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Preface

The basic concepts of digital signal processing are taught to the stu-
dents in engineering and science. The focus of the course is on linear,
time invariant systems. The question as to what happens when the
system is governed by a quadratic or cubic equation remains unan-
swered in the vast majority of literature on signal processing. Light has
been shed on this problem when John V Mathews and Giovanni L Si-
curanza published the book Polynomial Signal Processing. This book
opened up an unseen vista of polynomial systems for signal and im-
age processing. The book presented the theory and implementations
of both adaptive and non-adaptive FIR and IIR quadratic systems
which offer improved performance than conventional linear systems.

The theory of quadratic systems presents a pristine and virgin area of
research that offers computationally intensive work. Once the area of
research is selected, the next issue is the choice of the software tool to
carry out the work. Conventional languages like C and C++ are easily
eliminated as they are not interpreted and lack good quality plotting
libraries. MATLAB is proved to be very slow and so do SCILAB and
Octave. The search for a language for scientific computing that was
as fast as C, but with a good quality plotting library, ended up in
Python, a distant relative of LISP. It proved to be ideal for scientific
computing. An account of the use of Python, its scientific computing
package scipy and the plotting library pylab is given in the appendix.
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iv PREFACE

Initially, work is focused on designing predictors that exploit the poly-
nomial nonlinearities inherent in speech generation mechanisms. Soon,
the work got diverted into medical image processing which offered
more potential to exploit by the use of quadratic methods. The major
focus in this area is on quadratic edge detection methods for retinal
images and fingerprints as well as de-noising raw MRI signals.

The organization of the work is as outlined in Sec. 1.4 in page 20.
The reader is advised to read this section before proceeding with the
remaining chapters. The first two chapters give a concise introduc-
tion to quadratic systems. Chapter 3 gives a detailed account of the
methodology of research adopted. The general design and implemen-
tation strategies in the research work are detailed in chapter 4. The
chapters from 5 to 8 detail the research work done in various appli-
cations. These chapters invariably contain a section devoted to the
methodology of research for that specific application. Chapter 9 sum-
marizes the work, highlighting the key merits of quadratic systems.
The research contributions and the impacts to various stakeholders
are discussed in Chapter 10. Every effort is made to enhance the
readability of the thesis by adding as many post-script pictures as
possible. The structure of the document is made easily navigable by
including ample references, cross-references and mini-table of contents
in every chapter. With this, it is hoped that the reader can go through
the chapters and understand the research work on quadratic systems.

Hari V S



Abstract

Most of the present day signal processing strategies revolve around
linear time invariant systems. Though these methods are popular and
useful in many applications, their performance degrades when the ef-
fects of nonlinear components are dominant. Polynomial methods are
sought as an alternative in this research work. The work aims at mod-
eling polynomial nonlinear phenomena present in real time systems
and signals employed for speech and image processing. Volterra power
series that realizes polynomial filters as combinations of quadratic, cu-
bic and higher order systems with linear systems is studied. The work
focuses on quadratic systems that can model the nonlinear effects in
the generation and processing of speech and image signals, with the
objective of achieving better performance parameters than those of-
fered by linear systems and other nonlinear systems. Special design
methodologies are employed for designing quadratic filters. The com-
putational challenges arising from the usage of quadratic systems are
overcome by special hardware implementation schemes.

Multiple reflections, in the vocal cavity during speech generation, add
polynomial products in the signal which cannot be modeled by con-
ventional linear predictors. Statistical prediction of such signals are
identified as a problem where the potentials of quadratic filters are
exploited. Quadratic predictor, based on optimization method, is de-
signed and realized. The predictor is put to use in the differential
speech coder and decoder. The modified DPCM system yields re-

v



vi ABSTRACT

duced mean square error between the transmitted and received signal.

Images are captured by nonlinear systems and the human visual sys-
tem that perceives the image is also inherently nonlinear and complex.
Hence processing images is a fertile arena for nonlinear signal process-
ing. One of the major areas of image processing and computer vision
is the detection of edges or peripheries. Edges are caused by sharp
discontinuities in pixel values that are detected by several types of
nonlinear filters. Often, these methods are not precise and are sen-
sitive to noise. To overcome these demerits, quadratic filters are de-
signed and implemented for better edge detection in presence of noise.
Two dimensional version of the Teager algorithm is used to imple-
ment type-II filters for edge detection. The quadratic filters designed
are put to use in the enhancement of fingerprints and the detection of
retinal microaneurysms due to diabetic retinopathy.

Linear system theory offers well established methods to remove ad-
ditive noise from the desired signal, especially when the noise has
Gaussian statistics. The noise that corrupts natural images is rarely
Gaussian but impulsive in nature. Quadratic filter is designed and
implemented for removing impulsive noise from raw MRI data. This
filter offers substantial improvement in the signal to noise ratio, when
compared with other nonlinear filters like median and minimum filters.

Comparisons of performance parameters with conventional systems
establish the superiority of quadratic systems for the selected applica-
tions. These applications have impact on both researchers and practi-
tioners in the fields of fingerprint recognition, ophthalmology, oncology
and electronic communication and forensic sciences.
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Foreword to Part I

Discrete signal processing impacts many walks of present day life.
Though many ramifications of signal processing are studied and worked
on, polynomial signal processing is a relatively new avenue, which the
research work ventures into. Part I contains four chapters. Chapter 1
gives a brief overview of signal processing and lists the key objectives
of the research. It also outlines the general methodology of research
adopted and the organization of the thesis.

Chapter 2 involves the survey of existing literature pertaining to signal
processing. It stresses on the necessity of polynomial signal process-
ing and discusses the various power series expansions, especially the
Volterra series. Both 1-D and 2-D quadratic systems and their key
properties are discussed in this chapter.

The scheme of work and methodology are presented in chapter 3. It
details the research problems and discusses the strategies to approach
each problem. The chapter presents the scope of work too.

The strategies for design and computationally efficient implementa-
tions of quadratic filters are presented in chapter 4. Comparisons
between various design and implementation methods are performed
to select specific methodologies suitable for the work.

15
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1.1 Introduction

Digital signal processing is a science that involves the manipulation of
sequences of numbers or symbols to modify or improve them in some
way. Discrete signal processing(DSP) has played a major role in the
developments in communication systems, biomedical data processing,
digital audio etc.[Oppenheim and Schafer 1998],[Roberts and Mullis
1987]. The biggest breakthrough in signal processing was the intro-
duction of efficient algorithms for the computation of Fourier trans-
form[Singleton 1967], [Singleton 1969], [Winograd 1976]. Many meth-
ods were proposed[Bergland 1968],[Bluestein 1970] of which the re-
invention of Gauss’s method by Cooley and Tuckey became widely
accepted[Cooley 1965],[Heideman and Burrus 1984]. Traditionally, dis-
crete linear systems have been extensively used for processing both one
dimensional and two dimensional digital signals. These linear filtering
models are validated by the assumption of statistical stationarity and
Gaussianity of the signals processed[Athanasios Papoulis 2002],[Hayes
2003],[Mix 1995]. Such systems process the incoming signal as they
are, without consideration of the signal generation mechanisms, on the
assumption of linearity and time invariance but render ease of design
and easy implementation on DSP hardware or FPGA[Mayer-Baese
2007].

Discrete time systems are broadly classified into two categories.

• Finite impulse response (FIR) filters and

• Infinite impulse response (IIR) filters

Finite impulse response LTI systems, whose impulse responses are fi-
nite in duration, have been extensively used in conventional filtering,
statistical estimation and prediction. Infinite impulse response filters
are discretized versions of conventional analog filters and are popular
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in frequency selective filtering. Though these linear systems can per-
form much of signal processing tasks, they fail where signals are neither
stationary nor Gaussian as in the case of images. Besides, when one
desires to take into account the effects of nonlinearities present dur-
ing signal generation or within systems, one has to look beyond linear
time invariant systems and reach into nonlinear signal processing.

Nonlinear filters such as order statistic filters, homomorphic filters,
fuzzy filters etc. are given preference in two dimensional signal pro-
cessing with a view that human visual system is nonlinear. Although
they perform better than the linear counterparts in image processing
tasks, most of these filters are very sensitive to noise. The greater
part of the nonlinear effects are confined to the quadratic polynomial
content, which are not modeled by the conventional nonlinear filters.
So it becomes necessary to consider systems that have polynomial re-
lationship between input and output, based on a suitable power series,
that can outperform linear systems and other conventional nonlinear
systems. These objectives are detailed in Sec. 1.2.

1.2 Objectives

The main objective of the research work is to design and implement
quadratic filters, based on Volterra series, for practical applications.
More specifically, the objectives of work are elucidated as below.

• To study and compare various linear and nonlinear systems.

• To study various polynomial power series expansions and to do
a suitability analysis.

• To develop a general design strategy for the development of
quadratic Volterra filters.
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• To formulate the implementation strategy for quadratic filters.

• To develop a conceptual structure for the practical realization of
quadratic filters.

• To accomplish the specific design and implementation of quadratic
filters for practical applications.

• To make a comparison study of quadratic Volterra filters with
conventional linear and nonlinear filters in terms of various per-
formance parameters for the above applications.

1.3 Methodology

The research work that is to be carried out for accomplishing the ob-
jectives in Sec. 1.2 follows the methodology as depicted in Fig. 1.1.
First phase of the work is the study of linear systems and identi-
fication of its limitations when effects of nonlinearity are present.

Design of
Quadratic

Filter

Impleme-
ntation

Comparison
of perfo-

Testing of

Applications

parameters
rmance

Test
signal

Conventional
Filters

Quadratic
Filter

Realization

Study of linear
and nonlinear

systems

Comparative
study of poly-
nomial systems

Fig. 1.1. Methodology

Second phase of the work involves in contrasting polynomial systems
with linear systems and other nonlinear systems in modeling mild
polynomial nonlinearities. During this phase, quadratic systems are
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reached at as a potential choice for modeling mild polynomial nonlin-
earities. The third phase of work is the design, whose strategies are
presented in Sec. 4.2 in page 51, of quadratic filter for the specific appli-
cation. The structure of quadratic filters being more complex, careful
approximations need be done for practical implementations which are
discussed in Sec. 4.3 in page 53. This forms the fourth phase of work
in every practical application. The outcomes of research are validated
by testing with known test signals and assessing the performance pa-
rameters. In the fifth phase of work, the same test signals are used
to excite conventional filters intended for the same application and
the same performance parameters are computed for comparison with
quadratic filters. Computationally efficient practical realizations of
specific designs are carried out in the sixth phase of work. In the last
phase of work, the validated quadratic filter is put to use in the specific
application. The detailed methodology is explained in chapter 4.

1.4 Outline of Thesis

The graphical abstract in Fig. 1.2 shows the structure of the thesis and
the contents in each chapter. The encircled numbers in this diagram
indicate the chapter numbers. The thesis is divided into five parts viz.

1. Part I - Overture

2. Part II - Quadratic Volterra Filters for edge detection

3. Part III - Quadratic Volterra Filters for noise removal

4. Part IV - Quadratic Volterra Filters for nonlinear prediction

5. Part V - Summary and Research Contributions
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1.4.1 Part I - Overture

Chapter 1 in this part gives a general introduction to linear signal pro-
cessing and its limitations in modeling nonlinear systems. It elucidates
the objectives of the research work. The concept of Volterra series,
quadratic Volterra systems and their properties are presented in chap-
ter 2. The scheme of work and methodology of research adopted are
detailed in chapter 3. The design methodologies and implementation
strategies for quadratic Volterra filters are presented in chapter 4.

1.4.2 Part II - Quadratic Volterra Filters
for Edge Detection

The second part of the thesis contains two chapters that discuss the
design and implementation of the following quadratic filters.

• QVF for enhancing noisy fingerprints is presented in chapter 5

• QVF for detecting microaneurysms due to diabetic retinopathy
is presented in chapter 6.

1.4.3 Part III - Quadratic Volterra Filters
for Noise Removal

MRI relies on the Fourier transformation of nuclear magnetic reso-
nances for the formation of the image of the body part under study.
The acquisition of MRI data happens under strong magnetic field and
consequently the data is corrupted by impulsive noise. Chapter 7 in
this part discusses the design, implementation and testing of quadratic
filter for the removal of impulsive noise from raw MRI data.
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1.4.4 Part IV - Quadratic Volterra Filters
for Statistical Prediction

Chapter 8 in the fourth part of the thesis deals with the design and de-
velopment of quadratic predictors for speech. Two quadratic methods
in addition to the linear method of speech prediction are presented.
Differential pulse code modulation systems employing the three pre-
dictors and the comparison of their performance are also discussed.

1.4.5 Part V - Research Contributions, Summary
and Conclusion

Chapter 9 begins with a review of the work and concludes the work
done for practical applications with stress on comparison of figures of
merit on employing quadratic filters with linear and other nonlinear
filters. The limitations of the present work and the possible future
expansions are also presented in this chapter. Chapter 10 opens
with an overview of the impact of the applications of digital signal
processing and discusses the objectives and motivation for research in
quadratic systems. The chapter details the impact of the research on
various stakeholders.

1.4.6 Appendix A: Python - A Computational Tool
for Biomedical Image Processing

The appendix details the use of the object oriented, interpreted lan-
guage Python and its scientific computing toolbox, Scipy, with which
much of the computations in this research work are accomplished. It
stresses on Python modules for image processing for bio-medical ap-
plications and is included for quick reference, taking into consideration
the scarcity of learning material on Python programming and the lack
of awareness of its suitability in scientific computing.
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2.1 Overview

Discrete signals and systems play vital roles in today’s engineering
domains such as instrumentation, communication, control systems,
medical imaging, radar systems etc. and maintain a steady growth

24
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in cost effective usage and applications. However, most of the theory
and research work are focused around linear and time invariant (LTI)
systems, owing to the ease of design and simplicity of implementation.
But when signals generated by or systems governed by mild polyno-
mial nonlinearities are encountered, one need to consider the usage
of polynomial systems which are modeled as extension of the con-
ventional LTI systems. Obviously, one has to resort to mathematical
models that link the input and output in the form of a power series
that can add quadratic, cubic and higher order components in parallel
with the linear term. Although Taylor series is used for such a model,
it suffers from lack of memory and huge computational complexity.
Sec. 2.2 outlines the LTI systems and their limitations in modeling
nonlinearities and Sec. 2.3 discusses Taylor series and its shortcomings.
A variant of Taylor series which possesses memory is Volterra series,
which is employed to model polynomial relationship between system
input and output, the details of which are presented in Sec. 2.4. Most
of the nonlinear effects are encompassed by the quadratic term and
hence quadratic systems, both one dimensional and two dimensional,
are presented in Sec. 2.4, 2.5 and 2.6. The design methodologies
for quadratic systems are presented in Sec. 4.2. The computational
complexity arising from the use of Volterra series is surmounted by
various strategies for realization as presented in detail in Sec. 4.3.

2.2 Linear Time Invariant Systems

Linear time invariant systems are those that obey superposition and
shift invariance properties. The output y[n] of a linear and time in-
variant(LTI) system [Oppenheim and Schafer 1998] driven by input
x[n] is given as

y[n] =
∞
∑

k=−∞

h[k]x[n− k] (2.1)
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Eq. 2.1 is denoted as y[n] = x[n] ∗ h[n] where the ∗ sign indicates the
linear convolution operation. The parameter h[n] is the kernel or the
impulse response of the LTI system that characterizes the system com-
pletely. The essential problem in the design of a discrete filter as in
Eq. 2.1 is in ascertaining the kernel h[n] for a given input x[n] and for a
desired output y[n]. This problem is relatively mild when the duration
of h[n] is infinite. In this case, discretization of conventional analog
filters such as Chebyshev, Bessel filters etc. are possible, resulting in
frequency selective infinite impulse response (IIR) filters. When the
duration of the kernel h[n] is finite, the design is more involved. Meth-
ods based on statistical correlations are proposed[Hopf 1934],[Wiener
1956],[Noble 1988]. Optimization strategies are also proposed for FIR
filter design[McClellan and Parks 2005], [Adams 1991], [Adams et al.
1993],[Kaiser 1983], [Hermann 1970], [Gold 1975]. Frequency sampling
methods for finding h[n] are available in literature [Rabiner and Parks
1967], [Rader and Gold 1975].

When it comes to two dimensional signal processing, much of the work
is focused around natural images. A natural image is a two dimen-
sional signal rendered as an M ×N array of real numbers by a digital
camera [Ekstrom 1984],[Gonzalez and Woods 1992]. The generation
of the image is a nonlinear process and so is the human visual system
that perceives the image. Processing the image involves manipulation
of the two dimensional array of real numbers from the camera, say
x[n1, n2], to yield a more useful array of numbers, say y[n1, n2], by a
two dimensional filter kernel h[n1, n2] as given in Eq. 2.2.

y[n1, n2] =
N−1
∑

k1=0

M−1
∑

k2=0

h[k1, k2]x[n1 − k1, n2 − k2] (2.2)

Eq. 2.2, denoted as y[n1, n2] = x[n1, n2] ∗ ∗h[n1, n2], is a two dimen-
sional linear convolution of the input with the linear filter kernel. This
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step finds extensive application in space exploration, navigation, med-
ical diagnosis, multimedia communication etc. The tasks in image
processing are segmentation, edge detection, classification, noise re-
moval etc. Extraction of features is a key issue, especially in medical
image processing [Jan 2005], [Dougherty 2011]. As the image genera-
tion as well as the image perception is nonlinear, it is logical to employ
nonlinear filters for processing images. The major nonlinear systems,
categorized as in Fig. 2.1, are

Quadratic
Filter

Polynomial
Filter

Homo-
morphic
filter

Fuzzy
filter

Morpholo-
gical filter

Nonlinear filter Linear filter

Discrete systems

Order
statistic
filter

Fig. 2.1. Broad classification of nonlinear systems

• Homomorphic filters

• Order statistic filters

• Morphological filters

• Fuzzy filters
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• Polynomial filters

Homomorphic Filters are useful when the input signal is a multi-
plicative combination of two different signals. The two components are
processed in different ways using a nonlinear transformation, followed
by linear filtering. The filter is popularly used in isolating multiplica-
tive noise and in improving the contrast with normalized brightness.

Order Statistic Filters are used for removing impulsive noise from
the input image without blurring its edges. Median, weighted median
and mean filters are popular members in this category.

Morphological Filters employ geometric or morphological trans-
formations on input image to extract the skeletal sketches of objects
in the image. These morphological operations rely only on the rela-
tive ordering of pixel values and not on their numerical values, and
therefore are especially suited to the processing of binary images.

Fuzzy Filters apply fuzzy reasoning to model the uncertainty in the
image and are employed in filtering, interpolation and morphology.

While all the above methods are used in various image processing
applications, polynomial systems have the distinctive advantage that
they can model a larger class of nonlinear systems with a smaller
number of coefficients. Besides they are constructed as extensions
of a linear system by suitable power series expansion. The popular
Taylor series is deselected based on reasons that will be elaborated in
Sec. 2.3. In its stead, Volterra power series that can add quadratic,
cubic and higher order systems in parallel with the linear system is
selected. The work focuses on one dimensional and two dimensional
quadratic systems based on Volterra series for practical applications.
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The details of Volterra systems and the work done for realization for
various applications are detailed from chapters 2 to 8 as outlined in
the next section. Now that the idea of systems following a polynomial
relationship between input and output is conceived, it is imperative
to look for a general mathematical framework for polynomial systems.
It is intuitive to consider Taylor series [Struik 1969] for this purpose.

2.3 Taylor Series

The power series is proposed by Brook Taylor in 1715 for expressing
the function y as

y = f(x) =
∞
∑

i=0

f (n)(a)

i !
(x− a)i (2.3)

where f (n)(a) denotes the nth derivative of f at the point a. When
a = 0, the series is called Maclaurin series. Even though Taylor series
provides a polynomial relationship between x and y, it cannot easily
be employed for modeling polynomial systems due to the following
shortcomings.

• Taylor series, being a memoryless series,[Sicuranza 1992] only the
present value of the input x but not its history is incorporated
in the model.

• The convergence being slow, more coefficients and powers are
needed for the approximation of y, resulting in huge complexity.

• Practical implementations of polynomial systems are much more
convenient if square, cubic and higher powers are added with
Eq. 2.1 as this enables the designer to add quadratic, cubic or
higher order systems in parallel with the existing LTI system.
Such a representation is not possible with Taylor series.



30 CHAPTER 2. LITERATURE SURVEY

The above points warrant another series representation for polynomial
systems that can augment Eq. 2.1 with quadratic, cubic and higher
order systems. Such a power series was proposed by Vito Volterra,
the discrete version of which is discussed in the next section.

2.4 Discrete Volterra Series

Vito Volterra proposed a power series for describing the input - output
relation of an N th order nonlinear system[Alper 1963], the discrete
version of which is given as

y[n] = h0 +
∞
∑

r=1

N
∑

n1=1

N
∑

n2=1

· · ·
N
∑

nr=1

hr[n1, n2, . . . nr]. (2.4)

x[n− n1]x[n− n2] · · · x[n− nr]

The term h0 denotes the output offset when no input is present and
the term hr[n1, n2, . . . nr] denotes the rth order Volterra kernel. Iden-
tification of this kernel for a nonlinear system is the chief issue in
designing polynomial systems. By employing Volterra series, one can
surmount many disadvantages with Taylor series for modeling poly-
nomial systems. With order r = 1, Eq. 2.4 defaults to a convolution
between input and output, representing a linear system. For r = 2, it
becomes a quadratic system given as [Mathews and Sicuranza 2000]

y[n] = h0 +
N
∑

m1=1

h1[m1]x[n−m1] +
N
∑

n1=1

N
∑

n2=1

h2[n1, n2]x[n− n1]x[n− n2]

(2.5)

It has been observed that majority of the effects due to polynomial
nonlinearities are confined to the quadratic term and so the interest
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in quadratic systems. Eq. 2.5 is expressed as a matrix equation

y[n] = h0 + XT
1 [n]H1 + XT

1 [n]H2X1[n] (2.6)

where
X1 = [ x[n], x[n− 1], · · · , x[n−N + 1] ]T (2.7)

and
H1 = [h1[0], h1[1], · · · , h1[N − 1] ]T (2.8)

The term H2 is expressed as

H2 =















h2[0, 0] h2[0, 1] · · · h2[0, N − 1]
h2[1, 0] h2[1, 1] · · · h2[1, N − 1]
h2[2, 0] h2[2, 1] · · · h2[2, N − 1]

...
...

. . .
...

h2[N − 1, 0] h2[N − 1, 1] · · · h2[N − 1, N − 1]















(2.9)

This system is realized as a parallel combination of three components
as in Fig. 2.2. The quadratic system is defined by the third term in
Eq. 2.6 is

yq[n] = XT
1 [n]H2X1[n] (2.10)

h1[m1]

h2[n1, n2]

x[n]

h0

y[n]

Fig. 2.2. Quadratic filter as a parallel combination of 3 components

Eq. 2.10 is understood as the output of linear filter of kernel H2 oper-
ating on

X2[n] = X1[n]⊗ X1[n] (2.11)
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where ⊗ represents Kronecker product. Quadratic nonlinearities are
predominant in image generation and processing mechanisms. Em-
ploying two dimensional quadratic filters can lead to improved perfor-
mance. Sec. 2.5 details the theory of 2-D quadratic filters.

