G 8582
Studies in Topology and Related Areas

FUZZY ABSOLUTES AND RELATED TOPICS

THESIS SUBMITTED TO THE
COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
UNDER THE FACULTY OF SCIENCE

By
ASSIA .N.V

Under the supervision of
Dr. T. Thrivikraman

Professor

DEPARTMENT OF MATHEMATICS
COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY
COCHIN 682 022
KERALA, INDIA

November 2002



CERTIFICATE

This is to certify that the work reported in the thesis entitled
“Fuzzy Absolutes and Related Topics” is a bona fide work done by
Mrs. Assia .N.V under my guidance and supervision in the Department of
Mathematics, Cochin University of Science and Technology, and has not been

included in any other thesis submitted previously for the award of any degree.

&@L

Dr. T. Thrivikraman
(Supervisor)

Professor

Department of Mathematics
CUSAT

Kochi-682022

Kochi-22
&% November 2002.



Chapter - 0
0.1
0.2
0.3
0.4
0.5
0.6

Chapter — 1
1.0
1.1
1.2
1.3
1.4

Chapter —2
2.0
2.1
2.2
23

Chapter -3
3.0
3.1
3.2
3.3

CONTENTS

Introduction

Extensions and Absolutes
Fuzzy Set Theory

Fuzzy Topology

About this Thesis
Summary of the Thesis

Basic Definitions

Stone Space of Fuzzy Sets

Introduction

Preliminaries

The Stone Space of Fuzzy Sets

Stone Representation Theorem for Fuzzy Sets

B- extremally Disconnected Space

Fuzzy Regularly Closed Filters
Introduction

Preliminaries

Fuzzy Regularly Closed Filters
Fixed FRC-ultrafilters

F-open filters and f-H closed spaces
Introduction

f-open Filters

f-H Closed Spaces

s-continuous Mapping

Page No.

o N Wn s W

13
13
14
16
20
23

27
27
28
29
35

40
40
41
45
49



Chapter — 4
4.0
4.1
4.2
43
4.4
4.5

Chapter -5
5.0.
5.1
5.2.

Bibliography

Fuzzy Absolutes

Introduction

Pseudo Boolean algebra of Fuzzy Regularly Closed Sets
Fuzzy Absolute

Properties of the Pair (f-EX, K¢.x)

Fuzzy Absolutes using s-fixed FRC ultrafilters
Fuzzy Absolutes of Products and Sums

Fuzzy Absolute as a Set of F- Open Ultra Filters
Introduction

Fuzzy Absolute using f-open Ultrafilters
Properties of the Pair (f- E'X, K¢y )

53
53
55
59
62
73
77

79
79
79
87

91



CHAPTER -0

INTRODUCTION

0.1 Extensions and Absolutes

An extension of a topological space X is a space that contains X as a
dense subspace. The different kinds of extensions especially compactification
formed a major area of study in topology. As per one method of construction, the
points of the extensions are ultrafilters on lattices such as lattices of open sets,
lattices of zero sets, and lattices of clopen sets. From the introduction of Stone
Cech compactification in the thirties this area caught the attention of researchers

and many papers appeared there after in this area.

Related dual concepts of Absolutes due to Iliadis and Banaschewski also
formed a major area of activity in Topology. Associated with each Hausdorff space
always there exists an extremally disconnected zero dimensional Hausdorff space
EX called the Iliadis absolute of X and a perfect irreducible © continuous surjection
from EX on to X. In most of the constructions of absolutes the points of EX are
ultrafilters on lattices associated with X. Thus extensions and absolutes although

conceptually dual in nature are constructed using similar tools.

Perfect continuous mappings always preserve certain topological
properties. Therefore, whenever dealing with a new topological property P and
if X has P we have to look for a space which is a perfect continuous image of

X or that can be mapped on to X by a perfect continuous surjection. If it is



(o]

possible to find such a space we can study the properties of that space and

from that we can infer the properties of X.

If X is regular, always there exists such a space called Iliadis
absolute of X. It can be mapped on to X by a perfect continuous surjection Ky
which is irreducible, i.e. if A is a proper closed subset of EX then Kyx(A) isa
proper closed subset of X. The space EX is zero dimensional and also
extremally disconnected. That is every point of EX has a clopen basis and

closure of its open sets are always open.

Even though X is not regular, we can have an extremally
disconnected space. This is called Banaschewski absolute of X denoted as PX.
Here also there is a perfect irreducible surjection nyx: PX—X. Since X is not
regular PX is not regular and so not zero dimensional. When X is regular PX

and EX coincide and so does Ky and 7y .

Since perfect continuous mapping preserves some topological
properties, PX and X have certain properties in common. More over there are
certain properties which are preserved by the irreducibility of nx. Examples of
such properties are cellularity, m weight, density character and feeble

compatness [P;W].

The absolute EX of X arises in the following situation . Suppose with

each space X we can associate some algebraic object A (X). Let A(ﬁ’ ybe the



algebraic completion of A (X). If X has certain nice properties, then A(/{’ ) 1S

isomorphic to A (EX).

The original motivation behind the study of absolutes was the
problem of characterizing the projective objects in the category of compact
spaces and continuous functions. In 1958 Gleason [GL] solved this problem.
He showed that the projective objects of this category are precisely the
compact extremally disconnected spaces. He constructed EX (when X is

compact) as a part of the solution of this problem.
0.2 Fuzzy set theory

The concept of Fuzzy sets introduced by the American
Cyberneticist L.A. Zadeh started a revolution in every branch of knowledge
and in particular in every branch of mathematics. Zadeh introduced the fuzzy
set theory [ZA] in 1965 inorder to study the control problem of complicated
systems and dealings with fuzzy information. This theory described Fuzziness
mathematically for the first time. Fuzziness is a kind of uncertainty and
uncertainty of a symbol lies in the lack of well-defined boundaries of the set of

objects to which this symbol belongs.

Since the 16" century probability theory has been studying a kind of
uncertainty — randomness — i.e. the uncertainty of the occurrence of an event.
But in this case the event itself is completely certain, the only uncertain thing

is whether the event will occur or not. Fuzziness is another kind of



theory of fuzzy topology. Using fuzzy sets introduced by Zadeh, C.L. Chang
[CH] defined fuzzy topological space in 1968 for the first time. In 1976
Lowen [LO] ; suggested a variant of this definition. Since then an extensive

work on fuzzy topological space has been carried out by many researchers.

Many mathematicians while developing fuzzy topology have used
different lattices for the membership sets like (1) completely distributive
lattice with 0 and 1 by T.E. Gantner, R.C. Steinlage and R.H. Warren [G;S; W]
(2) complete and completely distributive lattice equipped with order
reversing involution by Bruce Hutton and Ivan Reilly [H;R](3) complete and
completely distributive non atomic Boolean algebra by Mira Sarkar [SA] (4)
complete chain by Robert Bernard [BE] and F. Conard [ CO] (5) complete
Brouwerian lattice with its dual also Brouwerian by Ulrich Hohle [HO] ; (6)
Complete and distributive lattice by S.E. Rodabaugh[RO] (7) complete

Boolean algebra by Ulrich Hohle [HO],.

We take the definition of fuzzy topology in the line of Chang with

membership set as the closed unit interval [0,1].

0.4 About this thesis

The theory of extensions has got a rich parallel theory in fuzzy
topological spaces. Mathematicians like Cerutti, U [CE], Liu Ying Ming and
Mao-Kang Luo [Y,M] have done a detailed study in this area. But not much

work has been done regarding the theory of absolutes. In our work we are



investigating this-fuzzy absolutes. In the development of a parallel theory
based on fuzzy sets, here we can specifically notice many differences between

the two theories.

As a prelude to construction of fuzzy absolutes we have done a
detailed study of the proper analogue in the fuzzy context for the concepts like
Stone spaces, regularly closed filters and open filters. The concepts of fuzzy
filters introduced by A.K. Katsaras [KA], and fuzzy regular closed sets by

K.K. Azad {AZ], have been used for this purpose.

0.5 Summary of the thesis

The thesis is divided into six chapters including this chapter 0.

The general preliminary results which are used in the succeeding
chapters are given in the next section of this chapter. Due references are given
wherever necessary. Some of the preliminary results which are related to each

chapter are given at the beginning of the corresponding chapter itself.

The Stone duality theory was developed by Marshal H. Stone [ST]
in 1937. Using the notion of ultrafilters he introduced the Stone space of a

Boolean algebra and proved the Stone representation theorem.

In the first chapter we are doing the fuzzy analogue of this concept.
Here we define a function A:1* — P(Q(X)) where Q(X) is the set of all fuzzy

ultrafilters on X and prove some of its properties. Using this we have



introduced the Stone space of fuzzy sets denoted as f-S(X) and have proved
the “Fuzzy Stone representation theorem”. With suitable examples we point

out the differences with the crisp situation.

In Chapter 2 we have introduced the concept of fuzzy regularly
closed filters (FRC-filter) similar to the notion of fuzzy filters introduced by
A K. Katsaras [KA],. Then FRC ultrafilters are studied and an equivalent
formulation for such filters have been given. M.A. De Prade Vicente in her
paper [P;A] proved that every fuzzy ultrafilter is free. With suitable examples
here we prove the existence of fixed FRC ultrafilters. Here we have also

defined the s-fixed FRC ultrafilters in the same line as that by De Prade [P;A].

It is known that in the crisp situation the absolutes can be constructed
using open ultrafilters also. So in the third chapter we introduce fuzzy open
filters; and prove some of its properties. Also we define the fuzzy Hausdorft-
closed spaces (f-H closed space) analogues to the concept of H-closed spaces. A
characterization for f-H closed space has been given. Then we introduce an
s-continuous mapping from a topological space to a fuzzy topological space and
prove that the image of an H-closed space under an s-continuous mapping is {-H
closed. Here we have also proved that the arbitrary product nf; and the sum @f; of

the s -continuous maps f; are also s-continuous.

Using the concepts in chapter 1 and chapter 2 in the fourth chapter

we have introduced the fuzzy absolutes of a fuzzy topological space as a



subspace of fuzzy Gleason space which is the Stone space of FRC(X). Thus
associated with each fuzzy Hausdorff space there is a pair (f-EX, Kpx)
consisting of a B- extremally disconnected zero dimensional space f-EX and
an s-continuous mapping K.y which is compact (but not closed and hence not
irreducible) from f-EX into X. Significant properties of the pair (f-EX, Kyx)
are given and have proved the uniqueness of the fuzzy absolutes. Fuzzy

absolutes of sums and products of fuzzy topological spaces are also studied.

Fuzzy absolutes also can be constructed using the strong fixed
(s-fixed) FRC ultrafilters. Properties of fuzzy absolutes in this situation is

studied and identifies the differences occurring in the two cases.

In the fifth chapter we have given another construction for the
fuzzy absolutes. Instead of using the fuzzy regularly closed subsets of X we
can construct fuzzy absolutes by taking the pseudo-complemented lattice t(X)
of all fuzzy open subsets of X. It is denoted as f-E'X. Then the underlying set
of f-E'X is the fixed f-open ultrafilters on X. Properties which are proved in
chapter 4 are explicitly proved here for f-E'X. Suitable examples are given

wherever necessary.
0.6 Basic Definitions:

The following definitions are adapted from [G;S],[CH],[LO],,

[WOI,, [GK;M], [MA], [P,W] [Y:M]..



0.6.1 Definition:- Let u and y be fuzzy subsets of a non empty set X. Then
u=y=px)=yx) VxeX
LSyeu(x)<yx) VxeX
pvy=n < n(x)=max(ux), v(x)) VxeX
LAY=0 < 3(x)=min(uXx), 7(x)) VxeX.
LW=AAX)=1-ux) VxeX.
More generally, vy; and (AL;) are defined as (v)(x) =v(;i(x)) and
(A (x) = A(Wi(x)), ¥V x € X.
The symbol 0 is used to denote the empty fuzzy subset defined by
ux) = 0, VxeX and 1 is used to denote the whole set X defined by

ux) =1 Vxe X.

0.6.2 Definition:- If p is a fuzzy subset of X, then {xeX:u(x)> 0} is called

the support of p and is denoted as supp [ or co(p)

0.6.3 Definition:
A fuzzy point Xp in X is a fuzzy set in X defined by
x¥)=p (pe(01l])fory=x

=0 for y=x.

x and p are the support and value of x,. A fuzzy point x,, belongs to a fuzzy set
in X if and only if p < w(x). In this case we use the notation x,e L.

When p =1, x, is said to be fuzzy singleton.
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0.6.4 Definition [CH ]: A fuzzy topology on X is a subset 6 < 1% such that
i) 0,1 € 6.
1) Ifp,ye 6 thenpayed

i)  If p;ed for each i, then v, ed.

d is called a fuzzy topology on X and the pair (X, d) is a fuzzy
topological space or fts for short. Every member of § is called an open fuzzy

set. A fuzzy set is closed if and only if its complement is open.

0.6.5 Definition [LO];: & < I* is a fuzzy topology on X if and only if
1) for all constants o, a € 6
i) forall p,yed, payebd.

i) If p;ed foreachi, then viy; €d.

0.6.6 Definition: Let (X, T) be a fuzzy topological space. For Y < X and
Y0, 1/Y={u/Y, p e 1} is a fuzzy topology on Y. Then (Y, t1/Y) is

called a subspace of (X, 1).

