

Abstract: This paper presents a Reinforcement Learning (RL)
approach to economic dispatch (ED) using Radial Basis Function
neural network. We formulate the ED as an N stage decision
making problem. We propose a novel architecture to store Q-
values and present a learning algorithm to learn the weights of
the neural network. Even though many stochastic search
techniques like simulated annealing, genetic algorithm and
evolutionary programming have been applied to ED, they
require searching for the optimal solution for each load demand.
Also they find limitation in handling stochastic cost functions. In
our approach once we learn the Q-values, we can find the
dispatch for any load demand. We have recently proposed a RL
approach to ED. In that approach, we could find only the
optimum dispatch for a set of specified discrete values of power
demand. The performance of the proposed algorithm is validated
by taking IEEE 6 bus system, considering transmission losses.

I. INTRODUCTION

A Power system consists of a large number of units having a
variety of characteristics. The load demand is not at all
constant; it varies from time to time. Meeting this varying
load with minimum cost of generation, while satisfying all the
constraints associated with the system is an important problem
[1]. For solving this constrained optimization problem, termed
as Economic Dispatch, various techniques have been
developed.

The conventional methods include lambda iteration [1], base
point participation factor [2] etc. These methods are not
suitable when the fuel cost functions are non convex.
Dynamic Programming is a good solution for non convex cost
functions [1]. But it suffers from curse of dimensionality. A
variety of stochastic search techniques including Genetic
Algorithm, Simulated Annealing, Partition Approach
Algorithm, Evolutionary Programming [3-6] etc. have been
proposed by different researchers. But these techniques
require searching for the optimal solution for each load
demand. Typically, we have to repeatedly obtain the solution
for various load demands. Hence if we want to find the
dispatch for 24 different load values we have to run the
stochastic algorithm 24 times. Moreover, in practical
situations the cost of generation may be stochastic. This
stochastic cost functions are to be handled by Economic
Dispatch algorithms. Most of the existing algorithms assume
deterministic cost function. However, Reinforcement
Learning algorithm can handle stochastic cost function in a
straight forward manner. Our goal is to develop economic

E.A.Jasmin,Govt Engg.College,Thrissur,Kerala, eajasmin@gmail.com
Dr. T.P.Imthias Ahamed, Dept. of Electrical& Electronics, T.K.M. College of
Engineering, Kollam,Kerala email : imthiasa@gmail.com

 Dr.V.P.Jagathiraj, Professor, School of Management Studies, Cochin
University of Science and Technology,Kerala email: jagathi@cusat.ac.in

dispatch algorithm using data available from the power
industry.

Recently we have proposed Reinforcement Learning (RL)
based approach to Economic Dispatch problem [12]. We
denote this algorithm as RLED. RLED involves learning of
the so called Q – values. Q values are defined for state-action
pairs (x, a). Q (x, a) denotes how good it is to take action ‘a’
in state ‘x’. In the context of Economic Dispatch power to be
dispatch is the state and the allocation of power to each unit is
the action. In RLED, we assumed power demands will take
only from a set of discrete values, and allocation of power to
each unit also can take only discrete values. That is, number
of states and actions are finite. Hence, we could store Q-
values in a lookup table (matrix).

In RLED, once we learn the Q – values, we can find the
dispatch for any specified discrete values of power demand
almost instantaneously. Hence the time taken for finding the
dispatch for one load or 10 different loads was almost the
same. One limitation of RLED is, it involves quantization of
power demands. For example, if the minimum and maximum
power demand possible for a power system is Dmin and Dmax

respectively, we have to quantize the power demand to finite
values Dmin, Dmin+S, Dmin +2S,………Dmax. Hence using
RLED it is only possible to find the dispatch corresponding to
these values. However, this problem can be over come by
choosing a small step size “S”. But choosing a small step size
makes the algorithm inefficient.

In this paper, we propose the use of function approximation
to store the Q – values [7, 8] and present the algorithm to find
the dispatch for any values of power demand from Dmin to
Dmax. It may be noted that applications of RL to power system
have been few [9-11]. We hope that this paper will generate
more interest in application of RL to power systems.

