is higher than the threshold, then he/she is treated as genuine. This 
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increases the FAR, which thus also depends upon the threshold value. An 

FMR of 0.01% implies that on an average, 1 in 10,000 impostor attempts 

are likely to succeed. 

1.3.2 False Rejection Rate (FRR) or False Non-Match Rate (FNMR) 

FRR is the probability that the system fails to detect a match 

between the input pattern and a matching template in the database. A 

measurement of the percent of valid inputs, which are incorrectly rejected, 

is evaluated by this parameter. A 10% FNMR indicates that on average, 10 

in 100 genuine attempts do not succeed 

1.3.3 Receiver Operating Characteristic (ROC) 

The ROC plot is a visual characterization of the trade-off between 

the FAR and the FRR. In general, the matching algorithm performs a 

decision based on a threshold, which determines how close to a template 

the input needs to be for it to be considered a match. If the threshold is 

reduced, there will be fewer false non-matches but more false accepts. 

Conversely, a higher threshold reduces the FAR but increases the FRR.  

1.3.4 Equal Error Rate (EER) or Crossover Error Rate (CER)  

EER is the rate at which both acceptance and rejection errors are 

equal. The value of the EER can be easily obtained from the ROC curve. 

The EER is a quick way to compare the accuracy of devices with different 

ROC curves. In general, the device with the lowest EER is the most 

accurate. 

1.3.5 Failure To Enroll Rate (FTER) 

FTER is the rate at which attempts to create a template from an 

input is unsuccessful. Low quality inputs normally result in high FTER.  
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1.3.6 Failure To Capture Rate (FTCR) 

Within automatic systems, the probability that the system fails to 

detect a biometric input when presented correctly is referred to as Failure to 

Capture Rate. 

1.4 Challenges in Biometrics 

Accuracy, scalability and usability contribute to the main challenges 

faced in the implementation of a biometric system.  An ideal biometric 

system should be highly accurate and secure, convenient to use, and easily 

scalable to a large population and hence the major obstacles that hinder the 

design and development of such a system are currently the thrust areas of 

research.  

1.4.1 Accuracy 

A biometric system rarely encounters 100 percent match between 

the captured biometric trait of the user and the template in the knowledge 

base. The accuracy of a biometric system [5] is affected by: 

• Noisy sensor data 

• Non-universality 

• Inter-user similarity 

• Lack of invariant representations 

The defective or improperly maintained sensors can cause noise in 

the acquired biometric traits. Typically, failure of camera focus can result 

in blurring of face and iris image leading to a noisy sensor data which can 

bring in significant reduction in the Genuine Accept Rate (GAR) of a 

biometric system [6], [7]. 

A biometric trait becomes universal if and only if every individual 

in the target population is able to submit it as a means for identification.  
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But it is often seen that all the biometric traits are not truly universal; for 

example, a fingerprint verification system cannot enrol an individual with 

hand related disabilities, manual workers with many cuts on their 

fingerprint etc. Similarly, people having eye abnormalities and diseases 

cannot provide good quality eye images for automatic recognition. Non-

universality leads to high FTER and FTCR in a biometric system. 

The features extracted from the biometric traits of two persons may 

not be distinct in some cases, which will lead to inter-user similarity. The 

similarity between the biometric samples from two different individuals 

leads to an increase in FMR. 

Use of different sensors during enrolment and verification can result 

in variations in the biometric samples. The ambient environmental 

conditions, aging of a person, appearance of wrinkles, presence of facial 

hair etc can also bring in variations in the representation of intra-user trait. 

There will be a decrease in the GAR of a biometric system due to intra-user 

variations. 

1.4.2 Scalability 

When the authentication is performed by matching the query with a 

single template, as in the case of a verification system, the size of the 

database is irrelevant. In an identification system, the query needs a 

sequential comparison with all the templates stored in the database, often 

resulting in a reduction in the throughput and an increase in the false match 

rate. Scaling can be achieved by a process known as filtering or indexing 

where the database is classified based on external or internal factors and the 

search is restricted to a smaller fraction of the database thereby resulting in 

the minimisation of errors. Some examples of the external factors are 

gender, age etc. and that of the internal are fingerprint, iris pattern etc. 
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1.4.3 Security and Privacy 

The major issue encountered in biometric systems is the protection 

of the template of a user trait stored in the database. It is possible that data 

obtained during biometric enrolment will be used in ways for which the 

enrolled individual has not consented. In addition, stolen biometric 

templates can affect the security of the system in several ways like gaining 

fake access using enrolled voice by an imposter. Other typical examples of 

circumventing a biometric system can be by dodging a fingerprint 

biometric system by constructing fake fingers [8], easy execution of 

spoofing of behavioural traits such as signature [9] and voice [10]. 

One of the major concerns for biometric verification and 

identification systems is privacy protection. When the biometric templates 

are stored in an unprotected database leaving free access to any intruder, 

this can result in hacking of the knowledge base. Since easy modification of 

biometric traits is not possible unless it has been stored using cryptographic 

methods, the attack against the stored templates causes a major security and 

privacy threat.  

Another important issue associated with biometric systems is the 

privacy of biometric traits. Privacy is the ability to lead your life free of 

intrusions, to remain autonomous and to control access to own private 

information.  The systematic privacy concerns that come into play are  

unintended functional as well as application scope and covert recognition.  

In unintended functional scope, collectors might glean additional (possibly 

statistical) personal information from scanned biometric measurements 

whereas  in unintended application scope, strong biometric identifiers such 

as fingerprints allow the possibility of unwanted identifications. Since 

biometric characteristics are not secrets, it is often possible to obtain a 
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biometric sample, such as a person’s face, without that person’s permission. 

This permits covert recognition of previously enrolled people. 

Consequently, the biometric recognition can deny the privacy of those who 

desire to remain anonymous in any particular situation. 

1.5 Multibiometric Systems 

Multimodal or Multibiometric utilizes more than one physiological 

or behavioural characteristic for enrolment, verification, or identification 

purpose [4]. This implies integration of the evidences from multiple sources 

of biometric information in order to authenticate the identity of an 

individual. The identification process becomes more reliable when multiple 

traits are being accounted, thereby alleviating the limitations of unimodal 

system [11]. Some of the advantages of multibiometric systems over 

unibiometric systems are as follows.  

• The overall accuracy of a biometric system improves significantly by 

combining the evidences obtained from different biometric sources 

using an effective fusion scheme. 

• A multibiometric system addresses the non-universality problem 

thereby achieving a reduction in FTER and FTCR. For example, if the 

enrolment of a person in iris recognition systems is inhibited due to eye 

diseases, he can still be identified using other biometric traits such as 

face, fingerprint etc. 

• In a multimodal system, since the user enrols using different traits, 

achievement of a degree of flexibility in user authentication is possible. 

Depending on the nature of the application, it is possible to use the 

system with a subset of these traits. For example, when face, voice and 

fingerprint are used to enrol into banking systems, it is possible to 

select one or two traits for authentication based on convenience. 
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• The effect of noisy data is reduced in multimodal system and this 

enables reliable determination of identity even if one of the biometric 

samples is noisy. 

• Multibiometric systems help to search a large database in a 

computationally efficient manner. The voluminous database is 

minimised by eliminating non-probable personnel using less accurate 

models and fine tuning is then used to perform final identification 

tasks.   

• Since simultaneous spoofing of multiple biometric traits is improbable, 

they are more resistant to spoof attacks. Further, a multibiometric can 

also check the liveliness of the users by acquiring a subset of traits in 

some random order. 

Some of the disadvantages associated with multibiometric systems 

are that they are more expensive as well as need more time for enrolment. 

Expensiveness arises since it requires more resources for computation and 

storage while the additional time requirement can cause inconvenience to 

the user. There can also be an accuracy reduction if appropriate techniques 

are not followed for combining the evidences provided by different sources. 

With all these limitations, multibiometric systems offer features that are 

attractive and as a result, they can be used widely in security critical 

applications. 

1.5.1 Multimodal Biometric Fusion Scenarios 

A multimodal biometric verification system can be considered as a 

classical information fusion problem i.e. can be thought to combine 

evidences provided by different biometrics to improve the overall decision 

accuracy. Generation of multiple evidences is possible from the same 

biometric sample by distinct algorithms, which may differ in the manner 
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the biometric data is pre-processed, or in terms of the features extracted 

from the pre-processed data, or in the choice of the algorithm performing 

the matching of the biometric sample to one or more user templates. 

Repeated application of the same chain of processing to more than one 

biometric sample of the same modality could yield a set of candidate 

decisions. Extension of the range of decision sets is possible by collecting 

more than one type of biometric from the user. Integration of information 

provided by multi biometric systems thus becomes crucial for the efficient 

performance of the system and this raises a challenging problem of 

information fusion.  

Information fusion in principle can be performed at data, feature or 

decision levels. Although there may be merits in fusing information at low 

levels, from the multi biometric system design point of view, it is most 

appealing to focus on the decision level fusion, as there will be integration 

of decisions by specialists in the respective biometric modalities. The 

logical consequence of this argument is that the fusion should be performed 

at the symbolic decision level where each expert has already determined the 

user’s most likely identity. Some form of voting would then be sufficient to 

resolve any conflicts of opinions from a given set of experts. 

Multiple modalities or Multimodal biometrics, Multiple sensors, 

Multiple algorithms, Multiple instances and Repeated instances are some of 

the common fusion scenarios [12], [13]. In multiple modalities or 

multimodal biometrics, the biometric traits are extracted from two or more 

modalities using single or multiple sensors. In multiple sensor fusion 

scenario, different sensors obtain the same instance of a biometric trait. The 

verification of face image based on an image captured via two sources like 

static digital image and video frame is an example of multiple sensor fusion 

scenario.  
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In multiple algorithms, two or more different algorithms process a 

single sample captured by a single sensor. The face recognition verification 

system utilising feature-based and view-based approaches is an example of 

multiple algorithm fusion scenario.  In multiple instances, the system is 

built using a number of biometric samples from different instances of the 

same biometric trait. The use of left and right iris images for identity 

authentication is an example of multiple instances fusion scenario. 

In repeated instances, the same sensor acquires the same biometric 

modality several times. The sequential frame capture of facial images is an 

example of repeated instances fusion scenario.  

1.5.2 Multimodal Biometric Architecture 

The sequence of acquisition and processing of biometric samples 

has a significant impact on the time required for enrolment and 

authentication. A multimodal system operates in one of the three different 

operational modes: serial, parallel or hierarchical [14] as shown in Figure 

1.3. 

1.5.2.1 Serial mode  

In serial or cascade mode, examination of each modality is 

performed before the investigation of the next modality. There can be a 

reduction in the overall recognition duration, as not all the multiple 

biometric traits need be captured at the same time. Sometimes a 

decision can be arrived at, even before acquiring all the traits. 

1.5.2.2 Parallel mode 

In this mode of operation, processing of the information from 

multiple modalities is handled concurrently, independently and all at 
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once. Then the combination of results yields the final classification 

decision. 

(a) 

 

 (b) 

 

(c) 

 

 
 

Figure 1.3 Architecture for several classifier combinations 
(a) Parallel (b) Serial (c) Hierarchical adapted from [14] 
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1.5.2.3 Hierarchical mode 

In this operational mode, the individual classifiers are combined in a 

treelike structure. This mode is preferred when a large number of classifiers 

are expected. 

Most of the current multimodal biometric systems operate either in 

the serial mode or in the parallel mode. The serial mode is computationally 

efficient, whereas the parallel mode is more accurate [14]. The application 

requirement determines the choice of the system architecture. A sequential 

multibiometric system is used in user-friendly and low security 

applications, whereas a parallel multibiometric system is preferred in 

security-critical applications. 

1.5.3 Design Issues in Multibiometrics 

The major factors under consideration in the design of a 

multibiometric system are the biometric sources, sequence of capturing 

biometric information and biometric fusion.  

 The biometric sources include multiple sensors, multiple biometric 

and processing systems. The factors affecting the selection of a biometric 

sensor are its ease of use and maintenance, the size of acquisition area, the 

resolution or the acquisition noise, its reliability and physical robustness, its 

dynamic range or the time it needs to acquire a sample etc. The factors 

affecting a processing system are the data format, algorithms for data 

processing, speed constraints, data compression techniques, which may 

degrade the sample or template quality etc. The factors proposed by 

Maltoni et al. [15] for the selection of a biometric are:- 

• Universality 

• Distinctiveness 
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• Permanence 

• Collectability 

• Performance 

• Circumvention 

• Acceptability 

Universality means that every person using the system should 

possess that trait. Distinctiveness means that the traits should be sufficiently 

different for individuals. Permanence relates to the manner in which the 

biometric resists aging and other variance over time. Collectability relates 

to the ease of acquisition for measurement. Performance refers to the 

accuracy, speed and robustness of the technology used, as well as the 

operational and environmental factors that affect them. Circumvention 

relates to the resistance to be fooled or copied and finally acceptability 

relates to the degree of social and personal acceptability. 

The designer needs to decide the sequence (serial or parallel) in 

which the multiple sources of information are required and processed. The 

application scenario decides the selection of appropriate acquisition and 

processing architecture. 

Another main design issue is the integration of different biometric 

sources, referred to as biometric fusion, as it has a good impact on the 

performance of the system. The classifications of the fusion scheme are 

sensor level, feature level, score level and decision level. The choice of 

fusion depends on the type of information from the biometric sources 

namely, raw biometric samples, feature sets, match score and decision 

labels. 

The trade-off between the additional cost and performance 

improvement is the major concern in the design of a multibiometric system. 
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The cost depends on the number of sensors employed, the time for 

acquisition and processing, the gain in performance by reduction in 

FAR/FRR, storage and computational requirements as well as perceived 

convenience to the user [16]. 

1.5.4 Levels of Fusion   

 

Figure 1.4 Fusion Levels in multimodal biometric fusion 

The main classifications of the fusion scheme are sensor level, 

feature level, score and decision level as demonstrated in Figure 1.4. The 

type of information to be fused decides the major issues associated with the 

design of a multibiometric system. Broad classifications based on levels of 

fusion are fusion prior to matching and fusion after matching.  

The sensor module utilizes the raw biometric data and possesses 

high information content. The information decreases by subsequent 

processing from the sensor module to the decision module. In the feature 

level fusion, the information available from different sources may not be 

compatible. For example, the feature vectors of fingerprint minutia and 

eigen face coefficients are not compatible for direct fusion. In most of the 

multibiometric systems, it is easy to access and combine the match score 
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generated by different biometric matchers. Therefore, match score level 

fusion offers the best tradeoff in terms of information content and ease of 

fusion. In the design of a multibiometric system, the type of information 

that is to be fused is one of the main issues.  

1.5.4.1 Fusion Prior to Matching  

The biometric information fusion prior to matching is either at the 

sensor level or at the feature level. 

Sensor Level fusion  

In the sensor level fusion, the raw data from the sensors are fused 

[17]. Either the raw data can be the same biometric trait acquired from 

multiple compatible sensors or multiple instances of the same biometric 

trait obtained using a single sensor. In sensor level fusion, the multiple data 

must be compatible and correspondence between points must be estimated 

reliably. 

Feature Level fusion 

The different feature sets extracted from multiple biometric sources 

are combined in feature level fusion. The fusion can be applied to the 

extraction of different features from the same modality or different 

modalities to construct a joint feature vector. Appropriate feature 

normalization, selection and reduction techniques must be applied before 

combining the extracted features into one single feature vector [18]. The 

concatenation of the feature vectors extracted from fingerprints and palm 

print modalities is an example of a feature-level based system. 

The feature level fusion is difficult to achieve in some cases. It is 

difficult to fuse two incompatible feature sets. The concatenation of feature 

vectors may lead to ‘curse of dimensionality’ problem [19]. This reduces 

the accuracy of the system. It is not possible to access features sets in the 
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commercial biometric systems due to proprietary reasons. The success in 

the use of feature level fusions is limited due to the constraints mentioned 

above. 

1.5.4.2 Fusion After Matching 

Fusion after the matching stage can be divided into Fusion at the 

match score level, fusion at the rank level and fusion at the decision level. 

Score Level Fusion 

The measure of similarity between the input and database template 

is the match score. These match scores are integrated in order to achieve 

the final recognition decision and is carried out at the match score level. 

The score level fusion is also referred to as decision, confidence, 

expert or opinion level fusion. In the score level fusion, it is possible to 

combine scores obtained from the same biometric trait or different ones 

using one or more classifiers. The divisions of fusion level are combination 

and classification. In the former approach, the separate matching scores are 

gathered to yield one score, which is used to make the final decision. In the 

latter approach, the input matching scores are considered as input features 

for a two-class pattern recognition problem, where the subject is classified 

as legitimate or not. The classifier presents a distance measure or a 

similarity measure between the input feature vector and the templates 

previously stored in the database. 

Normalization must be carried out prior to score level fusion. The 

range of match scores may be [−1, +1] for one trait and [0, 100] for another 

trait. The match scores after minmax normalization are combined using the 

sum of scores fusion rule.  Figure 1.5 shows the flow of information in a 

match score level fusion scheme. 
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Figure 1.5 Flow of information in a match score level fusion scheme 

The match scores generated by individual matchers may not be 

homogeneous. For example, the output of one matcher may indicate a 

dissimilarity measure whereas that of another may reveal a similarity 

measure. In dissimilarity measure, a smaller distance indicates a better 

match whereas in similarity, a larger distance indicates a better match. This 

discrepency should be considered in the match score level fusion. 

Rank Level Fusion  

In this, a rank is assigned to the top matching identities.  Match 

scores are sorted in a decreasing order, which is the output of rank level 
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fusion. There are three methods to combine the ranks assigned by different 

matchers [20]. In the highest rank method, each possible identity is 

assigned the best (minimum) of all ranks computed by different systems. 

Ties are broken randomly to arrive at a strict ranking order and the final 

method utilises the sum of the ranks assigned by the individual systems to a 

particular identity in order to calculate the fused rank. The logistic 

regression method is a generalization of the Borda count method where a 

weighted sum of the individual ranks is used. The weights are determined 

using logistic regression. 

Decision Level Fusion 

The commercial biometric matchers provide access only to the final 

recognition decision. In such cases, the feasible solution is decision level 

fusion. In the literature, the methods used for this fusion include ‘AND’ 

and ‘OR’ rules [21], majority voting [22], weighted majority voting [23], 

Bayesian decision fusion [24] and Dempster Shafer theory of evidence 

[24]. 

1.5.5 Challenges in Multibiometrics System Design 

The design of a multibiometric system is a difficult task even 

though it offers several advantages such as large population coverage, 

greater security and flexibility. The challenging problem in a 

multibiometric system is that it is difficult to predict the optimal sources of 

biometrics information and the optimal fusion strategy for a particular 

application. The reasons for these difficulties are: 

• Heterogeneity of information sources 

The fusion at sensor level and feature level is difficult due to 

the incompatibility or heterogeneity of information content. For 
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example, in multibiometric systems it may be impossible to fuse either 

the raw images or the features extracted from them. 

• Fusion Complexity 

The complexity of the fusion algorithm may nullify the 

advantages of fusion. For instance, fusion at the sensor or feature 

levels involves additional processing complexities such as registration 

and design of new algorithms to match the fused data. Further, the raw 

data from the sensor and the extracted feature sets are usually 

corrupted by various types of noise (e.g., background clutter in a face 

image, spurious minutiae in fingerprint minutiae set etc.). Hence, 

fusion at the sensor and feature levels may not lead to any performance 

improvement.  

• Varied discriminative ability 

The unique information provided by each biometric source can 

be different. Simple fusion rules utilising equal weightage for matchers 

having higher and lower accuracy may yield lower performance for the 

combined system. Hence, it is also necessary to assign appropriate 

weights to the different biometric sources based on their information 

content. 

• Correlation between sources 

There may be some statistical dependency among different 

biometric sources. For example, the speech and lip movement of a user 

are physically related traits. Similarly, multiple samples of the same 

biometric trait are correlated. In general, it is expected that the fusion 
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of dependent evidences provides a large improvement in accuracy 

compared to the fusion of correlated sources. 

1.6  Motivation and phases of the work 

Biometrics is an efficient technology with great possibilities in the 

area of security system development for official and commercial 

applications. The biometric systems, employing a single biometric trait, 

referred to as unimodal biometric systems, face lots of challenges such as 

noisy data, restricted degree of freedom, intra-user variability, non-

universality, spoof attack and unacceptable error rate.  

A need has been identified to combine multiple traits to address the 

challenges presented in the earlier section. In the work carried out, multiple 

biometric traits are combined to enhance the performance of automatic user 

authentication systems. The development of the multimodal biometric 

system that utilizes both behavioural as well as physiological traits viz. 

speech, face, signature and iris is discussed in detail in this thesis.  

Development of a personal authentication system using speech as 

the behavioral biometric modality utilizing a hybrid speaker recognition 

system that incorporates both spectral and cepstral information was the first 

phase of the prototype development. The performance improvement due to 

the use of spectral features along with the cepstral features has been 

identified. The spectral features extracted were spectral centroid, spectral 

range, spectral rolloff and spectral flux while the cepstral features comprise 

the Mel Frequency Cepstral Coefficients (MFCCs). 

Development of a biometric system using face, which is considered 

as the essential, natural and unique characteristics to identify a particular 

person, was the second stage. The eigen face approach has been used to 
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extract features from the face. The Principal Component Analysis (PCA) 

technique has been employed for the reduction of dimensions of the feature 

vector. The computational time efficiency has been compared for the 

system with and without reduced dimensionality.  The Euclidean distance 

between the eigen face coefficients of the template and the detected face 

has been utilized as the measure of identification. 

Development of a system that utilizes signature, since it has been a 

traditionally accepted longstanding method of identification, was the next 

phase of the research. The static signature image alone was insufficient for 

identification of a forged signature. The improvement of the system by 

using dynamic features of the signature has been established in this work. 

The static features have been derived using Gabor filters and dynamic 

features, namely, average stroke velocity and area in X- and Y- global axis 

have been considered for the system. The reason to select these features is 

that they are simple to compute with minimum pre-processing effort.   

Development of an identification system using iris trait, which is 

least affected by genetic developmental process wsa the last phase of the 

prototype development. The most suitable edge detection technique has 

been identified for iris texture extraction. The minimum feature based 

representation has been used for complex iris image and Haar wavelets 

have been utilized for extracting iris code. 

The performance of a bimodal, tri-modal and tetra-modal biometric 

has been evaluated separately. The performance of the system with trait 

specific score level fusion technique has been compared with that of a 

system with equal weight score fusion technique. The effect of user 

dependencies found at the score level in individual systems has been 

identified. It is expected that the results of the present work will help a 
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system designer to choose the appropriate combination of the traits within 

the scope of this study to achieve the specified level of performance. 

1.7 Organization of the Thesis 

The thesis is organized into nine chapters. A brief description of 

each of these chapters is given below: 

• The first chapter introduces the discipline of biometrics and its 

evolution towards multimodal biometrics. The chapter describes the 

modes of operations, performance measures and limitations of a 

unimodal biometric system. It also investigates the key issues in 

multimodal biometric systems along with various architectures for 

information integration. 

• In the second chapter, a review of work carried out in the fields 

related to the unimodal biometrics such as voice, face, signature and 

iris available in open literature is discussed. It also summarizes the 

related works of multimodal biometrics and the common approach of 

information integration in multimodal systems.  

• The third chapter discusses on the methodology for the proposed 

multimodal biometric system. The logic behind choosing speech, 

face, signature and iris as biometric traits for this system is described. 

It also gives an overview of the data acquisition method, development 

of the knowledge base, the feature component selected for each trait, 

the fusion strategy and the parameters used for performance 

evaluation. 

• The fourth chapter focuses on the results of authenticating speaker 

recognition using MFCC and Vector Quantization.  The techniques 
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and procedures involved in extracting the various feature components 

for speech are highlighted in this chapter. The incorporation of 

additional spectral features in the feature vector is found to improve 

the overall performance of the system. 

• In the fifth chapter, face recognition using Eigen faces is explained. 

The chapter also discusses the computational time efficiency of PCA 

estimated through covariance matrix with and without the use of 

dimensionality reduction. 

• In chapter six, the suitability and effectiveness of combining the Grid 

based Gabor Wavelet Transform approach and dynamic features  in a 

signature biometric system are demonstrated. The optimum size of the 

grid is determined based on the analysis of EER and average 

verification time.  

• In chapter seven, segmentation for iris authentication using canny 

operator is investigated. The effect of the eyelids and eyelashes is 

minimized by trimming the area of the iris above the upper and below 

the lower boundaries of the pupil. The Haar wavelet transform is 

extracted from the iris image and used to improve the recognition 

accuracy. 

• Chapter eight deals with the possibility of fusing the information 

contained in the voice signal, face image, signature image and iris 

image for the purpose of personal identification at the match score 

level. The novel fusion strategy used in this work is also discussed. 

The results of the performance analysis of a multimodal identification 

system developed in this work are also presented in this chapter. 
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• Finally, chapter nine contains the summary of the work, and the 

directions for future work. 

1.8 Summary 

The biometrics has recently become a significant part of any 

efficient person authentication solution. The advantage of using biometric 

traits is that they cannot be stolen, shared or even forgotten. A background 

on biometric and multimodal biometric is discussed in this chapter. A 

majority of the currently used biometric systems referred as unibiometric 

systems utilise a single biometric feature. They have several limitations, 

regardless of the significant advances in the field of biometrics. . The 

limitations of unibiometric systems can be alleviated by integrating various 

biometrics into one unit. Multimodal biometric systems are those which 

utilize more than one physiological or behavioural biometric trait for 

authentication purposes. The biometric data can be fused at various levels, 

namely, sensor, feature, matching score and decision. The challenges in the 

biometric systems and research needs in the current scenario are reviewed 

in this chapter. 
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CHAPTER 2  

REVIEW OF LITERATURE 

This chapter is devoted to the review of the research work 

reported in open literature in the areas of speaker recognition, face 

recognition, handwritten signature recognition, iris recognition, 

multimodal biometrics, normalization methods, different fusion 

techniques, etc. The consolidated results by various researchers on 

the success rates of the different methods are discussed. This 

chapter also covers the recent trends in the fusion technology of 

various biometric traits. 

2.1 Introduction 

Multimodality forms the core of human-centric interfaces, 

extending the access to a diverse number of users and in different usage 

contexts. The security that safeguards proper access to computers, 

communication networks and private information thus becomes an issue of 

prime importance in our everyday lives. The classical user authentication 

relies on tokens and passwords that may be easily lost or forgotten. Use of 

biometric authentication can overcome this problem as it verifies the user’s 

identity based on his/her physiological or behavioural characteristics such 

as facial features, voice and fingerprints. User authentication should be 

transparent to human-computer interaction to maximize usability. In this 

regard, multimodal human inputs to the computer offer multiple biometric 

information sources for user authentication.  

External conditions and variabilities often affect the performance in 

biometric verification due to the mismatched conditions between enrolment 
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and verification sessions, e.g. handset/microphones for recording speech, 

cameras for capturing facial images and fingerprint readers. In addition, the 

user’s speech may vary according to the ambient noise conditions, 

speaker’s health or speaking styles. The user’s facial images may vary due 

to changes in backgrounds, illuminations, head positions and expressions. 

While none of the biometrics alone can guarantee absolute reliability, they 

can reinforce one another when used jointly to maximize the verification 

performance.  This motivates multimodal authentication, where decisions 

based on individual biometrics are fused. 

2.2 Speech 

Shaneh et al. (2009) [25]  designed a system to recognize voice 

using MFCC and Vector Quantization (VQ) technique. The feature 

extraction is carried out using MFCC algorithm where the cepstral 

coefficients are calculated on a mel frequency scale. VQ (vector 

quantization) method is used to minimize the computation time by reducing 

the amount of data. In the feature matching stage, Euclidean distance is 

applied as the similarity criterion. The changes in the shape of the human 

vocal tract cause variations in resonant frequencies and formants. Utilizing 

this phenomenon, the voice features of each utterance are extracted. In the 

training session, the user repeatedly utters the same word five times. The 

system then recognizes the user after receiving the utterance twice in each 

testing session.  

Zhou et al. (2006) [26] developed a speaker identification system 

based on adaptive discriminative vector quantization. Adaptive 

Discriminative Vector Quantization technique for speaker identification 

(ADVQSI) is found to have improved performance in comparison with 

conventional VQ techniques. The ADVQSI technique takes advantage of 
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the inter-speaker variations between each individual speaker and all the 

speakers in the speaker identification group. In the training mode, for each 

speaker, the speech feature vector space is divided into a number of 

subspaces on the basis of inter-speaker variations. Then, an optimal 

discriminative weight is adaptively acquired for each speaker and each 

subspace. The template differences between different speakers are 

maximised. In the test mode of ADVQSI, discriminative weighted average 

VQ distortion is used as the similarity measurement between speakers’ 

templates and each testing waveform. The speaker whose template leads to 

the highest similarity score will be identified. 

Shi. Huang et al. (2009) [27] studied the use of MFCCs and Support 

Vector Machines (SVMs) for text-dependent speaker verification. The 

MFCCs are extracted from the password spoken by the user. These MFCCs 

are then normalized and used as the speaker features for training a claimed 

speaker model via SVM. Experiments were conducted on the Aurora-2 

database with various orders of MFCCs. The experimental results indicated 

the average accuracy rate of the text-dependent speaker verification system 

based on the 22nd-order MFCC and SVM to be 95.1 percent. 

Jabloun et al. (1999) [28] developed a speech recognition system 

based on multirate signal processing and the Teager energy operator. The 

speech signal is divided into nonuniform subbands in mel-scale using a 

multirate filterbank. After estimating the Teager energies of the subsignals, 

computation of the feature vector by log-compression and inverse discrete 

cosine transform (IDCT) is carried out. The feature parameters derived in 

this study seems robust even in the presence of car engine noise. A 

continuous density Hidden Markov Model (HMM) based speech 

recognition system with five states and three Gaussian mixture densities is 

used. The recognition performances of the Teager energy operator feature 
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parameters are evaluated using the TI-20 speech database of TI-46 Speaker 

Dependent Isolated Word Corpus after incorporating various types of 

additive noise. 

Revathi et al. (2009) [29] presented the effectiveness of perceptual 

features and iterative clustering approach in a speaker recognition system. 

Clustering models are utilized and the performance of the system is 

evaluated using isolated digits and continuous speeches from TI digits_1, 

TI digits_2 and TIMIT database. The statistical analysis results of F-ratio 

and by using χ2 distribution are discussed. The accuracies of speaker 

identification using isolated digit recognition and continuous speech 

recognition are found to be 91 and 99.5 percent respectively. The 

performance of the speaker verification system is evaluated and its equal 

error rate is found to be 9 percent. 