0.6.7 Definition: Let {X,} ae€l, be a family of fuzzy topological spaces with
fuzzy topology t,. Let X = nX, be the usual product space and P, be the
projection from X onto X,. Then for B € 1,, P;'(B) is a fuzzy set in X. Let

S={P'(B) / Bet,, ael}. Let B be the family of all finite intersections of

members of & and T be the family of all unions of members of @. Then 1 is a
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fuzzy topology for X with ® as a base and S as a sub-base. Then (X, 1) is

called the product fuzzy topological space.

0.6.8 Definition: Let (X;, 1) be a family of pair wise disjoint fuzzy
topological spaces. Consider the set X=,X,. Define the sum topology of
{15, a€l} on I* i.e. @1, as follows. For every pe I, pe @ 1, if and only if

n/ Xq€ty . Then (X, 1, )is called sum fuzzy topological space or sum fts.

0.6.9 Definition: Let p be a fuzzy set in a fuzzy topological space
(X, 7). Then the largest open fuzzy set contained in p is called the interior of

i and is denoted as “f-int p” or p°.

ie. u’=v{l:Aet, A<Su}.

The smallest closed fuzzy set containing p is called the closure of p
denoted as ‘f-cl w’ or x.

ie. u=A{A\: Aet, A>p}.

0.6.10 Definition: Let (X, F) be a fuzzy topological space. A fuzzy subset n
on X is dense in (X, F) provided that clg(pn) =1. If (Y, H) is a fuzzy subspace

of (X,F) then (Y,H) is dense in (X,F) provided py is dense in (X,F).

0.6.11 Definition: A fuzzy topological space (X,0) is said to be fuzzy

Hausdorff or fT, if for each distinct pair of points x and y in X, there exist

open fuzzy sets p and y such that p(x) =y(y) =1 and pAy=0.
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0.6.12 Definition: Let (X, 1) be a fuzzy topological space. A family A of
fuzzy sets is a cover of a fuzzy set pifandonly if u<v { A : A € A}. Itisan
open cover if and only if each member of A is an open fuzzy set. A sub cover

of A is a subfamily which is also a cover.

0.6.13 Definition: Let (X,d) be a fuzzy topological space. Then the family
[8] of supports of all crisp subsets in § is an ordinary topology on X. Then the

topological space (X, [8]) is called the background space of (X,3).

0.6.14 Definition: A function f:X—I is lower semi continuous if and only if
for each aef’' (a,1] is open in X. The characteristic function xa:X—[0,1] is

lower semi continuous if and only if A is open in X.

0.6.15 Definition: A space X is zero dimensional if and only if each point of

X has a neighbourhood base consisting of clopen sets.

For the elementary definitions and results in topology references

may be méde to [WI], [JO]. For the theory of Stone space and absolutes to
[P;W],[WA].

%k 2k 3k %k %k %k %k 3k %k %k %k %k
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CHAPTER - 1

STONE SPACE OF FUZZY SETS®

1.0 Introduction

Using the notion of ultrafilters, Marshal H. Stone [ST] introduced
in 1937 the concept of Stone space of a Boolean algebra and developed the
Stone duality theory. The set of all clopen subsets of an arbitrary space forms
a Boolean algebra with respect to the unions and intersections. He proved that
any Boolean algebra is isomorphic to the Boolean algebra of clopen sets of a
unique compact zero dimensional space. This is termed as Stone
representation theorem. The absolute of a topological space X, constructed by
[liadis in 1963, mainly based on the Stone space of the set of all regular closed
subsets on X. So as a prerequisite for the construction of fuzzy absolutes, in

this chapter we are doing the fuzzy analogue of the concept “Stone space”.

If X is any non empty set, the set of all fuzzy subsets of X i.e. I
forms a pseudo Boolean algebra with pseudo complement defined as
p'(x) = 1- uw(x), x €X, So the concept of Stone space can be extended to I".
The notion of fuzzy filters introduced by A.K. Katsaras in [KA]; has been

used for this purpose.

® An earlier version of this chapter has been published in the proceedings of the Annual Conference of
Kerala Mathematical Association and National Seminar on Analysis and Applications,
26-29 March 1999.
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In the first section of the chapter we give the necessary preliminary
ideas. In section 1.2 we define a function A: 1I* > P (Q (X)) and prove some
of its properties. Here QQ(X) denotes the set of all fuzzy ultrafilters on X. Using

this we introduce the fuzzy analogue of the concept “Stone space”

In the third section we prove the “Fuzzy Stone representation
theorem”. Since we have only pseudo components in I* and not complements,
some results in crisp theory have no proper analogue in the fuzzy setting. With

suitable examples we point out these differences.

1.1 Preliminaries

We use the notations L, ¥, & etc to denote the fuzzy subsets on X,

to fuzzy filters and W. ¥ etc to fuzzy ultrafilters.

1.1.1 Definition [KA];: A fuzzy filter F on X is a non empty subset of
1* satisfying
i) Ae F,u =2k imply pe ¥
ii) A, u e FimpliessA Ape F.
i) Og F
1.1.2Definitions [P;A]: A non empty subset B of 1*is a base for some fuzzy

filter if i) for By, B, € @, there exists B; € @ such that B; < B, A B,

and 1) 0 ¢ B.
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The collection ¥ ={F e€1*/ 3 B e®B : F > B} is a fuzzy filter.

Fis said to be generated by B.

A subset B of Fis a base for F if for each F € &, there is some

B e Bsuchthat B <F.

If F,and ¥, are fuzzy filters on X, F, is said to be finer than ¥, if

andonly if > F,.

A fuzzy filter Fon X is a Fuzzy ultrafilter [f-ultrafilter for short] if
there is no other fuzzy filter finer than . That is it is a maximal filter with
respect to the inclusion relation.

1.1.3 Result [KA] ;:
1) Every fuzzy filter is contained in a fuzzy ultra filter

i)  If wis a fuzzy ultrafilter on X, then for every p € 1*, either p € W

orl-u e W

iii) A fuzzy filter Fis a fuzzy ultra filter if and only if every A e 1* with

AAp=0 forall pue F belongsto F.

1.1.4 Result [S; G): If W is a fuzzy ultra filter on X, then A vp e w (A ,uel’)

ifandonlyif Ae UWorpe U.
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1.2 The Stone space of Fuzzy sets

1.2.1 Definition: Let (L, v, A) be a lattice with 0 and 1 as the smallest and
largest element respectively. Then L is said to be pseudo complemented if for
each a € L, there is associated a unique a' such that

1) (@) =a forevery ae L

i) 0=1land1'=0

) (avb)y=(aAb)and(anb)=avb
Note: If furtherava =1land ana'=0 V ael thenL is complemented.

1.2.2 Definition: A distributive lattice which is pseudo complemented is

called a pseudo Boolean algebra (or p-Boolean algebra for short).
Note: I*, the set of all fuzzy subsets of X forms a pseudo Boolean algebra.

1.2.3 Definition: If A and B are any two p-Boolean algebras, then a function
f: A>B is said to be a p-Boolean homomorphism (or homomorphism for
short) if

1) f(avb)=f(a)vf(b)

ii) f(anb)=f(a) f(b)

i)  (f(a)) <f(a)

Let f be bijective. If both f and f "' are homomorphisms, then f is

called a p-Boolean isomorphism or just isomorphism.
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1.2.4 Definition: A p-Boolean algebra is complete if it is complete as a lattice.

1.2.5 Definition: Let X be any non empty set and Q(X), the set of all fuzzy

ultrafilters on X. For u e 1%, define A(p) = {u e Q (X): u € u}.

Then A is a function from I* into P (Q (X))

1.2.6 Result: Forany p,y e1*.
i) A(0) =¢ and A(l)=Q(X)
i) AMEvy)=AEUA®)
i) AEA)=AENA®Y)
v) (AW cAW)
Proof :
) AO0)={ueQX):0ecu}
Since there is no ultrafilter containing zero, A (0) = ¢.

When 0 ¢ w, by 1.1.3 (ii), e wW. Therefore every ultrafilter
contains 1. i.e. A (1) =Q (X).
i) Ue A(Uvy)=>uUuVvYyeU.
>upeuorvyeu (byl.ld)
>UeA(porue A(y)

>ue AWVUA()

VeA(WUA(l) =>TVeAor veA(®y)



i) weA(unay)

VeA(WnNA(®)

18

=D He VYor ye v

=V e A(uvy)

There fore A (L v y) =A (1) U A (y)
D UAYe U

= peuandy e u (by l.1.1)(i)
> uUueA()and Ue A(y)
=>UeAp)NA®Y).

=>VeA(and Ve A(y)

=>pePVandye v

=>uaye v (byl.l.1.(i1))

=>VeA(LAY)

Therefore A (uAY)=A (L) N A (Y)

(iv)Let wu e (A(w)'. Then e A (n)

iepg W Thereforeby 1.1.3 (ii) p'e U. 1e. U eA (y).

Therefore (A (1)) < A (1).
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1.2.10 Note: For any set Y, B(Y) represents the set of all clopen sets in Y.

Therefore, {Ap): pe 1*} < B(f-S (X)).

1.3 Stone representation theorem for fuzzy sets

1.3.1 Definition [P;W]: A space X is zero dimensional if B(X) is an open

base for X.

1.3.2 Theorem:- Let X be any set and f- S (X) be as defined in 1.2.8. Then
a. f- S(X)isacompact. T,, zero dimensional space.
b.  {A(n): pet*} =B (f- S(X))

¢. A isahomomorphism from 1* onto B (f-S (X))

Proof:
a. Let F be a filter of closed sets in {-S (X) and

G ={pe!*: A(n) o F forsome Fe F}

{A(p) :n € 1"} is a base for closed sets in {-S (X)

SNF=n{A®y):y G}
Let 1y, 42 €G. Then there exist F; and F, in Fsuch that A (4;) o F,

and A(p,) 2 Fs.

Awap) =AE)NA(K)

>FinF, whereF|nF, e F

JMA N E G.
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Let up € G and p, > p. Since p € G, there exists Fye F such that

Frc A(pw) € A (w)-
~.u€ G and hence G is a fuzzy filter.

So by 1.1.3(1) there exists an f-ultrafilter U e f-S(X) suchthat G c u.
Therefore pe wandso L € A(n); neG.

Therefore, U € N {A(p): peG} .i.e. U € NF.

Therefore NF = ¢. Hence f-S(X) is compact.

Let uand ¥ € f-X) such that u= v

Therefore there exists p € 1*such that pe u but not belongs to V.

ieuUe A(p) and pe .

Since pg ¥, by 1.1.3(iii), there exists y € ¥such that p Ay =0.

Therefore A(uAy)=4¢

re. A(u) N A(y)=¢ where U €A (p) and Ve A (y). Also A () and A (y) are
open in f-SX).

Therefore f-S(X) is Hausdorff.

By result 1.2.9, A (p) is clopen in f-S (X) and {A (p): pe1*} forms
a base for f-S(X). Therefore by definition 1.3.1 f-§(X) is zero dimensional.

That is f-S(X) is a compact, T, zero dimensional space.
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b)  Bynote 1.2.10 we have { A (u):p el* } B (fSX)) -(1)
Now, let C € B (f-S (X))

Since C is open, there exists a non empty subset D of 1* such that
C=uU{A:peDb}

C is also closed and so compact. Therefore there exists a finite subset H of D
such that

C

U{A(y):yeH}

A(v y :yeH) by result 1.2.6 (i)
=A(M) wheren=v{y:yeH} el*
ie, C e {A(n):pe ¥}
CBESX)) c{AW:per} -(2)
Hence B (-S(X)) ={A(uw):pe ¥}

(c) By part b) we have B (f-S(X) ) = { A () : pe1* } where

AW ={ UeQ(X): e U}

Therefore , A is a function from 1* onto B (f-S(X) )

Also by the result 1.2.6 A is a homomorphism. Therefore A is a

homomorphism, from1* onto B (f-S(X) ) .

1.3.3 Remark: The function A from1* onto B (f~S(X) is not one to one in

general.

Example:- Let X be any non empty set .
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Define p and y from X to [0,1] as p(x)= y(x) for every x # xo and p(xg) > (o).

Then p = y.

Let Fe A(p). 1.e.pe F

Therefore p A F 0 for every Fe .

i.e. F(xg) # 0 for every Fe F

There fore (YAF)(x¢)2 0 , VF € F

ie. yAF 20, VFeF

There fore by 1.1.3 (iii) y € F and so F €A (y).
LA S A(Y)

Similarly the reverse inclusion also holds.
SoA(W)=A(y), butp #y.

1.4 B- extremally disconnected space

1.4.1 Definition: A topological space X with a clopen basis B is said to be

B- extremally disconnected if and only if the closure of every open set in X is

contained in a basic open set.

1.4.2 Result: Any dense subset of a B-extremally disconnected space is also

B- extremally disconnected.
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Proof:

Let X be a B-extremally disconnected space and H be any dense

subset of X.
Let V be any open set in H. Then V =H n W, where W, is open in X.
Therefore cl, V =cl(HN W,)

=cl(H) necl W,

=X nNncl(Wy))=cl (W)

Since W, is open in X and X is B-extremally disconnected, there
exists a basic open set W, in X such that cl (W) c W,.
Therefore clxV = clx(W;) € W,.
H o clxV ¢ H N W, ;where H n W, is a basic open set in H.
Thatis clyV c HN W,.
Therefore H is B- extremally disconnected.