The rest of the paper is organized as follows. Mathematical
formulation of Economic Dispatch problem is explained in
next section. In section III, we explain the Multi stage
decision making problem and Reinforcement Learning
method of solution. In section IV, Economic Dispatch is
formulated as MDP and the RLED solution is discussed.
Architecture of Radial Basis Function Networks used for
solution is given in Section V. The Algorithm developed for
solution of Economic Dispatch neglecting transmission losses
is given in Section VI and the algorithm is extended in section
VII to account the transmission losses also. Simulation studies
are given in Section VIII. Conclusions are given in the last
section.

II. ECONOMIC DISPATCH

Consider a power system having N generating units. Let PT

be the power demand to be satisfied with these N units at any
slot of time and let PL be the total transmission loss in the
system. Economic Dispatch is to find an optimum schedule of

A Reinforcement Learning Approach to
Economic Dispatch using Neural Networks

E.A.Jasmin, T.P.Imthias Ahamed and V.P.Jagathiraj

Fifteenth National Power Systems Conference (NPSC), IIT Bombay, December 2008

84

power allocation among these N units. The allotment should
be in such a way that the cost of generation should be
minimum. At the same time, generating unit power constraints
should also be met.

 The objective function of Economic Dispatch problem is
the total cost for supplying the demanded load CT. The
problem is to minimize

CT = ∑ ����
��� � �	�
 (1)

s.t: Σ (Pi) – PT - PL = 0 (2)
	�

���
 	�
 	�
��� for i = 1 to N (3)

III. MULTI STAGE DECISION MAKING PROBLEM AND

REINFORCEMENT LEARNING

To make the paper self contained and introduce notations
used let us consider an N stage decision making problem. Let
the system be in state x0 in stage 0. If we take an action a0

system will move to state x1. When the system moves from x0

to x1, it will incur a cost g(x0, a0, x1). In general, in the kth stage,
let the system be in state xk. If we take an action ak, system will
move to state xk+1 and will incur a cost of g (xk, ak, xK+1). For an
N stage MDP, system will reach an absorption state in stage N.

 MDP is the problem of finding actions a0, a1, a2,aN-1,
such that the total expected cost � �∑ ����, ��, ����
� �����

��� is
minimised. In general, the cost g (xk, ak, xk+1) could be a
random variable.

When the system is in state x, we will take an action a based
on some rule or “policy”. In RL literature, the policy is denoted
by Π (). Thus, if we are following a policy Π (), the action
taken in state x is Π (x). We can think of Π as a mapping

Π : χ →�
where χ is the state space and � is the action space. In RL

literature [7, 8] there are several algorithms to find optimal
policy. Here, we explain one such algorithm, the Q learning
algorithm.

Q learning algorithm involves learning the Q values for all
state action pairs. Q value for a state action pair (x , a) is
defined as the total expected cost, if we start from state x, take
an action a thereafter follow the optimal policy.

���, �
 � � � ∑ ����
���
��� , ��, ����
� ,

�� � �, �� � � �� � � ���
Suppose we know the Q
values for all actions possible in state �!. That is, suppose we
know Q (�!, a1), Q(�!, a2),....................Q(�!, am) where { a1,
a2,am} are the possible actions in state �!. Then we can
find the optimal policy or best action at state x’ as
Π ��!
 � �"�#$%�&���!, �!
. Thus by learning Q–values

for different possible state – action pairs, we can find the
optimal actions.

IV. ECONOMIC DISPATCH AS A MILTI STAGE DECION

MAKING PROBLEM AND SOLUTION THROUGH RLED

In this section, we show how ED can be modelled as a MDP.
We also briefly present RLED. Consider a power system with
N generators G1, G2,GN which has to share a total load
PT. This problem is treated as an N stage problem. At each
stage of the MDP, a decision is made which correspond to an
allocation to one among the N units. In order to apply the RL

strategy, we should identify the state space and action space
at each of these N stages.