2.5 Two Dimensional Quadratic Systems

The two dimensional quadratic filter is governed by the equation

y[n1, n2] =

N1−1
∑

m11=0

N2−1
∑

m12=0

N1−1
∑

m21=0

N2−1
∑

m22=0

h2[m11,m12,m21,m22]×

x[n1 −m11, n2 −m12]x[n1 −m21, n2 −m22] (2.12)

Out of the four indices m11,m12,m21,m22 of the kernel h2, two stem
from the quadratic nature of the kernel and the remaining two denote
the two dimensions of the signal processed. Eq. 2.12 is represented in
the matrix form as

y[n1, n2] = XT [n1, n2]H2X[n1, n2] (2.13)

where

X[n1, n2] =

































x[n1, n2]
x[n1 − 1, n2]

...
x[n1 −N1 + 1, n2]

...
x[n1, n2 −N2 + 1]

x[n1 − 1, n2 −N2 + 1]
...

x[n1 −N1 + 1, n2 −N2 + 1]

































(2.14)
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The quadratic kernel H2 has N1N2×N1N2 elements and each element
consists of N2

2 sub-matrices H(i, j) with N1 ×N2 elements given as

H2 =











H[0, 0] H[0, 1] · · · H[0, N2 − 1]
H[1, 0] H[1, 1] · · · H[1, N2 − 1]

...
...

. . .
...

H[N2 − 1, 0] H[N2 − 1, 1] · · · H[N2 − 1, N2 − 1]











(2.15)

where each sub-matrix H[i, j] is given by

H(i, j) =











h[0, i, 0, j] h[0, i, 1, j] · · · h[0, i, N1 − 1, j]
h[1, i, 0, j] h[1, i, 1, j] · · · h[1, i, N1 − 1, j]

...
...

. . .
...

h[N1 − 1, i, 0, j] h[N1 − 1, i, 1, j] · · · h[N1 − 1, i, N1 − 1, j]











(2.16)
The design of the quadratic filter invariably means the determination
of the N2 elements of H2. This task is tedious as N2 is large enough,
but not all the coefficients are independent. The number of indepen-
dent coefficients is considerably reduced if the isotropy of the kernel
matrix is considered as in the following section.

2.6 Isotropy of Quadratic Kernel

Isotropy of a one dimensional linear system means the invariance of
the filter output with respect of 180 ◦ rotation of the filter input. The
input to a linear system is

X1[n] = [ x[n] x[n− 1] · · · x[n−N + 1] ]T (2.17)

and its image after 180 ◦ rotation is

X
′

1[n] = [ x[n−N + 1] · · · x[n− 1] x[n] ]T (2.18)
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The output of the isotropic system will be the same for both inputs
X1[n] and X2[n]. A class of linear phase FIR filters with impulse re-
sponse h1[n] with

h1[n] = h1[N − 1− n] (2.19)

can achieve this condition. For a one dimensional quadratic system,
the input vector and its image after 180 ◦ rotation are

X2[n] = X1[n]⊗ X1[n] (2.20)

X
′

2[n] = X
′

1[n]⊗ X
′

1[n] (2.21)

The condition under which the outputs of a quadratic system for the
inputs X2[n] and X

′

2[n] are the same is

h2[n1, n2] = h2[N − 1− n1, N − 1− n2] (2.22)

2.6.1 Isotropy of 2-D Quadratic Systems

The input-output relation for a two dimensional quadratic system is

y[n1, n2] = Tr[H2X
T
2 [n1, n2]] (2.23)

where
X2[n1, n2] = X1[n1, n2]⊕ X1[n1, n2] (2.24)

Isotropy requires that the output is the same for 90 ◦, 180 ◦ and 270 ◦

rotations of X2[n1, n2]. Isotropy leads to less number of independent
coefficients and ease of design [Mathews and Sicuranza 2000].

Two dimensional filters with a small plane of support is ideal for spatial
filtering. A filter of 3×3 mask is considered, with N = 9. The number
of independent coefficients are reduced from 81 to 45, on application
of the symmetry of the H2 kernel. On application of the isotropy
constraints, it reduces to 11 [Ramponi 1990].
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2.7 Gist of Observations

This chapter presents the limitations of LTI systems and the sig-
nal processing needs that necessitate the use of quadratic systems.
Volterra series, an extension of Taylor series, is presented as a suitable
power series expansion to model quadratic systems. Two dimensional
quadratic systems and the properties of Volterra quadratic kernels
such as symmetry and isotropy, which will be later used in subsequent
designs, are reviewed. The principal distinction when working with
quadratic filters is that in the case of 1-D and 2-D linear time invari-
ant systems, the linear convolutions as in Eq. 2.1 and Eq. 2.2 translate
into multiplication of Fourier transforms of the input and impulse re-
sponse functions in the frequency domain i.e. Y (ω) = H(ω)X(ω).
The latter statement implies that the frequencies at the output of LTI
systems contain the input frequencies or a subset therein, depending
on the shape of H(ω) where H(ω) is the Fourier transform of h[n], but
never anything outside the input frequency band. Such a convenient
situation does not exist when polynomial systems such as y[n] = x2[n]
is considered. With such a system, if x[n] is band limited in [−ωc, ωc],
then the spectrum of y[n] can spread from [−2ωc, 2ωc]. Not only that
the convenient relationship as proposed by Eq. 2.1 or by its frequency
domain counterpart does not exist in the case of quadratic systems.
Besides, one has to worry about spectral aliasing not only at the input
side but at the output side also. If one takes a closer look at systems
whose input and output are related by polynomial equations such as
the case just discussed, one can observe that there are equivalences
with linear systems in the time domain but there is no exact equiva-
lent of the frequency domain. This imposes a great challenge in the
implementation of polynomial systems compared with linear systems
that are implemented using frequency domain methods that rely on
computationally efficient fast Fourier transform algorithms.



36 CHAPTER 2. LITERATURE SURVEY

2.8 Motivation for Research

The research in quadratic systems is motivated by the need to model
the effects of polynomial components present in speech and image sig-
nals. It is estimated that quadratic systems can outperform LTI sys-
tems and other nonlinear filters in the tasks of edge detection, impul-
sive noise removal and statistical prediction. The design methodology
and scheme of implementation need to be selected for each application.
Based on the review of literature and the requirements in polynomial
signal processing in three application areas, the scheme of work and
methodology have been established in tune with the objectives. Chap-
ter 3 is devoted for explaining the scheme of work and methodology.
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3.1 Overview

Polynomial filters, especially the quadratic systems, discussed in chap-
ter 2 find extensive applications in speech and image processing, two
areas where effects of nonlinearity are inherent and predominant. The
following aspects of quadratic systems are considered below.

• Mathematical formulation of quadratic systems and the various
actual and approximate representations of its kernel matrix H2.

• Isotropy of quadratic kernel H2 that can result in the saving of
computational complexity stemming from Kronecker products.

• Design methodology to find the quadratic kernel matrix H2.

• Implementation strategies for H2.

Once the mathematical formulation, design and implementation strat-
egy of quadratic filters are understood, it is imperative to consider spe-
cific applications where the features of such filters are put to better
use. These fields are identified as

• Quadratic edge detection in biometric and medical images

• Removal of impulsive noise using quadratic filter

• Quadratic predictor for speech signals.

The first work is motivated by the improved edge crispness and noise
invulnerability of two dimensional quadratic systems which makes
them ideal edge detection filters. Teager and general quadratic edge
detection filters are designed and tested for the following applications.

• Detection of retinal microaneurysms due to diabetic retinopathy.

• Enhancement of latent fingerprints in noisy background.
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Removal of impulsive noise is an important problem in image pro-
cessing. One major area where images are corrupted by impulsive
noise is that of magnetic resonance imaging. It is proposed that a
quadratic Volterra filter can remove impulsive noise much better than
a conventional image filter like median or Gaussian filter. So impul-
sive noise removal is the second area of application of quadratic filters.

The third application area for which quadratic filters are designed and
tested is that of nonlinear prediction. The motivation for research is
the need for accounting the polynomial nonlinearities in speech signals,
due to multiple reflections in the vocal tract. This model is incorpo-
rated in the design of a speech predictor. Such a quadratic predictor is
included in a differential pulse code modulation system for improved
mean square error between transmitted and received speech signals
sent over an additive white Gaussian noise (AWGN) channel. The
broad categorization of work is shown in Fig. 3.1. The impact of work
in each category is as outlined in the subsequent sections.

3.1.1 Why the Three Areas?

The above three areas are chosen with the surmise that effects of poly-
nomial nonlinearities are predominant in them and a well designed
quadratic filter can outperform conventional filters. The specific re-
quirements and constraints in each area are discussed as follows.

Prediction

Prediction involves in estimating the future value of a random pro-
cess, often realized using linear FIR filters. In the present research,
quadratic Volterra filters are used as speech signal predictors, instead
of FIR filters, with remarkable improvement in performance. The work
is justified by the fact that speech generation is a nonlinear process
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and the inherent polynomial components are modeled better using a
quadratic predictor. This quadratic predictor is employed in a differ-
ential pulse code modulation system with reduced mean square error
between the transmitted and received signals.

Edge Detection

In image processing and machine vision, isolation of edges is a key pro-
cess and many filters such as Canny, Sobel, Laplacian, Laplacian of
Gaussian(LoG) have been used conventionally for this end. These fil-
ters separate edges by computing spatial gradients, but they perform
poorly in presence of additive noise. It is proposed that quadratic
filters can detect the edges with greater resolution than conventional
edge detectors even in presence of strong additive noise. Besides, edges
in images are discontinuities in space which are approximated bet-
ter with nonlinear functions and hence the motivation for employing
quadratic systems for edge detection in presence of noise.

Noise Removal

Any unwanted signal that gets added with the desired signal is termed
noise, the removal of which is a fundamental filtering problem. In com-
munication systems where a large number of noise sources get added,
the resulting noise is Gaussian in statistics and well established filter-
ing methods like matched filtering are employed for noise removal. But
in image processing the noise encountered is impulsive in behaviour,
such as salt and pepper noise, the removal of which is done using non-
linear filters like order statistic filters. Gaussian filter also removes
impulsive noise though it slightly blurs the image. Apart from these,
quadratic filters are proposed for greater improvement in signal to
noise ratio and better preservation of edges. The work is motivated
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by the noise invulnerability of quadratic edge detection filters.

3.2 Filters for Edge Detection

Edges are discontinuities in brightness in images due to peripheries of
objects, changes in illumination, texture etc. and manifest as sharp
changes in pixel values. These changes in values can be gradual as in
Fig. 3.2 or abrupt as in Fig. 3.3. Detection of edges is an important

0 2 4 6 8

0

2

4

6

8

Fig. 3.2. A blunt synthetic edge
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Fig. 3.3. A sharp synthetic edge

image processing operation that is useful in periphery detection and
machine vision[Pratt 2001],[Weeks 2005]. The applications of edge
detection include tumour localization in medical images for automated
surgery, geographic localization in satellite images, periphery detection
of objects for robotic vision etc. Conventionally, spatial gradient based
detectors are used to locate the edges in images. The popular filters
under this category are Laplacian, Laplacian of Gaussian(LoG), Canny
etc. The major drawback with these methods is that they are very
sensitive to additive noise. Noise introduces false edges in an image
and the above mentioned filters perform poorly in presence of noise.
But quadratic edge detection filters are less sensitive to noise and
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hence the motivation for the design and implementation of quadratic
filter kernels for the following image processing applications. They are

• quadratic edge detection filter for detecting microanneurysms in
retinal images due to diabetic retinopathy

• quadratic edge detection filter for the enhancement of noisy fin-
gerprints

The design and implementation of each of these are explained in the
chapters from 5 to 6 in part II.

3.3 Filters for Noise Removal

Noise is any unwanted signal that gets added with desired signals and
its effect is to obscure the latter. The presence of noise is unavoidable
and all one can do is minimizing it. The demarcation, as to what is
signal and what is noise, is relative to the user. For example, for a pul-
monologist who listens to the sound from a patient’s chest the rhyth-
mic breathing sound is the signal and the heart beat in the backgound
is the noise. The reverse is the case for a cardiologist. The sources
of noise can be external to the system or from within the system that
processes the signal. External noise sources affect the signal mostly
during transmission through channels. The channels can be dedicated
communication media such as wireless and wireline electromagnetic
channels, optical fibres etc. or storage channels like magnetic hard
disk etc. On transmission through communication channels, a large
number of noise sources of varying statistics get added, and by the cen-
tral limit theorem, the total noise follows Gaussian statistics. Besides
external noise, there are inherent noise sources within systems. Such
are Johnson noise due to thermally generated carriers in amplifiers,
shot noise in conductors etc. One chief figure of merit, when working
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in presence of noise, is the signal to noise ratio(SNR) which degrades
as the signal progresses through the system because of the presence
of internal noise sources. Isolation of desired signals from noise is a
fundamental engineering problem to which linear system theory offers
well established solutions and methods especially when the noise has
Gaussian statistics. But linear systems fail when it comes to removing
impulsive noise. Such a noise that is predominant in wireless communi-
cation signals, medical images etc., is removed using quadratic filters.
Fig. 3.4 shows the original lena image and Fig. 3.5 shows the effect of
added impulsive noise of power 100 on it.
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Fig. 3.5. Image with noise

Unlike images generated by digital cameras, images generated by med-
ical imaging systems such as MRI machine are largely corrupted by
impulsive noise as the acquisition of image happens under strong and
rapidly varying magnetic fields. In the present work, a two dimen-
sional filter kernel is developed and implemented for removing impul-
sive noise from magnetic resonance image(MRI) signals. The principal
advantages in using quadratic filter are its edge and structure preser-
vation features and noise invulnerability. The details of work done on
this class of filter are explained in part III.
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3.4 Filters for Nonlinear Prediction

Entropy, information and randomness are manifestations of the same
entity, measurement of which is a fundamental problem in informa-
tion theory, for which solutions were offered by Chaitin and Claude
Shannon. According to Shannon,

“we have full knowledge about the past but cannot con-
trol it; we can control future but have no knowledge of it.”

Lack of knowledge about the future motivated the research in predic-
tion. One is always interested to know what will happen in future or at
least what is the most probable thing that will happen in future. The-
ories of estimation and prediction stem from this interest and Nobert
Wiener, a lightning brained mathematician, undertook this problem
and predicted the trajectory of a bomb during the second world war.
The later developments in the two areas are attributed to him.

Linear prediction is an important statistical signal processing opera-
tion that involves in predicting the future value of a random variable
based on the past samples. This finds applications in speech coding,
image sequence prediction, trajectory prediction, market prediction
etc. The performance of predictors will be further improved if polyno-
mial predictors that can model the nonlinearities in speech and image
signals are employed in the differential coding systems. Quadratic pre-
dictors are designed and implemented for the following applications.

• Lattice type quadratic predictor for Gaussian signals

• Optimization based quadratic predictor for the differential cod-
ing and decoding of speech signals

These quadratic filters are contrasted against the linear predictor based
on Levinson-Durbin recursion for testing the performance parameters.
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The research work and the results obtained in differential PCM sys-
tems employing quadratic predictors are detailed in part IV.

3.5 Scope of Work

The research work in the areas of nonlinear prediction, edge detection
and noise removal are targeted for various applications. The scope of
work in various areas are outlined in the subsequent sections.

3.5.1 Strategy for Design and Implementation

The methods proposed for the design of quadratic systems lack gener-
ality. But two major methods are considered and the pros and cons of
both are analyzed before deciding on one. Once the design for a spe-
cific application is accomplished, a computationally efficient method
realization should be selected. Several methods are compared before
matrix decomposition is selected.

3.5.2 Quadratic Edge Detection Filter

Two dimensional Quadratic filters are proposed for detecting edges in
images with improved edge resolution and noise invulnerability. Such
features are desirable for applications like

• enhancement of noisy fingerprints

• detection of retinal microaneurysms

The first application is useful in enhancing crime scene fingerprints
that are unclear or buried in noise. It is a pre - processing stage before
the prints are subjected to identification. Quadratic edge detection
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filter that preserves the structure of image even with additive noise is
used in an unsharp masking scheme for fingerprint enhancement.

The periphery of retinal microaneurysms typically 100µm dimension
due to type - I and type - II diabetes are enhanced using a variation of
quadratic filters viz. Teager filters, which track energy localizations
and consequently the edges in the input image. A general quadratic
filter can also be employed for the enhancement of retinal microa-
neurysms. The precise detection of periphery aids automatic surgery
of microaneurysms in the initial stage of diabetic retinopathy. It forms
the second application area of quadratic edge detection filter.

3.5.3 Modified DPCM System with Quadratic
Predictor

The polynomial components in speech signals, due to multiple reflec-
tion in the vocal tract during speech generation, are not accounted for
in a linear predictor and so it yields a large prediction error. These
components are modeled using Volterra power series. A speech pre-
dictor based on Volterra quadratic system is proposed to yield smaller
mean square error between actual speech signal and its predicted value.
The quadratic predictor is used to replace the linear predictor in a dif-
ferential pulse code modulation system, with improved performance.

3.5.4 Removal of Impulsive Noise from
MRI Signals

Unlike in communication systems, the noise present in images are im-
pulsive in nature, making filtering difficult. One key area where strong
impulsive noise is present, and its removal is a critical operation, is
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the generation of magnetic resonance imaging (MRI) signal. In MRI,
nuclear resonances due to rapidly changing magnetic fields are trans-
formed into images of body part under study. The strong variations
in magnetic fields add impulsive noise with the resulting image which
need to be removed. Conventionally, order statistic filters such as
mean or median filters are employed for this task with unavoidable
blurring of edges. A quadratic filter is used for the removal of impul-
sive noise from MRI images with greater signal to noise ratio and edge
crispness than linear filters and conventional nonlinear filters.

3.6 Summary

This chapter details the scheme of research work adopted in the design
and implementation of quadratic filters and their realizations for three
applications. At the onset, quadratic filter is selected as a potential
choice for nonlinear signal and image processing. Edge detection, noise
removal and prediction are identified as areas where quadratic filtering
could exploit more than that exploited by linear or other nonlinear
filters in terms of performance parameters. The division of work under
each category is also presented. The forthcoming parts in the thesis
detail the work on quadratic system for the three areas.
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4.1 Introduction

In the last chapter, the potential application areas, where quadratic
systems can contribute more than conventional systems, are identified
and the objectives are laid out. Now, the strategies for the design of
quadratic systems are to be sought. There is no general methodology
for the design of quadratic systems unlike in the case with LTI sys-
tems. Mostly, the methods are heuristic and application dependent
but bestows the designer with the power to customize the filter to
suit the application. The complexity of design is considerably reduced
if the symmetry and isotropy of the quadratic kernel are exploited.
Two methods have been proposed for finding the quadratic kernel, al-
though they lack generality. These methods are detailed in Sec. 4.2.
Once the quadratic kernel is designed, it is imperative to look for
a proper strategy of implementation. Since the complexity of Kro-
necker products increases sharply with the size of the input array, a
direct implementation is impossible. Computationally efficient tools
like FFT, that are useful with LTI systems, are of little use due to the
absence of frequency domain in the case of quadratic systems. Realiza-
tions based on distributed arithmetic are possible[White 1989]. In this
case, however, the multiplications are converted into serial additions
and do not offer considerable computational throughput in the case
of quadratic systems. Approximate implementations of the kernel are
possible by resorting to suitable matrix decompositions [Gantmacher
1960]. These approximate methods are contrasted with other methods
in Sec. 4.3.5. General matrix decomposition, the LU decomposition
and the singular value decomposition are possible for the kernel matrix
under the category of approximate implementations. Comparison of
matrix decomposition methods is made in Sec. 4.3.5 to select singular
value decomposition(SVD) method. Approximation of kernel matrix
by SVD method is used throughout the research work for implement-
ing both 1-D and 2-D quadratic systems.
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4.2 Design Methodology

Design of quadratic filters generally involves in finding the kernel H2

for which two methods [Mathews and Sicuranza 2000] are proposed as

• Bi-impulse response method

• Optimization method

Bi-impulse Response Method

Two dimensional quadratic system with a small plane of support is
useful in image processing. Such a system is characterized by its bi-
impulse response which is the output of the system for two unit im-
pulses located at different positions in the plane of filter support[Ramponi
1990]. If the quadratic system is excited by the sum of two impulses
δa[n1 − k11, n2 − k12] and δb[n1 − k21, n2 − k22], then the response is

yq[n1, n2] = h2[n1 − k11, n2 − k12, n1 − k21, n2 − k22] (4.1)

Fig. 4.1 shows the location of the four impulses that are used to de-
termine a 9× 9 H2 kernel.
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Table 4.1: Indices of coefficients of H2 determined by four impulses

Sl.
No.

First
Impulse

Second
Impulse

Elements of H2

identified

1 δa[n1, n2] δb[n1, n2] 11 22 33 44 55 66 77 88 99

2 δa[n1, n2] δb[n1, n2 − 1] 12 23 45 56 78 89

3 δa[n1, n2] δb[n1 − 1, n2] 14 25 36 47 58 69

4 δa[n1, n2] δb[n1 − 1, n2 − 1] 15 26 48 59

Table 4.1 shows the indices of the kernel H2 that are ascertained with
the above four sets of impulses. The impulses in the fourth row gives
the kernel coefficients H2[1, 5], H2[2, 6], H2[4, 8] and H2[5, 9].

The responses for all impulses corresponding to the independent coef-
ficients are used to ascertain all the elements in the kernel H2. Sym-
metry and isotropy of the filter kernel are further exploited to narrow
the search for filter coefficients.

Optimization Method

Design by bi-impulse responses lacks generality and it is difficult to
impose constraints on H2. As a better alternative, the design of H2

is formulated as an optimization problem, based on some constraint
function, that minimizes some cost function. The structure of the
filter derived, the constraint function and the cost function are all
dependent on the specific application that the designer is interested
in[Ramponi and Ukowich 1987]. The design problem is formulated as
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the identification of the vector h0 such that

f(h0) = min
h∈D

f(h) (4.2)

where h is the k-dimensional design variable. D is the set of all vectors
h that satisfies the constraint function g(h) = 0. The cost function f(.)
is a real non-negative function. Sometimes, it is difficult to obtain a
theoretical formulation of an objective function. This difficulty is sur-
mounted by training the filter with known input and desired output
images. Sometimes, synthetic images with characteristics similar to
those of practical images are used at the input and output to ascer-
tain the quadratic filter kernel. Typically, signal to noise ratio(SNR),
mean square error(MSE) between a desired image and the filter out-
put, edge crispness etc. are used as cost functions. Constraints are
imposed, exploiting the symmetry and isotropy of the quadratic ker-
nel, as explained in Sec. 2.6. Conjugate gradient algorithm is preferred
as it offers fast convergence[Fletcher and Powell 1963], [Brent 1973].

Comparison between Design Methods

Design of quadratic filters invariably means the determination of the
kernel H2 for the desired application. A comparison of optimization
method with bi-impulse response method is as shown in Table 4.2.
Out of the two methods outlined above, optimization is used in this
work as it can be customized to suit the various applications.

4.3 Implementation of Quadratic Filters

Once the strategy for the design of quadratic filters is understood, it is
imperative to look into the aspects of their realizations. The complex-
ity of the structure is decided by the number of multiplications which
is far more than that with linear systems. The methods of realization



54 CHAPTER 4. DESIGN AND IMPLEMENTATION

Table 4.2: Comparison between design methods

Sl.
No.

