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Chapter 1

INTRODUCTION

1.1 Fuzzy Set Theory — A Mathematical Model for Uncertainty

Most of our traditional tools for formal modelihg, reasoning and computing are
crisp, deterministic and precise in character. Precision assumes that parameters of a
model represent exactly either our perception of the phenomenon modeled or the features
of the real system that has been modeled. Now, as the complexity of a system increases
our ability to make precise and yet significant statements about its behavior diminishes
until a threshold is reached beyond which precision and significance becomes almost
mutually exclusive characteristics. Moreover in constructing a model, we always attempt
to maximize its usefulness. This aim is closely connected with the relationship among
three key characteristics of every system model: complexity, credibility and uncertainty.
Uncertainty has a pivotal role in any efforts to maximize the usefulness of system

models. All traditional logic habitually assumes that precise symbols are being

employed.

One of the meanings attributed to the term 'uncertainty’ is "vagueness". That is,
the difficulty of making sharp or precise distinction. This applies even to many terms

used in our day to day life, such as X is 'tall', Y is 'beautiful, the sky is 'cloudy' etc. It is



important to realize that this imprecision or vagueness that are characteristic of natural

language does not necessarily imply a loss of accuracy or meaningfulness.

A mathematical frame work to describe this phenomena was suggested by Lotfi.
A. Zadeh in his seminal paper entitled "Fuzzy Sets" [45]. The crisp set is defined in such
a way as to dichotomize the individuals in some universe of discourse i\h to two groups:
members and non members, whose logic relies entirely on the classical Aristotlian one,
"A or not A". A sharp, unambiguous distinction exists between the members and non
members of the class represented by the crisp set. But, many of the terms that we
commonly use , such as ‘tall’ , ‘beauty’ etc. which are called ‘linguistic variables’, do not
exhibit this characteristic. Kosko [23 ] in his book calls this as Mismatch problem: The
world is gray but science is black and white. Infact, the fuzzy principle is that
"Everything is a matter of degree". Thus, the membership in a fuzzy set is not a matter of
affirmation or denial, but rather a matter of degree. Consequently, the underlying logic is

the fuzzy logic: A and Not A.

A fuzzy set can be defined mathematically by assigning to each possible
individual in the universe of discourse a value representing its grade of membership in
the fuzzy set. This grade corresponds to the degree to which that individual is similar or

compatible with the concept represented by the fuzzy set. Formally, a fuzzy subset of a
set Sisamap o: S — [0, 1], called the membership function where the transition from
membership to non membership is gradual rather than abrupt. Therefore it is natural to

treat fuzzy set as a kind of continuously valued logic.



From the very appearance of Zadeh's significant paper, the following question
was in the air. Is not fuzzy set theory, probability theory in disguise? The answer has
always been an emphatic 'no'. The swamp water example mentioned in [2] clearly
indicates the spirit. Another immediately apparent difference is that sum of probabilities
on a finite universal set must be equal to 1, while there is no such requirement for
membership grades. Aristotle's law always hold in probability theory. Though a
probability density function can be used to design a membership function, the converse
situation may not hold. Thus, probability theory and fuzzy set theory put together can

lead to a ‘generalized information theory’.

The capability of fuzzy sets to express gradual transition from membership to non
membership and vice versa has a broad utility. It provides us not only with a meaningful
and powerful representation of measurement of uncertainties, but also with a meaningful
representation of vague concepts expressed in natural language. Because every crisp set
is fuzzy but not conversely, the mathematical embedding of conventional set theory into
fuzzy sets is as natural as the idea of embedding the real numbers into the complex plane.

Thus, the idea of fuzziness is one of enrichment, not of replacement.

Since it is not easily acceptable to define a concept on the basis of subjective
feelings, the degree of membership o (x) of x is some times interpreted as the fraction of

a sufficiently large number of referees agreeing with the statement that x belongs to S.



Research on the theory of fuzzy sets has been witnessing an exponential growth;
both within mathematics and in its applications. This ranges from traditional
mathematical subjects like logic, topology, algebra, analysis etc. to pattern recognition,
information theory, artificial intelligence, operations research, neural networks, planning

etc. Consequently, fuzzy set theory has emerged as a potential area of interdisciplinary

research.

Some of the books discussing these various themes are Bezdek and Pal [2],

Lootsma [25], Morderson and Malik[28], Cornelius . T. Leondes[24] and Klir and Bo

Yuan[21].

We shall now list below some basic definitions and results from[33],[35].

Let o be a fuzzy subset of S. Thenthesets o ‘= {x eS:o(x) >t}
Vt € [0, 1], are called the ¢ level sets and the set o *={x € §: o(x) > 0} is called

the support of o. Note that o ‘ and o * are crisp sets.

Definition 1.1. Let o and 7 be two fuzzy subsets of S. Then
. ocrifox)<t(x) VxeS
2. ocrtif o(x) <t(x) Vx €S and3 atleast one x € S such that o (x) < r(x) ! 3

Jo=tifox)=1(x) Vxes§



the restriction u(x, ) < o) A1(),Vx eSandy € T allows " to be a relation

from c'tot',Vt e [0,1]and u* tobe arelation from o *to 7*.

