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Preface

Quantum optics is an emerging field in physics which mainly deals

with the interaction of atoms with quantised electromagnetic fields.

The two level system(TLS) approximation, where the atom is as-

sumed to have only two levels, viz. ground and excited states, is a very

significant model which gives great insight into the complex nature of

the atom field interaction and this model could make many interesting

predictions. Jaynes-Cummings Model (JCM) is a key model among

them, which describes the interaction between a two level atom and a

single mode radiation field. Purely quantum mechanical phenomena

such as spontaneous emission, Rabi oscillations in the case of pho-

ton Fock state-atom interaction, collapses and revivals in population

inversion in the case of coherent light atom interactions, have been

predicted by JCM. Recent advances in the experimental realizations

agree very well with the explanations given by JCM.

Recently there is noticeable progress in realizing frequency chirped

laser pulses and it open up a way for the fine tuned interaction be-

tween photons and atoms. These developments attracted many re-

searchers to the study on the interaction of atoms with frequency

varying photon field. It is reported that there are significant changes

in the evolution of atom field system especially in the evolution of

atom-field probability amplitudes due to the time dependency of the

field frequency. In our work we investigate the various possibilities of

manipulating and modifying the atom filed state probabilities during

their interaction, by applying a time variation in the field frequency.

The qubit analogue of a two level atom and photon system makes

its role countable in Quantum Information Processing(QIP). In the

current setting, data transmission from one point to other is one of

the main challenges in the realization of quantum computers. Many

iii



iv Preface

systems have been proposed in this area for effective transmission and

manipulation of quantum information. A coupled cavity array is a

subject of discussion in the present time as it can serve the purpose

of quantum data transmission and can be modelled as a controllable

many body system. We also studied the various possibilities of quan-

tum state transfer between atoms in a coupled cavity system.

Chapter 1 begins with a brief history of light, atom and their inter-

actions. The quantization of single mode electromagnetic field inside

a cavity is explained using Maxwell’s equations. The photon Fock

states(number states) are introduced as the eigenstates of the quan-

tized field Hamiltonian. Properties of annihilation and creation op-

erators are examined in detail in this chapter. This chapter contains

the properties of coherent states and also discusses the characteristics

of squeezed state. The two level atom approximation and its impor-

tance are also discussed in this chapter.

Chapter 2 discusses the interaction between atoms and electomag-

netic fields. The interaction between light and matter is described

using classical, semi-classical and the fully quantum mechanical for-

mulations. The interaction between a two level atom and quantized

single mode field is studied using Jayness Cummings model(JCM).

The evolution of atom field system during their interaction for var-

ious initial photon distributions are examined. At the end of this

chapter some extensions to the JCM and a brief review of the recent

literatures on two level atom field interaction are included.

Chapter 3 suggest a method to manipulate the population inver-

sion due to interaction and control the randomness in it, by apply-

ing a time dependence on the frequency of the interacting squeezed

field. A detailed study of the dependence of population inversion on
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the applied sinusoidal frequency modulation parameters are done and

presented in this chapter. As a continuation to this, the dynamics of

interaction between a two level atom and electromagnetic field with

a phase shifted sinusoidally varying frequency is also included in this

chapter. The change in behaviour of the population inversion due to

the presence of a phase factor in the applied frequency variation is

explained in this chapter.

Chapter 4 describes the interaction between two level atom and

electromagnetic field in nonlinear Kerr medium. The frequency of

the field is set to be fluctuating and phase shifted. This chapter also

comprises of the evolution of the von Newman entropy of the system,

which is a direct measure of the entanglement between the atom and

field. The cases, with and without frequency fluctuations in the inter-

acting field frequency is described. It is noted that the entanglement

between the atom and field can be controlled by varying the period

of the field frequency fluctuations.

Chapter 5 deals with atomic and field state evolution in a coupled

cavity system. A coupled cavity system is a series of cavities coupled

together via photon hopping and each cavity contains a two level

atom. This chapter focus on the exchange of atomic (or field) prob-

ability amplitudes between the cavities in a two cavity system. The

analytical expressions for the time variation of atomic and field prob-

ability amplitudes, population inversion, are obtained and the results

are presented in this chapter. The evolution of atom(field) probability

amplitudes in a coupled cavity system with Kerr non-linearity is also

studied in this section and the effect of susceptibility on the atomic

state transfer between cavities is explained.

Chapter 6 summarises the main results and major findings in the
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theses.
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1
Introduction

1.1 Light

Light always has a distinctiveness in the continuing endeavour of

mankind to understand nature. Evidently there are sequential pro-

gresses in inferring the nature and behaviour of light more scientifi-

cally. In 300 BC Euclid postulated, in his book named optica, that

light travels in straight line. Newton, who made so many fundamental

contributions to optics, in his Hypotheses of light(1675) modelled that

light is composed of small particles called corpuscles. According to his

theory corpuscles emitted in all directions from a source of light and

this concept could explain the phenomenon called reflection. During

the same time Christian Huygens worked out a mathematical wave

theory of light in 1678, and published it in his Treatise on light in

1690. After that in 1800 Thomas Young, through his famous double

slit experiment, showed that light waves interfere like sound waves

as predicted by the wave theory. Also Fresnel interpreted diffrac-

tion using the ideas of wave theory. In 1863 Maxwell introduced the

concept of unification of electricity and magnetism through the fa-

mous Maxwell’s equations, based on which light can be understood as

the waves of electric and magnetic fields propagating through space.

In the explanation of the black body radiation spectrum Max plank

pointed out that radiation is emitted and absorbed not continuously

but in small discrete units called quanta. Einstein strengthen the

1



2 Introduction

concept of discrete quanta in his explanation to photoelectric effect

and his theory won Nobel Prize in 1921.

1.2 Atom

Similar to the case of light, there are number of models which attempt

to explain the atomic structure. The first of that kind is the ‘Plum

Pudding Model’ put forward by J. J. Thomson in 1904. In this model

atom is composed of electrons surrounded by a soup of positive charge

to balance the negative charge of electrons. This model was disproved

by the gold foil experiment of Hans Geiger and Ernest Marsden. After

this in 1911, Ernest Rutherford introduced Rutherford atom model,

where the atom is made up of a central charge surrounded by a cloud

of orbiting electrons. Later in 1913, Neils Bohr came up with a model

of atom now known as Bohr atom model. According to this theory

atom is a small, positively charged nucleus surrounded by electrons

that travel in circular orbits around the nucleus, the attraction pro-

vided by electrostatic forces. An electron can orbit the nucleus only

on allowed orbits determined by a discrete value of energy. Electrons

can only gain and lose energy by jumping from one allowed orbit to

another, absorbing or emitting electromagnetic radiation with a fre-

quency ν, which corresponds to the energy difference of the levels,

according to the Planck relation,

E2 − E1 = hν, (1.1)

where h is the Planck constant. In an atom electrons from a lower

energy level is excited to a higher energy level by absorbing a quanta of

radiation equivalent to the energy difference between the two energy

levels. Electron from a higher energy level jumps to a lower energy

level by spontaneously emitting a quanta of radiation.
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1.3 Quantum optics

The formulation of quantum theory of light came in 1920’s after

the birth of quantum mechanics. The word ‘photon’ was coined by

Gilbert Lewis in 1926[1] for the quanta of light and an year later Dirac

published a seminal paper on the quantum theory of radiation[2]. Fol-

lowing these developments there were many attempts to study the

optical spectra of atoms and also to understand the quantum effects

directly associated with the light itself. The modern subject of quan-

tum optics was born in an effective manner in 1956 with the work of

Hanbury Brown and Twiss to measure the fluctuations in the light

intensity on short time-scales[3]. This opened the door to more so-

phisticated experiments on photon statistics, which eventually leads

to the observation of optical phenomena with no classical counter

part.

The invention of laser, a device which emits light through the process

of optical amplification caused by the stimulated emission of electro-

magnetic radiation, in 1960 led to new interest in this subject. It was

hoped that the properties of the laser light would be considerably dif-

ferent from those of conventional sources, but these attempts again

turned out to be negative. Glauber in 1963 described a new state

which appears particularly well suited for the discussion of experi-

ments performed with light beams whether coherent or incoherent[4].

These states have different statistical properties to those of classical

light and is known as coherent states. The experimental confirmation

of these non-classical properties was given by Kimble, Dagenais, and

Mandel in 1977 when they demonstrated photon antibunching for the

first time[5]. They also pointed out that, unlike photoelectric bunch-

ing, which can be given a semiclassical interpretation, antibunching

is understandable only in terms of a quantized electromagnetic field.
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Later Slusher et al. successfully generated squeezed states of the elec-

tromagnetic field by nondegenerate four-wave mixing due to sodium

atoms in an optical cavity[6].

In the recent years, the subject has expanded to include the asso-

ciated disciplines of quantum information processing and controlled

light-matter interactions. The work of Aspect and co-workers starting

from 1981 onwards may be considered as landmark in this area. They

used the entangled photons from an atomic cascade to demonstrate

violations of Bell’s inequality[7, 8], there by decidedly showing how

quantum optics can be applied to other branches of physics. Since

then, there have been growing number of examples of the use of quan-

tum optics in the ever widening applications.

1.4 Quantization of electromagnetic field

z

x

y

L

Figure 1.1: Electromagnetic field inside a one dimensional cavity

Here we consider electromagnetic radiation field in a one dimensional

cavity along the z axis. The walls of the cavity are perfectly con-

ducting, where the field vanishes, are at z = 0 and z = L. The
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electric field inside the cavity will form a standing wave as shown in

the Fig.1.1. Assuming that there are no sources of radiation inside

the cavity, the corresponding Maxwell’s equations in SI units are,

∇×E =
−∂B
∂t

∇×B = µ0ǫ0
∂E

∂t
∇.B = 0

∇.E = 0 (1.2)

where E and B are the electric and magnetic fields respectively, ǫ0

and µ0 are the free space permittivity and permeability respectively

and µ0ǫ0 = 1/c2 where c is the speed of light in vacuum. Let the

electric field be linearly polarized in the x direction i.e., E(r, t) =

êxEx(z, t), where êx is the unit vector along the x-axis. A single mode

field obeying Maxwell’s equations given in Eq. (1.2) and satisfying

the boundary conditions is given by

Ex(z, t) =

(

2ω2

V ǫ0

)
1

2

q(t) sin(kz) (1.3)

Here ω is the frequency of the mode and k = ω/c is the wave number

associated to it. Now, in order to satisfy the boundary conditions,

the possible values of ω must be; ωm = c (mπ/L), where m = 1, 2, ...

We assume that ω in Eq. (1.3) is one of these frequencies and ignore

the rest for convenience. The effective volume of the cavity V = LA

(A is the transverse area of the optical resonator) and q(t) is a time

dependent factor having the dimension of length. From Eq. (1.3)

and using Maxwell’s equation the magnetic field inside the cavity is

B(r, t) = êyBy(z, t), where

By(z, t) =
(µ0ǫ0

k

)

(

2ω2

V ǫ0

)
1

2

q̇(t) cos(kz) (1.4)
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Here q(t) and q̇(t) respectively will play the role of a generalized

coordinate and momentum, for a “particle” of unit mass, i.e., p(t) =

q̇(t). The classical field energy, or Hamiltonian H, of the single mode

field is

H =
1

2

∫

dV

[

ǫ0E
2(r, t) +

1

µ0
B

2(r, t)

]

=
1

2

∫

dV

[

ǫ0E
2
x(z, t) +

1

µ0
B2
y(z, t)

]

(1.5)

and for a single mode field given in Eq. (1.3) we have

H =
1

2
(p2 + ω2q2) (1.6)

Now one can compare the single mode electromagnetic field Hamil-

tonian to a harmonic oscillator Hamiltonian of unit mass, where the

electric and magnetic fields, apart from some scalar factors, play the

role of generalized coordinate and momentum. Taking the operator

correspondence of q(t) and p(t), we may write the commutation rela-

tion in the form

[q̂, p̂] = i~Î (1.7)

In the following discussion we will omit the identity operator, Î when-

ever no confusion is possible. Now the Eqs. (1.3) and (1.4) becomes

Êx(z, t) =

(

2ω2

V ǫ0

)
1

2

q̂(t) sin(kz) (1.8)

B̂y(z, t) =
(µ0ǫ0

k

)

(

2ω2

V ǫ0

)
1

2

p̂(t) cos(kz) (1.9)

and the corresponding Hamiltonian is

Ĥ =
1

2

(

p̂2 + ω2q̂2
)

(1.10)
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The operators q̂ and p̂ are hermitian and corresponds to observable

quantities. However it is convenient to introduce the nonhermitian

(nonobservable) annihilation(â) and creation(â†) operators such that

â =
1√
2~ω

(ωq̂ + ip̂) (1.11)

â† =
1√
2~ω

(ωq̂ − ip̂) (1.12)

and the electric and magnetic field respectively becomes,

Êx(z, t) = E0

(

â+ â†
)

sin(kz) (1.13)

B̂y(z, t) = B0
1

i

(

â− â†
)

cos(kz) (1.14)

where E0 =
√

(~ω/ǫ0) and B0 = (µ0/k)
√

(ǫ0~ω3/V ) represent re-

spectively the electric and magnetic field per photon. Operators â

and â† satisfy the commutation relation
[

â, â†
]

= 1 (1.15)

and the Hamiltonian operator takes the form

Ĥ = ~ω

(

â†â+
1

2

)

(1.16)

To study the time evolution of the operator â, we have the Heisen-

berg’s equation

dâ

dt
=

i

~

[

Ĥ, â
]

.

= −iωâ, (1.17)

which has the solution

â(t) = â(0)e−iωt (1.18)

and by taking the Hermitian conjugate of Eq. (1.18) we have,

â†(t) = â†(0)eiωt. (1.19)

Thus Eqs.(1.18) and (1.19) represent the time evolution of annihila-

tion and creation operators.
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1.4.1 Number state

The operator product â†â has a special significance and is called the

number operator, which we denote as n̂. Let |n〉 denotes the simul-

taneous eigenstates of n̂ and the Hamiltonian in Eq. (1.10) corre-

sponding to a single mode field with the energy eigenvalue En such

that

Ĥ|n〉 = ~ω

(

â†â+
1

2

)

|n〉 = En|n〉 (1.20)

multiplying the Eq. (1.20) from left by â† gives,

~ω

(

â†â†â+
1

2
â†
)

= Enâ
†|n〉 (1.21)

Using the commutation relation given in Eq. (1.15) we can rewrite

Eq. (1.21) as

~ω

(

â†â+
1

2

)

(

â†|n〉
)

= (En + ~ω)
(

â†|n〉
)

(1.22)

which corresponds to the eigenvalue equation for the state
(

â†|n〉
)

with the energy eigenvalue En + ~ω. This means that when creation

operator â† acts on state |n〉 it creates a quantum of energy, ~ω.

Similarly if we multiply Eq. (1.20) with â and using the commutation

relation in Eq. (1.15) we obtain,

Ĥ (â|n〉) = (En − ~ω) (â|n〉) (1.23)

which implies that the operator â destroys or annihilates one quantum

of energy or one photon, the eigenstate â|n〉 possessing the energy

eigenvalue En − ~ω. Repeating the procedure on Eq. (1.23) will

result in the lowering of the energy eigenvalue by integer multiples of

~ω. But the energy of the harmonic oscillator must always be positive

so there must be a minimum energy eigenvalue E(n=0) > 0 with the



Number state 9

corresponding eigenstate |0〉 such that

â|0〉 = 0 (1.24)

Thus the eigenvalue equation for the ground state |0〉 is

Ĥ|0〉 = ~ω

(

â†â+
1

2

)

|0〉 = 1

2
~ω|0〉 (1.25)

so that the lowest energy eigenvalue is the so called zero point energy

~ω/2. Since En+1 = En + ~ω, the possible energy eigenvalues are

En = ~ω

(

n+
1

2

)

, n = 0, 1, 2, ... (1.26)

For the number operator n̂ = â†â we have

n̂|n〉 = n|n〉 (1.27)

These number states must be normalized such that 〈n|n〉 = 1. For

the state â|n〉, we have

â|n〉 = cn|n− 1〉 (1.28)

where cn is a constant to be determined. By taking the inner product

of â|n〉 with itself we get

(

〈n|â†
)

(â|n〉) = 〈n|â†â|n〉 = n

= 〈n− 1|c∗ncn|n− 1〉 = |c2n| (1.29)

Thus |c2n| = n,

â|n〉 =
√
n|n− 1〉 (1.30)

Similarly we can show that

â†|n〉 =
√
n+ 1|n+ 1〉 (1.31)
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The number state |n〉 can be generated by the repeated action of the

creation operator,â† on the ground state |0〉.

|n〉 =
(

â†
)n |0〉
√
n!

(1.32)

Since Ĥ and n̂ are Hermitian operators, the number states, |n〉 forms

an orthonormal complete set of states, i.e.,

〈n|n′〉 = δnn′ (1.33)

∞
∑

n=0

|n〉〈n| = Î . (1.34)

The only nonvanishing matrix elements of the annihilation and cre-

ation operators are

〈n− 1|â|n〉 =
√
n〈n− 1|n− 1〉 =

√
n

〈n+ 1|â†|n〉 =
√
n+ 1〈n+ 1|n+ 1〉 =

√
n+ 1 (1.35)

1.4.2 Quantum fluctuations of a single mode field

In the previous section we have seen that the number state, |n〉 is

a state of definite energy equal to ~ω(n + 1/2) but the expectation

value of the electric field operator for this number state is zero, since

〈n|Êx(z, t)|n〉 = E0 sin(kz)
[

〈n|â|n〉+ 〈n|â†|n〉
]

= 0, (1.36)

Thus the mean field is zero. We have the equation Eq. (1.5) for

the total energy, from which the mean of square of the field, which

contributes to the energy density, is not zero, i.e.,

〈n|Ê2
x(z, t)|n〉 = E2

0 sin
2(kz)〈n|â†2 + â2 + â†â+ ââ†|n〉

= sin(kz)E2
0 sin

2(kz)〈n|â†2 + â2 + 2â†â+ 1|n〉

= 2E2
0 sin

2(kz)

(

n+
1

2

)

. (1.37)
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For any operator Â, the fluctuation is characterized by its variance

given by
〈

(

∆Â
)2
〉

=
〈

Â2
〉

−
〈

Â
〉2

(1.38)

or by the standard deviation ∆A =
√

〈(∆A)2〉, which is sometimes

referred to as the uncertainty of the observable represented by the

operator Â. Applying it for the electric field operator, Ê for the

number state, |n〉:

〈(∆Êx(z, t))2〉 =
〈

Ê2
x(z, t)

〉

− 〈Êx(z, t)〉2 (1.39)

we get

∆Ex =
√

2E0 sin(kz)

(

n+
1

2

)
1

2

(1.40)

Note that even when n = 0, the field has non zero fluctuations, the

so-called “vacuum fluctuations”.