PT

Fig. 1 MULTI STAGE PROBLEM STRUCTURE

The state of the system at each stage i, is denoted as Di,
where Di is the power to be scheduled among N –1-i
generating units. That is, in the first stage state D1 = PT is the
power to be scheduled among the N generating units.

The state space at stage i is limited by the minimum and
maximum values '�

����%('�
���. When an action or

allocation is selected at stage i, it should satisfy basically two
conditions. First, the remaining N-1-i Units should have at
least their minimum generation levels to be allocated since
they are already decided to be on line. Secondly, all these N-1-
i units can generate only up to their maximum limit. Thus the
possible states at each stage i is decided by the minimum and
maximum amount of power that can be generated by the N–1–
i generating units. Therefore,

'�
��� � ∑ 	�

������
��� ; '�

��� � ∑ 	�
������

��� (4)

When we choose step size as Si MW, then there will be mi =

('�
��� + '�

���
 / Si different possible states for state Di.
State space at stage i, χi = ,'�

���, '�
��� - .�, … … . . '�

���0
In general at any stage i, system will be in any one of the

possible states Di ∈χi. The next step in the MDP is to apply
an action ��

� from the permissible action set �i. For the same,
we identify the set of permissible actions at each stage of the
system. In this MDP, we take an action as allocation of power.
At stage i, action ��

� is one of the possible allocations to ith

unit. For making the action set finite, we discretise the action
space. If Sa is the step size chosen for the action set, then at
any stage i, the action set �� ∈ , 	�

���, 	�
��� -

.�, . . 	�
��� 0.The maximum number of possible actions will be

ni =(�
��� + 	�

���
 / Sa.
Then the learning proceeds as follows. The state of the

system at the first stage is D1 = PT (note that PT = P1+ P2

+PN)∗. In the first stage, system 123345 67 618937 ��
�∈

�: 67; 25715 825 <3=5> 6??3168937 83 @9>48 A798 B:� ��
� 94

;519;5;. On taking an action the system moves to the next
stage with state as D2 and incur a cost of g(D1, a1

k, D2). Here
D2 = D1 – P1 and g (D1, a1

k, D2)= C1(P1), cost of generating
P1 units of power by generator G1. In the second stage,
decision making problem is similar. We have N -1 generating
units, G2, G3,...........GN. These generators together should
supply D2 units of power. In the language of MDP, the new
state is D2 and the decision maker has to take an action a2

k
∈

�C and system will move to D3 with an incurred cost of g (D2,

a2
k, D3) = C2 (P2) (Where BC� �D

�
 This proceeds until all the
allocations (P1,P2,......PN) are over.

∗ In our notation, P1, P2, ……..PN etc. are variables.

Nth stage 2nd stage 1st stage

Fifteenth National Power Systems Conference (NPSC), IIT Bombay, December 2008

85

When χi and �i are treated as finite or having discretised
values as explained above, we have a finite number of state –
action pairs at each stage. Then the Q values can be stored in a
table and during the policy retrieval phase, using the look up
table best action ai (having minimum Q value) corresponding
to any state Di can be obtained. Here we consider Di values as
continuous in the range '�

��� to '�
��� . Since the input space

is continuous, it is not possible to store Q values in a table.
So we represent Q–values using a parameterised class of
functions {Q (Di, ai,θ): θ ∈ ℜd}, where θ is a parameter vector.
Now learning optimal Q values involve learning the optimal
parameter vector θ* such that Q(Di, ai,θ

*) is a good
approximation of Q*(Di, ai).

There are many parameterized classes of functions that one
can consider while looking for an approximating function.
Here, we use Radial Basis Function (RBF) neural network
[13,14].

In most applications, where neural networks are used for
function approximation, one requires a set of training data. In
our context, we require training set of the form {< (Di, ai);
Q*(Di, ai) >; i=1, 2,.....N}. However, we do not know Q*(Di,
ai) for any (Di, ai). Thus, we cannot use any standard
supervised learning algorithm. Here we develop a
Reinforcement Learning algorithm for training the RBF
network.