Definition 1.5. Let xS xT— [0,1] be a fuzzy relation from a fuzzy subset o of S
into a fuzzy subset 7 of Tand v: T xW — [0,1] bea fuzzy relation from a fuzzy
subset 7 of T into a fuzzy subset £ of W. Then u-v:SxW— [0,1] defined by u

vix,z) =vi{uxyav@y,z):yeT}forallx €8S 2z € W, is called the composition

of u with v.

Note.,k/ U, o, 7, vand & be defined as in Definition 1.5. Then u -v is a fuzzy relation

from o into &.

In the rest of the discussion we consider z and v to be fuzzy relations on a
fuzzy subset o of S. It is quite natural to represent a fuzzy relation in the form of a
matrix. The composition operation reveals that 4 -v can be computed similar to matrix
multiplication, where the addition is replaced by v and multiplication by . Since
composition is associative, we use the notation x’to denote g -u and u * to denote

luk.l"/u) k>1.

Definition1.6. u “ (x, y) = v{p" (x,y):k=123..... J, Vx, ye s

Now it is convenient to define 4°(x, y) =0if x 2y and u®° (x, x) = o &)V x, y€eS.



Definition1.7. Let u be a fuzzy relation on o. Then u is called reflexive if
“Hxx)=ock) Vxebs.

If uis reflexive, then it follows that u (x, y) <u(x, x) and u (y, x) <p(x, x) Vx,yeS.

Theorem 1.1. Let x and v be fuzzy relations on a fuzzy subset o of S. Then the

following properties hold .

1. If y isreflexive, v veu and vgu-v.

2. If u isreflexive, u g,uz.

3. If u isreﬂexive,,uo cu gyzg;f C e cu”
4. If u is reﬂexive,po(x, x)=u (x,x) = ,uz(x, X) = ereeeerrieenenn =u®(xx) =0k
vV x e

5. If 4 and v are reflexive, sois u-v and vo u.

6. If u isreflexive, then u' is areflexive relationon o' V ¢ € [0, 1].

Definition 1.8. A fuzzy relation is called symmetric if u(x, y) =u @, x), Vx, ye S.

Theorem 1.2. Let 4 and v be fuzzy relations on a fuzzy subset o of S. Then the

following properties hold.

1. If u# and v are symmetric, then y- v is symmetric if and only if pov=vou.

2. If uis symmetric, then so is every power of u .



3.

If u is symmetric, then g is a symmetric relationon o' V ¢ € [0, 1].

Definition 1.9. A fuzzy relation y is transitive if u? c u .

It follows that £ ® is transitive for any fuzzy relation z . The following are some

of the properties of transitive fuzzy relation.

Theorem 1.3. Let x , v and 7 be fuzzy relations on a fuzzy subset o of S. Then the

following properties hold.

1.

2.

If yistransitiveand 7 c 4 ,vc u,thenzw-vgu.

If 4 is transitive, then so is every power of 4.

. If u istransitive, v isreflexiveand v ¢ u,then gov=voeu=ypu.

. If u is reflexive and transitive, then u?_ p.

3 ©

. If u isreflexive and transitive, then u e M= U 2= B = . = u

. If 4 and v are transitive and z - v= v -, then u - v is transitive.

If 4 is symmetric and transitive, then, y (x, y) Su(x, x) and u (y, x) S (x, x) Vx,

yeSs§.

. If u is transitive, then 4 is a transitive relationon o' V' ¢ € [0, 1].

A fuzzy relation on S which is reflexive, symmetric and transitive is called a

fuzzy equivalence relation on S.

More properties of fuzzy sets are in [20],[21], [47].



1.2 Theory of Fuzzy Graphs — Definitions and Basic Concepts

It is quite well known that graphs are simply models of relations.
A graph is a convenient way of representing information involving relationship between
objects. The objects are represented by vertices and relations by edges. When there is
vagueness in the description of the objects or in its relationships or in both, it is natural

that we need to design a 'Fuzzy Graph Model'.

Application of fuzzy relations are widespread and important; especially in the
field of clustering analysis, neural networks, computer networks, pattern recognition,

decision making and expert systems. In each of these, the basic mathematical structure is

that of a fuzzy graph.

We know that a graph is a symmetric binary relation on a nonempty set V.
Similarly, a fuzzy graph is a symmetric binary fuzzy relation on a fuzzy subset. The first
definition of a fuzzy graph was by Kaufma.mn[18] in 1973, based on Zadeh's fuzzy
relations [46 ]. But it was Azriel Rosenfeld [35] who considered fuzzy relations on fuzzy
sets and developed the theory of fuzzy graphs in 1975. During the same time R.T.Yeh

and S.Y. Bang [44 ] have also introduced various connectedness concepts in fuzzy

graphs.



Definition 1.10. Let V' bea no@;npty set. A fuzzy graph is a pair of functions
G : (o, u) where o is a fuzzy subset of ¥ and p is a symmetric fuzzy relation on o .
ie. o:V—>[01]and u:V xV — [0,1] suchthat u(u, v) <o(u) Ao (v) forallu, vin
V.