Since

[

n̂, Êx
]

= E0 sin(kz)
[

â†â
(

â+ â†
)

−
(

â+ â†
)

â†â
]

= E0 sin(kz)(â
† − â), (1.41)

the number operator does not commute with the electric field opera-

tor. We also know from uncertainty principle for any operators Â, B̂

and Ĉ, satisfying
[

Â, B̂
]

= Ĉ that ∆A ∆B ≥ 1
2 | 〈C〉 |. Applying this

inequality for the operators n̂ and Êx we get

∆n ∆Ex ≥ 1

2
E0| sin(kz)||

〈

â† − â
〉

|. (1.42)

which means that if the field is accurately known, number of photons

will be uncertain.
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1.4.3 Quadrature operators of single mode field

The time dependence of the creation and annihilation operators is

given in Eqs. (1.18) and (1.19). Considering this, the expression for

the electric field operator given by Eq. (1.13) becomes

Êx = E0

[

â(0)e−iωt + â†(0)eiωt
]

sin(kz) (1.43)

= E0

{[

â(0) + â†(0)
]

cos(ωt) + i
[

â(0)− â†(0)
]

sin(ωt)
}

sin(kz)

We now define the so called quadrature operators

X̂1 =
1

2

[

â(0) + â†(0)
]

(1.44)

X̂2 =
1

2i

[

â(0)− â†(0)
]

(1.45)

Now in terms of these field quadrature operators the electric field can

be rewritten as:

Êx(t) = 2E0 sin(kz)
[

X̂1 cos(ωt) + X̂2 sin(ωt)
]

. (1.46)

From the above expression one can infer that X̂1 and X̂2 are associ-

ated to the field amplitudes oscillating out of phase with each other

by 90◦; they are in quadrature. Using Eqs. (1.11) and (1.12) in Eqs.

(1.44) and (1.45) it is clear that X̂1 and X̂2 play the roles of position

and momentum but they are scaled to be dimensionless. The Eqs.

(1.44) and (1.45) yield,

â(0) = X̂1 + iX̂2 (1.47)

â†(0) = X̂1 − iX̂2. (1.48)

The quadrature operators, X̂1 and X̂2 satisfy the commutation rela-

tion
[

X̂1, X̂2

]

=
i

2
(1.49)
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and now by using the uncertainty principle it follows that:

〈

(

∆X̂1

)2
〉〈

(

∆X̂2

)2
〉

≥ 1

16
. (1.50)

For the number state |n〉 we have
〈

n|X̂1|n
〉

= 0 =
〈

n|X̂2|n
〉

but

〈

n|X̂2
1 |n

〉

=
1

4

〈

n|
(

â+ â†
)2 |n

〉

=
1

4
(2n+ 1)

where â(0) ≡ â and â†(0) ≡ â†. Similarly for X̂2 we get

〈

n|X̂2
2 |n

〉

=
1

4
(2n+ 1) (1.51)

It is clear from the Eqs. (1.51) and (1.51) that, for number state the

uncertainties in both the quadratures are the same. For vacuum state

|0〉, from Eqs. (1.51) and (1.51) we get

〈

(

∆X̂1

)2
〉

vac
=

1

4
=
〈

(

∆X̂2

)2
〉

vac
. (1.52)

That is the quadrature uncertainty is minimum for the vacuum state.

1.5 Photon Distributions

In this section we discuss about various photon distributions and their

characteristics.

1.5.1 Coherent state

Coherent states are the eigenstates of the annihilation operator and

also are minimum uncertainty states.

Consider a photon state |ψ〉 which is a superposition of number state.

We know that the electric field and magnetic field operators can be
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written as the linear combinations of creation and annihilation oper-

ators, which is given in Eqs. (1.13 and (1.14) as

Êx(z, t) = E0

(

â+ â†
)

sin(kz) (1.53)

B̂y(z, t) = B0
1

i

(

â− â†
)

cos(kz) (1.54)

In order to have a non zero expectation value for these field opera-

tors we are required to have states which are linear combinations of

number states. For example, one such possible state is

|ψ〉 = Cn|n〉+ Cn±1|n± 1〉 (1.55)

where |Cn|2 + |Cn±1|2 = 1. The replacement of â and â† by contin-

ues variables produces a classical field. A unique way to make this

replacement is to seek the eigenstates of the annihilation operator.

These states are denoted as |α〉 and satisfy the relation

â|α〉 = α|α〉, (1.56)

where α in general is a complex number, otherwise arbitrary. Taking

the complex conjugate of the above equation, we have

〈α|â = α∗〈α|. (1.57)

The states |α〉 are the “right” eigenstates of â with eigenvalues α and

〈α| are the “left” eigenstates of â† with eigenvalues α∗.

Since the number states |n〉 form a complete set, expanding the co-

herent state in terms of the number states we can write

|α〉 =
∞
∑

n=0

Cn|n〉 (1.58)

Operating â on both sides of the above equation and using Eq. (1.56),

we obtain

â|α〉 =
∞
∑

n=0

Cn
√
n|n− 1〉 = α

∞
∑

n=0

Cn|n〉 (1.59)
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and equating the coefficients of |n〉 on both sides we get,

Cn
√
n = αCn−1 (1.60)

or

Cn =
α√
n
Cn−1 =

α2

√

n(n− 1)
Cn−2 = .... (1.61)

=
αn√
n!
C0. (1.62)

Thus

|α〉 = C0

∞
∑

n=0

αn√
n!
|n〉 (1.63)

The value of C0 can be found by using the normalization of |α〉

〈α|α〉 = 1 = |C0|2
∑

n

∑

np

α∗nαn
p

√
n!np!

〈n|np〉 (1.64)

= |C0|2
∞
∑

n=0

|α|2n
n!

= |C0|2e|α|
2

(1.65)

i.e.,

C0 = exp

(

−1

2
|α|2

)

(1.66)

Now the normalized coherent states are:

|α〉 = exp

(

−1

2
|α|2

) ∞
∑

n=0

αn√
n!
|n〉. (1.67)

The expectation value of the electric field operator,

Êx(r, t) = i

(

~ω

2ǫ0V

)
1

2 [

âei(k.r−ωt) − â†e−i(k.r−ωt)
]

, (1.68)

for the state |α〉 is

〈α|Êx(r, t)|α〉 = i

(

~ω

2ǫ0V

)
1

2 [

αei(k.r−ωt) − α∗e−i(k.r−ωt)
]

. (1.69)
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Since α is a complex quantity it can written in the form α = |α|eiθ

〈α|Êx(r, t)|α〉 = 2|α|
(

~ω

2ǫ0V

)
1

2

sin(ωt− k.r − θ). (1.70)

which looks like the solution of a classical field equations. Similarly

we can find the expectation value of the operator Ê2
x(r, t); given by

〈α|Ê2
x(r, t)|α〉 = −

(

~ω

2ǫ0V

)

×

〈α|
[

â2e2i(k.r−ωt) + â†
2

e−2i(k.r−ωt) − ââ† − â†â
]

|α〉

=

(

~ω

2ǫ0V

)

{

2|α|2 [1 + cos 2(ωt− k.r − θ)] + 1
}

=

(

~ω

2ǫ0V

)

[

1 + 4|α|2 sin (ωt− k.r − θ)
]

(1.71)

To find the fluctuations in the field we use the variance given by

〈(∆Êx(z, t))2〉 =
〈

Ê2
x(z, t)

〉

− 〈Êx(z, t)〉2 (1.72)

Using Eqs. (1.70) and (1.71) in Eq. (1.72) we get

〈

(∆Êx(z, t))
2
〉

=
~ω

2ǫ0V
, (1.73)

which are identical to those for a vacuum state. The coherent state is

nearly a classical like state because it not only yields the correct form

for the field expectation values, given in Eq. (1.71) but also have only

the noise of the vacuum as in Eq. (1.73).

Now let us check the uncertainties in quadratures for the coherent

field. For that consider the field quadrature operators defined in the

previous section, Eqs. (1.44) and (1.45):

X̂1 =
1

2

(

â+ â†
)

X̂2 =
1

2

(

â− â†
)

(1.74)
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In order to find the uncertainties of the quadrature operators X̂1 and

X̂2 in the state |α〉 we have,

〈α|X̂1|α〉 =
1

2
〈α|â+ â†|α〉

=
1

2
(α + α∗) (1.75)

and

〈α|X̂2
1 |α〉 =

1

4
〈α|â2 + â†

2

+ ââ† + â†â|α〉

=
1

4

(

α2 + α∗2 + 2αα∗ + 1
)

(1.76)

similarly for X̂2

〈α|X̂1|α〉 =
1

2i
(α− α∗) (1.77)

〈α|X̂2
1 |α〉 =

−1

4

(

α2 + α∗2 − 2αα∗ − 1
)

(1.78)

and the uncertainty in each quadrature is given by:

(〈

∆X̂1

〉)2
=
〈

X̂2
1

〉

−
〈

X̂1

〉2
(1.79)

and using Eqs. (1.75) - (1.79) we obtain

(

∆X̂1

)2
=

1

4
=
(

∆X̂2

)2
(1.80)

which means that coherent states are having the same uncertainties

in both quadratures.

i.e
(

∆X̂1

)2
=
(

∆X̂2

)2
=

1

4
(1.81)

Thus for coherent state uncertainties in quadrature operators(X̂1 and

X̂2) are the same and also the uncertainty product is minimum. It

is also to be noted that the uncertainty of quadrature operators for
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coherent state is same as that of vacuum. The expectation value of

the photon number operator n̂ in the state |α〉 is

n = 〈α|â†â|α〉 = |α|2. (1.82)

Thus |α|2 is just the average photon number of the field. To calculate

the fluctuations of the photon number we need to calculate

〈α|n̂2|α〉 = 〈α|â†ââ†â|α〉
= |α|4 + |α|2 = n2 + n (1.83)

and thus

∆n =
√

〈n̂2〉 − 〈n̂〉2 =
√
n (1.84)

which is the characteristic of a Poisson distribution. For a measure-

ment of the number of photons, the probability of detecting n photons

in the coherent state is

Pn = |〈n|α〉|2 = e−|α|2 |α|2n
n!

(1.85)

= e−n
nn

n!
, (1.86)

which is a Poisson distribution with a mean of n. The probability

versus photon number is plotted in Fig. 1.2 for an average photon

number, n̄ = 25. The fractional uncertainty in the photon number is

∆n

n
=

1√
n

(1.87)

which decreases with increasing n.

1.5.2 Squeezed photon distribution

In the previous section we have discussed the coherent light with

minimum and equal quadrature uncertainties in both quadratures
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Figure 1.2: Coherent distribution with average photon number=25

as given in Eq. (1.81). For squeezed light the uncertainty in both

the quadratures are not the same, but their product has a minimum

value. We know that for any two operators Â and B̂ satisfying the

commutation relation [Â, B̂] = iĈ has the property

〈

(∆Â)2
〉 〈

(∆B̂)2
〉

≥ 1

4

〈

(∆Ĉ)2
〉

. (1.88)

A state of the system is said to be squeezed if either

〈

(∆Â)2
〉

<
1

2



〈Ĉ〉


 or
〈

(∆B̂)2
〉

<
1

2



〈Ĉ〉


 (1.89)

In the case of quadrature squeezing, we take Â = X̂1 and B̂ = X̂2,

with X̂1 and X̂2 being the quadrature operators and thus Ĉ = Î/2.

That is the quadrature squeezing exists whenever

〈

(∆X̂1)
2
〉

<
1

4
or

〈

(∆X̂2)
2
〉

<
1

4
(1.90)



20 Introduction

Mathematically, a squeezed state is generated through the action of

a “squeeze” operator defined as,

Ŝ(ξ) = exp

[

1

2

(

ξ∗a2 − ξa†
2
)

]

, (1.91)

on vacuum, where ξ = reiθ; r is known as the squeeze parameter and

0 ≤ r < ∞ and 0 ≤ θ ≤ 2π. The operator Ŝ(ξ) creates or anni-

hilates photons in pairs. It is a kind of a two photon generalization

of the displacement operator used to define the coherent states of a

single mode field. A more general squeezed state may be obtained by

applying the displacement operator, D̂(α) to Ŝ(ξ) given by

|α ξ〉 = D̂(α)Ŝ(ξ)|0〉, (1.92)

where the displacement operator is defined as

D(α) = exp
(

αâ† − α∗â
)

. (1.93)

Obviously for ξ = 0 we obtain the coherent state. A squeezed vacuum

state, where α = 0 can be represented as,

|ξ〉 = 1√
cosh r

∞
∑

m=0

(−1)m
√
2m!

2mm!
eimθ(tanh r)m|2m〉 (1.94)

and the probability of detecting 2m(m = 0, 1, 2..) photons in the

squeezed vacuum state is

P2m = |〈2m|ξ〉|2 = (2m)!

22m(m!)2
(tanh r)2m

cosh r
. (1.95)

Similarly the probability of finding any odd number(2m+ 1) of pho-

tons in the squeezed vacuum state is zero. i.e.,

P2m+1 = |〈2m+ 1|ξ〉|2 = 0. (1.96)
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Thus the photon probability distribution for a squeezed vacuum state

is oscillatory, vanishing it for the case of all odd number of photons.

When the coherent part is non zero, i.e., α 6= 0, we obtain the general

representation for the photon squeezed state given by,

|α, ξ〉 =
1√

cosh r
exp

[

−1

2
|α|2 − 1

2
α∗2eiθ tanh r

]

(1.97)

×
∞
∑

n=0

[

1
2e
iθ tanh r

]n/2

√
n!

Hn

[

γ
(

eiθ sinh (2r)
)−1/2

]

|n〉

And the corresponding probability of finding n photons in the state

is given by,

Pn = |〈n|α, ξ〉|2

=

(

1
2 tanh r

)n

n! cosh r
exp

[

−|α|2 − 1

2

(

α∗2eiθ + α2e−iθ
)

tanh r

]

×





Hn

[

γ
(

eiθ sinh (2r)
)−1/2

]






2

. (1.98)

The distribution is plotted in the Fig. 1.3 for an average photon

number 25.
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Figure 1.3: Squeezed photon distribution with average photon number 25,
squeezing parameter r = 4 and ψ − θ/2 = 0

One of the most important type of squeezed states are the photon

number states that we introduced in Section 1.4.1. These are states

of perfectly defined photon number n, which implies ∆n = 0 and

a completely undefined phase. This contrasts with coherent states

which have larger photon number fluctuations (∆n =
√
n) but have

a better defined phase.



2
Atom field interactions

2.1 Introduction

In general the interaction between electromagnetic field and atoms

is described using three different approaches. They are the classi-

cal, semi classical and quantum mechanical formulations. In classical

treatment atom is considered as Hertzian dipoles and light as waves

where as in semiclassical method atom is quantized and light is still

waves and finally in quantum mechanical formulation both atoms and

light are considered to be quantized. The concept of photons, the dis-

crete energy units of electromagnetic radiation, is adopted to explain

the interaction between atom and field in the fully quantum mechani-

cal treatment. The following sections discuss the interaction between

atom and electromagnetic field using classical, semiclasical and fully

quantum mechanical approaches.

2.2 Classical theory of atom field interaction

In classical theory, the electric field of the electromagnetic radiation

can be represented as a sinusoidal wave in the form

~E(t) = E0~e cos(ωt) (2.1)

and the atoms is considered as it consists of a massive nucleus in

the center and charged electrons around it. The interaction between

atom and radiation field can be explained by taking the analogue of a

23
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mass(electron) connected to a spring(attached to the nucleus). This

spring is contracted and extended as it interacts with field. When the

spring extends the energy from the electromagnetic field get stored in

it(absorption of radiation) and is then released when the spring con-

tracts(radiation emission). Thus the interaction can be represented

in the form of a driven harmonic oscillator as

d2x

dt2
= −ω2

0x+
F

m
(2.2)

where F is the force on the electron due to the field given by

F = qE0 cos(ωt) (2.3)

The solution of Eq. (2.2) is of the form

x(t) = A cos(ω0t− φ0) +
qE0

m
(

ω2 − ω2
0

) cos(ωt) (2.4)

where φ0 is the initial phase of the oscillator and A is a constant.

From Eq. (2.4) it is clear that due to the driving force the response

of the atom is to oscillate with a frequency, ω of the driving field and

the amplitude of oscillation is maximum when the field is at resonance

i.e., when the driving frequency, ω is the same as the natural oscillator

frequency, ω0. In order to treat the resonance in a systematic way we

have to include damping effect in Eq. (2.4).

2.3 Atom-field interaction Hamiltonian

The Hamiltonian of an electron bound to the nucleus is the sum of

kinetic energy and the usual electrostatic Coulomb potential, V (r),

which binds the electron to the nucleus. It can be written as

Ĥ0 =
1

2m
P̂

2
+ V (r). (2.5)
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In the configuration space representation the canonical momentum,

~P , is an operator; P̂ = −i~▽ and r̂|r〉 = r|r〉. The corresponding

electron wave functions are given by ψ(~r, t) = 〈~r|ψ〉. Let |k〉 be

the eigenstates of the the Hamiltonian Ĥ0 with corresponding energy

eigenvalues Ek. We assume that these energy eigenstates satisfy the

time independent Schrödinger equation, i.e.,

Ĥ0|k〉 = Ek|k〉 (2.6)

and we assume that Ek, |k〉 are known. Now consider the following

electromagnetic field due to the radiation

E(r, t) = −▽ Φ(r, t)− ∂A(r, t)

∂t
, (2.7)

B(r, t) = ▽×A(r, t), (2.8)

where A(r, t) and Φ(r, t) respectively are the vector and scalar po-

tential. These electric and magnetic fields in Eqs.(2.7) and (2.8) are

invariant under the local gauge transformations such that,

Φ′(r, t) = Φ(r, t)− ∂χ(r, t)

∂t
, (2.9)

A′(r, t) = A(r, t) +▽χ(r, t). (2.10)

Let us now consider the case when an atom with the Hamiltonian

given in Eq. (2.5) interact with the electromagnetic field represented

by Eqs. (2.7) and (2.8). The corresponding modified Hamiltonian is

Ĥ(r, t) =
1

2m

[

P̂+ eA(r, t)
]2 − eΦ(r, t) + V (r), (2.11)

where −e is the charge of the electron and e > 0. Now the time

dependent Schrödinger equation in the coordinate space becomes
{

1

2m

[

P̂+ eA(r, t)
]2 − eΦ(r, t) + V (r)

}

Ψ(r, t) = i~
∂Ψ(r, t)

∂t
.