1.4.3 Theorem: Let X be any non empty set. Then {-§(X) , the fuzzy Stone

space of X is B-extremally disconnected.

Proof: Let U be any arbitrary open set in f~SX). Since {A (i):ne1* } is an open

basis, there is a non empty subset D of 1* such that U= U{A () : i € D}.

I*¥ is complete. Therefore v ; exist.
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Letv {i;: pieD}= vy. Then u;<7y foreveryi.
CA(W) € A(Y)
So VA() cA(y), A(y) isclopen
ie. U c A(y)
e U)c A -(1)

Hence f-S(X) is B- extremally disconnected

1.4.4 Note: The reverse inclusion of (i) does not hold in the case of non

Crisp sets.

Example:

Let X be any non empty set with at least two distinct points X, and X
Define uy: X—[0,1]as pui(x,)=1/3 and puy(x) =0, ¥V X # X,.

Now U [x] = {ue 1*: u(x) > 0} is a fuzzy ultrafilter on X.

Let f-S(X) be the Stone space of X. Then {A{u) :pe1*} is a basis

for open sets in X.

Consider the open set U= A ().

This open set will contain the ultrafilter U [x,]

Define 1 : X — [0,1] as pp(x) = 1/3 forevery x € X
Then py <y, . Therefore A (1)) < A (up).

Thatis U < A (M) , where U= A (u;)
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Therefore cl (U) < A (i) (D
Now let ¥ = { p e I":ux;) >0, for x;#20} . Then v is a fuzzy

ultra filter on X.

Then v contains p, but not ;.
LV eAlw)and ve A(p)=U
Therefore A(p,) « U.

1.4.5 Conclusion

Let X be any non empty set and A be any (crisp) subset of X. If Fis

an ultrafilter on X and A € F, then A°g Fsince A N A°= ¢. But in the case of

fuzzy ultrafilter 4 on X, pe W does not imply that p'¢ W as p A p' need not

be equal to zero. Due to this inherited draw back in fuzzy filters, some results

in the crisp set theory may not be true in the fuzzy context.

% 2k %k ok ok %k ok %k ok %k % %
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CHAPTER -2

FUZZY REGULARLY CLOSED FILTERS®

2.0 Introduction

A subset A of a topological space X is said to be regularly closed if
A =cl (int A) and regularly open if A = int (clA). The analogous concept
“Fuzzy regularly closed sets” was introduced by K.K. Azad in [AZ] ,. He
proved that the closure of every fuzzy open set is fuzzy regularly closed and

interior of every fuzzy closed set is fuzzy regularly open.

Corresponding to a given a topological space (X,T), always there is
a generated fuzzy topology «(T) consisting of all lower semi continuous
functions from [X,T] to [0,1]. Similarly corresponding to each fuzzy
topological space (X,F) there is an associated topology /(F) which is the
weakest one such that every element of F is lower semi continuous . [f A ¢ X
is regularly closed in X, then y, is fuzzy regularly closed in the corresponding
generated fuzzy topology and conversely if yp is f-regularly closed in the
fuzzy topological space (X,F), then B is regularly closed in the corresponding

associated topology.
FRC(X)- the set of all fuzzy regularly closed subsets of X is a partially
ordered set with respect to the usual ‘<’ relation. Also it becomes a lattice with

‘A’ and ‘v’ defined by pv y = p w vy and p Ay=f-cl(f-int (u M ¥)).For p e FRC(X),

® Some results of this chapter were communicated to fuzzy sets and system.
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taking the complement as p° = f-cl (1-p) = 1— f-int p, in the first part of section

2.2. we prove that (FRC(X), A,v) is pseudo complemented and complete.

In [BI] it was proved that the set of all fuzzy regularly closed

subsets of a B-fuzzy topological space form a fuzzy Boolean algebra.

In the next section we define the fuzzy regularly closed filters
(FRC-filter for short) similar to the notion of fuzzy filters introduced by
A K. Katsaras. The FRC ultrafilters are defined and an equivalent formulation
has been given for such filters. Properties of fuzzy filters given by 1.1.3 and

1.1.4 hold good for FRC filters also.

M.A. De Prade Vicente in her paper [P;A] proved that every fuzzy
ultrafilter is free. In the third section of this chapter with suitable examples we
prove the existence of fixed FRC-ultrafilters and we obtain a characterization

for such ultrafilters.
2.1 Preliminaries

Throughout this chapter (X.,t) or simply X represents a fuzzy
topological space in Chang’s sense [CH]. Also we use the notation ‘v’ and ‘A’ for

lattice union and intersection, and ‘U’ & ‘Y’ for fuzzy union and intersection.

2.1.1 Definition]AZ},: A fuzzy subset p of (X, T) is said to be fuzzy regularly
closed if p=p°and fuzzy regularly open if p= W where p°= Vi : Aet, A<}

and i= A {y:y et,y>p}.
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2.1.2 Result:

a. Given a topological space (X.T) and B regularly closed in (X.T), then yg is

fuzzy regularly closed in the corresponding generated fuzzy topology (X, Fr).

Conversely, given a topological space (X,T) and yp fuzzy regularly closed in

(X, Fr), then B is regularly closed in (X, T).

b. Given a fuzzy topological space (X,F) and B regularly closed in the

associated topology /(F). then ygis fuzzy regularly closed in (X,F).

Conversely given (X,F) and yxp fuzzy regularly closed in (X,F) then B is

regularly closed in /(F).

2.1.3 Definition [P;A]: A fuzzy ultrafilter & on X is said to be free if A U =0
and is fixed if A u=0

2.1.4 Proposition [P;A]: Every fuzzy ultrafilter is free

2.1.5 Definition [P;A]: A fuzzy ultrafilter ¥ is strong free (or s-free) if and

onlyif "{suppF/F € ¥} = ¢ and s-fixed if "{supp F/F e F} # ¢.

If N{supp F/F € ¥} # ¢ and F is a fuzzy ultrafilter, then the
intersection must be reduced to a single point. The only s-fixed fuzzy

ultrafilters are 3, = { F € I"/ F (x) > 0} called tivial f-ultrafilters.

2.2 Fuzzy regularly closed filters

2.2.1 Definition: Let FRC (X) denote the set of all fuzzy regularly closed

subsets of a fuzzy topological space X. Then for pu, y € FRC (X) define p <y
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if and only if p(x)< y(x) for every x e X. Then ‘<’ is a partial order on FRC(X)
and hence FRC(X) is a poset.

If pand y € FRC (X), p v y is fuzzy regularly closed. But p my
need not be fuzzy regularly closed. So define uyvy = p U yand p Ay = f«cl

(fint (0 7). Then (FRC(X), < ) is a lattice.

2.2.2 Result: For a fuzzy topological space X, (FRC(X),K) is pseudo

complemented .

Proof: For u e FRC(X), take u°= f-cl(1-p) = I~ f-int (1))
(@ (1) = fecl(1-p) = f-cl (I-f-cl(1-p))
= fecl (1- (1—f-int p))
= fel (frintp)=p
b) Ay = fel(l- (pAy)
= fcl(1-f-cl (f-int (L N y)))
= fecl (f-int (I-f-int (L O ¥)))
= fecl (f-int ((1- f-int p) U (1= f-int y)))
= fecl ( f-int (LU YY)

= (W UY)=pivy

frel (1= (pvy) = f=cl(1-(u U y))

= f-cl(1~ f-cl( f-int (L U Y)))

(©) (uvy)

= fecl (1-[f-cl ( f-int w) U f-cl ( f-inty)] )
= fel ([I- fcl (f-int w)] A [1-f=cl (f-inty)])

= f-cl [f-int (1-f-int p) N f-int (1- f-int y)]
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f-cl (f-int [ (1-f-int p) N (1=f-int y)])

f-cl (f-int (W N Y = pu°AYe

~(FRC (X), <) 1s pseudo complemented.

2.2.3 Result: For a fuzzy topological space X, (FRC(X), <) is a complete

lattice .

Proof: Let A, be members of FRC(X). Then we show that,

a) Ag Ag = f=cl ( f-int (MgAy)) b) VoA =f-cl (f-int (UgAy)).
a) Put m=f-cl (f-int ("xAy)). Then ne FRC(X).

N A< A, forevery a.

Sofel (f-int (MAg ) <Ay 1.e.m < Ag.

Therefore m is a lower bound of A,

Let e FRC(X) such that & < A, for every a.

Therefore 6 < NMA,.

Therefore f-cl (f-int 8) < f-cl ( f-int (M A)).
i.e. & < f-cl( f-int (M Ay)).

ie.d<.

..M is the greatest lower bound.

Hence Agq A= f-cl( f-int( N Ay)).

b) Now put p =f-cl ( f-int (Ughy)). Since p is the closure of a fuzzy open set,

u is fuzzy regularly closed. ie. pe FRC(X).
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Ughe 2 A4 for every a.
Le. f-el (f-int( Ay)) < f-cl (f-int (Ughy)) . 1. Ay < .
.. wis an upper bound of A,
Lety eFRC (X) such that A, <y for every a.
Then (Ughy) < Y.
sfel (feint (Ughy)) < feel(f-inty ) =vy. ie. u<y.
Therefore p is the least upper bound
2 Vahoe=T-cl ( f-int (UgAy)).

Therefore ( FRC(X), <) is a complete lattice.

2.2.4 Definition: A fuzzy regularly closed filter (FRC —filter for short) Fon X

is a non empty subset of FRC(X) satisfying,

i) A€ F and pe FRC(X) such that u>A imply pe F.
i) A,pe Fimplies A Ap e F
i) O0g¢€F
The following definitions are analogous to those by M.A. De Prade [P;A]

2.2.5 Definition: A subset 8 of FRC(X) is a base for some FRC filter if and

only if 8# ¢ and (1) if py, o € Bthen p3< py A p, for some p; € B. (i1) 0 ¢ B.

The collection F= {u € FRC (X): 3y € Band p > y} is an FRC

filter. Then F is said to be generated by B.
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A subset B of FRC(X) is a base for F if and only if for each

pef, thereisa y € @and y<p.

If F,and ¥, are FRC filters on X, ¥, is said to be finer than F, if
and only if ¥; > F,. An FRC-Filter Fon X is an FRC ultra filter if there is

no other FRC filter finer than F.

2.2.6 Definition: Let F be an FRC filter on X. Then a (crisp) regularly
closed subset Y of X is said to be included in ¥ if and only if every fuzzy

regularly closed subsets of X with support Y is an element of F.

2.2.7 Theorem: If Fis an FRC-Filter on X, then the following are equivalent.
1) Fis an FRC-ultrafilter
ii) Letpe FRC(X). If p ¢ F then there is somey € F such that uAy=0.

iii) LetY be a (crisp) regularly closed subset of X. Then either Y or Y° is

included in F where Y°= cl (X/Y).

Proof:i- i) =i1) Let p ¢ F If p Ay # 0 for every ye F the collection

B={uAy:ye F} is abase for an FRC filter which is finer than ¥, contradicting 1).

Therefore there exists at least one ye F such that p Ay =0.

ii) = iii) Let Y be a regularly closed subset of X. Suppose both Y and

Y° were not included in F. Therefore there exist u, y € FRC (X) with supports
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Y and Y° respectively such that both do not belong to F. By part ii) if u ¢
there exists a & €F such that pu A & = 0. Similarly there is an neF such that
yAn=0.
Supp p =Y. Therefore p(x) #0 for every xeY.
So 6(x) =0 for every xeY.
Supp Yy =Y* .. y(x) # 0 for every xe Y®and so n(x) = 0 for every xe Y*.
= (6 An)(x) = 0 for every xe X.

1.e. & Ay = 0 which is not possible since 8, n € F. Therefore either

Y or Y¢is included in F.

iil) = (1) [If F is not an FRC —ultrafilter, let G > F Let yeG such
that y¢ Fand supp y =Y. Therefore Y is not included in F Hence by (iii) Y°
is included in F. That is any fuzzy regularly closed set & with support Y*
belongs to F and hence in G. Therefore y Ad € G which is not possible since

¥ A 8=0. Therefore ¥ is an FRC ultrafilter.

2.2.8 Proposition: Every FRC filter is contained in some FRC-ultrafilter.
Proof:- Follows from Zormn’s Lemma.
2.2.9 Proposition: If © is an FRC ultrafilter on X then for every pneFRC(X)

either pe U or p°e W where p°= f-cl(1-p). (Proof is similar to that for fuzzy
p

filters by Katsaras [KA]; ).
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Proof:- Suppose both p and p° do not belong to W. Therefore by theorem 2.2.7
(ii), there exist y and & € W such that y Ay=0and p° A 8§ = 0.
SpAYAd=0and P AyAS=0
le.pA(yAd)=0and u° A(y Ad) =0
yAd #0 sinceyand & € W. Therefore there exists at least one x5 € X

such that (y A 8)(xg) # 0.
~ 1(Xo) = 0= p° (x¢) which is not possible since u°(xq) = f-cl (1-u(xg)) # 0.

Therefore either p or u© belongs to W.

