
    

Abstract: This paper presents a Reinforcement Learning (RL) 
approach to economic dispatch (ED) using Radial Basis Function 
neural network. We formulate the ED as an N stage decision 
making problem.  We propose a novel architecture to store Q-
values and present a learning algorithm to learn the weights of 
the neural network. Even though many stochastic search 
techniques like simulated annealing, genetic algorithm and 
evolutionary programming have been applied to ED, they 
require searching for the optimal solution for each load demand. 
Also they find limitation in handling stochastic cost functions. In 
our approach once we learn the Q-values, we can find the 
dispatch for any load demand.  We have recently proposed a RL 
approach to ED.  In that approach, we could find only the 
optimum dispatch for a set of specified discrete values of power 
demand. The performance of the proposed algorithm is validated 
by taking IEEE 6 bus system, considering transmission losses.  

I. INTRODUCTION

A Power system consists of a large number of units having a 
variety of characteristics. The load demand is not at all 
constant; it varies from time to time. Meeting this varying 
load with minimum cost of generation, while satisfying all the 
constraints associated with the system is an important problem 
[1]. For solving this constrained optimization problem, termed 
as Economic Dispatch, various techniques have been 
developed. 

The conventional methods include lambda iteration [1], base 
point participation factor [2] etc. These methods are not 
suitable when the fuel cost functions are non convex. 
Dynamic Programming is a good solution for non convex cost 
functions [1]. But it suffers from curse of dimensionality. A 
variety of stochastic search techniques including Genetic 
Algorithm, Simulated Annealing, Partition Approach 
Algorithm, Evolutionary Programming [3-6] etc. have been 
proposed by different researchers. But these techniques 
require searching for the optimal solution for each load 
demand. Typically, we have to repeatedly obtain the solution 
for various load demands. Hence if we want to find the 
dispatch for 24 different load values we have to run the 
stochastic algorithm 24 times. Moreover, in practical 
situations the cost of generation may be stochastic. This 
stochastic cost functions are to be handled by Economic 
Dispatch algorithms. Most of the existing algorithms assume 
deterministic cost function.  However, Reinforcement 
Learning algorithm can handle stochastic cost function in a 
straight forward manner. Our goal is to develop economic 
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dispatch algorithm using data available from the power 
industry.  

Recently we have proposed Reinforcement Learning (RL) 
based approach to Economic Dispatch problem [12]. We 
denote this algorithm as RLED. RLED involves learning of 
the so called Q – values. Q values are defined for state-action 
pairs (x, a). Q (x, a) denotes how good it is to take action ‘a’ 
in state ‘x’. In the context of Economic Dispatch power to be 
dispatch is the state and the allocation of power to each unit is 
the action. In RLED, we assumed power demands will take 
only from a set of discrete values, and allocation of power to 
each unit also can take only discrete values. That is, number 
of states and actions are finite. Hence, we could store Q-
values in a lookup table (matrix).  

In RLED, once we learn the Q – values, we can find the 
dispatch for any specified discrete values of power demand 
almost instantaneously. Hence the time taken for finding the 
dispatch for one load or 10 different loads was almost the 
same. One limitation of RLED is, it involves quantization of 
power demands. For example, if the minimum and maximum 
power demand possible for a power system is Dmin and Dmax

respectively, we have to quantize the power demand to finite 
values Dmin, Dmin+S, Dmin +2S,………Dmax. Hence using 
RLED it is only possible to find the dispatch corresponding to 
these values. However, this problem can be over come by 
choosing a small step size “S”.  But choosing a small step size 
makes the algorithm inefficient. 

In this paper, we propose the use of function approximation 
to store the Q – values [7, 8] and present the algorithm to find 
the dispatch for any values of power demand from Dmin to 
Dmax. It may be noted that applications of RL to power system 
have been few [9-11]. We hope that this paper will generate 
more interest in application of RL to power systems. 

The rest of the paper is organized as follows. Mathematical 
formulation of Economic Dispatch problem is explained in 
next section. In section III, we explain the Multi stage 
decision making problem and Reinforcement Learning 
method of solution. In section IV, Economic Dispatch is 
formulated as MDP and the RLED solution is discussed.  
Architecture of Radial Basis Function Networks used for 
solution is given in Section V. The Algorithm developed for 
solution of Economic Dispatch neglecting transmission losses 
is given in Section VI and the algorithm is extended in section 
VII to account the transmission losses also. Simulation studies 
are given in Section VIII. Conclusions are given in the last 
section.  