(2.12)
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The above Eq. (2.12) represents the interaction of an atomic elec-

tron with the given external electromagnetic field. In order to solve

Eq. (2.12), we introduce an unitary operator, R̂ such that Ψ′(r, t) =

R̂Ψ(r, t). Now by choosing

Ĥ ′ = R̂ĤR̂† + i~
∂R̂

∂t
R̂†, (2.13)

we can write

Ĥ ′(r, t)Ψ′(r, t) = i~
∂Ψ′(r, t)

∂t
. (2.14)

Let the unitary operator in Eq. (2.13) be R̂ = exp (−ieχ(r, t)/~),
then Ĥ ′ takes the form

Ĥ ′ = R̂ĤR̂† + i~
∂R̂

∂t
R̂†

= e[−ieχ(r,t)/~]
{

1

2m

[

P̂+ eA(r, t)
]2 − eΦ(r, t) + V (r)

}

×e[ieχ(r,t)/~]

+i~
∂ [exp (−ieχ(r, t)/~)]

∂t
exp (ieχ(r, t)/~) (2.15)

Taking P̂ = −i~▽ we get,

Ĥ ′ =
1

2m

{

P̂ + e [A(r, t) +▽χ(r, t)]
}2

−e
[

Φ(r, t)− ∂χ(r, t)

∂t

]

+ V (r). (2.16)

Using the gauge invariance given in Eqs. (2.9) and (2.10) we obtain

Ĥ ′ =
1

2m

[

P̂+ eA′
]2 − eΦ′ + V (r). (2.17)

If we choose radiation gauge, for which Φ = 0 and A satisfies the

transversality condition ▽.A = 0, the Hamiltonian Ĥ given in Eq.

(2.11) and Ĥ ′ given in Eq. (2.17) can be re written as

H =
P̂

2

2m
+

e

m
A.P̂+

e2

2m
A2 + V (r), (2.18)
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Ĥ ′(r, t) =
1

2m

[

P̂+ e (A+▽χ)
]2

+ e
∂χ

∂t
+ V (r). (2.19)

When there are no sources of radiation near the atom the vector

potential, A satisfies the wave equation, i.e.,

▽2A− 1

c2
∂2A

∂t2
= 0 (2.20)

The solution of this wave equation, Eq. (2.20) will in the form given

by

A = A0e
i(k.r−ωt) + c.c., (2.21)

where ~k is the wave vector of the radiation, |~k| = 2π/λ and c.c

denote the complex conjugation. Here in the cases we considered,

|~r| is of typical atomic dimensions(few Angstroms) and λ the wave

lengths of electromagnetic radiation comes in the range of few hun-

dred nanometers(400-700 nm). In this case k.r << 1, so that over

the extent of an atom, the vector potential is spatially uniform i.e.,

A(r, t) ≈ A(t). This approximation is the well known “dipole ap-

proximation”.

By choosing the gauge function, χ(r, t) = −A(t).r we get

▽χ(r, t) = −A(t),

∂χ

∂t
(r, t) = −r.

∂A

∂t
= −r.E(t). (2.22)

Applying the results, Eq. (2.22) in the expression for Ĥ ′, Eq. (2.19)

becomes

Ĥ ′ =
P̂

2

2m
+ V (r) + er.E(t). (2.23)

According to the equation (2.23) within the dipole approximation

there is only one interaction term. The quantity −er is the electric

dipole moment, d = −er. In general for unspecified representation
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the dipole moment is an operator, d̂. Using this convention we can

write the Hamiltonian in the dipole approximation as

Ĥ ′ = Ĥ0 − d̂.E(t) (2.24)

So we have considered the interaction Hamiltonian for the atom field

interaction, which is valid for both classical and quantum fields. Now

we will examine the differences in the way an atom behaves when

interacting with classical or quantum fields.

2.4 Interaction of a quantized atom with classical
field: perturbative analysis

Consider the case where an atom is driven by classical sinusoidal

electric field, E(t) = E0 cos(ωt), where ω is the frequency of the

radiation field. In the dipole approximation the state of the atom

obey the time dependent Schrödinger equation

i~
∂

∂t
|ψ(t)〉 =

(

H0 +H(I)
)

|ψ(t)〉, (2.25)

where H(I) = −d̂.E(t). Now the state vector |ψ(t)〉 of the atomic

system can be expanded in terms of the unperturbed atomic states

|k〉 as
|ψ(t)〉 =

∑

k

Ck(t)e
−iEkt/~|k〉, (2.26)

since 〈ψ(0)|ψ(0)〉 = 1 the amplitudes Ck(t), which depends on time,

satisfy the normalization condition

∑

k

|Ck(t)|2 = 1. (2.27)
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Substituting Eq. (2.26) in the time dependent Schrödinger equation

(2.25) and by taking the scalar product with 〈l|eiElt/~ we get

Ċl(t) = − i

~

∑

k

Ck(t)〈l|Ĥ(I)|k〉eiωlkt (2.28)

where ωlk = (El − Ek) /~ is the transition frequency between lth

and kth levels of the atom. We assume that the only state which is

initially populated is |i〉 such that Cj(0) = δij . As time goes forward,

population will be lost from the initially populated state |i〉 and will

be increased in some initially unpopulated state |f〉. The probability
for the atom to make a transition from state |i〉 to state |f〉 in time

t is equal to the probability of the atom being in state |f〉 at time t.

i.e.,

Pi→f (t) = |〈f |ψ(t)〉|2 = |Cf (t)|2. (2.29)

The time dependent perturbation theory can be used to find the tran-

sition amplitudes if the driving force is weak. Which means |E| is
small, or the transition amplitude from state |i〉 to |f〉, i.e., |〈f |d̂.Ê0|i〉
is small. Now by following the standard procedures of the time de-

pendent perturbation method we can get the first order equation for

the transition amplitudes as

C
(1)
f (t) = − i

~

∫ t

0

dt′H
(I)
fi (t

′)eiωfit
′

C
(0)
i (t′). (2.30)

We know that the states with opposite parity will have non zero

matrix elements for the dipole moment operator d̂. i.e.,

H
(I)
ii = −〈i|~d. ~E(t)|i〉 = 0 (2.31)

Applying Eq. (2.31) in Eq. (2.30) we get

C
(t)
i (t) = − i

~

∫ t

0

dt′H
(I)
ii (t′)C

(0)
i (t′) = 0. (2.32)
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Thus the amplitude of the initial state will have a vanishing first order

correction. Therefore, up to first order we can take Ci(t) = C
(0)
i (t) =

1 and for f 6= i we have

C
(1)
f (t) = − i

~

∫ t

0

dt′H
(I)
fi (t

′)eiωfit
′

(2.33)

Using H(I) = −d̂.E0 cosωt we get

C
(1)
f (t) =

1

2~
(d̂.E0)fi (2.34)

×
{

(

ei(ω+ωfi)t − 1
)

(

ω + ωfi
) −

(

e−i(ω−ωfi)t − 1
)

(

ω − ωfi
)

}

where
(

d̂.E0

)

fi
= 〈f |d̂.E0|i〉. In the near resonance cases, that is the

frequency of the radiation(ω) is approximately equal to the atomic

transition frequency(ωfi), the second term clearly dominates the first.

In such a resonant interaction we may drop the “antiresonant” first

term making the “rotating wave approximation” (RWA).i.e.,

P
(1)
i→f (t) =






C

(1)
f (t)







2

=
|
(

d̂.E0

)

fi
|2

~2

sin2(∆t/2)

∆2
(2.35)

where ∆ = ω − ωfi is the “detuning” between the radiation field

and atomic transition. For nonzero ∆ it oscillates with time with the

maximum transition probability

(

P
(1)
i→f

)

max
=

|
(

d̂.E0

)

fi
|2

~2

1

∆2
. (2.36)

2.5 Interaction of an atom with quantized field

A single mode electromagnetic field in free space in the dipole ap-

proximation can be represented as

Ê(t) = i

(

~ω

2ǫ0V

)
1

2

e
(

âe−iωt − â†eiωt
)

. (2.37)
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In the Schrodinger picture we may avoid the time dependence and

the electric field becomes

Ê = i

(

~ω

2ǫ0V

)
1

2

e
(

â− â†
)

(2.38)

The total Hamiltonian of the atom-field system can be written as

Ĥ = Ĥ0 + Ĥ(I), (2.39)

where Ĥ0 = Ĥatom + Hfield and H(I) is the interaction Hamiltonian

given by

Ĥ(I) = −d̂.Ê = −i
(

~ω

2ǫ0V

)

(d.e)
(

â− â†
)

= −d.ε0
(

â− â†
)

,

(2.40)

where ε0 = i
√

(

~ω
2ǫ0V

)

e.

The atom and field states are quantized and the states of the combined

system will be the direct products of states of both the systems. That

is, the state |i〉 of the system may write as |i〉 = |a〉|n〉, where |a〉 is the
initial state of the atom with energy Ea and field contains n number of

photons. The interaction of the quantized field with the atom causes

emission or absorption of a photon and results in following final states

|f1〉 = |b〉|n− 1〉 or (2.41)

|f2〉 = |b〉|n+ 1〉, (2.42)

where |b〉 is another atomic state with energy Eb. These initial and

final states of the system holds the energy

|i〉 = |a〉|n〉 ⇒ Ei = Ea + n~ω, (2.43)

|f1〉 = |b〉|n− 1〉 ⇒ Ef1 = Eb + (n− 1)~ω, (2.44)

|f2〉 = |b〉|n+ 1〉 ⇒ Ef2 = Eb + (n+ 1)~ω. (2.45)
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The matrix elements of the interaction Hamiltonian corresponding to

the initial and final states are

〈f1|Ĥ(I)|i〉 = 〈b, n− 1|Ĥ(I)|a, n〉
= −(d.ε0)ba

√
n, (absorption) (2.46)

〈f2|Ĥ(I)|i〉 = 〈b, n+ 1|Ĥ(I)|a, n〉
= (d.ε0)ba

√
n+ 1, (emission) (2.47)

where

(d.ε0)ba = 〈a|d̂|b〉.ε0 ≡ dab.ε0 (2.48)

The factor dab = 〈a|d̂|b〉 gives the dipole matrix element between the

states |a〉 and |b〉 of the atom. Now look at the expression for the

matrix elements of absorption given in Eq. (2.46). Here when n = 0

there will not be any absorption just as one might expect. This is in

agreement with the case of a classical driving field - no field, no tran-

sitions. But in case of emission according to Eq. (2.47), transitions

may occur even when no photons are present. This phenomenon

is called spontaneous emission which has no classical counter part.

When n > 0, the emission of an additional photon is called stimu-

lated emission, which is the underlying principle of the operation of

a laser.

2.6 Two level atom approximation

The quantum treatment of the interaction between light and atoms is

usually developed in terms of the two-level atom approximation. This

approximation is applicable when electromagnetic field interacts with

atom and the frequency of the field is comparable with one of the

optical transition of the atom. i.e,

E2 − E1 ≈ ~ω (2.49)
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ω

1
~ω

2

Figure 2.1: The two-level atom approximation. When the light angular fre-
quency ω coincides with one of the optical transitions of the atom, we have a
resonant interaction between that transition and the light field. We can therefore
neglect the other levels of the atom, which only weakly couples with the light
because they are off-resonance.

In an atom there will be many quantum levels with different energy

and between these levels many optical transitions are possible. But

in the two-level atom approximation we only consider the specific

transition that satisfies Eq. (2.49) and ignore all the other levels and

we label the lower and upper levels as 1 and 2 respectively as shown

in Fig. 2.1. The physical basis for the two-level approximation is the

fact that we are dealing with a resonance process. According to the

classical picture of light atom interactions, the light beam stimulate

dipole oscillations in the atom, which then re-radiate at the same

frequency. If the light frequency coincides with the natural frequency

of the atom, the magnitude of the dipole oscillations will be large and

the interaction between the atom and the light will be strong. In a

similar way, if the light frequency is far off from the natural frequency

of the atom (i.e. off-resonance), then the magnitude of the induced

oscillations will be small and in these cases the effect of light-atom

interaction will be negligible. That is, for resonant cases the effect of

interaction between the light and the atom is very much stronger in

comparison with the case of off-resonant interaction and it is a good



34 Atom field interactions

approximation to ignore the latter. There are cases in which the

presence of the off-resonant levels may become important indirectly.

For example, when the atom is in level 2, it could make transitions

to other lower levels in addition to level 1. One can include damping

terms in the equations in order to incorporate such levels. A useful

inference can also be made between the properties of two-level atoms

and those of spin 1/2 particles in presence of a magnetic field.

I = 1/2

MI = −1/2

MI = +1/2

µngnB

B = 0 B 6= 0

1

2

E2 − E1

Nuclear spin in B field Two-level atom

Figure 2.2: Splitting of a spin 1/2 system in a magnetic field of strength B
along the z-axis (a) is formally equivalent to a two-level atom (b). Here gN is the
nuclear g-factor and µN is the nuclear Bohr magneton

Here Fig. 2.2 shows the splitting of a spin 1/2 system into a doublet

in the presence of a magnetic field of strength B due to the Zeeman

effect. The Zeeman-split levels are formally equivalent to the two-

level atom as in Fig. 2.2. The reason for making the analogy is that

the theory of the resonant interaction between microwave radiation

and the Zeeman-split nuclear spin states had been formulated in the

1940’s to explain a whole range of nuclear magnetic resonance (NMR)

phenomena. With the invention of the laser in 1960, the same types of

phenomena were soon observed in two-level atomic systems at optical

frequencies. A lot of physics can be investigated by two level atom
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approximation and many recent experiments agree fairly well with

a description given by the so-called Jaynes-Cumming model(JCM)

describing a two-level atom interacting with a single mode radiation

field[9–11].

2.6.1 The Rabi Model

|g〉

|e〉

~ω0

~ω

~∆

Figure 2.3: Energy level diagram for a two-level atom driving with a near
resonant classical field of frequency ω. The resonant frequency between the two
atomic levels is ω0 and the detuning ∆ = ω0 − ω

So far we have discussed the interaction between an atom and elec-

tromagnetic field using the perturbation theory. In the perturbation

method, it is obvious to assume that the change in initial atomic

population is very small. But in reality the probability of population

transfer is very high when a strong electromagnetic field of frequency

very near to the resonance frequency of the atomic levels, interacts

with the atom. In such cases the perturbation theory is inadequate

to study the interaction. Also in these types of interactions only two

dominant states need to be considered. So we can very well adopt

the concept of two level atom approximation. In the following section
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we study this category of interaction and in semiclassical approach

which is known as Rabi model.

Let the two states in the atom are |g〉 and |e〉 with respective energies

Eg and Ee. The energy difference of these two levels may character-

ized by the transition frequency ω0 = (Ee−Eg)/~. This frequency is

near to the frequency ω of the interacting electromagnetic field. The

interaction Hamiltonian from Eq. (2.24) we have;

Ĥ(I)(t) = −d. (E0 cosωt) = V̂0 cosωt (2.50)

where V̂0 = −d.E0.

The state vector of the atom at any time t can be written in terms of

the two atomic states |g〉 and |e〉 as,

|ψ(t)〉 = Cg(t)e
−iEgt/~|g〉+ Ce(t)e

−iEgt/~|e〉 (2.51)

Now substituting the total Hamiltonian, Ĥ = Ĥ0 + V̂0 cosωt, and

state vector in time dependent Schrödinger equation we arrive at a

set of coupled equations for the amplitudes Cg and Cesuch that,

Ċg = − i

~
γ cosωte−iω0tCe,

Ċe = − i

~
γ cosωteiω0tCg, (2.52)

where γ = 〈e|V̂0|g〉 = −deg.E0, which is taken to be real. As an

example we consider the initial condition where all the population to

be in the ground state: Cg(0) = 1 and Ce(0) = 0. Neglecting energy

non conserving terms i.e., using rotating wave approximation(RWA)

and retaining terms oscillating at the frequency ω0 − ω the (2.52)

becomes

Ċg = − i

2~
γ exp [i(ω − ω0)t]Ce, (2.53)

Ċe = − i

~
γ exp [−i(ω − ω0)t]Cg. (2.54)
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Differentiating Eq. (2.54) and eliminating Cg using Eq. (2.54) we get

C̈e + i(ω − ω0)Ċe +
1

4

γ2

~2
Ce = 0. (2.55)

Now we try a solution of Eq. (2.55) of the form

Ce(t) = eiλt, (2.56)

and substituting Eq. (2.56) in Eq. (2.55) we obtain the possible value

of λ as

λ± =
1

2

{

∆±
[

∆2 + γ2/~2
]1/2

}

, (2.57)

where ∆ = ω− ω0 is the detuning of the atomic transition frequency

and the electromagnetic field. Now the general solution can be written

as

Ce(t) = A+e
iλ+t + A−e

iλ−t (2.58)

By applying the initial conditions we get,

A± = ± 1

2~
γ
[

∆2 + γ2/~2
]−1/2

. (2.59)

and the corresponding solution is

Ce(t) = i
γ

ΩR~
ei∆t/2 sin(ΩRt/2), (2.60)

Cg(t) = ei∆t/2
[

cos(ΩRt/2)− i
∆

ΩR
sin(ΩRt/2)

]

, (2.61)

where

ΩR =
[

∆2 + γ2/~2
]1/2

(2.62)

is the so called Rabi frequency. The probability that the atom is in

state |e〉 is
Pe(t) = |Ce(t)|2 =

γ2

Ω2
R~

2
sin2 (ΩRt/2) . (2.63)
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For exact resonance cases, ∆ = 0, we have

Pe(t) = sin2
( γt

2~

)

, (2.64)

and at the time t = π~/γ, Pe(t) = 1 i.e, all the atomic population

has been transferred to the excited state.

It is convenient to consider the quantity known as the atomic inversion

W (t), also known as population inversion, defined as the difference in

the excited and ground state populations. i.e.,

W (t) = Pe(t)− Pg(t). (2.65)

Population inversion for the resonant case and with the atom initially

in the ground state is

W (t) = sin2
( γt

2~

)

− cos2
( γt

2~

)

= − cos (γt/~) . (2.66)

Note that for ∆ = 0 the Rabi frequency is just ΩR = γ/~, the

oscillation frequency of the atomic inversion. Again, for t = π~/γ

all the population is transferred to the excited state: W (π~/γ) = 1.

Also when t = π~/2γ, then W (π~/2γ) = 0 i.e, and the population is

shared coherently between the excited and ground states with

Ce(π~/2γ) =
i√
2
, (2.67)

Cg(π~/2γ) =
1√
2
, (2.68)

so that,

|ψ(t = π~/2γ)〉 = 1√
2
((|g〉+ i|e〉) . (2.69)

2.7 The Jaynes-Cummings model

Recent developments in cavity electrodynamics show that, it is possi-

ble to manufacture environments where the density of electromagnetic
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field modes is significantly different than in free space. For example

small micro cavities or optical cavities are capable of supporting only

a single mode radiation field. And we may say that a single mode

field atom interaction is realizable in a laboratory set up. Jaynes and

Cummings introduced a model to describe the interaction of a two

level atom and single mode electromagnetic field in 1963 [12] and it

is capable of exhibiting purely quantum mechanical phenomena.