Shafran et al. (2003) [30] proposed a HMM based classifier to 

identify the speaker. SVMs with rational kernels are used to identify the 

content of the speech. Ming et al. (2007) [31] investigated the problem of 

speaker recognition in noisy conditions assuming absence of information 

about the noise. The multicondition model training and missing-feature 

theory are combined to model noise with unknown temporal-spectral 

characteristics. Multicondition training is carried out using simulated noisy 

data and the missing-feature theory is applied to refine the compensation by 

ignoring noise variation outside the given training conditions. The 

algorithm was tested using two databases with simulated and realistic noisy 

speech data. The first database is a redevelopment of the TIMIT database 

by rerecording the data in the presence of various types of noise. The 

second database is a handheld-device database collected in realistic noisy 

conditions. The new model is compared to baseline systems and is 

observed to achieve lower error rates. 
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Togneri et al. (2011) [32] presented speaker identification in both 

noisy as well as noiseless environments. In clean environments, a high 

recognition rate of 95 percent on 64 speakers is achieved. The Gaussian 

Mixture Model- Universal Background Model (GMM-UBM) and GMM-

SVM systems are found to be robust when confronted with limited training 

data. It is found that the missing data methods can compensate against 

arbitrary disturbances and remove environmental mismatches.The 

significance of combined approaches involving bottom-up estimation and 

top-down processing is reviewed. 

Campbell (1997) [33] designed an automatic speaker recognition 

system. The information, theoretic shape measure and Line Spectral Pair 

(LSP) frequency features are used to discriminate between the speakers. 

The divergence shape is interpreted geometrically as the shape of an 

information-theoretic measure. The LSP frequencies are found to be 

effective features in this divergence-shape measure. The high-quality 

telephone-bandwidth is used to collect the speech of 80 seconds in real 

world office environments. The accuracy of the speaker-identification 

system is found to be 98.9 percent.   

Cui and Alwan (2005) [34] proposed a feature compensation 

algorithm based on polynomial regression of utterance.  The bias between 

the clean and noisy speech features is approximated by a set of 

polynomials. The feature vector is derived using expectation-maximization 

(EM) algorithm under the maximum likelihood (ML) criterion. In 

Automatic Speaker Recognition (ASR), Signal to Noise Ratio (SNR) for 

the speech signal is first estimated and the noisy speech features are then 

compensated using regression polynomials. The compensated speech 

features are decoded via acoustic HMMs trained with clean data.  
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Lee et al. (1990) [35] developed a speaker recognition system, 

SPHINX, which accounts for large vocabulary and continuous speech. It is 

based on discrete HMMs with Linear Predictive Coding (LPC) derived 

parameters. It provides speaker independence by incorporating multiple 

codebooks of fixed-width parameters into HMM.    

Chulhee et al. (2003) [36] proposed a method to minimize the loss 

of information during the feature extraction stage. This is achieved by 

optimizing the parameters of the mel-cepstrum transformation. Typically, 

the mel-cepstrum is obtained by critical band filters whose characteristics 

play an important role in converting a speech signal into a sequence of 

vectors. The performance of the mel-cepstrum is analyzed by changing the 

parameters of the filters such as shape, center frequency and bandwidth. 

Experiments with Korean digit words show that the recognition rate is 

improved by 4 to 7 percent. 

Reynolds et al. (2000) [37] described the major elements of GMM 

used for speaker verification system. The system is built around the 

likelihood ratio test for verification. The Bayesian adaptation technique is 

used to derive speaker models from the UBM and score normalization is 

employed to improve the verification performance. The representative 

performance benchmarks and system behavior experiments on Speaker 

Recognition Evaluations are presented. 

Furui (1981) [38] developed an automatic speaker verification 

system for telephone speech data. The operation of the system is based on a 

set of functions of time obtained from acoustic analysis of a fixed and 

sentence-long utterance. Cepstrum is extracted by means of LPC analysis 

successively throughout an utterance and the frequency response distortions 

introduced by transmission systems are removed. The time functions are 
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expanded by orthogonal polynomial representations and the overall 

distance between registration and the stored reference is calculated. This is 

accomplished by a new time warping method using a dynamic 

programming technique. A decision is made to accept or reject an identity 

claim, based on the overall distance. The reference functions and the 

decision thresholds are updated for each customer. Several sets of 

experimental utterances, which include male and female utterances 

recorded over a conventional telephone connection, are used for the 

evaluation of the system. Results of the experiment indicated that a 

verification error rate of one percent or less could be obtained even if the 

reference and test utterances are subjected to different transmission 

conditions. 

Markel and Davis (1971) [39] analysed a database consisting of 

unconstrained extemporaneous speech of 36 hours recorded over a period 

of more than three months from 17 speakers. The experiments 

demonstrated that a monotonic increase in the probability of correct 

identification and a monotonic decrease in the equal error probability for 

speaker verification could be obtained using long-term average feature 

vectors. The accuracy of the system is found to be 98 percent when tested 

with text independent speech data (without linguistic constraints) of 39 

seconds.  

Soong et al. (1985) [40] used VQ codebook for characterizing the 

short-time spectral features of a speaker. A set of codebooks is used to 

recognize the identity of an unknown speaker. The minimum distance 

(distortion) classification rule is used. A series of speaker recognition 

experiments is performed using a 100 talker (50 male and 50 female) 

telephonically recorded database consisting of isolated digit utterances. The 

effects on performance of different system parameters such as codebook 
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sizes, the number of test digits, phonetic richness of the text and difference 

in recording sessions are studied. The speaker identification accuracy of the 

system is found to be 98 percent for ten random but different isolated 

digits.  

Lin et al. (1994) [41] explored the use of an array of microphones to 

capture speech under adverse acoustic conditions in an automatic speaker 

identification system. The system is evaluated using reverberated speech 

signals, generated by a computer model of room acoustics and transduced 

by different simulated microphone arrays. The influence of vector 

quantization techniques, codebook size and the order of cepstrum 

coefficients on the performance of the speaker identification system is 

evaluated. It is found that the 2-D matched-filter microphone arrays are 

capable of producing high speaker identification scores in a hostile acoustic 

environment such as multipath distortion and competing noise sources.  

Reynolds et al. (1995) [42] used GMM for robust text-independent 

speaker identification. The individual Gaussian components of a GMM are 

shown to represent some general speaker-dependent spectral shapes that are 

effective for modeling speaker identity. The proposed model is found to 

yield high identification rates for short utterances from unconstrained 

conversational speech. A telephone speech database of 49 speakers is used 

for testing the system. The algorithmic issues such as initialization, 

variance limiting and model order selection are examined. The system 

performance is compared with other speaker modeling techniques such as 

uni-modal Gaussian, VQ codebook, tied Gaussian mixture and radial basis 

functions. The Gaussian mixture speaker model is found to provide an 

identification accuracy of 96.8 percent when clean speech utterances of 5 

seconds are used and an accuracy of 80.8 percent for telephone speech 

utterances of 15 seconds.  
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Maleh et al. (2000) [43] proposed a speech/music classification 

technique based on the line spectral frequencies (LSFs). Two different 

classification methods such as quadratic Gaussian and nearest neighbour 

are used. The feature vector for a one-second window is calculated and the 

correct classification rate is obtained as 90.7 percent. When LSF features 

are used in conjunction with Zero Crossing Rate (ZCR), the performance of 

the system is found to be 94.8 percent.  

Meindo and Neto (2003) [44] carried out audio segmentation, 

classification and clustering. The symmetric Kullback-Liebler, KL2 is used 

for audio segmentation and it is calculated over Perceptual Linear 

Prediction (PLP) coefficients extracted from an audio signal. The same 

features are used for the purpose of speech/non-speech classification. For 

analysis window of 0.5 seconds, a correct classification rate of around 

92.6% is obtained.  

Panagiotakis and Tziritas (2004) [45] developed a speech/music 

discriminator based on RMS and Zero-crossings. A correct classification 

rate of about 95 percent is obtained in this study.  

Zhang and Kuo (1999) [46] proposed a system that classifies audio 

recordings into basic audio types using simple audio features such as the 

energy function, average zero crossing rate and spectral peak track. An 

accuracy rate of more than 90 percent is obtained for this audio 

classification system. 

Sourjya S et al.(2014) [47], in the paper demonstrated the 

significance of stochastic feature compensation methods for robust speaker 

verification in noisy environment. The performance of these data-driven 

methods was studied for speaker verification on the NIST-2003-SRE 
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database, in different simulated noisy environment. The algorithms based 

on joint GMM modeling of clean and noisy data (e.g., Stereo based 

Stochastic Mapping (SSM), Trajectory based stochastic Mapping 

(TRAJMAP)) were found to outperform well-known algorithms like Stereo 

Piece-Wise Linear Compensation for Environment (SPLICE) and 

Multivariate Model Based Cepstral Normalisation (MMCN) in terms of 

EER and minimum Decision Cost Function (minDCF) metrics of speaker 

verification. The overall best performance was observed in case of the 

TRAJMAP algorithm, which thereby suggests significance of dynamic 

feature correlation and robustness of long term utterances towards 

background noise. 

Mohan A et al.(2014) [48] presented an experimental study that 

investigated acoustic modelling configurations for speech recognition in the 

Indian languages – Hindi and Marathi. The experimental study was 

performed using data from a small vocabulary agricultural commodities 

task domain that was collected for configuring spoken dialogue systems. 

Two acoustic modelling techniques for mono-lingual ASR were compared 

namely – the conventional Continuous Density HMM (CDHMM) and the 

Subspace GMM (SGMM) acoustic modelling technique. The SGMM 

mono-lingual models were seen to outperform their CDHMM counterparts 

when there is insufficient acoustic training data. The best performing 

system at 77.77% is obtained when the Hindi language states are weighted 

at 0.8. At this point, an improvement of 1.57% absolute is seen with respect 

to the SGMM baseline of 76.2%. 

Dufour R et al.(2014) [49], proposed an analysis of various acoustic 

and linguistic features extracted from an automatic speech recognition 

processing in order to characterize and detect spontaneous speech segments 

from large audio databases. This classification method, performed at the 
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segment level, allowed the system to associate a class of spontaneity to 

each speech segment. It is then extended to the classification process by 

using a probabilistic contextual tag-sequence model that takes into 

consideration information of surrounding segments: the classification 

becomes a global process. This method improved the results: 73.0% 

precision in the detection of high spontaneous speech segments, with a 

73.5% recall measure, and a 66.8% precision and a 69.6% recall on 

prepared speech segments. 

Sahidullah M. et al.(2012) [50], proposed a block based MFCC 

computation schemes for speaker recognition in noisy condition. The 

feature extraction schemes using non-overlapped and overlap block 

transformation are analytically formulated. The experimental evaluation is 

performed on standard databases, and this shows that formant specific 

block transformations perform better.The EER of 13.8266% and minDCF 

of 5.9546% are achieved. 

2.3 Face 

Phillips et al. (2005) [51] described the challenge problem and data 

corpus in respect of face recognition system. The baseline performance and 

preliminary results on natural statistics of facial imagery are presented in 

this paper. The Face Recognition Grand Challenge (FRGC) problem 

consists of experiments, which include performance measurement on still 

images, 3D imagery, multi-still imagery as well as between 3D and still 

images. The influence of images taken with and without controlled lighting 

as well as background is to be studied.  

Prakash et al. (2008) [52] proposed a human face segmentation 

using the elliptical structure of the human head. It makes use of the 
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information present in the edge map of the image. In this approach, the 

eigen values of the covariance matrix representing the elliptical structure 

are used. Additional parameters are also used to identify the centre and 

orientation of the face. The Circular Hough Transform (CHT) is used to 

evaluate the elliptical parameters. Sparse matrix technique is employed to 

perform CHT, as it squeezes zero elements, and has only a small number of 

non-zero elements, thereby having an advantage of less storage space as 

well as computational time. Neighborhood suppression scheme is used to 

identify the valid Hough peaks. The accurate positions of the circumference 

pixels for occluded and distorted ellipses are identified using Bresenham’s 

Raster Scan Algorithm, which uses the geometrical symmetry properties. 

This method does not require the evaluation of tangents for curvature 

contours, which are very sensitive to noise. It is found that increasing the 

training set improves the performance of the system. 

Kim et al. (2002) [53] proposed Kernel Principal Component 

Analysis (KPCA), which is a nonlinear extension of conventional PCA 

technique. The input space is mapped into a feature space via nonlinear 

mapping and the principal components in the feature space are computed. 

By adopting a polynomial kernel, the principal components are computed 

within the space spanned by high-order correlations of input pixels making 

up a facial image, thereby resulting in a good performance. The error rate 

reported for the proposed method is 2.5 percent for 20 simulations.   

Demirel and Anbarjafari (2008) [54] proposed a high performance 

pose invariant face recognition system based on the probability distribution 

functions (PDF) of pixels in different color channels. The PDFs of the 

equalized and segmented face images are used as statistical feature vectors. 

The Kullback–Leibler distance (KLD) between the PDF of a given face and 

that in the database is computed and the minimum is selected for 
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recognition. Feature vector fusion (FVF) and majority voting (MV) 

methods are employed to combine the feature vectors obtained from 

different color channels in HSI (Hue Saturation and Intensity) and YCbCr 

color spaces. The proposed system is tested on the FERET and the Head 

Pose face databases. The recognition rate obtained using FVF approach for 

FERET database is 98.00% compared with 94.60% and 68.80% for MV 

and PCA based face recognition techniques, respectively. 

Spies and Ricketts (2000) [55] developed a face recognition system 

using Fourier spectra analysis. Recognition is achieved by finding the 

closest match between feature vectors containing the Fourier coefficients at 

selected frequencies. In Fourier spectra of facial image analysis, every pixel 

in the image contributes to each value of its spectrum. The Fourier 

spectrum is a plot of the energy against spatial frequencies, which is related 

to the spatial relations of intensities in the image. In the case of face 

recognition, this translates to distances between areas of particular 

brightness, such as the overall size of the head, or the distance of the eyes. 

Higher frequencies describe finer details, which are less useful for 

identification of a person. The Euclidean distances are calculated between 

feature vectors with entries that are the Fourier Transform values at 

specially chosen frequencies. The faces are recognized by finding the 

minimum Euclidean distance between a newly presented face and all the 

training faces. It is found that as low as 27 frequencies yield an accuracy 

rate of 98 percent. Moreover, this small feature vector combined with the 

efficient Fast Fourier Transform (FFT) makes this system extremely fast. 

Temdee et al. (1999) [56] presented a frontal view face recognition 

method by using fractal codes. The fractal codes are determined from the 

edge pattern of the face region covering eyebrows, eyes and nose. In this 

recognition system, the obtained fractal codes are fed as inputs to a 
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backpropagation neural network for identifying an individual. The system 

performance is tested on the ORL face database. The correct recognition 

rate of the proposed sytem is found to be 85 percent in the ORL face 

database. 

Wiskott et al. (1997) [57] presented a geometrical local feature 

based system for face recognition. Elastic Bunch Graph Matching (EBGM) 

is used in this system. The faces are represented by labeled graphs, based 

on a Gabor Wavelet Transform (GWT). Image graphs of new faces are 

extracted by an Elastic Graph Matching process and compared by a simple 

similarity function. The phase information is used for accurate node 

positioning and object-adapted graphs are used to handle large rotations in 

depth. The image graph extraction is based on the bunch graph, which is 

constructed from a small set of sample image graphs. In contrast to many 

neural-network systems, no extensive training for new faces or new object 

classes is required in this system. The system inhibits most of the variance 

caused by position, size, expression and pose changes by extracting concise 

face descriptors in the form of image graphs. In these image graphs, some 

predetermined points on the face (eyes, nose, mouth etc.) are described by 

sets of wavelet components (jets). The recognition rate of the architecture is 

found to be 98 percent when tested using a gallery of 250 individuals. 

Chung et al. (1999) [58] suggested the combined use of PCA and 

Gabor Filters in face recognition system. Gabor Filters are used to extract 

facial features from the original image on predefined fiducial points and 

PCA is used to classify the facial features optimally. The combined system 

is suggested to overcome the shortcomings of a standalone PCA. When raw 

images are used as a matrix of PCA, the eigenspace cannot reflect the 

correlation of facial features well because the original face images have 

deformation due to in-plane and in-depth rotation, illumination and contrast 
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variation. Gabor Filters are used to overcome these problems. The 

experimental results show an improvement in recognition rates of 19 and 

11 percent when compared to conventional PCA methods in SAIT dataset 

and Olivetti dataset respectively. 

Joo et al. (1999) [59] suggested the use of Radial Basis Function 

(RBF) Neural Networks for the extraction of discriminant eigenfeatures of 

a face image. Hybrid learning algorithm is used to decrease the dimension 

of the search space in the gradient method, which is crucial for the 

optimization of high dimension problems. The facial features are extracted 

by both the PCA and LDA methods and the Hybrid learning algorithm is 

used to train the RBF Neural Networks. The experimental results on the 

ORL database image of Cambridge University show an error rate of 1.5 

percent, which is a tremendous improvement over the best existing result of 

3.83 percent. 

Pan et al. (2005) [60] developed a 3D face recognition system using 

the facial shape. The Region of Interest (ROI) from an image is 

automatically extracted and it is flattened using isomorphic mapping to get 

the relative depth image. The eigen face vectors are computed for the 

recognition. 

Belhumeur et al. (1997) [61] demonstrated that the Fisherface error 

rates are lower than those of the Eigen face technique. The PCA is used to 

reduce the dimensionality of the input space and the Linear Discriminant 

Analysis (LDA) is applied to the PCA reduced space in order to perform 

the real classification. However it has been demonstrated in the recent 

works of Chen et al. (2000) [62] that the discriminant together with the 

redundant information gets discarded by combining PCA and LDA. Hence, 

it is suggested to apply the LDA directly on the input space in some cases.  
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Chen et al. (2005) [63] developed a feature vector generation 

scheme based on multi-class mapping of Fisher score for face recognition. 

The HMM method is employed to model the classes of face images. A set 

of Fisher scores is calculated through partial derivative analysis of the 

parameters estimated in each HMM. These Fisher scores are further 

combined with some traditional features such as log-likelihood and 

appearance based features. The feature vectors exploit the strengths of both 

the local and holistic features of human face. LDA is applied to analyze 

these feature vectors for face recognition. Experimental results on a public 

available face database are used to demonstrate the viability of this scheme.  

Graf et al. (1995) [64] developed a method to locate the facial 

features and faces in gray scale images. After band pass filtering, 

morphological operations are applied to enhance the regions with high 

intensities that have certain shapes (e.g., eyes). The histogram of the 

processed image typically exhibits a prominent peak. Based on the peak 

value and its width, adaptive threshold values are selected in order to 

generate two binarized images. The connected components are identified in 

both the binarized images to locate the areas of candidate facial features. 

Combinations of such areas are then evaluated with classifiers to determine 

whether and where a face is present. The proposed system is tested with 

head-shoulder images of 40 individuals and with five video sequences 

where each sequence consists of 100 to 200 frames.  

Han et al. (1998) [65] developed a morphology-based technique to 

extract eye-analogue segments for face detection. It is suggested that eyes 

and eyebrows are the most salient and stable features of human face and 

thus, useful for detection. The eye-analogue segments are defined as edges 

on the contours of eyes. The morphological operations such as closing, 

clipped difference and thresholding are applied to extract pixels at which 
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the intensity values change significantly. These pixels become the eye- 

analogue pixels in this approach. The labeling process is performed to 

generate the eye-analogue segments and these segments are used to guide 

the search for potential face regions with a geometrical combination of 

eyes, nose, eyebrows and mouth. The candidate face regions are verified by 

neural network techniques. The experiments demonstrated that the accuracy 

rate is 94 percent when tested with a set of 122 images.  

Amit et al. (1998) [66] presented a method for shape detection and 

applied it to detect frontal-view faces in still intensity images. Detection is 

carried out in two stages namely, focusing and intensive classification. 

Focusing is based on spatial arrangements of edge fragments extracted 

from a simple edge detector using intensity difference. From a set of 300 

training face images, particular spatial arrangements of edges, which are 

more common in faces than backgrounds, are selected using an inductive 

method developed by Amit et al. (1998) [66]. Meanwhile, the 

Classification and Regression Trees (CART) algorithm proposed by 

Breiman et al.(1984) [67] is applied to develop a classification tree from 

the training images. Given a test image, the regions of interest are identified 

from the spatial arrangements of edge fragments. Each region of interest is 

then classified as face or background using the learned CART tree. The 

experimental results on a set of 100 images from the Olivetti data set of 

Samaria, (1994) [68] indicated a false positive rate of 0.2 percent per 1,000 

pixels and a false negative rate of 10 percent. 

Augusteijn and Skufca (1993) [69] developed a method that infers 

the presence of a face through the identification of face-like textures. The 

textures are computed using second-order statistical features proposed by 

Haralick et al. (1973) [70] for sub images of 16 x16 pixels. Three types of 

features are considered, namely, skin, hair, and others. A cascade 
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correlation neural network developed by Fahlman and Lebiere (1990) [71] 

for supervised classification of textures is used. A Kohonen self-organizing 

feature map [72] is employed to form clusters for different texture classes. 

To infer the presence of a face from the texture labels, the occurrences of 

hair and skin textures are suggested.  

Dai and Nakano (1996) [73] applied Space Gray Level Dependence 

(SGLD) model to face detection, where color information is incorporated 

with the face-texture model. Using the face-texture model, a scanning 

scheme for face detection in color scenes is designed and the skin colour 

regions in the face areas are enhanced. One advantage of this approach is 

that it can detect faces, which are not upright or have anomalies such as 

beards and glasses. The detection rate is found to be 98 percent for a test set 

of 30 images with 60 faces. 

Adini et al. (1997) [74] suggested that the differences between 

images of one face under different illumination conditions are greater than 

the differences between images of different faces under the same 

illumination conditions. A method is proposed to identify and compensate 

for the effect of lighting conditions in various face recognition systems.  

Zhao and Chellappa (2000) [75] used a generic 3-D surface of a 

face, together with a varying albedo reflectance model and a Lambertian 

physical reflectance model to compensate for both the lighting and head 

orientation. A recognition system based on linear discriminant analysis is 

developed. 

 Cutler (1996) [76] showed that infrared images can be successfully 

applied to decrease the error rate. An artificial infrared light source is used 

to reduce the effect of external light sources. The proposed system is 
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suggested to be used in security applications such as site access. However, 

the use of such a light source is not always practical, particularly if the 

camera is far from the subject. 

 Pentland et al. (1994) [77] developed an eigen face system by 

including multiple viewing angles of a person’s face. A modular eigenspace 

system is incorporated to improve the overall performance of the system 

subjected to varying lighting conditions.  

Liu H.D et al. (2014) [78] proposed two methods based on Local 

Histogram Specification (LHS) to  preprocess face images under varying 

lighting conditions. A high-pass filter is applied on a face image to filter the 

low frequency illumination.Then, local histograms and local histogram 

statistics are learned from normal lighting images. The LHS is applied on 

the entire image. By fusing Local Binary Patterns (LBP), Gabor  and 

Monogenic Binary Code – Orientation (MBC-O) features get recognition 

rates over 76%.  

Gaidhane V. H et al.(2014) [79] proposed a technique for face 

recognition based on the polynomial coefficients, covariance matrix and 

algorithm on common eigen values. In the proposed approach the 

identification of similarity between human faces is carried out without 

computing actual eigen values and eigen vectors. In this approach, a 

companion matrix, which is obtained using the polynomial coefficients, 

represents the features of images. A symmetric matrix is calculated using 

the proposed approach and the nullity of such symmetric matrix is used as a 

similarity measure for classification. The numerical value of nullity is zero 

for dissimilar images and distinctly large for similar images. The 

recognition rate of 98.00% is achieved. 
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Zhou C. et al.(2013) [80], proposed a method based on PCA image 

reconstruction and LDA for face recognition. The inner-classes covariance 

matrix for feature extraction is used as generating matrix and then eigen 

vectors from each person is obtained, then the constructed images are 

obtained. The residual images are computed by subtracting reconstructed 

images from original face images. Furthermore, the residual images are 

applied by LDA to obtain the coefficient matrices. The two classifiers, 

minimum distance classifier and SVM are used. The simulation 

experiments illustrate on the ORL face database. When the minimum 

distance classifier is used, the average recognition rate is 97.48%, and 

while using SVM, the average recognition rate is 97.74%. 

2.4 Signature 

Guo et al.(1997) [81] proposed a model-based segmentation 

approach for the verification of static (off-line) signature images and the 

detection of forgeries. The segmentation involves identification of junction 

points and recovery of strokes consistent with the model. For verification, a 

questioned signature is segmented based on the edge information. The 

features of the segments such as width, direction and type (loop, retrace 

etc.) are obtained.  In the matching process, the correspondence between 

the test image and the model is established. The quantified one-to-one  

correspondence is used for detecting forgeries. A significant feature of the 

approach is that a segment-wise correspondence between the model and the 

questioned signatures is obtained. This enables to examine both the global 

and local features of the questioned signature.  

Justino et al. 2001 [82] used a grid segmentation scheme to collect 

the features of the signature image. HMM is employed for identifying 

intrapersonal and interpersonal variations of signature models. Both static 
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and pseudodynamic features are used to characterize the signal. The pixel 

density in each of the grid cells called the Extended-Shadow-Code (ESC) is 

obtained as the static feature. A signature skeleton image projected into the 

grid is used to determine the predominate stroke slant in each cell. The 

axial slant is recorded as the pseudodynamic feature of the signature. A set 

of codebooks for each feature is generated using Vector Quantization 

process, based on the k-means algorithm. The HMM signature model 

adapted to each writer is generated and it has shown promising results for 

random forgery identification.  

Mizukami et al. (1999) [83] proposed a method using an extracted 

displacement function originally proposed by Fang et al. (2003) [84]. The 

method consists in minimization of a function, defined as the weighted sum 

of a squared Euclidean distance between two signatures and a penalty term 

for the smoothness of the displacement function. In order to avoid stopping 

at local minima, the signatures are transformed into coarse images by 

Gaussian filtering technique. The performance of the autoassociator neural 

network based on the constructive cascade correlation architecture 

(CASCOR) method is compared with a multilayer perceptron network 

(MLP) with back propagation. The set of 12 features is extracted by the 

method of moments and PCA. Skeleton image produces six moments and 

edge images give signature global slopes. From the pressure response, the 

pressure threshold and pressure factor are extracted. While using PCA, first 

forty eigen values and eigen vectors are used as the feature vector. The test 

results indicated that CASCOR performs significantly better than MLP in 

the signature verification tasks of simple and random forgeries.  

Sato and Kogure (1982) [85]  proposed the use of Dynamic 

Programming Matching (DPM) to align the shape of signatures consisting 

of pen-down strokes. After having normalized the data with respect to 



Chapter 2 Review of Literature 

 48 

translation, rotation, trend and scale, the signature is aligned. The DPM is 

also used to compute the alignment of the pressure function and to calculate 

a measure of the difference in writing motion. The classification of the 

signature is carried out based on three measurements such as the residual 

distance between shapes after time alignment, the residual distance between 

pressure functions and the distance between writing motions.  

Parizeau and Plamondon (1990) [86] evaluated the use of DPM for 

signature verification by aligning either the position, velocity or 

acceleration in the horizontal or vertical direction. The complete signing 

trajectories consisting of both pen-down and pen-up strokes are used.  

Hastie et al. (1991) [87] obtained a statistical model of signatures 

that allows for variations in the speed of writing as well as affine 

transformations. DPM is used to find the correspondence between speed 

signals of pairs of signatures. The distance measure provided by DPM is 

used as the classification parameter. During training, the signature with the 

lowest distance to all the others is chosen as the reference and its speed 

signal is used to perform letter segmentation. All other signatures are also 

segmented into letters by using velocities and accelerations of the 

individual strokes. Pen-up strokes are merged with the pen-down strokes in 

the pre-processing phase.  

Nalwa (1997) [88] parameterized the pen-down strokes of the 

signature using arc length instead of time; a number of characteristic 

functions such as the coordinates of the center of mass, torque and 

moments of inertia are computed using a sliding computational window 

and a moving coordinate frame. A simultaneous DPM over arc-length of all 

these characteristic functions for the two signatures under comparison is 

taken as the measure of similarity for classification. 
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Hairong et al. (2005) [89] proposed a novel off-line Chinese 

signature verification method based on support vector machine. The 

method uses both static and dynamic features. The static features include 

moment features and 16-direction distribution whereas the dynamic 

features include gray distribution as well as strokewidth distribution. The 

support vector machine is used to classify the signatures. The experiments 

on real data sets revealed an average error rate of 5 percent, which is 

obviously satisfactory. 

Kalera et al. (2004) [90] used a combination of Gradient, Structural 

and Concavity features to extract the significant features of a signature. The 

global, statistical and geometrical features of the signature are obtained. 

The Bayes and k-nearest neighbor classifiers are used in the online 

signature verification and identification domains respectively. It is claimed 

that an accuracy of 78.1 percent for verification and 93.18 percent for 

identification can be obtained for the system.   

Munich et al. (2003) [91] proposed a new camera based biometric, 

visual signature identification system. The importance of the 

parameterization of the signatures to achieve good classification results 

independent of the variations in the position of the camera with respect to 

the writing surface is discussed. It showed that affine arc length 

parameterization is better than Euclidean arc length. The verification error 

rate of the system is found to be 4 percent on skilled forgeries and 1 percent 

on random forgeries, better than camera-based biometrics.  

Jayasekara et al. (2006) [92] proposed a signature recognition 

method based on the fuzzy logic and genetic algorithm (GA) 

methodologies. It consists of two phases; the fuzzy inference system 

training using GA and the signature recognition. The feature extraction 
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process follows selective pre-processing. The projection profiles, contour 

profiles, geometric centre, actual dimensions, signature area, local features 

and the baseline shift are considered as the feature set in this study. The 

input feature set is divided into five sections and five separate fuzzy 

subsystems are used. The results are combined using a second stage fuzzy 

system. The fuzzy membership functions are optimized using the GA. The 

genuine signatures, random forgeries, skilled forgeries of a particular 

signature and different signatures are used for training. The optimized 

recognition system is used to identify the signature. It is found that the 

signature recognition accuracy rate of the system is about 90 percent for 

genuine signatures, 77 percent for random forgeries and 70 percent for 

skilled forgeries.  

Vargas et al. (2009) [93] represented information about pressure 

distribution from a static image of a handwritten signature as histogram. 

The pseudo-cepstral coefficients are calculated from the histogram. Finally, 

the unique minimum-phase sequence is estimated and used as the feature 

vector for signature verification. The optimal number of pseudo-

coefficients is estimated for best system performance. Experiments are 

carried out using a database containing signatures from 100 individuals. 

The robustness of the analyzed system for simple forgeries is tested out 

with a Least Square Support Vector Machine (LS-SVM) model. The 

experimental results showed that using pseudo-coefficients, the equal error 

rate is found to be 6.2 percent. 

Mohamadi (2006) [94] presented a Persian static signature 

identification system using PCA and MLP neural network. In training 

phase, PCA is used to construct some eigen vectors based on training 

database images. In test phase, the eigen value of each eigen vector from a 

new signature image is extracted using PCA. These eigen values are used 
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as features and are fed to a MLP classifier. For the experiment, 20 classes 

of Persian signatures comprising 10 signatures for training and 10 

signatures for testing are used. Identification rate of the system is reported 

to be 91.5 percent. 

Sigari and Pourshahabi (2006) [95] investigated signature 

identification and verification using signal-processing approaches. The 

performances based on Discrete Cosine Transform (DCT), Hough 

transform, Radon transform and Gabor Wavelet Transform (GWT) are 

compared.  It is reported that the GWT system performs better than the 

other systems. GWT is used as the feature extractor and Euclidean distance 

as the classifier in both identification as well as verification. A virtual grid 

is placed on the image of the signature and some coefficients are computed 

by GWT on each point of the grid. A Persian signature database is used for 

experimentation. Identification and equal error rates are reported to be 99.5 

percent and 15 percent respectively. 