2.2.10 Remark: In general topology if & is an ultrafilter on X, and if A is a

regularly closed subset of X such that A € F,then A® ¢ Fsince A NA°= ¢.

Here in the case of fuzzy regularly closed filters. If w is an FRC-

ultrafilter, pe W does not imply that pu® ¢ w. But if A is a (crisp) regularly
closed subset of X such that A is included (in the sense of definition 2.2.6) in

u then A® is not included in w.
2.3 Fixed FRC-ultrafilters

2.3.1 Definition: An FRC-ultrafilter & on X is said to be free if A &4 = 0 and is

fixedif A U= 0 Where A U=A{p :pe U}

2.3.2 Note: Proposition 2.1.4 states that every fuzzy ultrafilter is free. But if
we consider FRC ultrafilters on X such a result is not true. The following

examples illustrate the existence of fixed FRC -ultrafilters.
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2.3.3 Example: Let R be the set of real numbers with usual topology.
Define u; & , from R to [0,1] as
1 (0) =1/4, u(x) =0 forevery x=0.

L(0) = 4/5, ny(x ) =0 for every x =0.

Let F be the fuzzy topology generated by usual crisp topology R, u,
and p,. Now consider the associated topology /(F) of F. i.e. / (F) is the smallest
topology on X which makes every element of F lower semi continuous . p;
and Y, are lower semi continuous only if {0} is open in / (F). Therefore / (F) is
the topology generated by usual open intervals in R and {0}. Then the closed

intervals in R and {0} are regularly closed in /(F). Let u be the set of all
regularly closed sets in / (F) containing zero. Then © is a fixed ultrafilter in
[(F)and n u={0}.

Let F={ ya: Ae U}.

Then Fis an FRC-filter. Therefore by proposition 2.2.8 there exists
an FRC ultrafilter & containing . Then U contains elements of F and fuzzy
regularly closed sets formed by p;' and p,". Since ¥ € U, A U is always a
fuzzy point with support zero. Also A U (0)=1/5. i.e. A U 0.

Therefore w is fixed.

2.3.4 Example: Consider R with usual topology .Define u: R —[0,1] as

1(0) = 1/4 and p(x) = 0 for every x #0. Let R be the fuzzy topology generated
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by usual crisp topology R and p. Then f-closed sets in R ¢ are of the form

K K's Xk A W where K is any closed set in R

Let Ko= [a,b] be any closed interval in R where a= 0 or b # 0.
f-int ko= f-Int Y (ab)= X (ab)

f-cl (f-Int X (ap)) = Xjab] = Xko

" ko 18 fuzzy-regularly closed in R ;.

Ifb=0,f-int Y a0 =A@y VH -

Therefore f-cl(f-int ¥ (201 ) = X @y A H' -

That is X (a0 is not f-regularly closed. Similarly % (o) is also not

f-regularly closed.
frint p'=x R0y v 1
f-cl (f=int p' )= '
.1 1s f-regularly closed.
In a similar manner we can prove that y;, xx A W, 1,0 are

f-regularly closed in Rg. Let FRC(R i) be the set of all fuzzy regularly closed

subsets of Ry.
Define F = { p € FRC (R ): u(0) >3/4}.

Then F is an FRC -filter. Let 4 be the fuzzy ultrafilter containing . Then
A U(0) = 3/4.

~.A U#0. Therefore, wisa fixed FRC-ultrafilter.
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2.3.5 Result:

co(r)cN{og(u):peu} where A U =A{p:pn € Uland o

(1) = {x € X: p(x) >0}.

Proof: Letx ecy(Al). Then (AU )(Xx) = 0.
Thatis p(x) =0 for every u € W.
le.xeog(n) Vpue W
leexen{og(n):peul

~.0g (AU) € N{ oo (i) pe U}

2.3.6 Theorem :- If w is a fixed FRC-ultrafilter on X, then
1) N {oo(K) :1 € U } contains exactly one point

i1) A U is a unique fuzzy point.

)] By the result 2.3.5 oo (AW) € M {op() :n € U} . Since U is fixed,
A U #0. Therefore there exists atleast one xe X such that AuU(x)=0.

So oo(~l) = ¢. Hence M {(oo(p):n € U} # ¢.

Suppose N{oy(n):neU } contains two points x and y and x=y. Let
A be a regularly closed subset of X containing x but not y. Since U is an FRC-
ultrafilter by 2.2.7 (iii) either A or A® is included in w. If A is included in u,

then the set of all fuzzy regularly closed subsets of X with support A belongs

to U. Therefore no fuzzy regularly closed subsets of X with A® as support can
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belong to U .So y cannot belong to M(og(p):pe U}. Therefore N{oy(p):pe i}

contains exactly one point.

i) By part 1) and result 2.3.5 oo(Al) is a singleton. .. AlLis a fuzzy point.

Let oo (AW) =x¢ and p, q be two distinct fuzzy points with support Xq.
Choose p ( # 0 and 1) belonging to FRC(X) such that p € f-int p and q .
i.e. p(xg) < f-int p(xp) and q(xg) > K(Xo).

Letp € Al

Then p(xo) < (AU)(Xo)-

Therefore, p(xg) <y(xo), V y€ W.

i.e. p(Xp) < (f-int (LAY)) (Xo)

o f-int (u A y) #0.

Hence p Ay #0 V ye U . So by theorem 2.2.7, peu . But qep . Therefore
qé AU

Hence Al is a unique fuzzy point.

2.3.7 Definition:- An FRC-ultrafilter & on X is said to be strong fixed or

s-fixed if AU=0and { oo(p):peu } #¢.

2.3.8 Remark:- In this case also we can prove that {co(u):pLe U} is singleton.

Then such ultrafilters are only of the form u [x] = {peFRC(X):u(x)>0} which

are called trivial FRC-ultrafilters.
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CHAPTER -3

F-OPEN FILTERS AND F-H CLOSED SPACES®

3.0 Introduction

It is known that in the crisp situation the absolute of a topological
space can be constructed using the open ultrafilters also [P;W]. The set ©(X) of all
fuzzy open subsets of X forms a pseudo complemented lattice with
p’= 1- f-cl(u) = f-int (1- p). Therefore as in the case of topological spaces fuzzy
absolutes also can be constructed using f-open ultrafilters. So in the first section
of this chapter we introduce fuzzy open filters. Fuzzy open ultrafilters are defined
and an equivalent formulation for such ultrafilters has been given. Using the
concept of adherence of an f-open filter we define fixed f-open ultrafilters and
they are used to characterize the convergence property of a filter. Here also some
results in the crisp topology are not true in the fuzzy context. Counter examples

are given where strict analogous results are not possible.

A space X is said to be H-closed if it is closed in every Hausdorff
space containing X as a subspace. In section 3.2 we give the fuzzy analogue of
this concept “Fuzzy Hausdorff closed” or (f-H closed) spaces. The
characterization for f-H closed spaces given here establishes the relationship

between the f-H closed spaces and their f-open filters.

® Some results of this chapter were presented in the Annual Conference of Kerala Mathematical
Association at Kottayam, December 200].
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In the third section we introduce an s-continuous mapping from a
topological space to a fuzzy topological space and prove that the image of an
H-closed space under an s-continuous map is f-H closed. Here we have also
proved that the arbitrary product nf; and the sum &f; of the s -continuous maps

f; are also s-continuous.

3.1 f-open filters:

3.1.1 Definition: Let (X,5) be a fuzzy topological space. Then Fc § is said to

be a fuzzy open filter or f-open filter if it satisfies the following conditions.

i) XAe Fand pe dsuchthatp>Aimply pe F
ii) A, pe Fimplies AAp e F
i) O¢ F
3.1.2 Note: The f-open filter basis and f-open ultrafilter can be defined as

in 2.2.5.

3.1.3 Definition: Let F be an f-open filter on X. Then a crisp open subset Y
of X is said to be included in F if and only if every f-open subset of X with

support Y is an element of F.

3.1.4 Theorem: Let F be an f-open filter on (X.5). Then the following are

equivalent.

i)  Fis an f-open ultrafilter.

ii) Letued.Ifu¢ F, thenthereissome ye€ F suchthatpay=0
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iii) Let Y be a crisp open subset of X. Then either Y or Y°is included in

F where Y= X \cl(Y)

Proof: Similar to that of theorem 2.2.7.
3.1.5 Note: Propositions 2.2.8 and 2.2.9 also hold good for f-open ultrafilters.

3.1.6 Definitions:

a. An f-open ultrafilter & on X is said to be fixed if a(u ) = /\{;—1 ‘n e U} #0and

free if a () = 0. a (W) is called the adherence of f-open ultrafilter .

b. Ifx, is a fuzzy point in (X, 6 ) with support X, then N(x,) = {pe & :p < p(x)}

is called the set of neighbourhoods of x,,.

3.1.7 Definition: Let x;, be an f- point in X. Then an f- open filter F on X is
said to converge to X, if N (x,) © F and it is denoted as ¥ — x,,. The point

Xpis said to be a cluster point of F if u A F# 0 for all Fe Fand pe N (xp).
3.1.8 Lemma:

Let X be a fuzzy topological space and U be a fixed f-open ultra

filter on X. Let x, be a fuzzy singleton in X. Then x, € a (W) =N (x;) € W

Proof:
Suppose x, € a (W) where a (W) = A {j1: peu}
Thena (W) (x) = 1.

Thatis A {p: p € U J(x)=1
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Therefore, w(x) =1 forevery neu.

Letd € M(x,) and y be any arbitrary element of w. Then 8 (x)=1 and v (x) = 1
Therefore (8 A Y)(x)=landsod A ¥=0.

If 8Ay =0,theny<?d° iey< &

¥ (x) < 8°(x), for every xeX which is not possible.

There fore d Ay = 0

1e.d Ay =0 for every ye W.
Therefore 6e U ( by the theorem 3.1.4(ii) )

Therefore N(x,) CU.

3.1.9 Remark: In the case of non crisp sets the converse of 3.1.8 need not be

true as is seen from the following example.

3.1.10 Example: Let X ={a, b, c}.

Define p; ppand pj from X to [0,1] as

@) =3 bi(b) = pi(€) = 0
po6) =, a(@) = pa(€) = 0

us(c) :%, H3(@) = p3(b) =0

Then t={0, 1, u, Mo, U3, HiVH2, HIVH3, KoV liVHaVH3] s a fuzzy

topology on X. Then the closed sets are {0,1, pui', po' 43, (H1VH2)', (H2VH3),

(WivHs), (HIVHaVH3)},
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Let w={1, u;, WwivHy, HiVH3, WVHVUs}h. Then w is an f-open
ultrafilter.
a() =A{lu:pe u}

=A{L WV IV s = Vi v,

Now, consider the fuzzy singleton a;. Then
May) = {neuX):u@) =1} = {1}

~Na)cu.

But a (u) (3)= (HiviavHy) (2) = - #1

| —

soarg a(w).

3.1.11 Result: Let U be an f-open ultrafilter and x,e a (&) . Then x, is a

cluster point of W.

Proof:

If w is an f-open ultrafilter and x,&€ a (u) then by lemma 3.1.8
N(x,) C U.
Therefore pAF =0 forevery pe N(x,) and Feu.

Thatis X, is a cluster point of U.

3.1.12 Lemma: Let C(u) denote the set of all cluster points of w. If U is a

fixed f-open ultrafilter then C(u) contains exactly one point.

Proof: Since w is fixed a (W) = 0 and so C (W) # ¢.
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Let x; and y, be two distinct fuzzy singletons such that both belong
to C (W). Since X is fT,, we can have pe N (x;) and ye N (y;) such that
puAy=0.If x; and y; are cluster points, then u AU # 0 and y AU # 0 for every

Ue w. Therefore pe wand ye u which is not possible.

Hence C(u) contains exactly one point.

3.2 f-H closed spaces: -

3.2.1. Definition: A fuzzy topological space (X,d) is said to be closed in (Y,7)

if ClyX = X. (Closure is with respect to the fuzzy topology of Y).

X is said to be fuzzy Hausdorff closed or (f-H closed) if X is closed

in every fuzzy Hausdorff space containing X as a subspace.

3.2.2. Theorem:- For a fuzzy topological space X , the following are

equivalent.

1) X is f-H closed

ii) Every f-open filter on X has a non empty adherence .

ii) For every f- open cover of X , there is a finite subfamily whose
union is dense in X

Proof:

)=ii) Let (X, d) be f-H closed and Fbe an f-open filter on X

such that a () =0 where a (F) = A{ W ope Fl

LetY=XuU{ F}.
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Define u to be f-open in Y and write pet if p A X is open in X
and Fep implies p A X € F
Thenpjand pye t=> A X € 8 and py A X € 8.
L (M AM) AX € 4.
FeyyAnpm= Fe pyand Fep,
= (A X) € Fand (uaX)e F.
S (WmAp)AXe F
SULA Y €T
wet=>upAXed and F ey, implies y; AXe F
Then (vp) AX =v (A X) e dand (v, A X) € F
Therefore vy, € T.

That is (Y,t) is a fuzzy topological space and X is not closed in Y.

Since X is fuzzy Hausdorff, for every distinct fuzzy points in X we

can have disjoint f-open sets in Y.

Let x, be a fuzzy singleton in X with support x. Since a(F) = 0,
a(F)(x) = 0 for every xe X. i.e. there exists some y € F such thaty (x) =0, i.e.
y(x) = 0. Then there exists an open neighbourhood 1 of x, such that yAn=0.