V. ARCHITECTURE OF THE RBF NETWORK

Next step is to choose a suitable architecture of the RBF
network in order to store the Q – values. We model N unit
power system, as N stage decision making problem. At each
stage we are having state space χi and action space �i. In
order to store the Q values we use RBF networks. In this N
stage problem we need N RBF networks. RBF network of
each stage consists of an input layer, hidden layer and an
output layer. The input layer is made up of a single node for
connecting the input state variable (Di) to the network. As
explained earlier Di can take any of the possible values in the
range '�

��� to '�
��� . With a chosen value of diascretisation

step S, the hidden layer consists of mi hidden nodes. This
layer applies a non linear transformation from the input space
to the ‘mi’ dimensional hidden space, ℜmi. Number of output
nodes is decided by the number of actions since each output
represents a Q value, Q (Di, ai

k). Therefore output layer
consists of ni linear nodes (the maximum number of possible
actions decided by 	�

��� �%(�
��� and step size Sa) which

combine the outputs of hidden nodes .
The architecture of the RBF network for the first stage is

given in fig (2). The input to this RBF network is D1, the total
power to be scheduled among generators G1,
G2,GN .The output of the network is Q (D1, a1

1, θ), Q
(D1, a1

2,θ),....... , Q(D1, ��
�E, F) where n1 is the number of

actions or power allocations possible in the first stage. In
general, the kth output of the RBF network at ith stage is given
by the expression:

Q HDJ, 6J

K, θM � N�
 �

 � ∑ OPE
Q��E
Q�� �R��S� φi

j(Di) (5)

Fig 2 RBF NETWORK FOR STAGE 1.

where OPE is ni x mi matrix of reals, and

OPE[k][1] ,...... OPE [k][mi] are the weights connected to the

kth output unit; and {φi
j, j = 1,........mi} is a set of mi radial

basis functions which constitute the mi hidden units at ith stage.
We use the Gaussian function as the RBF. Then the output

of jth RBF (ie, jth hidden unit) is given by,

φ�
 Q �'�
 � T�U ��'� + V�

 Q) 2/ 2σi
2) (6)

where V�
 Q is the centre of jth RBF at i th stage and σi is the

width of the RBFs at ith stage. It may be noted that centers of
all mi RBFs at a particular stage is chosen to be the same.

Substituting φ�
 Q �'�
 from eqn (6) to equation (5) we get,

Q (Di ,ai
k ,θ) = yi

k

 = ∑ OPE
Q��E
Q�� �R��S� T�U �'� + V�

 Q) 2/ 2σ i
2)

where k = 1,....ni (7)
The RBF network at ith stage as described above is thus

completely specified by the parameter vector
θ = [ci, σi, WQi]
Where ci = [ci

1, ci
2,........ci

m i]
WQi = { WQi [k][j], k=1,......ni, j=1,....mi }
Thus, finding a good approximation of the Q value function

using the RBF network involves finding the optimum
parameter vector θ* = [c*, σ*, W *].

VI. LEARNING ALGORITHM FOR ECONOMIC DISPATCH

In the previous section we concluded that finding the
optimum parameter vector θ* = [c*, σ*, W*] is the task to be
resolved in finding the good approximation of the Q value
function. Now we explain how to find the optimal parameters,
c*, σ*, and W *.

In the RBF network described above, adjusting the weights
associated with a given basis function, say jth basis function at
ith stage , will effect the value of the output only in a small
region around the centre of jth RBF, ci

j . (For a value of input

Di ∈χi, away from ci
j, T�U ��'� + V�

 Q) 2/2σi
2) will be almost

zero). This feature of RBF network structure which indicates
that each hidden layer neuron can be viewed as approximating
the target function over a small region around its centre makes
it possible to place the centres on a uniform grid spacing in
order to get a better interpolation of the input.