Attribute Bi-impulse response
method of design

Optimization
method of design

1 Isotropy Isotropy constraints
can ease the design

Isotropy con-
straints are not
necessary

2 Customization The deconvolution of
a desired output with
bi-impulse to have H2

for a specific applica-
tion is difficult

H2 is found based
on the optimiza-
tion of an objective
function. So cus-
tomization is easy

3 Strategy Many constraints
are to be imposed
for eliminating re-
dundant elements in
H2

Unconstrained op-
timization is made
possible by using
Fast convergence
algorithms

4 Flexibility Inflexible design Repetitive itera-
tions are possible
that can yield
global minimum
for the objective
function. There is
added flexibility in
selecting suitable
objective function.
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of quadratic filters [Mathews and Sicuranza 2000], as listed below, are
presented in the subsections 4.3.1, 4.3.2 and 4.3.3 respectively.

• Direct form realization

• Realization based on distributed arithmetic

• Realization based on matrix decomposition

4.3.1 Direct Form Realization

The homogeneous quadratic components of the Volterra series expan-
sion given by Eq. 2.5 in page 30 can be implemented using direct-form
realization by means of a nonlinear combiner(computes all necessary
products of the input samples), a number of multipliers, and a sum-
ming bus. This brute force method that realizes the equation

y[n1, n2] =
2
∑

k1=0

2
∑

k2=0

h2[k1, k2]x[n1 − k1]x[n2 − k2] (4.3)

as in Figs. 4.2 and 4.3 respectively. The realization shown in Fig. 4.2
uses least number of multipliers and so is computationally simple.
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Fig. 4.2. Direct form Realization using least number of multipliers
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The realization shown in Fig 4.3 uses minimum number of delay ele-
ments at the expense of extra multipliers. However, these realizations
cannot easily be simplified by approximate representations.
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Fig. 4.3. Direct form Realization using least number of delay elements

It is impossible to perform direct quadratic filtering on any usable im-
age. The direct form realizations of both one dimensional and two
dimensional quadratic filters, as in Eq. 2.10 and Eq. 2.12 in page 31
and in page 32 respectively, are difficult since the computational com-
plexity of Kronecker product increases sharply with the size of the
input array. Fig. 4.4 shows the rapid increase in computational com-
plexity of the Kronecker product of a random N ×N array as N rises
from 3 to 70. It is impossible to perform direct quadratic filtering on
any usable image.
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4.3.2 Structures Based on Distributed Arithmetic

The concept behind the strategy of implementation is to distribute the
multiplication and addition operations at the bit level. Assume that
the input signal is normalized so that |x[n]| ≤ 1 for all n. In order
to perform the multiplication and addition operations at the bit level,
each input sample is coded by means of logical variables xb[n] that
assume binary values such that

x[n] =
B
∑

b=1

p[b]xb[n] (4.4)

where B is the word length used and weights p[b] depends on the
binary code employed. For the two’s-complement code,

p[1] = −1 and p[b] = 2−b+1; b = 2, . . . , B (4.5)

and xb[n] is either 1 or 0. The offset - binary code requires that xb[n] =
±1 and

p[b] = 2−b; b = 1, · · · , B (4.6)

The definition in Eq. 4.4 is extended to the past N − 1 input samples
and the input vector of Eq. 4.5 is expressed in the form

X1[n] = Q1[n]P1 (4.7)

where P1 is a B-element vector of the binary weights given by

P1 =
[

p[1] p[2] . . . p[B]
]T

(4.8)
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and Q1(n) is an N × B-element matrix obtained by expanding each
component of the vector X1(n) in its elementary bits as

Q1[n] =















x1[n] x2[n] . . . xB[n]
x1[n− 1] x2[n− 1] . . . xB[n− 1]
x1[n− 2] x2[n− 2] . . . xB[n− 2]

...
...

. . .
...

x1[n−N + 1] x2[n−N + 1] . . . xB[n−N + 1]















(4.9)

Consequently, the output of a linear FIR filter can be expressed using
the vector notation

y1[n] = XT
1 [n]H1 = PT

1Q
T
1 [n]H1 (4.10)

where H1 is the impulse response of filter in vector form.

Calculation of the product PT
1 (Q

T
1 [n]H1), that is devoid of any mul-

tiplication, involves only bit-shifting, additions and subtractions. It
is required to substitute Eq. 4.7 in Eq. 2.11 in page 31 to derive a
distributed arithmetic realization of a homogeneous quadratic filter as
given below.

X2[n] = X1[n]⊗ X1[n]

= Q1[n]P1 ⊗ Q1[n]P1

= [Q1[n]⊗ Q1[n]] [P1 ⊗ P1]

= Q2[n]P2 (4.11)

where Q2[n] = Q1[n] ⊗ Q1[n] is an N2 × B2-element matrix and
P2 = P1 ⊗ P1 is a B2-element vector. The output of the homogeneous
quadratic filter is expressed in terms of P and Q by the equation

y2[n] = XT
2 [n]H2 = PT

2Q
T
2 [n]H2 (4.12)
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The symmetry property of the Volterra kernels is used to reduce the
implementation complexity by defining a small vector H2r containing
onlyN2 = N(N+1)/2 independent coefficients in the quadratic kernel,
and a corresponding reduced-size input vector X2r[n].

y2[n] = XT
2r[n]H2r = PT

2Q
T
2r[n]H2r (4.13)

where Q2r[n] is an N2×B2-element matrix obtained by expanding the
B2-elementary bits in the vector X2r[n] [Mathews and Sicuranza 2000].
The realization is as shown in Fig. 4.5.

z−1

z−1

x[n]

y[n]
b

b

b

b

z−1

QT
2r[n]H2r PT

2

Fig. 4.5. Structure based on distributed arithmetic

4.3.3 Implementation of One Dimensional
Quadratic Kernel by Matrix Decomposition

Any symmetric N ×N matrix H2 of rank r is decomposed into a sum
of r number of rank - 1 matrices as an approximation H̃2, expressed as

H̃2 =
r
∑

i=1

qiRiRi
T (4.14)
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where { qi; i = 1, 2, 3, . . . , r} are scalars and { Ri; i = 1, 2, 3, · · · , r}
are N element vectors. Substituting Eq. 4.14 in Eq. 2.10, the quadratic
term of output becomes

yq[n] =
r
∑

i=1

qi[X1
T [n]Ri ][Ri

TX1[n]] (4.15)

yq[n] =
r
∑

i=1

qiy
2
i [n] (4.16)

where

yi[n] = XT
1 [n]Ri = RT

i X1[n] (4.17)

is the output of a linear filter with impulse response equal to the
coefficient vector Ri. The realization is as shown in Fig. 4.6.

FIR Filter

FIR Filter

FIR Filter

q1

q2

qr

x[n] y[n]

b
b
b

b
b
b

b
b
b

R1

R2

Rr

Fig. 4.6. Realization of H̃2 by general matrix decomposition

The input is applied to the FIR filters with impulse responses Ri and
each output is squared and then scaled by qi. General matrix de-
composition does not result in compression of the kernel matrix H2.
This means that not every qi is insignificant enough and not every Ri

contains leading zeros, resulting in meager computational savings.
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LU Decomposition

A more efficient realization is by LU decomposition in which a matrix
is represented as the product of upper and lower triangular matrices.
The matrix H2 is approximated, by LU method, as H̃2 in the form of
a weighted sum in the equation below.

H̃2 =
r
∑

i=1

diLiLi
T (4.18)

where di is scalar multiplier and vector Li has i − 1 leading zeros.
Thus LU decomposition results in less complexity than general matrix
decomposition.

Singular Value Decomposition

A more convenient decomposition of an array or matrix is the singular
value decomposition that approximates a matrix as a linear combina-
tion of singular vectors, scaled by the respective eigenvalues. It is ob-
served as a method for transforming correlated values in the H2 matrix
into a set of uncorrelated values that exposes the relationships among
the original values. This method identifies and orders the dimensions
along which the elements exhibit the most variation. Singular value
decomposition is a popular method of image compression and is used
to derive approximate realizations when rank of the kernel matrix H2

is smaller than the memory span. Here H2 is approximated as

H̃2 =
r
∑

i=1

λiSiSi
T (4.19)
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where λi are the singular values of H2 and Si are the corresponding
orthonormal singular vectors. The best rank - ρ approximation is

H̃2 =

ρ
∑

i=1

λiSiSi
T (4.20)

where {λi; i = 1, 2, 3 . . . , ρ} are the largest ρ singular values of the
kernel H2. The output of the filter is

y[n] = XT [n]H2X[n]

≈ XT [n]

ρ
∑

i=1

λiSiSi
TX[n]

=

ρ
∑

i=1

λi[X
T [n]Si ][ Si

TX[n] ] =

ρ
∑

i=1

λiy
2
i [n] (4.21)

(4.22)

The parallel-cascade structure is as shown in Fig. 4.7.
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FIR2

FIRρ

λ1

λ2

λρ

b
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b

b

b

b

y[n]x[n]

b

b

b

Fig. 4.7. Realization of H̃2 of by singular value decomposition
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The Frobenius norm of the error matrix H2 − H̃2 is given as[Gantmacher
1960]

||H2 − H̃2||F =

√

√

√

√

ρ
∑

i=1

λ2
i (4.23)

Often, the implementation with H̃2 results in substantially smaller
number of coefficients. Further saving in computational complexity
will be achieved if LU decomposition is performed on H̃2 as well.

4.3.4 Implementation of Two Dimensional
Quadratic Kernel by Matrix Decomposition

The idea of decomposition of H2 is extended to two dimensional sys-
tems. Singular value decomposition identifies the elements of H2 along
the direction of maximum variation. Once this direction is ascertained,
one can find the approximation for the original elements in H2 using
fewer dimensions. Thus singular value decomposition is performed
over H2 in Eq. 2.15. Upon singular value decomposition of the kernel
matrix H2, it yields an approximation H̃2 again as a weighted sum

H̃2 =

ρ
∑

i=1

λiSiSi
T (4.24)

where λi are the eigen vectors and each Si is a N1N2 × 1 vector. The
order of the filter bank ρ is selected in such a manner that the Frobe-
nius norm ||H2 − H̃2|| is minimum. Each Si is re-sized as a N1 × N2

FIR image filter that is equivalent to H(i, j) in Eq. 2.16. The outputs
of two dimensional FIR filters are squared and a weighted sum with
λi values yields the filter structure given as in Fig. 4.8.
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Fig. 4.8. Realization of H̃2 for 2-D quadratic system by singular value
decomposition

4.3.5 Comparison between Structures

Direct form implementation is a brute force approach and the com-
putational complexity involved is tremendous. Distributed arithmetic
structure needs large number of conversions from floating point to
binary. The matrix methods result in compact multichannel filters.
Comparison between the three methods is presented in Table 4.3.

It is inferred from the table that matrix decomposition methods are
better choices of implementation than the other two methods.

Comparison between Structures based on Matrix
Decomposition

Many matrix decompositions methods are possible for H2 but singu-
lar value decomposition is particularly attractive. This decomposition
identifies the path along the principal values of H2 and yields its best
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approximation with fewer dimensions. A comparison in terms of im-
plementation strategy and computational complexity are given in Ta-
ble 4.4.

Table 4.3: Comparison between various structures

Attribute Complexity Method of im-
plementation

Flexibility

Direct
form

Large com-
putational
complexity

By Kronecker
products

Not flexible

Distributed
arithmetic

Complex
with large
number of
multipliers
and adders

Multiplications
are converted
to additions

The hardware
used for perform-
ing the conversion,
addition and mul-
tiplication is not
flexible

Matrix
decompo-
sition

Less com-
plex

Multichannel
implemen-
tation that
approximates
the quadratic
kernel

Since the principal
components of H2

are isolated, chan-
nels are added or
dropped depend-
ing on the mag-
nitude of eigenval-
ues, resulting in
flexible implemen-
tation.
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Table 4.4: Comparison between matrix decompositions

Sl. No. Structure Complexity Implementation

1 General ma-
trix decompo-
sition

Full rank approxima-
tion is as complex as
direct implementation

Parallel cas-
cade with ρ
channelsa

2 LU decompo-
sition

ρ number of FIR fil-
ters and multipliers
are needed

Parallel cas-
cade with ρ
channels

3 Singular
value decom-
position

As eigenvalues de-
crease rapidly the
complexity is substan-
tially reduced as H2

is expressed with less
number of FIR filters

Multichannel
implemen-
tation with
a few FIR
filters and
squarers

aρ is the rank of H2

The general matrix decomposition results in a complexity at par with
direct implementation, especially when rank of H2 is high. LU decom-
position splits H2 into lower and upper triangular matrices. Although
this decomposition results in FIR filters with increasing number of ze-
ros in their impulse responses, the number of filter channels are not
substantially reduced. Singular value decomposition results in rapidly
decreasing eigenvalues and so the kernel matrix H2 is approximated by
a few principal values, leading to a computationally efficient structure.
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4.4 Summary

The chapter presented the need for working with polynomial systems
for modeling of mild nonlinearities and the use of Volterra series, rather
than Taylor series, for that end. This series enables to add quadratic
and higher order nonlinear systems in parallel with LTI systems. In
practice, most of the nonlinear effects are modeled by the quadratic
term. Higher powers are difficult to implement in hardware and hence
the focus on quadratic systems. While bi-impulse response method
and optimization method are used for designing quadratic filters, op-
timization is preferred as it enables application specific design and
development. Once the design is done, computationally efficient im-
plementations are to be done for quadratic systems. Matrix decom-
position methods, preferably, singular value decomposition is used for
approximate implementation of quadratic filters. Three areas of ap-
plications are identified, based on the opportunity of exploiting the
benefits of quadratic signal processing. The details of the research
work in the three areas are discussed in the subsequent chapters.
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Quadratic Filters for
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Foreword to Part II
The work done to design and implement quadratic filters for precise
edge detection as per the scheme of work shown in Fig. 3.1 is detailed
in the chapters from 5 to 6 in part II. Quadratic edge detection
filter, used for the enhancement of noisy fingerprints similar to latent
fingerprints found in crime scenes, is detailed in chapter 5. This filter
has the unique advantage of improved edge crispness and greater noise
invulnerability than conventional edge detectors. Besides, it exhibits
greater preservation of structure even at high noise levels. It is embed-
ded in an unsharp masking scheme to enhance the contrast of latent
fingerprints, deeply lost in background noise.

Enhancement of fundus retinal images, for the exact assessment of the
periphery of microaneurysms due to diabetic retinopathy, is essential
for automated surgery. Three kinds of quadratic filters are designed
and implemented in chapter 6. A two dimensional Teager filter, based
on least square method, is designed and tested as in Sec. 6.4.1. Mini-
mization of mean square error is used as a strategy for designing two
dimensional Teager filter in Sec. 6.4.2. The frequency domain charac-
teristics of the two are understood and compared. Further, a general
quadratic filter is designed based on Powell optimization as given in
Sec. 6.4.3. The performance of the three filters are compared among
themselves and with conventional nonlinear edge detection filters.
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5.1 Introduction

As crime rate increases steadily, fingerprint enhancement and con-
sequent identification always remain a key area of research. Fin-
gerprint is the impression left on a surface by the friction caused
by the ridges on a finger or any part of hand and is a unique bio-
metric identifier. The print is composed of dark ridges and light
valleys[Maltoni et al. 2003],[Scheibert and Debregeas 2009]. Identifi-
cation of fingerprints is a key process in access control and in foren-
sic sciences[Arun Ross and Reisman 2003],[Lea and Van 2012]. In the
former case, the fingerprints are less noisy and do not require much
preprocessing[Jain and Prabhakar 1999]. But the prints taken from
crime scenes are blurred and noisy and so require enhancement of
ridges to ease identification. The ridges in fingerprints carry signifi-
cant amount of bio-metric information and they can be enhanced by
improving the edge features of the image. Edges in images are formed
by discontinuities in spatial, geometrical or photo-metric properties of
objects[Pratt 2001]. Although edges are composed of high frequency
components, simple high pass filtering does not suffice in detecting
and improving edges as it blurs the image. Segmentation of im-
ages are done based on texture[Ilea and Whelan 2011],[Hou and Wei
2002],[Shifeng Lia and Zhang 2012] and mathematical morphology. Gen-
erally, edges are detected by the computation of the derivative of the
image[Vizireanu and Udrea 2009],[Vizireanu and Udrea 2007]. This
computation is very noise sensitive as noise appears as false edges
in an image. So the chief performance criterion of an edge detector
becomes the invulnerability to noise. The spatial gradient based edge
detectors [Pratt 2001],[Jain 2003] conventionally employed are

1. Laplace filter

2. Sobel filter
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3. Laplacian of Gaussian(LoG)

4. Canny filter

Although Sobel filter has the advantage in speed, it suffers from the
lack of edge resolution. The Laplace filter and Canny filter have rea-
sonably good edge resolution but are highly susceptible to noise. LoG
filter had good resolution of edges as well as moderate noise invulner-
ability. But even the LoG does not suffice to enhance edges in images
mixed with noise. Under such conditions, polynomial filters perform
better in detecting edges[Mitra and Sicuranza 2001] with high enough
resolution. Images are formed by nonlinear processes and human vi-
sion is inherently nonlinear. So employing polynomial methods for
image processing and analysis becomes a natural alternative. Much
of the nonlinearities can be modeled by the quadratic term alone and
hence the motivation for the design and implementation of quadratic
filters. The present work proposes a quadratic filter based on Volterra
series for enhancing noisy fingerprints. Although the idea of mod-
eling nonlinearities by power series was proposed a century back by
Vito Volterra, the practical realizations and applications were ham-
pered by the large computational complexity. Recently, with increase
in computational resources, interest is renewed in developing Volterra
systems for signal and image processing with consequent enhancement
of features that is otherwise not achievable with linear filters.

5.2 Methodology

Enhancement of noisy fingerprints is made possible with unsharp mask-
ing scheme in which a scaled version of the edges separated from the
fingerprints is added with the noisy prints. The scheme, as given in
section 5.3, is proposed for enhancing fingerprint in noisy background.
It relies on a quadratic edge detection filter. The flow of work is as
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depicted in Fig. 5.1. The first phase of work is in designing the edge
detection kernel H2. The design is based on the minimization of mean
square error between a synthetic true edge and its noisy version. The
second phase is the computationally efficient implementation of H2

based on singular value decomposition. These phases are discussed in
Section 5.4. In the last phase, testing of the filter is done with stan-
dard images corrupted by impulsive and Gaussian noise of different
variances and the model is validated in terms of edge preservation in
presence of noise. The unsharp masking scheme based on quadratic
filter is applied on noisy fingerprints and the performance is compared
with schemes employing Gabor, Laplace, Sobel, Canny and LoG fil-
ters in terms of the average signal to noise ratio, peak signal to noise
ratio and the visibility of ridges. The experiments are detailed in
Section 5.5. The results of various experiments are shown in Sec. 5.6.

Design

of H2

SVD imple-
mentation of
H2 as H̃2

Testing

of H̃2

Inclusion of

H̃2 in unsharp
masking

Application
to

fingerprints

Performance
testing

Fig. 5.1. Unsharp masking with quadratic filter

5.3 Quadratic Unsharp Masking

Unsharp masking is a contrast enhancement scheme[Mitra and Sicuranza
2001] in which a high pass filtered and scaled version of an image is
added with itself. The high pass filter enhances the edges and the ad-
dition of edges improves the overall contrast of the image. The chief
difficulty with this scheme is that the edge detection high pass filters
commonly employed are very sensitive to noise since it appears as false
edges. It is observed that quadratic edge detectors are very noise im-
mune and have better edge detection characteristics than Laplacian
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and LoG filters. The unsharp masking scheme with quadratic edge
detection filter is in Fig. 5.2. The edges in the input image x[n1, n2]
are separated by the quadratic filter. They are then scaled by a factor
Λ and are added with the input image to yield the enhanced ver-
sion x̃[n1, n2]. The scale factor Λ is chosen in such a way that there
is improvement in x̃[n1, n2] in respect of visual quality as well as in
performance criteria like SNR, PSNR, edge crispness etc.

Λ

x[n1, n2] x̃[n1, n2]

Quadratic
Edge Filter

Fig. 5.2. Unsharp masking with quadratic filter

5.4 Design of Quadratic Edge Detector

It is proposed that a quadratic filter can enhance the edges bet-
ter than Laplacian or LoG filter. The principal issue in employ-
ing a quadratic filter is the identification of its kernel H2. Powell
optimization[Fletcher and Powell 1963] is used for obtaining H2 as this
algorithm has a fast rate of convergence. A synthetic edge with com-
pressed gray scale values added with noise denoted as x[n1, n2] of 9×9
dimension is simulated. A desired sharp synthetic edge yd[n1, n2] of
identical dimension is also simulated. The output of the quadratic
filter is y[n1, n2] = XT [n1, n2]H2X[n1, n2]. Let the expected value of
squared error between yd[n1, n2] and y[n1, n2] is denoted as ξ.

ξ = E[|yd[n1, n2]− XT [n1, n2]H2X[n1, n2]|2] (5.1)
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ξ is minimized to yield an optimum H2, as plotted in Fig. 5.3.
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Fig. 5.3. Surface plot of the quadratic kernel

The kernel H2 is not completely isotropic. It becomes zero at the co-
ordinates (i, N − i) for 1 ≤ i ≤ N − 1, creating a wedge like minimum
parallel to the main diagonal. There are local minima parallel to this.
The H2 surface has high pass filter characteristics, making it suitable
for edge detection. Once H2 is computed, it is required to implement
it as a computationally simple structure. The direct implementation
as in Eq. 2.13 results in large computational complexity. Instead,
singular value decomposition[Gantmacher 1960] is performed on the
kernel matrix H2 to yield an approximation H̃2 as

H̃2 =

ρ
∑

i=1

λiSiSi
T (5.2)

The singular values and singular vectors of H2 are tabulated in Ta-
ble 5.1. The parameter λi are the singular values and each Si is a 9×1
eigen vector. The value of ρ is selected in such a manner that the
Frobenius norm ||H2 − H̃2|| is minimum. Each Si is re-sized as a 3× 3
FIR image filter that is equivalent to H(i, j) in Eq. 2.16. The outputs
of FIR filters are squared and a weighted sum with λi values yields
the filter output. The structure of the filter is as in Fig. 5.4.
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Table 5.1: Table of singular values and singular vectors of H2

λi S1 S2 S3 S4

3.2783 -0.3333 -0.3333 -0.3333 -0.3333

2.9284 -0.0570 0.4337 -0.3768 -0.0570

2.9284 0.4680 -0.1846 -0.2833 0.4680

2.8494 -0.0388 0.2723 0.4559 0.4262

2.8494 -0.4698 -0.3848 -0.1199 0.2013

2.8467 0.0998 -0.2513 0.3726 -0.4489

2.8467 -0.4607 0.3988 -0.2888 0.1440

2.7422 0.4690 0.0344 -0.4570 -0.1931

2.7422 -0.0478 -0.4702 -0.1155 0.4300

S5 S6 S7 S8 S9

-0.3333 -0.3333 -0.3333 -0.3333 -0.3333

0.4337 -0.3768 -0.0570 0.4337 -0.3768

-0.1846 -0.2833 0.4680 -0.1846 -0.2833

0.1971 -0.1243 -0.3875 -0.4694 -0.3317

0.4282 0.4547 0.2685 -0.0434 -0.3350

0.4711 -0.4364 0.3491 -0.2197 0.0638

0.0182 -0.1783 0.3168 -0.4171 0.4671

0.3900 0.3286 -0.2759 -0.4244 0.1285

0.2649 -0.3381 -0.3823 0.2053 0.4536
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Fig. 5.4. Realization of H2 by singular value decomposition

5.5 Design of Experiment

The filter kernel H̃2 designed in the last section is simulated in Python
with the help of scipy and pylab modules. In the first phase, H̃2 is
tested for visual performance and quantitative parameters with the
help of known image edges that are corrupted by impulsive and Gaus-
sian noise of known variances. The filter is then included in the
unsharp masking scheme and fingerprints are filtered. Two sets of
fingerprints are used in the experiment. One set came from a finger-
print reader of 356 × 328 resolution. The second set is collected by
a 12 megapixel digital camera. The prints are taken under noisy and
poorly illuminated conditions. They are imported into Python using
the image processing module and are subjected to unsharp masking.
The filtered images are compared with those processed by unsharp
masking based on edge detectors like Laplacian, Laplacian of Gaus-
sian(LoG), Canny, Gabor and Sobel filters in terms of visual quality.
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Fig. 5.5. Testing of unsharp masking

In the second phase of experiment, the performance of the unsharp
masking scheme with quadratic filter is determined as in Fig. 5.5.
Hundred fingerprints, each with dimension 356×328 pixels, corrupted
by impulsive/Gaussian noise of known variance are applied to Sobel,
LoG, Canny and quadratic filters and the outputs are compared. The
improvement in signal to noise ratio is computed. The structural sim-
ilarity index(SSIM) and sharpness of ridges are computed for all the
hundred images for different additive noise variances and the average
values of the parameters are computed. This is done to ensure the
statistical soundness of the values of performance parameters.