Therefore, y U { F } and n are disjoint open neighbourhoods of Fand x,in Y.

Therefore Y is Fuzzy Hausdorff . But X is not closed in Y. Thus X

is not f-H closed.
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Therefore, X is f-H closed = a (F) = 0.

i)=1)  Suppose every f-open filter on X has a non empty adherence. To

show that X is f-H closed .

Suppose X is not f-H closed. i.e., there exists a fuzzy Hausdorff
space Y such that X is a subspace and cly( X ) # X. Let x, be a fuzzy singleton

incly( X ) \ X with support x.

Let F={paX:pet,x)=1}. ThenO ¢ F.

yiandy,e F= vy = waX, p(x) =1
2 = mAX, p(x)=l
Vi, = (mAap) A X, (iap)(x)=1

Therefore y Ay, € F.
If6>yandy € , then de F. Therefore F is an f-open filter on X.
a(H=n{ p:ipeF).

Y is fuzzy Hausdorff. Therefore for every distinct fuzzy singleton

in'Y, there exist f-open sets y and d such that yAd=0
Therefore a (F)= 0, which is a contradiction.

Hence X is f-H closed.
ii)=iii))  Suppose every f- open filter on X has a non empty adherence.
Let C={ w;: iel} be an open cover for X such that for any finite subset A of

C, cl(vy;:yieA) =1.
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Let F= {& : dopenandd > I-cl(vy)), y;eA}
Then Og¢ .
B, o€ F= 2 1-cl(vy)and up > 1-cl (vy)
A pp2l-cl(vy)
SUA U eF
Let 1 be an f-open set such that > p and pe F
Thenme F. Therefore Fis an f-open filter on X.
a,(F) =n{8:8e F)
0>1- cl(vy;). Therefore, AS<A {cl (1-cl(vy)}
a (F) =~{d: de F}
<A{cl (1=cl (vy;) : ;€ A}.
s afcl (1-cl(vy): pe C}.
=af{l-intcl (vy;): we C}
< A{l-v)ipie C}
=0 Since vy=1 for ye C
Therefore a, (F)# 0 = C has a finite sub family whose union is dense in X
iii)=1i)  Let Fbe a fuzzy-open filter on X such that a (¥) = 0. That is
A{ ;1: ue F 3=0. So {1- U pe F } is an f-open cover for X. Then for a

finite subset A of F, {l-y:y €A} is a finite sub family of this open cover.

frel {v{l-Y:yeA}=v(fcl(l-y):ye A}
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=v {1-f-int(f-cly) : vy € A }
<l-(Ay: ye ) 21 (since A{y:ye A} 20)
which is not true by iii)

g
N

Therefore a, (F)# 0 TIG 1D S apas
Ass

L]
9

3.3 s-continuous mapping:-

3.3.1 Definitions: Let X be a fuzzy topological space and {p;} be a set of
fuzzy points in X. Then for any fuzzy set y in X, {p;} is said to be subordinate

toy denoted as {p;} vy if and only if p; <y for every i.

3.3.2 Definition: Let X be a topological space and Y be a fuzzy topological
space. A mapping { from X to the set of fuzzy points in Y is said to be
s-continuous at x,€X if for every f-open set y such that f(x,) € y there is an
open neighbourhood U of x, such that f(cl(U)) c cl(y). If fis s-continuous at

every xoe X, then f is s-continuous on X.
3.3.3 Example: Let X = R be the set of real numbers with usual topology and
Y be the ﬁzzy topology generated by usual crisp topology in R and p where

W:R— [0,1] is defined as p(0) :% and u(x)=0 V x # 0.

Define f from X to the set of fuzzy points in Y as f(x) =(x2)y2

(fuzzy point with support x> and value ' ). Let xeR and (a,b) be an open
zy P

interval such that xze(a,b). Therefore x(;,b) is an f-open set in Y containing X2
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Correspondingly there is an open set U=(Va, Vb) in X such that f ([Va, Vb)) is

subordinate to xab). 1.€. f(cl (U) ) < clyam).

3.3.4 Definition(s-regular): A fuzzy topological space X is said to be strong
regular (or s-regular) at xeX if for each f-open set y such that y(x) =1 there

exists a crisp open set U containing x in X such that Uc cl Ucy.

3.3.5 Result: Let S(X,Y) denote the set of all s-continuous mappings from
the topological space X to the fuzzy topological space Y. If Y is s-regular then
SXY) = C(X,Y") where C(X,Y') is the set of all continuous functions from

Xto Y' - the back ground space of the fuzzy topological space Y.

Proof: Let fe S(X,Y). Let x,eX and V be any open set in Y' such that
f(xo)eV.(Then V is an f-open set). Since f is s-continuous there exists an
open set U containing x, such that f(cl(U)) c cl(V).i.e. f(U) cV. Therefore,

f is s-continuous.

SSXYY) c C (XY (1)

Now let f € C (X,Y") and y be an f-open set in Y’ such that f{(xg)€y.
Since Y' is s-regular there exists an open set V in y such that f(x,) eV c Ve Y.
f is continuous. Therefore there exists an open set U in X such that xoe U and

f(U) V. Therefore f(cl(U))cVcycy.

ie. f 1s s-continuous.

Therefore C (X,Y") < S(X,Y) (2)

Hence S(X,Y) = C (X,Y")



51
3.3.6 Remark: The result holds also when Y has the associated topology

instead of the background topology.

3.3.7 Result: Let f be an s-continuous mapping from the topological space X

to the fuzzy topological space Y. If X is H-closed, then Y is f-H closed.

Proof:- Let £ be an open cover for Y. For each xeX, there is an open set

ue C such that f(x)ep. Since f is s-continuous, there exists an open set say

U (x) in X such that f(clU(x)) < cl(p).

X is H-closed. Therefore for every open cover of X, there is a finite
family whose union is dense in X. Therefore there is a finite subset F such that
X = cl(u{U (x):xeF})

= ucl{U (x):xeF}

Therefore {(X) U (f {clU(x):xeF})
< v(ely), i=1,2...n, n =|F]

Thatis Y < v cl(y;), pie €

. The open cover € of Y has a finite sub cover whose union is

dense in Y. Therefore Y is f-H closed.

3.3.8 Theorem: Let {X;,icl} be a set of topological spaces and {Y;, iel} be a
set of fuzzy topological spaces. Also for each i €l , let f; be s- continuous

from X; onto the set of fuzzy singletons in Y;. Then
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a) nf: X;—> nY; and

b) ®f: ®X;—> DY; are both s-continuous .

Proof:

3) For each i, fi’s are s-continuous from X; to Y;. Therefore if x;eX; and y;’s
at open sets in Y; such that fi(x;)€y;, then there exist open sets U; containing
+ ysuch that f; (I—Ji) is subordinate to ?
ie.§(T;) ;-
Sincey;’sareopeniny;, y= A 77 (y;) is open in Y=nY;
=i
Let x € X =X
2f(x) = f(x) =(p1,p2,p3--.) where p;=fi(x;), p;<yforeveryi.
Therefore f(x) € y and vy is open.
Lt U=U; xUpx .. xUpx X x X x....

Then U is an open set containing X.

= (f( T, £(Uy),...)

Each fi( 61) , 6 ( I_Jz) etc are subordinate to,.¥;, ¥; -...
Therefore f{ U) is subordinate to y.

Hence nfi=f is s-continuous.
b Now =@ f defined from @X;to ®Y; as f{x) = [fi(x) ifx € X;

, otherwise,
is s<continuous since each f; is s-continuous .

% ok ok 3k ok %k %k %k %k %k %k %k
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CHAPTER - 4

FUZZY ABSOLUTES®"

4.0 Introduction: -

The set R(X) of all regularly closed subsets of a topological space
X form a Boolean algebra, with complement defined as A° = ¢l (X \ A) for
Ae R(X). The absolute of a topological space X introduced by Iliadis in 1963

involves the Stone space of R(X) which is based on its ultrafilters.

1* -the set of all fuzzy subsets of X forms a pseudo Boolean algebra
with pseudo complement as p' =l—p. In chapter 1 we have constructed the
Stone space of fuzzy sets. In chapter 2 we proved that the set FRC(X) of all
fuzzy regularly closed subsets of X is a pseudo complemented lattice which
is also complete. Assuming the distributivity, we can say that FRC(X) is a
pseudo Boolean algebra and hence the concept of absolutes can be extended
to fuzzy context. But in the case of fuzzy sets, FRC(X) becomes distributive

in fuzzy topological spaces satisfying the following property.

" If p is fuzzy regularly open and y is any fuzzy open set in X such

that f~cl p = f-cl y, then for any fuzzy open set & in X, f-cl (u A &) = f-cl (y A 5).”

[At the moment we do not know whether this is a necessary

condition for distributivity].

® Some of the results in this chapter were communicated to Indian Journal of Mathematics, Allahabad
Mathematical Society.

7 Some results of this chapter were published in the proceedings of the U.G.C. Sponsored National
Seminar on Fuzzy Mathematics and Applications at U.C.College , Aluva March 1999.
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A fuzzy topological space having this property is called B-fuzzy
topological space [BI]. In [BI] it was proved that FRC(X) is a fuzzy Boolean

algebra by considering Lowen’s fuzzy topological space [LLO], and by taking

the complement of pel*as the unique element p' such that p A p'sé

anduvp’Z%

Throughout our work we are using Chang’s fuzzy topological
space. So in the first section of this chapter we are giving examples to B-fuzzy
topological space in Chang’s sense. Using this we prove distributivity in
FRC(X). Therefore considering the B-fuzzy topological space, the set FRC(X)

becomes a pseudo Boolean algebra.

In the second section of the chapter we introduce fuzzy absolutes as
the Stone space of FRC(X). For constructions we are making use of the fixed

FRC ultrafilters obtained in chapter 2.

The third section proves the uniqueness and some properties of the
fuzzy absolute. In section 4 we are constructing fuzzy absolutes by using
s-fixed FRC ultra filters instead of fixed FRC ultra filters. Its properties are

proved with suitable examples.

In the last section we introduce the fuzzy absolutes of sums and

products of fuzzy topological spaces.
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4.1 Pseudo Boolean algebra of fuzzy regularly closed sets

4.1.1 Definition : A fuzzy topological space X ( in Chang’s sense )satisfying

the following condition (A) is called B-fuzzy topological space.

Condition A:- If p is fuzzy regularly open and y is fuzzy open in X such

that f-cl u = f-cl y then for any fuzzy open set & in X, f-cl (L A 0) = f=cl( y A 3).
4.1.2 Example:

Let R be the set ot real numbers with usual topology. Define p, and

y, from R to [0,1] as 1;(0) = %, wx)=0 Vv x#0and
_2 _
H2(0 ) =5 R (x)=0  V x=0.

Let F be the fuzzy topology generated by usual crisp topology in R
and p; and p,.
Then f-cl (u1) = XA H-
f-int (f-cl (1) ) = W

f-cl (W) = xoyAM2 and  f-int (f-cl (1) )= pa-

.1y is fuzzy regularly open and p,; is open in F'such that f-cl (u;) = f-cl (4y).
If0e(a,b),then  Y@amA MW = Hiand
Agaby A M2 = H2
S fel(qany A 1) = f-cl (xgapy A M2)

Also,  XaoV MR T Aab
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Sl Cx gy i) AR = el ((fgapyVY B1) AR )

'If 0g¢(a,b), Xiab) A M1 = Ygamy A H2= 0.
Sl ey A 1) = f-Cl (Y qapy A H2)

(b)Y M1 and y(ab)Vv Wz are open sets .
Then  f-cl (x(apyv Hi) A W) =f-clpy and  f-cl (xgamyVv K1) A H2) = f=cly,

Sl (Nap v m) A u) = f-el (apyV 1) A Ha)
Similarly f-cl (x(abyV H2) A 1) = f-clpyy and  f-cl (X (apyVv H2) A H2) = f-clpy,
Therefore, f-cl (Y (apyVv H2) A 1) = f-cl (Xqap}V H2) A W) since f-cly; = f-clp,

All the fuzzy regularly open sets and f-open sets are of these types

and so the condition is satisfied for all f-open sets and f-regular open sets

Therefore F is a B- fuzzy topological space.

4.1.3 Example:

Let X = {a,b,c}. Define p,, 4, and p3 from X to [0,1] as
H@) = 5, 1 (6) = () =0
H2(a) =0, pa(b) =1, pp(c) =0
pa@) =2 )= 1, ue)=0
Then T = {0,1,14,1, K3} is a fuzzy topology on X.

fel(u) =ps',  fcl(pp) =i, and  f-cl(ps) = "

f-int (f-cl(p3) = f-int p;' = Y3
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Therefore p; is fuzzy regularly open and p, is f open such that
f-cl(uy) = f-cl(ps).
Hi A Ha= 0. Therefore, f-cl (u; Apy) =0
11 A 3= . Therefore, f-cl(p; A p3) =f-cl p; = p3'
Hence f-cl (uy A pp) # f=cl (U A p3) .

Therefore (X, 1) is not a B-fuzzy topological space.