Fifteenth National Power Systems Conference (NPSC), IIT Bombay, December 2008

86

In the case of Economic Dispatch problem, we fix the
number of hidden units based on the generation limit
constraints. The input to this ith RBF network (Di) is the
fraction of the demanded power yet to be distributed among
the remaining N–i units. Therefore, number of hidden units in
each RBF network depends upon the maximum and minimum
possible demand at that particular stage. i.e., for ith stage, it
depends on the values of '�

��� and '�
��� , where '�

��� is the
minimum load demand possible to be met with N – i units yet
to be allocated and '�

��� is the maximum value possible.
Also at each stage, the input state Di is decided by the actions
or allocations made at the previous stages.

For the first stage or first RBF network, the input will be
equal to the power demand ‘PT’.

i.e., D1 = PT

Minimum and maximum ranges of demand power possible
are given by equation (4). The number of hidden nodes is
decided by the width '�

��� – Di
min. We take the mi centres to

be uniformly distributed in the interval between Di
min and

Di
max. For the later stages the range Di

max – Di
min reduces.

Therefore as i approaches N, number of centres (and thus
hidden nodes) can be reduced.

Once the number of hidden nodes is fixed, we find the
distance between centres of Gaussian functions as,

 gi = (Di
max - Di

min) / (mi -1)
mi – Number of RBF centres at ith stage.
Then the optimal values for the mi centres of the ith RBF

network (ci
*) are chosen uniformly distributed between Di

min

and Di
max as

 { Di
min, Di

min + gi , Di
max }

Next is to find the optimum values for the width of the RBF
networks at the different stages. Since the centres of the
Gaussian functions form a uniform grid, width of the
Gaussian function (σ) is taken as a suitable multiple (spread
factor) of the distance between the centres. That is, σ = spread
factor * distance between centres. The spread factor can be
chosen in the range 0.5 – 1.5 based on the complexity of the
problem. Value of 0.7 is found to be sufficient for most
problems.

Since we had fixed the values for ci
* and σi

*, our task of
learning now reduces to finding the optimum value for the
third element in the optimum parameterised vector θ*, WQi

*. In
other words, problem reduces to learning the weights of the
Neural Network at each stage, WQi [k][j], k=1,....ni; j=1,....mi .

We make the network to learn the optimal values for the
weight elements WQi [k][j] such that yi

k would be a good
approximation of Q*(Di , ai

k) . If we know the Q* values for
each stage corresponding to a large number of state action
pairs, we can go for supervised learning of the weight matrix
WQ*. But the Q values are unknown and therefore we cannot
proceed in this direction. Hence we employ reinforcement
learning algorithm for training the RBF network.

In the standard Q learning method [8], updating of Q value
at each iteration ‘n’ is given by the equation:

���� ��� , ��
 � �� ��� , ��
 - α� ���� , ��, ����

-γ #$%�!WXEYZ���� ���, �[
 + �� ���, ��
)

Here γ is the discount factor which accounts for future
effects and α is the step size of learning.

In this context, for learning the weight vector elements, we
make use of Q learning method for updating the weights. It
may be recalled that in our architecture, there are N RBF
networks. The update equation for WQi for i = 1, ..., N-1 and i
= N are different. The two sets of update equations are given
below.

Update equation for WQi, i = 1, ..., N-1
In the network, if the current state is Di and the action is ai

k,
then we want the updating to be localized to the output node
yi

k = Q(Di, ai
k) or in other words the weight values connected

to yi
k need only be modified while keeping the remaining

weight values unchanged.

Since yi
k = ∑ OP�

Q��E
Q�� �R��S� \Q�'�
, to change N�

K we need

to modify WQi [k][j], j = 1,......mi.
Also WQi[l][j], l=1,......ni, l] k should remain unchanged.

That is,OP�
����
[k][j] = OP�

��
 [k][j] + Δ OP�
��
 [k][j], j=1,.....mi

OP�
����
 [l][j OP�

��
 [l][j] l = 1,...ni and j=1,.....mi , l] R.
(8)

Now let us find Δ OP�
��
) [k][j]. Our aim is to minimize the

error in the output (N�
� + N�

�
, and in the nth iteration we
have an estimate of this error given by

�H'� , ��
�, '���M - γ #$%�&WXEYZ����

� H'��� , �!, OP�
��
M +

���
 H'� , ��, OP�
��
M.