II. ECONOMIC DISPATCH

Consider a power system having N generating units. Let PT

be the power demand to be satisfied with these N units at any 
slot of time and let PL be the total transmission loss in the 
system.  Economic Dispatch is to find an optimum schedule of 
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power allocation among these N units. The allotment should 
be in such a way that the cost of generation should be 
minimum. At the same time, generating unit power constraints 
should also be met.  

 The objective function of Economic Dispatch problem is 
the total cost for supplying the demanded load CT. The 
problem is to minimize 

CT  =        ∑ ����
��� � �	�
    (1) 

s.t:    Σ (Pi) – PT  - PL = 0      (2) 
	�

��� 
 	� 
 	�
��� for  i = 1 to N       (3)

III.   MULTI STAGE DECISION MAKING PROBLEM AND 

REINFORCEMENT LEARNING

To make the paper self contained and introduce notations 
used let us consider an N stage decision making problem. Let 
the system be in state x0 in stage 0. If we take an action a0

system will move to state x1. When the system moves from x0

to x1, it will incur a cost g(x0, a0, x1). In general, in the kth stage, 
let the system be in state xk. If we take an action ak, system will 
move to state xk+1 and will incur a cost of g (xk, ak, xK+1). For an 
N stage MDP, system will reach an absorption state in stage N. 

 MDP is the problem of finding actions a0, a1, a2, .....aN-1,
such that the total expected cost � �∑ ����, ��, ����
� �����

��� is 
minimised. In general, the cost g (xk, ak, xk+1 ) could be a 
random variable. 

When the system is in state x, we will take an action a based 
on some rule or “policy”. In RL literature, the policy is denoted 
by Π ( ). Thus, if we are following a policy Π ( ), the action 
taken in state x is Π (x). We can think of Π as a mapping  

Π   : χ →�
where χ is the state space and � is the action space. In RL 

literature [7, 8] there are several algorithms to find optimal 
policy. Here, we explain one such algorithm, the Q learning 
algorithm. 

Q learning algorithm involves learning the Q values for all 
state action pairs. Q value for a state action pair (x , a) is 
defined as the total expected cost, if we start from state x, take 
an action a thereafter follow the optimal policy. 

���, �
 � � � ∑ ����
���
��� , ��, ����
�  , 

�� � �, �� � � �� � � ���
Suppose we know the Q 
values for all actions possible in state �!. That is, suppose we 
know Q (�!, a1), Q(�!, a2),....................Q(�!, am) where { a1, 
a2, ..........am} are the possible actions in state �!. Then we can 
find the optimal policy or best action at state x’ as  
Π ��!
 � �"�#$%�&���!, �!
. Thus by learning Q–values 

for different possible state – action pairs, we can find the 
optimal actions. 

IV. ECONOMIC DISPATCH AS A MILTI STAGE DECION 

MAKING PROBLEM AND SOLUTION THROUGH RLED

In this section, we show how ED can be modelled as a MDP. 
We also briefly present RLED. Consider a power system with 
N generators G1, G2, ...........GN  which has to share a total load 
PT. This problem is treated as an N stage problem. At each 
stage of the MDP, a decision is made which correspond to an 
allocation to one among the N units. In order to apply the RL 

strategy, we should identify the state space and  action space 
at each of these N stages. 

PT 

Fig. 1  MULTI STAGE PROBLEM STRUCTURE 

The state of the system at each stage i, is denoted as Di, 
where Di is the power to be scheduled among   N –1-i 
generating units. That is, in the first stage state D1 = PT is the 
power to be scheduled among the N generating units.  