4.1.4 Example.
Let X={a, b}. Define y,; and u, from X to [0,1] as

3

pi@ =5, W)= >

me=§wum=%

Then 1t ={0, 1, u, M2, 1 VH2, LA, § 1S @ fuzzy topology on X.

fel(up) =1, fcl (u2)=p', fcl(pinpy) =

frint (f-cl pp )= f-int p," = p,.

.My is fuzzy regularly open and A p, is f-open such that
f-cl(pz) = f-cl(pinp,).
Also f-cl( A p o) = f-el(pa(pinpa)) and
f-el((u v W2 ) A p2) = f=el((p1 v 1) A(iIAKR)).
Here p, is the only f- regularly open set and so this exhausts the

various possibilities. Therefore (X,1) is a B-fuzzy topological space.
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4.1.4 Theorem: Let X be a B-fuzzy topological space. Then the set FRC(X) of

all fuzzy regularly closed subsets of X is a complete pseudo Boolean algebra.

Proof:

By proposition 2.2.2 and 2.2.3 we have FRC(X) is a pseudo
complemented lattice which is complete. Therefore it is enough to prove that

the distributive law holds in FRC(X).
ForA, pe FRC(X), Avp =Aupu and A A u = f-cl (f-int (A n p)).
sf-cl (f-int (Avp ) = A v = f-cl(f-int &) U f-cl(f-int p )
= f-cl [f-int A U f-int y]
Since X is a B-fuzzy topological space, for any open set  in X,

f-cl (8 A f-int (A v 1) )= f=cl[dA (f-int A U f-int p))

Now, Aa(pvy) = fclf-int(An(pvy)l
= f-cl [f-int A N f-int (i v 7)]
= f-cl [f-int A N (f-int puU f-int y)
= f-cl [(f-int A M f-int p) U(f-int A N f-int y )]
= f-cl (f-int (A Np)) U f=cl (f-int (A N 7))
= AAp) U AY)
= (AAVv(Aay)
Similarly Av(uAay) = (Avp)A(Avy)

~.FRC(X) is a pseudo Boolean algebra.
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4.2 Fuzzy Absolute:
4.2.1: Definition: Let X be a B-fuzzy topological space and Q.(X) be the set
of all FRC- ultrafilters on X. For peFRC(X), let A(p) = {U € Q«(X) :pn eu}

Then A, is a function from FRC(X) onto P(€2(X)).

4.2.2 Definition: The fuzzy Stone space of FRC(X) is called the fuzzy
Gleason space of X (f- Gleason space in short) and is denoted as f-6X.
Therefore the elements of f-0X are FRC-ultrafilters on X and a basis for open

sets of f-0X is  {A.(n): peFRC(X)}
4.2.3 Theorem: f-6X is a compact, T,, zero dimensional space.

Proof: f-0X is the Stone space of FRC(X). There for the theorem follows

from the theorem 1.3.2.

4.2.4 Theorem: The fuzzy Gleason space f-0X is B-extremally disconnected.

Proof: Since f-6X is a Stone space the theorem follows from 1.4.3.

4.2.5 Remark: In crisp topology the Gleason space is extremally disconnected.
But here, as in example 1.4.4 the reverse inclusion does not hold. Therefore the

space is only B- extremally disconnected.

4.2.6 Definition: A fuzzy topological space X is said to be weak regular if
for each x,e X and an f- closed set y not containing x, in X, there exists a

fuzzy regularly closed set A in X such that A (x,) =1 and yAX =0.
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4.2.7 Definition: Let X be a B-fuzzy topological space which is weak regular.
Then the space {ue f-6X : Au =0} equipped with a subspace topology

inherited from f-8X, is called the fuzzy absolute of X and is denoted by f-EX.

Therefore elements of f-EX are fixed ultra filters on X and a basis for open

sets is {A, (1) N f- EX : neFRC(X)}.

4.2.8 Definition: Let X be an fT, space and p be a fuzzy singleton in X with

support x. Then by F(p) we denote the family of all fuzzy regularly closed

neighbourhoods of p. i.e., F(p) = {ueFRC(X): f-int u(x)=1}.

4.2.9 Result: F(p) is an FRC-filter.

Proof : Let y, and y; € F(p).

Then f-int y;(x) =1and f-int py(x) =1. .. f-int (LAp,y) (x) =1
1.e. WAl € F(p).

Let p,e F(p) and py > ;. Then f-int py(x)=1.

oMy € F(p).i.e. F(p) is an FRC-filter.

4.2.10. Definition: A fuzzy singleton which is regularly closed is called a

fuzzy regularly closed point or frc- point.

4.2.11: Lemma: Let p be an frc-point in X with support x,,. Then there exists

a U e f-EX suchthat A u=p.

Proof: LetF = {ue FRC(X): u(x,)=1}. Then F is an FRC —filter. Since every FRC-

filter is contained in some FRC-ultrafilter, there exists a U €f-8X such that F< w.
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Therefore A U < AF.
Thus (AU )(Xg) < (AF)(Xo).

Le. (AU)(xg) < 1.

If (AW) (x¢) < 1, there exists ye U such that y(x,) < 1. Therefore y is

a fuzzy regularly closed set not containing p. Therefore by weak regularity of

X there exists Ae FRC(X) such that A(xo) =1 and A Ay =0 .Since A(x¢) =1,

reFcuw

Therefore A A ye W which is not possible.

AW (xg)=lie. (AW 20

Therefore, u € f-EX. By theorem 2.3.6, A W is a unique fuzzy point.

Therefore A U = p.

4.2.12 Note: Corresponding to every U € f-EX, there is a unique fuzzy
singleton ‘p’ in X with support as that of A W. This unique fuzzy singleton is

denoted as Kx(uw). This defines a mapping K¢x from f-EX into the set of

fuzzy singletons in X. Therefore we use the pair (f-EX, Kx) to denote fuzzy

absolute of X.

Now, by the above lemma if p is an frc-point in X, then
correspondingly there exists a W € f-EX such that A « = p. Therefore K¢.x

becomes a surjection from f-EX to the set of frc -points on X.
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This shows the difference from the crisp case .In the crisp case.
corresponding to every xe X, there existsa U e f-EX such that » u = {x}.

4.2.13 Theorem: f-EX is a dense, zero dimensional sub space of f-6X.

Proof: f-0X is a zero dimensional space. Being a subspace of f-0X, f-EX is
also zero dimensional.
To show that f-EX is dense in f-6X, it is enough to show that for

each peFRC(X) such that p = 0, f-EX A (p) # ¢.
Choose an frc- point p with support X, such that p(x,)=1.

Let F= {y € FRC(X): y(x,) =1}. Then F is an FRC-filter which is

contained in some FRC-ultrafilter (say) u. Then p € U. Therefore U € A (p).

Also A U #0. . U e f-EX. U e f-EX m A (p).

ie. FEX M A, (p) # ¢. Hence f-EX is dense in {-6X.
4.2.14. Note: f-EX is a dense subspace of f-0X and f-6X is compact.

Therefore f-6X is a compactification of f-EX.

4.2.15. Theorem: f-EX is B- extremally disconnected

Proof: By 1.4.2 any dense subspace of a B-extremally disconnected space is
B- extremally disconnected. f-EX is a dense subspace of f-8X which is
B -extremally disconnected. Therefore f-EX is B -extremally disconnected.

4.3 Properties of the pair (f-EX, K¢x)

4.3.1 Proposition: Let U € f-6X and p be a fuzzy singleton in X with

support X,. If U € f-EX and Kex(U ) =p, then F(p) c w.
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Proof: F(p) = {ueFRC(X) : f-int p(x)=1}

Suppose F(p) @ u.. Then there exists yeF (p) such that yeg w.

ye F (p) = f-int y(x,)=1.

When y ¢ W, by theorem 2.2.7(ii) there exists a de U such thaty A 8= 0.
¥(x,) =1. Therefore & (x,) = 0.

Therefore e © and & (x,)=0. Therefore A U =p. i.e. Kpx(W) = p.

Hence if U € f-EX and K(x (&) = p, then F(p) c W.

4.3.2 Proposition. If ne FRC(X), then K¢y (f-EX m A, (1) ) = {pi} where {p;}

is subordinate to L.

Proof: By definition 3.3.1, {p;} is subordinate to pn if p; <p forevery i.
Letu e f-EX m A (1) and K¢x (W) = p where o (p) = {x}

Then U € f-EX and U € A, (p).

Thatis A Uu#0 and pe W

Since Kex(W)=p, AU=p .

Therefore, pe U = pu(x)=1.

That is p<p.

Therefore, Kpx (f<EX A (1)) = {p;} where p;< u for every i.

That is {p;} is subordinate to p.

4.3.3 Proposition: Let p be an frc-point in X with support x and pe FRC(X).

Then peF(p) = Ky (p) < A+ (k).

Proof: Let u e K[, (p). Then U € f-EX and Kgx(U) =p.
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Therefore by proposition 4.3.1 F(p) c u.
Therefore, if u € F(p) then u € W.

That 1s U € A, (n).

LK) © Adp).

The converse of this result is not true as it is seen from the

following example.

4.3.4 Example: Let R be the set of real numbers with usual topology. Define

i1, 42 and p3 from R to [0,1] as

w(0) = % and p(x)=0 V x=0.
3 £
1y (0) = 3 and p(x)=0 V x=0. Lo

u3(0)=—;- and 3 () =0V x 0.

Let R i be the fuzzy topology generated by usual crisp topology in

R and py,up and . Then as in example 4.1.2 R is a B- fuzzy topology on R.

Let K be any closed set in R. Then closed sets in R ¢ are {K},
u, K2 L{K} Al {K3Aw,', 1,0 . Let K, be any closed interval in R with zero not

an end point. Then as in example 2.3.4 7y ko 1s fuzzy regularly closed in R.

f-int ' = XAR\0)

H2

i

f-cl(f-int p,")
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. W' is fuzzy regularly closed
Similarly we can show that yxo, A Hi's XkeA W' are fuzzy regularly closed.
SFRCO(RF) = { Xko, H1's 2y XkoAR1 s XkoA H2's Xg0y. 1, 0}

Let £-6X ={ u: wis an FRC ultrafilter on R}
and -EX={ u e f-6X: A u=0}.

Let K¢.x be the mapping from f-EX onto the set of frc-points on R .

Take p = X(0)-

Then K{, (p)={ uef-EX: A u=p}.
Let U e Ki,(p)- Then A u=p.

That is p(0) =1, for every p € W.

If ue A", then py'e W

That is p3 € U ( by proposition 2.2.9).

i.e. 43 (0) =1 which is not true since p;(0) = %

Therefore U € A (13")
L Kix(p) € Adps)

But, f-int ps' =y ryoy V M
L ]
L fHnt ps'(0) = (X ryvoy Vv K3) (0) = 5 =l

Therefore W3’ ¢ F(p).
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4.3.5 Remark: In the case of non crisp sets, the following converse holds.

If pisan fre-point with support x and if K, (p) < (A1), then neF(p).

Proof:- Suppose 1 ¢ F(p) where F(p) ={n e FRC(X) : f-intp(x)=1}.

If negF(p), then f-int pu(x)=1.

Let ue K, (p). Then Kex(UW)=p.1.e. A U=D.

Suppose Ug A (1°). Then p° ¢ w. Therefore by the theorem 2.2.7 (ii) there
exists ne U such that p°An=0.

ne U= nx)=1

S p(x)=0. But p(x) =1- f-int (x) = 0 since f-int p(x)=1.

LU e ArS)

ie. Ky (p) © AR

o Ifpue F(p), then K, (p) © Aln")

That is if K, (p) @ ALp°) then neF(p). i.e. if there is an ultrafilter U such
that ue K ,(p)and ug A(K), then neF(p).

ie. if ueK{, (p) and ue(A(1°))° ,then peF(p).

There fore if K=, (p) < (A1) , then peF(p).

4.3.6 Note: In the case of crisp sets, (A1) = A(i). Therefore the above

results becomes peF(p)e K, (p) cA(W).



4.3.7 Theorem: The mapping K..x from f-EX into the set of f-singleton in X is

s- continuous and compact.

Proof: To prove the s- continuity of K.y .

Let uef-EX and y be an f-open set in X such that Kox(W)ey.

Let Kex (W) =p. Then A U =p and pey.
Let oo(p)={x}.

Put 6 = f-cl(y). Then f-intd=y.

~.pey = pef-int & = fint § (x)=1
~.0eF(p).

Hence by proposition 4.3.3 K1, (p) < AL9).
L UeA(d).1e.de U

- U € -EX NA(8), where f-EX nA(d) is an open set.

f-EXNA(8) is also closed.

By proposition 4.3.2 Kex(f-EX NA(0)) = {p;}, where{p;} is subordinate to o.

Le. Kex (FFEX MA(d)) is subordinate to & = f-cl(y).

Therefore by definition 3.3.2 K. is s-continuous.

To show that K.y is compact it is enough to show that K-, (p) is a
closed subset of f-6X.

Let ue(Ki4(p))°. Then ug K;(p)and so Kpx( W) # p. i.e. there

exists a Le U such that p(x)=1. Since pe W, U €A (n) and A.(n) is open.

Now we can show that A(p) < (K, (p))°.
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If not, there exists an ultrafilter say F in A, (1) and Fe(K; . (p))".
Thatis FeA, (1) and Fe K{, (p).