Ozgunduz et al. (2005) [96] presented an off-line signature 

verification and recognition system using global, directional and grid 

features. SVM is used in order to verify and classify the signatures. For 

recognition, the signatures are accounted as a multi-class problem of one-

against-all SVM. The performance of the system is compared with MLP 

and the results showed that SVM has better performance than MLP.  

Martinez et al. (2006) [97] presented an efficient offline human 

signature recognition system based on SVM and the results are compared 

with an MLP system. Two approaches are used in both the cases:- In the 

first approach, each feature vector is constructed using a set of global 

geometric and moment-based characteristics from each signature while in 

the second approach, the feature vector is constructed using the bitmap of 
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the corresponding signature. Signature database containing 228 signatures 

in 38 classes is used for performance analysis. Results showed that the 

recognition rate of SVM is 71 percent while that of MLP is only 47 percent. 

Coetzer et al. (2004) [98] presented an offline signature verification 

system using Discrete Radon transform as feature extractor and HMM as 

classifier. A database containing 924 English signatures of 22 writers is 

used. The experimental results showed that EER is 18 percent for skilled 

forgery and 4.5 percent for casual forgery. 

  Fakhlai et al. (2011) [99]  proposed a new offline Persian signature 

recognition system based on the contourlet transform (CT). SVM is utilized 

as a tool to evaluate the performance of the proposed method. In the 

proposed method, the first signature image is normalized by size and the 

image is enhanced to remove the noise. After pre-processing, the signature 

image is divided into four regions and contourlet coefficients are computed 

on each region. The histogram of orientation and the direction of each 

region are computed. The histograms are fed to a layer of SVM classifiers 

as the feature vector. The Persian dataset consisting of 400 genuine images 

and 200 forgery images is used for testing the performance of the system. 

The recognition rate is found to be 98 percent. 

Yang et al. (1995) [100] used HMM to model the sequence of 

normalized angles along the trajectory of the signature. For the individual 

HMM, the Baum-Welch algorithm was used for estimating the parameters 

of the HMM during training and testing. A single HMM having left-to-right 

skip topology with 6states models each signature. Each individual 

contributed 16 signatures, eight of them are used for training and the rest 

eight kept for testing. The model is tested on a database of 496 signatures 
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gathered from 31 users. The FAR and EER of the system are found to be 

6.45 and 1.18 percent respectively. 

Shafiei and Rabiee (2003) [101] proposed a system based on 

segmenting each signature and identifying perceptually important points. A 

vector consisting of seven features, four dynamic and three static, is 

computed for each segment.  The feature vector is scale and displacement 

invariant. The resulting vectors are used for training an HMM to achieve 

signature verification. A database consisting of 622 genuine signatures and 

1010 forgery signatures collected from a population of 69 users is used for 

testing the proposed system. The False Acceptance Rate is found to be 4 

percent and False Rejection Rate is 12 percent. 

Lee (1996) [102] investigated the use of three neural network 

approaches for classifying signatures. Bayes Multilayer Perceptrons 

(BMP), Time Delay Neural Networks (TDNN) and Input Oriented Neural 

Networks (IONN) are the various approaches considered in this study. The 

input to the neural networks is a sequence of instantaneous absolute 

velocities extracted from the spatial coordinates. Consequently, the 

database used consists of 1000 genuine signatures from only one user and 

450 skilled forgeries from 18 trained forgers. The back propagation 

algorithm is used for network training. In this experiment, BMP is found to 

provide the lowest misclassification error rate, which is equal to 2.67 

percent.  

Lejtman et al. (2001) [103] applied wavelets and back-propagation 

neural network together for the on-line signature verification purpose. The 

feature vector comprises functions such as the pen pressure, x and y 

velocity and the angle of pen movement. The Daubechies-6 wavelet 

transform with 16 coefficients is applied to compress the feature vector.  
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The end coefficients are given as the input to a neural network. The FRR is 

found to be 0.05 percent and False Acceptance Rate is less than 0.1 percent 

when a database of 922 genuine and forged signatures gathered from 41 

persons is used. 

Zanuy (2007) [104] studied the performance of VQ, K-Nearest 

Neighbor(KNN), Dynamic Time Wrapping (DTW) and HMM. A database 

of 330 users, which includes 25 skilled forgeries performed by five 

different impostors, is used. The experimental results showed that the first 

proposed combination of VQ and DTW outperformed the other 

combination of DTW and HMM. The minimum detection cost function 

value is found to be 1.37 percent for random forgeries and 5.42 percent for 

skilled forgeries. 

Nanni and Lumini (2008) [105] proposed an on-line signature 

verification system using Linear Programming Descriptor (LPD) classifier. 

The information is extracted as time functions of various dynamic 

properties of the signatures. The discrete 1-D wavelet transform (WT) is 

performed on the extracted features and the Discrete Cosine Transform 

(DCT) is used to reduce the approximation coefficients vector obtained by 

WT to a feature vector of a given dimension. Test using all the 5000 

signatures from the 100 subjects of the SUBCORPUS-100 MCYT Bimodal 

Biometric Database yielded an Equal Error Rate of 3 to 4 percent in the 

skilled forgeries and 1 percent in random forgeries. 

Roy S. et al.(2014) [106],  presented a grid based, contour based 

and area based approach for signature verification. Intersecting points and 

centroids of two equal half of the signature is being calculated and then 

those centroids are connected with a straight line and the angles of these 

intersecting points with respect to the centroids connecting lines are 
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calculated. In this paper simple forgery and skilled forgery both are 

considered, simple forgery case produce a low FAR but skilled forgery case 

produces 11-20% FAR. on the other hand FRR was reduced to 7-19%. 

Kumar R. et al.(2012) [107], proposed a writer-independent off-line 

signature verification scheme based on surroundedness features extracted 

from the binary image of signatures. The feature set based on 

surroundedness property of a signature represented both shape and texture 

attributes of the signature. Two classifiers namely, multilayer perceptron 

and support vector machine are implemented and tested on two publicly 

available database namely, GPDS300 corpus and CEDAR signature 

database.The best accuracy of the proposed system may go up to 93.46%. 

Vargas J.F et al.(2011) [108] , described a method for conducting 

off-line handwritten signature verification. It works at the global image 

level and measures the grey level variations in the image using statistical 

texture features. The co-occurrence matrix and local binary pattern are 

analysed and used as features. A histogram is also processed to reduce the 

influence of different writing ink pens used by signers. Genuine samples 

and random forgeries have been used to train an SVM model and random 

and skilled forgeries have been used for testing it. The experimental results 

for skilled forgeries show that using grey level information achieves a 

reasonable system performance of EER, 16.27%. 

Shukla A.K et al.(2014) [109], process the scanned hand written 

signature and it is verified on the following parameters such as Permissible 

boundary, Hand pressure, Euclidian distance, Center of cylinder generated 

from minimum spanning tree, Delaunay triangulation of the signature, 

Angle between base line and center of gravity. The Cost of Delaunay 

Triangulation gives FAR, 5.25%. 
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2.5 Iris 

Daugman (2004, 1993) [110],[111], applied Gabor wavelets 

filtering to encode the iris regions and extract the phase information of iris 

textures to create a 2048 bit (256 bytes) of iris template. Only phase 

information is used for recognizing irises because amplitude information is 

not very discriminating, and it depends upon extraneous factors such as 

imaging contrast, illumination and camera gain. The benefit that arises 

from the fact that phase bits are set also for a poorly focused image, even if 

based only on random CCD thermal noise, is that different poorly focused 

irises never become confused with each other when their phase codes are 

compared. The Hamming Distance (HD) is used to compare the stored iris 

template with the claimed iris. Since the search database contains 1 million 

different iris patterns, it is only necessary for the HD match criterion to 

adjust downwards from 0.33 to 0.27 in order to maintain still a net false 

match probability of 10-6 for the entire database. The complete execution 

time of this 2-D focus assessment algorithm, implemented in C using 

pointer arithmetic, operating on a (480 x640) image, is 15 ms on a 300-

MHz RISC processor. 

Wildes et al. (1997) [112] proposed another iris recognition system 

that decomposed the distinctive spatial characteristics of the iris into four 

levels Laplacian pyramid and used a normalized correlation for matching. 

 Boles and Boashash (1998) [113], detected zero crossings of one-

dimensional dyadic wavelet transform with various resolution levels over 

concentric circles on the iris. Both the position and magnitude information 

of zero-crossing representations were used to measure the similarity 

between the recognition and enrolment images. The effect of noise on the 

classification ability of the algorithm was tested using images corrupted 
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with varying degrees of white Gaussian noise. It uses only a few selected 

intermediate resolution levels for matching, thus making it computationally 

efficient as well as less sensitive to noise and quantization errors. 

Ma et al. (2004) [114] proposed an iris texture analysis method 

based on using multi-channel Gabor filtering to capture both global and 

local details in the iris. Ma et al. considered the characteristics of the iris as 

a sort of transient signals and identified the local sharp variation points as 

iris features. This method regards the texture of the iris as a kind of 

transient signals and uses the wavelet transform to process such signals. 

The local sharp variation points, good indicators of important image 

structures, are extracted from a set of intensity signals to form 

discriminating features. The basic idea is that local sharp variation points, 

denoting the appearance or vanishing of an important image structure, are 

utilized to represent the characteristics of the iris. The whole procedure of 

feature extraction includes two steps: The first step is, a set of one-

dimensional intensity signals is constructed to effectively characterize the 

most important information of the original two-dimensional image. In the 

second step, using a particular class of wavelets, a position sequence of 

local sharp variation points in such signals is recorded as features. A fast 

matching scheme based on exclusive OR operation is also presented to 

compute the similarity between a pair of position sequences. The 

performance of the algorithm is very high and the EER is only 0.09% for 

different session comparisons. In particular, if one and only one false match 

occurs in 1 000 000 trails, the false nonmatch rate is less than 1.60%. 

Tan et al. (2009) [115] presented an efficient and robust algorithm 

for noisy iris image segmentation in the context of non-cooperative and 

less-cooperative iris recognition. The main contributions are summarized as 

follows. Firstly, a novel region-growing scheme (namely, eight-neighbor 
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connection based clustering) is proposed to cluster the whole iris image into 

different parts. The genuine iris region is then extracted with the assistance 

of several semantic priors, and the non-iris regions (e.g. eyelashes, 

eyebrow, glass frame, hair etc.) are identified and excluded as well, which 

greatly reduces the possibility of mis-localizations on non-iris regions. 

Secondly, an integrodifferential constellation is introduced to accelerate the 

traditional integrodifferential operator, meanwhile enhancing its global 

convergence ability for pupillary and limbic boundary localization. Thirdly, 

a 1-D horizontal rank filter and an eyelid curvature model are adopted to 

tackle the eyelashes and shape irregularity, respectively, during eyelid 

localization. Finally, the eyelash and shadow occlusions are detected via a 

learned prediction model based on intensity statistics between different iris 

regions. Extensive experiments on the challenging UBIRIS iris image 

databases resulted in an accuracy rate of 99.9 percent.  

Proenca et al. (2010) [116] announced the availability of the 

UBIRIS.v2 database. It is a database that contains a multisession iris image, 

which singularly contains the data captured in the visible wavelength, at a 

distance and on-the-move. 

Pillai, J.K. et al. (2011) [117]  in their paper, proposed a unified 

framework based on random projections and sparse representations, that 

can simultaneously address the ability to handle unconstrained acquisition, 

robust and accurate matching as well as privacy enhancement without 

compromising security. The proposed system quality measure can handle 

segmentation errors and a wide variety of possible artifacts during iris 

acquisition. It also demonstrates how the proposed approach can be easily 

extended to handle alignment variations and recognition from iris videos, 

resulting in a robust and accurate system. The proposed approach includes 

enhancements to privacy and security by providing ways to create 
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cancelable iris templates. Results on public data sets show significant 

benefits of the proposed approach. 

Lim et al. (2001) [118] proposed an iris recognition system, which 

includes a compact representation scheme for iris patterns by the 2-D 

wavelet transform, a method of initializing weight vectors, and a method of 

determining winners for recognition in a competitive learning method like 

Learning Vector Quantization (LVQ). Two methods–Gabor transform and 

Haar wavelet transform, which are widely used for extracting features,were 

evaluated. From this evaluation, it is found that Haar wavelet transform has 

better performance than that of Gabor transform. Lim et al. (2001)[118] 

used 2D Haar wavelet transform to decompose the iris image into four 

levels and quantized the fourth-level high-frequency information to form an 

87-bit code. Secondly, the Haar wavelet transform was used for optimizing 

the dimension of feature vectors in order to reduce processing time and 

space. With only 87 bits, an iris pattern could be presented without any 

negative influence on the system performance. Lastly, the accuracy of a 

classifier, a competitive learning neural network, was improved by 

proposing an initialization method of the weight vectors and a new winner 

selection method designed for iris recognition. The researchers improved 

the efficiency and accuracy of the proposed system by using a modified 

competitive learning neural network. With these methods, the recognition 

performance could be increased to 98.4%.  

Donald M et al. (2007) [119], described an approach to human iris 

recognition based on the 1D Discrete Cosine Transform (DCT). The work 

was motivated by the near-optimal decorrelating properties of the DCT 

compared to the Karhunen-Loeve transform, and the results achieved 

indicate the good performance of the approach in which there are no False 

Accepts/Rejects on the CASIA and Bath data sets used. The method as 
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implemented also has low complexity, making it superior to the other 

methods evaluated in terms of both speed and accuracy. It demonstrated the 

use of novel patch encoding methods in capturing iris texture information, 

proposed the worst-case (nearest nonmatch) EER as a new practical metric 

for evaluating systems and investigated better classifier designs for wider 

interclass separability. EER is predicted to be as low as 2.59 x 10-4 on the 

available data sets. Statistical analysis has also been carried out to find the 

best models for matching and nonmatching probability distributions in 

order to predict the worst-case equal error rates, where no failures occur. 

Kang and Park (2007) [120] suggested that conventional iris 

cameras have small depth-of-field (DOF) areas, so input iris images can 

easily be blurred, which can lead to lower recognition performance. In the 

paper, it is proposed that by using a constrained least square restoration 

filter, where noise is considered, the performance can be greatly enhanced. 

Experimental results showed that the iris recognition errors when using the 

proposed restoration method were greatly reduced as compared to those 

results achieved without restoration or those achieved using previous iris-

restoration methods. Because the algorithm estimated the MTF parameters 

and the weight value of the noise-regularization terms based on camera 

optics and focus scores, the processing time was greatly reduced. In 

addition, it was able to reduce the recognition errors by defocusing with the 

proposed restoration algorithm. The total processing time was 98 ms, which 

is much faster than conventional iterative image restoration methods. 

Zhou et al. (2009) [121] proposed a method to upgrade the 

traditional iris recognition system to work on the non-ideal situation using a 

video-based image approach. This method will quickly eliminate poor-

quality images, evaluate the segmentation accuracy and measure if the iris 

image has sufficient feature information for recognition. In addition, the 
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system combines the segmentation and quality measure scores together to 

predict the system performance. ICE and IUPUI databases have been used 

to test and validate the proposed method. The research results show that the 

proposed method can work effectively and objectively. The experimental 

results show that the evaluation score is independent from the quality score 

and is an important component to improve the accuracy. The combination 

of segmentation and quality scores is highly correlated with the recognition 

accuracy and can be used to improve and predict the performance of iris 

recognition systems. The proposed method has also been applied to the 

commercialized system (LG IrisAccess 4000), without intervening in the 

operation of the existing system. The experimental results using MBGC 

2008 NIR-iris still images and MBGC 2008 NIR face videos show that the 

proposed system can predict the system performance accurately.  

Rakvic et al. (2009) [122], presented a more direct and parallel 

processing alternative by using field-programmable gate arrays (FPGAs), 

offering an opportunity to increase the speed and potentially alter the form 

factor of the resulting system. In particular, the portions of iris 

segmentation, template creation and template matching are parallelized on 

an FPGA-based system, with a demonstrated speedup of 9.6, 324 and 19 

times, respectively, when compared to a state-of-the-art CPU-based 

version. Furthermore, the parallel algorithm on the FPGA also greatly 

outperforms the calculated theoretical best Intel CPU design. 

Chou et al. (2010) [123], proposed a non-orthogonal view iris 

recognition system comprising a new iris imaging module, an iris 

segmentation module, an iris feature extraction module and a classification 

module. A dual-charge-coupled device camera was developed to capture 

four-spectral (red, green, blue and near infrared) iris images which contain 

useful information for simplifying the iris segmentation task. An intelligent 
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random sample consensus iris segmentation method is proposed to robustly 

detect iris boundaries in a four-spectral iris image. In order to match the iris 

images acquired at different off-axis angles, a circle rectification method is 

proposed to reduce the off-axis iris distortion. The rectification parameters 

are estimated using the detected elliptical pupillary boundary. An iris 

descriptor, which characterizes an iris pattern with multi scale step/ridge 

edge-type maps, is also proposed. The edge-type maps are extracted with 

the derivative of Gaussian and the Laplacian of Gaussian filters. The iris 

pattern classification is accomplished by edge-type matching which can be 

understood intuitively with the concept of classifier ensembles. 

Experimental results show that the equal error rate of the approach is only 

0.04% when recognizing iris images acquired at different off-axis angles 

within ±30°. 

Kekre et al. (2010) [124] proposed  an iris recognition system based 

on vector quantization. The proposed system does not need any pre-

processing and segmentation of the iris. Linde-Buzo-Gray (LBG), Kekre’s 

Proportionate Error Algorithm (KPE) & Kekre’s Fast Codebook 

Generation Algorithm (KFCG) have been tested for the clustering purpose. 

From the results, it is observed that KFCG requires 99.79% less 

computations as that of LBG and KPE. Further, the KFCG method gives 

best performance with an accuracy of 89.10%, outperforming LBG that 

gives accuracy around 81.25%. The performance of individual methods is 

evaluated and presented in this paper. 

Dong et al.(2011) [125], in their paper, presented a novel 

personalized iris matching strategy based on weight map. The weight map 

of each iris class is learned based on intra-class iris matches among many 

registered templates. This weight map is updated and stabilized with 

increase in the number of training images. It proposes a personalized iris 
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matching strategy using a class-specific weight map learned from the 

training images of the same iris class. The weight map can be updated 

online during the iris recognition procedure when the successfully 

recognized iris images are regarded as the new training data. The weight 

map reflects the robustness of an encoding algorithm on different iris 

regions by assigning an appropriate weight to each feature code for iris 

matching. Such a weight map trained by sufficient iris templates is 

convergent and robust against various noises. Extensive and comprehensive 

experiments demonstrate that the proposed personalized iris matching 

strategy achieves much better iris recognition performance than uniform 

strategies, especially for poor quality iris images. 

Tan T et al.(2012) [126], described a scheme for matching noisy iris 

images under visible lighting. It consists of image preprocessing, feature 

extraction and matching, and multi-modal fusion. In image preprocessing, a 

decision level fusion method is proposed to localize limbic and pupillary 

boundaries using the original iris images and the corresponding mask 

images. For feature representation and matching, multiple cues, including 

ordinal measures, color histogram, texton representation, and semantic 

information, are adopted for noisy iris image matching. In multimodal 

fusion, a score level fusion strategy is used to combine the four matching 

scores into the final dissimilarity measure. The UBIRIS.v2 database 

training dataset are used for testing. 

2.6  Multimodal  

A number of multimodal biometric systems proposed in the 

literature are presented in the following sections.  Table 2.1 presents a 

comparison of these multimodal systems in terms of the design parameters 

and recognition performance. 
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Table 2.1 Comparison of multimodal biometric systems 

Authors Traits used  Accuracy Archite
cture 

Fusion 
level 

Fusion 
Strategy 

Hong and 
Jain(1998) 
[127]  

Fingerprint, 
Face 

FRR: 4.4% 
at 0.1% 
FAR 

Serial Matching 
score/Rank 

Bayes 

Jain, Hong, 
and 
Kulkarni 
(1999) [129] 

 

Fingerprint, 
Voice, 
Face 

 

FRR: 3% 
(15%) at 
0.1% FAR 

 

Parallel 
 

Matching 
score 

 

Neyman–
Pearson 

 

Jain and Ross 
(2002) [131]  

 

Fingerprint, 
Handgeom
etry, Face 

 

FRR: 4% 
(18%), 
at 0.1% 
FAR 

 

Parallel 
 

Matching 
score 

 

Weighted 
sum score 

 

Ross and Jain 
(2003) [132]  

 

Fingerprint, 
Hand 
geometry, 
Face 

 

FRR: 1% 
(18%) 
at 0.1% 
FAR 

 

Parallel 
 

Matching 
score 

 

Sum score, 
Decision 
trees, 
Linear 
discriminant 
function 

 
Snelick et al. 
(2003)[133]  

 

Fingerprint, 
Face 

 

FRR: 5% 
(18%) 
at 0.1% 
FAR 

 

Parallel 
 

Matching 
score 

 

Sum score, 
Min score, 
Max score, 
Sum rule, 
Product rule 

 
Snelick et al. 
(2005)[135]  

 

Fingerprint, 
Face 

 

FRR: 1% 
(3.3%)at 
0.1% FAR 

 

Parallel 
 

Matching 
score 

 

Sum score, 
Min score, 
Max score, 
Weighted 
sum score 

 
Brunelli and 
Falavigna 
(1995)[137]  

 

Voice, 
Face 

 

FRR: 1.5% 
at 0.5% 
FAR (FRR: 
8% 
at 4% FAR) 

 

Parallel 
 

Matching 
score/ 
Rank 

 

Geometric 
weighted 
average / 
HyperBF 

 

Bigun et al. 
(1997)[138]  

 

Voice, 
Face 

 

FRR: 0.5% 
at < 0.1% 
FAR 
(FRR: 3.5% 
at < 0.1% 
FAR) 

 

Parallel 
 

Matching 
score 

 

Model based 
on Bayesian 
Theory 
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Comparison of multimodal biometric systems (Contd..) 
 

Authors Traits used  Accuracy Archite
cture 

Fusion 
level 

Fusion 
Strategy 

Verlinde and 
Chollet (1999) 
[140] 

 

Voice, 
Face 

 

TER: 0.1% 
(TER: 3.7%) 

 

Parallel 
 

Matching 
score 

 

k-NN, 
Decision tree, 
Logistic 
regression 

 
Chatzis et al. 
(1999) [141] 

 

Voice, 
Face 

 

FRR: 0.68% 
at 
0.39% FAR 
(FRR: 0.0% 
at 
6.70% FAR) 

 

Parallel 
 

Matching 
score 

 

Fuzzy k-
means, Fuzzy 
vector 
quantization, 
Median radial 
basis function 

 
Ben-Yacoub et 
al. (1999)[142]  

 

Voice, 
Face 

 

TER: 0.6% 
(TER: 
1.48%) 

 

Parallel 
 

Matching 
score 

 

SVM, 
Multilayer 
perceptron, 
C4.5 decision 
tree, Fisher’s 
linear 
discriminant, 
Bayesian 

 
Frischholz and 
Diechmann 
(2000)[148]  

 

Voice, Lip 
Movement, 
Face 

 

N/A 
 

Parallel 
 

Matching 
score/ 
Abstract 

 

Majority 
voting, 
Weighted-
sum score 

 
Wang et al. 
(2003) [150]  

 

Iris, Face 
 

TER: 0.27% 
(TER: 
0.3%) 

 

Parallel 
 

Matching 
score 

 

Sum score, 
Weighted 
sum 
score, 
Fisher’s 
linear 
discriminant, 
Neural 
network 

 
Kale et al. 
(2005) [156] 

 

Gait, Face 
 

ROA: 97% 
(ROA: 
93%) for 
cascade 
mode 

 

Cascade
/Parallel 

 

Matching 
score 
(probabiliti
es) 

 

Sum rule, 
Product rule 
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Hong and Jain (1998) [127] proposed an identification system that 

integrates face and fingerprint modalities. After noting that the face 

recognition is relatively fast but not very reliable, and fingerprint 

recognition is reliable but slow (hence not very feasible for database 

retrieval), the authors have cited that these two modalities can be combined 

to design a system that can achieve both high performance and acceptable 

response time. Their face-recognition module was based on the eigen faces 

method [128] and an elastic-string minutiae-matching algorithm [129] was 

used for fingerprint recognition. The multimodal system operates by 

finding the top n identities using the face-recognition system alone and then 

verifying these identities using the fingerprint-verification subsystem. 

Hence, this system had a serial architecture. Impostor distributions for 

fingerprint and face subsystems were estimated and used for selecting at 

most one of the n possible identities as the genuine identity, hence the 

system did not always correctly retrieve an identity from the database. In 

their experiments, Hong and Jain [127] used a database of 1500 images 

from 150 individuals with 10 fingerprints each.  

The face database contained a total of 1132 images of 86 

individuals, resampled to size 92 × 112. A total of 64 individuals in the 

fingerprint database were used as the training set, and the remaining 86 

users were used as the test set. Virtual subjects were created by assigning 

an individual from the fingerprint database to an individual from the face 

database consistently. The face-recognition system retrieved the top five (n 

= 5) matches among the 86 individuals and the fingerprint system provided 

the final decision. FRR of unimodal face and fingerprint systems as well as 

the multimodal system were 42.2%, 6.9% and 4.4%, respectively, at the 

FAR of 0.1%. Figure 2.1 shows the associated ROC curves. These results 
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indicate that a multimodal system can significantly improve the 

performance of a face-recognition system. 

 

Figure 2.1 ROC curves for unimodal and multimodal systems [127]. 

Jain et al. (1999) [129] combined face, fingerprint and speech 

modalities at the matching-score level. This specific set of traits was chosen 

because these traits are frequently used by law enforcement agencies. The 

parallel fusion scheme submits the matching scores corresponding to these 

three modalities as inputs to the Neyman–Pearson decision rule to arrive at 

the verification result. The face-recognition subsystem was based on the 

eigen faces approach and the fingerprint verification was based on 

minutiae-based elastic-string matching [130].  

Linear-prediction coefficients (LPC) were extracted from the speech 

signal and modeled using a HMM. The speaker verification was text 

dependent (four digits, 1, 2, 7 and 9 were used). The training database 

consisted of 50 individuals, each one providing 10 fingerprint images, 9 

face images and 12 speech samples. The test database consisted of 15 

fingerprint images, 15 face images and 15 speech samples collected from 

25 individuals. The fused system attained nearly 98% genuine-acceptance 

rate (GAR) at an FAR of 0.1%. This translates to nearly 12% improvement 
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in GAR over the best individual modality (fingerprint) at 0.1% FAR. The 

associated ROC curves are shown in Figure 2.2. 

 

Figure 2.2 ROC curves for unimodal and multimodal systems [130]. 

Jain and Ross (2002) [131] proposed algorithms for estimating user-

specific decision thresholds and weights associated with individual 

matchers for a face–fingerprint–hand geometry based parallel fusion 

system. The face module used the eigen face approach. The algorithm, 

minutiae-based elastic-string matching [129], was used for fingerprint 

verification. The hand-geometry subsystem [130] used 14 features 

comprising lengths and widths of fingers and palm widths at several 

locations of the hand. The user-specific thresholds for each modality were 

computed with the help of cumulative impostor scores. The weights for 

individual modalities were found by an exhaustive-search algorithm: all 

three weights were varied over the range (0, 1) with increments of 0.1, and 

the best combination resulting in the smallest total error rate (sum of false 

accept and false reject rates) was selected for each user. The database used 

in these experiments had 50 users, 40 of them provided 5 samples of each 

biometric and 10 users provided around 30 samples. One-third of the 

samples were used in the training phase, while the remaining was used in 
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the testing phase. At an FAR of 0.1%, user-specific thresholds resulted in 

nearly 2% GAR improvement; at the same operating point, user-specific 

weights improved the GAR by nearly 4%. Figure 2.3 shows these 

performance improvements.  

Figure 2.3 ROC curves for user-specific thresholds and user-specific 

                        weights in a multimodal system [131] 

Ross and Jain (2003) [132] further investigated the effect of 

different fusion strategies on the multimodal system, proposed in Jain and 

Ross, 2002. They employed three methods of fusion, namely, sum rule, 

decision trees and linear discriminant function. The simple sum fusion 

outperformed the other two methods, resulting in nearly 17% GAR 

improvement at an FAR of 0.1%. Figure 2.4 shows the associated ROC 

curves. 

Snelick et al. (2003) [133] fused the matching scores of commercial 

face and fingerprint verification systems. They considered the min-max, z-

score, MAD (median absolute deviation) and tanh techniques for 

normalizing the matching scores. In the fusion stage, they investigated the 

sum-score, min-score, max-score, sum-of probabilities and the product-of-

probabilities rules. The database consisted of 1005 individuals, each one 
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providing 2 face and 2 fingerprint images. The face images were selected 

from the FERET database [134], but the authors did not provide any 

information about the characteristics of the fingerprint images. Their results 

showed that while every normalization method resulted in performance 

improvement, the min-max normalization outperformed the other methods. 

Further, the sum score fusion gave the best performance among all the 

fusion methods considered in this study. At 0.1% FAR value, the min-max 

normalization followed by the sum-score fusion rule resulted in a GAR 

improvement of nearly 13% compared to the best performing individual 

modality (fingerprint) at the same operating point. In addition, the authors 

reported a considerable decrease in the number of falsely rejected 

individuals (248 for face, 183 for fingerprint and 28 for multimodal 

system), indicating that the multimodal systems have the potential to 

increase user convenience by reducing false rejects, as well as reducing 

false acceptances. 

 
Figure 2.4 ROC curves for unimodal and multimodal systems [132]. 

Snelick et al. (2005) [135] again used commercial face and 

fingerprint systems from four vendors in a parallel matching-score fusion 

framework. They experimented with several normalization and fusion 
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techniques to study their effect on the performance for a database of 972 

users. A number of normalization techniques, including min-max, z-score, 

and tanh schemes were considered along with a novel adaptive 

normalization technique. The adaptive normalization scheme transforms 

the min-max normalized scores with the aim of increasing the separation 

between the genuine and impostor score distributions. The fusion 

techniques considered in this study included the sum of scores, max score, 

min score, matcher-weighted sum rule and weighted sum of scores using 

user-specific weights. The authors used the relative accuracy of individual 

matchers, indicated by their EER, to determine the matcher weights. Their 

user-weighting scheme made use of the wolf–lamb concept [136], 

originally proposed in speaker-recognition community. The set of weights 

for each user was found by considering the chance of false accepts for the 

respective (user, matcher) pairs. The results indicated that the min-max and 

adaptive normalization techniques outperformed the other normalization 

methods, while the sum score, max score and matcher-weighted sum score 

outperformed the other fusion methods. The multimodal system had nearly 

2.3% GAR improvement at an FAR of 0.1%.  