Here also we consider an atom with two levels |g〉 and |e〉 interacting
with a single mode cavity with electric field,

Ê = e

(

~ω

ǫ0V

)1/2
(

â+ â†
)

sin(kz), (2.70)

where e is an arbitrary oriented polarization vector. The correspond-

ing interaction Hamiltonian in the operator form is

Ĥ(I) = −d̂.Ê = d̂g
(

â+ â†
)

, (2.71)

where

g = −
(

~ω

ǫ0V

)1/2

sin(kz). (2.72)

and d̂ = d̂.e. At this point it is convenient to introduce the so-called

atomic transition operators

σ̂+ = |e〉〈g|, σ̂− = |g〉〈e| = σ†+ (2.73)

and the atomic inversion operator

σ̂z = |e〉〈e| − |g〉〈g|. (2.74)

These operators obey the Pauli spin algebra

[σ̂+, σ̂−] = σ̂z (2.75)

[σ̂z, σ̂±] = 2σ̂± (2.76)
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From parity considerations, the diagonal matrix elements of the dipole

moment operator is zero and only the off diagonal matrix elements

are non zero i.e., 〈e|d̂|g〉 6= 0. We can now write

d̂ = d|g〉〈e|+ d|e〉〈g| (2.77)

= dσ̂− + dσ̂+ = d (σ̂+ + σ̂−) (2.78)

where we have set 〈e|d̂|g〉 = d and is taken to be real. Thus the

interaction Hamiltonian is

Ĥ(I) = ~λ (σ̂+ + σ̂−)
(

â+ â†
)

(2.79)

where λ = dg/~. Now we define the level of zero energy is at midway

between the states |g〉 and |e〉 as shown in Fig. 2.4.

~ω0

|g〉 −1

2
~ω0 = Eg

|e〉 1

2
~ω0 = Ee

E = 0

Figure 2.4: Atomic energy level diagram. E = 0 level is taken half way between
the two levels |g〉 and |e〉

Then the free atomic Hamiltonian can be written as

ĤA =
1

2
(Ee − Eg) σ̂z =

1

2
~ω0σ̂z. (2.80)

The free field Hamiltonian after dropping the zero point energy term

is

ĤF = ~ωâ†â. (2.81)



The Jaynes-Cummings model 41

Now the total Hamiltonian is

Ĥ = ĤA + ĤF + Ĥ(I)

=
1

2
~ω0σ̂z + ~ωâ†â+ ~λ (σ̂+ + σ̂−)

(

â+ â†
)

(2.82)

The description of a system using the total Hamiltonian given in Eq.

(2.82) is known as Jaynes-Cummings Model(JCM).

In the free field case we have the time dependence of field operators

as

â(t) = â(0)e−iωt, â†(t) = â†(0)eiωt. (2.83)

Similarly for the free atomic cases

σ̂±(t) = σ̂±(0)e
±iω0t. (2.84)

Using Eqs. (2.83) and (2.84) the time dependence of the following

factors in the total Hamiltonian in Eq. (2.82) is expected as

σ̂+â ∼ ei(ω0−ω)t,

σ̂−â
† ∼ e−i(ω0−ω)t,

σ̂+â
† ∼ ei(ω0+ω)t,

σ̂−â ∼ e−i(ω0+ω)t. (2.85)

For ω ≈ ω0, the last two terms vary much more rapidly than the

first two. Further more the last two terms does not conserve energy

in comparison with the first two. The term σ̂+â
† corresponds to the

emission of a photon as the atom goes from the ground to the excited

state. Similarly σ̂−â corresponds to the absorption of photon when

an atom is de-excited from upper to lower. These two processes do

not conserve energy and we are dropping these two terms from the

total Hamiltonian, making the Rotating Wave Approximation(RWA).

Now the Hamiltonian in the RWA is

Ĥ =
1

2
~ω0σ̂z + ~ωâ†â+ ~λ

(

σ̂+â+ σ̂−â
†
)

. (2.86)
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Let us now consider the example of resonant interaction, i.e., ∆ = 0.

We assume that the atom is initially in the excited state |e〉 and

the field initially in the number state |n〉. Now the initial state of

the atom field system is |i〉 = |e〉|n〉. The energy of such a state is

Ei =
1
2~ω+n~ω. The only final state of the system is |f〉 = |g〉|n+1〉

with energy Ei = −1
2~ω+(n+1)~ω, i.e., Ei = Ef . The general state

of the atom field system at any time t is

|ψ〉(t) = Ci(t)|i〉+ Cf (t)|f〉. (2.87)

Substituting Eq. (2.86) in the time dependent Schrödinger equation

we get

Ċi = −iλ
√
n+ 1 Cf ,

Ċf = −iλ
√
n+ 1 Ci. (2.88)

Eliminating Cf we obtain

C̈i + λ2(n+ 1)Ci = 0. (2.89)

The solution, using the initial condition, is

Ci(t) = cos
(

λt
√
n+ 1

)

. (2.90)

From Eq. (2.88) we get

Cf (t) = −i sin
(

λt
√
n+ 1

)

(2.91)

Thus the state of the atom field system at any time t is

|ψ〉 = cos
(

λt
√
n+ 1

)

|e〉|n〉 − i sin
(

λt
√
n+ 1

)

|g〉|n+ 1〉. (2.92)

The probability of the system remains in the initial state is

Pi(t) = |Ci(t)|2 = cos2
(

λt
√
n+ 1

)

(2.93)
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and the probability that it makes a transition to the final state |f〉 is

Pf (t) = |Cf (t)|2 = sin2
(

λt
√
n+ 1

)

. (2.94)

The atomic inversion or population inversion is given by

W (t) = 〈ψ(t)|σ̂z|ψ(t)〉
= Pi(t)− Pf (t)

= cos
(

2λt
√
n+ 1

)

(2.95)

We may define a quantum electrodynamic Rabi frequency Ω(n) =

2λ
√
n+ 1 so that

W (t) = cos [Ω(n)t] (2.96)
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Figure 2.5: Atomic population inversion plotted against scaled time (λt). Field
is initially in a Fock state with number of photons equal to 10.

Here in the quantum mechanical case it is clear from Eq. (2.95)

that there are Rabi oscillations even when the number of photons is
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zero(n = 0). These are vacuum field Rabi oscillation which does not

have a classical counter part. These vacuum Rabi oscillations are the

result of the spontaneous emission of photon from the atom. Vacuum

Rabi oscillations are visible in high Q cavities. Apart from this, the

behaviour of atomic inversion for a definite number of photons is very

much similar to the semiclassical Rabi oscillations.

As a more general case let us consider the atom initially in a super-

position of states |g〉 and |e〉; i.e.,

|ψ(0)〉atom = Cg|g〉+ Ce|e〉 (2.97)

and initially the field is in a state

|ψ(0)〉field =

∞
∑

n=0

Cn|n〉. (2.98)

So the initial atom-field state is

|ψ(0)〉 = |ψ(0)〉atom ⊗ |ψ(0)〉field (2.99)

The solution of the Schrödinger equation now becomes

|ψ(t)〉 =

∞
∑

n=0

[

CeCn cos
(

λt
√
n+ 1

)

− iCgCn+1 sin
(

λt
√
n+ 1

)]

|e〉

+
[

−iCeCn−1 sin
(

λt
√
n
)

+ CgCn cos
(

λt
√
n
)]

|g〉|n〉.
(2.100)

If the atom is initially in the excited state, where Ce = 1 and Cg = 0,

the solution can be rewritten as

|ψ(t)〉 = |ψg(t)〉|g〉+ |ψe(t)〉|e〉. (2.101)

The field components |ψg(t)〉 and |ψe(t)〉 respectively when atom in
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the ground and excited state are

|ψg(t)〉 = −i
∞
∑

n=0

Cn sin
(

λt
√
n+ 1

)

|n+ 1〉,

|ψe(t)〉 =

∞
∑

n=0

Cn cos
(

λt
√
n+ 1

)

|n〉. (2.102)

The corresponding atomic population inversion is

W (t) = 〈ψ(t)|σ̂z|ψ(t)〉
= 〈ψe(t)|ψe(t)〉 − 〈ψg(t)|ψg(t)〉

=

∞
∑

n=0

|Cn|2 cos
(

2λt
√
n+ 1

)

. (2.103)

The population inversion is just the sum of n-photon inversions of Eq.

(2.95) weighted with the photon number distribution of the initial

field state. If the initial field is coherent, i.e.,

Cn = e|α
2|/2 α

n

√
n!
, (2.104)

then the population inversion is

W (t) = e−n̄
∞
∑

n=0

n̄n

n!
cos

(

2λt
√
n+ 1

)

. (2.105)
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Figure 2.6: Atomic population inversion plotted against scaled time (λt). Field
is initially in coherent state with average number of photons, n̄ = 25.

A plot of atomic population inversion,W (t), versus the scaled time(λt)

is shown in Fig. 2.6. The initial Rabi oscillation die out or collapse as

time elapses and after a period of quiescence following the collapse,

the Rabi oscillations starts to revive, although not completely. At

longer times one can find a series of collapses and revivals, the revivals

becoming less distinct as time increases. This collapse and revival be-

haviour of population inversion is a fully quantum mechanical effect

and is strikingly different than in the semi classical case. These col-

lapses and revivals are due to the spread of probabilities about n̄ for

photon numbers in the range n̄±∆n. Due to this spread in probabil-

ity there will be many Rabi frequencies other than the dominant one,

corresponding to the average photon number n̄. The collapse time tc

may be estimated approximately from the time-frequency uncertainty
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relation and tc ≃ 1/(2λ).

2.8 Motivation

2.8.1 Application of an atom-field system as qubit QIP

Due to the recent developments in the cavity quantum electrodynam-

ics experiments, what was earlier considered as ‘toy models’ are today

realized in laboratories. A controlled isolated coherent evolution of

one or a few atoms coupled to a single mode electromagnetic field in-

side a cavity can be accomplished experimentally[13–16]. These atom

field systems are well suited for studying purely quantum mechani-

cal effects and applicable for performing quantum logic operations in

a quantum computer. The Jaynes-Cummings model has served as

a theoretical description of this interacting system. As the experi-

mental techniques are improved, for example, atom cooling, the use

of multi-level atoms or multi-modes and driving of atoms or fields

by external lasers, there are many extensions to the original Jaynes-

Cummings model.

Jayness cumming model and its later extensions to this have made

many theoretical predictions in cavity QED, for example collapse-

revivals [17], atomic disentanglement [18–21], field squeezing [22–24],

non demolition measurements [25, 26], state reconstruction [27, 28],

single photon Fock states [29], superposition of large amplitude coher-

ent states (Schrödinger cats) [30, 31], decoherence [32, 33] etc.. Many

of these and other predictions have been verified in experiments [34–

41, 41, 41–48]. At about the same time as the realization of cavity

QED experiments has began, a new sub-field of quantum mechanics;

quantum information has been developed explosively [49, 50]. The

basic unit of information in quantum information is a “qubit” and it
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can be decoded in the two level atom or in the field. Quantum states

of an atom can be used for information storage and a photon coupled

to the atom can act as information carriers. Control over the interac-

tion between atom and field will help in managing quantum data in

quantum information process(QIP). The applications of atom-photon

interactions towards quantum information and computing have been

studied and also experimentally tested, see for example [37–42, 50].

After the realisation that atom field states and its interaction dynam-

ics are possible candidates for data storage and processing in quantum

informatics, there are many works enquiring about the various pos-

sibilities of atom field interaction dynamics suitable for applications

in quantum information processes [51–55]. In our work we seek var-

ious possibilities for controlling and manipulating state evolution in

the interaction between a two level atom and electromagnetic field.

We also examine the entanglement entropy evolution of an atom field

system during the interaction. A controllable or fine tuned atom field

interaction can improve the data handling ability of it in quantum

computers.

2.8.2 Coupled cavity system for data transmission in QIP

In the current setting, information transmission is one of the main

challenges facing in the realization of quantum computers. Many sys-

tems have been proposed in this area for effectively transmitting and

manipulating data. For short length quantum communication, linear

spin chain channels are introduced [56, 57]. Another concept, which

can serve the purpose of information transmission from one part to

other is a coupled cavity array, which can be modelled as an effec-

tive and controllable many body system [58], has been the subject of

discussion in many recent studies [59, 60]. The solid state analogue
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of coupled cavity systems are realized by coupling superconducting

qubits to stripline resonators [61–63]. There are many theoretical and

experimental studies devoted to this area. This includes the develop-

ments of nanocavities in photonic crystals and the Josephson junction

arrays, which is found to be useful in many significant applications

in quantum information processing. Remarkable development also

has been accomplished recently by considering cold atoms trapped in

optical lattices which can effectively be described by a Bose-Hubbard

Hamiltonian, unveils its potential applications as quantum optical

simulators. In the following chapters we work with coupled cavity

systems and analyse its interaction dynamics. We investigate the

state transfer between two adjacent cavities and possibilities of con-

trolling the data transfer between them.





3
Interaction of two level atom and

electromagnetic field with time
varying frequency

3.1 Introduction

A two level atom field system can be used for data storage and for

their operations in quantum information processes(QIP). But a con-

trollable atom-field interaction is essential for using it in QIP. There

are many models suggesting various methods to control the atom-

field interactions [64–67]. After the invention of frequency chirped

lasers there are tremendous progresses in the research on atom field

interactions where the frequency of the laser field is time dependent.

Recent studies show that time dependent field frequency considerably

modifies the dynamical evolution of an atom-field system[68–70]. In

this chapter we discuss methods to control or manipulate the atom

field probability amplitudes during the interaction between a two level

atom and quantized electromagnetic field using time dependent field

frequency fluctuations. It is to be noted that the sinusoidal field fre-

quency fluctuation can be used for controlling the dynamics of atom

field system. A detailed study of the dependence of population in-

version on the applied frequency modulation parameters by varying

the initial photon distributions are presented in this chapter. As a

continuation, the dynamics of interaction between a two level atom

51
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and electromagnetic field with phase shifted sinusoidally varying fre-

quency is also included in this chapter. In the case of phase shifted

frequency fluctuations the population inversion behaves as in the case

of Fock state atom interaction.

3.2 Model and Hamiltonian

We have the Jayness-Cumming Hamiltonian [12], discussed in the

previous chapter, corresponding to the interaction between a two level

atom and quantized single mode electromagnetic field. Setting ~ = 1

the Hamiltonian is

Ĥ = ν0â
†â+

1

2
ωσ̂z + g

(

σ̂+â+ σ̂â†
)

, (3.1)

where ν0 is the frequency of the field and ω is the transition frequency

of the two level atom. The general state of the atom-field system

derived using the time dependent Schrödinger equation and the initial

condition such that atom is in the excited state at t = 0 is,

|ψ(t)〉 =
∞
∑

n=0

Cn cos
(

λt
√
n+ 1

)

|n〉 − i

∞
∑

n=0

Cn sin
(

λt
√
n+ 1

)

|n+ 1〉,

(3.2)

where Cn is obtained from the initial photon distribution. These

results have been discussed in the previous chapter for the photons

initially in Fock state and coherent state. In all these cases the fre-

quency of the interacting field, ν0, is kept constant; does not have any

time dependence. Now let us consider the case with the frequency of

the field is also varying with time. In such cases the Hamiltonian and

the entire system evolution changes. The fluctuating field frequency

can be represented as the combination of a time independent mean

frequency, ν0, and a time dependent function f(t) such that

ν(t) = ν0 + f(t). (3.3)
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Because of the fluctuations in field frequency, all the parameters in-

volved in the interaction which has a dependency on field frequency

also changes with time. From JCM, it is known that the atom field

coupling strength g is proportional to the field frequency and inversely

proportional to the quantization volume(V ) of the cavity, i.e.,

g ∝ −
(

~ω

ǫ0V

)1/2(
d

~

)

(3.4)

According to the quantization of electromagnetic field, V is always

inversely proportional to the field frequency such that

V (t) =
V0

1 + f(t)/ν0
(3.5)

and now g reads

g = g0 (1 + f(t)/ν0) , (3.6)

where g0 is the coupling strength corresponds to the mean frequency

ν0. The time dependent total Hamiltonian after considering the

changes in coupling strength due to the field frequency fluctuation

is,

Ĥ(t) = ν0â
†â+

1

2
ωσ̂z + (1 + f(t)/ν0)

[

σ̂+â+ σ̂−â
†
]

. (3.7)

Now the general state of the two level atom-field system at any arbi-

trary time t can be represented as

|ψ〉 =
∑

n

[Ce,n(t)|e, n〉+ Cg,n(t)|g, n〉] . (3.8)

Here |e, n〉(|g, n〉) represents the atom in excited(ground) state with n

photons and Ce,n(t)(or Cg,n(t)) are the coefficients corresponding to

their probabilities. Substituting the Hamiltonian in Eq. (3.7) and the

general state given by Eq. (3.8) in the time dependent Schrödinger
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equation we get the following infinite set of equations for the evolution

of probability amplitudes, Ce,n(t) and Cg,n+1(t):

d

dt
Ce,n(t) = −in [ν0 + f(t)]Ce,n(t)−

i

2
ωC1,n

−ig0 [1 + f(t)/ν0]
√
n+ 1Cg,n+1(t), (3.9)

d

dt
Cg,n+1 = −i(n+ 1) [ν0 + f(t)]Cg,n+1 +

i

2
ωCg,n+1

−ig0 [1 + f(t)/ν0]
√
n+ 1Ce,n(t). (3.10)

In order to make the equations simple and eventually to solve them

we define another set of coefficients Me,n(t) and Mg,n+1(t) such that

Ce,n(t) = exp [−i (nν0 + ω/2) t]×

exp

[

−in
∫ t

0

f(t′)dt′
]

Me,n(t) (3.11)

Cg,n+1(t) = exp [−i [(n+ 1) ν0 − ω/2] t]×

exp

[

−i(n+ 1)

∫ t

0

f(t′)dt′
]

Mg,n+1(t). (3.12)

It is important to note that,

|Me,n(t)|2 = |Ce,n(t)|2 ; |Mg,n(t)|2 = |Cg,n(t)|2. (3.13)

Substituting Eqs. (3.11) and (3.12) in Eqs. (3.9) and (3.10) we obtain

d

dt
Me,n(t) = −ig

√
n+ 1 exp[−i(νo − ω)t]×

exp

(

−i
∫ t

0

f(t′)dt′
)

Mg,n+1 (3.14)

d

dt
Mg,n+1(t) = −ig

√
n+ 1 exp [i(ν0 − ω)t]×

exp

(

i

∫ t

0

f(t′)dt′
)

M1,n (3.15)

The above set of equations Eqs. (3.14) and (3.15) can be solved to

find the nature of evolution of the atom field system. In the previous
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chapter we have defined the atomic population inversion as the differ-

ence in the probability of finding the atom in excited state to ground

state; i.e.,

W (t) =
∑

n

[

|Ce,n(t)|2 − |Cg,n+1|2
]

. (3.16)

Using Eqs. (3.11) and (3.12) and Eq. (3.13), it can be written in the

form:

W (t) =
∑

n

[

|Me,n(t)|2 − |Mg,n+1|2
]

. (3.17)

In the case where the frequency is constant i.e. f(t) = 0, the set of

Eqs. (3.14) and (3.15) can be re written as

dMe,n(t)

dt
= −ig0

√
n+ 1 e−i∆t Mg,n+1(t), (3.18)

dMg,n+1(t)

dt
= −ig0

√
n+ 1 e+i∆t Me,n(t), (3.19)

where ∆ = ν0 − ω. We can solve Eqs.(3.18) and (3.19) analytically

using the standard techniques of solving coupled differential equations

as follows.