1e.ue Fand Kex (F) =p. i.e.ue F and A F=1

S(AF)(x)=]

1.e. y(x)=1 for every ye F. Therefore pu(x)=1 which is not true.
Therefore A(n) < (KiZy (p))°

Hence (K £, (p))°is an open set and so K-, (p) is closed.

.. The mapping K¢.x is compact .
Note: Unlike crisp situation, the mapping K¢.x is not closed.

4.3.8 Example: Let R be the set of real numbers with usual topology. Define

W and g, from R to [0,1] as ,(0) =% and py ()= 0 ¥ x#0,

12(0) =% and y (x) =0 V x20 .

Let R ¢ be the fuzzy topology generated by R , n jand ;. Now
as in example 4.34, Rr is a B-fuzzy topological space with
FRC(R ) = {Xko, 1" 5 M2 \XKkoAML' s XKo A M2 %oy, 1. 0}

Let f-0X = { u : W is an FRC ultrafilter on R} and
f-EX = { ue f-6X: A u=0}.
LetH = { uef-EX: u'e u}

=f-EX N A1)

~.H1s closed.
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Now let ueH. Then e f-EX and ue A, (y,")
SAU#Oand p'e W

Therefore K¢.x (W) is a fuzzy singleton with support other than zero.

 Kex (H) < {pi: pi(0) = 0} (1

That is Kgyx (H) is a sub set of the set of fuzzy singletons with a

non zero support.

Let q be any fuzzy singleton with support x,# 0 .

We have, f-int u,' = xr\0;. Therefore f-int p;' (x,) =1, for x,# 0

' €F(q).

Hence by proposition 4.3.3 Ki,(q) < A 1)

- Ky (qQ)cH.

ie. qeK ., (H).

Therefore {p;: pi(0) =0} < K, (H) 2)
Hence Kp.x(H) = {pi: pi(0)=0}

= R\{0} which is not closed.

Therefore K ._, (H) is not a closed map.

4.3.9 Uniqueness of Fuzzy absolutes

Theorem: Let X be a B-fuzzy topological space and " be a B-extremally

disconnected zero dimensional space of fuzzy sets defined on some set Y in
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which every FRC filter is convergent. Let * f * be an s- continuous surjection
from ) onto the set of frc points on X. Then there is a continuous mapping h
from f-EX onto the set of fuzzy singletons in 2 such that K ,_, = foh.

Proof:

f-EX X

u /—\Au

Yis a B- extremally disconnected zero dimensional space of fuzzy

sets in which every FRC-filter is convergent.

Let BeB(2) where B(2) is a clopen base in . Then B is both
open and closed. Let yeB. Since f is s-continuous for every fuzzy open set p

in X such that f(y)ep, there is an open set B containing y in 2 such that

f(cl B) is subordinate to cl(p) = y. i.e. f(cl(B) c v. i.e. f(B) < y. Then thisy is

f-regularly closed and ye u, for some u € f-EX.

Define F = {n: neB, BeB(M), f{(B) c vy, vy eu}.Then F will form
a filter base which will generate an FRC filter (say) F. Let &' be an FRC

ultrafilter containing F. Then AW is a unique fuzzy point in 2. Let AU’ = Xq.



Define h from f-EX to J as h(u) = AlU' = x,.
Then ( fch) u =f(h(w) )= f(~AW)
<f(A{nmeB; fB)cy, yeu})
=A{f(n) :neB.fB)cy, yeu}
<A U=Kex(W).
(foh) (W) < AU=Kx(W).
But Kqx(W) is a fuzzy singleton.

Therefore foh = Kp.x.

To show that h is closed.

Let F be a closed set in f-EX. Then there exists a family {y;, iel} < FRC(X)
such that F = n{A () N f-EX}.

To each i, there is a BeB() such that f (B;)<p;, 1 e, uef-EX

Then h(F) = h(~ {A( ) " f-EX})

N {h (A(p) Nf-EX))}
= N {B;: f(B;)c} whichisclosedin ) .
Therefore, h is a closed map.

To show that h is continuous.

Suppose uef-EX and BeB(J)) where h(u)eB.
When h(w)eB, f(B)<n,neuandso UeA(p)

Let WeA, (n). Therefore neW.
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Then h(W) € B, f(B)< ;, puie W.
Let W' ={y:y e B, f(B)<n, neW}
Then h(W) = "W'= n{y:veB, f(B)< y; ,u;eW} € B.
1.e. W e A (n) = h(W) €B, open
- h(Ar(n)) B
~.h is continuous.
Now to show that h is onto.

Let p be any fuzzy singleton in )~ with support y and

Uly] ={w: f(B)<u,y €Bi}, Bie B(Y)

Then u [y] is a filter base which generate a filter say W'[y]. Let V(y) be the

ultrafilter containing W'[y]. Then AU '[y] = A{w;: f(B)) < 1}

It

f(By), where f(B,) = min {(B;).
Therefore AV(y) = {(By)

Hence AV(y)=0.

That is V(y) ef-EX.

-.corresponding toevery pe J thereisa V(y) € f-EX such that h(V(y)) = p.

Therefore the mapping h is onto.

4.3.10 Note: The pair(,f )constructed in 4.3.9 is said to be equivalent to
(f-EX, K¢.x ) and is denoted by (f-EX, K¢.x ) ~ (J.;f) . Then (J;f) is the fuzzy

absolute of X up to equivalence.
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4.4 Fuzzy absolutes using s-fixed FRC ultrafilters

Instead of taking the fixed FRC ultrafilters, the fuzzy absolutes also
can be constructed using the strong fixed (s-fixed) FRC ultrafilters defined in

(2.3.7). Then fuzzy Gleason space f-8X is defined as in definition 4.2.2. But

the fuzzy absolute is defined as follows.

4.4.1 Definition: Let X be a B-fuzzy topological space which is fT,. Then the
set {U € -6X : N{o,(u) : p e} =¢} = {uU[x] € f-6X, xe X} equipped with
a subspace topology inherited from f-6X is called the fuzzy absolute of X

and is denoted by f- E'X.

Therefore here f-E'X consists of fuzzy principal ultrafilters on

FRC(X) viewed as subspace of {-6X.

4.4.2 Lemma: Let X be B-fuzzy topological space. Then
1) If u € f- E'X, then n{oy(n):pe U} contains exactly one point.
2) if xeX, there exist uef- E'X such that N{oo(n):peu} = {x}.

Proof:

1) If uef-E'X, thenitisa principal FRC-ultrafilter ot the form
U [x] = {ne FRC(X):u(x) > 0}. Therefore, N{oy(p):pe ) = {x}.
2) Let xeX. Then Fy={peFRC(X) : f-int p(x)=1} is an FRC-filter.
Therefore always there exists a U [x] in f-0X such that F(x) < u [x] and this

u[x]ef- E'X. Then p(x)>0, V peu [x].
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Therefore M {oo(p) : ped} = {x}.

~IfxeX, there exists Uet- E'X such that N"{oo(pn):ped} = {x}.

4.4.3 Note: If ue f-E'X, we denote the unique point of X belonging to

N{oe(p):pe} by K (u). Therefore by lemma 4.4.2. K¢, is a well defined

surjection from f-E'X onto the set of fuzzy singletons in X. So we use the pair

(fFE'X , K.0) to denote the fuzzy absolute .

4.4.4 Remark : In the case of absolutes using fixed FRC ultrafilter, we
have K.x is a mapping from f-EX into X. In the lemma 4.2.8 it was proved
that Kpxis a surjection from f-EX onto the set of frc-points in X. But here

K. is a surjection from f-EX onto the set of crisp points in X.

As in the case of fixed ultrafilters, here also we can prove the
properties of f-E'X. Some of them are explicitly proved here, to show the

differences occurring in the two cases.

4.4.5 Theorem: Let X be a B- fuzzy topological space. Let uef-6X and xe X.
If ue f-E'X, and K¢, (W) = {x}, then F(x) cu.

Proof: F (x) = { p € FRC(X) : f-int u(x)=1}

Suppose F(x)z u .Then there exists a peF(x) such that p¢u. Therefore there

exists a ye W suchthat u Ay=0. ..(uay)(x) =0 forevery x.
But u(x)=0. ..y(x)=0.
i.e. yeuwand y(x)=0. i.e. x €o(y).

Therefore N {oo(p): pe U} # {x}.
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if K (W) = {x}, then F(x) cu.

Converse of this result is not true in the case of fuzzy sets.

4.4.6 Example: Let X, {a,b,c}. Define p,, y,, p3 from X to [0,1] as
]
m(@) =0 ) =0 w(cy=>

(@)= 3 pa(b) =2 p(e) =0

ps(@ =1 b)) =1 o) =

Then © = {0, 1, uy, 4o, U3, H1VHY) is a fuzzy topology on X. Also
as in example 4.1.4 (X, 1) is a B-fuzzy topological space.
Here the closed sets are {0, 1, wy, 3, W', Hi'Al'}
f-int (1 'A o) = pp and f-cl (f-int (py'Apy")) = f-cl (L2)= 1’ A W'
SUIARY' s fuzzy regularly closed.
Similarly we can show that f-cl(f-int (p;) # ;. Therefore p, is not
f-regularly closed. Also p3 and p,' are not fuzzy regularly closed.
s FRC(X) = {0, 1, p/'Ap,'}
F(a) = {pe FRC(X):f- int p(a) =1} = {1}
u= {1, p'Aly'}
Therefore, F(a) cu.
uw@)> 0 forevery peut. .. uef-E'X.
But K¢ (W) = N {op(pn):peu} = {a,b,c} = {a}.

Therefore even if F(x) cu, Ko (W)= {x}
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4.4.7 Remark : Converse of 4.4.5 is true only in the case o

Proof: Let U € f-0X and F(X) c w.
Let vy € FRC(X) such that y(x)=0
Then (1-y) (x) =1

i.e. f-int (f-cl(1-y)) (x) =1

ie. f-int (Y)(x) =1

Therefore, y°e F(x) cu. Therefore Y w.

If y is not crisp, then y A ¥° is not equal to zero
imply vy ¢U.
Butif yis crisp, Y'e U=y ¢ W
= ify(x)=0, yg W.
Hence for every yel, y(x)>0.
~u e f-E'X  and m {op(u):peu} = {x}.

ie. Keo(U)= {x}

f crisp sets.

. .. ¥“ € W does not

4.4.8 Theorem:- If 1 € FRC(X), then Key (f-E'X NAL(1)) = o).

Proof: Let pe f-E'X and u € (f-E'X n A(n)). Then u € f-E'X and

U e A(p).

ie. y(x)>0 foreveryy eu and pel.
Therefore pu(x)> 0. That is xeog(l).

e Kee (W) = {x} and xeoy(u).

Therefore Kepo (f-E'X m A()) = o).
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Conversely, let xeoy(p). Then p(x/)> 0.
Therefore , there exists U [x]e f-E'X such that peu [x].
Thatis U [x]e( f-E'X N A(r)) and  Kpp (U [x])={x}.

2% € Keyw (FEX N ALR) . - K (FE'X A Ad() = o).

4.4.9 Remark: Here corresponding to each xeX, there is a unique
U [x]e f-E'X such that K., (i)={x}. Therefore unlike in crisp topology this
mapping Ky, is one to one in nature. But as in the section 4.3 K¢, is

s-continuous and compact but not closed.

If we consider the s-fixed FRC ultraflters, the mapping h defined
in 4.3.9 becomes one to one. Therefore in this case the theorem 4.3.9 can be

stated as follows.

“Let X be a B-fuzzy topological space and ) be a B-extremally

disconnected zero dimensional space of fuzzy sets defined on some set Y in

which every FRC filter is convergent. Let f be an s-continuous surjection from

Y onto the set of fuzzy singletons in X. Then there is a homeomorphism h

from f-E'X onto the set of fuzzy singletons in J such that Ky.,. = feh.

So the absolute f-E'X is unique and we say (f-E'X Kg,) is

equivalent to (J;f). 1.e. (f-EX, k¢y) ~ ( 250).

4.5 Fuzzy absolutes of products and sums:
4.5.1 Theorem: If {X;, i€l} is a set of fuzzy topological spaces, then
(@) (f-EX, Kgx) ~ (f-E(rf-E X)), © Kp.x; ° Ker(e xiy JWhere X=nX; .

(b) (FE (®X).Kgexi)) ~ (@ f- EXi, ®Ke.xi)
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Proof: K¢x; is an s-continuous surjection from f-EX; onto X; and Kg, is an
s-continuous surjection from f-EX onto X where X=nX; .Since each Kpy; is

s-continuous, by theorem 3.3.8 nKy.y; is s-continuous from n(f-EX;) onto nX;.

f-EX;’s are B-extremally disconnected and Hausdorff . Therefore
n(f-EX;) is also Hausdorff and so f-E(n(f-EX;)) is B- extremally disconnected.
Kemeexiy 18 s-continuous from f-E(n(f-EX;)) onto =(f-EX;) .Therefore,
nKexi ° Kenriexiy 18 an s- continuous surjection from f-E(n(f-EX;)) onto nX;.
Also f-E(n(f-EX;)) is zero dimensional. Therefore, f-E(n(f-EX;)) is a fuzzy

absolute of ©X; = X up to equivalence .
Therefore (f-EX , Kf.x) ~ (f-E(T[(f-EXi), T[Kf_xi ° Kf_n(f.EXi)).

a) Kpy’s are s-continuous from f-EX; onto X;. Therefore by theorem 3.3.8
@ Kpyx; is s-continuous from ©@f-EX; onto ®©X;. F-EX;’s are B-
extremally disconnected and zero dimensional. Therefore @(f-EXj) is
also B-extremally disconnected and zero dimensional. .. (f-E(®Xj), K.

oxi)~ (BF-EXi,®Kp.xq).