In the final phase of experiment, the time of computation for various
filters for input images of different dimensions are ascertained and
compared. The results and analysis of the experiments are in Sec. 5.6.

5.6 Results and Analysis

The filtering experiments conducted on noisy fingerprints with the
quadratic filter yielded enhanced outputs that are visually better than
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the ones yielded by unsharp masking with Laplacian, Sobel, Canny or
LoG filters. Testing with impulsive noise gave rise to the results in
Fig. 5.6. The input fingerprint corrupted by impulsive noise of vari-
ance 50 is shown in Fig. 5.6(a). Fig. 5.6(b) shows the result of un-
sharp masking based on Gabor filter. Although Gabor filter performs
well in noiseless cases, it does not enhance noisy ridges. The scheme
with Canny detector offered more enhancement in contrast but yielded
broken ridges, especially in areas where the ridges are lost in noise as
shown in Fig. 5.6(c). LoG filter yields continuous ridges but with lim-
ited enhancement as shown in Fig. 5.6(d). The gradient based Lapla-
cian filter is very noise prone and the corresponding unsharp masking
scheme yields no output as in Fig. 5.6(e). The output of unsharp
masking using singular value decomposition based quadratic filter is
as in Fig. 5.6(f). Quadratic filter gives out enhanced ridges even at an
impulsive noise variance of 200, a noise level at which other filters do
not distinguish the ridges. Fingerprints corrupted by Gaussian noise
of variance 30 as in Fig. 5.7(a) is subjected to unsharp masking based
on various filters. Unsharp masking using Gabor and Laplacian filters
do not result in any enhancement as both the filters are susceptible
to noise. LoG performs as shown in Fig. 5.7(b). Its abilty to enhance
ridges is decreased with Gaussian noise even at lower variance than
impulsive noise. The result of scheme based on Canny edge detector
is shown in Fig. 5.7(c). Singular value decomposition based quadratic
filter gives a visually enhanced output as in Fig. 5.7(d). It is impera-
tive to quantify the visual quality of the outputs of unsharp masking
based on various edge detection filters in terms of signal to noise ratio,
sharpness of ridges, structural similarity index [Wang and Simoncelli
2004] and computational complexity. The first parameter is a mea-
sure of the noise invulnerability of the filter and the second parameter
quantifies the crispness of the ridges. SSIM quantifies the degree of
preservation of the overall structure of the fingerprint. The time of
computation is indicative of the complexity of implementation.
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Fig. 5.6. Outputs for impulsive noise variance 50
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Fig. 5.7. Outputs of filters with Gaussian noise variance 30

5.6.1 Improvement in Signal to Noise Ratio and
Peak Signal to Noise Ratio

The improvement in SNR and peak SNR are computed as per the
experimental setup in Fig. 5.5. The SNR is expressed in dB as

SNR = 10 log10

[

∑

n1

∑

n2

r2[n1,n2]

∑

n1

∑

n2

[r2[n1,n2]
− t2[n1,n2]

]

]

(5.3)
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The peak value of the SNR is expressed as

PSNR = 10 log10

[

max (r2[n1,n2]
)

1
N1N2

∑

n1

∑

n2

[r2[n1,n2]
− t2[n1,n2]

]

]

(5.4)

where r denotes the reference image and t denotes the test image.
N1N2 is the size of the image. The improvement in signal to noise ra-
tio and in PSNR are tabulated in Table 5.2 when the input fingerprint
is corrupted by impulsive noise. The values indicate that unsharp
masking with quadratic filter performs best with impulsive noise.

Table 5.2: Improvement in SNR for various filters under impulsive noise

Filter SNR(dB) PSNR(dB)

Quadratic 20.13 21.89

LoG 16.16 18.59

Canny 13.45 15.36

Laplacian 10.77 11.20

Sobel 7.79 10.22

It has a ≈ 4dB advantage in signal to noise ratio compared to LoG
filter. Table 5.3 shows the SNR improvement with Gaussian noise.
The performance degrades for smaller noise variances but quadratic
filter offers ≈ 2dB improvement in SNR compared with LoG filter.

5.6.2 Sharpness of Ridges

The sharpness of ridges in the enhanced fingerprint is decided by the
noise invulnerability of the edge detection filter. A numerical figure of
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Table 5.3: Improvement in SNR for various filters under Gaussian noise

Filter SNR(dB) PSNR(dB)

Quadratic 21.1 22.04

LoG 18.92 19.86

Laplacian 11.63 12.58

Sobel 10.56 13.50

Canny 9.33 12.10

merit of the edge detector[Thurnhofer and Mitra 1996] is given as

κ =
1

N1N2

∑

n1

∑

n2

|σ2
l[n1,n2]test

− σ2
l[n1,n2]ref

|
σ2
l[n1,n2]ref

µl[n1,n2]ref

(5.5)

σ2
l[n1,n2]test

is the localized variance (here a 3× 3 pixel window is used

to match the size of the filter mask) of the test image and σ2
l[n1,n2]ref

is that of the reference image. The localized mean of the reference
image is µl[n1,n2]ref . For estimating the sharpness of ridges, hundred
test images are formed by adding impulsive noise of variance ranging
from 200 to 300 in steps of 5 to the fingerprint. These input images
are then normalized and applied to unsharp masking based on Lapla-
cian, LoG, Sobel, Canny and quadratic filters. The normalized, noisy
input image is taken as the reference image and the normalized out-
puts of various filters are taken as test images. The variances and
mean values are computed over a 3× 3 pixel mask and summation is
done all over the area of image. The hundred values each computed
for 20 noise variance values are averaged and plotted as in Fig. 5.8. It
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is seen that the parameter is the lowest for quadratic filter and it re-
mains fairly constant as noise variance increases. This is indicative of
the noise invulnerability and preservation of ridges of quadratic filter.
LoG filter has a higher value and shows fluctuations as noise variance
increases. Canny filter has a poorer value for κ. Laplacian and Gabor
perform worse than Canny. The plots in Fig. 5.8 is consistent with
the claim on visual quality based on Fig. 5.6. The entire procedure is
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Gaussian noise

repeated for Gaussian noise of variance ranging from 20 to 120 in steps
of 5. The average sharpness of ridges for 100 fingerprints is plotted as
in Fig. 5.9. The mean value of κ is higher than that with impulsive
noise, indicating the degradation of performance in presence of Gaus-
sian noise. The parameter is the smallest for quadratic filters. LoG
filter performs better than Laplacian, Canny and Gabor filters.

The parameter κ should be zero when no noise is present and it in-
creases monotonically as the degradation of edges by noise increases.
Table 5.4 summarizes the values of the sharpness of ridges (κ) for the
same levels of impulsive and Gaussian noise. The parameter is the
lowest for unsharp masking with quadratic filter, indicating its noise
invulnerability and the sharpness rendered to fingerprint ridges.
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Table 5.4: Sharpness of ridges for various filters

Impulsive Gaussian

Filter κ κ

Quadratic 0.1432 1.3547

LoG 0.1962 2.5951

Sobel 0.2990 3.1510

Canny 0.2908 6.9900

Laplacian 0.4574 5.7358

5.6.3 Structural Similarity Index(SSIM)

A common measure that is used to quantify the quality of an image
is the mean square error[Eskicioglu and Fisher 1995], [Girod 1993],
[Pappas and Safranek 2000],[Xu and Hauske 1994] which has many
demerits. To overcome these demerits, Zhou Wang, et.al. proposed
the structural similarity index (SSIM) to quantify the “ visual qual-
ity”of the image[Wang and Simoncelli 2004],[Wang and Bovik 2002].
The similarity index between the images x and y is given as

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(2µ2
x + 2µ2

y + C1)(2σ2
x + 2σ2

y + C2)
(5.6)

The parameters µx and µy are the means and σ2
x and σ2

y are the vari-
ances of x and y respectively. σ2

xy is the co-variance between x and y.
C1 and C2 are non-zero constants included to avoid unstable results
when σ2

x + σ2
y or µ2

x + µ2
y is very close to zero. When the images x and

y are identical, the structural similarity index is unity and degrades



86 CHAPTER 5. QUADRATIC FILTER FOR FINGERPRINTS

when the structural differences between x and y increases.

In the current experiment, structural similarity index is used to ascer-
tain the improvement in the quality of fingerprints on unsharp masking
using various edge detection filters. As shown in the experimental set
up in Fig. 5.5, impulsive noise of variance ranging from 30 to 100 are
added with hundred test fingerprints (x) and the unsharp masked out-
puts (y) using various edge detection filters are obtained. The SSIM
between x and y are computed with C1 = C2 and plotted for different
noise variance levels. The resulting plot is as shown in Fig. 5.10.
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Fig. 5.11. SSIM for Gaussian noise

The expected values of SSIM are given in Table 5.5. Structural sim-
ilarity index, indicative of the ability to enhance the fingerprints and
the invulnerability to noise, is the largest for unsharp masking using
quadratic filter. Its numerical value is approximately at 0.98. LoG
filter has the next best value of SSIM with the numerical value ap-
proximately at 0.96. Also, SSIM for both quadratic and LoG remain
constant as noise variance increases. Canny filter has an index approx-
imately 0.3 below LoG and it increases as noise variance increases.
SSIM for Gabor filter is still below that of Canny. The SSIM for
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Laplacian is far smaller and is not shown on the graph.

Table 5.5: Sructural similarity index of images on unsharp masking using
various edge detection filters for identical noise variances

Filter
Mean SSIM
(Impulsive)

Mean SSIM
(Gaussian)

Quadratic 0.9824 0.9854

LoG 0.9821 0.9695

Canny 0.6660 0.8660

Gabor 0.5968 0.7509

Laplacian 0.0018 0.0012

The computation of SSIM is repeated for hundred fingerprints cor-
rupted by Gaussian noise of variance ranging from 30 to 100 using
various filters and plotted as in Fig. 5.11. The graph shows a clear ad-
vantage in employing a quadratic filter. The SSIM ranges from 0.99 to
0.98 as Gaussian noise power varies from 30 to 100. Its mean SSIM is
≈ 0.16 above that of LoG and it falls as the noise power increases. The
SSIM for Canny filter is approximately 0.85 and is consistently above
Laplacian and Gabor but below quadratic and LoG filters. Laplacian
and Gabor filters perform equally bad in maintaining the structure of
the image corrupted by Gaussian noise. The relatively high structural
similarity index arising from quadratic filtering as given in Table 5.5
and the plots in Fig. 5.10 and Fig. 5.11 are consistent with the en-
hanced visual quality of latent fingerprints in Fig. 5.6 and Fig. 5.7.
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Computational Complexity

One major challenge in working with quadratic filter is the complex-
ity arising from the computation of Kronecker products when a direct
implementation is used. This difficulty is circumvented when approx-
imate realization of the quadratic kernel, based on singular value de-
composition, is employed. Now, only the principal components of H2

take part in the computation, resulting in significant reduction of com-
plexity. Even with singular value decomposition, it is imperative to
ascertain and compare the complexity of the filter with other edge
detection filters. This comparison is accomplished by estimating the
time taken for filtering in every case on identical images and identical
computing platforms. A random N×N image is subjected to unsharp
masking based on various filters discussed and the times of computa-
tion are found for different values of N and are listed in Table 5.6.
Canny filter is the slowest in extracting edges. It takes nearly 351
seconds to filter a 512× 512 latent fingerprint image. The complexity
increases linearly with the size of the image as indicated in Fig. 5.12.

20

60

100

140

180

30 40 50 60 70 80 90 100

N

T
im

e
of

co
m
p
u
ta
ti
on

b

b

b

b

b

b

b
b

b
b

b
b

b

b
b

Fig. 5.12. Computational complex-
ity for Canny filter

b b LoG

b b Laplacian

b b Gabor

b b Quadratic

b b Sobel

0

0.5

1.0

1.5

2.0

2.5

0 100 200 300 400 500 600

N

T
im

e
of

co
m
p
u
ta
ti
on

b b b b b b b b b b b b b b b b b b
b b b b b b

b b
b b

b

b b b b b b b b b
b b

b
b
b
b
b
b
b
b
b
b
b
b
b

b
b

b
b

b

b b b b b b b b b b b b b b b b b b

b
b
b b b b b

b
b b

b

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b b
b b b b b b

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b

Fig. 5.13. Computational complex-
ity for various filters

The time of computation for Laplacian, LoG, quadratic and Sobel are
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as in Fig. 5.13. LoG filter is the second slowest, followed by Laplacian
filter and Gabor filter respectively. Complexity of LoG and Laplacian
follow almost a square law relationship with size of the image(N) but
that of Gabor filter increases at a smaller rate with N . It is observed
that the time of computation for quadratic filter is consistently lower
than LoG, Laplacian and Gabor filters. It takes 0.5932 seconds to
filter a 512 × 512 latent fingerprint image. The main disadvantage
of quadratic filters viz. the computational complexity is overcome
by the singular value decomposition based implementation. It has
roughly half the computations compared to Laplacian or LoG filters.
Although Sobel filter is the fastest it failed to enhance the fingerprints.

Table 5.6: Time of computation in seconds for various image filters

Image size
(Pixels)

Laplacian LoG Canny Gabor
Quadratic
(SVD)

356× 328 0.5615 0.70 289 0.2753 0.2555

512× 512 1.368 1.688 351 0.6369 0.5932

Singular value decomposition based implementation of quadratic filter
exhibits greater SNR and PSNR compared to other edge detectors
and offers sharper fingerprint ridges. The largest structural similarity
index between the uncorrupted fingerprint and the filtered version
together with the small computation time required make quadratic
filter a unique choice in the unsharp masking of latent fingerprints.

5.7 Inferences and Conclusion

A simple unsharp masking scheme employing a quadratic Volterra
edge detection filter is used to enhance noisy fingerprints similar to
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latent prints in crime scenes. The kernel of quadratic filter H2 is de-
signed by Powell method of unconstrained optimization. As the direct
implementation of H2 is computationally challenging, singular value
decomposition is performed on H2 to yield a multichannel implemen-
tation that performs fast filtering. The salient feature of the unsharp
masking is the noise invulnerability of edge detector. Most edge de-
tectors based on spatial gradient perform poorly in presence of noise.
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Fig. 5.14. Input fingerprints corrupted by impulsive noise(row 1) Outputs
of LoG filter(row 2) Outputs of quadratic filter(row 3)
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The quadratic filter is found to have better edge detection properties
even under extremely noisy conditions. The average signal to noise
ratio by unsharp masking with SVD based quadratic filter is approxi-
mately 2 to 4 dB above that with conventional filters with nearly half
the time of processing. It also preserves the structural similarity and
the sharpness of ridges better than conventional nonlinear filters.
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Fig. 5.15. Input fingerprints corrupted by impulsive noise(row 1) Outputs
of LoG filter(row 2) Outputs of quadratic filter(row 3)

A comparison between the outputs of unsharp masking, based on
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quadratic and LoG filters, that are driven by fingerprints corrupted
by impulsive noise of variance 200 is as shown in Fig. 5.14. The ridges
are enhanced by the quadratic filter much better than that rendered
by unsharp masking by LoG and other filters. Fig. 5.15 shows the
comparison between the outputs of unsharp masking by quadratic
and LoG filters driven by fingerprints corrupted by Gaussian noise of
variance 150. The scheme based on quadratic filter has remarkable
advantage in terms of enhancement compared to those based on LoG
and other filters. It is thus concluded that the proposed quadratic fil-
ter based unsharp masking scheme is well suited for enhancing latent
fingerprints from crime scenes and can outperform conventional filters.
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6.1 Introduction

Retina is the light sensitive tissue in the inner surface of the eye that
serves as the screen to capture the image. Diabetic retinopathy is an
eye disease as a result of vascular changes in the retina which, if left
untreated, can lead to permanent loss of vision. This medical condition
is caused by both Type 1 and Type 2 diabetes. The increased glucose
and protein levels due to diabetes cause deposits and, consequently,
swelling in the blood vessels in retina. Various stages in the progress
of diabetic retinopathy fall into four groups as

• Mild nonproliferative retinopathy

• Moderate nonproliferative retinopathy

• Severe nonproliferative retinopathy

• Proliferative retinopathy

Mild Nonproliferative Retinopathy It is a primitive stage in
which small swellings called microaneurysms occur in the blood vessels
in the retina. These appear as dots marked in Fig. 6.1(a).

Moderate Nonproliferative Retinopathy is a stage when some
blood vessels are blocked. This is shown as in Fig. 6.1(b).

Severe Nonproliferative Retinopathy At this stage, more blood
vessels are blocked, depriving of Oxygen in several areas of retina.
These areas signal the body to grow more blood vessels in the retina.
This results in greater swelling and further block in vessels. This stage
of severe nonproliferative retinopathy is as shown in Fig. 6.1(c).
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Proliferative Retinopathy is an advanced stage where the signals
sent by the retina for nourishment initiate the growth of new blood
vessels as indicated in Fig. 6.1(d). The abnormal blood vessels are
fragile and can leak blood, causing permanent damage to the retina.

(a) Microaneurysms (b) Moderate nonproliferative
retinopathy

(c) Severe nonproliferative retinopa-
thy

(d) Proliferative retinopathy

Fig. 6.1. Various stages in diabetic retinopathy

Diabetic retinopathy does not have any early warning signs or pain.
As some symptoms are mistaken for other eye diseases, detection and
early treatment are difficult, risking permanent damage to the retina
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and loss of vision. Even the rapidly progressing macular edema, the
condition in which the circular region at the center of the eye called
macula is swelled is not easily detected as its main symptom viz.
blurred vision is usually attributed to other eye ailments. Since the
loss of vision due to diabetic retinopathy is permanent, it is imperative
that early detection using fundoscopic methods and laser treatment
should be done. And it becomes necessary to determine the periphery
of microaneurysms exactly in fundoscopic images. The conventional
Laplacian filtering or its modifications viz. Laplacian of Gaussian fil-
tering yield blurred edges. Moreover, they are very susceptible to
noise as noise appears as false edges in an image. Also it is observed
that images contain polynomial nonlinearities, which are usually not
accounted for in conventional edge detection filtering methods. So a
polynomial based filtering method which can yield enhanced edges,
while being invulnerable to noise, is needed. The work consists of the
design and implementation of discrete Volterra series based quadratic
filter for better edge detection, especially under noisy conditions.

6.2 Previous Work

Diabetic retinopathy, being a common diabetic complication leading
to permanent blindness, there is research in digitizing and analyz-
ing fundus images[Sleightholme et al. 1994]. Automatic detection of
microaneurysms in fluorescein angiograms due to diabetic retinopa-
thy has been reported [Spencer et al. 1991],[Øien 1995]. Screening
and classification of diabetic retinopathy, based on Bayes method, has
been done [Ege et al. 2000]. Neural network methods were applied
in the automatic detection[Gardner and Elliot 1996]. Segmentation of
retinal fundus images was proposed for the measurement of diabetic
retinopathy lesions [Köse et al. 2011] [Mendonca and Nunes 1999].



6.3. METHODOLOGY 97

The theory of Volterra functionals was developed by Vito Volterra to
model nonlinear systems as parallel combinations of linear and polyno-
mial systems of increasing order in the year 1887[Mathews and Sicuranza
2000]. Weiner applied Volterra series to Brownian motion to develop
analytic functionals. Later the theory was applied to understand the
effect of noise in a nonlinear radar receiver[Wiener 1942]. Volterra
series was used in discrete system analysis by Alper[Alper 1963]. Re-
cently, there is renewed interest in the design and implementation of
polynomial systems, with the help of modern hardware and added
computational resources. Unlike in linear system theory, there are
no general methods to determine the Volterra kernels. Many meth-
ods were proposed for ascertaining the filter kernels,[Koh and Powers
1985],[Nowak and Veen 1994] especially the quadratic one.

Generation of images is by nonlinear processes and the human vi-
sual system is inherently nonlinear. These inherent nonlinearities
in images are modeled with polynomial systems and many classes
of quadratic filters were developed for edge preserving noise smooth-
ing, edge extraction, texture determination, image interpolation etc.
Quadratic filter was employed for edge detection [Ramponi 1986]. Tea-
ger filter was proposed as an energy detection operator[Kaiser 1990].
Edges are but spatial localization of energy in the image and Tea-
ger algorithm is employed in edge detection. Least squares method
of designing class II filter, based on Teager algorithm, was proposed
[Thurnhofer and Mitra 1996], the method that is relied on in Sec. 6.4.1.

6.3 Methodology

Type-II filters are proposed for minute edge detection that can detect
the periphery of small microaneurysms due to diabetic retinopathy.
Such precise detection can facilitate robotic surgery without loss of
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unaffected cells. Three polynomial filters based on Volterra series are
developed for this task. The work is broadly divided into three stages,
viz.

• Design

• Implementation

• Testing

6.3.1 Design and Implementation

Two classes of Teager filters and a general quadratic filter are used for
the precise detection of retinal microaneurysms. The flow of work is
as shown in Fig. 6.2.

Design of 2-D
Teager Filter by
least squares

Design of 2-D
Teager Filter by

MMSE method

Design of 2-D
Quadratic Volterra

Filter

Implementation
Direct

Implementation

Fundus retinal
images

Comparison of
various filters

Filtering of

Implementation
Direct

SVD

Fig. 6.2. Scheme of work

In the first stage of work, Teager filter based on least squares is de-
signed and implemented, as elucidated in Sec. 6.4.1. The frequency
response characteristics of this filter is computed and plotted. The
frequency selectivity and edge detection features are also analyzed.
The filter is used to detect the microaneurysms in retinal images. In
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the second phase, the Teager filter is redesigned based on minimum
mean square error criterion and the design validation steps are re-
peated. This phase is as detailed in Sec. 6.4.2. In the third phase, a
general quadratic filter is designed based on Powell’s optimization and
is implemented using SVD method and applied on retinal images, as
detailed in Sec. 6.4.3.