The state space at stage i is limited by the minimum and 
maximum values  '�

����%( '�
���.   When an action or 

allocation is selected at stage i, it should satisfy basically two 
conditions. First, the remaining N-1-i Units should have at 
least their minimum generation levels to be allocated since 
they are already decided to be on line. Secondly, all these N-1-
i units can generate only up to their maximum limit. Thus the 
possible states at each stage i is decided by the minimum and 
maximum amount of power that can be generated by the N–1–
i generating units. Therefore, 

'�
��� �  ∑ 	�

������
��� ;         '�

��� �  ∑ 	�
������

���  (4) 
     
When we choose step size as  Si MW, then there will be mi = 

('�
��� + '�

���
 / Si different possible states for  state Di.  
State space at stage i,  χi  = ,'�

���, '�
��� -  .�, … … . . '�

���0
In general at any stage i, system will be in any one of the 

possible states Di ∈χi.  The next step in the MDP is to apply 
an action ��

� from the permissible action set �i. For the same, 
we identify the set of permissible actions at each stage of the 
system. In this MDP, we take an action as allocation of power. 
At stage i, action ��

�  is one of the possible allocations to ith

unit. For making the action set finite, we discretise the action 
space. If Sa is the step size chosen for the action set, then at 
any stage i, the action set �� ∈ , 	�

���, 	�
��� -

.�, . . 	�
��� 0.The maximum number of possible actions will be 

ni =(	�
��� + 	�

���
 / Sa. 
Then the learning proceeds as follows. The state of the 

system at the first stage is D1 = PT (note that PT = P1+ P2

+ ..........PN)∗. In the first stage, system 123345 67 618937 ��
�∈ 

�: 67; 25715 825 <3=5> 6??3168937 83 @9>48 A798 B:� ��
� 94 

;519;5;.  On taking an action the system moves to the next 
stage with state as D2 and incur a cost of g(D1, a1

k, D2). Here 
D2 = D1 – P1 and     g (D1, a1

k, D2)= C1(P1), cost of generating 
P1 units of  power by generator G1. In the second stage, 
decision making problem is similar. We have N -1 generating 
units, G2, G3,...........GN. These generators together should 
supply D2 units of power. In the language of MDP, the new 
state is D2 and the decision maker has to take an action a2

k
∈

�C and system will move to D3 with an incurred cost of g (D2, 

a2
k, D3) = C2 (P2) (Where BC� �D

�
  This proceeds until all the 
allocations (P1,P2,......PN) are over.  

∗ In our notation, P1, P2, ……..PN etc. are variables. 

Nth stage 2nd stage 1st stage 
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When χi and �i are treated as finite or having discretised 
values as explained above, we have a finite number of state – 
action pairs at each stage. Then the Q values can be stored in a 
table and during the policy retrieval phase, using the look up 
table best action ai (having minimum Q value) corresponding 
to any state Di  can be obtained. Here we consider Di values as 
continuous in the range '�

��� to '�
��� . Since the input space 

is continuous, it is not  possible to store Q values  in a table. 
So we represent Q–values using a parameterised class of 
functions {Q (Di, ai,θ): θ ∈ ℜd}, where θ is a parameter vector. 
Now learning optimal Q values involve learning the optimal 
parameter vector θ* such that Q(Di, ai,θ

*) is a good 
approximation of Q*(Di, ai). 

There are many parameterized classes of functions that one 
can consider while looking for an approximating function. 
Here, we use Radial Basis Function (RBF) neural network 
[13,14].  

In most applications, where neural networks are used for 
function approximation, one requires a set of training data. In 
our context, we require training set of the form {< (Di, ai); 
Q*(Di, ai) >; i=1, 2,.....N}. However, we do not know Q*(Di, 
ai) for any (Di, ai). Thus, we cannot use any standard 
supervised learning algorithm. Here we develop a 
Reinforcement Learning algorithm for training the RBF 
network. 

V. ARCHITECTURE OF THE RBF NETWORK

Next step is to choose a suitable architecture of the RBF 
network in order to store the Q – values. We model N unit 
power system, as N stage decision making problem. At each 
stage we are having state space χi and action space �i. In 
order to store the Q values we use RBF networks. In this N 
stage problem we need N RBF networks. RBF network of 
each stage consists of an input layer, hidden layer and an 
output layer. The input layer is made up of a single node for 
connecting the input state variable (Di) to the network. As 
explained earlier Di can take any of the possible values in the 
range '�

��� to  '�
���  . With a chosen value of diascretisation 

step S, the hidden layer consists of mi hidden nodes. This 
layer applies a non linear transformation from the input space 
to the ‘mi’ dimensional hidden space, ℜmi. Number of output 
nodes is decided by the number of actions since each output 
represents a Q value, Q (Di, ai

k ). Therefore output layer 
consists of ni linear nodes (the maximum number of possible 
actions decided by 	�

��� �%( 	�
���  and step size Sa) which 

combine the outputs of hidden nodes .  
The architecture of the RBF network for the first stage is 

given in fig (2). The input to this RBF network is D1, the total 
power to be scheduled among generators G1, 
G2, .........GN .The output of the network is Q (D1, a1

1, θ), Q 
(D1, a1

2,θ),....... , Q(D1, ��
�E, F ) where n1 is the number of 

actions or power allocations possible in the first stage. In 
general, the kth output of the RBF network at ith stage is given 
by the expression: 

       
Q HDJ, 6J

K, θM �  N�
 �

  �  ∑ OPE
Q��E
Q�� �R��S�   φi

j(Di)   (5) 

Fig 2  RBF NETWORK FOR STAGE 1. 

where OPE  is ni x mi matrix of reals, and 

OPE[k][1] ,...... OPE [k][mi] are the weights connected to the

kth output unit; and {φi
j, j = 1,........mi} is a set of mi radial 

basis functions which constitute the mi hidden units at ith stage. 
We use the Gaussian function as the RBF. Then the output 

of  jth RBF (ie, jth hidden unit) is given by, 

φ�
 Q �'�
 � T�U ��'� + V�

 Q ) 2/ 2σi
2)  (6) 

where V�
 Q  is the centre of jth RBF at i th stage and  σi  is the 

width of the RBFs at ith stage. It may be noted that centers of 
all mi RBFs at a particular stage is chosen to be the same. 

Substituting  φ�
 Q �'�
 from eqn (6) to equation (5) we get, 

Q (Di ,ai
k ,θ) = yi

k   

      = ∑ OPE
Q��E
Q�� �R��S� T�U �'� + V�

 Q ) 2/  2σ i
2) 

where k = 1,....ni                                   (7) 
The RBF network at ith stage as described above is thus 

completely specified by the parameter vector 
θ = [ ci, σi, WQi]  
Where  ci = [ ci

1, ci
2,........ci

m i]  
WQi = { WQi [k][j],  k=1,......ni, j=1,....mi  } 
Thus, finding a good approximation of the Q value function 

using the RBF network involves finding the optimum 
parameter vector θ* = [c*, σ*, W *]. 

VI. LEARNING ALGORITHM FOR ECONOMIC DISPATCH

In the previous section we concluded that finding the 
optimum parameter vector θ* = [c*, σ*, W*] is the task to be 
resolved in finding the good approximation of the Q value 
function. Now we explain how to find the optimal parameters, 
c*, σ*, and W *.  

In the RBF network described above, adjusting the weights 
associated with a given basis function, say jth basis function at 
ith stage , will effect the value of the output only in a small 
region around the centre of jth RBF, ci  

j . (For a value of input 

Di ∈χi, away from ci
j, T�U ��'� +  V�

 Q ) 2/2σi
2) will be almost 

zero). This feature of RBF network structure which indicates 
that each hidden layer neuron can be viewed as approximating 
the target function over a small region around its centre makes 
it possible to place the centres on a uniform grid spacing in 
order to get a better interpolation of the input. 
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In the case of Economic Dispatch problem, we fix the 
number of hidden units based on the generation limit 
constraints. The input to this ith RBF network (Di) is the 
fraction of the demanded power yet to be distributed among 
the remaining N–i units. Therefore, number of hidden units in 
each RBF network depends upon the maximum and minimum 
possible demand at that particular stage. i.e., for ith stage, it 
depends on the values of '�

��� and '�
���  , where '�

���  is the 
minimum load demand possible to be met with N – i units yet 
to be allocated and '�

���  is the maximum value possible. 
Also at each stage, the input state Di is decided by the actions 
or allocations made at the previous stages. 

For the first stage or first RBF network, the input will be 
equal to the power demand ‘PT’.  

i.e., D1 = PT

Minimum and maximum ranges of demand power possible
are given by equation (4). The number of hidden nodes is 
decided by the width '�

���  – Di
min. We take the mi centres to 

be uniformly distributed in the interval between Di
min and 

Di
max. For the later stages the range Di

max – Di
min reduces. 

Therefore as i approaches N, number of centres (and thus 
hidden nodes) can be reduced.  