Differentiating Eq. (3.18) and substituting Eq. (3.19) gives

∂2

∂t2
Mg,n+1(t)− i∆

∂

∂t
Mg,n+1(t) + g20(n+ 1)Mg,n+1(t) = 0 (3.20)

Assume a solution of the form Mg,n+1(t) = Aeiθt and substituting it

in Eq. (3.20) we get

θ2 −∆θ − g20(n+ 1) = 0 (3.21)

i.e.,

θ =
∆±

√

∆2 + 4g20(n+ 1)

2
(3.22)

Taking Ω2
n = ∆2 + 4g20(n+ 1) the general solution is

Mg,n+1(t) = A+e
i
2
(∆+Ωn)t + A−e

i
2
(∆−Ωn)t (3.23)
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We have the initial condition such that at time t = 0, Mg,n+1(0) = 0.

i.e., Mg,n+1(0) = 0 = A+ + A− ⇒ A+ = −A− = A(say). Then we

get

Mg,n+1(t) = A
{

e
i
2
(∆+Ωn)t − e

i
2
(∆−Ωn)t

}

= Ae
i∆t
2

{

e
i
2
Ωnt − e−

i
2
Ωnt

}

i.e., Mg,n+1(t) = Ae
i∆t
2 2i sin(Ωnt/2). (3.24)

Substituting it in Eq. (3.19) we obtain

Me,n(t) = (iA/g0) e
−i∆t/2

[

Ωn
2

cos(Ωnt/2) +
i∆

2
sin(Ωnt/2)

]

(3.25)

Using the Eqs. (3.24) and (3.25), the atomic population inversion

W (t) can now be written as,

W (t) =

∞
∑

n=0

ρnn(0)

[

∆2

Ω2
n
+

4g0(n+ 1)

Ω2
n

cos (Ωnt)

]

, (3.26)

where ρnn(0) is obtainable from the initial photon distribution.

3.3 Sinusoidally varying field frequency

We now consider the case with the frequency of the electromagnetic

radiation varies sinusoidally with time as given below

ν(t) = ν0 +∆ν sin(βt), (3.27)

where ν0 is the initial mean frequency and ∆ν sin(βt) is the fluctua-

tion with an amplitude ∆ν and a periodicity 1/β. Now the coupling

strength g becomes

g = g0

[

1 +
∆ν sin(βt)

ν0

]

. (3.28)
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With the oscillating field frequency the evolution equations for the

probability amplitudes takes the form

dMe,n(t)

dt
= −ig0

√
n+ 1 e∆ν/β[cosβt−1]

[

1 +
∆ν sin(βt)

ν0

]

Mg,n+1(t) (3.29)

dMg,n+1(t)

dt
= −ig0

√
n+ 1 e∆ν/β[cosβt−1]

[

1 +
∆ν sin(βt)

ν0

]

Me,n(t) (3.30)

The above set of equations Eqs. (3.29) and (3.30) are solved nu-

merically using the fourth order Runge-Kutta method for the given

initial photon distribution. In the following sections we discuss the

interaction for coherent and squeezed field.

3.3.1 Interaction with coherent field

Consider the case in which a two level atom interacting with an initial

coherent field with time varying frequency. We notice a weak influence

of frequency fluctuation in the evolution of population inversion when

the amplitude of frequency modulation ∆ν and angular frequency β

is small. For example we choose ∆ν ≈ 0.001ν0, and β ≈ 0.1g0 and

the corresponding evolution of atomic population inversion is plotted

in Fig. 3.1 as the function of scaled time τ = gt
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Figure 3.1: Atomic population inversion against scaled time. Initial coherent
field with n̄ = 25. Field frequency ν0 is taken to be 10000g0, ∆ν = 0.001ν0 and
β = 0.1g0. Dotted line shows the field frequency fluctuation.
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f(t) = ∆ν sin(βt)

Figure 3.2: Atomic population inversion against scaled time. Initial coherent
field with n̄ = 25. ν0 = 1000g0, ∆ν = 0.005ν0, β = 0.1g0. Dotted line shows the
field frequency fluctuation.

Here the evolution is similar to the constant frequency case with

normal collapses and revivals. But when the amplitude ∆ν increases,

there are visible changes in the nature of population inversion. In Fig.

3.1 population inversion versus time for both, with frequency fluctu-

ation and without frequency fluctuation, cases are plotted. When

there is a frequency variation with a considerable amplitude, we can

see from Fig. 3.2 that the revivals are shifted towards to the right.

We may say that the system spend more time in the collapse region

with a coherent sharing of probability amplitudes between atom and

field or in other words, with a zero atomic inversion. In Fig. 3.3

we have plotted the atomic inversion by varying the periodicity of

the field frequency fluctuations. Here we observed the quasi periodic

oscillations in population inversion with time. It is also noted that,
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during the collapse period the atomic inversion is not exactly col-

lapsing to zero but oscillating with a small amplitude. The period

of these oscillations are exactly equal to the period of field frequency

fluctuations.
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(a): β = g0
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(b): β = 2g0

Figure 3.3: Population Inversion versus time. Initial coherent field with n̄ = 25.
Field frequency ν0 = 10000g0, ∆ν = 10g0. Field frequency variation is shown by
the dotted line.
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3.3.2 Interaction with squeezed field

Quadrature squeezed electromagnetic field has been discussed in the

proceeding section 1.4. Squeezed light is the light with minimum

uncertainty but the value of uncertainty in different quadratures are

not the same. One way in which this can be achieved is to squeeze the

uncertainty circle of the vacuum or the coherent state into an ellipse

of the same area. The squeezed states for a single mode radiation

field may be generated from the vacuum |0〉 by

|α, ξ〉 = D̂(α)Ŝ(ξ)|0〉. (3.31)

Here Ŝ(ξ) and D̂(α) are the squeezing and coherent displacement

operators respectively and are given by

Ŝ(ξ) = exp[
1

2
(ξ∗â2 − ξâ†

2

)], (3.32)

D̂(α) = exp(αâ† − α∗â), (3.33)

where α = |α|eiψ, ξ = reiθ, r is known as the squeezing parameter

and 0 ≤ r <∞ and 0 ≤ θ < 2π. When ξ = 0 we obtain the coherent

state. The photon number distribution for a squeezed field is

Pn =
(12 tanh r)

n

n! cosh r
exp

[

−|α|2 − 1

2

(

α2eiθ + α∗2e−iθ
)

tanh r

]

×
∣

∣

∣
Hn

[

γ(eiθ sinh 2r)
1

2 )
]∣

∣

∣

2

, (3.34)

with γ = α cosh r + α∗ sinh r and Hn’s are the Hermite polynomials.

Now consider the interaction of quadrature squeezed light with a two

level atom. In the interaction the effects of squeezing is maximum

when the value θ is π and the effects are minimum for θ = 0. The be-

haviour of population inversion with time for θ = 0 is almost similar
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to that of a coherent field atom interaction. There are series of clear

collapses and revivals in population inversion with time. But when

the value of θ = π only first two revivals are prominent and clear.

The collapse and revival phenomenon is not retained for long time

and after the first few there occurs random oscillations in population

inversion as shown in Fig. 3.4. When the value of r is increased the

random oscillation of population inversion starts early in time; im-

mediately after the first revival itself. These randomness in the time

evolution of atomic inversion is due to the squeezing of the interacting

field.



64

Interaction of two level atom and electromagnetic field with

time varying frequency

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

P
op

u
la
ti
on

in
ve
rs
io
n

Scaled time

(a): Squeezed field with θ = 0

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

P
op

u
la
ti
on

in
ve
rs
io
n

Scaled time

(b): Squeezed field with θ = π

Figure 3.4: Population inversion versus time. Initial squeezed field with n̄ = 25.
Squeezing parameter r = 0.8.
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Now we take the case of interaction of atom and squeezed light with

time varying frequency. We are considering only the case with θ = π

where the effect of squeezing is maximum. The frequency variation

is f(t) = ∆ν sin(βt) with ∆ν << ν0 and β is taken to be very small.

For example we choose β = 0.1g0 and ∆ν = 0.001ν0. The corre-

sponding evolution of population inversion is shown in Fig. 3.5. In

the case of interactions in which field frequency is a constant, we have

already noticed that the variation of population inversion is random

after the first revival. From Figs. 3.5 and 3.6 it is clear that the

randomness in the population inversion is reduced by applying a si-

nusoidal frequency variation for the squeezed field. Now the collapses

and revivals are clear and distinct. Here the variation in population

inversion is controlled and collapses and revivals are retained. Also,

similar to the behaviour noticed in coherent field case, the occurrence

of revivals shift towards the right when the amplitude of fluctuation

increases. Thus the revival periodicity has a noticeable dependence

on the amplitude(∆ν) of the field frequency modulation.
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Figure 3.5: Population inversion versus time for two level atom and squeezed
field interaction with field frequency fluctuations for n̄ = 25, r = 0.8, θ = π,
β = 0.1g0. Dotted line shows the field frequency fluctuation.
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Figure 3.6: Population inversion versus time for two level atom and squeezed
field interaction with field frequency fluctuations. n̄ = 25, r = 0.8, θ = π, β =
0.1g0. Field frequency variation is shown by the dotted line.
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Figure 3.7: Population inversion versus time for two level atom and squeezed
field interaction with field frequency fluctuations. Field parameters n̄ = 25, r =
0.8, θ = π, ν0 = 10000g0, ∆ν = 20g0 (a) f(t) = 20g0 sin(1g0t) and in (b) f(t) =
20g0 sin(2g0t). Dotted line shows the field frequency fluctuations.
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When we vary the periodicity for frequency fluctuation for a constant

amplitude, for example β = 1g0, 2g0 etc., the population inversion

executes a quasi periodic oscillation. Also the collapses are not exactly

at zeros and we can see a small amplitude oscillations in the collapse

region. The periodicity of these small amplitude oscillations are equal

to that of the applied field frequency fluctuations as seen in the Fig.

3.7. We can conclude that the field frequency fluctuation can be used

for controlling or manipulating atom field probability amplitudes in

an atom field system and this method can be used for realising a

controllable atom field interaction in QIP.

3.4 Phase shifted frequency modulation

The effect of field frequency variation in the interaction of two level

atom in Kerr medium has been studied in a recent publication by

Li Wang et. al.[70]. Their results shows that the coupling between

the atom and photon is enhanced in the Kerr medium and even the

atomic population inversion for an initial coherent field behaves like

that of an initial Fock state. In this section we suggest another model

in linear medium for which the population inversion behaves in a

similar manner. We considered the interaction between a two level

atom and electromagnetic field in a linear medium where the field

frequency has a phase shifted sinusoidal fluctuation. The system has

been studied for both coherent and squeezed field and it is noted that

the population inversion oscillates sinusoidally just as in the Fock

state atom interaction; without collapses and revivals. Phase shifted

frequency fluctuations improves the coupling between the two level

atom and field.
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3.4.1 Sinusoidal frequency variation with a phase difference

Here we consider a field with sinusoidally varying frequency which

has a phase difference with the mean frequency ν0. In such cases, the

field frequency at any time t can be written in the form,

ν(t) = ν0 +∆ν sin(βt+ φ). (3.35)

We have the time evolution equations, Eqs. (3.14) and (3.15) for the

coefficients corresponding to the probability amplitudes in section 3.2.

Substituting Eq. (3.35) in Eqs. (3.14) and (3.14) the time evolution

equations for the probability amplitudes becomes

d

dt
M1,n = −ig0

(

1 +
∆ν sin(βt+ φ)

ν0

)√
n+ 1

e−i(ν0−ω)te−i
∫ t

0
∆ν sin(βt′+φ)dt′M0,n+1 (3.36)

d

dt
M0,n+1 = −ig0

(

1 +
∆ν sin(βt+ φ)

ν0

)√
n+ 1

ei(ν0−ω)te−i
∫ t

0
∆ν sin(βt′+φ)dt′M1,n (3.37)

The time evolution of the system is now investigated by numerically

solving the Eqs. (3.36) and (3.37).
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3.4.2 Initial coherent field
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Figure 3.8: Population inversion against scaled time. Initial coherent field with
n̄ = 25. Field frequency has phase shifted sinusoidal fluctuations with α = 20g0,
β = 0.1g0. Dotted line shows the field frequency fluctuations.
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In Figs. 3.8 and 3.9 the population inversion is plotted against time

for the interaction of two level atom with initial coherent field with a

phase shifted sinusoidal frequency modulation. It is to be noted that

there are no exact collapses and revivals in population inversion but

it oscillates sinusoidally with time. When the value of φ is equal to

π/2 the evolution of population inversion is identical to the case of

Fock field - atom interaction; a sinusoidal oscillation.
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Figure 3.9: Population inversion against scaled time. Initial coherent field with
n̄ = 25. Field frequency has phase shifted sinusoidal fluctuations for α = 20g0,
β = 0.1g0. Dotted line shows the field frequency fluctuations.
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3.4.3 Initial squeezed field
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Figure 3.10: Population inversion against scaled time. Initial squeezed field
with n̄ = 25, θ = π and r = 0.8. Field frequency has phase shifted sinusoidal
fluctuations for α = 20g0, β = 0.1g0. Field frequency fluctuation is shown by the
dotted lines.
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As in the case of coherent field atom interaction discussed in the previ-

ous section, for the squeezed field also, the population inversion varies

like a sinusoidal function with time where the collapses and revivals

are insignificant. For the phase φ = π/2 the population inversion os-

cillation is exactly similar to the population inversion variation that

occurs in the Fock field atom interactions.
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Figure 3.11: Population inversion against scaled time. Initial squeezed field
with n̄ = 25, θ = π and r = 0.8. Field frequency has phase shifted sinusoidal
fluctuations for α = 20g0, β = 0.1g0. Dotted line shows the field frequency
fluctuations.
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3.5 Conclusion

We have studied the interaction of a two level atom and squeezed

field with time varying frequency. When the quadrature squeezed

field interacts with a two level atom, the population inversion os-

cillates in random with time for squeezing parameter r > 0.5 and

θ = π without collapses and periodic revivals. However, by applying

a sinusoidal variation in the frequency of the field, the randomness in

population inversion is reduced and the collapses and periodic revivals

are regained. Thus the field frequency modulation manipulates the

population inversion in the case of squeezed light atom interaction.

Also, the periodicity of revival depends on the amplitude of applied

frequency modulation. By varying the periodicity of the applied fre-

quency fluctuation the dynamics of population inversion with time

can be manipulated. Two level atom field interaction has an impor-

tant role in the field of quantum computation. Our results suggest a

new method to control and manipulate the population of states in two

level atom radiation interaction, which is very essential for quantum

information processing.

We have also studied the variation of atomic population inversion

with time, when a two level atom interacts with light field, where

the light field has a sinusoidal frequency variation with a constant

phase. In both coherent field and squeezed field cases, the population

inversion variation is completely different from the phase zero fre-

quency modulation case. Variation of phases from 0 to π have been

considered. It is observed that in the presence of a non zero phase

φ, the population inversion oscillates sinusoidally. Also the collapses

and revivals gradually disappears when φ increases from 0 to π/2.

When φ = π/2 the evolution of population inversion is identical to

the case when two level atom interacts with a Fock state. This is
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the same behaviour of population inversion when two level atom and

a frequency varying light interacts in Kerr medium discussed by Li

Wang et al [70]. Thus, by applying a phase shifted frequency modula-

tion one can induce sinusoidal oscillations of atomic inversion in linear

medium, those normally observed in Kerr medium. We propose this

as a method to control the atom field state probability amplitudes in

an atom field system. In the field of quantum computation various

quantum states can be used for the data storage and this method can

be utilized for efficiently handling the data in quantum computation.



4
Interaction of two level atom and

electromagnetic field in Kerr
medium

4.1 Introduction

In this chapter we investigate the evolution of population inversion

and von Neumann entropy in a system consisting of a two level atom

in Kerr medium interacting with photon field, which is initially pre-

pared in a quadrature squeezed state. The frequency of the field is set

to be varying sinusoidally with time and also has a phase difference

from the initial frequency. By following steps that used in the previous

chapter we derived an analytical expressions for the probability am-

plitudes for constant frequency case. Again the time dependent field

frequency case has to be investigated using the numerical techniques.

Population inversion is examined for various nolinear strengths for

both time dependent and time independent frequencies. The effects

of frequency modulation on the evolution of the system for phase zero

and phase non-zero cases have been analysed. It is observed that

in Kerr medium also frequency fluctuation modifies the interaction

between squeezed field and two level atom. The presence of phase

factor in the frequency fluctuation enhances the modifications. The

von Neumann entropy of the system which is a direct measure of the

entanglement between the two subsystems; the atom and the field is

79



80

Interaction of two level atom and electromagnetic field in Kerr

medium

also analysed for different damping and susceptibility. The effects of

frequency fluctuation on the time evolution of von Neumann entropy

and the corresponding entanglement is examined. It is also noticed

that some interesting behaviour of the evolution of a two level atom

in nonlinear medium can also be induced in linear medium itself by

adding a phase factor in the field frequency modulations.