Hence, Δ WQi
 (n) [k][j] is given by:

ΔOP�
��
�R��S� �

α � �H'� , ��
�, '���M - γ #$%�&WXEYZ����

� H'��� , �!, OP�
��
M +

 ���
 H'� , ��, OP�
��
M� \Q�'�

(9)
Update equation for WQN

For the last stage, since we have only a single unit to
schedule, there is no choice of action but to allocate the power
DN itself, action PN = ��

� � DN. Then the look ahead term

����
� H'��� , �!, OP�

��
M is zero in the update equation.

Therefore update equation is expressed as:

OP�
����
 [k][j]) = OP�

��
) [k][j]+ Δ OP�
��
 [k][j],

where,

Δ OP�
 ��
�R��S� �

α ���'� , ��
�, '���
 + ���
 H'� , ��

� , OP�
��
M� \Q�'�

 (10)
At each step of the iteration, the weight values are updated

and as learning progresses, Q values will approach to Q*. The
selection of Gaussian distribution function as the functions
defining the hidden nodes, make the updating a localized task
which in turn improves the computational efficiency.

Once the learning is completed, we get the allocation
schedule by just retrieving the action element at each stage
which corresponds to minimum Q values (greedy action). The
entire algorithm for finding the optimum allocation schedule
is having two phases: learning phase and policy retrieval
phase and are given in algorithms I & II

Fifteenth National Power Systems Conference (NPSC), IIT Bombay, December 2008

87

ALGORITHM I
LEARNING PHASE

Read the parameters of the RL algorithm
Read the Generating unit details
For each of the N stages
 Do
 Find Dmin and Dmax

Fix suitable number of hidden nodes for each RBF network
Find the different centres of the RBF network
Choose a suitable action step Sa

Find the set of actions at each stage and thus number of output
nodes for each network

Initialize all the weight matrix elements as zero
 End Do

For iteration =1 to max_iteration
DO
 PT = rand (D1

min, D1
max)

 Initialize state of the system, D1 = PT

 For i =1 to N-1
 Do
 Find the permissible action sub set �i

 Select an action ai
k from the permissible action set �i

using ∈ - greedy strategy
 Find the allocation for ith unit, Pi = ai

k

 Find the cost of generation Ci (Pi
k)

 Update the weight vector elements connected to yi
k

using equation (8)& (9)
 Update the state, Di+1 = Di - Pi

 End Do
For stage =N

aN
k = DN

 Update the weight vector elements connected to yN
k using

equation (10)
 END DO

ALGORITHM II
RETRIEVING POLICY

Read the load demand value D
Intial demand D1 =D
For i = 1 to N
Do
Compute the Q values corresponding to different actions
Find the action with minimum Q value, argmin��'�, ��

�

Allocation Pi = ��

�
Di+1= Di – Pi

End Do

VII. LEARNING ALGORITHM WITH TRANSMISSION

LOSSES CONSIDERED

Now we extend our previous algorithm in order to
incorporate the losses in the transmission system. We use the
B matrix loss formula for calculating the loss MW at each step.
We find the dispatch of the different possible load values
considering transmission losses as described below.

We execute Algorithm I to learn the Q values. The optimum
generation schedule corresponding to a load demand D1 = PT

is obtained by running the algorithm II. Then from the
optimum allocation obtained, corresponding loss is calculated
using B coefficients. The demanded power is then modified as

 D1 = PT + Loss. Then the dispatch is again obtained
for the power D1 using algorithm II. The loss is again
calculated and the change in loss between two successive
iterations is found out. This is continued until the difference in
loss between two successive iterations become negligibly
small. The above procedure is continued for all the load
values in suitable steps.

VIII. SIMULATION AND RESULTS

In this section, simulation results of the constrained
Economic Dispatch problem of IEEE six bus system are
demonstrated. The algorithm is applied to obtain the schedule
for several load values. A comparison is carried with other
recent technique.