Once the number of hidden nodes is fixed, we find the 
distance between centres of Gaussian functions as, 

 gi = ( Di
max - Di

min ) / ( mi -1 ) 
mi – Number of RBF centres at ith stage. 
Then the optimal values for the mi centres of the ith RBF 

network (ci
*) are chosen uniformly distributed between Di

min

and Di
max as 

 { Di
min,   Di

min + gi , .......................... Di
max } 

Next is to find the optimum values for the width of the RBF 
networks at the different stages. Since the centres of the 
Gaussian functions form a uniform grid, width of the 
Gaussian function (σ ) is taken as a suitable multiple (spread 
factor) of the distance between the centres. That is, σ = spread 
factor * distance between centres. The spread factor can be 
chosen in the range 0.5 – 1.5 based on the complexity of the 
problem. Value of 0.7 is found to be sufficient for most 
problems. 

Since we had fixed the values for ci
* and σi

*, our task of 
learning now reduces to finding the optimum value for the 
third element in the optimum parameterised vector θ*, WQi

*. In 
other words, problem reduces to learning the weights of the 
Neural Network at each stage, WQi [k][j],  k=1,....ni;  j=1,....mi .

We make the network to learn the optimal values for the 
weight elements WQi [k][j] such that yi

k would be a good 
approximation of Q*( Di , ai

k ) . If we know the Q* values for 
each stage corresponding to a large number of state action 
pairs, we can go for supervised learning of the weight matrix 
WQ*. But the Q values are unknown and therefore we cannot 
proceed in this direction. Hence we employ reinforcement 
learning algorithm for training the RBF network. 

In the standard Q learning method [8], updating of Q value 
at each iteration ‘n’ is given by the equation: 

���� ��� , ��
 �  �� ��� , ��
 -  α� ���� , ��, ����

-γ #$%�!WXEYZ���� ���, �[
 +   �� ���, ��
) 

Here γ is the discount factor which accounts for future 
effects and α is the step size of learning.  

In this context, for learning the weight vector elements, we 
make use of Q learning method for updating the weights. It 
may be recalled that in our architecture, there are N RBF 
networks. The update equation for WQi  for i = 1, ..., N-1 and i 
= N are different. The two sets of update equations are given 
below. 

Update equation for WQi, i = 1, ..., N-1 
In the network, if the current state is Di and the action is ai

k, 
then we want the  updating to be localized to the output node 
yi

k = Q(Di, ai
k ) or in other words the weight values connected 

to yi
k need only be modified while keeping the remaining 

weight values unchanged. 

Since yi
k = ∑ OP�

Q��E
Q�� �R��S� \Q�'� 
, to change N� 

K  we need 

to modify  WQi [k][j],  j = 1,......mi.  
Also WQi[l][j], l=1,......ni, l ] k  should remain unchanged. 

That is,OP�
����
[k][j] = OP�

��
 [k][j] + Δ OP�
��
 [k][j], j=1,.....mi

OP�
����
 [l][j  OP�

��
 [l][j] l = 1,...ni and j=1,.....mi , l ] R.  
(8) 

Now let us find Δ OP�
��
) [k][j]. Our aim is to minimize the 

error in the output ( N�
�  + N�

� 
, and in the nth iteration we 
have an estimate of this error given by  

�H'� , ��
�, '���M  -  γ #$%�&WXEYZ����

�  H'��� , �!, OP�
��
M +

���
 H'� , ��, OP�
��
M.   

Hence,  Δ WQi
 (n) [k][j]  is given by: 

ΔOP�
��
�R��S� �

α � �H'� , ��
�, '���M - γ #$%�&WXEYZ����

�  H'��� , �!, OP�
��
M +

  ���
 H'� , ��, OP�
��
M� \Q�'� 
              

(9) 
Update equation for WQN

For the last stage, since we have only a single unit to 
schedule, there is no choice of action but to allocate the power 
DN itself, action PN = ��

� � DN.  Then the look ahead term 

����
�  H'��� , �!, OP�

��
M  is zero in the update equation. 

Therefore update equation is expressed as: 

OP�
����
 [k][j] ) = OP�

��
) [k][j]+ Δ OP�
��
 [k][j],    

where, 

Δ OP�
 ��
�R��S� �

α ���'� , ��
�, '���
  + ���
 H'� , ��

� , OP�
��
M� \Q�'� 
        

 (10) 
At each step of the iteration, the weight values are updated 

and as learning progresses, Q values will approach to Q*. The 
selection of Gaussian distribution function as the functions 
defining the hidden nodes, make the updating a localized task 
which in turn improves the computational efficiency.  