4.2 Model and Hamiltonian

Consider the system consists of a single two level atom interacting

with single mode electromagnetic field in an infinite Q-cavity contain-

ing Kerr medium. Let ωa be the frequency equivalent corresponding

to the energy difference between the ground and exited states of the

two level atom and ωf is the single mode photon frequency. Kerr non-

linearity of the medium can be modelled by an anharmonic oscillator

with frequency ωk. Let b̂(b̂†) be the annihilation(creation) operator

corresponding to the medium and â(â†) be that of the photon. The

Hamiltonian of the system is derived using the Jayness Cumming

model where the rotating wave approximation is applied. The total

Hamiltonian of the system can be written as(~ = 1):

Ĥ = ωf â
†â+ ωσ̂z + g

(

â†σ̂− + âσ̂+
)

+ ωk b̂
†b̂+ qb̂†

2
b̂2

+p(â†b̂+ b̂†â) (4.1)

Here σ̂’s are the atomic operators satisfying [σ̂+, σ̂−] = iσ̂z, q is the

anharmonicity parameter, p is the field-medium coupling strength

and g is the atom field coupling strength. If the response time of

the nonlinear medium is so short that the medium follows the field

in an adiabatic manner, the total Hamiltonian can be transformed to

an effective Hamiltonian involving only the photon and the atomic

operators. In the adiabatic limit the field frequency and anharmonic
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frequency are assumed to be very far from each other(i.e., ωk ≪ ωf ).

In such cases one can introduce the third order susceptibility factor

in the Hamiltonian[71, 72] and it can be rewritten as,

Ĥ = ωâ†â+ ωaσ̂z + g
(

â†σ̂− + âσ̂+
)

+ χâ†
2

â2 (4.2)

where the new frequency ω and the coupling constant χ are related

to q and p by, χ = qp4/δ4, ω = ωf − p2/δ, δ = ωf −ωk. The coupling

constant χ is the dispersive part of the third-order nonlinearity of the

Kerr-like medium.

We now consider the case where the field frequency depends on time,

such that

ω(t) = ω0 + λ sin(βt+ φ), (4.3)

where the amplitude of fluctuation λ ≪ ω0 and φ is the phase of

the field frequency modulation. The modifications in the atom field

coupling strength g is obtained from Eq. (3.6) of section 3.2 and is

given by

g = g0 [1 + λ sin(βt+ φ)] . (4.4)

The susceptibility factor χ also changes due to the frequency fluctu-

ation and takes the form

χ = χ0 + ǫλ sin(βt+ φ), (4.5)

where ǫ << χ0 such that the changes in χ due to the frequency

fluctuation is always small. Now the total Hamiltonian of the system

in the frequency fluctuating case becomes:

Ĥ = [ω0 + λ sin(βt+ φ)] â†â+ ωσ̂z + [χ0 + ǫλ sin(βt+ φ)] â†
2

â2

+g0

(

1 +
λ sin(βt+ φ)

ν0

)

(

â†σ̂− + âσ̂+
)

(4.6)
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The general state of the atom field system at any time, t can be taken

as

|ψ(t)〉 =
∑

n

Cen(t)|e〉|n〉+
∑

n

Cgn+1(t)|g〉|n+ 1〉. (4.7)

As we have done in the preceding sections substitute Eq. (4.6) and

Eq. (4.7) in the time dependent Schrödinger equation and obtain

d

dt
Cen(t) = −ig

√
n+ 1

(

1 +
λ sin(βt+ φ)

ωf

)

Cgn+1(t)

−i
[

nω +
ωa
2

+ n(n− 1)χ0

]

Cen(t)

−i [λ sin(βt+ φ)] [1 + ǫn(n− 1)]Cen(t)

(4.8)

d

dt
Cgn+1(t) = −ig

√
n+ 1

(

1 +
λ sin(βt+ φ)

ωf

)

Cen(t)

−i
[

nω − ωa
2

+ n(n+ 1)χ0

]

Cgn+1(t)

−i [λ sin(βt+ φ)] [1 + ǫn(n+ 1)]Cgn+1(t).

(4.9)

By solving Eqs. (4.8) and (4.9) the time evolution of the system

can be obtained. Variation of population inversion and entanglement

entropy are examined from the obtained solutions.

4.3 Evolution of probabilities

If the field frequency does not have any time dependence i.e., λ = 0,

we can solve the Eqs. (4.8) and (4.9) analytically by following the

steps that we have used in the previous chapter. When λ = 0 Eqs.
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(4.8) and (4.9) becomes

d

dt
Cen(t) = −ig

√
n+ 1 Cgn+1(t)− i (nω + ωa/2)C

e
n(t)

−i n(n− 1)χ0 C
e
n(t)

(4.10)

d

dt
Cgn+1(t) = −ig

√
n+ 1 Cen(t)− i (nω − ωa/2)C

g
n+1(t)

−i n(n+ 1)χ0 C
g
n+1(t).

(4.11)

Now define He,n and Hg,n+1 such that

Ce,n(t) = exp−i
[

nω +
1

2
ωa + χ0n(n+ 1)

]

He,n(t) (4.12)

Cg,n+1(t) = exp−i
[

(n+ 1)ω − 1

2
ωa + χ0(n+ 1)n

]

Hg,n+1(t).

(4.13)

It is useful to note that

|Ce,n(t)|2 = |He,n(t)|2, (4.14)

|Cg,n+1(t)|2 = |Hg,n+1(t)|2. (4.15)

Substituting Eqs. (4.12) and (4.13) in Eqs. (4.10) and (4.11) we get

the following equations

i
d

dt
He,n = λ

√
n+ 1 Hg,n+1(t) e

−iknt, (4.16)

i
d

dt
Hg,n+1 = λ

√
n+ 1 He,n(t) e

+iknt, (4.17)

where

kn = ω − ω0 + 2χn (4.18)

It is assumed that initially the atom is in excited state, i.e.,

Cgn+1(0) = Hg
n+1(0) = 0 (4.19)
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Using this initial condition Eq. (4.19), Eqs. (4.16) and (4.17) are

solved and the solutions are

Hg,n+1(t) =
λ
√

(n+ 1)

Ωn
e(iknt/2) 2i sin (Ωnt/2) , (4.20)

He,n(t) =
1

2Ωn
e(−iknt/2) {ik sin (Ωnt/2) + Ωn cos (Ωnt/2)} ,

(4.21)

with Ω2
n = k2n + 4g2(n + 1). Using Eqs. (4.12) and (4.13) in Eqs.

(4.20) and (4.21) we get

Ce,n(t) = (1/Ωn) [ikn sin (Ωnt/2) + Ωn cos (Ωnt/2)]

× exp {[−i (nω + ωa/2 + χ0n(n+ 1) + knt/2)]}
(4.22)

Cg,n+1(t) =
(

2λ
√

(n+ 1)/Ωn

)

2i sin (Ωnt/2)

× exp {−i [(n+ 1)ω − ωa/2 + χ0(n+ 1)n− knt/2]}
(4.23)

From Eqs. (4.22) and (4.23) the population inversion of the system

is

W (t) = − 1

Ω2
n

[

−k2n sin2 (Ωnt/2) + Ω2
n cos

2 (Ωnt/2)−

knΩn sin (Ωnt/2) cos (Ωnt/2)]−
λ2(n+ 1)

Ω2
n

sin2 (Ωnt/2) (4.24)

In the case of time dependent field frequencies we use numerical tech-

niques to solve the Eqs. (4.8) and (4.9) to find the population inver-

sion.
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4.4 Entanglement entropy

In this section we look at the quantum entropy properties of the

atom field system. It is well known that the interaction between a

two level atom and photon field leads to entanglement between the

two sub systems, the atom and the field. Many methods are there

to study entanglement dynamics between the atom and field and we

calculated the von Neumann entropy which gives a direct measure of

the entanglement. The reduced density operator of the atom(ρa) in

the bare basis is obtained by taking the partial trace over all the field

states and is given by,

ρa(t) =







∑∞
n=0C

e
n(t)C

e
n
∗(t)

∑∞
n=0C

e
n(t)C

g ∗
n+1(t)

∑∞
n=0C

g
n+1(t)C

e
n
∗(t)

∑∞
0 Cgn+1(t)C

g ∗
n+1(t)







. (4.25)

It can be shown that the reduced density operator for field(ρf ) is also

the same. The components of Bloch vectors are written in terms of

the elements in the reduced density matrix as,

s1(t) =

∞
∑

n=0

[

Cen(t)C
g ∗
n+1(t) + Cgn+1(t)C

e
n
∗(t)

]

s2(t) =

∞
∑

n=0

[

Cen(t)C
g ∗
n+1(t)− Cgn+1(t)C

e
n
∗(t)

]

s3(t) =

∞
∑

n=0

[

|Cen(t)|2 − |Cgn+1(t)|2
]

(4.26)

and the von Neumann entropy, S(ρa), is

S(ρa) = −g1(t) ln {g1(t)} − g2 ln {g2(t)} , (4.27)

where

g1(t) = 1 +
√

|s1(t)|2 + |s2(t)|2 + |s3(t)|2,
g2(t) = 1−

√

|s1(t)|2 + |s2(t)|2 + |s3(t)|2. (4.28)
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The effects of frequency modulation on the entropy evolution in a

system of two level atom and field in a linear medium has been already

studied by Jia Fei et al.[73]. According to their results, in the case

of interaction between two level atom and coherent field, when the

decay coefficient is small, the system is in the entangled state all

the time except the initial time; when the decay coefficient increases,

the entanglement between the atom and the field decays to zero as

the time increases. Here we focus on the entropy evolution of the

system in Kerr medium and also the role of phase shifted frequency

fluctuation on the entropy evolution. The initial photon field is chosen

to be quadrature squeezed.

4.5 Evolution of population inversion

4.5.1 No field frequency fluctuations

We have the analytical solutions for this case given by Eqs. (4.22)

and (4.23) and using it, the analytical expression for the population

inversion is obtained in Eq. (4.24). In the Kerr medium population

inversion oscillates with periodic collapses and revivals as shown in

Fig. 4.1, similar to the case of linear medium. But the population

inversion never collapses to zero, rather it settles to a positive value

during the collapse region, which indicates that the probability of

atom being in the initial excited state is large comparing with that

of the atom being in ground state. When the value of nonlinear sus-

ceptibility χ0 is high, the probability of the atom being in the excited

state itself is very near to 1 and the ground state probability is close

to zero. One can say that the high nonlinearity of the medium sup-

presses the probability of deexcitation of the two level atom. It is

also noted that the number of collapses and revivals in the popu-
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lation inversion during a particular time interval increases with the

nonlinearity(χ0) of the medium.

4.5.2 With field frequency fluctuations

For frequency fluctuating cases we use numerical techniques to solve

the time evolution equation given in Eqs. (4.8) and (4.9). In our

discussion the parameters of frequency variation such as amplitude

and frequency are chosen to be λ = 30g0 and β = 1g0. In the phase

shifted case we take φ = π/2 for which the effects are maximum,

which we have already seen in the previous chapter.
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Figure 4.1: Population inversion versus time for constant field frequency. The
initial field is squeezed with parameters n̄ = 25, r = 0.8, θ = π. Damping γ = 0.
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Figure 4.2: Population inversion versus time for fluctuating field frequency with
c = 30g0 and β = 1g0. Squeezed field parameters are n̄ = 25, r = 0.8, Damping
γ = 0. Dotted curve shows the field frequency fluctuation.
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Figure 4.3: Population inversion versus time for fluctuating field frequency.
Initial squeezed field parameters are n̄ = 25, r = 0.8, θ = 0. Susceptibility χ0 =
0.5g0 and damping γ = 0. Dotted curve shows the field frequency fluctuation.
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Case:1 Phase φ = 0.

As in the case of coherent field atom interaction in Kerr medium, dis-

cussed by L Wang et al.[70], for the case of initial squeezed field also,

collapses and revivals in population inversion are unclear. Population

inversion or the probabilities correspond to the atom in excited and

ground states executes oscillations with time and these oscillations

are very close to a sinusoidal wave, which is shown in Figs. 4.2 and

4.3. The period of oscillation of the population inversion is same as

that of the field frequency modulation.

Case:2 Phase φ 6= 0.

When there is a phase factor in the frequency modulation the oscil-

lations in population inversion are more sinusoidal compared to the

zero phase case, which is clear from the Fig. 4.4. The oscillation in

population inversion starts earlier than the zero phase case, depend-

ing on φ. In the figures shown we set φ = π/2, for which the effect of

phase factor on the evolution is most visible. The same behaviour of

the population inversion is observed in linear medium also when there

is a phase factor in the frequency modulation. In the Fig. 4.5, where

the population inversion is plotted for linear medium i.e., χ0 = 0

with φ = π/2, the evolution of population inversion is very similar to

the behaviour of population inversion when a two level atom inter-

acts with frequency modulated field in Kerr medium plotted in Fig.

4.4. The dynamics of a two level atom-photon system in nonlinear

medium is induced in a linear medium due to the phase factor in the

field frequency fluctuations. It is suggested that the effect of non-

linearity in the medium in a two level atom-time varying frequency

field interaction can be induced in linear medium also by introducing

a phase factor in the frequency modulation.
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Figure 4.4: Population inversion versus time where the field has a phase shifted
frequency fluctuation. Initial squeezed field parameters are n̄ = 25, r = 0.8 and
θ = 0. Susceptibility χ0 = 0.5g0 and damping γ = 0. Dotted curve shows the
field frequency fluctuation.
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Figure 4.5: Population inversion versus time in linear medium where field has a
phase shifted frequency fluctuation. Initial squeezed field parameters are r = 0.8,
θ = π, n̄ = 25, χ0 = 0, γ = 0 and φ = π/2. Dotted curve shows the field
frequency fluctuation.
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4.6 Evolution of entanglement entropy

The von Neumann entropy of the system can be calculated by using

the atom field evolution coefficients in Eqs. (4.25), (4.26) and (4.27).

The evolution of entropy is plotted in Figs. 4.6 - 4.9, by varying

various parameters.

Case: 1 No frequency fluctuation

Evolution of entropy for no field frequency fluctuation(λ = 0) is shown

in Fig. 4.6.
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Figure 4.6: Evolution of entropy with time in Kerr medium with initial squeezed
field with n̄ = 25, r = 0.8 and θ = 0.
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It is clear that the entropy remains a constant value with frequent

periodic drops to some minimum value, where few of the minimum

points are very close to zero. Interesting thing is that these drops

occurs at the same time when revivals occurs in the population inver-

sion. The number of falls to minimum increases with increase in the

susceptibility. Thus the average entropy is small for higher suscepti-

bility values. We can infer that during each revival period the atom

and field becomes minimally entangled and the nonlinearity reduces

the entanglement between atom and field. If the damping is present,

entropy increases to a maximum and then it decreases and damp out

to zero.

Case: 2 With frequency fluctuation

Now consider the effect of frequency fluctuations with a zero phase,

shown in Figs. 4.7 and 4.8. Here the entropy oscillates in the shape

of a quasi sine wave, which is in sync with the applied field frequency

fluctuation. We can say that the frequency fluctuation make the en-

tropy more ordered and controllable. The additional phase factor

does not make any noticeable modifications in the entropy evolution.

As seen from Fig. 4.9, where the entropy evolution is plotted for

linear medium with a phase shifted(φ = π/2) field frequency, quasi

sinusoidal oscillation in entropy is present in this case also. Thus for

the entropy evolution also the effects of non linearity can be induced

by the phase shifted frequency modulation in linear medium itself.

One can understand this by comparing Fig. 4.9 with Fig.4.7.
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Figure 4.7: Evolution of entropy with time in Kerr medium for initial squeezed
field with n̄ = 25, r = 0.8 and θ = 0. Field frequency is sinusoidally fluctuating.
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Figure 4.9: Evolution of entropy in linear medium with phase shifted frequency
fluctuation. Initial squeezed field parameters are r = 0.8, θ = π, n̄ = 25. Suscep-
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4.7 Conclusion

In this work we have considered the system consisting of a two level

atom in Kerr medium interacting with quadrature squeezed photon

field in the adiabatic limit. The frequency of the field is set to be

fluctuating and phase shifted. Evolution of population inversion and

entanglement entropy of the system is analysed by varying param-

eters. It is observed that in the nonlinear medium also sinusoidal

frequency fluctuation modifies the time evolution of population in-

version. These modifications are enhanced in the presence of a phase

in the frequency fluctuation. The entanglement entropy of the sys-

tem also has a close dependence on the field frequency fluctuations.

It becomes more ordered and controllable when the frequency is sinu-

soidally fluctuating. We noticed that the entanglement between the

atom and field can be controlled by varying the period of the field

frequency fluctuations. As we have discussed in the previous chapter,

many interesting behaviour in the evolution of a two level atom in

Kerr medium can also be produced in linear medium by including

phase factor in the frequency modulation. State evolution during the

interaction of an isolated atom-photon system is an interesting area

of research nowadays, which contribute much to the developments of

controllable quantum computation and QIP. The understanding of

the entanglement between the atom and field can be applied in gen-

erating optimal methods for the qubit operations. Thus the results

produced in this work may help to progress the research in QIP and

speed up the realisation of a quantum computer.



5
Dynamics of coupled cavity

system

5.1 Quantum state transfer in a coupled cavity
system

5.1.1 Introduction

Two level atom and electromagnetic field interaction is an area which

has been studied extensively in the field of quantum optics[74–79] and

it has attained considerable attention for its applications in quantum

information processes. Atom-field states and its interaction dynamics

are possible candidates for data storage and processing in quantum in-

formatics and following to this many works have been reported about

the various possibilities of atom field interaction dynamics suitable

for applications in quantum information processes[52, 54, 80–82]. In

the current setting, information transmission is one of the main chal-

lenges facing in the realization of quantum computers. Many systems

have been proposed in this area for effectively transmitting and ma-

nipulating the data. For example in the case of short length quantum

communication, linear spin chain channels are introduced [56, 57].

Another concept, which can serve the purpose of information trans-

mission from one part to other is a coupled cavity array, which can

be modelled as an effective and controllable many body system[58],

has been the subject of discussion in many recent studies[59, 60]. The

101
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solid state analogue of coupled cavity systems are realized by coupling

superconducting qubits to stripline resonators[62, 63, 83]. There are

many theoretical and experimental studies devoted to this area. This

includes the developments of nanocavities in photonic crystals and the

Josephson junction arrays, which is found to be useful in many sig-

nificant applications in quantum information processing. Remarkable

development also has been accomplished recently by considering cold

atoms trapped in optical lattices which can effectively be described

by a Bose Hubbard Hamiltonian, unveils its potential applications as

quantum optical simulators.