Brunelli and Falavigna (1995) [137] presented a person-

identification system combining acoustic and visual (facial) features. A 

rejection option was also provided in the system using two different 

methods. A HyperBF network was used as the rank/measurement level 

integration strategy. The speaker-recognition subsystem was based on 

vector quantization of the acoustic-parameter space and included an 

adaptation phase of the codebooks to the test environment. Two classifiers 

were used for static and dynamic acoustic features. Face identification was 

achieved by analyzing three facial components: eyes, nose and mouth. The 

basic template matching technique was applied for face matching. Since the 
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matching scores obtained from the different classifiers were non- 

homogeneous, the scores were normalized based on the corresponding 

distributions. The normalized scores were combined in two different ways: 

a weighted geometric average and a HyperBF network. The acoustic and 

visual-cue-based identification achieved 88% and 91% correct recognition 

rates individually, while the fusion achieved 98% accuracy.  

Bigun et al. (1997) [138] introduced a new model based on 

Bayesian theory for combining the matching scores of face and voice-

recognition systems. Experiments on the M2VTS database [139], showed 

that their model resulted in higher accuracy than the sum score rule. For a 

false-acceptance rate of less than 0.1%, the Bayesian model accepted 

99.5% of the genuine users. This was substantially better than the accuracy 

of the unimodal face and speaker recognition systems that were reported to 

be 94.4% and 96.5%, respectively. 

Verlinde and Chollet (1999) [140] formulated the multimodal 

verification as a classification problem. The inputs were the matching 

scores obtained from the individual modalities and the output was a label 

belonging to the set {reject, accept}. The KNN classifier using vector 

quantization, the decision-tree-based classifier and the classifier based on a 

logistic regression model were applied to this classification problem. The 

modalities were based on profile face image, frontal face image and speech. 

The experiments were carried out on the multimodal M2VTS database  

[139] and the total error rate (sum of the false accept and false reject rates) 

of the multimodal system was found to be 0.1% when the classifier based 

on a logistic regression model was employed. The total error rates of the 

individual modalities were 8.9% for profile face, 8.7% for frontal face and 

3.7% for speaker verification. Hence, the multimodal system was more 

accurate than the individual modalities by an order of magnitude. 
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Chatzis et al. (1999) [141] used classical algorithms based on k-

means clustering, fuzzy clustering and median radial basis functions 

(MRBFs) for fusion at the matching score level. Five methods for person 

authentication that were based on gray-level and shape information of face 

image as well as voice features were explored. Among the five modalities, 

four used the face image as the biometric and the remaining one utilized the 

voice biometric. Table 2.2 shows the algorithms used in this work along 

with the features used and the rates of genuine as well as false acceptance. 

Each algorithm provided a matching score and a quality metric that 

measures the reliability of the matching score. Results from the five 

algorithms were concatenated to form a 10-dimensional vector. Clustering 

algorithms were applied on this 10-dimensional feature vector to form two 

clusters, namely, genuine and impostor. The M2VTS database was used to 

evaluate the fusion algorithms. Clustering of the results obtained from 

Morpholgical Dynamic Link Architecture (MDLA), Gabor Dynamic Link 

Architecture (GDLA), Profile Shape Matching (PSM) and Speech 

authentication based on HMM (MSP) algorithms by the k-means method 

had the best genuine accept rate of 99.32% at an FAR of 0.39%. 

Table 2.2 Characteristics of the five modalities [141] 

Algorithm Features GAR (%) FAR (%)  
Morphologicaldynamic 

link architecture 
(MDLA) 

Gray-level and 
Shape 

91.9 10.4 

Profile shape matching 
(PSM) 

Shape 
 

84.5 
 

4.6 
 

Gray-level matching 
(GLM) 

Gray-level 
 

73.7 
 

1.3 
 

Gabor dynamic link 
architecture (GDLA) 

Gabor features 
 

92.6 
 

3.7 
 

Hidden markov models 
(MSP) 

Speech 
 

100 6.7 
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Ben-Yacoub et al. (1999) [142] considered the fusion of different 

modalities as a binary classification problem, i.e., accepting or rejecting the 

identity claim. A number of classification schemes were evaluated for 

combining the multiple modalities, including SVM with polynomial 

kernels, SVM with Gaussian kernels, C4.5 decision trees, multilayer 

perceptron, Fisher linear discriminant and Bayesian classifier. The 

experiments were conducted on the XM2VTS database [143] consisting of 

295 subjects. The database included four recordings of each person 

obtained at one-month intervals. During each session, two recordings were 

made: a speech shot and a head rotation shot. The speech shot was 

composed of the frontal face recording of each subject during the dialogue. 

The two modalities utilized in the experiments were face image and speech. 

The face recognition was performed by using elastic graph matching 

(EGM) [144]. Two different approaches were used for speaker verification. 

Asphericity measure [145] was used for text-independent speaker 

verification and HMM were used for text-dependent speaker verification. 

The total error rate of 0.6% achieved by the Bayesian classifier was 

significantly lower than the total error rate of 1.48% achieved by the HMM 

based speaker recognition system, which was the best individual modality 

in terms of total error rate. 

Fierrez-Aguilar et al. (2003) [146] developed a multimodal 

approach including a face verification system based on a global appearance 

representation scheme, a minutiae-based fingerprint verification system and 

an online signature verification system based on HMM modeling of 

temporal functions. The scores were combined by means of SVM 

classifiers, from which user-independent and user-dependent strategies 

were applied at the score level. Results indicated that appropriate selection 

of parameters for the learning-based approach delivered better verification 
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performance than the rule-based approach. The EERs of the unimodals of 

face, online signature and fingerprint verification systems were 10%, 4% 

and 3%, respectively. Results showed that the Sum Rule reduced the EER 

to 0.5% and the Radial Basis Function (RBF) SVM fusion strategy reduced 

the EER to 0.3% and 0.05% respectively for the user-independent and user-

dependent fusion strategies. 

Kumar et al. (2003) [147]  proposed a multimodal approach for 

palmprint and hand geometry images. Two schemes of fusion were applied, 

one at the feature level by concatenating the feature vectors, and the other 

at the matching score level by max rule. Only the fusion approach at the 

matching score level outperforms the unimodal systems. The multimodal 

approach obtained an FAR of 0% and an FRR of 1.41%, while the best 

unimodal approach in this study, the palmprint-based verification system, 

obtained an FAR of 4.49% at an FRR of 2.04%. 

Frischholz and Diechmann (2000) [148] developed a commercial 

multimodal identification system utilizing three different modalities: face, 

voice and lip movement. Unlike other multimodal biometric systems, this 

system not only included the static features such as face images, but also a 

dynamic feature, namely, the lip movement. The face was located in an 

image using an edge-based Hausdorff distance metric. The lip movement 

was calculated by the optical-flow approach. The synergetic computer 

[149] was used as the learning classifier for the “optical” biometrics, 

namely, face and lip movement. Vector quantization was applied for 

acoustic biometric-based recognition. The input sample was rejected when 

the difference between the highest and the second highest matching scores 

was smaller than a given threshold. The sum rule and majority voting 

served as the two fusion strategies according to the security level of the 

application. The proposed system was tested on a database of 150 subjects 
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for three months and the false-acceptance rate was reported to be less than 

1%. However, the corresponding genuine-acceptance rate was not reported. 

Wang et al. (2003) [150] studied the usefulness of combining face 

and iris biometric traits in identity verification. Iris-recognition systems 

generally have a relatively high failure-to-enroll rate [151], so using face as 

an additional biometric trait can reduce the FTE rate of the multimodal 

system. Further, some of the commercial iris-acquisition equipments can 

also capture the face image of the user. Therefore, no additional sensor is 

required for obtaining the face image along with the iris image. The authors 

used the eigen face approach for face recognition and developed a wavelet-

based approach that identifies local variations in the iris images [152]. 

Fusion was carried out at the matching-score level using strategies like the 

sum rule, the weighted-sum rule, Fisher’s discriminant-analysis classifier 

and neural network classifier using radial basis functions (RBFNN). Both 

matcher weighting and user-specific weighting of the modalities were 

attempted for fusion using the weighted-sum rule. Fusion using learning-

based methods like weighted-sum rule, discriminant analysis and RBFNN 

was found to perform better in terms of their ability to separate the genuine 

and impostor classes. Since the iris-recognition module was highly accurate 

(total error rate of 0.3%), the error rate was not reduced significantly after 

fusion. 

Metallinou et al. (2008) [153] recognised the emotional information 

by facial and vocal modalities using Bayesian classifier and SVM. 

Kumatani et al. (2007 ) [154] presented a method for modelling the state 

transition between product HMMs for audio visual automatic speech 

recognition (AV-ASR). Kaur et al. (2010) [155] described a bimodal 

system which combines speech and signature. A study of the product of 
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likelihoods fusion, sum fusion and z-norm fusion is performed in this 

paper. 

A view-invariant gait-recognition algorithm [156] and a 

probabilistic algorithm for face recognition  [157] were employed by Kale 

et al. (2005) [158] to build an integrated recognition system that captures a 

video sequence of the person using a single camera. They explored both 

cascade and parallel architectures. In the cascaded system, the gait-

recognition algorithm was used as a filter to prune the database and pass a 

smaller set of candidates to the face-recognition algorithm. In the parallel 

architecture, the matching scores of the two algorithms were combined 

using the sum and product rules. Experiments were conducted on the NIST 

database consisting of outdoor face and gait data of 30 subjects. No 

recognition errors were observed when the multimodal biometric system 

operated in the parallel mode. In the cascade mode, the rank-one accuracy 

was 97% and the number of face comparisons was reduced to 20% of the 

subjects in the database.  

A recent trend in multimodal biometrics is the combination of 2D 

and 3D facial informations. Beumier and Acheroy (2000) [159], Wang et 

al. (2002) [160] and Chang et al. (2003) [161] have proposed systems that 

employ fusion of 2D and 3D facial data. Lu and Jain (2005) [162] proposed 

an integration scheme to combine the surface matching and appearance-

based matching for multiview face recognition. All these studies show that 

the multimodal 2D–3D face recognition can achieve a significantly higher 

accuracy compared to the current face-recognition systems operating on 

either 2D or 3D information alone. 

Xiuquin (2008) [163] proposed a multimodal biometric system 

using face and ear at feature level. Kernel discriminant analysis was 
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employed as the feature extraction method to obtain the features of face and 

ear independently and then concatenate the two feature vectors to form a 

single feature vector. Rattani et al. (2009) [164] proposed a multimodal 

biometric system of iris and face in which Scale Invariant Feature 

Transform (SIFT) features of individual modalities were extracted and 

concatenated to form the fused feature space.  

Ross and Govindarajan (2004) [165] proposed a multimodal 

biometric system utilising face and hand geometry at feature level. Face 

was represented using PCA and LDA while 32 distinct features of hand 

geometry were extracted and then concatenated to form a fused feature. 

After that, Sequential Feed Forward Selection (SFFS) was employed to 

select the most valuable features from the fused feature space.  

 Toh et al. (2004) [166] integrated fingerprint, hand geometry and 

voice biometrics using weighted-sum-rule based match-score-level fusion. 

They addressed the multimodal decision fusion problem as a two-stage 

problem: learning and decision. They introduced a reduced multivariate 

polynomial model to overcome the tedious recursive learning problem in 

multimodal biometrics in order to achieve good decision accuracy. Four 

global and local learning as well as decision paradigms were suggested and 

explored to observe their decision capability. The four learning and 

decision paradigms were investigated, adopting the reduced polynomial 

model for biometric decision fusion. Experiments showed that the local 

learning alone could improve ERRs of about 50%. They have noticed that 

the local decision can be improved once the threshold settings are 

appropriately selected for each user.  

Veeramachaneni et al. (2005) [167] proposed an approach 

supporting highly secure systems that utilize multisensor fusion to improve 
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the security level of a system by combining biometric modalities. An 

algorithm is presented that adaptively derives the optimum Bayesian fusion 

rule as well as individual sensor operating points in a system. The 

evolutionary nature of adaptive, multimodal biometric management 

(AMBM) allows it to react in pseudo real time to changing security needs 

as well as user needs. Error weights are modified to reflect the security and 

user needs of the system. The AMBM algorithm selects the fusion rule and 

sensor operating points to optimize the system performance in terms of 

accuracy. Cost of false acceptance is a weighting parameter that is used to 

adaptively control the system’s performance in real time. The AMBM 

algorithm uses the given error costs and searches through the space of all 

possible rules and the sensor operating points. The sensor operating point is 

defined by a decision threshold that determines the sensor’s FAR and FRR. 

Lupu et al. (2007) [168], in their paper presented the use of 

multimodal biometrics in order to identify or to verify a person who wants 

to start the engine of a car. First of all, a fingerprint sensor was posted on 

the car’s door, one on the steering wheel, a camera for iris recognition was 

developed on the car’s main mirror, and finally a microphone for voice 

recognition was included. There are two possibilities: if the person is 

identified as the car owner or a known user, then he/she can take control 

over the car; if it is an intruder, the car can announce the security service or 

the police using a complex GPRS system. 

Yuan S et al.(2013) [169],  proposed a multimodal biometric system 

consisting of face, fingerprints and palmprints, based on the characteristics 

of multi-dimensional in optical technique. This system combines the optical 

encryption with multimodal biometric authentication technique, changes 

one-to-many matching into one-to-one matching, so the matching time is 

reduced significantly. With the aid of the encryption system and biometric 
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verification, the verification keys are difficult to be forged and even the 

keys are lost or stolen, they are useless for other person. In addition, the 

standard biometric templates are generated real- timely by the verification 

keys owned by legal user so that they are unnecessary to be stored in a 

database. The results show that the FAR is 0%, but the FRR is 12%. 

Huang Z. et al.(2013) [170] developed a robust face and ear based 

multimodal biometric system using Sparse Representation (SR), which 

integrates the face and ear at feature level, and can effectively adjust the 

fusion rule based on reliability difference between the modalities. The 

Sparse Coding Error Ratio (SCER) is utilized to develop an adaptive 

feature weighting scheme for dynamically reducing the negative effect of 

the less reliable modality. A recognition rate of 97.837% is achieved. 

Emerich S et al.(2013) [171], presented a set of features for a 

biometric system based on speech and on-line signature. The feature vector 

is nonhomogeneous and it comprises using TESPAR DZ coefficients, 

wavelet energy coefficients and also some additional features resulted from 

the time domain analysis in the case of speech. A feature selection 

procedure is then applied to reduce the feature vector dimension. A 

modified symbols alphabet for the TESPAR DZ method is presented. 

Experimental results were reported using the SVC2004 database for 

signature and a bimodal database, for on-line signature and speech. A 

feature level fusion strategy was adapted.  

Poh N. et al.(2013) [172], investigated a relatively new fusion 

strategy that is both user-specific and selective. In user-specific, each user 

in a biometric system has a different set of fusion parameters that have been 

tuned specifically to a given enrolled user. In selective, only a subset of 

modalities may be chosen for fusion. The reason for this is that if one 
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biometric modality is sufficiently good to recognize a user, fusion by 

multimodal biometrics would not be necessary. 

2.7 Summary 

In this chapter, a review of work carried out in the fields related to 

the unimodal biometrics such as voice, face, signature and iris available in 

open literature is discussed. It also summarizes the related works of 

multimodal biometrics and the common approach of information 

integration in multimodal systems. 
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CHAPTER 3  

METHODOLOGY  

This chapter addresses the methodology that primarily involves 

the extraction of feature vectors of different biometric traits and 

the compilation of the knowledge base, which forms the backbone 

of the authentication system. In the proposed system, the main 

goal is to evaluate the performance of the multimodal biometric 

system based on score level fusion using user-dependent weighted 

fusion method, over the unimodal biometric system. The different 

biometric traits from which features are extracred are   voice, 

face, signature and iris since they include both physiological as 

well as behavioral type. Inorder to form the feature vector of 

speech, features such as spectral centroid, spectral flux, spectral 

rolloff and MFCC coefficients have been extracted while feature 

vector of face has been formed using their  eigen vectors. A 

combination of static as well as dynamic features acquired from 

signature and binary code using Haar wavelet generated from iris 

constitute their feature vector respectively. The four score list is 

combined using the user specific weighted score level fusion 

approach to find out a consensus score of the identities and the 

identity at the top of the consensus score list will be identified as 

the desired identity. 

3.1 Introduction 

The methodology of the proposed multimodal biometric system 

based on user dependent weighted fusion utilizing biometric traits of voice, 
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face, signature and iris is addressed in this chapter. Since no single 

biometric can be said to be the best, the need for a multimodal biometric 

system is one of the leading areas of research in the current era.  In a 

multimodal system identifying and selecting proper biometric traits is one 

of the main tasks. The appropriate biometric type for a given application 

depends on many factors including the type of biometric system operation 

(identification or verification), perceived risks, types of users, and various 

need for security.  A single biometric trait may not meet these requirements 

needed by different applications as each biometric trait has its own 

associated advantages and limitations.  

In the proposed system, the main goal is to evaluate the 

performance of the multimodal biometric system based on score level 

fusion using user-dependent weighted fusion method over the unimodal 

biometric system and other multimodal systems. The biometric traits under 

consideration are voice, face, signature and iris as these includes both 

physiological as well as behavioural type. 

The methodology primarily involves the extraction of feature 

vectors of different biometric traits and the compilation of the knowledge 

base, the backbone of the authentication system. The enrolment phase 

involves the acquisition of the biometric traits as well as extraction and 

compilation of feature vector. Inorder to form the feature vector of speech, 

features such as spectral centroid, spectral flux, spectral rolloff and MFCC 

coefficients have been extracted while feature vector of face has been 

formed using their  eigen vectors. A combination of static as well as 

dynamic features acquired from signature and binary code using haar 

wavelet generated from iris constitute their feature vector respectively. 
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The identification phase recognizes speech and face by measuring 

the Euclidean distance between the query template and the knowledge base 

template. However for iris, the Hamming distance between the codes 

generated from the test iris and the iris code in the knowledge base is 

calculated. For signature identification, Mahalanobis distance between the 

test signature template and knowledge base template is measured.   

Although information fusion in a multimodal system can be 

performed at various levels, integration at the matching score level is the 

most common approach due to the ease in accessing and combining the 

scores generated by different identifiers. We find a a consensus score of the 

identities and the identity at the top of the consensus score list will be 

identified as the desired identity. 

3.2 System Overview  

The main steps involved in the development of the prototype are as 
follows. 

• Acquisition of biometric trait data  

• Development of knowledge base 

• Enrolment/training of multimodal biometric system 

• Identification/testing of multimodal biometric system 

• Performance analysis  

o FAR, FRR & EER 

In the enrolment phase, the knowledge base is prepared from the 

features extracted from biometric data acquired using dedicated equipment. 

The test database is used for the performance analysis and the FAR, FRR 

and EER are determined for various combinations of the traits used in this 

study. 
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3.3 Data Acquisition 

The speech, face, signature and iris data are acquired using different 

acquisition device. The Table 3.1 shows the acquisition devices and their 

specifications. 

Table 3.1 Acquisition method and specifications 

Biometric 
Trait 
 

Acquisition method Specifications 

Speech 

 

 

    Microphone MIC 01A      
 

Sensitivity   : 60dB  

Impedence :2K ohms 
 

Frequency :100Hz-11kHz 
Features  :360° 

Rotatable 
Direction : Omni- 

directional 

Output Imp : 2K ohms 
 

Connector   : 3.5mm 

 

 

Face 

 

 

    

 
Logitech HD Pro Webcam 
C920  

Type 
 

:CMOS 

Megapixels 
 

:15MP 

USB  :2.0 port 
 

Optical 
resolution: 
 

:15MP 

Focal Length :3.67mm 
 

Diagonal Field 
of View 

: 78 deg 

Frame rate :1080@30fps 
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Signature 

 
 

Wacom Baboo Pad USB 
Pen Pad without LCD 
Display 

 

Dimensions - W 
x D x H  

:141.4 x 166.5 
x 4.5-15.7mm 

Weight (excl. 
cable) 

:145 g 

Capturing 
Active Area : W 
x H    

:109 x 67 mm 
(16:10) 

Capturing Rate. : 200 points 
per sec 

Resolution   :508 lpi 

Coordinate 
accuracy 

: ± 0.5 mm / 
0.02 inch 

Reading height  :16 mm   
(0.63”) 

Data Interface   :USB, also 
available 
wireless 

Power Source :Via USB 

Iris 

UBIRIS.v1 

Camera Model  :Nikon E5700 

Software  :E5700v1.0 

Color 
Representation  

:RGB 

Focal Length  :71 mm 

Exposure Time  :1/30 sec. 

ISO Speed  :ISO-200 

Images Width  :2560 pixels 

Height  :1704 pixels 

Horizontal 
Resolution  

:300 dpi 

Vertical 
Resolution  

:300 dpi 

Bit Depth  :24 
Format  :JPEG 
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3.4 Unimodal Processing 

3.4.1  Speech Processing  

In speech, preprocessing is performed by slicing the voice data into 

different records of fixed length of 30 milliseconds. To remove undesirable 

undulations, the frames are windowed using a Hamming window. The 

windowing also smoothen the edges of each data record, reduce spectral 

distortion, discontinuities or abrupt changes at the end. This windowed 

voice data are transformed into the frequency domain. The feature vectors 

are generated using Spectral and Cepstral features of voice data. The 

spectral features used in this study are Spectral centroid (Brightness), 

Spectral range (Bandwidth), Spectral roll-off and Spectral flux. MFCCs are 

taken as Cepstral features. The MFCC are computed by taking the Fourier 

transform of the windowed signal. The powers of the spectrum obtained 

above is mapped onto Mel scale using triangular overlapping windows. The 

logs of the powers at each of the Mel frequencies are taken and the discrete 

cosine transform of the list of Mel log powers is computed. The MFCCs are 

the amplitudes of the resulting spectrum. The feature vectors thus obtained 

are coded using vector quantization. In vector quantization the LBG 

algorithm is used to generate codebooks for each speaker. The decision is 

performed from the Euclidean distance, which is computed between the 

feature components of the unknown target and that of the various templates 

in the knowledge base. 

3.4.2 Face Processing  

For improved face recognition performance, the acquired face 

image is preprocessed starting with the image size normalization so that 

acquired image size is modified to a default image size. As the next step of 

preprocessing, histogram equalization is performed on dark or bright 
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images so that face image quality is enhanced and some important facial 

features become more apparent. While median filtering is used for reducing 

the noises in the images. The eigen face approach is used for face 

recognition. In the Eigen face approach, PCA is used to derive the low 

dimensional representation of faces by applying it to a representative 

dataset of images representing faces. The system is implemented by 

projecting face images onto a feature space that spans the significant 

variations among known face images. These significant features are called 

Eigen faces. After enrolling the face images, the recognition phase is 

performed by projecting the test face image into the Eigen space. The 

Euclidean distance is measured between the unknown face image and the 

mean of all the known face images in the Eigen space. 

3.4.3 Signature Processing  

Following the preprocessing steps of binarization, dilation, thinning 

rotation invariance and scaling invariance, static features are extracted from 

the acquired signature image. Binarization converts an image of up to 256 

gray levels to a black and white image while dilation fills the gaps and 

broken necks and the pixels from the outside edges are removed by 

thinning. The rotation invariance aligns the main inertia axis of the 

signature with the horizontal axis and the scaling invariance, normalizes the 

original signature in size to preserve the aspect ratio of the signature. In 

signature recognition the feature vector is the combination of static and 

dynamic features. While the static features are generated using 2D Gabor 

filter, the dynamic features is the x- and y- stroke average velocity. The 

feature vector of the signature image is stored as the template in the 

knowledge base. In the identification phase, the matching score of the test 

template and the training templates are derived. Mahalanobis distance is 

used for calculating the matching score of signature image. 
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3.4.4 Iris Processing  

In iris recognition system, the pre-processing stage requires the 

localization of the iris which generally involves the detection of the edge of 

the iris as well as that of the pupil. Since varying levels of illumination can 

result in dimensional inconsistencies between eye images due to the 

stretching of the iris, normalization needs to be performed so that iris 

region is transformed to have fixed dimensions. After unwrapping the 

normalized iris region into a rectangular region, it is encoded using Haar 

wavelets to generate the iris code. In the recognition stage, Hamming 

distance is used for comparison of the iris code, the most discriminating 

feature of the iris pattern, with the existing iris templates. 

3.4.5 Multimodal Fusion  

The match scores at the output of the individual trait may not be 

homogeneous and need not be on the same numerical range. Due to these 

reasons, it is necessary to normalize the scores of different traits before 

combining the scores. The min-max normalization technique is employed 

in this work to normalize the matching score. The fusion technique 

employed in this work is on the basis of the different weights assigned to 

each biometric trait. These different weights are computed based on the 

Equal Error Rate. The fused similarity score is obtained using user- 

dependent fusion method. This score is compared to a decision threshold in 

order to accept or reject the identity claim. In the decision module, an 

individual is recognized by searching the templates of all the users in the 

database for a match. One- to- many comparison is carried out to accept the 

identity of an individual or reject if the individual is not enrolled in the 

system database. The Figure 3.1 shows overall block diagram of the 

multimodal biometric system based on user dependent fusion.    
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Figure 3.1 Block diagram of the proposed multimodal biometric system. 

3.4.6 Development of knowledge base 

Training data:  4000 (=100x4x10) biometric data, ten samples each of four 

traits, namely, speech, face, signature and iris were collected from 100 

users for training. After pre-processing, the collected data, features were 

extracted and the feature vector was stored in the knowledge base. 
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Testing data: 2000 (=100x4x5) traits each of registered and unregistered 

users are used for testing. In the case of registered candidates, two samples 

acquired newly of each trait and three samples from the knowledge base are 

used. The five samples acquired afresh from the unregistered users formed 

part of the testing data. The equal number of traits of registered and 

unregistered users minimizes the bias in the performance analysis. The 

newly acquired data for the registered users used in the testing simulates 

the possibility of accounting for the variation in the ambient conditions. 

3.5 Performance Analysis  

The performance of the proposed biometric system is analysed. The 

type of decision made by a biometric system for an individual is either 

genuine or impostor [4] and for each type of decision of genuine and 

impostor case, there are two possible outcomes, true or false. Therefore, all 

together, there are four possible outcomes, namely, genuine acceptance 

(genuine individual is accepted), false rejection (genuine individual is 

rejected), genuine rejection (impostor is rejected) and false acceptance 

(impostor is accepted). The genuine distribution and the impostor 

distribution ascertains the confidence associated with different decisions 

and can be established by minimizing two error rates, namely, False Accept 

Rate (FAR) and False Reject Rate (FRR).  

By definition, FAR, is “the probability of an impostor being 

accepted as a genuine individual” [4]. That is, in a biometric authentication 

system, the FAR is the rate of number of impostor falsely accepted over the 

total number of enrolled people for a predefined threshold.  

FRR, is defined as “the probability of a genuine individual being 

rejected as an impostor” [4]. That is, in a biometric authentication system, 
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the FRR is the rate of number of genuine people falsely rejected over the 

total number of enrolled people for a predefined threshold.  

FAR and FRR can be changed by a significant amount depending 

on the threshold used in the system. On usage of a lower threshold in a 

similarity based biometric matching system, FAR will be higher and the 

FRR will be lower while a higher threshold results in lower FAR and 

higher FRR. The Genuine Acceptance Rate (GAR) is another approach 

used to measure the accuracy of a biometric system. The rate of number of 

people accepted in the case of genuine users and rejected in the case of 

impostors over the total number of enrolled people for a predefined 

threshold defines GAR. Mathematically, genuine acceptance can be 

determined by subtracting the number of falsely rejected people from the 

total number of genuine people. Yet another evaluation criterion is the 

Equal Error Rate (EER), which refers to that point in a ROC curve where 

the FAR equals to the FRR and a lower EER value thus indicates better 

performance. 

3.6 Summary 

In this chapter, the methodology for the proposed multimodal 

biometric system as well as the rationale for choosing speech, face, 

signature and iris as biometric traits has been covered. The data acquisition 

methods of each traits as well as, the processing of each biometric traits is 

explained briefly.  Identification of the various components of the feature 

vector as well as combination of outcomes of unimodal matchers were 

through user specific fusion methods is discussed. Development of 

knowledge base of the biometric traits and the parameters used for the 

performance analysis is discussed. The details of the development of uni-, 

bi-, tri- and tetra-modal biometric system is described in the next chapters. 
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CHAPTER 4  

SPEAKER RECOGNITION  

This chapter highlights the technology involved in extracting the 

feature components of speech required for generating the 

identification clues. During the speaker enrolment phase, speech 

samples that contain the discriminating features are collected from 

the speakers and feature vectors are generated to form the 

knowledge base of the model. In the recognition phase, the feature 

vectors extracted from the unknown person’s utterance are 

compared with the knowledge base of the model to find the 

similarity score, for the purpose of decision making.  Since 

accuracy of identification is highly dependent on the type and 

number of features used, feature selection is of great significance.  

Features are computed from the spectrogram on a frame-by-frame 

basis and relates directly to some perceptual characteristics of 

sound, such as loudness, pitch etc. This chapter also touches upon 

a more systematic approach for computing the cepstral 

coefficients achieved by estimating the Mel Frequency Cepstral 

Coefficients (MFCC). The performance analysis of the system 

was carried out and it was found that along with MFCC, the 

incorporation of additional spectral features in the feature vector 

improved the overall performance of the system. 

4.1 Introduction 

Speaker recognition or voice recognition is the task of recognizing 

people from their voices. Fundamental technology behind a speaker 
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recognition biometric system is that information extracted from the speech 

signal is unique leading to signal characterisation.  This information can be   

represented using a number of different feature sets. Biometric system 

extracts features from speech, model them and use them to recognize the 

person from his/her voice. 

Speaker recognition can be achieved through the acoustic features 

of speech that differs among individuals. These acoustic patterns reflect 

both anatomy (e.g., size and shape of the throat, mouth etc.) and learned 

behavioural patterns (e.g., voice pitch, speaking style etc.) [173].  Since 

both anatomy as well as the behavioural pattern differs between 

individuals, these acoustic patterns can be analysed for speaker recognition 

and its classification.  

The various technologies used to process and store voiceprints 

include many complex technologies like Frequency Estimation, Hidden 

Markov Models, Pattern Matching Algorithms, Neural Networks, Matrix 

Representation and Decision Trees [174].  Speaker verification purposes 

also use anti-speaker techniques such as cohort models and word models.  

Biometrics security system based on voice data is an emerging 

reliable method and is being highly popularized.  Voice is a very intuitive 

behavioural and ubiquitous biometric which can be captured by modern 

personal computers. Further, it requires no expensive special hardware 

other than a microphone.  

The two main phases of speaker identification are the training phase 

or enrolment phase and the testing phase or identification phase. During the 

speaker enrolment phase, the model is trained with feature vectors 

generated from speech samples collected from the speakers as they are 
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containing the discriminating features. Recognition phase is comparison of 

the feature vectors extracted from the unknown person’s utterance with the 

model in the system database to find the similarity score, for decision-

making.  Feature selection is of great importance in speech recognition, as 

accuracy is highly dependent on the type and number of features used.  

Features generated from the spectrogram of the speech signal on a frame-

by-frame basis relates directly to some perceptual characteristics of sound, 

such as loudness, pitch etc. [33]. The block diagram of a speaker 

identification system is shown in Figure 4.1.  