Once the learning is completed, we get the allocation 
schedule by just retrieving the action element at each stage 
which corresponds to minimum Q values (greedy action). The 
entire algorithm for finding the optimum allocation schedule 
is having two phases: learning phase and policy retrieval 
phase and are given in algorithms I & II 
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ALGORITHM  I 
LEARNING PHASE 

Read the parameters of the RL algorithm 
Read the Generating unit details 
For each of the N stages 
  Do 
 Find Dmin and  Dmax

Fix suitable number of hidden nodes  for each RBF network 
Find the different centres of the RBF network 
Choose a suitable action step Sa 

Find the set of actions at each stage and thus number of output 
nodes for each network 

Initialize all the weight matrix elements as zero 
  End Do 

For  iteration =1 to max_iteration 
DO 
     PT = rand (D1

min, D1
max)

     Initialize state of the system,  D1 = PT 

     For  i =1 to N-1 
     Do 
         Find the permissible action sub set �i 

       Select an action ai
k from the permissible action  set �i   

using ∈ - greedy strategy  
                 Find the allocation for ith  unit, Pi = ai

k

                      Find the cost of generation Ci ( Pi
k)

                Update the weight vector elements connected to yi
k

using equation (8)& (9) 
        Update the state,  Di+1  = Di  -  Pi

    End Do 
For stage =N  

aN
k = DN 

    Update the weight vector elements connected to yN
k using 

equation (10) 
 END DO 

ALGORITHM II 
RETRIEVING POLICY 

Read the load demand value D 
Intial demand D1 =D 
For  i = 1 to N 
Do 
Compute the Q values corresponding to different actions 
Find the action with minimum Q value, argmin��'�, ��

�

Allocation Pi  = ��

�  
Di+1= Di – Pi

End Do 

VII. LEARNING ALGORITHM WITH TRANSMISSION 

LOSSES CONSIDERED

Now we extend our previous algorithm in order to 
incorporate the losses in the transmission system. We use the 
B matrix loss formula for calculating the loss MW at each step. 
We find the dispatch of the different possible load values 
considering transmission losses as described below.   

We execute Algorithm I to learn the Q values. The optimum 
generation schedule corresponding to a load demand D1 = PT

is obtained by running the algorithm II. Then from the 
optimum allocation obtained, corresponding loss is calculated 
using B coefficients. The demanded power is then modified as

 D1 = PT + Loss. Then the dispatch is again obtained 
for the power D1 using algorithm II. The loss is again 
calculated and the change in loss between two successive 
iterations is found out. This is continued until the difference in 
loss between two successive iterations become negligibly 
small. The above procedure is continued for all the load 
values in suitable steps. 

VIII. SIMULATION AND RESULTS

In this section, simulation results of the constrained 
Economic Dispatch problem of IEEE six bus system are 
demonstrated. The algorithm is applied to obtain the schedule 
for several load values. A comparison is carried with other 
recent technique. 

The fuel cost curve of the units is represented by a third 
order polynomial function [5]. The associated fuel cost 
coefficients and B-matrix parameters are given in Table I. We 
find the dispatch for various load values ranging from 
minimum demand possible to maximum value possible. 

In order to apply the new algorithm, first we should fix the 
parameters of the RBF networks. One important parameter we 
should fix is the number of centres. As mentioned in the 
previous section, number of centres depends on the input 
space or the range between Di

min and Di
max. We calculate the 

range of demand input to each stage as 

D1
min = 400 D2

min = 300 D3
min = 200 

D1
max. = 2000 D2

max. = 1500 D3
max. = 1000 

Since the range of input power to the different RBF
networks are different, for increasing the computational 
efficiency, we select more number of centres at the initial 
stages compared to later ones. Here we choose the number of 
centres as 80, 60 and 40. Once we fix the number of centres, 
to get the width of the RBF networks, a suitable spread factor 
is to be selected. Spread factor decide the percentage of 
overlapping between two successive functions. By trial and 
error spread factor of 0.7 is selected in all the RBF networks. 
Next is to fix the output nodes. For this, a suitable action step 
Sa is to be selected. In our simulation we choose 2 MW as the 
step size in order to get accuracy when transmission losses are 
considered. Then the umber of actions and hence number of 
output nodes at each stage are calculated as, 

%� � ^ _E
`ab� _E

`Ecd
ea

 ,  i= 1,..N 

Next, the Learning parameters of the Reinforcement 
Learning algorithm are decided. In case of ∈ - greedy action 
selection strategy, a larger value of  ∈ increases the 
exploration rate in the action space, while smaller rate 
increases the extent of exploitation. Therefore, initially a 
value of 0.5 is taken for ∈ providing sufficient exploration in 
the initial step. As the learning process proceeds, greedy 
action is selected with increased probability by reducing value 
of ∈ gradually. 