Quantum state transfer between cavities[84–88] as well as the dissipa-

tion properties and emission characteristics of coupled cavity arrays[89,

90] corresponding to different experimental situations are the main

subjects of study in recent publications. This chapter concentrate on

the study of quantum state transfer in a coupled cavity system with

two level atom inside each cavity. Jaynes Cummings model (JCM)

with rotating wave approximation is used to account for the atom

field interaction Hamiltonian. Cavity-cavity tunnelling is modelled

by photon hopping between the neighbouring cavities where the cou-

pling is due to the overlap of the fading fields in the region between

the two cavities[91]. The evolution of such a system is studied analyt-

ically and the dynamics of the probability amplitudes of each possible

states are analyzed. The model and Hamiltonian of the system are

discussed in the next section and the evolution of the system in single

excitation subspace is addressed in the subsequent sections.
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5.1.2 Model and Hamiltonian

Consider the coupled cavity system in which two cavities are coupled

together and both of them contains a two level atom. Each of the

cavity fields interact with the two level atoms inside and this inter-

action Hamiltonian is described by JCM. The cavity-cavity coupling

is such that photon can hop between them. A schematic diagram of

the coupled cavity system is shown in Fig. 5.1.

atom 1 atom 2

i = 1 i = 2

Figure 5.1: Schematic diagram of a coupled cavity array where two cavities are
coupled and each of the cavities contains a two level atom inside.

Hamiltonian of the individual field and atom in ith cavity are respec-

tively given by

ĤCi = ~ωfiâ
†
i âi (5.1)

and

Ĥai =
~ωai
2

σ̂iz. (5.2)

Here â†i (âi) is the photon creation(annihilation) operator for the field

in the ith cavity with [âi, â
†
j ] = δij Î. The raising(lowering) operator

for the atom in ith cavity is σ̂i+(σ̂i−), where [σ̂i+, σ̂i−] = σ̂iz and

field and atomic frequencies are ωfi and ωai respectively. According

to the JCM, employing RWA, the interaction Hamiltonian between

atom and field in ith cavity is

ĤaCi = ~gi

(

âiσ̂i+ + â†i σ̂i−

)

. (5.3)
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where gi is the atom field coupling strength inside the ith cavity. The

cavity-cavity coupling Hamiltonian can be deduced phenomenologi-

cally, conceived from the work of Zoubi et al.[91]. The single mode

vector potential operator of cavity i = 1 is given by

~A1(r) = ~u1(r − r1)â1 + ~u∗1(r − r1)â
†
1, (5.4)

where u1(r − r1) is the vector field distribution of the mode, r is an

arbitrary position vector in the cavity and r1 is a reference position

within the cavity C, say its geometric center. For a single mode we

can take u(r) to be real. Similarly, we write for cavity 2

~A2(r) = ~u2(r − r2)â2 + ~u∗2(r − r2)â
†
2 (5.5)

Now we take the cases where the coupling is not too strong. For exam-

ple, dielectric cavities are well separated in space. In these framework

the coupling between the two cavities can taken to be proportional

to the overlap integral between the fields of the two modes. For such

a system the cavity cavity coupling can be written as

ĤCC = A
(

â†1â2 + â†2â1 + â1â2 + â†1â
†
2

)

(5.6)

where the coupling parameter A, with dimensions of frequency, is

proportional to the overlap integral

A ∝
∫

dru1(r − r1).u2(r − r2). (5.7)

It depends, among other things, on the distance between the cavities.

The last two terms in Eq. (5.6) can be precluded by applying RWA

and the cavity-cavity coupling Hamiltonian now reduces to

ĤCC = A
(

â†1â2 + â†2â1

)

. (5.8)
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The total Hamiltonian of the coupled cavity system is obtained by

adding all the individual Hamiltonians in Eqs. (5.1)-(5.3) and (5.8).

i.e.,

Ĥ =
∑

i=1,2

(HCi +Hai +HaCi) +HCC , (5.9)

taking ~ = 1 we can write it as

Ĥ =
∑

i=1,2

[

ωiâ
†
i âi +

ωai
2

(|e〉i〈e| − |g〉i〈g|) + g(âiσ̂i+ + â†σ̂i−)
]

+A
(

â†1â2 + â†2â1

)

. (5.10)

When A = 0, the Hamiltonian in Eq. (5.10) reduces to the Jaynes

Cummings Hamiltonian of two uncoupled two level atom field system.

The general state of the system is a superposition of product states

of all possible field and atomic states in each cavity, which can be

written as

|ψ(t)〉 =

∞
∑

l1=0

∞
∑

l2=0

[

Cg,gl1,l2(t) |l1〉 |l2〉 |g1〉 |g2〉

+Cg,el1,l2(t) |l1〉 |l2〉 |g1〉 |e2〉+ (5.11)

Ce,gl1,l2(t) |l1〉 |l2〉 |e1〉 |g2〉+ Ce,el1,l2(t) |l1〉 |l2〉 |e1〉 |e2〉
]

,(5.12)

where |gi〉 and |ei〉 are the possible atomic states in ith cavity. The

field states inside ith cavity is |li〉. Since we have obtained the Hamil-

tonian in Eq. (5.10) and general state of the system in Eq. (5.11),

these can be substituted in the time dependent Schrödinger equation

to examine the dynamics of the coupled cavity system.

5.1.3 Evolution of the system in single excitation subspace

Single excitation subspace is a space where the total number of excited

state in the system is restricted to 1. That is to say either any of the
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atom is in the excited state(|e〉) or any of the cavity field is in one

photon state |1〉. The other atom must be in ground state(|g〉) and

field must be vacuum state(|0〉). Thus the general state of the coupled
cavity system in a single excitation subspace is

|ψ(t)〉 = Ceg00(t) |e〉1|g〉2|0〉1|0〉2 + Cge00(t) |g〉1|e〉2|0〉1|0〉2 +
Cgg10 (t) |g〉1|g〉2|1〉1|0〉2 + Cgg01 (t) |g〉1|g〉2|0〉1|1〉2,

(5.13)

where |Ceg00(t)|2, |C
ge
00(t)|2, |C

gg
10 (t)|2 and |Cgg01 (t)|2 gives the probabil-

ities of finding the system in the respective states. In the following

discussions the coupled cavity system is confined to a single excita-

tion subspace.

We also assume that the field and atoms in both cavities have the

same frequencies, i.e.,

ωf1 = ωf2 = ωf (5.14)

and

ωa1 = ωa2 = ωa (5.15)

so that g1 = g2 = g. Substituting the general state of the coupled

cavity system in a single excitation subspace given by Eq.(5.13) in

the time dependent Schrödinger equation we get the following set of

coupled differential equations for the amplitudes:

i
d

dt
Cgg10 (t) = (ωf − ωa) C

gg
10 (t) + g Ceg00 + ACgg01 (t), (5.16)

i
d

dt
Ceg00(t) = g Cgg10 (t), (5.17)

i
d

dt
Cgg01 (t) = (ωf − ωa) C

gg
01 (t) + g Cge00(t) + ACgg10 (t), (5.18)

i
d

dt
Cge00(t) = g Cgg01 (t). (5.19)
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The above set of coupled equations, Eqs. (5.16) - (5.19) can be solved

analytically and these solutions give the evolution of atom field state

probability with time in each cavity.

5.1.3.1 Analytical expressions for the probability amplitudes of

states

We can use the typical techniques of solving coupled differential equa-

tions to solve Eqs. (5.16) - (5.19). For convenience let us define

α1(t) = Cgg10 (t) + Cgg01 (t) (5.20)

α2(t) = Cgg10 (t)− Cgg01 (t) (5.21)

and

β1(t) = Ceg00(t) + Cge00(t) (5.22)

β2(t) = Ceg00(t)− Cge00(t) (5.23)

Now by adding Eq. (5.16) and Eq. (5.18), subtracting Eq. (5.18)

from Eq. (5.16) we obtain the following equations

i
d

dt
α1 = (ω − ωa + A)α1 + gβ1 (5.24)

i
d

dt
α2 = (ω − ωa − A)α2 + gβ2. (5.25)

Similarly by adding Eq. (5.17) and Eq. (5.19), subtracting Eq. (5.17)

from Eq. (5.19) we get

i~
d

dt
β1 = gα1 (5.26)

i~
d

dt
β2 = gα2 (5.27)
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By solving the Eqs. (5.24) - (5.27) we get the expression for the

amplitudes of states as below:

Cgg10 =

(

−1

2g

)

e(
−i∆1t

2
)
[

P1(Ω1 −∆1)e
iΩ1t/2 − P2(Ω1 +∆1)e

−iΩ1t/2
]

+

(

−1

2g

)

e(
−i∆2t

2
)
[

M1(Ω2 −∆2)e
iΩ2t/2 −M2(Ω2 +∆2)e

−iΩ2t/2
]

,

Cgg10 =

(

−1

2g

)

e(
−i∆1t

2
)
[

P1(Ω1 −∆1)e
iΩ1t/2 − P2(Ω1 +∆1)e

−iΩ1t/2
]

−
(

−1

2g

)

e(
−i∆2t

2
)
[

M1(Ω2 −∆2)e
iΩ2t/2 −M2(Ω2 +∆2)e

−iΩ2t/2
]

,

Ceg00 = e(
−i∆1t

2
)
[

P1e
iΩ1t + P2e

−iΩ1t
]

+ e(
−i∆2t

2
)
[

M1e
iΩ2t +M2e

−iΩ2t
]

,

Cge00 = e(
−i∆1t

2
)
[

P1e
iΩ1t + P2e

−iΩ1t
]

+ e(
−i∆2t

2
)
[

M1e
iΩ2t +M2e

−iΩ2t
]

.

(5.28)

where

∆1 = ωf − ωa + A , ∆2 = ωf − ωa − A

and Ω1 =

√

∆2
1 + 4 g2 , Ω2 =

√

∆2
2 + 4 g2. (5.29)

The constants P1, P2, M1 and M2 are determined by the initial

conditions and are given by

P1 =
1

Ω1

{

(Ω1 +∆1)

[

Ceg00(0) + Ceg00(0)

2

]

− 2 g

[

Cgg10 (0) + Cgg01 (0)

2

]}

,

P2 =
1

Ω1

{

(Ω1 −∆1)

[

Ceg00(0) + Ceg00(0)

2

]

+ 2 g

[

Cgg10 (0) + Cgg01 (0)

2

]}

,

M1 =
1

Ω2

{

(Ω2 +∆2)

[

Ceg00(0)− Ceg00(0)

2

]

− 2 g

[

Cgg10 (0)− Cgg01 (0)

2

]}

,

M2 =
1

Ω2

{

(Ω2 −∆2)

[

Ceg00(0)− Ceg00(0)

2

]

+ 2 g

[

Cgg10 (0)− Cgg01 (0)

2

]}

.

(5.30)
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Using the set of Eqs. (5.28) - (5.30) the dynamics of the coupled cavity

system for any initial conditions with different atom field coupling

strength(g) and cavity-cavity coupling strength(A) can be studied.

5.1.3.2 Transfer of atomic excitation between cavities

Here we focus our attention on the transfer of atomic excitation prob-

ability between cavities 1 and 2. The initial conditions are set in such

a way that at time t = 0 atom 1 is in the excited state, atom 2 in

ground state and both the field states are vacuum states, i.e.,

|Cge00(0)|2 = |Cgg10 (0)|2 = |Cgg01 |2 = 0, (5.31)

|Ceg00(0)|2 = 1. (5.32)

With these initial conditions the constants given in Eq.(5.30) be-

comes,

P1 =
1

2 Ω1
(Ω1 +∆1) , P2 =

1

2 Ω1
(Ω1 −∆1)

and M1 =
1

2 Ω2
(Ω2 +∆2) , M1 =

1

2 Ω2
(Ω2 −∆2).

(5.33)
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Utilizing the Eq. (5.33) in Eq. (5.28), we get

|Cgg10 (t)|2 = (1/4 g)2 {[k1 sin (∆1 t/2) sin (Ω1 t/2)+

k2 sin (∆2 t/2) sin (Ω2 t/2)]
2

+ [k1 cos (∆1 t/2) sin (Ω1 t/2)+

k2 cos (∆2 t/2) sin (Ω2 t/2)]
2
}

, (5.34)

|Cgg01 (t)|2 =

(

−1

4 g

)2

{[k1 sin (∆1 t/2) sin (Ω1 t/2)−

k2 sin(∆2 t/2) sin (Ω2 t/2)]
2

+ [k1 cos (∆1 t/2) sin (Ω1 t/2)−
k2 cos (∆2 t/2) sin (Ω2 t/2)]

2
}

, (5.35)

|Ceg00(t)|2 = {
∑

j=1,2

1

2Ωj
[Ωj cos (Ωjt/2) cos (∆jt/2))+

∆j sin (Ωjt/2) sin (∆j t/2)]}2 +

{
∑

j=1,2

1

2 ∆j
[Ωj sin (Ωj t/2) cos (∆j t/2)−

Ωj cos (Ωjt/2) sin (∆j t/2)]}2, (5.36)

|Cge00(t)|2 = {
∑

j=1,2

(−1)j+1 1

2Ωj
[Ωj cos (Ωjt/2) cos (∆jt/2)+

∆j sin (Ωjt/2) sin (∆jt/2)]}2 +

{
∑

j=1,2

(−1)j+1 1

2∆j
[∆j sin (Ωjt/2) cos (∆jt/2)−

Ωj cos (Ωjt/2) sin (∆jt/2)]}2.
(5.37)

where ki =
(

Ω2
i −∆2

i

)

/Ω2
i , i = 1, 2. Eqs. (5.34)-(5.37) give the

evolution of probabilities of various achievable states in the coupled

cavity system in a single excitation subspace.

Now if the atom and field are at resonance in each cavity i.e., ωf = ωa,
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we have ∆1 = A, ∆2 = −A and Ω1 = Ω2. In this case Eqs. (5.34)-

(5.37) simplifies to

|Cgg10 (t)|2 =

{

2g

Ω
cos

(

A

2
t

)

sin

(

Ω

2
t

)}2

, (5.38)

|Cgg01 (t)|2 =

{

2g

Ω
sin

(

A

2
t

)

sin

(

Ω

2
t

)}2

,

(5.39)

|Ceg00(t)|2 =

{

1

Ω

[

Ωcos

(

Ωt

2

)

cos

(

At

2

)

+ A sin

(

Ωt

2

)

sin(
At

2
)

]}2

,

(5.40)

|Cge00(t)|2 =

{

1

Ω

[

A sin

(

Ωt

2

)

cos

(

At

2

)

− Ωcos

(

Ωt

2

)

sin(
At

2
)

]}2

.

(5.41)

The evolution of probabilities in resonance case; expressed in Eqs.

(5.38) - (5.41) can be written as the harmonic superposition in the
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following way:

|Cgg10 (t)|2 = (g/Ω)2 {1− (1/2) cos [(A− Ω)t]

−(1/2) cos [(A+ Ω)t] + cos (At)− cos (Ωt)} ,
(5.42)

|Cgg01 (t)|2 = (g/Ω)2 [1 + (1/2) cos [(A− Ω)t] +

(1/2) cos [(A+ Ω)t]− cos (At)− cos (Ωt)] ,

(5.43)

|Ceg00(t)|2 = (1/2Ω)2
{

Ω2 + A2 +
[

(Ω + A)2/2
]

cos [(Ω− A)t]

+
[

(Ω− A)2/2
]

cos [(Ω + A)t]

− +(Ω2 − A2) [cos(At) + cos(Ωt)]
}

,

(5.44)

|Ceg00(t)|2 = (1/2Ω)2
{

Ω2 + A2 −
[

(Ω− A)2/2
]

cos [(Ω + A)t]

−
[

(Ω + A)2/2
]

cos [(Ω− A)t]−
− (A2 − Ω2) [cos(At)− cos(Ωt)]

}

.

(5.45)

From the above set of equations (5.42) - (5.45), it is clear that each

state execute different modes of oscillations with different amplitudes.

These amplitudes and frequencies of each term depends on the atom

field coupling strengths g inside a cavity and the cavity-cavity cou-

pling strength A.

5.1.4 Results and discussion

5.1.4.1 Case 1

We first consider the case in which the atom field coupling strength,

g is small compared to the cavity-cavity coupling strength, A (i.e.,

g ≪ A). In such cases Ω2 ≈ A2 ≫ g2. In this limit the values
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of field excitation probabilities |Cgg10 (t)|2 and |Cgg01 (t)|2 are negligible

compared to the values of atomic excitation probabilities |Ceg00(t)|2

and |Cge00(t)|2 as shown in the Figs. 5.2 and 5.3.
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Figure 5.2: Evolution of atomic excitation probability of atom 1 (solid line) and
atom 2 (dashed line) for the resonant interaction(ωf = ωa) inside each cavity.
The coupling constants are g = 2 and A = 20g.

Here the atomic excitation probability of atom 1 diminishes to a min-

imum with a corresponding increase in probability for atom 2. As

time elapses we can observe the repetition of these cycles . This indi-

cates the existence of atomic excitation probability transfer between

cavities, while keeping the field excitation probabilities small.
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Figure 5.3: Evolution of field excitation probability of cavity 1 (dotted line)
and cavity 2 (solid line) for resonant interaction(ωf = ωa) inside each cavity. The
coupling constants are g = 2 and A = 20g. Field excitation probabilities are very
small compared to the atomic excitation probability shown in figure 5.2.

Now we apply this approximation in the expressions for the proba-

bilities given by Eqs. (5.42). Since g2 ≪ Ω2 both the field excitation

probabilities will be very small. But for the atomic excitation prob-

abilities the prevailing terms are

|Ceg00(t)|2 ∝
(Ω + A)2

2
cos [(Ω− A)t], (5.46)

and

|Cge00(t)|2 ∝
(Ω + A)2

2
cos [(Ω− A)t]. (5.47)

From Eqs. (5.46) and (5.47) it is clear that the probability oscillates in

time and the frequency of oscillation is given by Ω− A and the time

period for complete excitation probability transfer between atom 1
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and atom 2 is

T = [π/(Ω− A)] . (5.48)

Thus at t = π/(Ω − A) the probability for the atom 2 excited is

maximum, where as that of atom 1 is approximately zero.

5.1.4.2 Case 2

Now consider the case where the atom field coupling strength is large

compared to the cavity-cavity coupling strength(i.e., g ≫ A). In such

case we get Ω2 ≈ 4g2 ≫ A2. Initial condition is taken to be the same

that only atom 1 is in the excited state. Here all the probability

amplitudes are comparable and they oscillate as shown in Figs. 5.4

and 5.5. It is also observed that there is a fast exchange of probability

amplitudes between the atom and field in each cavity in the course of

time. Atomic probabilities exchanges between cavity 1 and cavity 2

slowly and a similar exchange of field probability between cavities also

observed. In other words the probability transfer between cavities is

slow compared with the atom field probability exchange inside each

cavity.
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Figure 5.4: Evolution of atomic excitation probability of atom 1 (solid line) and
atom 2 (dashed line). Resonant interaction(ωf = ωa) inside each cavity and the
coupling strengths are g = 40 , A = 0.05g.
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Figure 5.5: Evolution of field excitation probability of cavity 1 (solid line) and
cavity 2 (dashed line) for resonant interaction(ωf = ωa) inside each cavity. The
coupling strengths are g = 40 , A = 0.05g.