 

Figure 4.1 Block Diagram of a Speaker Identification System  
 

 

A speaker recognition system can be categorised into text-dependent 

or text-independent. In the text-dependent, a known utterance is presented 

to the recognizer, while in text-independent case, the text being spoken is 

unknown. The identification of a speaker using text independent utterance 

is more complex than that utilising text dependent utterance. In this work, 

text independent utterance has been utilised to identify a speaker.  
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4.2 Dimensions of Difficulty 

The sources of error lead to a broad classification of dimensions of 

difficulty in a speaker recognition system. The errors in a system can be 

associated either with the speaker or with the technical component of the 

system. The typical dimensions of difficulty in speaker recognition are 

Intra-Individual Variations, Voice Disguise and Imitations and Technical 

Error Sources 

• Intra-Individual Variations 

Variations in a speaker’s voice can happen not only due to aging 

and other physiological changes but also by his/her physical as well as 

mental states [175].  A phonetically balanced training data containing 

instances of all the sounds of the language in different contexts is one of the 

major challenges in the consistent performance of a speaker recognition 

system. 

• Voice Disguise and Imitations 

A deliberate changing of one’s voice to hide his/her identity 

referred to as Voice disguise and mapping of one’s voice to sound like 

another speaker referred to as imitation or mimicry results in degradation of 

the performance of a speaker recognition system [176]. 

• Technical Error Sources 

The environmental noise can be added up with speech wave when 

recorded with a microphone or telephone handset and reverberation can add 

a delayed version of the original signal to the recorded signal [177]. Poor 

quality microphones introduce nonlinear distortions in the true speech 

spectrum [178] and the A/D converter may introduce additional distortions 
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in the original signal. The coding of speech degrades the performance of 

speaker recognition significantly [179],[180]. The sources of technical 

errors are mismatch in the environmental acoustics, amount of background 

noise, microphone type and recording quality [181],[182]. Technical errors 

arise when the user speaks training utterances in a clean environment while 

using the recognition system in a noisy environment. 

4.3 Speaker Recognition Techniques 

Speaker recognition techniques, as shown in Figure 4.2, are 

composed of the following modules. 
 

 
Figure 4.2 Speaker Recognition Technique 

 

4.3.1 Front- End Processing 

In front end processing, the spectral features Spectral Centroid, 

Spectral Range, Spectral Rolloff, Spectral Flux and cepstral features 
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evaluated as MFCCs from the signal spectrum forms the feature set. The 

spectrogram on a frame-by-frame analysis gives the spectral features.  

4.3.1.1 Spectral Centroid 

The spectral centroid, which may also be referred to as the spectral 

brightness, gives an indication of the spectral shape and is defined as the 

amplitude-weighted average or centroid of the spectrum [183],[184].  It is a 

simple, yet efficient parameter, estimated by summing together the product 

of each frequency component of the spectrum and its magnitude, which is 

further normalized by dividing with the sum of all the magnitudes. Thus the 

spectral centroid SC is given by  
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where Sk is the magnitude spectrum of the kth frequency component 

fk and N is the record size. 

4.3.1.2 Spectral Range  

The spectral range or bandwidth refers to the range of frequencies 

that are present in the signal. It is computed using the spectral magnitude 

weighted average of the difference between each frequency component and 

the centroid, SC. Thus the spectral range, SR is expressed as  
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4.3.1.3  Spectral Rolloff 

Another spectral feature, which gives a measure of the spectral 

shape, is the spectral rolloff and is defined as the frequency below which 

85% of the magnitude distribution of the signal is concentrated [183]. 
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4.3.1.4 Spectral Flux 

This is a measure of the amount of local spectral change. This is 

defined as the squared difference between the normalized magnitude 

spectra of successive frames. 

2
1 ])[][( inorminormFlux ff −−=∑            (4.4)  

where normf is the magnitude spectrum of the current frame, scaled 

to the range 0 to 1 and normf-1 is the normalised magnitude spectrum of the 

previous frame. Spectral flux is a measure of how quickly the power 

spectrum of the signal is changing and is computed by comparing the 

power spectrum of one frame with that of the previous frame. 

4.3.2 Cepstral Features 

The extracted features using spectral estimation of the speech signal 

alone cannot always perform reliable identification especially, in the 

presence of external noise and varying environmental parameters. To make 

the identification process more robust and reliable, additional feature 

components are incorporated by exploiting the other unexplored features of 

the noise sources. A variety of signal processing applications use the 

collection of nonlinear techniques known as cepstral analysis, which is 

capable of yielding potential features that, can aid in the process of 



Chapter 4 Speaker Recognition 

 100 

identification. One of the important properties of the cepstrum is that it is a 

homomorphic transformation, in which the output is a superposition of the 

input signals. 

The spectrum of a waveform consists of two components, the 

slowly varying part, referred to as the filter or spectral envelope and the 

rapidly varying part, referred to as the source or harmonic structure. 

Separation of these two components can be achieved by taking the 

cepstrum, an anagram of the word spectrum. The cepstrum is defined as the 

inverse Fourier transform of the log magnitude Fourier spectrum of the 

signal and is said to be in the quefrency domain, an anagram of frequency 

[185]. The cepstral values are stored as discrete components referred to as 

the cepstral coefficients, where the nth cepstral coefficient is the amplitude 

of the nth component along the quefrency axis. 

4.3.2.1 Mel Frequency Cepstral Coefficients 

A more systematic approach for extracting the cepstral features 

makes use of the estimation of Mel Frequency Cepstral Coefficients 

(MFCC), which is a measure of the perceived harmonic structure of sound 

[186], [187].  A Mel is a psychoacoustic unit of frequency which relates to 

the human perception and is approximated using the expression    
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where f  is the frequency in Hz. The spectrum can be transformed 

into a spectrum emphasized at Mel intervals using Mel filter banks, which 

is a row of triangular filters overlapping at Mel-spaced intervals [188]. The 

cepstrum of this transformed spectrum yields MFCCs. 
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The term MFCC was coined by Davis and Mermelstein in 1980 

[187] when they combined nonuniformly spaced filters with discrete cosine 

transform (DCT) [188] as a front-end algorithm for Automatic Speech 

Recognition System.  

 
 

Figure 4.3  Speech process models 

The spectral decomposition approach, as shown in Figure 4.3, is 

used to improve the accuracy of operation.  

4.3.2.2 MFCC Estimation - Mel frequency scaling and Cepstrum 

The cochlea of the inner ear acts as a spectrum analyser and hence 

researchers have undertaken psychoacoustic experimental work to derive 

frequency scales that attempt to model the natural response of the human 

perceptual system. The perceptual attributes of sound signal at different 

frequencies are not entirely simple or linear in nature.  

 
Figure 4.4 The Mel-scale 
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The cochlea in the auditory system acts as if it is made up of 

overlapping filters having bandwidths equal to the critical bandwidth. The 

frequency scaling is used to map the linear frequencies into human 

perception. Mel frequency scale is a perceptually motivated scale, which is 

linear below 1 kHz and logarithmic at higher frequencies as shown in 

Figure 4.4. 

The Mel scale more closely models the sensitivity of the human ear 

than a purely linear scale and provides for greater discriminatory capability 

between audio segments. The Mel-scale frequency analysis has been 

widely used in current speech recognition systems.  

The Discrete Fourier Transform (DFT) of an input signal is given 

by Eq.(4.6). 
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where )(nx  is the input signal. The Mel-frequency filter bank [188], [189] 

comprising of p filters can be represented as shown  in Figure 4.5.  

 
Figure 4.5 Mel-Frequency filter bank on a linear frequency (Hz) scale 
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The energy in each band is given by mj (j=1, 2,…,p),  and is computed as 

detailed in Eq.(4.7). The Fourier Transform magnitude coefficient is 

multiplied by the corresponding filter gain and the results are accumulated.  
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where Hj(k)  is the transfer function of jth filter and )(kX  is given by 

Eq.(4.6). The Mel-frequency cepstrum is the discrete cosine transform 

[188] of the p filter outputs and is represented as in Eq. (4.8).  
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where  ci is the ith MFCC coefficient. 

MFCCs are extracted from the noise data waveforms. The key 

difference between MFCCs and cepstral coefficients lies in the process 

involved in extracting the characteristics of a noise signal [190]. With a 

sampling frequency of 11025 Hz, a filter bank of 40 equal area filters, 

which cover the frequency range [50, 6400] Hz is implemented. The centre 

frequencies of the first 13 of them are linearly spaced in the range [50, 

1000] Hz with a step of 73.077 Hz and that of the next 27 are 

logarithmically spaced in the range [1001, 6400] Hz with a logStep = 

1.071103. The logStep is computed using Eq.(4.9). 
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where 40cf  is 6400, which is the centre frequency of the last one in the 

logarithmically spaced filters. The NumLogFilt is equal to 27, which is the 



Chapter 4 Speaker Recognition 

 104 

number of logarithmically spaced filters. Each one of these equal area 

triangular filters is defined  as in Eq.(4.10). In the equation, i takes the 

values 1,2…..p and stands for the ith filter, ��� is the width of the filter bank 

and is defined at p + 2 boundary points.  
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Here, k is equal to 1,2,...,N and corresponds to the kth coefficient of 

the N point DFT. The boundary points fbi are expressed in terms of the 

position. The filter bank given by Eq.(4.10) is normalised in such a way 

that the sum of the coefficients for every filter is equal to one. Thus, the i  th 

filter satisfying the Eq. (4.11) is used. 
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The equal area filter bank given by Eq.(4.10) is employed for 

generating the log-energy output. The MFCCs are obtained by performing 

Discrete Cosine Transform on the logarithm of Mel-spectral coefficients 

[191]. Of the many MFCCs, only the first 20 coefficients of each frame are 

considered, since most of the features of the noise source can be extracted 

from these coefficients.  The use of DCT minimizes distortion in the 

frequency domain and results in high computation efficiency, since an N-

point DCT can be evaluated using a symmetric 2N-point FFT.  

4.3.2.3 Window function  

When the spectral analysis techniques like the FFT are applied to 

the segments as a whole, it behaves as if it is operating on a data signal 
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waveform that is zero just before the segment and then abruptly jumps to 

the signal during the segment and then back to zero when the segment ends. 

This introduces significant distortion of the signal and warrants the need for 

windowing. 

The windowing operation removes the undesirable undulations and 

smoothens the edges of each data record. It reduces spectral distortions, 

discontinuities or abrupt changes at the end points. More specifically, if the 

original signal level is s(i) at time i, then the windowed signal can be 

represented as s(i) * W(i)  where W(i) is the window function. In this study, 

the windowing function is performed by Hamming window, defined by Eq. 

(4.12). 


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−=
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When the cepstral coefficients are extracted, it is observed that the 

MFCCs for different records vary over a wide range of values. Hence, the 

optimum set of values for the cepstral coefficients are to be synthesized by 

a technique referred to as vector quantization [191].  

4.3.3 Speaker Modeling 

In the speaker modeling module, the dimension of feature data is 

reduced by vector quantization technique. The vector quantization is a lossy 

data compression method based on the principle of block coding. It codes 

the values from a multidimensional vector space into values in a discrete 

subspace of lower dimension. In this work, the LBG (Linde, Buzo, Gray) 

design algorithm [192] for vector quantization is used for trimming the 

cepstral coefficients to the nearest value.   
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The MFCC matrix is vector quantized by passing each column of 

this matrix through a vector quantizer.  In vector quantization, the columns 

of the MFCC matrix are taken as source vectors, which will generate the 

quantized code vectors comprising of the various cepstral coefficients at 

different quefrencies. If the source vectors are k-dimensional, then Xm can 

be represented by Eq.(4.13).  

4.3.3.1 Vector Quantization and Optimization with LBG 

The MFCC matrix is vector quantized by passing each column of 

this matrix through a vector quantizer.  In vector quantization, the columns 

of the MFCC matrix are taken as source vectors, which will generate the 

quantized code vectors comprising of the various cepstral coefficients at 

different quefrencies. If the source vectors are k-dimensional, then Xm can 

be represented by Eq.(4.13).  

 

),...,,( 21 mkmmm xxxX =  where m = 1,2,……,M.   (4.13) 

Let P be the number of code vectors, which are synthesized from 

the M source vectors. The average of the entire elements in a row of the 

MFCC matrix is computed and a code vector is generated. 

{C}= {c1, c2, …., cP } represents a set of k-dimensional code vectors 

with cP given by (cp1, cp2, ….., cpk)  where p = 1, 2, ….. P.  P represents the 

number of code vectors that are to be synthesized from the source vectors 

and specified at the time of initialization. 

The LBG algorithm requires an initial codebook containing one 

code vector obtained by evaluating the row wise mean of the MFCC 

matrix. The initial code vector is split into two column vectors by adding 

and subtracting an error term [193]. From these column vectors, the 



Improved Biometric Authentication System Using Multimodal Cue Integration 

 107

minimum distance to the various columns of the MFCC matrix is computed 

by the Euclidean distance technique using the Eq.(4.14). 

 
Figure 4.6 Procedure for vector quantization 

 

D = 2

1

)(∑
=

→→
−

M

m
mm YX      (4.14)    

where D is the Euclidean distance, 
→

mX is the source vector and 
→

mY  is the 

code vector. The stipulated procedure for trimming the cepstral coefficients 

using vector quantization is illustrated in the flowchart shown in Figure 4.6. 

The column vectors of the MFCC matrix are identified by using this 
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minimum distance criterion. The index and new code vectors are generated 

from the average values of the feature vector. 

The new code vectors, so generated, are compared with the previous 

code vectors. If the difference is greater than the error term, minimum 

distances between these code vectors and the MFCC matrix is again 

computed by the same method. The codebook is updated until the 

difference is less than the error term. The process of splitting the code 

vectors is continued until the number of iterations is equal to that specified 

at the time of initialisation. 

4.3.4 Decision logic 

A conceptual diagram to illustrate the recognition process is shown 

in Figure 4.7. In the figure, only two speakers and two dimensions of the 

acoustic space are shown [194]. The circles refer to the acoustic vectors 

from speaker 1 while the triangles represent the vectors from speaker 2. In 

the training phase, a speaker-specific VQ codebook is generated for each 

known speaker by clustering his/her acoustic training vectors.  In Figure 

4.7, black circles and triangles represent the resultant codewords or 

centroids for speaker 1 and 2, respectively. The distance from a vector to 

the closest codeword of a codebook is called VQ-distortion [195]. VQ 

distortion is the Euclidean distance between the two vectors and is given by  

Eq. (4.14). In the recognition phase, an input utterance of an unknown 

voice is “vector-quantized” using each trained codebook and the total VQ 

distortion is computed. The speaker in the database corresponding to the 

VQ codebook with the smallest total distortion is identified. 
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4.4 Results and Discussions 

Hundred users have been considered for the training of the proposed 

system. Altogether, 1000 sound records have been utilized for the training 

purpose. For the testing purpose, in addition to the sound records of 100 

users who had been considered for training, sounds of 100 new 

unregistered users have been employed. Hence the prototype accounts for 

the attempts of unregistered users in the system. 

     Figure 4.7  Conceptual diagram illustrating VQ  codebook formation.  
 

The speech signal of speaker1 is plotted in Figure 4.8. The signal 

characteristics are found to be stationary when examined over a short 

period ranging between 5 and 100 milliseconds. However, over longer time 

intervals, the magnitudes of the signal characteristics change, reflecting the 

different speech sounds. Therefore, in this study, short-time spectral 

analysis has been used to characterize the speech signal.  The MFCC 

representing the speech signal has been utilized for the speaker recognition 

task.  



Chapter 4 Speaker Recognition 

 110 

In the frame-blocking step, the continuous speech signal is blocked 

into frames of N samples, with adjacent frames being separated by M, 

where M is less than N. The first frame consists of the first N samples; the 

second frame begins M samples after the first frame, and overlaps it by N-

M samples. Similarly, the third frame begins 2M samples after the first 

frame and overlaps it by N-2M samples. This process continues until the 

whole speech is accounted for within one or more frames. 

 

Figure 4.8 Speech signal of Speaker 1 

The values of N and M are chosen as 256 and 85 respectively. The 

magnitude of N = 256 is equivalent to ~30 millisecond windowing. Frame 

blocking of the speech signal is done sufficiently for a short period of time 

because its characteristics are found to be fairly stationary. The magnitude 

of N is taken as 256 inorder to compromise between the time resolution and 

frequency resolution. These time and frequency resolutions can be 

observed from the corresponding power spectrum of speech files, as shown 

in Figure 4.9. In each case, frame increment M is taken as N/3. 

The resolution of time is found to be high when N is equal to 128. 

Furthermore, each frame lasts for a very short period. The analysis result 

shows that the signal for a frame doesn’t change its nature (Figure 4.9). On 
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the other hand, there are only 64 distinct frequency samples which indicates 

that the frequency resolution is poor. When N is equal to 512, there is good 

frequency resolution and 256 different values are obtained. The number of 

frames in this case is relatively small, which means that the resolution in 

time is strongly reduced. When the value of N becomes 256, the number of 

frames is relatively small, which reduces the computing time. For N equal 

to 256, there is a compromise between the resolution in time and the 

resolution in frequency. Hence, N = 256 is adopted in this study. 

Figure 4.9 Power spectral analysis of speech signal of Speaker 1 
(a) M= 43, N= 128, Frames = 303 
(b) M= 85, N= 256, Frames = 152 
(c) M= 171, N= 512, Frames = 74 

 
The next step in processing is the windowing of individual frame 

which is done to minimize the signal discontinuities at the beginning and 

the end of each frame. The Hamming window is used for windowing 

operations and its plot is given in Figure 4.10.  



Chapter 4 Speaker Recognition 

 112 

The next step is the determination of FFT. Each frame of N samples 

from the time domain is converted into the frequency domain using FFT. 

The result of this step is often referred to as spectrum or periodogram. The 

next step is the mel-frequency wrapping. The mel-spaced filterbank, which 

operates with triangle-shaped windows, is applied in the frequency domain, 

and the results are given in the Figure 4.11. 

 

Figure 4.10 Hamming Window 

In the final step, the log Mel spectrum is converted back to time 

domain. The result is called the MFCC. The cepstral representations of the 

speech spectrum provides a good representation of the local spectral 

properties of the signal. The Mel spectrum coefficients, which are real 

numbers, can be converted to the time domain using DCT. The first 

component of MFCC calculated from DCT is excluded since it represents 

the mean value of the input signal, which carries little information about the 

specific speaker.  

The resulting acoustic vectors of MFCCs corresponding to fifth and 

sixth filters are plotted in the Figure 4.12. The vectors corresponding to two 

signals overlap in some regions. Certain regions seem to be used 
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exclusively by one or the other speaker. This is used to distinguish the 

different speakers. The vectors don't form actual clusters, but there are 

areas where their density is higher. The figure shows only a two-

dimensional plot whereas the actual vector contains 20 dimensions. 

 

Figure 4.11 Power spectrum of speaker 1 modified through mel-spaced 
filter bank 

 

 

Figure 4.12 MFCCs corresponding to speaker1 through 5th and 6th filters. 
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For each speech frame of 30 milliseconds, a set of MFCCs is 

computed.  These are the result of cosine transform on the logarithm of 

short-term power spectrum expressed on a mel-frequency scale. This set of 

coefficients is called an acoustic vector. Therefore, each input utterance is 

transformed into a sequence of acoustic vectors.  The speaker specific 

codebook is formed using LBG VQ algorithm. The resultant codebooks 

along with the MFCCs are shown in Figure 4.13. 

The speech signals corresponding to the speakers in the training 

folder are compared with the speech files of the same speakers in the 

testing folder. The Euclidean distance is small when the test data matches 

with the template in the database. 

 

Figure 4.13 Codebooks and MFCCs corresponding to speaker 1 and 2. 

4.5 Performance analysis of speaker recognition system 

The system is tested to find out the False Acceptance Rate (FAR) 

and False Rejection Rate (FRR). False acceptance means acceptance of 
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impostors whereas false rejection means rejection of a true claimant. These 

parameters are used to evaluate the performance of the system. 

The false acceptance and false rejection rates of the speaker and 

face unimodal systems are computed and shown in Figure. 4.14. In speaker 

unimodal system, the optimum value of threshold is found to be 1.2. The 

magnitudes of FAR and FRR are found to be 20% at the optimum value of 

threshold when cepstral features alone is considered. 

 

Figure 4.14 Influence of Cepstral  & Spectral features 

It is found from the literature that Shaneh et al. (2009) [25] and  

Shi. Huang et al. (2009) [27] considered MFCC alone as the feature 
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vector for modelling their speaker recognition system. In the present 

study, in addition to MFCC, other features like spectral rolloff, spectral 

centroid and spectral flux are used for constructing the feature vector. 

The speaker recognition system developed in this study is found to be 

more robust with distinct feature matrix. The success rate with MFCC 

alone is 80%. It is found that the success rate increases by 10%  after the 

inclusion of spectral features such as spectral centroid, spectral flux, 

spectral rolloff and spectral range as shown in Figure 4.14. The success 

rate stays at 90% after including the other spectral features like number 

of peaks, spectral crest etc. This result is as shown in the Figure 4.15. 

Hence, in the proposed system, 20 MFCC coefficients and four spectral 

features are considered.. 

 

Figure 4.15 Success Rate of Cepstral and Spectral features 
 

4.6 Summary 

The techniques and procedures involved in extracting the various 

feature components for speech are highlighted in this chapter. The classical 

and a parametric model based power spectral estimators for extracting the 
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spectral features are presented in this chapter. It is observed that the 

parametric model based estimators give better results for short data 

segments and yield better frequency resolutions than conventional 

estimators. This chapter also describes the concepts of cepstral analysis 

which belongs to an area of signal processing known as homomorphic 

analysis. The cepstral coeffecients are computed by estimating the MFCCs, 

which is a measure of the perceived harmonic structure of sound. 

The performance analysis of speaker recognition system is also 

carried out.  The incorporation of additional spectral features in the feature 

vector is found to improve the overall performance of the system. 
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CHAPTER 5  

FACE RECOGNITION 

In this chapter, human face has been identified as a key to security 

and can be used for a wide variety of applications in both law 

enforcement as well as non-law enforcement.  Facial recognition 

records the spatial geometry of distinguishing features of the face. 

Face images are identified based on Eigen face approach using 

PCA. PCA extracts only the components with the largest 

magnitudes and the dimensionality reduction removes the 

unwanted information. The face structure is precisely decomposed 

into uncorrelated components known as eigen faces and will be 

stored as a 1-D array which is actually a weighted sum of the 

components. In eigen face approach, after the dimensionality 

reduction of the face space, the distance is measured between the 

image under consideration and the template. When the distance is 

less than some set threshold value, then it is identified as a known 

face. 

 

5.1 Introduction 

Due to the easiness in collection of data, face recognition, which  

started to evolve as early as 1936 focusing just on still images, is a widely 

accepted biometric. Decades of research efforts have brought out feasible, 

machine recognition based techniques that use computer to work more 

systematically even for video images and is used in a number of 

applications including crowd surveillance, criminal identification, access to 
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entry etc. The state-of-the-art face recognition techniques have reached a 

certain stage of maturity but are still limited to specific environments with 

constraints like illumination change or pose variation.  

In general, the human recognition system utilizes a broad spectrum 

of stimuli, obtained from many senses viz. visual, auditory, tactile etc., in 

individual or collective manner for the purpose of recognition. For 

contextual knowledge, the surroundings play an important role implying 

that holistic and feature information are crucial for the perception and 

recognition of faces. When dominant features are present, holistic 

descriptions may not be used. For example, hair, face outline and mouth are 

determined to be important for perceiving and remembering front view 

faces and when it comes to the side view, nose plays a significant role. The 

original look of the face changes with the variations in hairstyle, wearing 

spectacles, facial hair like beards, aging etc. As face is quite complex, a 

single change in a feature of the face can alter its look considerably making 

face recognition a really complex task involving visual techniques [130]. 

Face recognition is a part of a wide area of pattern recognition 

technology [196]. The process includes mainly three tasks - acquisition, 

normalization and recognition. The term acquisition refers to the detection 

and tracking of face-like image patches in a static scene. Normalization is 

the segmentation and alignment of face images while recognition is the 

representation and modelling of face images as identities as well as the 

association of novel face images with known models. Automation of face 

recognition algorithms mostly deals with digital image processing, which is 

a quite complex field that poses many problems.  

The machine recognition of face from stills is an active research 

area spanning several disciplines such as image processing, pattern 

recognition and PCA computer techniques. Although humans seem to 

recognise faces in cluttered scenes with relative efficiency, machine 
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recognition is a much more complex task. Face recognition from a single 

image is a challenging task because of variability in scale, location, 

orientation and pose. Face localization is an invariable step towards the 

process of face detection, which aims to determine the image position of 

single faces with the assumption that an input image contains only one face. 

The face recognition compares an input image against a database and in 

turn, reports matched cases.   

5.2 Face Recognition Algorithms 

Face recognition systems received considerable attention in recent 

years, both from industry and the research community. Among the popular 

biometric technologies, facial features scored the highest compatibility in a 

Machine Readable Travel Documents (MRTD) system [197]  and the 

details are given in Figure 5.1. There has been considerable amount of 

research in this field and many techniques have been proposed and 

implemented.  

 

Figure 5.1 Comparison of various biometrics based on MRTD 
compatibility 

 

The  four main categories of current face recognition techniques are shown 

in Figure 5.2. They are  

• Appearance based, which uses holistic texture features. 
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• Model-based, which employs shape and texture of the face, along 

with the 3D depth information. 

• Template-based face recognition. 

• Techniques using neural networks. 

 

Figure 5.2 Classification of face recognition techniques 

5.2.1 Template-based Face Recognition 

Template matching uses pixel intensity information, either as 

original gray-level or as processed data to highlight specific aspects. The 

template can be either the entire face or regions corresponding to general 
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feature locations such as the eyes or the mouth. Cross correlation of test 

images with all the training images identifies the best match.  

Brunelli and Poggio (1993) [137] compared feature and template-

based methods directly with the same database of frontal face views. In this 

work, feature-based templates of mouth, eyes and nose were automatically 

detected. The test results indicated that the template-based techniques 

outperform feature-based techniques. 

5.2.2 Appearance-based Face Recognition 

The faces are stored as two-dimensional intensity matrices. Each 

image is a point in a high-dimensional vector space. In order to identify the 

different faces, depending on the application of interest, an efficient and 

effective representation of feature space is derived and for a given test 

image, the similarity between the stored prototypes and the test image is 

carried out in this space. This technique can be either Linear (subspace) 

Analysis and Nonlinear (manifold) Analysis. 

5.2.2.1 Linear (Subspace) Analysis 

PCA [128], ICA [198] and LDA [61][199] are classical linear 

subspace analysis techniques used in face recognition. Each classifier has 

its own representation of high-dimensional face vector spaces called basis 

vectors. Some statistical considerations forms the backbone for the basis 

vectors and feature vector is obtained, after projecting the faces on to this. 

The matching score between the projected test image and the projected 

training images is calculated and face identification is carried,  based on the 

magnitude of matching score. 

5.2.2.2 Nonlinear (Manifold) Analysis 

The nonlinear manifold is more complicated than linear models. 

Actually, linear subspace analysis approximates this nonlinear manifold. 
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Direct nonlinear manifold modelling schemes helps in learning this 

nonlinear manifold. Kernel Principal Component Analysis (KPCA) is a 

nonlinear analysis technique.   

5.2.3 Model-based Face Recognition 

This approach uses a model formed from a prior knowledge of the 

facial features of the face performs the recognition. The tool developed by 

Wiskott et al. (1997) [57] utilizes the elastic bunch graph matching 

technique. Cootes et al. (1998) [200] integrated both shape, texture and 

developed a new technique called the 2D morphable face model, which 

measures the face variations. The 3D morphable face model is one of the 

latest developments in which a true 3D structure of the human face surface 

helps in recognition. The model-based approach usually involves four 

steps: 

• Model development 

• Model fitting 

• Development of feature vector 

• Matching  

5.2.3.1 The Feature-based Elastic Bunch Graph Matching Technique 

 
Figure 5.3 Multiview faces overlaid with labeled graphs 

All human faces share a similar topological structure. 

Wiskott et al. (1997) [57] presented a general class recognition 
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method for classifying members of a known class of objects. Faces 

represented as graphs, with nodes positioned at fiducial points and 

edges labelled with 2D distance vectors, are shown in Figure 5.3.   

5.2.3.2 The 3D Morphable Model 

 

Figure 5.4  3D morphable face model [201] 

A labelled graph is a set of nodes connected by edges, with nodes 

labelled with jets and edges labelled with distances. Each node contains a 

set of 40 complex Gabor wavelet coefficients, including both phase and 

magnitude, commonly known as ‘jet’. The edges encode the geometry of an 

object, while nodes encode gray-value distribution patch-wise. A face 

bunch graph is a stack-like structure that combines graphs of individual 

sample faces. A human face can be represented as a surface lying in 3D 

space which implies that the 3D model is better for representing faces 

especially while handling facial variations such as pose and illumination. 

Blanz et al. (2003, 2002) [201],[202] proposed a method based on a 3D 
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morphable face model that encodes the shape and texture in terms of the 

model parameters, the details of which are in Figure 5.4. 

5.3 Linear Subspace Techniques 

Linear subspace technique helps in the dimensionality reduction of 

facial features. Since a large number of feature variables in the database are 

to be analysed in a face recognition system, it is likely that subsets of 

variables are highly correlated with each other. The accuracy of classifiers 

suffers when highly correlated variables are used. One of the key steps in 

face recognition is finding ways to reduce dimensionality without 

sacrificing accuracy. 

PCA, LDA and Independent Component Analysis (ICA) [203] fall 

under the broad class of linear transformations that transform a number of 

possibly correlated variables into a smaller number of variables. The 

objective is to reduce the dimensionality or the number of variables in the 

dataset, but retain most of the original variability in the data. Linear 

subspace techniques forms the feature extraction technique used to reduce 

or remove redundant or irrelevant information from the data. 

The reduction of dimensionality in face recognition is more 

complex when the important measurement of feature for a given 

application is unknown. In the work, PCA is the linear subspace technique 

used for dimensionality reduction and Euclidean distance calculates the 

matching score between training and test image.  

5.3.1 Principal Component Analysis 

Principal Component Analysis (PCA) is a constructive statistical 

technique with many application areas such as face recognition, image 

compression, security access control, criminal identification, law 

enforcement etc. and is a common technique for finding patterns in data of 
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high dimension. In communication theory, it is known as the Karhunen-

Loeve transform [204]. The main idea is to find a set of M orthogonal 

vectors in the data space that account for maximum possible variance of 

data. Projecting the data from their original N-dimensional space onto the 

M-dimensional subspace spanned by these vectors then undergoes a 

dimensionality reduction that often retains most of the inherent information 

in the data. The first principal component is along the direction with the 

maximum variance and the second principal component is constrained to 

lie in the subspace perpendicular to the first. Within that subspace, it points 

in the direction of maximal variance. Then, the third principal component is 

taken along the maximum variance direction in the subspace perpendicular 

to the first two, and so on. PCA is the best known dimensionality-reduction 

tool that helps to reduce a large dataset to a smaller set while retaining the 

information in the larger set simultaneously. The divide-and-conquer 

method minimizes the inherent complexity of dealing with a large problem 

in a given time. Similarly, the dimension of difference information 

embodied in large covariance matrix is brought down using PCA to 

enhance the subsequent computations in face identification. Eigen face 

approach utilises this technique to compute the variations in similarities of 

the faces in the database and project them onto a face-space. PCA is a 

technique used to remove the correlated fraction of the input data and 

provides an insight into the information content of the input facial image 

data, emphasizing the significant features. These features are not related to 

the conventional notion of facial features such as eyes, nose and mouth. 