The fuel cost curve of the units is represented by a third
order polynomial function [5]. The associated fuel cost
coefficients and B-matrix parameters are given in Table I. We
find the dispatch for various load values ranging from
minimum demand possible to maximum value possible.

In order to apply the new algorithm, first we should fix the
parameters of the RBF networks. One important parameter we
should fix is the number of centres. As mentioned in the
previous section, number of centres depends on the input
space or the range between Di

min and Di
max. We calculate the

range of demand input to each stage as

D1
min = 400 D2

min = 300 D3
min = 200

D1
max. = 2000 D2

max. = 1500 D3
max. = 1000

Since the range of input power to the different RBF
networks are different, for increasing the computational
efficiency, we select more number of centres at the initial
stages compared to later ones. Here we choose the number of
centres as 80, 60 and 40. Once we fix the number of centres,
to get the width of the RBF networks, a suitable spread factor
is to be selected. Spread factor decide the percentage of
overlapping between two successive functions. By trial and
error spread factor of 0.7 is selected in all the RBF networks.
Next is to fix the output nodes. For this, a suitable action step
Sa is to be selected. In our simulation we choose 2 MW as the
step size in order to get accuracy when transmission losses are
considered. Then the umber of actions and hence number of
output nodes at each stage are calculated as,

%� � ^ _E
`ab� _E

`Ecd
ea

 , i= 1,..N

Next, the Learning parameters of the Reinforcement
Learning algorithm are decided. In case of ∈ - greedy action
selection strategy, a larger value of ∈ increases the
exploration rate in the action space, while smaller rate
increases the extent of exploitation. Therefore, initially a
value of 0.5 is taken for ∈ providing sufficient exploration in
the initial step. As the learning process proceeds, greedy
action is selected with increased probability by reducing value
of ∈ gradually.

Discount parameter γ accounts for the discount to be made
in the present state for accounting of future reinforcements
and since in the case of Economic Dispatch problem, the cost

Fifteenth National Power Systems Conference (NPSC), IIT Bombay, December 2008

88

of future stages has the same implication as the cost of the
current stage, value of γ is taken as 1. The step size of learning
is given by the parameter α and it affects the rate of
modification of the estimate of Q-value at each iteration step.
By trial and error α is taken as 0.1 for achieving sufficiently
good convergence of the learning system.

We find the dispatch for various load values ranging from
minimum demand possible to maximum value possible. In
this simulation, since the discretisation step for action set is
2MW, there could be a maximum difference of 2MW between
power generation and power demand including losses. This
remaining power of the demanded value (less than 2MW),
which is negligibly small compared to the total demand is
randomly assigned to one of the units without exceeding
maximum limit. Learning phase using Algorithm I converged
in 105 iterations. Then the dispatch for 6 values of load
demand is found. The total time taken is only 6.98 sec. The
schedule and the total cost are tabulated in Table II. The other
stochastic methods like Simulated Annealing, Genetic
Algorithm etc. require learning to be carried out for each load
value. This indeed need 6 times the time required for learning
a single load demand.

While comparing the schedule for a load of 1200MW, the
cost and load distribution are found to be almost same as those
obtained through simulated annealing [4] and RLED [12]. For
obtaining the schedule for this single load value, simulated
annealing technique had taken 27.25 sec while the proposed
algorithm took only 6.9 sec for giving schedule of all load
values. RLED took a time of 18.68 sec with a discretisation
step of 2MW. Thus the proposed algorithm seems to be better
than these strategies.

For validating the proposed algorithm for the wide range of
load values, we obtained the schedule for 24 hour load pattern
of the IEEE 6 bus system with three generating units. The
schedule of allocation is obtained in 6.98 sec. Also the
proposed algorithm was validated for IEEE 30 bus system
with six generating units. Due to the space limitation we are
not including the results of these here.