6.3.2 Testing

Once the three filters are found suitable for detecting microaneurysms
of ≈ 25− 100µm dimension[Spencer et al. 1991], the performance pa-
rameters such as noise invulnerability and the computational complex-
ity are to be quantified.

Noise Performance

The performance of edge detection filters based on gradient method de-
teriorates as the level of additive noise increases. Teager and Quadratic
filters are proposed as superior edge detectors with greater noise in-
vulnerability. The claim is quantitatively validated by computing the
signal to noise ratio, for images processed by quadratic and Teager
filters and conventional filters like Laplacian, LoG, Sobel etc.[Pratt
2001]. The noise performance measures for the filters are summarized
in Sec. 6.5.

Computational Complexity

The principal difficulty in working with quadratic filters is the en-
hanced complexity arising from the Kronecker products. Suitable ma-
trix decompositions are applied to circumvent this difficulty. Analysis
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of computational complexity in Teager, quadratic and conventional
filters are carried out for validation of the design.

6.4 Design of 2-D Teager Filters for

Edge Detection

Edges in images are formed by discontinuities in spatial, geometri-
cal or photo-metric properties of objects[Pratt 2001]. Edge detection
and extraction are image processing operations that find application
in unsharp masking, remote sensing, object detection, machine vision,
robotic surgery etc. Although edges are formed by high frequency
components, simple high pass filtering does not suffice in detecting
edges as it blurs the image. Generally, edges are detected by the com-
putation of the derivative of the image. This computation is very noise
sensitive since noise signals appear as false edges in an image. So the
chief performance criterion of an edge detector becomes the invulnera-
bility to noise. While conventional gradient based edge detectors such
as Laplace filter, Sobel filter, Gaussian filter are very susceptible to
noise, polynomial filters are observed to perform better in detecting
edges even in presence of noise, both impulsive and Gaussian. Im-
ages are formed by nonlinear processes and human vision is inherently
nonlinear. So, image processing and analysis by polynomial methods
become a natural alternative. Most of the nonlinear components are
modeled by the quadratic term alone.

Working of type-II Teager filters is based on the algorithm for detec-
tion of localizations of energy in a signal. Such filters are employed
for detection of edges that manifest as localizations of energy. A good
edge detector should maximize (x[n1+1, n2+1]−x[n1−1, n2−1])2 for
an arbitrary pixel x[n1, n2]. Two design strategies are presented for
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Teager filters. First one is based on the method of least squares and
the second method is the minimization of mean square error. These
design steps, the realization of filters and their frequency characteris-
tics are detailed in Sec. 6.4.1 and 6.4.2.

A 2-D Teager filter assumes the general model as

y[n1, n2] = x2[n1, n2]−
∑

k1

∑

k2

φk1,k2x[n1−k1, n2−k2]x[n1+k1, n2+k2]

(6.1)
This filter, when excited by a two dimensional sinusoid x[n1, n2] =
sin[ω0(an1 + bn2)], −1 ≤ a ≤ 1, b =

√
1− a2, yields a constant out-

put for small ω0. The low frequency condition is easily met in images
where possible frequencies are all well below π

2
. The impact of a on

the two dimensional sinusoid are depicted in Fig. 6.3 to Fig. 6.6. The
parameter a controls the orientation of input image x. The higher
the value of a, the more prominent is the effect of its negation. The
filter should be designed in such a manner to work independent of the
orientation of the input sinusoid.

Teager filter shows high pass characteristics and is employed for de-
tecting edges in a noisy image. Design strategy, based on least square
method, is proposed for detecting edges[Thurnhofer and Mitra 1996].
The frequency response of the system described by Eq.(6.1) is

Hk1,k2
2 (ω1, ω2, ω3, ω4) = 1−

∑

k1

∑

k2

φk1,k2 cos(k1ω1+k2ω2−k1ω3−k2ω4)

(6.2)
The quadratic behaviour of the filter results in two frequency com-
ponents corresponding to each spatial dimension and hence four in-
dices in the frequency domain. The ac components in the output
spectrum of the Volterra filter for a sinusoidal excitation x[n1, n2] =



102 CHAPTER 6. DETECTION OF MICROANEURYSMS

sin[ω0(an1 +
√
1− a2n2)] is

Y (ω1, ω2) = Y dc(ω0, a)δ(ω1, ω2) (6.3)

where

Y dc(ω0, a) = π2[H2(ω0a, ω0

√
1− a2,−ω0a,−ω0

√
1− a2) (6.4)

+H2(−ω0a,−ω0

√
1− a2, ω0a, ω0

√
1− a2)]

Fig. 6.3. 2-d sinusoid with ω =
0.45π and a = 0.1

Fig. 6.4. 2-d sinusoid with ω =
0.45π and a = 0.9

Fig. 6.5. 2-d sinusoid with ω =
0.45π and a = −0.1

Fig. 6.6. 2-d sinusoid with ω =
0.45π and a = −0.9
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Though the concept of frequency domain is questionable with poly-
nomial systems, Y dc(ω0, a) is understood roughly as the frequency
response of the filter as it is the frequency domain representation
of the output when the system is driven by a two dimensional si-
nusoid. Its three dimensional representation for ω = [−π,+π] and
for a = [−1,+1] is representative of the frequency selective filtering
characteristic. This feature is utilized in Sec. 6.4.1 and in Sec. 6.4.2.

6.4.1 Design of 2-D Teager Filter based on Least
Squares Method

Method of least squares is used to design a filter of 5× 5 mask, with
−2 ≤ k2 ≤ 2 and 0 ≤ k1 ≤ 2. These ranges provide 15 frequency re-
sponses of which k1 = k2 = 0, being irrelevant DC value, is eliminated.
The frequency responses are pairwise identical for k1 = 0, k2 = ±1 and
for k1 = 0, k2 = ±2 . Eq. 6.4 results in 12 frequency responses after
eliminating the above three cases. The 12 functions are as tabulated
in Table 6.1. These are sampled to obtain 12 vectors in the following
manner. The span of a is divided into 40 windows of width 0.05. The
frequency range from 0 to π

2
is divided into 25 windows of dimension

π
50
. Each frequency window gives rise to 40 values of the frequency re-

sponse for −1 ≤ a ≤ 1. The 25 frequency windows thus yield 25× 40
values for each frequency response. The 12 such vectors each with
1000 values are arranged as a matrix Y

Y = [ y1, y2, · · · , y12 ] (6.5)

The coefficients φk1,k2 , with k1 and k2 as indicated in Table 6.1, are
arranged into another matrix φ as

φ = [φ0,1 φ0,2 · · · φ2,2 ] (6.6)

The design problem is formulated as a matrix equation

d = Yφ̂+ e (6.7)
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Here d is the desired response and e is the error. φ̂ is the estimate of φ
by the method of least squares. There is a well established solution for
this equation[Mix 1995]. The said solution for Eq. (6.6) that minimizes
e is

φ̂ = [YTY]−1YTd (6.8)

Here d is taken as a vector having 1000 samples of ω2. The scaled
and approximated solutions φk1,k2 are shown in the last column of Ta-
ble 6.1.

Table 6.1: Frequency response functions and the filter coefficients

Sl.No. k1 k2 Y dc
k1,k2

(ω0, a) φk1,k2

1 0 1 2π2[1− cos(2ω0b)] 0.0

2 0 2 2π2[1− cos(4ω0b)] -0.3

3 1 -2 2π2[1− cos(2ω0a− 4ω0b)] 0.5

4 1 -1 2π2[1− cos(2ω0a− 2ω0b)] 1.0

5 1 0 2π2[1− cos(2ω0a)] 0.5

6 1 1 2π2[1− cos(2ω0a+ 2ω0b)] -1.0

7 1 2 2π2[1− cos(2ω0a+ 4ω0b)] 0.0

8 2 -2 2π2[1− cos(4ω0a− 4ω0b)] 0.5

9 2 -1 2π2[1− cos(4ω0a− 2ω0b)] 0.3

10 2 0 2π2[1− cos(4ω0a)] 0.0

11 2 1 2π2[1− cos(4ω0a+ 2ω0b)] 0.3

12 2 2 2π2[1− cos(4ω0a+ 4ω0b)] 0.0
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The relation between φk1,k2 and the coefficients of kernel matrix is

h2[k1, k2,−k2,−k2] =















−φk1,k2 ;
n1+|n2|6=0
0≤n1≤∞,

−∞≤n2≤∞

0; n1 ≤ 0,

(6.9)

The filter is realized as

y[n1, n2] = 1.8x2[n1, n2]− x[n1 − 1, n2 + 1]x[n1 + 1, n2 − 1]

+ x[n1 − 1, n2 − 1]x[n1 + 1, n2 + 1]

− 0.5x[n1 − 1, n2 + 2]x[n1 + 1, n2 − 2]

− 0.3x[n1 − 2, n2 + 1]x[n1 + 2, n2 − 1]

− 0.3x[n1 − 2, n2 − 1]x[n1 + 2, n2 + 1]

+ 0.3x[n1, n2 − 2]x[n1, n2 + 2]

− 0.5x[n1 − 1, n2]x[n1 + 1, n2]

− 0.5x[n1 − 2, n2 + 2]x[n1 + 2, n2 − 2]

(6.10)

The isotropy of this filter is understood from the frequency response
function Ydc(ω0, a). Substituting the filter coefficients in Eq. (6.4)

Ydc(ω0, a) = 2π2[1.8− cos(2ω0

√
1− a2 − 2ω0a)

− 0.5 cos(4ω0

√
1− a2 − 2ω0a)

− 0.3 cos (2ω0

√
1− a2 − 4ω0a)

− 0.3 cos (2ω0

√

(1− a2) + 4ω0a)

− 0.5 cos (ω0

√
1− a2 − ω0a)]

(6.11)

This frequency response function is plotted in Fig. 6.7. It is seen that
for ω0 = 0 the filter output is zero irrespective of a, the orientation
of the input image. As ω0 increases from 0 onwards, the response
increases and reaches the maximum value at ω0 = π

4
. Then it starts
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ω0

a

Y dc(ω0, a)

Fig. 6.7. Isotropy plot of Teager filter(LS)

decreasing, indicating high pass characteristics. The filter has the
desirable property of being isotropic up to ω0 = π

4
. From ω0 = π

4

onwards the behaviour is not entirely isotropic. The roll off is not
uniform but the response falls quickly for a = −0.25.

6.4.2 Design of Teager Filter based on Minimum
Mean Square Error

Alternate design strategy is sought to improve the high pass character-
istics of 2-D Teager filter by resorting to minimum mean square error
method. Hence, the coefficients for the Teager filter φk1,k2 in Eq. (6.1)
are to be designed based on the minimization of mean square error
between a desired image and the actual image. In this work, a blunt
synthetic edge x[n1, n2] of 50× 50 dimension and a desired sharp edge
yd[n1, n2] with the same dimension are simulated. The mean square
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error between yd[n1, n2] and y[n1, n2] is

ζ = E[|yd[n1, n2]− yc[n1, n2]|2] (6.12)

Mean square error is minimized using Powell method[Fletcher and Powell
1963] to yield the coefficients as in Table 6.2. This unconstrained opti-
mization is preferred as it offers fast convergence. The filter is realized
as

y[n1, n2] = x2[n1, n2]− 0.5x[n1, n2 − 2]x[n1, n2 + 2]

+ 0.5x[n1 − 1, n2 − 2]x[n1 + 1, n2 + 2]

+ x[n1 − 1, n2 + 1]x[n1 + 1, n2 − 1]

− x[n1 − 1, n2 − 1]x[n1 + 1, n2 + 1]

− 0.25x[n1 − 2, n2 + 2]x[n1 + 2, n2 − 2]

− 0.25x[n1 − 2, n2 + 1]x[n1 + 2, n2 − 1]

− 0.5x[n1 − 2, n2]x[n1 + 2, n2]

− 0.5x[n1 − 2, n2 − 2]x[n1 + 2, n2 + 2]

(6.13)

The frequency response function is

Y dc
(ω0,a)

= 2π2[1− 0.5 cos (4ω0

√
1− a2)

+ 0.5 cos (4ω0

√
1− a2 + 2a)

+ cos (2ω0a− 2ω0

√
1− a2)

− cos (2ω0a+ 2ω0

√
1− a2)

− 0.25 cos(4ω0a− 4ω0

√
1− a2)

− 0.25 cos (4ω0a− 2ω0

√

1− y2)

− 0.5 cos (4ω0a)

− 0.5 cos (4ω0a+ 4ω0

√
1− a2)]

(6.14)

The function is viewed from the top as in Fig. 6.8.
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ω0
a

Y dc(ω0, a)

Fig. 6.8. Isotropy plot of Teager filter(MMSE)

Table 6.2: Filter coefficients by minimization of mean square error

k1 0 0 1 1 1 2 2 2 2

k2 0 -2 -1 2 1 -2 -1 0 2

φk1,k2 1 -0.5 1 0.5 -1 -0.25 -0.25 -0.5 -0.5

The response is not as isotropic as the filter governed by Eq. 6.10.
But the filter has better high pass characteristics especially for small
values of a. The response is zero up to ω0 = π

2
and then it gradually

rises, passing the high frequency components and then falls to zero at
ω0 = π.

6.4.3 Design of Quadratic Edge Filter

The Teager filters in the last sections yield sharp edges, making the
localization of exudates easier than that with linear filters. However
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greater enhancement of edges is possible with a general quadratic fil-
ter governed by the Eq. 2.13. This section presents the realization
of an isotropic quadratic filter based on optimization methods. A
blunt input synthetic edge X[n1, n2] and a desired sharp synthetic
edge Yd[n1, n2] each of 9 × 9 dimension are simulated. The output
of the quadratic filter is Y[n1, n2] = XT [n1, n2]H2X[n1, n2]. Let the
mean square error between Yd[n1, n2] and y[n1, n2] be ξ.

ξ = E[|yd[n1, n2]− XT [n1, n2]H2X[n1, n2]|2] (6.15)

ξ is minimized using Powell method to yield an optimum H2 and is
plotted as in Fig. 6.9. The kernel is both symmetric and isotropic.
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Fig. 6.9. Surface plot of the quadratic kernel

A direct implementation in the form of Eq. 2.13 is not feasible as indi-
cated in Fig. 4.4 in page (56). Instead SVD decomposition [Gantmacher
1960] is performed on H2 to yield an approximation H̃2 as

H̃2 =

ρ
∑

i=1

λiSiSi
T (6.16)

where λi are the eigen values and each Si is a 9× 1 eigen vector. The
singular values and singular vectors of H2 are tabulated in Table 6.3.
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ρ is selected in such a manner that the Frobenius norm ||H2 − H̃2|| is
minimum. Each Si can be re-sized as a 3× 3 FIR image filter that is
equivalent to H(i, j) in Eq. 2.16. The filter structure is as in Fig. 5.4
in page 77. The outputs of FIR filters are squared and a weighted sum
with λi values yields the filter output.

6.5 Results

Teager filters based on least squares method and minimum mean
square error criterion are designed and tested with retinal images. The
filters are capable of enhancing microaneurysms typically of 100µm
size, making the localization easy for laser surgery. The images pro-
cessed by various edge detection filters like Laplacian, LoG, Sobel are
compared with Teager filters in Fig. 6.10. Obviously, Sobel filter shows
the poorest performance in localizing the microaneurysms. The edges
appear blurred and irregularities in the background are also magnified,
making detection very difficult. Laplacian gives a better outline of mi-
croaneurysms as in Fig. 6.10(b). Here microaneyurisms are contrasted
from the background but the edges are still not sharp enough. Lapla-
cian of Gaussian (LoG) filter has better edge detection feature than
Laplacian as in Fig. 6.10(d) and has better noise performance. Teager
filters are observed to perform better than linear filters. Fig. 6.10(e)
shows the output of Teager filter by least squares given by Eq. 6.10.
The edge detection characteristics of Teager filter by the method of
least squares is superior to that of LoG filter. The edges are easily
contrasted from the background. Fig. 6.7 shows that the high pass
characteristics are slightly dependent on the orientation of the input
image. The Teager filter by MMSE criterion contrasts the edges of
microaneurysms from the background. Fig. 6.8 shows that, though
orientation dependent, filter by MMSE has a better high pass charac-
teristics from ω = π

2
to ω = π. Fig. 6.10(f) shows the output of this
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Table 6.3: Table of singular values and singular vectors of H2

λi S1 S2 S3 S4

4.2698 0.4714 0.0000 -0.4714 0.0000

4.2698 -0.2357 0.4082 -0.3611 0.3030

4.1421 -0.2357 -0.4082 -0.0819 0.4642

4.1421 0.4714 0.0000 0.2357 0.4083

4.0016 -0.2357 0.4082 0.4430 0.1612

4.0016 -0.2357 -0.4082 0.4430 -0.1612

3.9921 0.4714 0.0000 0.2357 -0.4083

3.9921 -0.2357 0.4082 -0.0819 -0.4642

0.7054 -0.2357 -0.4082 -0.3611 -0.3030

S5 S6 S7 S8 S9

0.0000 -0.4714 0.0000 0.4714 -0.3333

0.1612 0.4430 0.4642 0.0819 -0.3333

-0.3030 -0.3611 0.1612 -0.4430 -0.3333

0.4083 0.2357 -0.4083 -0.2357 -0.3333

-0.4642 -0.0819 -0.3030 0.3611 -0.3333

0.4642 -0.0818 0.3030 0.3611 -0.3333

-0.4083 0.2357 0.4083 -0.2357 -0.3333

0.3030 -0.3611 -0.1612 -0.4430 -0.3333

-0.1612 0.4430 -0.4642 0.0819 -0.3333
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filter. Here not only the edges are sharper and easy localization is pos-
sible, but the contrast with the background is greater than provided
by Teager filter by least squares.

The general quadratic filter, designed by optimization and imple-
mented by singular value decomposition as in Fig. 4.8, extracts edges
better than Teager filters. The image processed by the quadratic filter
is as in Fig. 6.11. The filter detects edges irrespective of the orien-
tation of input image, since its kernel is symmetric and isotopic, as
indicated in Fig. 6.9. This feature results in the enhancement of the
periphery of small microaneurysms in the output image.

6.5.1 Noise Performance of Edge Filters

Additive noise introduces false edges in images and most conventional
filters respond to these false edges as well. While conventional edge
detection filters like Laplacian, LoG filters cannot distinguish these
false edges, quadratic filter is very insensitive to false edges due to
noise. The noise performance of quadratic and Teager filters is tested
by the experimental set up in Fig. 6.14.

Input MRI

Noise
of variance σ2

N

Comparison
of SNR, PSNR ,

Reference
image

Quadratic/
Teager(LS)/

Frame RMSE and
MAE

/LoG
Teager(MMSE)

Filters

Fig. 6.14. Experimental setup for measuring signal to noise ratio

The filters developed are tested with retinal images corrupted by Gaus-
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(d) LoG filter
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(f) Teager filter(MMSE)

Fig. 6.10. Outputs of Teager filters, Laplacian, LoG and Sobel filters
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(a) microaneurysms in the input
image
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(b) Output of quadratic filter

Fig. 6.11. Input microaneurysms and enhancement by quadratic filter

sian and impulsive noises. Gaussian noise of variances 5 and 20 are
added with the image of microaneurysms and are passed through var-
ious filters. The results are in Fig. 6.12 and Fig. 6.13.

Laplacian filter is very noise prone while LoG is more invulnerable.
Teager filter by minimization of mean square error is more robust
than the one by least squares. Quadratic filter undoubtedly has the
best invulnerability towards impulsive noise. Its outptut is noise in-
sensitive even when the Gaussian noise variance σ2

N becomes 20 and
both Teager filters yield noisy outputs.

Noise in image processing is rarely Gaussian but impulsive in nature.
The filters are tested with retinal images corrupted by impulsive noise.
Fig. 6.15 shows the visual output of various filters. Laplacian and LoG
yield noisy outputs while the Teager and quadratic perform better.
Teager filter by MMSE gives out sharper edges than the one by least
squares. Quadratic filter also gives out noise free edges.
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(a) Input image with Gaus-
sian noise
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(b) Laplacian filter
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(c) LoG filter
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(d) Teager filter(LS)
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(e) Teager filter(MMSE)
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(f) quadratic filter

Fig. 6.12. Various filter outputs for images corrupted by Gaussian noise
of variance σ2

N = 5
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(a) Input image with Gaus-
sian noise
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(b) Laplacian filter
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(c) LoG filter
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(d) Teager filter(LS)
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(e) Teager filter(MMSE)
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(f) quadratic filter

Fig. 6.13. Various filter outputs for images corrupted by Gaussian noise
of variance σ2

N = 20
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The performance of the filters in presence of noise can be quantita-
tively understood by adding impulsive and Gaussian noise of variance
20 to the fundus image, passing them through filters and compar-
ing the outputs with the outputs for noiseless image inputs. The
various quality factors like signal to noise ratio(SNR), peak signal to
noise ratio(PSNR), root mean square error(RMSE), mean absolute er-
ror(MAE) are listed in Table 6.4.

Table 6.4: Quality factors of various filters in presence of noise

Noise Filter
SNR
(dB)

PSNR
(dB)

RMSE MAE

Laplacian 20.49 24.89 14.52 8.23

LoG 25.23 29.66 8.38 4.64

Gaussian Teager(LS) 30.16 34.65 4.72 2.35

Teager(MMSE) 30.65 35.14 4.46 1.93

Quadratic 25.20 29.94 8.11 4.42

Laplacian 26.14 30.53 7.58 4.26

LoG 34.20 38.63 2.99 1.64

Impulsive Teager(LS) 36.15 40.84 2.31 1.35

Teager(MMSE) 32.30 36.79 3.69 2.34

Quadratic 35.97 40.71 2.35 1.27

With Gaussian noise, the SNR and the PSNR of quadratic and LoG
filter are comparable and are ≈ 5dB higher than those of Lapla-
cian filter. Teager filters have SNR and PSNR ≈ 5dB above those
of quadratic and LoG filters. With impulsive noise, Teager(LS) and
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quadratic filters have similar SNR and PSNR values and are ≈ 2dB
above those of LoG filter.

6.6 Discussion

Quadratic edge filters are employed for the enhancement and local-
ization of microaneurysms caused by diabetic retinopathy. Teager
filters by least squares and by the minimization of mean square error
are implemented. They are observed to have better edge detection
capability as well as noise invulnerability than Laplacian, Sobel and
LoG filters. A quadratic filter with symmetric and isotropic kernel is
designed based on Powel method of optimization. This filter is imple-
mented based on singular value decomposition of the kernel. Besides
the performance in presence of noise, the computation times of various
filters are of interest. They are computed on an intel core i3 processor
and are tabulated in Table 6.5 for two images of different sizes.