The  algorithm is a decomposition algorithm based on principal component 

analysis that finds the vectors, which best account for the distribution of 

facial images within the entire face database. 
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The main reason for using the  approach for face recognition is 

actually the outcome of the dilemma of what aspects of the face are to be 

considered for identification - whether the face is treated as a uniform 

pattern or the positions of features are adequate etc. Depending too much 

on feature representation is not sufficient to support robust face recognition 

because it causes problems when the image is degraded by noise or when 

the features are occluded. This led to the concept of using the approach, 

which treats the whole face as a uniform pattern for face recognition. The 

eigen face approach is the first real successful demonstration of automation 

of human face recognition. PCA is used to derive the low dimensional 

representation of faces in the eigen face approach by applying it to a dataset 

of images representing faces. The system implementation is achieved by 

projecting the face images onto a feature space that spans the significant 

variations among known face images. These significant features are called 

eigen faces. However, these features do not really represent the individual 

facial features such as eyes, nose and ears. They just capture the image 

points that cause meaningful variations among the faces in the database and 

in turn differentiates them. 

The eigen face approach is a simple and effective algorithm that can 

be applied on test images unaffected by illumination changes, provided that 

the faces are recorded under similar illumination conditions. Formally, 

eigen faces are the principal components of the distribution of faces or the 

eigen vectors of the covariance matrix from the set of face images. A linear 

combination of eigen faces represents each face exactly by using eigen 

vectors corresponding to the largest eigen values. Eigen vectors are the 

coordinates that define the direction of the axes, whose lengths are given by 

the eigen values. To account for different lighting conditions, modular 

eigen space approach, which is less sensitive to appearance changes when 
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compared to the standard eigen face method, is used. The evaluation of 

eigen values and eigen vectors is a unique matrix operation.  

Recognition of images using PCA involves three basic steps. The 

first step is creation of transformation matrix � using training images, 

while the next is projection of the training images are projected onto the 

matrix �. Finally, identification of the test images by projecting them onto 

the subspace and comparing them with the trained images in the subspace 

domain. Figure 5.5 gives an overview of the face recognition system. 

 

 

 

Figure 5.5  Overview of the face recognition system 
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5.3.1.1 Creating Matrix 	�   

The steps like removing the mean,computing of the covaraiance 

matrix, eigen values and eigen vectors  are carried out to compute matrix �. 

Removing the mean:  

 Each of the training images is first mean adjusted. A subset of 

training face database is shown in Figure 5.6. The mean image is subtracted 

from each training image. A two-dimensional image is defined as a 

function of �(	,�), the intensity of the image at any pair of coordinates (
, �) 
and the details are shown in Figure 5.7. Every image �� is expressed as a 

matrix of intensity at every pixel in the chosen resolution � × � and is 

given in Eq. (5.1). These M images forms l-D vectors �� as in Eq.(5.2). 

Thus, the whole face is considered as a collection of pixels and coded by 

many vector components, arranged sequentially by concatenating one to the 

other. The face space � consists of all the � images of �� in the training as 

given in Eq.(5.3).  

 
Figure 5.6  Subset of Training face database 
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Figure 5.7 Schematic representation of mapping of single 
image into intensity matrix. 

 

�� = � �(�,�) ⋯ �(�,�)⋮ ⋱ ⋮�(�,�) ⋯ �(�,�)� 
  (5.1) 

 

�� = � �(�,�)⋮�(�,�)� 
 

(5.2) 
 

� = (�� … � ) (5.3) 
 

 

The mean image ! as shown in Figure 5.8, is the average information of all 

the images representing the mean value of every pixel in N-dimensional 

vector as in Eq. (5.4) and Eq. (5.5). 

 

" = #$%&'$
'(#  (5.4) 

" = �"(1,1)⋮"(�,�)� (5.5) 

 	

          
          
          
         
          
          
          
          
          
          
          
          
          
          
 

�(�,�) 

�(�,�) 



Improved Biometric Authentication System Using Multimodal Cue Integration 

 131

 

Figure 5.8 Mean image of face database 

The difference image	∅, representing the deviation from the average image !, is given by Eq. (5.6). 

∅ = &' −" (5.6) 

The matrix , is developed by assembling the values of ∅’s and is given in 

Eq. (5.7). 

, = � ∅(�,�) ⋯ ∅(�, )⋮ ⋱ ⋮∅(��,�) ⋯ ∅(��, )� 
 

(5.7) 

 

Compute the covariance matrix (C):  

The main idea behind the eigen face technique is to exploit the 

similarities among various images. Separation of average information and 

deviation from the mean will be the first step in this approach. Eigen faces 

are extracted from the difference information. For this purpose, the 

covariance matrix C with dimension - × - is computed as in Eq. (5.8), 

where N is equal to the product of	� and	�. 

. = #$%∅'$
'(# ∅'/ = 00/ (5.8) 

Where, A is of the dimension - ×�. This covariance matrix 

dimension is normally large and full eigen vector calculation is done with 

Mean Image
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practical difficulty in dimension. Without loss of generality of the whole 

training set, it is possible to reduce the dimensionality of the covariance 

matrix. The reduced dimensionality matrix 1, of size � ×�, is given by 

Eq.(5.9). 

1 = 0/0 = #$%∅'/∅'$
'(#  (5.9) 

 

Computing the eigen values and eigen vectors of 2:  

The eigen vectors of the covariance matrix 2 are computed by using 

the matrix 1. Then the eigen vector 3� 	and the eigen value 4i	 of 1 are 

obtained by solving the characteristic equation of eigen value problem |7 − λI| = 0. 1. <' = 4=. <' (5.10) 

 

Substituting the value of L in Eq. (5.10), 0/0. <' = 4=. <' (5.11) 

 

Multiplying both sides of Eq. (5.11) by A,  0. 0/0. <' = 0. 4=. <' (5.12) 

 

Since λ> is a scalar quantity, Eq. 5.12 can be rearranged as: 0. 0/0. <' = 4=. 0<' (5.13) 

Let ?� = ,3� 
 

(5.14) 

Then from Eq. (5.8) and (5.14),  .	@' = 4=@' 
 

(5.15) 
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where @'	and λ> are the � eigen vectors and eigen values of 2	respectively. 

In practice, a subset �A of face space � is sufficient for face reconstruction 

because the subspace of eigen faces can be treated as the basis for the face 

space.  

 

Figure 5.9 Eigen faces of the Training Image Set, which is a subset  
                  of the face database. 
 

The original face can be represented as a linear combination of 

these �A vectors. The remaining (- − �A) eigen vectors that are associated 

with eigen values play insignificant role in reconstruction computation. 

Figure 5.9 displays the eigen faces computed with the above equation. The 

eigen faces are the vectors that describe faces in the face space. These 

vectors are perceived as limited points in the --dimensional space. Each 

face is recorded as a matrix of dimension 640 x 480 in gray scale mode. 



Chapter 5 Face Recognition 

 134 

5.3.1.2 Reconstruction of image from PCA model 

The weight (BC)	is simply the dot product of each image with each of the 

eigen vectors as in Eq.(5.16). 

DE = @E/. ∅' = @E/. (&' −"),								E = #, F, … .$′  (5.16) 

where ?C is the kth eigen vector of the covariance matrix, ∅� is the ith 

difference image, Xi  is the ith image and ! is the mean image.  

All the weights are converted in the form of a matrix (�) with dimension 

M' x l as in Eq.(5.17). � = GD#, DF, DH, … .D$IJ/ (5.17) 

 

Reconstructed image �K is obtained by multiplying the weight matrix (�) 

of the unknown image with the eigen vector matrix (?) and adding the 

mean face image (!) to it as in Eq. (5.18). The trained images are projected 

onto the eigen face space and the weight of each eigen vector is evaluated.  �K = μ. � + "  

 = G@#		@F… . . @$IJ N D#⋮D$IO + " 
 

 = %@'$I
'(# D' +" 

(5.18) 

The reconstructed image �K is shown in Figure 5.10. 

As seen from Eq.(5.18), reconstruction of the face image is obtained 

by adding each eigen face along with its weight to the mean face of the 

training set. Error estimation is carried out with the number of eigen values 

and the Root Mean Square (RMS) error of the reconstructed image using 

Eq. (5.19). 

 PQQRQ = ‖�K − &‖ (5.19) 
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Figure 5.10 Sample reconstructed image of the original input image. 

5.3.2 Recognition Procedure from PCA Model 

The test image is also projected onto the same facespace and its 

weight is calculated. The weight vector defined in Eq. (5.20) is used for 

face recognition. To recognize a new test image (&/), its weight (D/') is 

evaluated first by multiplying the eigen vector (µi) of the covariance matrix 

(C) with difference image (&/ 	− 	"). D/' = @'/(&/ 	− 	") (5.20) 

 

Now the weight matrix of the test image (�/) becomes as in Eq. 

(5.21). �/ = GD#,DF, …D$IJ/ (5.21) 

Then the Euclidean distance ∈C between weight matrices of the 

unknown image	(�/) and each face class (�i) is obtained from Eq. (5.22).  

 ∈EF= ‖�/ −U'‖F                               (5.22) 

Calculating the Euclidean distance between two data points 

involves computing the square root of the sum of the squares of the 

Input image Reconstructed image
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differences between corresponding values of weight. In order to identify a 

test image, the distance between the image data and training data is 

computed. Then, this distance is compared with a threshold value. 

Threshold value is the maximum allowable distance between the test and 

training image for confirmation.  

5.4 Results and Discussions  

Observations have revealed the fact that the root mean square error 

increases as the training set members differ from each other with more 

variation. This is because of the addition of the mean face image. So, when 

there is a lot of variation among the members of the training set, the mean 

face image becomes cluttered, which in turn increases the root mean square 

error. Since identification is a pattern recognition task, accurate 

reconstruction of the image is not necessary. A smaller set of faces with the 

maximum variation is sufficient for identification. Sirovich and Kirby 

(1987) [205] evaluated  a limited version for an ensemble of 115 images 

and found that about 40 eigen faces were sufficient for a very good 

description of the set. Turk and Pentland (1991) [128]  observed that for a 

training set of 16 face images, 7 eigen faces were used to identify a face. 

Also, Tat Jun Chin and David Suter (2004) [206] have come with an 

inference from their experiments that 8 eigen faces were enough to account 

for more than 90% of the variations among a training set of 20 images. The 

inference drawn from the graph in Figure 5.11 reveals that as the number of 

eigen faces increases, the root mean square error decreases. This means that 

the root mean square error is inversely proportional to the number of eigen 

faces in the training set. RMS error for two hundred images is found to be 

0.2082 where as for the other eight hundred images, the root mean square 

error is approximately the same. The error graph in Figure 5.11 is plotted 
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by taking the number of eigen faces on the X-axis for 1000 eigen faces and 

root mean square error on the Y-axis.  

 

Figure 5.11 Root mean square error for reconstructed images 

It means that the first two hundred eigen faces provide the principal 

components with prominent information and the next eigen faces contain 

insignificant information for the identification process. This is almost 20% 

of the entire training set, which implies that such a small number of eigen 

faces is enough for face recognition. In a database of 200 face images, just 

40 images of the training set would suffice for face recognition. From this, 

the root mean square error reduces to be around 2% of the training image 

set. The graph represented in Figure 5.11 is a solid example of heuristic 

implementation of the above propositions.  

5.4.1.1 Analysis of Eigen values  

Eigen faces represent prominent features of face images in the 

training set. The highest eigen value of an eigen face is treated as the 

principal component of that face. The vector representing the highest eigen 

values of every eigen faces (41,	42,	43,…..,	4M) in the facespace is plotted in 

Figure 5.12. Figure 5.12 shows a training set of 1000 eigen faces with the 
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associated principal components (one from each eigen face). The first eigen 

face with its associated eigen value as 183.5726 is the first principal 

component of the entire facespace. The 50th  eigen face has the highest 

eigen value variation of 78.9040, which is approximately half of the first.  

The 250th eigen face is having 16.8500 as the principal component, which 

is only one eleventh of the first one. 

 

 

Figure 5.12 Number of Eigen faces vs Eigen value variation 

The variation of execution time (for the collection of 1000 images 

for the entire face database) versus the number of eigen faces is illustrated 

in the Figure 5.13. The figure shows timing plots for both the cases- with 

covariance matrix reduction and without it. The graph is plotted with the 

number of eigen faces for 1000 images on the X-axis at an interval of 100 

and the execution time on the Y-axis. It is clear from the graph that with 

covariance matrix reduction the timing for face recognition is around 34 

seconds while without the reduction, it is around 176 seconds. This shows 

that without covariance matrix reduction, the execution time for the face 

recognition algorithm is almost five times that of with covariance matrix 

reduction. For 10 eigen faces, the execution time with covariance matrix 
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reduction is observed to be 6.1 seconds while it is 30.1 seconds without 

covariance matrix reduction. Similarly, for 250 eigen faces, it is 11.3 

seconds with covariance matrix reduction and 55.8 seconds without 

covariance matrix reduction. For 500 eigen faces, it is 19.4 seconds with 

covariance matrix reduction and 101.01 seconds without covariance matrix 

reduction. For 1000 images, the execution time becomes 34.2 seconds with 

covariance matrix reduction and 171.2 seconds without covariance matrix 

reduction. 

 
 

Figure 5.13 Execution time with and without covariance matrix  
 

 

Figure 5.14 PCA Recognition Rate 
 

The rate of recognition versus the number of Eigen faces is shown 

in Figure 5.14. It is observed from the graph that the recognition rate for 
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PCA is 25.455 with an eigen face. As the number of faces increases to five, 

the recognition rate becomes 57.2310. As the number of eigen faces 

increases further, the recognition rates are found to increase constantly and 

uniformly with a little difference from there until they reach the maximum 

value of 91.5480. It is noticed from the figure that 500 eigen faces are 

sufficient to reach a recognition accuracy of 89.0100%. 

5.5 Summary 

The problem of face recognition in a large database and a model 

that uses PCA approach have been proposed. The proposed PCA is found 

to result in a recognition efficiency of 91.548% when tested for 1000 

training images. The computational time efficiency of the present PCA is 

estimated through covariance matrix with and without dimensionality 

reduction. 

The computational time with reduced dimensionality is found to be 

34.2 seconds (for 1000 face images) where as it is found to increase by five 

times i.e. 171.2 seconds for the case without dimensionality reduction. 

Hence, the reduction of dimensionality results in reduced computation time. 

The proposed model is tested using faces with pose variations. The 

limitation of the present work is that the training and testing images have 

been assumed to be of the same dimension, where as the real world images 

differ in dimensionality. Similarly, gray scale and static images have been 

used for the present evaluation procedure but they differ very much from 

the realistic environment.  Since the proposed PCA algorithm does not 

possess a recognition accuracy of 100% due to its inherent disadvantage of 

selecting prominent but holistic features, this algorithm can be combined 

with any other algorithm like support vector machine, fisher faces etc. in 

future to achieve 100% recognition efficiency. 
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CHAPTER 6  

SIGNATURE IDENTIFICATION 

In this chapter, identity of a person based on user’s handwritten 

signature is discussed. A signature, widely accepted as a means of 

identity authentication in legal and commercial transactions, is 

remarked as a consistent non-invasive authentication procedure 

by the majority of the users, thereby overcoming some of the 

privacy issues. The distinct features are extracted from the image 

of the signature trajectory captured by electronic signature tablet, 

after pre-processing. In signature recognition, the feature vector, 

which forms the signature template in the knowledge base, is 

selected as a combination of static and dynamic features. The 

static features are generated using 2D Gabor filter while the 

dynamic features under consideration are the x and y stroke as 

well as the average velocity in x and y directions.  Mahalanobis 

Distance (MD) computed based on correlation between two 

signatures is used to verify the similarity of images. When the 

Mahalanobis distance between the feature vectors of enrolled and 

test signature is smaller, the similarity between the compared 

signatures is higher. 

 

6.1 Introduction 

Signature is a socially accepted method already in use in bank and 

credit card transactions. Based on the method used to capture the 

signatures, handwritten signature biometrics system is divided into two 
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categories, namely, offline and online [207]. Off-line or static is the 

analysis of features extracted from scanned images of handwritten 

signatures while on-line or dynamic is the analysis of handwritten 

signatures captured via digitizing tablets or other electronic devices, which 

capture the trajectory, pressure and velocity of handwriting. The offline 

method does not verify the physical presence and relies only on features, 

extracted from the scanned signature image. Online signatures can be 

captured using a variety of input devices such as digitizing tablets [208], 

specially designed pens, hand gloves [209] and tracking-camera.  

Signature authentication is the process of verifying the identity of a 

person based on the user’s handwritten signature. Recognizing people by 

their handwritten signature involves intense research [207], [208] because 

of the following reasons [104]:- 

• Signature is resistant to fraudulent access attempts. Even though, 

hypothetically, no person writes his/her signature the same each time, in 

practice, it is very difficult to forge the dynamic data (such as speed, 

pen-up movement, pressure, etc.) for every digitized signature point. 

• Signature has been widely accepted as a means of legal and commercial 

transactions identity authentication [87]. Signatures have played a 

historical role in authenticating documents. Signature based 

authentication is a consistent non-invasive authentication procedure by 

the majority of the users, therefore, it can help in overcoming some of 

the privacy difficulties [102], [103]. 

• The main drawback of biometrics when compared with conventional 

methods is that many biometrics can be copied or forged [2], 

[15],[132]. Whereas it is always possible to obtain a new key or another 



Improved Biometric Authentication System Using Multimodal Cue Integration 

 143

password, it is not possible to replace any biometric data [210]. The 

user may change a signature, while it is not possible to change 

fingerprint, iris or retina pattern.  

However, signature authentication is still a challenging issue for a 

number of reasons. 

• A signature reflects people's writing habits. However, some people may 

experience a lot of inconsistency between their signatures, mostly 

because of lack of signing habit. One possible solution to cope with this 

limitation is to acquire multiple signature instances during enrolment 

instead of relying on a single instance as well as, authentication under 

conditions similar to those practiced during enrolment. 

• While each ordinary literate human being has his/her unique style of 

writing the signature, the signatures tend to evolve with time and the 

process of signing is influenced by the physical and emotional states of 

the signatories. 

The main task of any signature verification task is to detect whether 

the signature is genuine or forged [211]. The two main categories of 

forgeries are casual or random forgeries and skilled or traced forgeries. 

Casual or random forgeries are the attempts to recreate signature 

trajectory without prior knowledge of the signature style whereas skilled 

forgery is a suitable imitation of the genuine signature [212]. The skilled 

forgeries are more difficult to detect than random forgeries, as the 

characteristic features of a skilled forgery resemble closely those of the 

original signature. Thus, it is difficult to discriminate skilled forgeries from 

authentic signatures by an offline system. 
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6.2 Signature Identification Methodology 

The four modules of Image acquisition, Preprocessing, Feature extraction 

and Enrolment and identification constitute the system developed in the 

study.  The image of the signature trajectory is captured using electronic 

signature tablet while the preprocessing module is responsible for 

preconditioning of the signature image. The distinct features of the 

signature image extracted in the feature extraction module helps in 

developing the knowledge base of the signature while the identification 

module authenticates. An architecture for an online signature identification 

system is shown in Figure 6.1. 

 

Figure 6.1 Architecture for an online signature identification system 

6.2.1 Data Acquisition 

Data acquisition is the process of recording the signature trajectory 

as well as dynamics and converting them to a digital form. In this study, the 
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signature information has been acquired using WACOM Bamboo pad 

graphic tablet as shown in Figure 6.2.  When one signs on a graphic tablet, 

capturing of the location coordinates as well as the timing information 

tagged to each pair of the x and y coordinates occurs. Signatures captured 

using inking pens on the Bamboo Pad reflect the typical signing behaviour 

as users sign on paper in the way they are used to. The only difference is 

that there is a sensor underneath the paper digitizing data throughout the 

writing process. This capturing procedure requires no change in the signing 

behaviour of the user. 

 

Figure 6.2 Signature acquisition device -WACOM Bamboo pad 

6.2.2 Preprocessing 

The images need to be preprocessed prior to processing. After  

binarizing the image, dilation is applied to fill the gaps and broken necks 

and the image is then thinned and the edges are pruned. The simplest way 

to use image binarization is to choose a threshold value, and classify all 

pixels with values above this threshold as white, and the remaining as 

black.  
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Thinning intends to reduce objects to the thickness of one pixel, 

generating a minimally connected axis that is equidistant from the object 

edges. Digital skeleton, generated by thinning algorithms, is often used to 

represent objects in a binary image for shape analysis and classification. 

The thinning process removes pixels from the outside edges of an object. 

The designed structuring elements find those edge pixels whose removal 

will not change the object’s connectivity. On completion of thinning for the 

first pass with the eight structuring elements, the entire process for the 

second pass is repeated until no further changes occur. After thinning, 

pruning which is cleaning up of extra short noisy branches that appear in 

the skeleton of a pattern  is taken up. The set of the short noisy branch is 

located using ends that have only one neighbouring pixel and moves along 

the path until touching another branch within a very limited number of 

pixels. The length of a noisy branch when related to the object 

characteristics and image size; is often given as at most three pixels. A 

branch junction is considered as the pixel having at least three neighbouring 

pixels. The rotation invariance of all the images is achieved by calculating 

the angle θ, of least second moment of the binary image S. In order to 

obtain some degree of invariance w.r.t. rotations, the main inertia axis of 

the signature is aligned with the horizontal axis. The signature when rotated 

about the centre of the area of the image eliminates the influence of skew 

angle of the signature. Finally, normalize the images in size to achieve 

scaling invariance preserving the aspect ratio of the signature. Figure 6.3 

(a) shows the binary image of a genuine signature. Preprocessing involves 

finding the angle of least second moment, rotating the images as well as 

smoothing and thinning of the signature. The original image and the image 

after rotation are shown in Figure 6.3 (a) and (b) respectively.  
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(a) Original image (b) Image after rotation 

 

Figure 6.3 Signature before and after rotation. 

6.2.3 Feature Extraction 

The discriminative power of the features in the reference set plays a 

major role in the entire identification process. It is important to find the 

features that are invariant with respect to slight changes in intra-class 

signatures. The features should be powerful enough to discriminate other 

signatures in the knowledge base.  

6.2.3.1 Static Features 

The features from signature images are extracted using Gabor 

Wavelet Transform (GWT) [213]. Gabor filters used extensively in image 

processing, texture analysis etc. are based on a sine or cosine wave as in 

Eq.(6.1). The cosine wavelets are the real parts of the wavelet and the sine 

wavelets are the imaginary parts of the wavelet, represented in Eq.(6.2) and 

(6.3) respectively. Therefore, a convolution with both the phases produces a 

complex coefficient. 

Complex 

V(W, X;λ, Z, ", [, \) = ]^_ `− WAFa\FX,F	F[F b ]^_ c� `FdWI
λ
+"be (6.1) 

 

Real 

V(W, X;λ, Z, ", [, \) = ]^_ `− WAFa\FX,F	F[F b fgh `FdWI
λ
+"b                (6.2) 
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Imaginary 

V(W, X;λ, Z, ", [, \) = ]^_ `− WAFa\FX,F	F[F b h=i `FdWI
λ
+"b          (6.3) 

In the two dimensional GWT,  
A and y' are given in Eq.(6.4) and 

(6.5) respectively. 


A = 
jRkZ + �k��Z                                     (6.4) �A = −
k��Z + �jRkZ      (6.5) 

where Z is the orientation of the normal to the parallel stripes of a 

Gabor function. The wavelet is rotated about its center using this parameter. 

The wavelet values from π to 2π are redundant due to symmetry. So, in 

most of the cases, Z is assumed to take values between 0 and π. 

In Eq.(6.1), λ is the wavelength of the cosine wave. The gradual 

changes in the intensity of the image is characterised by a wavelet of large 

wavelength. The sharp edges and bars are represented by wavelets with 

short wavelengths. 

! given in Eq.(6.1) is the phase offset in the argument of the cosine 

factor of the Gabor function and is specified in degrees. Valid values are 

the real numbers between -180 and 180. The values 0 and 180 correspond 

to center-symmetric  functions 'center-on' and 'center-off', respectively, 

while -90 and 90 correspond to anti-symmetric functions. All other cases 

correspond to asymmetric functions. If one single value is specified, one 

convolution per orientation will be computed and if a list of values (e.g. 0, 

90 which is default) is given, multiple convolutions per orientation will be 

computed, one for each value in the phase offset list. 

l given in Eq.(6.1) is the radius of the Gaussian. The size of the 

Gaussian determines the fraction of the image influenced by convolution. 
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The computational effort becomes negligible when the convolution moves 

further from the center of the Gaussian. The radius of the Gaussian is 

proportional to the wavelength and is given by l = jλ. This means that 

wavelets of different size and frequency are scaled versions of each other. 

In Eq.(6.1), m is the spatial aspect ratio of the Gaussian. It specifies 

the ellipicity of the support of the Gabor function. For γ = 1, the support is 

circular. For γ < 1, the support is elongated in orientation of the parallel 

stripes of the function. Default value is γ = 0.5.  

The feature is extracted from the signature image by placing a 

virtual grid on the signature image and Gabor coefficients are computed on 

each point of the grid by convolution. Convolution between Gabor filter 

and a sub image around point (x, y) is calculated.  

At each point of the virtual grid, 6 complex Gabor coefficients are 

computed corresponding to λ ∈ n2, 2√2q and Zr{0, tu , tv}. Other Gabor 

filter parameters are assumed to take values of !	r{0, tv}, l = 2λ  and 

m = 0.5. This means that for each grid point, two frequencies in three 

orientations and two phases are computed. Therefore, for all the grid points 

of an image, Gabor coefficients are computed. The feature vector of the 

signature image consists of absolute values of the Gabor coefficients.  

6.2.3.2 Dynamic Feature 

The forging of the static image of the signature on a paper is easy. 

The forgers can reproduce the image (or shape) of a signature, but it is 

difficult to forge the motions that caused the image [85]. When a signature 

is captured with a signature tablet, the pen motions, which is dynamic in 

nature, are recorded. The features that are invariant with respect to slight 
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changes in intra-class signatures are used to discriminate other signature‘s 

classes. The dynamic features is broadly classified as local and global. 

Global features refer to the parameters extracted from a complete signature 

signal, such as average writing speed, total signing duration, number of 

pen-ups, number of strokes and standard deviation of the velocity and 

acceleration. Whereas, local features analyse signatures based on specific 

sampling points, such as the slope of the tangent at each point, velocity, the 

centre of mass and average speed within a stroke. A suitable set of global 

dynamic features [214] which is found to be reliable are used in our 

approach. Such features are simple to compute with a minimum pre-

processing effort, and there is no need to maintain the original signatures 

once the features are extracted. The values in the output stream produced 

by the signature tablet are equidistant in time. It contains the x and y 

coordinates sampled at timestamp t and is represented as x(t) and y(t), 

respectively.  At each sample point, the signature data as S(t) = [x(t), y(t), 

timestamp(t)], t = 1,…,N , where N is total the number of samples of the 

signature trajectory along with the timestamp. 

The explanation of dynamic features such as X-stroke, Y-stroke, 

average of velocity over all coordinates in the X-plane (Svx) and average of 

velocity over all coordinates in the Y-plane (Svy) are given in Eq.(6.6) and 

(6.7) respectively.  

Average velocity in the X plane 

 yz
 = �{∑ ((
�a� − 
�) (}�a� − }�)⁄ ){���(�     (6.6) 

Average velocity in the Y plane 

 yz� = �{∑ ((��a� − ��) (}�a� − }�)⁄ ){���(�     (6.7) 
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6.2.4 Classification 

Mahalanobis Distance (MD) computed based on correlation 

between two signatures verifies the similarity of images. When the 

Mahalanobis distance between the feature vectors of enrolled and test 

signature is smaller, the similarity between the compared signatures is 

higher. The signature raw matching score (sgS ) is the MD between two 

signatures.  sgS  is computed as in Eq.(6.8). 

y��(
̅, ��) = �(
̅ − ��) y�� (
̅ − ��)   (6.8) 

where S is the covariance matrix, x and y  denote the enrolled and 

test feature vector respectively.. 

6.3 Enrolment and Identification 

Twelve signature samples each collected from hundred users forms 

the data set. Ten signature images of hundred users were used for training 

in enrolment module. Three types of impostors are equally likely in the 

case of signature identification, namely, unregistered, skilled forgery and 

random forgery signature images. The unregistered users are those who 

produce their own signature but not enrolled. Producing signature image of 

another person with and without prior knowledge is called skilled and 

random forgery respectively.  

Additional hundred signature samples of skilled and random forgery 

were collected. A total of four hundred signature samples were used for 

testing the system. Out of four hundred, two hundred samples (100x2) from 

registered users, fifty each from unregistered, skilled, unskilled and random 

forgery were used. Thus, equal probability of all possible impostor attempts 
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was considered. The details of the number of signature images used at 

various stages are given in Table 6.1.  

Table 6.1 Details of the number of signature images 

Type of users Number of samples 
Training Testing 

Registered (100 persons) 100x 10 = 1000 100 x 2=200 
Unregistered 

• Skilled forgery 
• Unskilled forgery 
• Random forgery 

 
-- 
-- 
-- 

50 x 1=50 
50 x 1=50 
50 x 1=50 
50 x 1=50 

TOTAL 1000 400 

6.4 Results and Discussions 

The effect of static and dynamic features extracted from the 

signature are illustrated in the following sections  

6.4.1 Effect of static features 

The Gabor wavelet transform was used to find the feature vector of 

signature images. The feature vector at various points in the virtual grid on 

the signature image was computed. 

 
Figure 6.4 The real and imaginary part of  Gabor Filters 
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The real and imaginary parts of gabor filters at various frequencies 

and orientations are shown in Figure 6.4 and Figure 6.5. The amplitude and 

phase response of a particular sample signature are shown in Figure 6.6 and 

Figure 6.7.  

 
Figure 6.5 Gabor Filters 

 

 
Figure 6.6 Amplitude Response of Gabor features 
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Figure 6.7 Phase Response of Gabor filters 

 

The optimum number of grid points was identified by analysing the 

overall peformance of the system in terms of Equal Error Rate (EER). The 

EER is defined as the rate at which FRR is equal to FAR, which 

corresponds to an optimum value of threshold for a given system. The 

normalized boxes of size 8 x 16, 16 x 32, 24 x 48, 32 x 64, 40 x 80, 48 x 

96, 56 x 112 and 64 x 128 pixels were considered. The threshold factor in 

decision making for Mahalanobis Distance (MD) was varied between 0 and 

3 in increments of 0.05. 

The magnitudes of false rejection rate (FRR) and false acceptance 

rate (FAR) change against threshold for different grid sizes of bounding 

box were computed and are shown in Figure 6.8. As threshold increases, 

FRR reduces and FAR increases. The EER, which is the crossing point of 

FRR and FAR, was determined. The variation of EER corresponding to the 

size of the normalization box is presented in Figure 6.9. It is observed that 

EER decreases with increase in size of the grid. The variation in EER is 

found to be small when the grid is greater than 32 x 64. The average 
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verification time corresponding to different grid sizes was determined and 

is demonstrated in Figure 6.10.  It is observed that the increase in average 

verification time of the system is significant when the size of the grid is 

greater than 32 x 64 pixels. Hence, the grid of size 32 x 64 pixels was used 

for this study.  