Discount parameter  γ  accounts for the discount to be made 
in the present state for accounting of future reinforcements 
and since in the case of Economic Dispatch problem, the cost 
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of future stages has the same implication as the cost of the 
current stage, value of γ is taken as 1. The step size of learning 
is given by the parameter α and it affects the rate of 
modification of the estimate of Q-value at each iteration step. 
By trial and error α is taken as 0.1 for achieving sufficiently 
good convergence of the learning system.  

We find the dispatch for various load values ranging from 
minimum demand possible to maximum value possible. In 
this simulation, since the discretisation step for action set is 
2MW, there could be a maximum difference of 2MW between 
power generation and power demand including losses. This 
remaining power of the demanded value (less than 2MW), 
which is negligibly small compared to the total demand is 
randomly assigned to one of the units without exceeding 
maximum limit. Learning phase using Algorithm I converged 
in 105 iterations. Then the dispatch for 6 values of load
demand is found. The total time taken is only 6.98 sec. The 
schedule and the total cost are tabulated in Table II. The other 
stochastic methods like Simulated Annealing, Genetic 
Algorithm etc. require learning to be carried out for each load 
value. This indeed need 6 times the time required for learning 
a single load demand.   

While comparing the schedule for a load of 1200MW, the 
cost and load distribution are found to be almost same as those 
obtained through simulated annealing [4] and RLED [12]. For 
obtaining the schedule for this single load value, simulated 
annealing technique had taken 27.25 sec while the proposed 
algorithm took only 6.9 sec for giving schedule of all load 
values. RLED took a time of 18.68 sec with a discretisation 
step of 2MW. Thus the proposed algorithm seems to be better 
than these strategies. 

For validating the proposed algorithm for the wide range of 
load values, we obtained the schedule for 24 hour load pattern 
of the IEEE 6 bus system with three generating units. The 
schedule of allocation is obtained in 6.98 sec. Also the 
proposed algorithm was validated for IEEE 30 bus system 
with six generating units. Due to the space limitation we are 
not including the results of these here.  

IX. CONCLUSION

In this work, we developed a function approximation
approach for solving Economic Dispatch problem. Here, we 
combined the Reinforcement Learning with the function 
approximation capability of Neural Networks. The function 
approximation capability of Neural Networks gives out the 
advantage of the input state space to be continuous instead of 
discrete. Also once the learning phase is completed, we can 
get the schedule for any load demand instantaneously. We 
have tested the efficacy of the algorithm for the IEEE six bus 
system with third order cost functions and also considering 
transmission losses. Also from the comparison with other 
methods, we see that the new algorithm gives the optimum 
allocation with comparable cost, with much lesser time as 
compared to other methods. Also since with a single learning 
task, it is easy to retrieve schedule for any demand in the 

continuous range, it is more suitable for practical systems.  
Due to the localized updating of the weight vector elements, 

the proposed algorithm seems to be very much promising 
where the number of units and hence the range of demand 
power at each stage extends more. 

TABLE I
COST COEFFICIENTS AND B – COEFFICIENTS 

Ca Cb   Cc  Cd Pmin Pmax 

11.20 5.10238 -0.0026429        3.33333e-6  100 500
632 13.01 -3.05714e-2        3.3333e-5   100      500  
147.14 4.28997  3.0845e-4          -1.7677e-7   200 1000 
B coefficients: 
7.5e-5  5e-6  7.5e-6  
5e-6  1.5e-6  1e-5  
7.5e-6  1.0e-5  4.5e-5 

TABLE II 
COST CHARACTERISTICS 

D (MW) P1 P2 P3 Cost Loss(MW) 

521 100 100 328 2393 7 
713 274 100 354 3257 15 
876 328 100 470 3756 22 
1098 339 100 691 5200 32 
1200 343 100 800 5679 43 
1460 453 229 832 6852 54 
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