Table 6.5: Time of computation in seconds for various filters

Filter
Image size

(356× 328)

Image size

(504× 671)

Sobel 0.04 0.11

Laplacian 0.58 1.70

LoG 0.64 1.86

Teager(LS) 2.75 7.96

Teager(MMSE) 2.38 6.97

Quadratic(SVD) 0.64 1.86
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Fig. 6.15. Various filter outputs for images corrupted by impulsive noise
of variance σ2

N = 20
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The SVD implementation of quadratic filter is faster than Teager fil-
ters while maintaining a similar noise performance. The Teager filters
are the slowest, although they have good edge extraction characteris-
tics and noise performance. It is concluded that Teager and quadratic
filters outperform conventional edge detection filters in the enhance-
ment and localization of retinal microaneurysms. Among the two,
quadratic filter is faster in execution than Teager filters.



Part III

Quadratic Filters
for Noise Removal

121



Foreword to Part III

Magnetic Resonance Imaging(MRI) is one of the key advancements
in the electronic aided medical diagnosis. Several eminent scientists
contributed to the development of the MRI machine of which many
were awarded the Nobel prize for MRI related contributions. In this
radical method, nuclear resonances in body tissue due to applied mag-
netic field are mapped into light intensity variations, forming an image.
High resolution is achieved by rapidly changing the heavy magnetic
field applied. Such unsteady magnetic field makes the acquisition
of the image very noisy. Impulsive noise, in particular, gets added
with the images generated. Unlike Gaussian noise that is common in
communication systems, it is difficult to get rid of impulsive noise.
Conventional nonlinear filters employed for noise removal from im-
ages are median filter, mean filter, Gaussian filter etc. Such filters
often suffer from poor edge resolution, blurring and poor signal to
noise ratio. As an alternative, polynomial filters based on Volterra
series is proposed for preprocessing raw MRI data. Part III of the
thesis deals with the design and implementation of a two dimensional
quadratic filter. It is verified that the new filter offers ≈ 10 dB im-
provement in SNR compared to conventional spatial filters. The noise
removal filter is succeeded by an unsharp masking scheme employing
a quadratic edge detection filter. This step is done for accomplishing
further improvement in contrast. The design strategy, implementation
and performance parameters for the quadratic noise removal filter are
summarized in chapter 7.
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7.1 Introduction

Nuclear magnetic resonance imaging(MRI) is a popular radio-graphic
imaging method to view the internal structure of the human body.
This imaging technique is very vital in the early detection of tumours
and other malignant deposits. In this imaging technique, the nuclear
resonances with applied magnetic field are transformed into light in-
tensity variations, forming an image of the body part under study. The
magnetic resonance is based on Larmor equation which states that the
frequency of precession of magnetic moment (ω) is directly propor-
tional to the magnetic field strength (B) and the gyro-magnetic ratio
(γ). It is at this frequency that the nucleus absorbs energy. Due to this
absorption, the proton alters its alignment. Methods were devised for
measuring this change in magnetic moment [Rabi and Kusch 1938].
Later Bloch and Purcell discovered that when certain nuclei were
placed in a magnetic field they absorbed energy in the electromagnetic
spectrum,[Bloch and Packard 1946],[Purcell and Pound 1946] and re-
emitted this energy when the nuclei returned to their original state.
The strength of the magnetic field and the radio frequency matched
each other according to the Larmor relationship[Damadian and Field
1976a], [Damadian and Field 1976b]. The relaxation times in normal
and cancerous tissue were observed to be different. In 1974, Peter
Mansfield and Paul C Lauterbur used these magnetic field gradients
to get the spatial location of NMR signals. In 1975, Fourier transform
of phase and frequency encoding was employed for reconstructing two
dimensional images and this formed the origin of the present day MRI.
An excellent history of the contributions in nuclear magnetic resonance
imaging is presented in the paper on cardiac MRI[Geva 2006].

In the present day scenario, MRI is done under a heavy magnetic field,
typically 1.5 Tesla to 2 Tesla. The large amount of electromagnetic
interference adds impulsive noise with the MRI images. Often, it is dif-
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ficult to remove impulsive noise from image signals. The conventional
image filters do not take into account the mechanism of generation
of the image, which in the case of most natural images is nonlinear.
The logical solution is to employ a nonlinear filter to account for the
nonlinear effects in image generation. Polynomial nonlinearities can
be modeled by truncated Volterra series that adds quadratic, cubic
and higher order systems in parallel with a linear system. It has been
observed that much of the nonlinear effects can be modeled by the
quadratic filter alone. The task under consideration is to design and
implement a quadratic Volterra filter that can account the inherent
nonlinearities in image formation while removing the impulsive noise.

7.2 Methodology

The methodology of noise removal is as outlined in Fig. 7.1. The first
phase is the design of the quadratic kernel for noise removal H2noise by
Powell method of optimization as detailed in Sec. 7.3.

Design of

H2

Implementation

of H2 as H̃2

SVD Testing of

H̃2

Raw MRI

data

Segmentation

to binary

frames

Application of

H̃2 to MRI
frames

Unsharp
masking of

filtered frames

Re-aligning of

MRI frames

Fig. 7.1. Flow of work

This step of optimization minimizes the mean square error between
a known image and the output of a quadratic filter that receives the
noisy version of the image at its input. The optimization is done re-
peatedly until minimum mean square error yields. The solution for H2

that attains this minimum error is selected as the filter kernel. Since
the direct implementation of this kernel is computationally complex,
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singular value decomposition is done on H2noise to yield an approxi-
mate realization H̃2noise as in Fig. 4.8. In the third phase, the kernel
H̃2noise is tested with known images for ascertaining the improvement
in signal to noise ratio and peak signal to noise ratio before applying
to noisy MRI images. These are as detailed in Sec. 7.6. The raw
MRI data is taken and segmented to individual frames. The noisy
frames are subjected to filtering by H̃2noise as implemented in Fig. 4.8
in page 64 for removing impulsive noise. In the last phase of work,
unsharp masking is done to enhance the contrast of the filtered frames.
In this step, a scaled version of the frames are added with the frames
themselves to improve the high frequency components. The work re-
lies on a quadratic edge detection filter, designed as in Sec. 7.5, rather
than conventional edge detectors like Canny, Prewitt or Laplacian of
Gaussian since the former provides better edge crispness and invul-
nerability to noise. This filter is also implemented based on SVD
decomposition as in Fig. 4.8 in page 64. The analysis of results is
done and is summarized in Sec. 7.7.

7.3 Design and Implementation of

Noise Removal Filter

It is proposed that a quadratic filter can effect greater improvement in
signal to noise ratio compared to conventional mean and median filters.
The principal issue in employing a quadratic filter is the identification
of its kernel H2noise . Powell optimization is used for obtaining H2noise

[Fletcher and Powell 1963], since this algorithm has a fast rate of con-
vergence. A synthetic image, X[n1, n2] of 9 × 9 dimension, corrupted
by impulsive noise of known variance σ2

N is simulated. Its noiseless
version Yd[n1, n2] of identical dimension is also simulated. The output
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of the quadratic filter is assumed as

Y[n1, n2] = XT [n1, n2]H2noiseX[n1, n2] (7.1)

Here, the expected value of the squared error between the noisy image
and the noiseless version is taken as the cost function for minimization.
Let the mean square error between yd[n1, n2] and y[n1, n2] be ξ given
by

ξ = E[|Yd[n1, n2]− XT [n1, n2]H2noiseX[n1, n2]|2] (7.2)

Minimization of ξ results in an optimum H2noise and is plotted as in
Fig. 7.2. The principal maxima are along the main diagonal and local
maxima appear parallel to this diagonal.
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Fig. 7.2. Wire-frame plot of the quadratic kernel

The kernel is indicative of edge enhancement, a feature which makes
this denoising filter ideal for processing raw MRI signals. The preser-
vation of edges leads to less blur on filtering and consequently results
in better demarcation of tumour tissues. A direct implementation of
H2noise as in Eq. 7.1 is computationally complex. Instead, singular
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value decomposition[Gantmacher 1960] is performed on H2noise to yield
an approximation H̃2noise as

H̃2noise =

ρ
∑

i=1

λiSiSi
T (7.3)

where λi are the singular values and each Si is a 9 × 1 eigen vec-
tor. Table 7.1 lists the eigenvalues and singular vectors of H̃2noise .
The value of ρ is selected in such a manner that the Frobenius norm
[Mathews and Sicuranza 2000] ||H2noise − ˜H2noise|| is minimum. Each Si

is re-sized as a 3 × 3 FIR image filter that is equivalent to H(i, j)
in Eq. 2.16, page 33. The outputs of FIR filters are squared and a
weighted sum with λi values yields the filter output. The structure of
the filter is as in Fig. 5.4, page 77.

Table 7.1: Table of singular values and singular vectors of H2noise

λi S1 S2 S3 S4 S5

1.0670 -0.3333 -0.3333 -0.3333 -0.3333 -0.3333

0.1735 0.0000 -0.3030 -0.4642 -0.4082 -0.1612

0.1735 0.4714 -0.3611 0.0818 -0.2357 -0.4430

0.1627 0.4613 -0.4667 0.4559 -0.3146 0.1756

0.1627 -0.0969 -0.0667 0.4157 -0.3151 0.4375

7.4 Quadratic Unsharp Masking

Unsharp masking is a contrast enhancement scheme in which the edges
are filtered out, scaled and added with the image[Mitra and Sicuranza
2001]. The high pass filter enhances the edges and the addition of
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edges improves the overall contrast of the image. The chief difficulty
with this scheme is that the edge detection high pass filters commonly
employed are very sensitive to noise. These filters respond to the
false edges rendered by noise. Quadratic edge detectors are very noise
immune and have better edge detection characteristics than Lapla-
cian, Canny and LoG filters. The unsharp masking scheme employing
quadratic edge detection filter is as represented in Fig. 7.3.

Λ

x[n1, n2] x̃[n1, n2]

Quadratic

Edge Filter

Fig. 7.3. Unsharp masking with quadratic filter

The edges in the input image x[n1, n2] are separated by the quadratic
filter H2edge . They are then scaled by a factor Λ and are added with the
input image to yield the enhanced version x̃[n1, n2]. The scale factor
Λ is chosen in such a way that there is improvement in x̃[n1, n2] in
respect of subjective visual quality as well as in numerical values of
performance criteria like SNR, PSNR etc.

7.5 Design of Quadratic Edge

Detection Filter

The core of the unsharp masking scheme is the quadratic edge detec-
tor that performs better than conventional edge detectors in terms of
the crispness of edge and noise performance. The design follows the
same strategy presented in Sec. 7.3. Here also, Powell optimization is
used for obtaining H2edge [Fletcher and Powell 1963]. A blurred syn-
thetic edge denoted as x[n1, n2] of 9 × 9 dimension is simulated. A
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desired sharp synthetic edge yd[n1, n2] of identical dimension is also
simulated. The output of the quadratic filter, that is assumed to be
y[n1, n2], follows Eq. 7.1 with H2noise replaced with H2edge . The mean
square error (ξ) between the filter output and yd[n1, n2] is minimized
to yield an optimum H2edge as plotted in Fig. 7.4.
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Fig. 7.4. Surface plot of the quadratic kernel

The kernel H2edge is not completely isotropic. It becomes zero at the co-
ordinates (i, N − i) for 1 ≤ i ≤ N − 1, creating a wedge like minimum
parallel to the main diagonal. There are local minima parallel to
this. This H2edge surface has high pass filter characteristics, making
it suitable for edge detection. Once H2edge is computed, it is required
to implement it as a computationally efficient structure. The direct
implementation as in Eq. 2.13, page 32 is complex. Instead, singular
value decomposition[Gantmacher 1960] is performed on H2edge to yield

an approximation H̃2edge as in Eq. 4.24, page 63. The singular values
and singular vectors in the case of H2edge are presented in Table 7.2.
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Table 7.2: Table of singular values and singular vectors of H2edge

λi S1 S2 S3 S4

3.2783 -0.3333 -0.3333 -0.3333 -0.3333

2.9284 -0.0570 0.4337 -0.3768 -0.0570

2.9284 0.4680 -0.1846 -0.2833 0.4680

2.8494 -0.0388 0.2723 0.4559 0.4262

2.8494 -0.4698 -0.3848 -0.1199 0.2013

2.8467 0.0998 -0.2513 0.3726 -0.4489

2.8467 -0.4607 0.3988 -0.2888 0.1440

2.7422 0.4690 0.0344 -0.4570 -0.1931

2.7422 -0.0478 -0.4702 -0.1155 0.4300

S5 S6 S7 S8 S9

-0.3333 -0.3333 -0.3333 -0.3333 -0.3333

0.4337 -0.3768 -0.0570 0.4337 -0.3768

-0.1846 -0.2833 0.4680 -0.1846 -0.2833

0.1971 -0.1243 -0.3875 -0.4694 -0.3317

0.4282 0.4547 0.2685 -0.0434 -0.3350

0.4711 -0.4364 0.3491 -0.2197 0.0638

0.0182 -0.1783 0.3168 -0.4171 0.4671

0.3900 0.3286 -0.2759 -0.4244 0.1285

0.2649 -0.3381 -0.3823 0.2053 0.4536
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The ratio of the ninth eigenvalue to the first eigenvalue is significantly
high. So all the nine channels are implemented, as the structure shown
in Fig. 5.4, page 77. Though all the channels are employed, it does not
add significantly to the complexity as the computations in all channels
happen simultaneously.

The sharpness of edges is critical in MRI images because it plays a
key role in the enhancement of contrast between normal tissue and
the cancerous tissue. So, the unsharp masking after the removal of
noise is recommended for the enhancement of peripheries in the MRI
image. The high pass filter in the unsharp masking scheme is realized
as a quadratic filter due to its desirable features like robustness to
noise and the greater edge crispness. The experimental set up for the
validation of performance parameters is detailed in Sec. 7.6.

7.6 Experiment

The filter kernel H̃2noise , designed in Sec. 7.3, is simulated in Python
with the help of scipy and pylab modules. The raw MRI data is taken
and the frames are separated. These noisy images are imported into
Python using the image processing toolbox and subjected to filtering
by H̃2noise . The filtered images are compared with those processed by
spatial filters like median, Gaussian and minimum filters in terms of
the visual quality. The experimental set up in Fig. 7.5 is used to test
the noise invulnerability of the denoising filter kernel H̃2noise .

Impulsive noise of known variance is added with the frames and sub-
jected to filtering. Quantitative measures like SNR and PSNR are
calculated with reference to the noisy image. Experiment is repeated
for conventional filters like mean, median etc. and the results are
compared with those of quadratic filter. Conventional filters blur the
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image while removing noise. The sharpness of edges is a key factor in
demarcating a pathological disorder from normal tissue. A measure of
the crispness of edges(κ), as proposed by Eq. 7.4, is computed based
on the noisy reference image. The results of these experiments are in
Sec. 7.7. The frames filtered by the quadratic filter are then subjected
to unsharp masking for improving the contrast and crispness of edges.
The quadratic kernel H̃2edge , designed in Sec. 7.5, is implemented as in
Fig. 5.4, page 77. All the nine channels are implemented as even the
last eigenvalue is significant enough. This filter is then incorporated
in an unsharp masking scheme as shown in Fig. 7.3. The results are
detailed in Sec. 7.7.

Input MRI

Impulsive noise
of variance σ2

N

Comparison
of SNR, PSNR

Reference
image

Quadratic/
Median/

Min. FilterFrame
and κ

Fig. 7.5. Experimental set up for ascertaining the performance parame-
ters for the noise removal filter

7.7 Results

Quadratic filter is designed and implemented with the objective of
removing impulsive noise from raw MRI data which is acquired un-
der strong and rapidly changing magnetic fields. The MRI images
corrupted by impulsive noise of different noise variances are applied
to the quadratic filter implemented by SVD method. The resulting
output is compared with those of spatial filters like median filter, min-
imum filter and Gaussian filter. Fig. 7.6 shows the outputs of various
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filters for impulsive noise variance σ2
N = 100. It is observed that

quadratic filter removes the impulsive noise better than the Gaussian
and median filter. The noisy MRI image is as in Fig. 7.6(a). As
claimed, the output of the quadratic filter is the least noisy. Median
filter and minimum filter fail to clean much of the impulsive noise in
the input image. The improvement in SNR is shown in Table 7.3.
There is 10 dB improvement in using quadratic filter. It has a stable
noise performance even at σ2

N = 200 as shown in Fig. 7.7(d). Besides
the improvement in SNR, quadratic filter has the advantage that the
edges are not blurred on filtering, ensuring that the periphery of a
possible pathological disorder like a tumour remains unambiguous.
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(d) Output of quadratic filter

Fig. 7.6. Outputs of various filters for impulsive noise variance 100
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Fig. 7.7. Outputs of various filters for impulsive noise variance 200

Table 7.3: Performance parameters for various filters

Filter SNR(dB) PSNR(dB) κ

Quadratic 29.76 35.51 2.48× 10−5

Minimum 19.30 22.75 0.0973

Median 17.48 20.95 0.0112
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The crispness of the edges in the filtered image becomes an important
criterion. A function is defined in Sec. 7.7.2 that models the crispness
of edges mathematically[Thurnhofer and Mitra 1996].

7.7.1 Improvement in SNR and PSNR

The improvements in SNR and PSNR are computed as per the exper-
imental setup in Fig. 7.5. The SNR is expressed as

SNR = 10 log10

[

∑

n1

∑

n2

r2[n1, n2]

∑

n1

∑

n2

[r2[n1, n2]− t2[n1, n2]]

]

(7.4)

The peak value of the SNR is expressed as

PSNR = 10 log10

[

max (r2[n1, n2])
1

N1N2

∑

n1

∑

n2

[r2[n1, n2]− t2[n1, n2]]

]

(7.5)

where r denotes the reference image and t denotes the test image.
N1N2 is the size of the image. Both the SNR and PSNR are direct
indicators of the performance of the noise removal filter.

7.7.2 Crispness of Edges

The sharpness of edges in the filtered images is decided by a numerical
figure of merit of the filter[Thurnhofer and Mitra 1996] given as

κ =
1

N1N2

∑

n1

∑

n2

|σ2
l[n1,n2]test

− σ2
l[n1,n2]ref

|
σ2
l[n1,n2]ref

µl[n1,n2]ref

(7.6)

σ2
l[n1,n2]test

is the localized variance (a 3 × 3 pixel window is used to

match the size of the filter mask) of the test image and σ2
l[n1,n2]ref

is
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that of the reference image. The localized mean of the reference image
is µl[n1,n2]ref . One test image is formed by adding impulsive noise of
variance 200 to the known MRI image to estimate the sharpness of
ridges. This input image is then normalized and applied to various
filters. The normalized, noisy input image is taken as the reference
image and the normalized outputs of various filters are taken as test
images. The variance and mean values are computed over a 3 × 3
pixel mask and summation is done all over the area of image. The
parameter κ should be zero when no noise is present and it increases
monotonically as degradation of edges by noise increases. Table 7.3
summarizes the values of κ. The performance parameter is the lowest
with quadratic filter, indicating its edge preserving feature. The small
reduction in contrast on filtering is compensated by unsharp masking
as depicted in Fig. 7.3. The output of the quadratic unsharp masking
scheme that receives an input MRI image corrupted by impulsive noise
of variance 100 is as shown in Fig. 7.8.
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(b) Unsharp masked output

Fig. 7.8. Contrast enhancement of filtered frames by unsharp masking
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Computational Complexity

The principal critique against Volterra quadratic systems is the enor-
mous complexity arising from Kronecker products when a direct imple-
mentation is resorted to. This difficulty is overcome by the approxima-
tion of filter kernel by singular value decomposition. It is necessary to
ascertain the complexity of computation on employing the quadratic
filter based on singular value decomposition and then to compare it
with conventional nonlinear filters. Table 7.4 shows the times of com-
putation for various filters using Python on a core i3 Intel processor
with identical image inputs to all filters. The table shows that the
complexity of quadratic filters is slightly higher than that by median,
Gaussian and mean filters. But the 10 dB improvement in signal to
noise ratio overrides this minor demerit.

Table 7.4: Time of computation in seconds for various image filters

Image size

(pixels)
Median Gaussian Minimum

Quadratic

(SVD)

650× 1105 0.19 0.06 0.03 1.65

Conclusion

The chapter summarizes the design and implementation of a quadratic
noise removal filter based on Volterra series. The quadratic kernel de-
signed by optimization method is subjected to singular value decompo-
sition to yield an approximate but computationally simple implemen-
tation. The filter offers 10 dB improvement in SNR with better edge
preserving features than conventional filters that renders it ideal for
processing MRI images. The slight reduction in contrast on filtering
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is compensated by unsharp masking with a quadratic edge detection
filter. The quadratic filtering operation followed by unsharp masking
is observed to remove the impulsive noise present in raw MRI data
much better than the conventional spatial filtering methods.
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Foreword to Part IV

Speech coding is an important application of signal processing. Con-
ventional methods are broadly classified into

• Temporal waveform coding

• Spectral waveform coding and

• Model based coding

The first method has gained popularity over others. Pulse code modu-
lation(PCM), differential pulse code modulation(DPCM), delta mod-
ulation etc. fall into this category. The focus of the present work is
on differential pulse code modulation, with the linear predictor in it
augmented or replaced using a quadratic predictor, with the objective
of modeling the nonlinear components arising from the speech gen-
eration mechanisms. The existing linear predictor based on Weiner-
Hopf equations and lattice type quadratic predictor based on minimum
mean square error method are implemented as benchmark systems.
Optimization based predictor is designed and realized. The perfor-
mance parameters are compared with the former two methods. All
the three predictors are incorporated into differential pulse code mod-
ulation systems that transmit and receive speech samples. The fidelity
of reception are compared among the three methods.
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8.1 Introduction

The linear pulse code modulation (PCM), widely used in digital tele-
phony [Bellamy 2000], is a memoryless coding method[Proakis 2001]
that converts each speech sample into a binary code. It relies on a
uniform sampler, linear quantizer and encoder for this conversion. It
has the disadvantage that the statistical correlation between succes-
sive speech samples is not utilized, resulting in long binary codes. The
length of the code can be effectively reduced if a differential pulse cod-
ing system (DPCM) is used, which effectively encodes the difference
between each sample and its predicted value, computed based on the
statistics of N previous samples. There is a uniform sampler, loga-
rithmic quantizer and a linear predictor at the core of this differential
system. The reliability of the predictor is critical as prediction errors
cumulatively affect successive samples on transmission and reception.

Prediction is an important signal processing operation that involves
predicting the next value of a random variable or random process
from the past N samples. Often, linear FIR filters that are mod-
eled based on the knowledge of the second order statistics of the
input signal is employed for this purpose [Oppenheim and Schafer
1998],[Proakis and Manolakis 1998]. Although they are simple in de-
sign and structure, they fail to account for the inherent nonlinearities
in the signal. This warrants the need for nonlinear processing.

In this work, Volterra series is invoked for processing the nonlinear
components. It is a power series with a constant as the first term.
The second term models the linear relationship between input and
output, equivalent to the LTI system. The third term in the series
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models the quadratic nonlinearity; the fourth term models the cubic
nonlinearity and so on. So this series has the added advantage that
existing LTI systems can be augmented by adding parallel polynomial
filters to achieve improved performance. It is widely observed that
much of the nonlinear behavior can be modeled with the quadratic
term alone.

The idea is extended to the development of a quadratic predictor that
works in conjunction with a linear predictor for predicting speech sam-
ples in a differential pulse code modulation (DPCM) system. The con-
ventional linear predictor employed for this purpose cannot account for
the polynomial product terms in the speech signal arising from mul-
tiple reflections in the vocal tract. Nonlinear components also arise
from the harmonic distortion [Abuelmatti 1990] in microphones. The
quadratic filter that acts in parallel with the linear predictor gives
improved mean square error (MSE) between the actual signal and
the predicted value. The differential PCM system that incorporates
quadratic predictors is discussed in the subsequent sections.