 

Figure 6.8 Influence of the size of the normalisation box on false rejection 
and acceptance rates against threshold. 
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Figure 6.9  Equal error rate against size of the normalization box. 

 

Figure 6.10  Average verification time versus size of the normalization box. 

6.4.2 Effect of dynamic features 

A sample of a dynamic signature, its x and y plot with respect to 

time as well as its normalised x versus time plot are shown in Figure 6.11. 

The success rate of the system with static features alone is 76 percent and 
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by the addition of dynamic features, the success rate is increased to 84 

percent as shown in Figure 6.12. 

 
Figure 6.11 Example of a signature, its x and y plot as well as its 

normalised x plot against time. 

 

Figure 6.12 Effect of dynamic feature on the success rate. 
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6.5 Summary 

A simple and effective signature identification method using grid 

based GWT and dynamic features is proposed. The performance of the 

signature identification is investigated. The optimum size of the normalised 

grid box is determined based on the analysis of equal error rate (EER) and 

average verification time. Three types of impostors, namely unregistered, 

skilled forged and random forged users, were accounted in the 

identification process.  It is found that by including the dynamic features 

along with static features of the signature, the success rate is increased by 8 

percent. The test results demonstrate the suitability and effectiveness of 

combining the grid based Gabor Wavelet Transform approach and dynamic 

features in a signature biometric system. 



Improved Biometric Authentication System Using Multimodal Cue Integration 

 159

CHAPTER 7  

IRIS RECOGNITION SYSTEM 

This chapter, brings out the importance of iris in recognition 

systems as iris patterns are believed to be unique due to the 

complexity of the underlying environmental and genetic processes 

that influence its generation. These factors result in extraordinary 

textural patterns that are unique to each eye of an individual and 

are even distinct between twins. The pre-processing stage requires 

localization of the iris which generally involves the detection of 

the edge of the iris as well as that of the pupil. Since varying 

levels of illumination can result in dimensional inconsistencies 

between eye images due to the stretching of the iris, normalization 

needs to be performed so that iris region is transformed to have 

fixed dimensions. After unwrapping the normalized iris region 

into a rectangular region, it is encoded using Haar wavelets to 

generate the iris code. It was also observed that the Canny 

operator is best suited to extract most of the edges to generate the 

iris code for comparison. In the recognition stage, Hamming 

distance is used for the comparison of the iris code, the most 

discriminating feature of the iris pattern, with the existing iris 

templates. 

 

7.1 Introduction 

Among biometric technologies, iris-based authentication systems 

possess more advantages than other biometric technologies. Iris offers an 
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excellent recognition performance when used as a biometric. Iris patterns 

are unique due to the complexity of the underlying environmental and 

genetic processes that influence the generation of an iris pattern. These 

factors result in extraordinary textural patterns that are unique to each eye 

of an individual and even distinct between twins [110].  

Iris is a delicate circular diaphragm that lies between the cornea and 

the lens of the human eye. The human iris pattern varies among different 

individuals. The iris is one of the most stable biometric [2], [4], [211] as it 

does not alter significantly during a person’s lifetime. While Iris 

recognition is the most precise personal identification biometric, compared 

to other biometrics, such as fingerprints and face, iris-based authentication 

has a fairly short history of use. The idea of an automatic iris authentication 

procedure was conceptualized and patented by Flom and Safir in 1987 

[215]. Most of the common approaches reported in the literature are based 

on iris code and integral-differential operators suggested by Daugman 

[216], [217].  

7.1.1 Iris Anatomy 

Iris is the coloured ring of tissue around the pupil through which 

light enters the interior of the eye [217]. It is located in front of the 

crystalline lens, and divides the anterior aqueous into the anterior and 

posterior chambers. The pigmented fibro vascular tissue known as stroma 

characterizes the iris. It’s role is to help in regulating the amount of light 

that enters the eye. The iris made up of smooth muscle fibres known as 

sphincter and dilator, adjust the pupil size with the purpose of controlling 

the amount of light passing through the pupil. The sclera often referred to 

as white or white of the eye, is the outer white coat of connective tissue and 

blood vessels that surround the iris. Together with internal fluid pressure, it 
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maintains the eye shape and cares for its delicate internal components 

[218].  

 

Figure 7.1 Diagrammatic view of anatomy of an eye adapted from [218]. 

 

A curved band of strong, clear tissue called the cornea covers the 

surface of the eye. It is the most powerful lens in the human eye's optical 

system. The cornea is a transparent window of the eye through which light 

passes. The transparency of the cornea is because, unlike most tissues in the 

body, it does not contain any blood vessels. However, the cornea receives 

its nourishment from the tears and aqueous humor in the chamber behind it. 

Figure 7.1 shows the anatomy of the eye. Iris naturally has a rich, 

distinctive and complex pattern of crypts, furrows, arching, collarette and 

pigment spots [217]. Each human iris has a distinctive texture which is 

believed to be determined randomly during the embryonic development of 

the eye [110]. Although iris colour can change based on the levels of 
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melanin concentration and distribution within the iris stroma, the 

appearance of an iris is relatively constant for most of a human’s lifetime 

[219] .  

7.1.2 Iris as a Biometric  

Iris recognition, a reliable method for identity authentication, plays an 

important role in many mission-critical applications such as access control 

and border checkpoints due to several reasons [113]:  

• Iris is an internal organ of the eye, physically protected from external 

environment by the cornea. This makes it more consistent than 

fingerprints that are more susceptible to worn out due to age or 

manual labour.  

• Iris starts to develop in the third month of gestation and the 

structures creating its pattern reach completion mainly by the eighth 

month [219] and does not vary throughout one's lifetime. 

Furthermore, the formation of iris depends on the initial environment 

of the embryo. Therefore, the texture patterns of the iris do not 

correlate with genetic determination. Consequently, even irises of 

genetically identical twins are extremely distinct. Actually, the left 

and the right irises of the same person are unique [220].  

• Since iris is stable, iris-based technologies have demonstrated high 

levels of performance [221]. Moreover, surgical modification of the 

pigmentation and/or colour of the iris without unacceptable risk to 

damage the vision  is also impossible.  

• The physiological reaction of the iris to light sources provides one of 

the easiest aliveness detection practices against spoofing attacks.  

• Glasses or contact lenses rarely hinder Iris recognition efficacy 

[222]. In addition, the non-contact acquisition procedure used in 
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capturing iris images makes it more convenient than fingerprints, 

which mostly use optical touch based sensors.  

• Among biometrics, iris has one of the smallest outlier populations, 

where few people cannot use or enrol using this technology.  

Despite the aforementioned advantages of using iris recognition, the 

acquisition of satisfactory quality iris images for iris recognition is a critical 

yet challenging step [111]. It may act very poorly when deployed in real-

time applications, especially for recognition at a distance. Besides, the iris 

is usually located at the back of a curved and reflecting surface, typically 

covered by eyelashes and partially occluded by eyelids.  

7.2 Iris recognition system 

Since the beginning of the iris recognition research, many different 

iris recognition systems have been developed [223], [224] . Perhaps the 

most successful and most well-known iris recognition algorithms, on which 

the state-of-the-art systems are based, are the algorithms developed by 

Professor John Daugman. The main stages of any typical iris recognition 

system include iris pre-processing, feature extraction and classification. 

Figure 7.2 illustrates the key phases of an iris recognition system based on 

the approach of Daugman [225].  

The initial stage involves iris localization, iris normalization and 

image enhancement. The first step consists of localizing the iris area 

between the inner (pupillary) and the outer (limbic) boundaries, with the 

prior assumption that each border is either circular or elliptical. This 

process also obliges detection and removal of any specular reflection as 

well as eyelash or eyelid noise from the image prior to segmentation. In 

order to overcome the differences in the pupil size and the acquired images 

as well as to ensure consistency between eye images is ensured using 
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Daugman’s Rubber Sheet method, which maps the original segmented iris 

region into a fixed length and dimensionless pseudo-polar coordinate 

system. The next step is to extract distinctive features from the iris texture 

pattern, with the intention of comparisons between templates. 

 

Figure 7.2 Block diagram for an Iris Recognition System 

As stated before, segmentation plays a crucial role in the overall 

performance of the iris recognition system.  The following sub-sections, 
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describes the proposed technique, starting with the detection of pupil as 

well as iris boundary regions, the isolation of eyelids together with 

eyelashes, feature extraction and finally matching the processed iris pattern 

with those in the knowledge base.  

7.2.1 Iris Pre-processing  

The primary step in iris pre-processing is to distinguish the iris 

texture from the input eye image. The first step in any iris recognition 

system is to localize the iris area between the inner (pupillary) and the outer 

(limbic) boundaries, usually with a prior assumption that each border is 

either circular or elliptical. Researchers have proposed different algorithms 

for iris detection [111],[112],[226],[227]. This process also obliges 

detection and removal of any specular reflections of illumination as well as 

eyelash or eyelid occlusions from the image prior to segmentation. 

Segmentation plays an essential role in the overall success of any iris 

recognition process, as image parts that are incorrectly considered as iris 

pattern data will eventually lead to poor recognition rates. 

7.2.2 Iris localization or segmentation 

Implementation of an iris biometric system needs the iris region to 

be isolated from other parts of the image. A ring defined by the iris/sclera 

(limbic) boundary and the iris/pupil (pupilary) boundary approximates the 

iris region. In iris localization, a technique is required to locate and isolate 

the iris region as well as to remove the eyelids and eyelashes [228]. The 

primary step in any iris recognition system is to localize the iris area 

between the inner and outer boundaries. The key steps [226] involved are 

Dimension Reduction, Pupil and Outer iris localization, Eyelids and 

Eyelashes as well as Boundary Detection. The different steps involved in 

iris segmentation are shown in Figure 7.3. 
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Figure 7.3 Iris Segmentation Stages 

7.2.2.1 Dimension Reduction and Iris Extraction 

The database used for the implementation had the image dimensions 

as 600 x 800 with coloured JPEG of bit depth 24, where 24 bits represent 

each pixel of the image. Therefore, to reduce the computational complexity, 

the iris image is first converted into grayscale reducing the bit depth to 8 

and since it is the only region of interest the remaining region is removed. 

In the grayscale image, summation of the pixel values in the iris region 

when compared to that in the other regions will be less and so for extraction 

of the iris region, threshold technique based on the colour of the iris is used. 

The gray level values of the pixels for a dark iris will be lesser compared to 

that of a light iris. Two threshold values can be set to determine the iris 

region using the histogram of the eye image.  

7.2.2.2 Removal of eyelids and eyelashes 

After extracting iris from the input image, the unwanted 

information, such as eyelashes and eyelids, needs to be removed from it. 
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The Sobel operator [229], which performs a 2D spatial gradient 

measurement on an image, helps in detection of the edges of eyelids and 

eyelashes. An edge is characterised by a noticeable change in the intensity 

and the Sobel operator returns edges at those points where there is 

maximum gradient of the image. The two 3 x 3 masks Gx and Gy of the 

operator, are given in Eq.(7.1) and (7.2) respectively. 

 

�W = N−# � #−F � F−# � #O 
(7.1) 

�X = N # F #� � �−# −F −#O 
 

(7.2) 

Applying the masks to the image and computing its magnitude as in 

Eq.(7.3), approximates the gradient. 

�G�(', �)J = |�W| + ��X� (7.3) 

To compute the gradient for the pixel ( )jiPi ,  of the input image, I is 

given in Eq.(7.4). 

�(', �) = ��(' − #. � − #) �(' − #. �) �(' − #, � + #)�(', � − #) �(', �) �(', � + #)�(' + #, � − #) '(' + #, �) �(' + #, � + #)� (7.4) 

Eq.s (7.5) and (7.6) evaluates Gx and Gy respectively. Determination 

of the Gradient magnitude at each pixel and comparison with some 

threshold determines whether it is an edge pixel or not. Sobel operator is 

less sensitive to noise due to its large convolution masks.  
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�W(', �) = � G�(' − #, � + #) + F ∗ �(', � + #) + �(' + #, � + #)J−G�(' − #, � − #) + F ∗ �(', � − #) + �(' + #, � − #)J (7.5) 

�X(', �) = � G�(' − #, � − #) + F ∗ �(' − #, �) + �(' − #, � + #)J−G�(' + #, � − #) + F ∗ �(' + #, �) + �(' + #, � + #)J (7.6) 

  

7.2.2.3 Boundary Detection 

For boundary detection, the centre pixel of the eyelash removed iris 

image is located and based on the centre co-ordinates of the pupil a circular 

strip is extracted. For detecting the inner and outer boundaries	(���	��	���) 
of the iris, Integro-Differential operator [216], as defined in Eq.(7.7) is 

used.  

�'�	��	��� = ��W(�,W�,X�) ��[(�) ∗ ���� �(W, X)Fd��,W�,X� ��� (7.7) 

where �(
, �) is the original grayscale eye image. The parameter (r, 

xo, yo) represents a circle of radius r with centre coordinates (xo, yo). The 

symbol * denotes convolution and ��(Q)is a radial smoothing Gaussian 

function with centre r and standard deviation σ, defined as in Eq.(7.8). 

�[(�) = #√Fd[ ¡�¢��£
F

F[F   (7.8) 

The assumption that both pupil and iris have circular boundaries 

justifies the usage of Gaussian filter for smoothing and integration 

operation along the iris circle. This method tries to find a circle in the eye 

image with maximum change in gray level difference with its neighbours. 

Due to significant contrast between iris and pupil regions, initially 

localization of the pupil boundary and then, using the same operator with 

difference radius and parameters, detection of the outer boundary is carried 

out. Applying the operator iteratively attains precise localization. 
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7.2.3 Iris Normalization and Unwrapping 

On successful segmentation of iris regions from an eye images, the 

resulting iris regions will have dimensional inconsistencies, mainly due to 

stretching of the iris caused by pupil dilation from varying levels of 

illumination. The normalization process will produce iris regions, which 

have the same constant dimensions, so that two photographs of the same 

iris under different conditions will have the same characteristic features.  

In fact, the homogenous rubber sheet model devised by Daugman 

remaps each point	(
, �) within the iris region to a pair of polar co-

ordinates	(Q, Z), where Q is in the interval (0, 1)	and Z is the angle	(0, 2¤). 
The normalized iris region is then unwrapped into a rectangular region. 

Figure 7.4 illustrates the mechanism of Daugman’s rubber sheet model. 

 
Figure 7.4 Unwrapping: Daugman’s Rubber Sheet Model 

The normalized remapping of iris region from Cartesian co-

ordinates (
, �) to non-concentric polar representation is given by Eq.(7.9). 

�(W(�,¥), X(�,¥)) → �(�,¥)  
(7.9) 

where   W(�,¥) = (# − �)	W§(¥) + �		W¨(¥)  																							X(�,¥) = (# − �)	X§(¥) + �		X¨(¥)  

where �(
, �) is the iris region image, (
, �)is the original Cartesian 

co-ordinate,	(Q, Z) is the corresponding normalized polar co-ordinate, 

 

r 
0 1 

θ 

r 

θ 
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¡
©, �©£ and (
ª, �ª) are the pupil and iris boundary respectively along the 

θ  direction, as represented in equations from (7.10) to(7.13). 

	W§(¥) = 	W§�(¥) + �§	.��¥  (7.10) 	X§(¥) = 	X§�(¥) + �§	«'�¥ (7.11) 	W¨(¥) = 	W¨�(¥) + �¨	.��¥ (7.12) 	X¨(¥) = 	X¨�(¥) + �¨	«'�¥ (7.13) 

After getting the normalized polar representation of the iris region, 

this region is unwrapped by choosing a constant number of points along 

each radial line, irrespective of how much narrow or wide the radius is at a 

particular angle. The 2D array produced will have vertical dimensions as 

radial resolution and horizontal dimensions as angular resolution. Figure 

7.5 shows the unwrapped normalized iris image. 

 
Figure 7.5 Unwrapped Normalized iris image 

 

7.2.4 Feature Extraction 

In order to provide an accurate recognition of individual, though the 

most discriminating information present in an iris pattern is extracted, only 

the significant features of the iris need to be encoded.  In the feature 

extraction stage, histogram equalization is done initially to enhance the iris 

texture in the normalized image followed by extraction of iris texture using 

the canny edge detector [230]. For dimensionality reduction of the resulting 

2D image, it is converted into a 1D energy signal by Vertical projection. 

Discrete wavelet transform applied to the resulting 1D energy signal results 
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in a set of low frequency and high frequency coefficients. High frequency 

coefficients can be discarded due to the lack of significant information 

while iris templates are selected from the low frequency coefficients, each 

of which has a dimension of 64 bytes. Figure 7.6 shows the different steps 

involved in the feature extraction stage.  

Figure 7.6 Feature Extraction Stages 

7.2.4.1 Histogram Equalization 

The intensities are better distributed on the histogram through a 

process known as histogram equalization, allowing for areas of lower local 

contrast to gain a higher contrast without affecting the global contrast. This 

is accomplished by effectively spreading out the most frequent intensity 

values in the image. Figure 7.7 shows the image with enhanced iris texture 

obtained after histogram equalization. The domes in the unwrapped image 

are due to the eyelid occlusion.  

 

Figure 7.7 Histogram Equalized image 

7.2.4.2 Edge Detection 

Edge detection is performed to extract the iris texture from the 

histogram equalized image using available techniques such as Sobel, 
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Canny, Prewitt etc. It is observed that Canny edge detection technique is 

able to extract most of the iris texture from the enhanced image. 

The Canny operator, an optimal edge detector, takes grayscale 

image as input producing an image showing the positions of tracked 

intensity discontinuities. The Canny operator works in a multi-stage 

process. After smoothing the image by Gaussian convolution, a simple 2-D 

first derivative operator (somewhat like the Roberts Cross) is applied to 

highlight regions of the image with high first spatial derivatives. Edges give 

rise to ridges in the gradient magnitude image. The algorithm then tracks 

along the top of these ridges and sets to zero all pixels that are not actually 

on the ridge top to give a thin line in the output, a process known as non-

maximal suppression. The tracking process exhibits hysteresis controlled 

by two thresholds: T1 and T2, with T1 > T2. Tracking can begin only at a 

point on a ridge higher than T1 and it continues in both directions out from 

that point until the height of the ridge falls below T2. This hysteresis helps 

to ensure that noisy edges are not broken up into multiple edge fragments. 

The effect of the Canny operator is determined by three parameters - the 

width of the Gaussian kernel used in the smoothing phase and the upper as 

well as lower thresholds used by the tracker. Increasing the width of the 

Gaussian kernel reduces the detector’s sensitivity to noise, at the expense of 

losing some of the finer details in the image. The localization error in the 

detected edges also increases slightly as the Gaussian width is increased. 

Usually, the upper tracking threshold can be set quite high and the lower 

threshold quite low for good results. Setting the lower threshold too high 

will cause noisy edges to break up while setting the upper threshold too low 

increases the number of spurious and undesirable edge fragments appearing 

in the output. The Gaussian smoothing in the Canny edge detector fulfils 
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two purposes: first, it can be used to control the amount of detail that 

appears in the edge image and second, it can be used to suppress the noise. 

The Canny method [230] locates edges by looking for local maxima 

of the gradient of	�(�, ¬). The gradient is calculated using the derivative of a 

Gaussian filter. The method uses two thresholds to detect strong as well as 

weak edges, and the weak edges are included in the output only if they are 

connected to strong edges. This method is therefore less likely to be fooled 

by noise compared to the others and more likely to detect true weak edges. 

Figure 7.8 shows the edge-detected image using canny operator.  

 
Figure 7.8 Canny edge-detected image 

7.2.4.3 Vertical Projection 

Vertical projection is a method used to convert the 2D signal to a 

1D signal in order to reduce the system complexity. For vertical projection, 

energy of each row of the edge-detected image is calculated and is 

transformed into a row vector. The generalized form is given in Eq.(7.14). 

The dimension of the normalized image is 	� × � and is taken 

as	128 × 512. Hence, after vertical projection, its dimension becomes	�, 

which is equal to128. 
NW## … W#�⋮ ⋱ ⋮W�# … W��O → N%|W#'|F�

'(# … %|W�'|F�
'(# O (7.14) 
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7.2.4.4 Discrete Wavelet Transform 

At low data rates, the Discrete Cosine Transform (DCT), suffer 

from a blocking effect due to the unnatural block partition that is required in 

the computation. Other drawbacks include mosquito noise,  a distortion that 

appears as random aliasing occurring close to the object’s edges, and 

aliasing distortions. Due to the shortcomings of DCT, discrete wavelet 

transform (DWT) has become increasingly important. The main advantage 

of DWT is that it provides space-frequency decomposition of images, in 

comparison to the DCT and Fourier transform that only provide frequency 

decomposition. By providing space-frequency decomposition, the DWT 

allows energy compaction at the low-frequency sub-bands and the space 

localization of edges at the high-frequency sub-bands. Furthermore, the 

DWT does not present a blocking effect at low data rates. Wavelets are 

functions that integrate to zero, waving above and below the x-axis. Like 

sine and cosine in the Fourier transform, wavelets are used as the basis 

functions for signal and image representation. Such basis functions are 

obtained by dilating and translating a mother wavelet c(x) by amounts k 
and τ, respectively as given in Eq.(7.15). 

®̄ ,�(
) = °® `	�¯� b , (±, k) ∈ ² × ²a³   (7.15) 

The translation τ and dilation k allow the localization of wavelet 

transform in time and frequency. The discrete wavelet transform (DWT) 

decomposes the signal into mutually orthogonal set of wavelets [113]. The 

DWT of signal x is calculated by passing it through a series of filters. The 

samples are passed through a low pass filter with impulse response g 

resulting in a convolution as given in Eq.(7.16) and is simultaneously 

decomposed using a high pass filter h . 



Improved Biometric Authentication System Using Multimodal Cue Integration 

 175

´G�J = (W ∗ V)G�J = % WGEJ	VG� − EJµ
E(�µ  (7.16) 

The 64 byte detail coefficients from the high pass filter and the 64 

byte approximation coefficients from the low pass filter form  the 1D signal 

of  128 bytes. The two filters are related to each other and are together 

known as a quadrature mirror filter. The Haar DWT [231],[232], the 

simplest of all wavelets have simpler boundary conditions, is orthogonal as 

well as symmetric and their minimum support property allows arbitrary 

grid intervals. In the proposed work Haar DWT is used since it works 

efficiently to detect the characteristics such as edges and corners. By using 

the quadrature mirror filter, wavelet coefficients from an n x n image I  are 

computed as discussed below.  

Filters H and G are applied on the rows of an image, splitting the 

image into two sub images of dimensions �/2	
	� (half the columns) each. 

One of these sub images, HrI (where the subscript r denotes row), contains 

the low-pass information and the other, GrI, contains the high-pass 

information. Next, the filters H and G are applied to the columns of both 

the sub images. Finally, four sub images with dimensions n/2 x n/2 are 

obtained. Sub images HcHrI, GcHrI, HcGrI, and GcGrI (where the subscript c 

denotes column) contain the low-low, high-low, low-high and high-high 

pass information, respectively. The same procedures are applied iteratively 

to the sub image containing the most low band information until the sub 

image’s size reaches 1x1. Therefore, the initial dimensions of the image are 

required to be powers of 2. In practice, it is not necessary to carry out all 

the possible decompositions until the size of 1x1 is reached. Usually, just a 

few levels are sufficient. After wavelet transform, a set of low frequency 

coefficients and high frequency coefficients, each of dimension 64 bytes, is 

obtained. After DWT, it is observed that the approximation coefficients 
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contain information while the detailed coefficients do not hold any 

information. Hence, approximation coefficients, with a dimension of 64 

bytes, are  selected as the feature vector and stored in the database. Since 

the wavelet functions are compact, the wavelet coefficients only measure 

the variations around a small region of the data array. This property makes 

wavelet analysis very useful in signal or image processing. 

7.2.5 Matching 

In the recognition stage, the features of the input eye image are 

compared with those of the images already stored in the database and if 

they match, the corresponding eye image is identified, otherwise it remains 

unidentified. Since a bitwise comparison is necessary, Hamming distance is 

chosen for identification.  

7.2.5.1 Hamming Distance 

The Hamming distance [111] gives a measure of how many bits are 

the same between two patterns. It is used for the comparison of iris 

templates in the recognition stage. Hamming distance D is given by Eq. 

(7.17). 

· = #�∑ WE�E(# ⊕ XE  (7.17) 

where x and y are the two bit patterns of the iris code while n 

indicates the number of bits. Hamming distance D gives out the number of 

disagreeing bits between x and y. 

Ideally, the hamming distance between two iris codes generated for 

the same iris pattern should be zero. However, this will not happen in 

practice because normalization is not perfect. The larger the hamming 

distance (closer to 1), the more probable the two patterns are different 
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whereas the smaller the hamming distance (closer to 0) the more probable 

the two patterns are identical. By properly choosing the threshold upon 

which the matching decision is made, good iris recognition results with 

very low error probability can be obtained.   

7.3 Iris Database  

 

Figure 7.9 Subset of UBIRIS eye database used for training 
 

The system has been tested against the UBIRIS database [225]. 

UBIRIS database includes 1877 images from 241 persons collected in two 

sessions. The images collected in the first photography session were low 

noise images. On the other hand, images collected in the second session 

were captured under natural luminosity factor, thus considering reflections, 

different contrast levels as well as luminosity and focus problems. Such 
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images might be a good model for realistic situations. Figure 7.9 shows a 

subset of the UBIRIS eye database used for training. 

7.4 Results and Discussions 

The data sets used for identification purpose were the hundred sets 

of eye images from the UBIRIS database, each set consisting of ten eye 

images of a person taken at different times. From each set, randomly 

selected ten eye images and their features were stored in the database. The 

1000 images used for simulation are referred to as registered images since 

their features were stored in the database. The main challenge in 

identification was to recognize the other images in each set whose features 

were not stored. The unregistered images are the fifty images whose 

features were not stored in the database but were used to test the algorithm. 

The performance of iris acceptance algorithm is validated using F1 score, 

precision and recall. Figure 7.10 displays iris edge detection using various 

edge detection operators. In Figure 7.11, it can be seen that the canny 

operator gives the lowest EER at a threshold of 0.4.  The Table 7.1 shows 

the EER percent and its corresponding hamming distance.  

Table 7.1 EER of different operators 

Operators  EER (%) Hamming distance 

Canny 7.00 0.40 

Sobel 19.25 0.45 

Prewitt 16.50 0.50 

Roberts 22.50 0.40 

log 15.50 0.50 

zerocross 14.50 0.45 
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Figure 7.10 Detection of iris edge using various operators 
 

 
Figure 7.11 Decision making in iris biometric system. 
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7.4.1 F1 Score 

In pattern recognition and information retrieval with binary 

classification, precision, or positive predictive value, is the fraction of 

retrieved instances that are relevant, while recall or sensitivity is the 

fraction of relevant instances that are retrieved. Table 7.2 shows the 

condition and test outcome to calculate F1 score for performance 

measurement. Both precision as well as recall are therefore based on an 

understanding and measure of relevance. Precision can be seen as a 

measure of exactness or  quality, whereas recall is a measure of 

completeness or quantity.  

Table 7.2 Performance measures for F1 score 

 Condition  
Condition 
positive(cp) 

Condition 
negative(cn) 

T
es

t o
ut

co
m

e 

Test 
outcome 
positive 
(top) 

True positive(tp) False 
positive(fp) 
(Type I error) 

 

§� ¸'�'�� = 	 ∑ �§∑ ��§ 

Test 
outcome 
negative 
(ton) 

False 
negative(fn) 
(Type II error) 

True 
negative(tn) 

¹ V��'º 	§� �'¸�'º'�X
= 	 ∑ ��∑ ��� 

 � ��'�'º'�X
= 	 ∑ �§∑¸§ 

�§ ¸'»'¸'�X
= 	 ∑ ��∑¸� 

0¸¸���¸X
= 	 ∑ �§ + ∑ ��∑/���¨	§�§�¨��'�� 

 

In a classification task, the precision for a class is the ratio of 

the number of true positives to the total number of elements labelled as 

belonging to the positive class or say the sum of true positives and false 

positives. Recall is defined as the ratio of number of true positives to the 

total number of elements that actually belong to the positive class, say the 

sum of true positives and false negatives, which are items not labelled as 
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belonging to the positive class but should have been. In statistical analysis 

of binary classification, the F1 score (also F-score or F-measure) is a 

measure of a test’s accuracy. It considers both the precision and 

the recall of the test to compute the score as in Eq.(7.18). Figure 7.12 

shows the comparison of different edge detection operators using F1 score. 

�� = 2 ©�¼½�����		∗		�¼½¾ªª©�¼½�����		a		�¼½¾ªª   (7.18) 

 

Figure 7.12 Comparison of edge detection operators 

Using MATLAB, a comparison study between different classical 

operators like Canny, Sobel, Prewitt, Roberts, log and zero cross was done. 

The operators were applied to the enhanced normalized image. From the 

results, which reveal the performance of each of the operators, it is found 

that the Canny operator outperforms the others; in fact it is the only 

operator which is able to extract most of the iris texture. It is observed that 

an optimum result is obtained at a hamming distance threshold of 0.4 for 

the canny operator. 
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7.5 Summary 

The iris images are segmented and projected into 1D signals by the 

process of vertical projection. The 1D signal features are then extracted by 

the Haar wavelet transform.  The complexity of the feature extraction 

method for iris recognition is low and thus achieves a considerable 

computational reduction while maintaining good performance.  

A low dimensional feature extraction algorithm has been developed 

and tested with thousand eye images from the database by varying the 

parameters such as dimension of the feature vector and hamming distance 

threshold. It is found that an optimum result is obtained at a hamming 

distance threshold of 0.4 and a feature vector dimension of 64 bytes. It is 

also observed that the Canny operator is best suited to extract most of the 

edges to generate the iris code for comparison. By this method, a 

recognition rate of 93% has been achieved. 
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CHAPTER 8  

MULTI-MODAL BIOMETRIC SYSTEM 

In this chapter, the implementation of  a prototype system for user 

authentication using the multimodal biometrics utilizing four 

traits i.e., speech, face, signature and iris is discussed. The final 

decision is made by fusion at matching score level architecture,  

in which the feature vectors of query images are compared with 

the templates in  knowledge base. Based on the proximity of the 

feature vector and template, each subsystem computes its own 

matching score. Finally, the individual traits are fused at matching 

score level using user dependent weighted sum of score technique 

and is then passed to the decision module. This system is tested 

on our knowledge base and the overall accuracy of the system is 

found to be more than 98%. 

8.1 Introduction 

The basic aim of pattern recognition is to device automatic 

procedures that maximize the recognition performance. The comparison of 

different pattern recognition algorithms on the specific problem and 

selecting the best of them can lead to the required result. Some recognition 

errors committed by the best biometric trait approach may be resolved by 

the use of inferior trait methods. This observations motivated the interest in 

combining the different biometric traits and their classifiers, which results 

in a multi-modal biometric system. The performance of a unimodal system 

can drop significantly under noisy conditions while the multimodal systems 
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overcome these challenges by combining the evidence provided by a 

number of biometric traits. 