5.1.4.3 Case 3

When the atom field coupling strength and cavity cavity coupling

strength are comparable(i.e., g ≈ A) the probabilities of atomic exci-

tation and field excitation oscillates with comparable amplitude and

is periodic, which is shown in Figs. 5.6 and 5.7.
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Figure 5.6: Evolution of field excitation probability of cavity 1 (solid line) and
cavity 2 (dashed line) for resonant interaction(ωf = ωa) inside each cavity. The
coupling strengths are g = 10 and A = g.
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Figure 5.7: Evolution of atomic excitation probability of atom 1 (solid line) and
atom 2 (dashed line) for resonant (ωf = ωa) interaction parameters are g = 10
and A = g.

5.1.4.4 Population inversion

In the case of a coupled cavity system in single excitation subspace

we define the population inversion W (t) as

W (t) = |Ceg00(t)|2 + |Cge00(t)|2 − |Cgg10 (t)|2 − |Cgg01 (t)|2, (5.49)

which is the difference in probabilities between the states with any of

the atom excited and both the atoms in ground state. Substituting

the set of Eqs. (5.42) in the expression for population inversion in

Eq. (5.49) we get

W (t) =
1

Ω2

[

A2 + 4g2 cos(Ωt)
]

. (5.50)

It is clear that the population inversion execute sinusoidal oscillations

with time as shown in Fig. 5.8 with a frequency equal to Ω and



120 Dynamics of coupled cavity system

amplitude in the range between 1 and

(
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Figure 5.8: Population inversion is plotted against time for resonant (ωf = ωa)
interaction with parameters g = 10 and A = g.

5.1.5 Conclusion

We have analysed the evolution of atom field state probability in a

coupled cavity system. Analytical formulation for the time variation

of atomic and field probability is done in a single excitation subspace.

Atomic excitation transfer between cavities for different limits of cou-

pling strengths g and A are investigated. It is observed that periodic

transfer of excitation probability between cavities exists. The time

period for complete excitation transfer between cavities for various

limiting cases of coupling strength are predicted. An analytical ex-

pression is obtained for the population inversion of the system which
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evolves sinusoidally with time. These analytical expressions for the

time evolution of various atom field states in the coupled cavity sys-

tem can be used to study the system with possible experimentally

realizable initial states and coupling strengths. These findings will

help in the realization of an effective quantum data transfer device

which is essential for the of quantum computers.

5.2 Coupled cavity system with Kerr nonlinear

medium

5.2.1 Introduction

In the previous section we have analysed a coupled cavity system

with a linear medium in each cavity. Interesting results are noticed for

various coupling strengths. State transfer between two cavities occurs

and the periodicity of probability exchange has a close connection

with the coupling strength of the system. In this section we consider

the same system with two cavities, each containing a two level atom,

are coupled via. photon hopping and the cavity is filled with Kerr

nonlinear medium.

5.2.2 Model and Hamiltonian

In the present study, we considered a system with two cavities coupled

together via inter cavity photon hopping. Both cavities are filled with

non-linear Kerr medium and contains a two level atom in it. Each cav-

ity field interacts with the two level atom inside, and this interaction

Hamiltonian is taken according to Jaynes Cummings model(JCM)

and cavity-cavity coupling is modelled via. photon hopping. Here

the non-linear medium Hamiltonian is assumed to be equivalent to

that of an anharmonic oscillator[71, 72]. Now the total Hamiltonian
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of such a system in the adiabatic limit, where anharmonic frequency

and the field frequency are far from each other, can be written as

Ĥ =
∑

i=1,2

[

ωfiâ
†
i âi + χ0â

†2

i â
2
i +

ωai
2

σ̂iz + g(âiσ̂i+ + â†σ̂i−)
]

+ A
(

â†1â2 + â†2â1

)

(5.51)

Here it is assumed that the changes in the cavity cavity coupling

strength due to the nonlinearity of the medium is negligible and the

coupling Hamiltonian does not contains any higher order terms of

the field operator. Hamiltonian in Eq.(5.51) is identical to the the

Hamiltonian given in (5.10) except the presence of a nonlinear part

viz., χ0â
†2

i â
2
i . It arises from the nonlinear Kerr medium with third

order susceptibility χ0 [92]. As in the previous section, the general

state of a coupled cavity system, with two cavities can be written

as the combination of all the possible field and atomic states in each

cavity such that

|ψ(t)〉 =

∞
∑

l1=0

∞
∑

l2=0

[

Cg,gl1,l2 |l1〉 |l2〉 |g1〉 |g2〉+

Cg,el1,l2 |l1〉 |l2〉 |g1〉 |e2〉+ Ce,gl1,l2 |l1〉 |l2〉 |e1〉 |g2〉+

Ce,el1,l2 |l1〉 |l2〉 |e1〉 |e2〉
]

. (5.52)
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Substituting the Hamiltonian in Eq. (5.51) and general state given

by Eq. (5.52) in time dependent Schrödinger equation we get

iĊggl1,l2 =

[

(

ωf1l1 + ωf2l2
)

− (ωa1 + ωa2)

2

]

Cggl1,l2 +

[χ0l1(l1 − 1) + χ0l2(l2 − 1)]Cggl1,l2

+ g
[

√

l2 C
ge
l1,l2−1 +

√

l1 C
eg
l1−1,l2

]

+ A
[

√

l1(l2 + 1) Cggl1−1,l2+1 +
√

(l1 + 1)l2 C
gg
l1+1,l2−1

]

iĊgel1,l2 =

[

(

ωf1l1 + ωf2l2
)

+
(ωa2 − ωa1)

2

]

Cgel1,l2 +

[χ0l1(l1 − 1) + χ0l2(l2 − 1)]Cgel1,l2

+ g
[

√

l2 + 1 Cggl1,l2+1 +
√

l1 C
ee
l1−1,l2

]

+ A
[

√

l1(l2 + 1) Cgel1−1,l2+1 +
√

(l1 + 1)l2 C
ge
l1+1,l2−1

]

iĊegl1,l2 =

[

(

ωf1l1 + ωf2l2
)

+
(ωa1 − ωa2)

2

]

Cegl1,l2 +

[χ0l1(l1 − 1) + χ0l2(l2 − 1)]Cegl1,l2

+ g
[

√

l1 + 1 Cggl1+1,l2
+
√

l2 C
ee
l1,l2−1

]

+ A
[

√

l1(l2 + 1) Cegl1−1,l2+1 +
√

(l1 + 1)l2 C
eg
l1+1,l2−1

]

iĊeel1,l2 =

[

(

ωf1l1 + ωf2l2
)

+
(ωa1 + ωa2)

2

]

Ceel1,l2 +

[χ0l1(l1 − 1) + χ0l2(l2 − 1)]Ceel1,l2

+ g
[

√

l1 + 1 Cgel1+1,l2
+
√

l2 + 1 Cegl1,l2+1

]

+ A
[

√

l1(l2 + 1) Ceel1−1,l2+1 +
√

(l1 + 1)l2 C
gg
l1+1,l2−1

]

(5.53)

which represent the evolution of the amplitudes in a general two cavity

system with any number of photons.
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5.2.3 Evolution of the System in two excitation subspace

Since the effect of nonlinearity is not visible in single excitation sub-

space we are considering the evolution of the system in two excita-

tion subspace. In a single excitation subspace the eigenvalues of the

nonlinear part of Hamiltonian vanish and we can not consider it for

studying the effect of nonlinearity. In two excitation subspace the

total number of excitation is limited to two and the general state of

the coupled cavity system in such a subspace is

|ψ(t)〉 = Cgg20 |g1〉|g2〉|2〉|0〉+ Cgg02 |g1〉|g2〉|0〉|2〉+
Cgg11 |g1〉|g2〉|1〉|1〉+ Ceg10 |e1〉|g2〉|1〉|0〉+
Ceg01 |e1〉|g2〉|0〉|1〉+ Cge10 |g1〉|e2〉|1〉|0〉+
Cge01 |g1〉|e2〉|0〉|1〉+ Cee00|e1〉|e2〉|0〉|0〉. (5.54)

Assume that the field (atom) frequency in both cavities are the same

i.e., ωf1 = ωf2 = ωf and ωa1 = ωa2 = ωa and using the general Eq.

(5.53) we get the following set of coupled differential equations corre-
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sponding to the evolution of system in the two excitation subspace:

i
d

dt
Cge10 = ωf C

ge
10 + g (Cgg11 + Cee00) + A C01

ge (5.55)

i
d

dt
Cge01 = ωf C

ge
01 +

√
2 g Cee02 + A Cge10 (5.56)

i
d

dt
Ceg10 = ωf C

eg
10 +

√
2 g Cee20 + A Ceg01 (5.57)

i
d

dt
Ceg01 = ωf C

eg
01 + g (Cgg11 + Cee00) + A C10

eg (5.58)

i
d

dt
Cee00 = ωa C

ee
00 + g(Ceg01 + Cge10) (5.59)

i
d

dt
Cgg20 = (2ωf − ωa)C

gg
20 +

√
2 g Ceg10 + A Cgg11 + 2χCgg20 (5.60)

i
d

dt
Cgg02 = (2ωf − ωa)C

gg
02 +

√
2 g Cge01 + A Cgg11 + 2χCgg02 (5.61)

i
d

dt
Cgg11 = (2ωf − ωa)C

gg
11 + g(Ceg01 + Cge10) +

√
2A(Cgg20 + Cgg20 ).

(5.62)

The above Eqs. (5.55) - (5.62) determine the evolution of ampli-

tudes correspond to the various possible states of the coupled cavity

system in the two excitation subspace. These set of equations are

solved numerically using the fourth order Range Kutta method and

the evolution of various atom-field probabilities are analysed in the

succeeding sections.

5.2.4 Results and discussion

Dynamics of the coupled cavity system with Kerr medium is repre-

sented in Eqs. (5.55) - (5.62). The system is examined by varying the

atom field coupling strengths(g), cavity-cavity coupling strength(A)

and the susceptibility χ0 for different initial states. For simplicity

we use the term “atom 1” or “field 1” to denote the atom or field in

first cavity and likewise the terms “atom 2” or “field 2” for cavity 2.
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Also for convenience the value of the susceptibility is limited between

0 and 0.9 in our treatment. It is observed that the susceptibility of

the cavity has a significant role in the evolution of the coupled cavity

system and its effect is different for various coupling strengths and

different initial state of the system. We examine the system with dif-

ferent initial states for which the susceptibility has a substantial role

in the dynamics.

Case 1 : |Ceg
10
(0)|2 = 1

Here we look at the case with initially atom 1 is excited and field 1

is a one photon state. i.e.,

|ψ(0)〉 = |e〉|g〉|1〉|0〉 (5.63)

In such cases, for strong cavity-cavity coupling strength compared

to the atom field coupling strength, the probabilities |Ceg10(t)|2 and

|Ceg01(t)|2 oscillate with time in the shape of an amplitude modulated

wave as shown in Fig. 5.9. Similar behaviour is shown by the prob-

abilities |Cge10(t)|2 and |Cge01(t)|2, which is displayed in Fig. 5.10. It

is to be noted that there is a periodic exchange of probabilities be-

tween two states |e〉|g〉|1〉|0〉 and |g〉|e〉|0〉|1〉, which is clear from Figs.

5.9 and 5.10. Interesting observation is that the periodicity of these

probability exchange do not have any noticeable dependence on the

susceptibility of the medium. Precisely the same behaviour is shown

by the probabilities |Ceg01(t)|2 and |Cge10(t)|2. We may conclude in this

case that the probability amplitude of the states are exchanged be-

tween cavity 1 and cavity 2 periodically and the period depends on

the coupling strengths and independent of the susceptibility of the

medium. Probabilities of all the other possible states show oscillation

with time but they are very small.
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Figure 5.9: Probability amplitude versus time is plotted, with parameters A =
10g, χ = 0 and ωf = ωa. (a): Atom 1 excited and field 1 excited. (b): Atom 2
excited and field 2 excited
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Figure 5.10: Probability amplitude versus time is plotted, with parameters
A = 10g χ = 0.9 and ωf = ωa. (a): Atom 1 excited and field 1 excited. (b):
Atom 2 excited and field 2 excited. Variations in probability amplitudes are same
as that shown in Fig. 5.9
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Case 2 : |Cee
00
(0)|2 = 1

In this case the initial condition is such that both the atoms are

excited and both the fields are vacuum states. i.e.,

|ψ(0)〉 = |e〉|e〉|0〉|0〉 (5.64)

With this initial condition, for higher hopping strengths the probabil-

ity of the system to exist in the same state as the initial state is high.

Thus the probability of the state |e〉|e〉|0〉|0〉 maintains a value very

close to 1 all the time and probabilities for rest of the states are always

near to zero. When the value of susceptibility is zero, we find sinu-

soidal oscillations in the probability of the state with an amplitude

range in between 0.9 and 1.0. But when the value of susceptibility is

nonzero there is a change in the nature of oscillation of the probability.

It is in the shape of an amplitude modulated wave, keeping the am-

plitude in the same range as the linear medium case, which is shown

in Figs. 5.11 and 5.12. By varying respective coupling strengths and

the susceptibility of the system we observed that the periodicity of

the envelope wave is determined by the cavity-cavity coupling and

the susceptibility of the medium. For fixed coupling strengths the

frequency of the envelop is proportional to the susceptibility of the

medium. From Figs. 5.11 and 5.12 one can visualize the dependence

of periodicity on the susceptibility factor. It is also noted that when

susceptibility is kept constant the number of envelops decreases with

the increase of A.
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Figure 5.11: Probability amplitude of the state with both atoms excited is
plotted against time. (a): With parameters χ = 0.6, A = 10g and ωa = ωf . (b):
With χ = 0.9, A = 10g and ωa = ωf .
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Figure 5.12: Probability amplitude of the state with both atoms excited is
plotted against time. (a): With parameters χ = 0.9, A = 5g and ωa = ωf . (b):
With χ = 0.9, A = 12g and ωa = ωf
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5.2.4.1 Case 3 : |Cgg
20
(0)|2 = 1

Now consider a system with an initial condition such that both atoms

are in ground state and both photons are in the cavity 1, i.e.,

|ψ(0)〉 = |g〉|g〉|2〉|0〉. (5.65)

In this case the probability of the state |g〉|g〉|2〉|0〉 oscillates sinu-

soidally for strong cavity coupling and with χ = 0. A different nature

of evolution is shown when the value of χ0 is nonzero. The oscillation

is in the form of an amplitude modulated wave as shown in Fig. 5.13.

As in the previous case, the frequency of envelop is proportional to

susceptibility of the medium for a constant cavity cavity coupling.

Identical nature of oscillation is shown by the probability of state

|g〉|g〉|0〉|2〉.
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Figure 5.13: Probability amplitude of the state with both the field excitation
in cavity 1 is plotted against time. (a): A = 10g, χ = 0.9 and ωa = ωf . (b):
A = 10g, χ = 0.5 and ωa = ωf .
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5.2.5 Conclusion

In this work we have investigated the evolution of various atom field

state probability amplitudes in a coupled cavity system, where cav-

ities are filled with Kerr medium. The system has been solved nu-

merically and the behaviour of it for different initial conditions and

different susceptibility values are analysed. It is observed that, for

weak cavity coupling the effect of susceptibility is minimal. In cases

of strong cavity coupling, susceptibility factor modifies the nature in

which the probability oscillates with time. Effect of susceptibility on

probability of states is closely related to the initial state of the system.

Dependence on the third order susceptibility of the medium open up

a way to control or tune up the evolution of probabilities of states in

a coupled cavity system. A controlled state evolution is essential for

the data transfer processes in quantum computation.



6
Summary and Conclusion

We have studied the interaction of a two level atom and squeezed

field with time varying frequency. By applying a sinusoidal variation

in the frequency of the field, the randomness in population inversion

is reduced and the collapses and periodic revivals are regained. Thus

the field frequency modulation manipulates the population inversion

in the case of squeezed light atom interaction. Also, the periodicity

of revival depends on the amplitude of applied frequency modulation.

By varying the periodicity of the applied frequency fluctuation the dy-

namics of population inversion with time can be manipulated. Two

level atom field interaction has an important role in the field of quan-

tum computation. Our results suggest a new method to control and

manipulate the population of states in two level atom radiation inter-

action, which is very essential for quantum information processing.

We have also studied the variation of atomic population inversion

with time, when a two level atom interacts with light field, where

the light field has a sinusoidal frequency variation with a constant

phase. In both coherent field and squeezed field cases, the popula-

tion inversion variation is completely different from the phase zero

frequency modulation case. It is observed that in the presence of

a non zero phase φ, the population inversion oscillates sinusoidally.

Also the collapses and revivals gradually disappears when φ increases

from 0 to π/2. When φ = π/2 the evolution of population inver-

sion is identical to the case when a two level atom interacts with a

135
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Fock state. Thus, by applying a phase shifted frequency modulation

one can induce sinusoidal oscillations of atomic inversion in linear

medium, those normally observed in Kerr medium. We have con-

sidered the system consisting of a two level atom in Kerr medium

interacting with quadrature squeezed photon field in the adiabatic

limit. The frequency of the field is set to be fluctuating and phase

shifted. Evolution of population inversion and entanglement entropy

of the system is analysed by varying parameters. It is observed that in

the nonlinear medium also sinusoidal frequency fluctuation modifies

the time evolution of population inversion. These modifications are

enhanced in the presence of a phase in the frequency fluctuation. The

entanglement entropy of the system also has a close dependence on

the field frequency fluctuations. It becomes more ordered and control-

lable when the frequency is sinusoidally fluctuating. We noticed that

the entanglement between the atom and field can be controlled by

varying the period of the field frequency fluctuations. Many interest-

ing behaviour in the evolution of a two level atom in Kerr medium can

also be produced in linear medium by including phase factor in the

frequency modulation. We have analysed the evolution of atom field

state probability in a coupled cavity system. Analytical formulation

for the time variation of atomic and field probability is done in a single

excitation subspace. Atomic excitation transfer between cavities for

different limits of atom-field coupling strength, g and cavity-cavity

coupling strength, A are investigated. It is observed that periodic

transfer of excitation probability between cavities exists. The time

period for complete excitation transfer between cavities for various

limiting cases of coupling strength are predicted. An analytical ex-

pression is obtained for the population inversion of the system which

evolves sinusoidally with time. We have also investigated the evolu-
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tion of various atom field state probability amplitudes in a coupled

cavity system, where cavities are filled with Kerr medium. The sys-

tem has been solved numerically and the behaviour of it for different

initial conditions and different susceptibility values are analysed. It

is observed that, for weak cavity coupling the effect of susceptibility

is minimal. In cases of strong cavity coupling, susceptibility factor

modifies the nature in which the probability oscillates with time. Ef-

fect of susceptibility on probability of states is closely related to the

initial state of the system.
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