8.2 Methodology

The analysis of performance of differential speech coding methods
based on quadratic predictors is done as shown in Fig. 8.1. The ob-
jective is to design and implement a DPCM system incorporating a
quadratic predictor and to compare its performance with DPCM sys-
tems employing linear predictor and lattice type quadratic predictor.
In the first phase of the work, three types of predictors viz.

• Lattice type linear predictor based on Weiner-Hopf equations

• Lattice type quadratic predictor based on MMSE method
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• Quadratic predictor based on optimization method

Design of Linear
Predictor(MMSE)

Implementation

DPCM Transmitter DPCM Receiver

Design of Lattice Implementation

DPCM Transmitter DPCM

Quadratic Predictor

Design of Optimized Implementation

DPCM Transmitter DPCM

Quadratic Predictor

Receiver

Receiver

Speech
Signal
m(t)

AWGN
Signal
n(t)

Comparison

of

Performance

Parameters

Fig. 8.1. Scheme of work in differential speech coding

are designed, implemented and tested with speech signal input sam-
ples. Some of the existing works are to be repeated here for effecting
the comparison of the proposed system with them. The details of the
predictors that are reworked are outlined below.

• The first predictor is currently used for speech prediction, the
performance of which is taken as the referenceProakis [2001].
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• The design of the lattice type quadratic predictor, extensively
used for Gaussian signals, is included as Sec. 8.4. Being less
popular, its design steps are detailed in Sec. 8.4 with minor modi-
fications, to suit the use with speech signals. More number of au-
tocorrelation coefficients are considered in the design with speech
signals than that with Gaussian signals.

In the second phase of the work, the linear predictor designed is in-
cluded in DPCM transmitter. Speech signal from a microphone is
transmitted over an additive white Gaussian noise (AWGN) channel.
The signal out of the channel is received by a DPCM receiver which
employs an identical linear predictor. The performance parameters
like SNR and mean square error are computed for various levels of
channel noise variance.

In the third phase of the work, lattice type quadratic predictor based
on minimum mean square error (MMSE) is included in parallel with
the linear predictor of the DPCM system implemented. The per-
formance parameters are recomputed for the same levels of channel
noise. In the final phase of work, the kernel of the quadratic predic-
tor designed by optimization method is included in the DPCM system.
The performance parameters are then recomputed and compared with
other methods.

8.3 Design and Implementation of

Linear Predictor

The first known statistical prediction was made on sunspot cycles [Yule
1927] by Yule whose idea was later extended by Walker in his paper
[Walker 1931]. The mathematical model presented by Yule and Walker
are employed in the design of linear predictor for speech signals. Such
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a predictor is essentially an FIR filter described by the equation

yn =
N−1
∑

i=0

aixn−i (8.1)

The coefficients ai are obtained by solving the Yule-Walker equations
p
∑

k=0

a(l)φxx(l − k) = 0; l = 1, 2, . . . , p (8.2)

by Levinson-Durbin recursion[Proakis 2001]. Here φxx is the auto-
correlation matrix of x. Such linear systems are not suitable for
processing nonlinearities in the input x. Most real life systems and
processes are nonlinear, do not obey superposition. The common ex-
amples from engineering fields being saturation, hysteresis etc. The
biggest challenge in non linear signal processing is the computational
complexity. Nevertheless, the existing methods and algorithms for LTI
systems can be extended to nonlinear systems. Recently, with added
computing power, focus has been shifted to modeling and processing
nonlinearities. The task is to design and realize a Volterra series based
nonlinear predictor for speech signals which inherently contain poly-
nomial components due to multiple reflections in the vocal tract. The
linear predictor with a lattice structure is as shown in Fig. 8.2. It has
a compact modular structure, the design of which is in finding the
reflection coefficients Ki. An iterative solution for Ki is possible using
Levinson-Durbin recursion.

Z−1 Z−1

x[n] K1

K1

K2

K2

f1[n] f2[n]

g1[n] g2[n]

b b b

Fig. 8.2. Block diagram of lattice linear predictor
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The linear predictor derived by LD recursion gives the best perfor-
mance for Gaussian input signal as shown in Fig. 8.3. Its performance
degrades for speech signal as shown in Fig. 8.4. The mean square error
between the actual signal and the predicted signal can be reduced if
one employs a quadratic lattice predictor. The design steps as adapted
from [Mathews and Sicuranza 2000] are discussed in the next section.
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Fig. 8.3. Output of linear predictor
for random Gaussian input
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Fig. 8.4. Output of linear predictor
for speech signal input

8.4 Design and Implementation of

Lattice type Quadratic Predictor

Quadratic product components can be added to the linear lattice filter
to model polynomial components in the speech signal. Block diagram
of such a lattice type quadratic predictor is shown in Fig. 8.5. It differs
from the linear lattice filter in three aspects.

• The reflection coefficients are no longer scalars, but matrices
whose dimensions increment with every stage of computation.
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• It is not modular.

• The data sets, that each stage operates on, follow a pattern as
in Fig. 8.6.
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Fig. 8.5. Quadratic lattice predictor
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Fig. 8.6. Signal sets used in every stage
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A three stage lattice with quadratic nonlinearity is considered. The
basic idea employed in the derivation is very similar to the lattice
orthogonalization[Mathews and Sicuranza 2000] using linear predic-
tion techniques. The input to the first stage is the data vector with
linear and quadratic components given as x0

b[n] = [ x[n] x2[n] ]T . The
second stage operates on the delayed version appended with the cross
product term x[n]x[n−1] expressed as a vector with three components
as xb1[n] = [ x[n− 1] x2[n− 1] x[n]x[n− 1] ]T .
Three vectors are defined as

xb0[n] = [ x[n] x2[n] ]T (8.3)

xb1[n] = [ x[n− 1] x2[n− 1] x[n]x[n− 1] ]T (8.4)

and

xb2[n] = [ x[n− 2] x2[n− 2] x[n− 1]x[n− 2] x[n]x[n− 2] ]T (8.5)

Note that

xb1[n] = [ (xb0[n− 1])T x[n]x[n− 1] ]T (8.6)

and

xb2[n] = [ (xb1[n− 1])T x[n]x[n− 2] ]T (8.7)

The vector xb1[n] and xb2[n] are recognized as

x̂b1[n] = B01x
b
0[n] (8.8)

and

B01 = (E{xb0[n]xb0[n]T})−1E{xb1[n](xb0[n])T} (8.9)
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Eq. 8.9 is similar to Wiener-Hopf equation as in the case of linear
predictor, except that B01 is matrix rather than a scalar value. The
forward reflection coefficient matrix for the first stage is given as

Kb
1 = B01 (8.10)

and the backward reflection coefficient matrix for the first stage is
given as

Kf
1 = B01 (8.11)

It is needed to estimate x[n]x[n − 1] using [ x[n], x2[n] ]T . The corre-
sponding coefficient vector is

gb1,0 =

(

E

{[

x[n]

x2[n]

]

[ x[n] x2[n] ]

})−1

E

{

x[n]x[n− 1]

[

x[n]

x2[n]

]}

(8.12)

gf1,0 =

(

E

{[

x[n− 1]

x2[n− 1]

]

[ x[n− 1] x2[n− 1]]

})−1

×E

{

x[n]x[n− 1]

[

x[n− 1]

x2[n− 1]

]}

(8.13)

E{b1[n]b1T [n]} = E{Xb
1[n]X

b
1[n])

T} −
[

(Kb
1)

T

(gb1,0)
T

]

E{Xb
0[n](x

b
1[n])

T}

(8.14)



152 CHAPTER 8. DPCM WITH QUADRATIC PREDICTORS
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







−
[

(Kb
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T
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T
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


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

x[n]
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
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



T
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(8.15)

The matrix of forward reflection coefficient for the second stage is
expressed as

Kf
2 = (E{b1[n]b1T [n]})−1E

{

b1[n− 1]









x[n]

x2[n]

x[n]x[n− 1]









T
}

(8.16)

E{f1[n]f1T [n]} = E{b1[n]b1T [n]} (8.17)

The matrix of backward reflection coefficient for the second stage is
expressed as

Kb
2 = (E{f1[n](f1T [n]})−1E

{

f1[n]









x[n− 2]

x2[n− 2]

x[n− 1]x[n− 2]









T
}

(8.18)
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E{b1[n− 1] x[n]x[n− 2]} =

E

{(









x[n− 2]

x2[n− 2]

x[n− 1]x[n− 2]









−
[

(Kb
1)

T

(gb1,0)
T

][

x[n− 1]

x2[n− 1]

])

x[n]x[n− 2]

}

(8.19)

gf2,1 = (E{b1[n− 1](b1
T [n− 1]})−1E{b1[n− 1] x[n]x[n− 2]} (8.20)

E{f1[n] x[n]x[n− 2]} =

E

{(









x[n]

x2[n]

x[n]x[n− 1]









−
[

(Kf
1)

T

(gf1,0)
T

][

x[n− 1]

x2[n− 1]

])

x[n]x[n− 2]

}

(8.21)

gb2,1 = (E{f1[n](f1T [n]})−1E{f1[n] x[n]x[n− 2]} (8.22)

f0[n] and b0[n] are defined as:

f0[n] = b0[n] =

[

x[n]

x2[n]

]

(8.23)

b1[n] =

[

b0[n− 1]− (Kb
1)

T f0[n]

x[n]x[n− 1]− (gb1,0)
T f0[n]

]

(8.24)
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f1[n] =

[

f0[n]− (Kf
1)

Tb0[n− 1]

x[n]x[n− 1]− (gf1,0)
Tb0[n− 1]

]

(8.25)

c2,0[n] = x(n)x(n− 2)− (gf2,0)
Tb0[n− 1] (8.26)

b2[n] =

[

b1[n− 1]− (Kb
2)

T f1[n]

c2,0[n]− (gb2,1)
T f1[n]

]

(8.27)

f2[n] =

[

f1[n]− (Kf
2)

Tb1[n− 1]

c2,0[n]− (gf2,1)
Tb1[n− 1]

]

(8.28)

ci,0(n) = x(n)x(n− i)− (gfi,0)
Tb0[n− 1]; i = 2, 3, · · · , N − 1

(8.29)

The above steps are to be repeated for i = 3, 4, · · · , N − 1
Backward prediction error update:

bi[n] =

[

bi−1[n− 1]− (Kb
i )

T fi−1[n]

ci,i−2(n)− (gbi,i−1)
T fi−1[n]

]

(8.30)

Forward prediction error update:

fi[n] =

[

fi−1[n]− (Kf
i )

Tbi−1[n− 1]

ci,i−2[n]− (gfi,i−1)
Tbi−1[n− 1]

]

(8.31)
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Auxiliary variable update:

cj,i−1[n] = cj,i−2[n]− (gfj,i−1)
Tbi−1[n− 1]; j = i+ 1, i+ 2, · · · , N − 1

(8.32)
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Fig. 8.7. Output of the lattice predictor for speech signal input

The quadratic predictor so designed is implemented and tested with
speech samples. The output is as shown in Fig. 8.7 which indicates
less mean square prediction error than the linear predictor designed
in Sec. 8.3. But it suffers from large computational complexity. So an
approximate implementation of the quadratic kernel as in Eq. 2.6 is
sought for. The strategy adopted in the first method is to incorporate
a quadratic predictor in parallel with a linear predictor to augment
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the performance of the latter. The second method dispenses the lin-
ear predictor and relies on a quadratic predictor alone. The design
methodology is detailed in the following sections.

8.5 Quadratic predictor based on

Optimization

A quadratic filter based on optimization method is used to replace the
linear predictor to yield improved performance. Let Y[n] be the actual
output signal and Ŷ[n] be its predicted value rendered by a quadratic
system as

Ŷ[n] = XT [n]H2X[n] (8.33)

An objective function J(H) is defined as

J(H) = E[ |Y[n]− XT [n]H2X[n]|2 ] (8.34)

The function J(H) is minimized using Powell method to yield the op-
timum H2opt which is plotted as shown in Fig. 8.8.
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Fig. 8.8. Plot of H2opt

The matrix H2opt is composed of four prominent impulses. Being one
dimensional processing, the computational challenges are less and a
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direct implementation as in Eq. 2.10 is employed for quadratic predic-
tor.

8.6 Differential Pulse Code Modulation

System with Quadratic Predictor

Differential Pulse Code Modulation (DPCM) is a variant of the lin-
ear PCM. In linear PCM, the analog speech signal is sampled above
the Nyquist rate [Nyquist 2002] and each sample is quantized and en-
coded. Long code words result as the correlation between successive
speech samples is not exploited. The statistical dependence between
samples can be effectively utilized in a differential scheme in which the
difference between the present sample and its predicted value is quan-
tized and encoded. Since the difference between successive samples is
much smaller than sample value itself, the quantizer need to have a
logarithmic characteristics and the length of the code is smaller than
in linear PCM. The core part of the DPCM system is the predictor
that models the sample value.

Conventional DPCM system uses a linear predictor, designed based on
Weiner-Hopf equations, for estimating the sample value[Proakis 2001].
The linear predictor does not account for the nonlinear components in
the speech signal. These polynomial components can be modeled by
adding a quadratic predictor in parallel with the linear predictor as
in Eq. 2.6, thereby improving the signal fidelity. The existent DPCM
system is modified by inserting a quadratic predictor in parallel with
the linear predictor as shown in Fig. 8.9 and Fig. 8.10. The predicted
value of the speech signal, supplied by the linear and quadratic predic-
tor jointly, is subtracted from the signal itself and the resulting error
signal is logarithmically quantized in the transmitter. The quantized
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error samples are encoded. Both predictors work in a feedback loop
to estimate the speech signal from the output and the quantized error
signal. There is an identical quadratic predictor working in parallel
with the linear predictor at the receiving end. The quadratic predic-
tors at both ends are the novelty in the work. Two types of quadratic
predictors, used in the modified DPCM system, are designed, realized
and their performance parameters are assessed with the linear predic-
tor as the benchmark.
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Fig. 8.9. DPCM transmitter with quadratic predictor
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Fig. 8.10. DPCM receiver with quadratic predictor
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8.7 Experiment

The experiment is designed with the objective of assessing the qual-
ity of the received speech signal from a DPCM transmitter - receiver
based on an optimized quadratic predictor. Comparison is performed
between differential coding systems employing the conventional lin-
ear predictor and the lattice type quadratic predictor. A quantitative
analysis of the linear and quadratic predictors implemented as part of
the DPCM system is done in two phases. In the first phase, the pre-
dictors are tested with random Gaussian signals and speech signals.
The mean square error between actual signal and predicted signal is
ascertained in each case.

In the second phase of experiment, differential pulse code modulation
system shown in Fig. 8.9 and in Fig. 8.10 are realized and the per-
formance parameters are tested with speech signals with controlled
amount of white Gaussian noise.

8.8 Results

Quadratic predictors, both optimization based and lattice type, are
tested with speech signals and then included in the modified DPCM
system. The output of DPCM system incorporating a linear predictor
for Gaussian noise variance 2500 and 40000 are shown in Figs. 8.11
and 8.12 respectively.

The blue waveform corresponds to the transmitted signal and the red
waveform corresponds to the received signal. The absolute error be-
tween the two is prominent for low and high frequency components
and it increases as the noise variance increases. The error signal for
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Fig. 8.11. Received and trans-
mitted signals for σ2

N = 2500
with linear lattice predictor
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Fig. 8.12. Received and trans-
mitted signals for σ2

N = 40000
with linear lattice predictor

σN2 = 2500 is shown in Fig. 8.13. The absolute error increases as the
noise variance increases to 40000 as shown in Fig. 8.14.

0

50

100

150

200

250

300

0 100 200 300 400 500

Time

A
m
p
li
tu
d
e

Fig. 8.13. Error signal with
linear predictor for σ2
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Fig. 8.14. Error signal
with linear redictor for σ2

N =
40000

The absolute error between The transmitted and received signal, with
quadratic lattice predictor and linear predictor working jointly, for
Gaussian noise variance 2500 and 40000 are shown in Figs. 8.15 and
8.16 respectively. The error between them is less than that with a
linear predictor but the overshoots are present at high frequencies.
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Figs. 8.17 and 8.18 shows the error signal in each case.
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Fig. 8.15. Received and trans-
mitted signals for σ2

N = 2500
with quadratic lattice predictor
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Fig. 8.16. Received and trans-
mitted signals for σ2

N = 40000
with quadratic lattice predictor
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Fig. 8.17. Absolute error for for
σ2
N = 2500 with quadratic lattice

predictor
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Fig. 8.18. Received and trans-
mitted signals for σ2

N = 40000
with quadratic lattice predictor

Figs. 8.19 and 8.20 show the transmitted and received signal with op-
timization based quadratic predictor alone. The error between trans-
mitted and received signal is the smallest in this case and it does
not increase substantially as the noise variance increases, as shown in
Figs. 8.21 and 8.22. Both the low frequency and the high frequency
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components are faithfully reproduced.

b b Transmitted

signal

b b Received

signal

0 · 103

4 · 103

8 · 103

12 · 103

16 · 103

100 200 300 400 500

Time

A
m
p
li
tu
d
e

Fig. 8.19. Received and trans-
mitted signals for σ2

N = 2500
with quadratic predictor based on
optimization
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Fig. 8.20. Received and trans-
mitted signals for σ2

N = 40000
with quadratic predictor based on
optimization

The visual observations based on waveforms may not be very informa-
tive. Distinction is clearly made on hearing the audio output. Apart
from these two validations, comparison of the mean square error be-
tween transmitted and received signals using the three predictors is
done as another step of performance validation. If the input speech
sample x is composed of N frames of xi and the received signal(y)
contains N frames yi, then the mean square error is computed as

MSE =
1

N

N
∑

i=1

E[|xi − yi|2] (8.35)

The mean square error is plotted in Fig. 8.23. In every case, the
mean square error follows a square law relationship with noise vari-
ance, meaning that the absolute error between the transmitted and
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with quadratic predictor based on
optimization

received signal increases linearly with the noise variance. The aver-
age squared error with quadratic lattice filter is less than half that
with linear predictor. The MSE in the case of the optimization based
quadratic filter is one third that of the linear predictor.
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8.9 Conclusion

Differential pulse code modulation is the source coding system that
exploits the correlation between input sample and the previous N
samples. A predictor is the core part of the transmitter and receiver
which estimates the next sample based on the knowledge of the past
N samples. The traditional linear predictor based on Wiener-Hopf
equation cannot account the polynomial components in speech signal
arising from multiple reflections in the vocal tract. The work proposes
the use of a quadratic predictor in place of the linear predictor. A
three stage quadratic lattice predictor designed based on minimum
mean square error is implemented and tested with random Gaussian
signal and speech signal. It is incorporated in the DPCM system
and the performance parameters are contrasted with one employing
linear predictor. Though the performance in terms of MSE is better it
suffered from overshoots at high frequencies. To resolve this problem,
a quadratic predictor designed based on the minimization of mean
square error is designed, tested and used in the DPCM system. The
new system yielded the lowest mean square error among the three and
interpolated the speech signal irrespective of the frequency content
and the Gaussian noise variance.
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Foreword to Part V

The previous chapters presented the motivation and the research work
done on quadratic systems for three practical applications. Chapter 9
in part V concludes the research work, highlighting the achievements
in employing quadratic filters for each area of application. The im-
proved performance parameters in the case of quadratic filters are
demarcated by bar charts. Some limitations that a system designer
faces when working with quadratic systems are presented in this chap-
ter, besides the advantages. Future scope for the work and possible
expansions follow this.

The research contributions and their impacts to various stakeholders
are detailed in chapter 10. The list of publications are appended to
this chapter, which includes both the published and communicated
papers in journals and international conferences.
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9.1 Overview

Quadratic filters for edge detection, denoising and prediction are pre-
sented in the last part. Their performance indicators are compared
with existing systems to infer the merits of quadratic systems. Sec. 9.2
gives a bird’s eye view of the whole research work highlighting the nu-
merical figures of merit of quadratic systems. Sec. 9.3 presents the
limitation in developing quadratic filters. The future scope and possi-
ble expansions are discussed in Sec. 9.4.

9.2 Summary of Work Done

The research work is primarily conceived with the notion that mild
polynomial nonlinearities can be modeled using Volterra series. The
filters based on this power series can outperform conventional linear
and nonlinear systems, especially when there are polynomial compo-
nents present in the signals processed. Three avenues, where effects of
nonlinearity are strong and consequently the usefulness of quadratic
systems are high, are selected as prediction, edge detection and noise
removal. The crux of the work is the design and implementation of
quadratic filters for these applications as outlined in the next sections.

9.2.1 Strategy of Design and Implementation

Quadratic filters cannot easily be designed by conventional methods.
They are designed by utilizing the responses due to strategically placed
bi-impulses or by optimization methods. Optimization of a cost func-
tion is selected as the design tool in this work. Once the design strategy
is finalized, it is necessary to have a proper implementation method-
ology. Since the operations on the input data, in the case of quadratic
filters, are basically Kronecker products a direct implementation is
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impractical. Matrix decomposition methods, especially the singular
value decomposition is preferred in this work.

Once the design and implementation methodologies are selected, po-
tential areas where the nonlinear effects due to polynomial products
are predominant are identified as

• Edge detection

• Noise removal and

• Prediction of speech signals.

9.2.2 Edge Detection

Edges in images are high frequency components caused by peripheries
of objects, the detection of which is a key image processing operation.
Quadratic filters are used for detecting edges with improved perfor-
mance than other nonlinear edge detection filters. The applications
for which quadratic edge detection systems developed are:

• Unsharp masking scheme for enhancing latent fingerprints.

• Detection of retinal microaneurysms due to diabetic retinopathy

Unsharp masking for enhancing latent fingerprints

Fingerprint, being a unique biometric identifier, its enhancement and
recognition are rich areas of image processing. It has applications in
both access control and forensic sciences. The focus of work is on en-
hancing latent prints from crime scenes to ease forensic identification.
The broken ridges and valleys in the print are enhanced by improving
the contrast between dark ridges and light valleys. In the contrast
enhancement scheme of unsharp masking, an image is added with the
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scaled version of edges separated from it. If the images are noisy, as is
often the cases with fingerprints from crime scenes, the performance
of conventional edge detectors like Laplacian, LoG, Canny, Sobel etc.
deteriorates as noise appears as false edges. Quadratic edge detection
filters with greater noise invulnerability are proposed and implemented
in the unsharp masking. It is observed to have better signal to noise
ratio than other filters as shown in Fig. 9.1. Specifically, the SNR
improvement in the case of quadratic filter is ≈ 4 dB above the near-
est competitor, LoG filter. The computational complexities of various
filters, except that of Canny filter which is very high, are shown in
Fig. 9.2.
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Fig. 9.1. Signal to noise ratio (dB)
for various filters

rs LoG

rs Laplacian

rs Gabor

rs Quadratic

0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

T
im

e
of

co
m
p
u
ta
ti
on

Fig. 9.2. Computational complex-
ity for various filters

The quadratic filter using SVD method has the smallest complexity.
The comparison of mean structural similarity index, a performance
parameter for the preservation of structure of ridges, in presence of
impulsive noise and Gaussian noise are in Fig. 9.3 and Fig. 9.4 respec-
tively. Quadratic filter is observed to preserve the structure of ridges
better than other filters in presence of both impulsive and Gaussian
noise. LoG also performs almost at par with quadratic filter.
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Fig. 9.3. SSIM for various filters
under impulsive noise
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Fig. 9.4. SSIM for various filters
under Gaussian noise

Detection of Retinal Microaneurysms

Microaneurysms developed in the retina due to deposits of glucose
and lipids caused by diabetes can silently worsen and result in perma-
nent loss of vision. Surgery at an early stage is the cure. Automatic
surgery is facilitated if the periphery of microaneurysm is enhanced
from a fundus image. Three types of quadratic filters are designed and
implemented for this end.