8.2 Score Level Fusion 

Score fusion methods can be divided into two categories, adaptive 

and non-adaptive fusion [233]. Non-adaptive fusion can employ fixed 

weights that is heuristically determined a priori, and place a higher 

weighting on the higher performing modalities. However, under adverse 

testing conditions, it is impossible to place a lower weighting on a degraded 

modality. Non-adaptive fusion can be without the use of any weights, i.e., 

equal weights are placed on each source of information, e.g., simple 

additions of scores. Adaptive fusion is required to alter the weights 

according to the confidence of each modality. This confidence will vary 

dynamically as the testing conditions for each modality vary. 

8.2.1 Non-weighted Fusion 

In non-weighted fusion, the classifier probabilities are fused from a 

purely theoretical level, without the use of weights. The commonly used 

fusion methodologies to combine multiple modalities at the matching 

scores level are the sum, product, min and max [234]. If y� is the matching 

score from ith modality, S represents the resulting fused score. 
 

The Simple Product Rule combines the scores by multiplying all 

the individual scores as given in Eq.(8.1). 

y = y� × yv × …× y� 
 

(8.1) 

The Simple Sum Rule combines the scores as a linear 

transformation as given in Eq.(8.2). 



Improved Biometric Authentication System Using Multimodal Cue Integration 

 185

y = (¿�y� − À�) + ⋯+ (¿�y� − À�) (8.2) 

where ¿� and À� represent the weight and bias, respectively, which 

can be specified by the user. 

The Simple Max Rule is the maximum score from the different 

modalities as given in Eq.(8.3). 

y = �¿
	(y�, yv, … , y� (8.3) 

The Simple Min Rule is the minimum score from the different 

modalities as given in Eq.(8.4). 

y = ���	(y�, yv, … , y� (8.4) 

8.3 User-Dependent Fusion Strategy 

In user-dependent fusion [235], the training scores of both authorized and 

unauthorized persons are employed. While in the first stage, the biometric 

samples of known users are employed for testing, in the second stage, the 

biometric samples of unknown users are used for testing. The results of the 

two sets of users are considered for determining the FAR and FRR of the 

system. The EER of the system and the corresponding threshold are 

determined. The general information provided by the pool of users can be 

exploited in user-dependent fusion schemes [236]. The three types of user 

dependent strategies are Global, Local and Adapted.  

In global type, only the scores from the pool of users (both genuine 

and impostors) are used for training.  In the local type, only the scores from 

the user at hand (both genuine and impostors) are used for training. In the 

adapted type, the scores from both the pool of users and the user at hand 

(both genuine and impostors) are used for training. In this study, adapted 

fusion strategy is used. 
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The match scores at the output of the individual trait may not be 

homogeneous and need not be on the same numerical range. The 

dissimilarity scores or similarity scores may be the outputs obtained by 

different traits.  The statistical distribution of the match scores at the output 

of different traits may be different. Due to these reasons, it is necessary to 

normalize the scores of different traits before combining the scores.  

8.3.1 Score Normalization Technique 

Classifier scores can take many forms such as posteriors, 

likelihoods and distance measures. The scale, location and statistical 

distribution will vary across classifiers. Furthermore, the classifier scores 

may be heterogeneous, for example, a small distance measure indicates a 

good match, whereas a low posterior indicates a poor match; both similarity 

and dissimilarity scores can be given. Non-normalised scores cannot be 

integrated sensibly in their raw form, as it is impossible to fuse 

incomparable numerical scales. A score distribution with a relatively higher 

scale or dynamic-range will dominate the fused score. In order to combine 

these scores in an intelligible way at the score level, the score outputs from 

the various classifiers must first be normalised into a common domain. 

Various normalization methods exist in which essentially each method 

consists of changing the location and scale of the distribution. Examples 

include the min-max, Z-norm, decimal-scaling, Median-MAD and the tanh 

transformation.  

8.3.1.1 Min-max Normalization 

 For normalizing the matching score the min-max normalization 

technique is employed in this work. Min-max normalization is a 

straightforward approach when compared to Z-score and tanh [233] 

normalization techniques. The minimum and maximum bounds of the 
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scores produced by a biometric trait are mapped to 0 and 1, respectively. 

The min-max technique is computed as in Eq. (8.5). 

� = 
 − min	(y	)max(y	) − 	min	(y	) 
 

(8.5) 

where x is the matching score before normalization, y is the 

matching score after normalization and y	 is the set of all possible 

matching scores generated by particular traits. Min-max normalization 

transforms all the scores into a common range [0, 1] and retains the original 

distribution of scores. The dissimilarity score can be transformed into 

similarity score by subtracting the normalized value from 1. 

8.3.1.2 Decimal Scaling 

If the scores of different classifiers exhibit disparate logarithmic 

scales e.g.[0, 1] and [0, 100], then the scores can be normalised using 

Eq.(8.6) 

y�A = y�10ª��ÅÆ¡�¾	(ÇÈ)£ (8.6) 

y�A ∈ G0,1J,	which essentially is a specific case of the min-max norm. 

8.3.1.3 Z-norm 

The zero-normalisation (Z-norm) method is the most common form 

of score normalisation. The list of N scores {y�}, i=1,…, N is transformed 

such that the new score distribution has zero mean and unity variance, i.e., 

the standard normal distribution. To carry out this, the location ?�	and scale l� 	 parameters are calculated using Eqs. (8.7) and (8.8) respectively. 
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?� = 1-%y�{
�(�  

 (8.7) 

l�v = 1- − 1%(y� − ?�)v
{
�(�  

 

(8.8) 

where ?� and  l� are the mean and standard deviation of the pre-

normalised score. Each score is normalised using Eq.(8.9). 

y�A = 	y� − ?�l�  

 

(8.9) 

8.3.1.4 Median-MAD  

Robust statistical methods are employed to estimate the average or 

location parameter using the median. The median ignores the outlier score 

values at the distribution tails, which could be unfairly employed in skew ?� above. The standard deviation or scale is estimated using the Median 

Absolute Deviation (MAD). The MAD value is calculated using 

MAD=median(|S-median|). These form the median-MAD score 

normalization scheme as in Eq.(8.10). 

y�A =	y� −�ÉÊ�¿��,Ë  

 

(8.10) 

8.3.1.5 Tanh transformation 

A hyperbolic tangent mapping is used to map a score distribution 

into the interval [-1, +1]; combined with a scaling and a shift results in the 

standard interval [0, 1]. For a specific classifier, given a list of N scores 

{y�} i=1…N, the tangent normalised score [233] list is given in Eq.(8.11). 
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y�A = 12 Ì}¿�ℎ c0.01 (y� − ?�¾�Î)l�¾�Î e + 1Ï ;	y�ArG0, 1J 
 

(8.11) 

where ?�¾�Î and l�¾�Î respectively, are the Hampel tanh-estimator’s values 

for the mean and standard deviation of {y�}. 
In conclusion, the basic min-max and z-norms are appropriate when 

the location and scale are known in advance. If these parameters are to be 

estimated on noisy training data, the robust tanh norm is more suitable. 

Also, different classifiers exhibit different score distributions, suggesting 

that a mixture of various normalization methods could be employed in a 

multi-modal system. 

8.4 Multimodal Technique of identification 

In a multimodal biometric system, various biometric traits are 

obtained from an individual. The use of multiple traits results in greater 

protection against fraudulent attacks. The different input traits are captured 

using separate sensors. The sensor module, feature extraction module, 

matching module, database and normalization module corresponding to 

each of the traits are different. The score of the individual trait is combined 

in the fusion module and passed to the decision module. The identity of the 

user is accepted or rejected based on the decision criteria with respect to the 

combined score in the decision module.  

The acquisition sequence in a multimodal biometric system is the 

order in which the various biometric traits are obtained. In this study, the 

biometric trait is obtained sequentially. That means, each trait is 

independently acquired with a time interval between successive 

acquisitions and the corresponding algorithm process the acquired 

biometric information. The results acquired from each trait are combined 
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by an appropriate fusion scheme and the final decision is taken based on the 

combined results of all the traits. This approach improves the accuracy of 

the system. The mode of operation of multimodal identification is shown in 

Figure 8.1.    

 
 

Figure 8.1 Mode of operation of a multimodal identification system 

In this study, the system provides an option to select the number of 

biometrics depending on the availability, necessity and security 

requirements. At each stage, the system decides whether the individual is 

authorized or unauthorized.  The authorized-unauthorized frequency 

distribution curve for unimodal and multi-modal system is shown in Figure 

8.2. This curve shows the distribution of authorised and unauthorised match 

scores of a particular biometric trait. The system rejects the claimed 

identity if the score is less than ‘minA’, as given in Figure 8.2. 

The reject zone essentially consists of two regimes, namely, 

confusion zone and true reject zone. The confusion zone is the overlap 

between true reject and accept zone. The regime corresponding to match 

score of unauthorized score less than ‘maxU’ and authorized score greater 



Improved Biometric Authentication System Using Multimodal Cue Integration 

 191

than ‘minA’ is the confusion zone. Therefore, for a particular biometric 

trait, if the resulting score is greater than ‘maxU’, the system will recognize 

the person as authorized; similarly, if the resulting score is less than 

‘minA’, the system will recognize the person as unauthorized. If the value 

is in between ‘minA’ and ‘maxU’, the decision is fuzzy. It is observed that 

the width of the confusion zone decreases, when the number of biometric 

traits is increased. 

 

 

Figure 8.2 Authorized-Unauthorized frequency distribution curve 

8.4.1.1 Fusion Strategy 

Two fusion strategies considered in this study are equal weight for 

each traits and user dependent trait specific weight. The cases differ in 

computing the weight of the trait. In equal weight system, the weight for 

each trait in the system is taken as equal and hence, if ‘n’ traits are used, the 

weight of each trait will be ‘1/n’. In user dependent trait specific weight 

system, the average performance of each trait has been considered. The 
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EER corresponding to the ROC curve of the performance of all the users is 

used for the computation of the user dependent trait specific weight system. 

The different weight is considered for various traits for compensating the 

poor average performance of the particular trait. For example, in general, 

the success ratio of the signature trait is lower than the iris, which can be 

compensated in the system by considering higher weight for iris and lower 

weight for signature.     

a) Equal weight fusion strategy 

This is the simplest form of fusing various traits in which the equal 

importance is given to all traits considered. In this study, four traits are 

used. The weight of the jth trait ÐÑ to be used is ½, 1/3 and ¼ corresponding 

to bi-, tri- and tetra-modal system respectively.   The fused score yÒ�� is 

calculated as in Eq.(8.12). 

yÒ�� = ∑ ÐÑ 	× yÑ�Ñ(�      (8.12) 

where yÑ is the match score of jth trait. The range of the fused score 

is [0, 1] 

b) User dependent trait specific weight fusion strategy 

In this strategy, 1000 data corresponding to each trait in the 

knowledge base is used. The ROC curve for each trait is prepared and the 

EER is determined. The weight Ð� for the ith particular trait is calculated 

using the Eq.(8.13). 

 Ð� = � ÓÓKÈÔ
∑ Õ� ÓÓKÖÔ ×ØÖÙÅ       (8.13) 
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where PP²Ñ represents the Equal Error Rate for jth trait and n 

represents the number of traits participating in fusion. The fused score is 

calculated as in Eq.(8.12). The weights corresponding to each trait 

calculated for 1000 training data are given in Table 8.1.  

Table 8.1 Weights calculated for each trait in all the possible fusions 

Multi- 
modal 

Trait 
combinations Face (f) Iris  (i) Signature (s) Voice (v) 

Bi-
modal f+i 0.43750 0.56250 

f+s 0.727273 0.272727 

f+v 0.526316 0.473684 

i+s 0.774194 0.225806 

i+v 0.588235 0.411765 

s+v 0.294118 0.705882 
Tri-

modal f+i+s 0.375839 0.483221 0.140940  

f+i+v 0.313901 0.403587  0.282511 

f+s+v 0.439560  0.164835 0.395604 

i+s+v  0.502092 0.146444 0.351464 
Tetra-
modal f+i+s+v 0.280843 0.361083 0.105316 0.252758 

 

8.4.2 User-Dependent Decision 

Once a fused similarity score is obtained using user-dependent 

fusion method, this score is compared to a decision threshold in order to 

accept or reject the identity claim. In the decision module, an individual is 

recognized by searching the templates of all the users in the database for a 

match. One-to-many comparison is carried out to accept the identity of an 

individual or reject if the individual is not enrolled in the system database. 

The decision rule is stated as follows in Eq.(8.14). 
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ËÉj�k�R�	 = 	 �,jjÉÚ} ��	yÒ�� ≥ ±Ò��²É¬Éj} Ü}ℎÉQB�kÉ 	 (8.14) 

where ±Ò�� is a threshold of fusion score and yÒ�� is a fused score. 

8.5 Results and Discussions 

In the multimodal system, four biometric traits, namely, speech, 

face, signature and iris are used. Face and iris are physiological biometric 

traits whereas signature and voice are behavioural biometric traits. A 

biometric authentication system makes decisions using the threshold and 

the matching score obtained by comparing the extracted feature of the 

query sample with the reference model of the claimed identity. During the 

decision making process, two types of error may happen: False Acceptance 

(FA) Error, which occurs when a system falsely accepts an impostor (a 

person claiming an identity other than his/her own) and False Rejection 

(FR) Error, which occurs when a system falsely rejects a client (a genuine 

user). In the literature, FA and FR errors are also referred to as False Match 

Error and False Non-Match Error, respectively. The normalized versions of 

FA and FR errors are often used and are known as False Acceptance Rate 

(FAR) and False Rejection Rate (FRR), respectively. They are defined as in 

Eqs. (8.15) and (8.16) respectively. 

�,² = �,-Ý�ÀÉQ	R�	Þ�¿Ý}ℎRQ�kÉÊ 
(8.15) 

�²² = �²-Ý�ÀÉQ	R�	,Ý}ℎRQ�kÉÊ 
(8.16) 

It is observed that if the threshold is increased, the False Acceptance 

Rate (FAR) will decrease but the False Rejection Rate (FRR) will increase 

and vice versa. Hence, for a given biometric system, it is not possible to 

decrease both these errors simultaneously by varying the threshold. This 

has led to a threshold setting that produces Equal Error Rate (EER), a point 
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where FAR and FRR become equal on the training (validation) data set. 

The lower the EER, the better the system performance. 

8.5.1 Calculation of weights for fusion 

There are various possible fusions depending on the number of 

biometric traits. In this work, four biometric traits are used. Hence, there 

are 6 possible fusions of two traits, 4 fusions of 3 traits and 1 fusion of all 

the 4 traits. The weights assigned to different traits in all the possible 

fusions are shown in Table 8.1 given above. 

  
a) minA = 0.2273, maxU = 0.5923 b) minA = 0.292912, maxU = 0.653596 

  

c) minA = 0.2358, maxU = 0.6428 d) minA = 0.3042, maxU = 0.6315 
Figure 8.3 Authorised-Unauthorised Distribution Curve for the Biometric traits 
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8.5.1.1 Calculation of minimum Authorised and maximum Unauthorised 

Score 

The authorized-unauthorised distribution curves for each of the four 

traits and for each of the 11 fusion results are used to calculate the 

minimum authorized and maximum unauthorized score. The authorized-

unauthorised curves for all the traits, the unimodal, Figure 8.3, possible 

fusions of trimodal Figure 8.4, bimodal, Figure 8.5, as well as tetramodal 

Figure 8.6 has been plotted. The minimum authorised and maximum 

unauthorized score for each trait and their fusion results are shown in 

authorized-unauthorised distribution curve as minA and maxU, 

respectively. 

  
a) minA = 0.3748, maxU = 0.5801 b) minA = 0.3554, maxU = 0.5697 

  
c) minA = 0.3545, maxU = 0.5875 d) minA = 0.3475, maxU = 0.5931 

Figure 8.4 Authorised-Unauthorised Distribution Curve for trimodal fusion 
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a) minA = 0.3476, maxU = 0.5990 b) minA = 0.3371, maxU = 0.5890 

  

c) minA = 0.3278,  maxU = 
0.5906 

d) minA = 0.3416, maxU = 0.6088 

  

e) minA = 0.3317, maxU = 0.6044 f) minA = 0.3015, maxU = 0.5942 

Figure 8.5 Authorised-Unauthorised Distribution Curve for possible fusion of  the 
Biometric traits for bimodal 
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minA = 0.1011, maxU = 0.4952 

Figure 8.6 Authorised-Unauthorised Distribution Curve for the Tetramodal 

8.6 System Performance and Evaluation 

The performance of the multimodal biometric identification system 

is evaluated using width of the confusion zone as shown in Figure 8.4. The 

width of the confusion zone is the width between the control limit of the 

minimum authorized point (minA) and the maximum unauthorized point 

(maxU) in the authorized-unauthorized distribution curve. The width of the 

confusion zone is an indication of the effectiveness of the system. If the 

width is less, the system will be able to classify the test sample more 

correctly.  

The authorised and unauthorised zones are distinct and the 

confusion in identifying the test sample is low in such cases. The system is 

more reliable and robust if the width of the confusion zone is lower. In 

general, the fusion of biometric traits in the identification system reduces 

the width of the confusion zone. The width of the confusion zone in the 

score-frequency response of a tetramodal system of speech, face, signature 

and iris is found to be as low as 0.1. 
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The performance of the multimodal biometric identification system 

is also evaluated using the Success Ratio (SR). Success is defined as the 

approval of a known person or the rejection of an unknown person. SR is 

found as given in Eq.(8.17). 

y² = ß¾ + Ý�ß¾ + ß� + Ý¾ + Ý� 
 

(8.17) 

where ak  is the total number of acceptance of the known person, rk

is the total number of rejection of the known person, au  is the total number 

of acceptance of the unknown person and ru  is the total number of 

rejection of the unknown person. 

The success ratio of the user identity is recorded for unimodal, 

bimodal, trimodal and tetramodal biometric systems as given in Table.8.2. 

The success ratio of unimodal is found to be between 84 and 93 percent. 

The highest success ratio is found to be for iris and hence the iris system is 

relatively robust when compared to the other unimodal systems. The 

success ratio of the bimodal system is found to be from 88 to 94 percent.  

The maximum increase in the success ratio by fusing two traits is found to 

be 1 percent and is for the combination of face and iris traits. This may be 

attributed to various factors such as the quality of the sensor units, noise 

levels, algorithms used for extracting feature vectors, selected features etc.   

The signature trait is found to have the lowest success ratio. This is 

attributed to the variations and noise associated with the signature.  

Two fusion technologies are adopted in this study, namely equal 

weight and user dependent trait specific weight approach. In equal weight 

approach, the maximum success ratio of bimodal, trimodal and tetra modal 
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is found to be 91, 94 and 96 percent. In general, success ratio of multimodal 

fusion system is greater than the unimodal system. 

 

Figure 8.7 Width of the confusion zone. 

The success ratio of the trimodal user dependent trait specific 

weight system is found to be between 92 and 96 percent. The maximum 

increase in the success ratio of trimodal when compared to the bimodal is 

found to be 2 percent. Thus, the trimodal system is better than the bimodal 

system. The success ratio of the tetramodal system is found to be 98 

percent. Hence, it is concluded that the tetramodal developed in this study 

is significantly better than the unimodal, bimodal and trimodal systems.    

0 0.1 0.2 0.3 0.4 0.5

i+f+i+v

i+f+v

i+f+s

i+v+s

v+s+f

i+f

i+v

f+v

i+s

f+s

v+s

i

f

v

s

Width of confusion zone



Improved Biometric Authentication System Using Multimodal Cue Integration 

 201

Table 8.2 Success Ratio (SR) of Biometric identification system  

Modal Trait Success ratio 
(percent) 

Unimodal Face(F) 91.32 
Signature (S) 84.45 

Voice (V) 90.48 
Iris (I) 93.26 

Bimodal F+S 88.37 
F+V 91.40 
F+I 94.84 
S+V 88.74 
S+I 91.15 
V+I 93.24 

Trimodal F+S+V 92.75 
F+V+I 96.81 
F+I+S 93.35 
S+V+I 94.50 

Tetramodal F+S+V+I 98.54 
 

It is found that the success ratio of equal weight system is lower 

than the success ratio of the user dependent trait specific weight fusion 

method. This is attributed to the fact that the user dependent trait specific 

weight fusion method accounts for the relative variation of the average 

performance of the particular trait. The chart of success ratio of the 

biometric identification system is shown in Figure 8.8. 

8.7 Summary 

Multimodal biometric systems elegantly address several problems 

in unimodal systems. By combining multiple sources of information, these 

systems improve the accuracy, increase population coverage and deter 

spoofing. Various fusion levels and scenarios are possible in multimodal 

systems. Fusion at the match score level is the most popular due to the ease 

in accessing and consolidating matching scores. In this chapter, a 
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multimodal biometric system, which integrates the decisions made by 

speaker recognition, face recognition, handwritten signature recognition 

and iris recognition for personal identification, is developed.  

 
Figure 8.8 Chart of Success Ratio of the biometric identification system 

The four biometric traits are fused at the match score level using 

weighted fusion strategy. These different weights are calculated based on 

the Equal Error Rate (EER). The system performance is evaluated using the 

width of the confusion zone and success ratio. Comparing the four 

scenarios of unimodal, bimodal, trimodal and tetramodal systems, it can be 

concluded that the fusion of tetra modalities yields a significant 

improvement in the performance than the other three. 
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CHAPTER 9  

CONCLUSIONS AND FUTURE WORK 

The thesis addresses one of the emerging topics in Authentication 

System, viz., the implementation of Improved Biometric 

Authentication System using Multimodal Cue Integration, as the 

operator assisted identification turns out to be tedious, laborious 

and time consuming.  In order to derive the best performance for 

the authentication system, an appropriate feature selection criteria 

has been evolved. It has been seen that the selection of too many 

features lead to the deterioration in the authentication 

performance and efficiency.  In the work reported in this thesis, 

various judiciously chosen components of the biometric traits and 

their feature vectors are used for realizing the newly proposed 

Biometric Authentication System using Multimodal Cue 

Integration. The feature vectors so generated from the noisy 

biometric traits is compared with the feature vectors available in 

the knowledge base and the most matching pattern is identified 

for the purpose of user authentication. In an attempt to improve 

the success rate of the Feature Vector based authentication 

system, the proposed system has been augmented with the user 

dependent weighted fusion technique.  

9.1 Highlights of the Thesis 

The dependence of society on the usage of information technology 

for everyday tasks makes the establishment of the identity of a person in a 

reliable and time-efficient manner a matter of paramount importance. 
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Biometrics is an efficient technology with great possibilities in the area of 

security system development for official and commercial applications. The 

thesis addresses one of the emerging topics in Authentication System, viz., 

the implementation of Improved Biometric Authentication System using 

Multimodal Cue Integration, as the operator assisted identification turns out 

to be tedious, laborious and time consuming.  In order to derive the best 

performance for the authentication system, an appropriate feature selection 

criteria has been evolved. It has been seen that the selection of too many 

features lead to the deterioration in the authentication performance and 

efficiency.  In the work reported in this thesis, various judiciously chosen 

components of the biometric traits and their feature vectors are used for 

realizing the newly developed prototype of the Biometric Authentication 

System.  The feature vectors so generated from the noisy biometric traits is 

compared with the feature vectors available in the knowledge base and the 

most matching pattern is identified for the purpose of user authentication. 

In an attempt to improve the success rate of the developed Feature Vector 

based Biometric Authentication System, the proposed system has been 

augmented with the user dependent weighted fusion technique. The 

following are the salient highlights of this thesis. 

9.1.1 Need and Requirement of a Biometric Authentication System 

Biometric authentication automatically achieves the establishment 

of the identity of an individual based on the physiological or behavioural 

biometric trait rather than knowledge based or possession based method. 

The introductory chapter of the thesis throws light on the various biometric 

traits as well as different models of the authentication system. Even though 

the biometric identification systems out-perform their peer technologies, 

the unimodal biometric systems have to contend with a variety of problems, 

namely, noisy data, intra-class variations, restricted degrees of freedom, 
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non-universality and spoof attacks. Deploying a multimodal biometric 

system can address the limitations by integrating the evidences presented to 

it by multiple sources of information. The underlying principle of operation 

of the proposed multimodal biometric system is also briefly introduced in 

this chapter. 

9.1.2 Preparation of a State-of-the-art Literature 

As a part of the work, a state-of-the-art literature survey report has 

been prepared in the topic covered in the thesis highlighting the 

characteristic signatures of different biometric traits, principles underlying 

speaker recognition, face recognition, handwritten signature recognition, 

iris recognition, multimodal biometrics, normalization methods, different 

fusion techniques, etc. The consolidated results by various researchers on 

the success rates of the different methods are discussed. This chapter also 

covers the recent trends in the fusion technology of various biometric traits. 

9.1.3 Feature Vector Based Authentication System 

The methodology suggested to be adopted for realizing the 

proposed authentication system in speaker recognition involves the 

extraction of source features by analysing the speech waveforms and 

identifying the most matching feature vector using template matching 

technique leading to the identification of the speaker. Feature vector 

compiled includes spectral centroid, spectral flux, spectral rolloff and 

MFCC coefficients retrieved from speech. For making the system fool 

proof and full-fledged one, the knowledge base has to be updated with the 

feature vectors comprising of eigen vector from face, combination of static 

and dynamic features from signature and binary iris code using Haar 

wavelet generated from iris. 
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9.1.4 Extraction of Feature Vector Element from Speech 

The thesis addresses the speaker enrolment phase, where speech 

samples that contain the discriminating features are collected from the 

speakers and feature vectors are generated to form the knowledge base of 

the model. In the recognition phase, the feature vectors extracted from the 

unknown person’s utterance are compared with the knowledge base of the 

model to find the similarity score, for the purpose of decision making.  

Since accuracy of identification is highly dependent on the type and 

number of features used, feature selection is of great significance.  Features 

are computed from the spectrogram on a frame-by-frame basis and relates 

directly to some perceptual characteristics of sound, such as loudness, pitch 

etc. This chapter also touches upon a more systematic approach for 

computing the cepstral coefficients achieved by estimating the Mel 

Frequency Cepstral Coefficients (MFCC). The performance analysis of the 

system was carried out and it was found that along with MFCC, the 

incorporation of additional spectral features in the feature vector improved 

the overall performance of the system. Since the success rate stayed at 90% 

even after including the other spectral features like number of peaks, 

spectral crest etc., those features were not considered to be a part of the 

Feature Vector. 

9.1.5 Extraction of Feature Vector Element from Face 

In the face recognition system, the proposed PCA is found to result 

in a recognition efficiency of 91.5% when tested for 1000 training images. 

The computational time efficiency of the present PCA is estimated through 

covariance matrix with and without dimensionality reduction. The 

computational time with reduced dimensionality is found to be 34.2 

seconds (for 1000 face images) where as it is found to increase by five 
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times i.e. 171.2 seconds for the case without dimensionality reduction. 

Hence, the reduction of dimensionality results in reduced computation time. 

   

9.1.6 Extraction of Feature Vector Element from Signature 

A signature, widely accepted as a means of identity authentication 

in legal and commercial transactions, is remarked as a consistent non-

invasive authentication procedure by the majority of the users, thereby 

overcoming some of the privacy issues. The distinct features are extracted 

from the image of the signature trajectory captured by electronic signature 

tablet, after pre-processing. In signature recognition, the feature vector, 

which forms the signature template in the knowledge base, is selected as a 

combination of static and dynamic features. The success rate of the system 

with static features alone is 76 percent and by the addition of dynamic 

features, the success rate is increased to 84 percent.  Moreover, the 

procedures to be adopted for generating static features using 2D Gabor 

filter as well as the dynamic features under consideration are the x and y 

stroke as well as the average velocity in x and y directions is described in 

this chapter.  Mahalanobis Distance (MD) which computes the  correlation 

between two signatures used to verify the similarity of images is also 

described in the thesis. 

9.1.7 Extraction of Feature Vector Element from Iris 

The thesis also addresses the various steps involved in the 

extraction of binary code from Iris pattern. The pre-processing stage 

requires localization of the iris which generally involves the detection of 

the edge of the iris as well as that of the pupil. Since varying levels of 

illumination can result in dimensional inconsistencies between eye images 

due to the stretching of the iris, normalization needs to be performed so that 
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iris region is transformed to have fixed dimensions. After unwrapping the 

normalized iris region into a rectangular region, it is encoded using Haar 

wavelets to generate the iris code. It was also observed that the Canny 

operator is best suited to extract most of the edges to generate the iris code 

for comparison. In the recognition stage, Hamming distance is used for the 

comparison of the iris code, the most discriminating feature of the iris 

pattern, with the existing iris templates. 

9.1.8 Authentication System Based on Multi-modal Approach 

In this doctoral thesis, a multimodal biometric system using speech, 

face, signature and iris biometric identifiers is presented. To combine the 

information from these four biometric identifiers, user dependent weighted 

fusion approaches are introduced. The final decision is made by fusion at 

matching score level architecture, in which the feature vectors of query 

images are compared with the templates in knowledge base. Based on the 

proximity of the feature vector and template, each subsystem computes its 

own matching score. Finally, the individual traits are fused at matching 

score level using user dependent weighted sum of score technique and is 

then passed to the decision module. This system is tested on our knowledge 

base and the overall accuracy of the system is found to be more than 98%. 

9.1.9 Towards Improving the Performance of the Prototype 

The user dependent weighted fusion approach significantly 

enhances recognition performance of the multimodal biometric system. The 

weighted fusion strategy provides more confidence information of the 

outcomes for the developed multimodal biometric system. The extensive 

experimentations with multimodal databases indicate that the proposed 

multimodal system outperforms other commonly used methods and can 
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help government or public/private sectors to protect valuable property or 

information and also ensure the overall security of the region or country. 

9.2 Future Scope for Research 

The work presented in this thesis has a significant role to play in 

view of its practical applications.  This work also has substantial scope for 

further research for improving the overall system performance.  A 

significant progress in the development of fusion strategies schemes that 

facilitate the design of reliable and secure multibiometric systems is 

achieved in this work.  To begin with, the authentication results presented 

in this thesis should be validated using other public multimodal real-user 

databases. Specifically, it would be necessary to measure the performance 

of the suggested approaches with a larger dataset, containing more 

individuals. A formal model for cost-benefit analysis of a multibiometric 

system based on parameters such as performance gain (reduction in 

FRR/FAR), throughput, physical cost of the system and security needs to 

be developed in order to enable biometric system developers to rapidly 

design a multibiometric system that is most appropriate for the application 

on hand. More research can be conducted to find the optimum matching 

algorithms for unimodal biometrics to enhance the overall performance of 

the multimodal system. Dual or tri-level fusion scenarios (different fusion 

in different levels of the system) can be investigated to make the system 

faster and significant reduction in the error rate. 

9.3 Summary 

An attempt has been made in this chapter to bring out the salient 

highlights of the work and the general inferences gathered along with 

enlisting of the scope and direction for future research in this area.  When 
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the real-time authentication system augmented with a full-fledged 

backbone knowledge base becomes a reality, the system can outperform the 

state-of-the-art authentication systems  with amazing high success rates. 
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