¢ sk ok ok ok ok %k ok ok %k ok
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CHAPTER -5

FUZZY ABSOLUTE AS A SET OF F- OPEN ULTRA FILTERS®

5.0. Introduction

If X is a fuzzy topological space, then ©(X) - the set of all fuzzy
open subsets of X forms a pseudo Boolean algebra with pseudo complement
defined as, for pe ©(X), u°=1 - f-cl(u) = f-int (1-p). In the third chapter we
have already introduced fuzzy open filters (f-open filters for short), f-open

ultrafilters and fixed f-open ultrafilters.

[t is known that in crisp topology, absolutes can be constructed
using open ultrafilters on X. So in this chapter we are constructing fuzzy
absolutes by taking t(X), instead of the fuzzy regularly closed subsets of X.
The absolute so constructed is denoted by f-E'X. Then the underlying set of
f- E'X is the fixed f-open ultra filters on X. The second section of this chapter
gives some properties of f-E'X. Though they are similar to that of f-EX in
chapter 4, we are explicitly proving this to note the differences in the two

cases.

5.1. Fuzzy absolute using f-open ultrafilters

5.1.1. Definition: Let X be a fuzzy topological space. Then the set of all

convergent f-open ultra filters on X will be denoted by f-E'X. If x, is a fuzzy

point in X with support x then N(x,) = {pet(X): p < u(x)}.

® Some results of this chapter were communicated to Ganitha Sandesh, Rajasthan Ganitha Parishad.
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5.1.2 Lemma:

Let X be a fuzzy topological space and x, be a fuzzy singleton in

X. Let ue f-E'X. Then ,
) if x;ea(w), N(Xp)cuw

ii) there is exactly one x € X such that a (u) (x)=1.

Proof:
(1) Since ue f-E'X it is a fixed f-open ultrafilter. Therefore the result follows

from 3.1.8

ii) By theresult 3.1.11, if x; € a(u), then xp is a cluster point. But by lemma
3.1.12 C(u), the set of all cluster points of U contains exactly one point.
Therefore. there exists exactly one xe X such that x, € a(u) . 1.c. there exists

exactly one xe X such that a(u) (x) =1.

5.1.3 Remark: From the example 3.1.10 we can see that the converse of 5.1.2(i)

need not be true in the case of non crisp sets. In the case of crisp sets
corresponding to every xe X, there exists a U (x) e EX such that a(u (x)) = {x}.

But because of the example 3.1.10 this is not true in the case of non crisp sets.

5.1.4 Definition: Let X be a fuzzy topological space and let f-8'X denote the set

of all f- open ultrafilters on X. If p e ©(X), let O(p)y={ u € f-6'X : peu }.

Then f-EX= { u € f-6'X : a (1) #0}.
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5.1.5. Lemma: Letpu, ye 1(X). Then,
(i) O(n) = ¢ ifandonlyif p=0.
(i) O(uny) =O() N O(y)
(iii) (O(n))® < O(K").
(iv) O(u) =f-0'X ifpisdensein X and in particular O(1) = f-8'X
(v) {O(n) : pe t1(X)} is a base for a Hausdorff topology on f-6'X
Proof:
1) Let u=0. Since there is no ultrafilter contains zero, O(p) = ¢.
Conversely suppose L # 0. Then there exists x € X such that p(x) = 0. Let
F={y e u(X):y (x)>0}. Then Fis an f-open ultrafilter containing p.
ie. Fe O(n) .. O(u) = ¢.
1.e.O(n) =¢ ifand onlyif pu=0.
i), LetueO(pay)

Ue O(uAy)UAY €U

<> ueU and yeu by definition of f-open ultrafilter.

< U €0O(p) and U € O(y)

< U e O(u) N O(y)

L O(Aay) =0 (EnO(y)
i) Letu e(O(w)°
Then w ¢ O(n). ie.peg U
Therefore by note 3.1.5 u° € w and so U € O(K°)

5 (O(W)° < O(S).
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The reverse inclusion does not hold here. The example 1.2.7 will
prove this since the set of all constant functions from X to [0,1] forms a fuzzy

topology on X.
iv) If pe 1(X), then 1-p =0 ifand only if p is dense in X.

Therefore, O(u®) = ¢ if and only if p is dense in X.
But (O(u))° < O(1°). There fore(O(n))°= ¢ if p is dense in X. .

That is O (p) =f-0'X if p isdense in X. .
So in particular O(1) = f-0'X
v) By i), ii)and iv), the set {O(p) : pe ©(X)} forms a basis for {-8'X .
Let u and ¥ be two distinct f- open ultrafilters. Then U ¢ .
Therefore there exists p € U suchthatp ¢ v.
Since ¢ ¢ ¥, by theorem 3.1.4 there exists y € v, such that p Ay =0.
Therefore U € O(p) and ¥ € O(y) such that O(n) NO(y) = ¢.
. £8'X is Hausdorff .

Note : By the above lemma, f- 8'X can be regarded as a topological space

with {O(n) : n € T(X) } is a basis for open sets.
5.1.6. Definition:

Let X be a fuzzy topological space.
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The set f-E'X is topologised by giving the subspace topology
inherited from the space f-0'X. That is {O (n) N f-E'X: pet(X)} is an open

base for the topology of f- E'X. This topological space f-E'X is called the

fuzzy absolute of X.

Note: To each u € f-E'X, there is a unique point x in X such that
a (W)(x) = 1. This defines a function from f-E'X into X, which will be denoted
by Kex i.e. Kex(U) =x.

5.1.7 Result: For pet(X), O(n) is clopen in {-8'X

Proof:
Ow={uefdX :peuy}

OWw)'={vefoX :neg v}

When p ¢ ¥ by theorem 3.1.4 there exists a ye ¥ such that p A y = 0. For

every U ¢ v there is some y satisfying this condition.

Therefore (O(w)) = Uy(O(y;)), where pAay; =0.
O(y;) is open for every i and sois WO(y;).
- O(p) 1s closed.
1.e. O(p) is clopen in f-6'X .
Therefore {O(n) : pet(X)} < B (f-6'X ) where B (f-6'X) is the set

of all clopen sets in {-6'X .
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5.1.8. Theorem: Let X be a fuzzy topological space. Then f-0'X is a
B-extremally disconnected, zero dimensional, compact space.
Proof: Let U be any open set in {-8'X. Then there exists a finite subset D of
1(X)suchthat U= U{O(W,): u; € D}
Since ©(X) is complete v|; exist.
Let vi;=v. Then ye D
Hi <Y

w O(wi) < O)
Therefore U O(; ) < O(y)
O(y) is clopen by 5.1.7.
sl u(O(w) € O).
That is cl(U) < O(y). (D)

Therefore f-8'X is B- extremally disconnected.

By 5.1.7, we have O(p) is clopen in f-0'X . Also {O(n):pet(X)}
forms an open base for f-0'X. Therefore by definition 1.3.1, f-0'X is zero

dimensional.

To show that f-6'X is compact.

Let F be a filter of closed sets in f-6'X and

G={u e «X) :0(n)cF for some Fe F}.
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{O(n):pe ©(X)} is a base for closed sets in f-6'X.

Therefore NF=N{(O(n):neG}.
Then G is an f-open filter. So there exists an f-open ultrafilter say
U such that Gc W.
Therefore pe u for every ueG
That is, u € O(p) for all peG.
Therefore, u € N {O(n):neG}.

S U enF.Hence N F#¢.

~.£-0'X is compact.

5.1.9. Note: As in the case of f-EX, the reverse inclusion of (1) in the above

theorem does not hold. As in example 1.4.4 we can prove this.

Example: Let X be any non empty set.

Define pu,:X—[0,1] as p;(0) =% and W(x) =0,V x=0.

Consider the fuzzy topology t on X generated by the set of all

constant functions and ;.

Let f-0'X be the collection of all f-open ultrafilters on X. Then the

base for open sets in f-0'X is  {O(y) : y et(X)}.

Consider the openset U=0 () = {u € f-0'X :yje uj}.
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Then the f-open ultrafilter © [0]= {pet(X):u(0)>0} will contain p,.
Let py: X—[0,1] be defined as py(x) =% , VxeR

Then p<py,.

Therefore O (u;) < O(uy)
Thatis U < O ()

1.e. cl(U) cO(up)

Let v[x] ={p et(X):u(x)>0, x+0}.
Then v [x] is an f- open ultrafilter containing p, but not p,.

Le. V[x] €eO(yy) and V[x] ¢ O(w).

~.0(1y) @ cl(U).

5.1.10. Result:

B(f-0'X) = {O(w) : pet(X)}
Proof: By the result 5.1.7, we have{O(p):pet(X)} < B(f-6'X) (i)

Now let Ce B(f-6'X) . Then C is both open and closed. Since C is
open there exists a subset D of ©(X) such that C = U{O(n):pu €D}. C is also
closed. Therefore C is compact. Therefore there exists a finite subset H of D
such that
C=u{O(n): peH}

< { O(vp) :p eH }

€ {O(u}:piet(X)}.
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Therefore, C € {O(W;): 1 € «(X)j.
B(f-6'(X)) < {O(w):p € «(X) } (2)

Hence B(f-0'X) = {O(n):ne t(X)}.
5.2. Properties of the pair (f- E'X, K¢, )

5.2.1 Definition: A fuzzy singleton in X which is also f- open is called an

f- open point in X
5.2.2 Theorem: f-E'X is a dense B-extremally disconnected zero dimensional

subspace of f-6'X.

Proof: Being a subspace of {-6"X which is zero dimensional f-E'X is also zero

dimensional.

To show that f-E'X is dense in f-6'X .

Let pet(X) such that u#0. Choose an f-open point p in X such that p(x)=1

Let F= {yet(X) y(x)=1}.

Then  is an f-openfilter and so there is an f-open ultrafilter say © such

that Fc W.

ue F, therefore p € . i.e. U €O(p).

Ifa(u) =0, then thereis me U suchthat 7(x)=0. ien(x)=0

~.pAan=0, which is not true since pe W.

~a(w)=0. i.e. U ef-E'X.
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Therefore, U € O(u)Nf-E'X.

1.e. for petr(X), f-E'XNO(u)=¢. Therefore f-E'X is dense in {-0'X.

By result 1.4.2 ,any dense subset of a B-extremally disconnected
space is B-extremally disconnected. {-E'X is a dense subspace of f-8"X which

is B-extremally disconnected. Therefore f-E'X is B-extremally disconnected.

5.2.3 Theorem: For p € t©(X), ke (O(n) n f-E'X) = {p;} where {p;} is

subordinate to .
Proof: Let U € (O(u)Nf-E'X) and Kgo(u) =p where p(x,)=1 and p(x)=0
forevery x#X,.
Then ,u eO(p) and u ef-E'X
ie.pe wand a(w) =0.
Since Ke(U) =p, a (W) (x¢)=1
i.e. v(xo) =1 for every ye u.
sn(xg) =1 , since pe W
ie.p <u.
Therefore, Ko (O(WNf-E'X) = {p;} where p; < p for every i.

Therefore by definition 3.3.1 {p;} is subordinate top .
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5.2.4 Theorem: Let p be an f-open point in X with support x and pet(X). If

pef-int ( f-cl(p)), then K, (p) < O(p).

Proof: Let pe f-int (n). i.e. f-int p(x)=1. Therefore , p (x) =1.
Let w eKi, (p). Then Kp (W) =p

Therefore, a (W) (x)=1.

ie. y(x)=1 forevery ye u.

g (x)=1. Therefore, 1—-p(x)=l.

ie l-ug W Thatis p°e w. Therefore, pe w.

That is U € O(p).

S K (p) € O(p).

Note: The converse of this theorem is not true in the case of non crisp sets. By

an example similar to that of 4.3.4 , we can prove this.

5.2.5 Theorem: The function K, from {-E'X into X is s- continuous and

compact.

Proof: Similar to that of 4.3.7.
5.2.6 Note: The mapping K, is not a closed map. An example similar to
that of 4.3.8 will serve the purpose .

5.2.7 Definition: An f-open ultrafilter 4 on X is said to be strong fixed

(s-fixed )ifa(u)=0and M {co(p): pe U} #0.
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5.2.8 Remark:

As in the case of s-fixed ultrafilters, if N {co(n) : ue U} #¢, then it

reduces to be a singleton. Therefore the only s-fixed f-open ultrafilters are of the
form F[x] = {pet(X) :0 p(x)>0}. They are called principal f-open ultrafilters.
So as in section 4.4 we can construct the absolutes using the principal f-open

ultrafilters. The results proved in section 4.4 hold in this case also.

In such construction corresponding to every xeX, we can have
u [x] belonging to f-E'X such that N {co(p):peu} ={x}. Therefore the

mapping K¢, becomes a surjection from {f-E'X onto X.

s s ok ok ok ok ok e ok o ok
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