IX. CONCLUSION

In this work, we developed a function approximation
approach for solving Economic Dispatch problem. Here, we
combined the Reinforcement Learning with the function
approximation capability of Neural Networks. The function
approximation capability of Neural Networks gives out the
advantage of the input state space to be continuous instead of
discrete. Also once the learning phase is completed, we can
get the schedule for any load demand instantaneously. We
have tested the efficacy of the algorithm for the IEEE six bus
system with third order cost functions and also considering
transmission losses. Also from the comparison with other
methods, we see that the new algorithm gives the optimum
allocation with comparable cost, with much lesser time as
compared to other methods. Also since with a single learning
task, it is easy to retrieve schedule for any demand in the

continuous range, it is more suitable for practical systems.
Due to the localized updating of the weight vector elements,

the proposed algorithm seems to be very much promising
where the number of units and hence the range of demand
power at each stage extends more.

TABLE I
COST COEFFICIENTS AND B – COEFFICIENTS

Ca Cb Cc Cd Pmin Pmax

11.20 5.10238 -0.0026429 3.33333e-6 100 500
632 13.01 -3.05714e-2 3.3333e-5 100 500
147.14 4.28997 3.0845e-4 -1.7677e-7 200 1000
B coefficients:
7.5e-5 5e-6 7.5e-6
5e-6 1.5e-6 1e-5
7.5e-6 1.0e-5 4.5e-5

TABLE II
COST CHARACTERISTICS

D (MW) P1 P2 P3 Cost Loss(MW)

521 100 100 328 2393 7
713 274 100 354 3257 15
876 328 100 470 3756 22
1098 339 100 691 5200 32
1200 343 100 800 5679 43
1460 453 229 832 6852 54

REFERENCES
[1] A.J.Wood, B.F.Woolenberg. Power Generation and Control. John

Wiley Sons 2002.
[2] C.L. Chen, S.C. Wang. Branch and bound scheduling for thermal

generating units, IEEE Trans. Energy Convers. , 8 (1993) : 184 – 189
[3] P.H. Chen, H.C. Chang. Large Scale Economic Dispatch by Genetic

Algorithm, IEEE Transactions on Power Systems 10, 4 (1995) : 1919
– 1926.

[4] K.P.Wong, C.C. Fung. Simulated Annealing based Economic Dispatch
algorithm, IEE Proc.- C 140, 6 (1993) : 509 – 515.

[5] Whei Min Lin, Hong – Jey Gow. A Partition Approach algorithm for
nonconvex Economic Dispatch, Electric Power and Energy Systems
(2007).

[6] T.Jayabarathi, K. Jayaprakash.Evolutionary Programming techniques
for different kinds of Economic Dispatch problems, Electric Power
Systems Research 73 (2005) : 169 – 176.

[7] D.P.Bertsekas, J.N.Tsitsikilis. Neurodynamic Programming, Athena
Scientific, Belmount,MA., 1996.

[8] R.S.Sutton, A.G.Barto. Reinforcement Learning: An Introduction,
Cambridge, MA:MIT Press, 1998

[9] T.P.Imthias Ahamed. A Reinforcement Learning Approach to Unit
Commitment Problem, Proceedings of National Power System
Conference 2006

[10] G.R.Gajjar, S.A. Khaparde, P.Nagaraju, S.A.Soman. Application of
Actor Critic Learning algorithm for optimal bidding problem of a
Genco, IEEE Transactions on Power Systems 18, 1(2003) : 11 – 18.

[11] Vishuteja Nanduri, Tapas K.das, A Reinforcement Learning Model to
assess Market Power under auction based strategy, IEEE transactions
on Power Systems 22 , 1 (2007) : 85 - 95

[12] E.A.Jasmin, T.P.Imthias Ahamed, V.P.Jagathiraj. A Reinforcement
Learning Algorithm for Economic Dispatch considering transmission
losses, Accepted for TENCON 2008, IEEE region 10 conference.

[13] S.Haykin, Neural Networks : A Comprehensive Foundation. PHI 1999
[14] T.P.ImthiasAhamed, P.S.NagendraRao, P.S.Sastry. A Neural Network

based Automatic generation controller design through Reinforcement
Learning, International journal of Emerging Electric Power Systems
2006; 6 (1) .

Fifteenth National Power Systems Conference (NPSC), IIT Bombay, December 2008

89