• Two dimensional Teager filter based on least square method.

• Two dimensional Teager filter based on minimization of mean
square error.

• Two dimensional quadratic filter based on optimization.

The performance parameters in terms of the improvement in signal
to noise ratio and the time of computation are compared with con-
ventional edge detection filters as shown in Fig. 9.5. It is seen that
the two Teager filters perform fairly identical, but better than conven-
tional filters, although the complexity is more. The quadratic filter by
optimization outperforms other filters with time of computation equal
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to LoG filter, the nearest competitor, as shown in Fig. 9.6.
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Fig. 9.5. Signal to noise ratio for
various noise removal filters
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ity of various filters

9.2.3 Noise Removal

Noise is any unwanted disturbance that gets added with the desired
signal from outside the system or from within. They can also be due
to the quantization of discrete signals during processing. Noise in
communication systems is always Gaussian in statistics as a conse-
quence of the central limit theorem, and well established methods like
correlation detection, matched filtering etc. have been developed for
separating the desired signal from the noise signal. But noise present
in images are predominantly impulsive in nature, separation of which
is difficult. Conventionally, nonlinear filters like mean and median fil-
ters are used for denoising images. Two dimensional quadratic filter
designed based on the maximization of signal to noise ratio is pro-
posed and implemented for removing impulsive noise from raw MRI
data. The popular medical imaging scheme of MRI maps nuclear
resonances, when subjected to strong magnetic fields, into intensity
variations. The tumor tissue and body tissue have different resonant
frequencies and this difference is used to contrast the tumour. The res-
olution of imaging is enhanced by changing the magnetic field rapidly.
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These sharp changes introduces a great deal of impulsive noise into
raw MRI data. The quadratic filter offered the highest signal to noise
ratio of ≈ 10dB above that of minimum filter, as seen from Fig. 9.7.

In the case of MRI, the edges mean the periphery of a region of in-
terest such as a tumour. Edges in images are usually corrupted by
additive noise and most edge detectors are sensitive to noise. So the
preservation of edges on filtering is very critical. Quadratic filters are
proposed in this work as better edge detectors in terms of noise in-
vulnerability and edge preservation. Fig. 9.8 shows the edge crispness
function for various filters. A low value of crispness indicates better
edge preservation. Quadratic filter preserves the edges so well that the
sensitivity is too small to be visible in Fig. 9.8.
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9.2.4 Prediction of Speech Signals

The research consists of remodeling the differential pulse code modula-
tion system for coding speech signals, by replacing the linear predictor
in it by a quadratic predictor. The aim is to account for the polyno-
mial components in speech signal. The modified system yields smaller
mean square error between transmitted signal and received signal, on



174 CHAPTER 9. SUMMARY AND INFERENCES

passing through an additive white Gaussian noise channel, than that
with linear predictor and quadratic lattice type predictor as shown in
Fig. 9.9. It shows that the mean square error is roughly one third that
of linear predictor, giving rise to better audio reception. The predic-
tor based on optimization surpasses the quadratic lattice predictor in
performance and in the ease of implementation.
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Fig. 9.9. Mean square error for various predictors

9.3 Limitations of the Study

The last chapters elucidated the applications and advantages of em-
ploying quadratic Volterra filters for edge detection, noise removal
and statistical prediction. Use of quadratic Volterra filters resulted in
improved performance parameters such as signal to noise ratio, edge
crispness, mean square error etc. than conventional filters. However,
there are noteworthy limitations that are to be circumvented by the
designers. The major limitations in working with polynomial systems
for discrete signal processing are summarized below.
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9.3.1 Working without Frequency Domain

When working with LTI systems, one has the surety that only the
input frequencies or a subset thereof can appear at the output. This
is not the case with quadratic systems. There is no exact equivalent
of frequency domain for quadratic systems. The familiar concepts
with LTI systems such as the convenient input-output relationship,
the spectral relationship and the much familiar computational tools
like FFT are no longer applicable when working with quadratic or
polynomial systems. Time domain filtering techniques need to be
improved in their stead.

9.3.2 Higher Order Systems in Volterra Series

This research work is confined to quadratic systems with the assump-
tion that majority of the effects due to polynomial nonlinearities are
covered by the quadratic term in Volterra series expansion. This fails
to exploit the effects due to cubic and higher terms, if there are any.

9.3.3 Difficulty in Hardware Realizations

Much of the DSP hardware in the market, based on Harvard architec-
ture, are designed for LTI systems. They are not inherently designed
for Kronecker products. This poses serious limitations when one tries
to implement quadratic systems on DSP hardware.

9.4 Scope for Further Work

Polynomial systems, based on Volterra power series, is a relatively
untrodden area of signal processing which offers a lot of challenges
to researchers. In addition to the existing work, extensive research
will be done with applications in image processing, computer vision,
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communication etc. The limitations posed in Sec. 9.3 will be overcome
by expansions of the present research work. It will be further extended
in the following avenues.

9.4.1 Efficient Structures in Time Domain

Since the operations in the frequency domain are not easy with poly-
nomial systems, it is imperative to look for efficient structures in the
time domain. Matrix decomposition of the polynomial kernels coupled
with distributed arithmetic will result in compact structures that can
perform fast filtering.

9.4.2 Addition of Cubic Systems

Addition of cubic systems in parallel with quadratic systems can be
done. This will be useful in edge detection as more high frequency
components can be encompassed by the cubic term. The major chal-
lenge will be in harnessing the computational complexity arising from
third order products.

9.4.3 Implementation on FPGA

The quadratic filters designed and tested for specific applications can
be implemented on FPGA and can be used for real time applications.
The parallel-cascade structure based on singular value decomposition
is at par with conventional filters in terms of speed of execution. Fur-
ther improvement in speed can be achieved by realizing each FIR filter
in every channel based on distributed arithmetic.

The research work is summarized with emphasis on the key perfor-
mance parameters of quadratic systems. They are contrasted with
those of linear and conventional nonlinear systems to establish the
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supremacy of quadratic systems for the applications of edge detec-
tion, noise removal and prediction. Also, the challenges in working
with quadratic systems are presented. Possibilities of future expan-
sions and further work are explored. Based on the inferences, impact
of the work on various stakeholders is presented in the next chapter.
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10.1 Overview

Digital signal processing, an engineering area that deals with the ma-
nipulation of discrete data using discrete time systems, revolutionized
and enriched many fields like communication engineering, digital au-
dio, data analysis, remote sensing, instrumentation etc. The theory
and the systems matured over four decades, but much of the progress
revolved around LTI systems, ignoring nonlinear behaviour in systems
and nonlinear elements in signals grossly. The first objective of the
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present research is to make a comparative study of linear and non-
linear systems. Real life systems show nonlinear characteristics and
many signals are generated by nonlinear processes. The comparative
study opened up possible avenues where effects of polynomial nonlin-
earities could be exploited. The second major objective is to iden-
tify the suitable power series to model the input-output relation for a
polynomial system. The present work proposed the use of quadratic
Volterra systems in the attempt to model mild polynomial nonlineari-
ties. Volterra power series, a variant of Taylor series, is used to model
polynomial systems as parallel extensions of linear systems. Then, the
general strategy for design and implementation of quadratic systems
are reached at. Focus of the work is on quadratic systems with ap-
plications in prediction of speech signal, edge detection and impulsive
noise removal. These three areas are identified as potential avenues
where quadratic systems could outperform conventional linear systems
in terms of various performance parameters.

The work is carried out with the objective of modeling polynomial
nonlinearities using quadratic filters with targeted applications in

• Prediction

• Edge detection and

• Noise removal

The methodology adopted consists of the study of quadratic systems,
their design and realization for the specific application and testing for
assessing performance parameters. The main challenges are the lack of
general design rules and the computational complexity of implementa-
tion. The application specific design methods consist of optimization
of a key objective function and consequent solution of the filter kernel.
This method has the advantage that quadratic filters tailored for the
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specific application could be designed. The computational complex-
ity arising from direct implementation is surmounted by resorting to
approximate structures based on matrix decomposition. The work is
validated by comparing the performance with those of conventional
systems under identical working environment.

Once the designed mathematical models are put into practical imple-
mentations, it is necessary to test them exhaustively. Experiments
are designed to test the filters for edge detection, noise removal and
prediction. The parameters are compared with those of LTI systems
and other nonlinear systems. Once the validations are done, the fil-
ters are put to practical applications. The impacts of these practical
applications to various stakeholders are detailed in the next section.

10.2 Research Contributions

Quadratic systems are developed for edge detection, noise removal
and prediction, the practical applications of which include fingerprint
enhancement, detection of retinal microaneurysms, MRI data denois-
ing and quadratic prediction of speech signals. These works influence
many, like researchers, doctors, police, forensic experts and communi-
cation engineers. The novelty introduced in the research work in the
three application areas and their impacts are as outlined below.

10.2.1 Impacts to Researchers

Theory and development of polynomial systems in general, and quadratic
systems in particular, are unforayed areas of research. The present
work is an attempt to employ quadratic systems for nonlinear signal
and image processing. With the completion of this work, more litera-
ture has been added to polynomial signal processing. Ten papers are
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generated out of this research which throw light into a different kind
of signal processing area. The challenges like design, computational
complexity reduction and the absence of frequency domain tools make
polynomial signal processing a promising area of research.

10.2.2 Impacts to Practitioners

Besides the impacts to researchers, the present research work will in-
fluence many practitioners also. They include medical practioners,
surgeons, police, forensic experts and engineers.

Medical Practitioners

Ophthalmic surgeons will benefit from the work done on retinal im-
ages. The filters developed, if incorporated into a fundoscope, will
enhance even very small microaneurysms due to diabetic retinopathy.

• Teager algorithm, for energy detection, and least squares method
are used to design a two dimensional filter for detecting retinal
microaneurysms.

• Two dimensional Teager filter based on MMSE method is de-
signed and implemented for detecting retinal microaneurysms.

• A general quadratic filter based on optimization algorithm is
designed and implemented for detecting retinal microaneurysms.

Since the exact detection of periphery of microaneurysms is possible,
the work is useful in automated surgery.

Oncologists will benefit from the work done on the denoising of raw
MRI signals using quadratic filters. This filter, if used to replace the
conventional order statistic filters, will enhance the noisy MRI so that
the peripheries of tumours will be more pronounced.
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Police and Forensics

In this work, a quadratic edge detection filter is designed and imple-
mented and is incorporated it in unsharp masking scheme for enhanc-
ing latent fingerprints. The filter is tested against conventional edge
detection filters on raw latent fingerprints. This method enhances the
noisy ridges in fingerprints better than other filters and is observed
to preserve the structure of the image even at high noise levels. This
unsharp masking will be useful as a preprocessing stage for forensic
experts before subjecting the crime scene fingerprint to the national
database for the detection of the identity of criminals.

Communication Engineers

Communication engineers benefited a lot from the research in signal
processing. Most present day communication systems run on DSP al-
gorithms. Polynomial systems will also have its share of contributions.
In the research work, quadratic predictor based on the minimization
of mean square error is designed, implemented and incorporated in a
differential pulse code modulator and demodulator. The new system
is observed to have better performance in terms of audio quality at the
receiver and the mean square error between transmitted and received
signal over an additive white Gaussian noise channel.

10.3 Conclusion

Recently, discrete Volterra series emerged as a potential candidate to
represent polynomial characteristics in physical systems as implemen-
tations of quadratic, cubic and higher order systems in parallel with
the conventional LTI systems. Such implementations rendered better
performance values than those offered by LTI or other nonlinear fil-
ters. Quadratic systems, in particular, had gained popularity in signal
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and image processing, despite the complexity in implementations. The
present research work consists of design and development of quadratic
filters for edge detection, noise removal and prediction. The filters for
edge detection are put to two applications viz. the enhancement of
latent fingerprints and the detection of retinal microaneurysms.

An unsharp masking scheme based on a quadratic edge detection fil-
ter is used to enhance latent fingerprints, obscured by noise. The
new scheme is observed to preserve the ridge - valley structure better
than schemes employing conventional edge detectors. The results nu-
merically validate the enhanced visual quality of fingerprints by the
quadratic method, which conventional methods could not achieve.

Two dimensional Teager filters based on least squares and minimum
mean square error methods are designed and implemented for the de-
tection and localization of retinal microaneurysms due to diabetic
retinopathy. A quadratic edge detection filter, based on optimiza-
tion, is designed and implemented for the same purpose. This filter
enhanced the microaneurysms better than Teager filters even under
strong impulsive noise. All the three methods are compared among
themselves and with conventional edge detection methods by test-
ing on fundus retinal images. The results establish the suitability of
quadratic edge detection filter for the detection and localization of mi-
croaneurysms.

The work also proposes a quadratic de-noising filter for the removal
of impulsive noise from raw MRI signals and is found successful. The
performance is established superior to the nonlinear de-noising filters
such as median and mean filters.

The quality of reception of speech signals in a differential pulse code
modulation receiver is enhanced by the inclusion of a quadratic pre-
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dictor at the transmitter and receiver. This modification is done to
account for the polynomial terms that gets added during the gen-
eration of speech signal. The subjective quality on hearing and the
improved mean square error between the transmitted and received sig-
nal are indicative of the supremacy of quadratic predictor over linear
predictor.

The work establishes the superiority of quadratic filters over conven-
tional methods in the tasks of edge detection, noise removal and pre-
diction. The research forays into the unfamiliar vistas of polynomial
signal processing with the motivation to look beyond LTI systems.
The endeavor also adds to the volume of literature in quadratic filter-
ing which, hopefully, will be useful for future researchers in the fertile
field of polynomial signal processing. The work impacts practition-
ers in electronic communication, signal processing, image processing,
ophthalmology, oncology and forensic science.
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Appendix A
Python - A Computational Tool for

Biomedical Signal Processing

A.1 Introduction

Scientific computing is a key area of research which involves in devel-
oping platforms that cater the requirements of scientific community.
It often requires modeling of complex systems, simulation of scientific
processes, data mining, statistical interpretation of data etc. Large
arrays of data need be processed with minimum programming diffi-
culty in short time. Although there are many high level programming
languages like C, C++ etc that are suitable for general computing,
there are but a few that are usable for scientific computing purposes.
The major requirements for a language for scientific computing are

• The language need be interpreted and not compiled. The line
by line interpretation can easily return results, a feature which
speeds up research.

• The language should have a simple syntax so that less time is
spent on programming and more time is spent on scientific think-
ing.
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• The language should support a high quality plotting library that
can generate publication quality plots, preferably in Postscript
format.

• There need be easy syntax for easy vector- matrix multiplication,
linear algebra, Fast Fourier transforms etc.

• Greater execution speed.

Historically, FORTRAN had many features of a scientific computing
language, though it did not have its own plotting library. C remained
as a fast language for general computing. Being compiler based it
did not become popular in scientific computing. As C did not have
easy array multiplication syntax, MATLAB, a meta language, that
supported a lot of good features came to picture with an immediate
success. MATLAB has many disadvantages besides the extremely high
cost and licensing hassles. Being a closed source program one can never
ascertain how the computations are done. It does all computations
with arbitrary precision. Although MATLAB has a plotting library, it
does not provide truly publication quality plots. So there was a need
to look around for alternatives. With developments in open source
software tools like Octave, Scilab, R etc came to picture the details of
which are discussed in the next section.

A.2 Open source Tools for Scientific

Computing

With the arrival of Linux and internet, distributed computing became
popular and open source software developers around the globe could
work as a team, resulting in improved software tools. In scientific
computing clones of MATLAB like SCILAB, Octave came to picture.
SCILAB relied on TCL/TK. Although it contains many toolboxes for
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signal processing, image processing, communication, control systems
etc. it lacked robustness. Furthermore the TCL/TK GUI is still not
publication quality. Despite these facts it remains popular especially
in academic circles. Octave has the same syntax as MATLAB but is
a very slow in execution. There has been demand for an interpreted
and modular language for scientific computing with a good plotting
library. And Python entered the arena at this juncture.
Python is a modular, interpreted programming language with many re-
semblances with LISP and FORTRAN. Being modular, programmers
could integrate the existing FORTRAN libraries for linear algebra such
as LAPACK(Linear Algebra Package) and ATLAS(Automatically Tuned
Linear Algebra package) with Python making an open source scientific
computing package called Scipy. The details of Python and scipy are
in the next section.

A.3 Python, Scipy and Matplotlib

Python language that came into existence just half a decade before,
has very desirable features of a scientific computing language, the ma-
jor ones being modularity, speed and robustness. An enhanced Python
shell called ipython can be installed along with Python. Ipython re-
sembles the command line in MATLAB and IDL but supports more
features like shell scripting functions. The package scipy can be im-
ported into Python for scientific computing. A Python library called
MATPLOTLIB, popularly called pylab was developed for computing
and for generating anti-aliased, publication quality plots. The two
modules scipy and pylab forms the backbone of scientific computing
with Python. These modules can be imported with the commands

from scipy import *

from pylab import *
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The two commands import all the modules in scipy and pylab. Selec-
tive importing can be done to keep the code light and robust as

from scipy import math

Pylab offers good quality GUIs in addition to publication quality plots.
Fig.A.1 shows random ellipses plotted with pylab. Python together
with scipy and pylab has become a stable computing platform espe-
cially for signal and image processing. They offer greater speed and
precision than MATLAB or IDL.
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Fig. A.1. Random ellipses plotted in pylab

There are two main Python modules for image processing. The first
one is the Python imaging library(PIL) and the second is a package
in scipy called ndimage. Both contain modules for image acquisition,
processing and image writing. Medical image processing comprises of
reading, filtering, classifying, segmenting and interpreting medical im-
ages such as CT image, MRI image, retinal fundus image, angiograms
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etc. Understanding the data in these images are very critical in both
detection of diseases as well as in surgery and leaves no room for errors.
Python and its image processing tools can facilitate medical imaging
as detailed in the subsequent sections.

A.4 Python for medical imaging

Both ndimage and PIL can be used with minimum amount of coding
for processing medical images as both support variety of image for-
mats like .jpg, .png , .pgm etc. The following code segment reads the
color fundus image “retina.jpg”from the hard disk, isolates the green
channel and displays it the pylab GUI as shown in Fig. A.2.
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Fig. A.2. Fundus image with acute diabetic retinopathy

from scipy import*

from pylab import*

import Image

inpu=imread("retina.jpg")

x1=concatenate(concatenate(inpu))

x2=x1[1:len(x1):3]
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x3=resize(x2,(shape(inpu)[0],

shape(inpu)[1]))

imshow(x3)

gray()

The image can be filtered for locating microaneurysms and swellings
by a variety of filters based on scipy. Fig. A.3 indicates the result of
median and Gaussian filtering as done the following code.

import scipy.ndimage as nd

subplot(121)

lapout=nd.gaussian_filter(x3,3)

imshow(lapout)

gray()

subplot(122)

medout=nd.median_filter(x3,3)

imshow(medout)

gray()

The histogram can be observed with the code given below. The bin
size can be incorporated with an argument to the hist command as,
say, hist(x,100). The grid command includes a grid on the GUI. The
savefig command saves the matplot lib GUI of the histogram in the
present working directory. The figure can be saved in .png, .pdf or.
jpg in addition to the encapsulated postscript(.eps) format.

hist(x3)

grid("True")

savefig("hist.eps")

The resulting histogram is as in Fig. A.4.



202 APPENDIX A. PYTHON FOR BIOMEDICAL IMAGING

0 100 200 300 400

0

50

100

150

200

250

300

350

0 100 200 300 400

0

50

100

150

200

250

300

350

Fig. A.3. Gaussian filtered output(left) and median filtered output(right)
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Fig. A.4. Histogram of retinal image

A.4.1 Python for mammograms

Mammograms in .pgm and other formats can be read and processed
as discussed in the previous section. Fig. A.5 shows mammogram
processed by various filters.
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(b) Output of Sobel filter
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(d) Output of quadratic filter

Fig. A.5. Outputs of various filters for mammogram input

A.4.2 processing dicom files

Dicom files can be read and processed by the python module pydicom.
The module can be imported as

import pydicom

Dicom is a format that is a lot less esoteric that one may imagine.
Much of it contains the patient’s information. The pathological data
is contained as a 64 × 64 matrix which can be processed with scipy
and pylab modules.
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A.5 Working with Sound Files

Wave Module

The built wave module can be used for reading and writing sound
waves in .wav, .raw etc. formats. The read waveforms can be easily
converted into scipy arrays for further manipulations.

Wavfile Module

It is a more light and robust module than wave.Sound files can be
read using the wavfile in scipy.io module. It supports both the read
and write functions. A sound file in .wav format can be read as
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Fig. A.6. Signal from a wheezing lung

import scipy.io.wavfile as wav

z=wav.read("wheezinglungs.wav")

print z[0]

plot(z[1])
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reads and displays the lung sound stored in the hard disk. The first
element in the array z returns the sampling rate and the second array
returns the values in the signal. The signal is as in Fig. A.6. The
signal can be further processed using signal processing tools for feature
extraction.

A.6 Matplotlib Graphical User Interface

Matplotlib is Python library for publication quality outputs. This
is invoked by importing the pylab module. This contains the plot
function for continuous plots, stem function for discrete plots, hist for
histograms etc. The plots are anti-aliased with LATEX fonts for axes
and text within the plot. Animations of plot are possible with pylab.
the outputs can be stored in postscript, encapsulated postscript and
in pdf format. This makes integration of results with reports compiled
with LATEX easily possible.

A.7 Mayavi – Python Tool for Data

Visualization

Mayavi is popular open source tool for scientific data visualization and
3-D plotting written in Python, currently hosted by enthought. It can
be used as a stand alone application or as module that can be imported
into a Python code. As a stand alone program it reads data in vtk
format and displays in three dimensions. This make easy visualization
of internal organs possible. Mayavi is used in 3-D visualization of MRI
data. For using mayavi the Python session should be invoked as

ipython -wthread

Mayavi as a module can be imported as
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import enthought.mayavi

Additional modules like scipy, pylab etc. can be imported and used
along with mayavi.

A.8 Installation of Various Modules

All the major Python modules can be installed using the yum or apt
utility in Linux. The .exe files can be freely downloaded and installed
on Windows machines.

A.9 Conclusion

The chapter outlines the usage of Python as a stable replacement of
commercial scientific computing languages like MATLAB, IDL etc.
Scipy is a collection of signal processing and linear algebra routines
written in FORTRAN that can be imported into Python for perform-
ing scientific computations quickly and reliably. MATPLOTLIB alias
pylab offers publication quality plotting library. Modules like pydicom,
ndimage etc. can be used for medical imaging. Wavfile, wave can be
used for processing medical audio files. Medical data visualization can
be done effectively using Mayavi.
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