We denote the underlying (crisp) graph of G : (o, u) by G* :(o*, u*) where o* is
referred to as the (nonempty) set ¥ of nodes and u* = E < V x V. Note that the crisp
graph (V, E) is a special case of a fuzzy graph with each vertex and edge of (¥,E) having

degree of membership 1. We need not consider loops and we assume that 4  is

reflexive. Also, the underlying set V is assumed to be finite and o can be chosen in any

manner so as to satisfy the definition of a fuzzy graph in all the examples. ]

The basic definitions and properties that follow are from [ 33 ], [35 ].

Definition 1.11. The fuzzy graph H: (7, v) is called a partial fuzzy subgraph of
G:(o,u)if rco and vcu In particular, we call H: (7, v) a fuzzy subgraph of

G:(oou)if t(u)= o) Yuer*and v(u, v) = u(u v)V(u, v)e v*

For any thresholdt, 0<t <1, o' ={ueV:o@ >t} and
u' ={mv) eVxV:u@v) 2t}. Since uuy) <ow)ro@) foralluvinV

wehave u' c o' x o', sothat (o', u") is a graph with vertex set o’ and edge set

u'for te/01]

10



Note. LetG: (o, ) bea fuzzy graph. If 0 <t; <, <1, then (0"2,/1 'Z)isa

subgraph of (0 Vi "')

Note. Let H: (z, v) be a partial fuzzy subgraph of G: (o, ) . For any threshold

0<t <1, (', v')isasubgraphof (', u’).

Definition 1.12. For any fuzzy subset 7 of Vsuch that 7 < o , the partial fuzzy
subgraph of (o, u) induced by 7 is the maximal partial fuzzy subgraph of (o, u) that
has fuzzy nodgéet 7. This is the partial fuzzy subgraph (7, v) where

T, v)=tWAat(V) Auuv), foralluveV.

Definition 1.13. The fuzzy graph H : (7, v) is called a fuzzy subgraph of G : (o, 1)

induced by PifPcV, v(u) =o(u) VuePand u, v) = u(u, v)Vu, v € P.

Definition 1.14. A partial fuzzy subgraph (7, v) spans the fuzzy graph (o, 1) if o=1.

In this case (7, v) is called a partial fuzzy spanning subgraph of (o, u) .

Next we introduce the concept of a fuzzy spanning subgraph as a special case of

partial fuzzy spanning subgraph.

11



Definition 1.15. A fuzzy subgraph (7, v) spans the fuzzy graph (o, u) if o=1

pu(u,v)if(u,v)ev*
0 ,otherwise.

and v(u,v)={

In this case we call (7, v), a fuzzy spanning subgraph of G : (o, 1) .
The following examples illustrate these basic concepts.

Example 1.1.

U

Uz U,y
Uy Us
Fig.1:1a Figl.1b
A fuzzy graph G :(o, u) (crisp) graph G* :(o*, u*)

u; ‘f U3
Us O Us
Fig.1.1c Fig.1.1d
G':(c' u') wheret =0.5 A partial fuzzy subgraph of G

12



Dy,

9 U, (7)
.8 .5 5
(8 u4J —d us (6)
.6
Fig.l.1e

A partial fuzzy subgraph induced by 7
where 7(uz) =1, t(u3) = 0.7,
T(ug) = 0.8 and 7 (us) = 0.6
(-4)
1

M (8)

) 9

Figl.1g

A partial fuzzy spanning subgraph of G

(D) u;

u; (.8)

Dy

us (.9)

Fig.1.1f
The fuzzy subgraph induced by P

where P = { u; u3, uy, us }

Figl.1h

A fuzzy spanning subgraph of G

Yeh R.T. and S.Y. Bang [44]have extended the definition of degree of a node as

follows. Let G : ( d’, 4 ) be a fuzzy graph. Degree of a node v is defined to be d(v) =

Z p(u,v). The minimum degree of Gis (G )=min {d( v )} and the maximum degree
#U veV

of Gis A(G)=max {d(v)}.

veV



From the above definition and from the symmetry of the fuzzy relation, we have,

Zdeg v= ZZ,u(u,v).

veV vy

Definition1.16. A fuzzy graph G: (g, i) is strong if
wuv)y=oc(u)yno(v)v(u,v)e u*

and is complete if w(u,v)=oc(u)ro(v)Vu,veo*.

Note that every complete fuzzy graph is strong but not conversely. Also if

G : (o, u) is a complete fuzzy graph then G* : (o* u*) is a complete graph.

Example 1.2.

4
(4) ?——T (.6)
4 3
(.5) — (3) (4) (3)
.3
Fig.1.2a Fig.1.2b
A strong fuzzy graph A complete fuzzy gréph

Definition 1.17. A path P in a fuzzy graph G : (o, ) is a sequence of distinct nodes ug

7T SO ,upsuchthat y(u;_,u;)>0 1<i<n.

14



Here n 2 [/ is called the length of the path P. A single node u may also be
considered as a path. In this case the path is of length 0. The consecutive pairs

(ui-1, uy) are called arcs of the path. Wecall Pacycleifuy=u,andn 2>3.

Definition 1.18. The strength of a path P is defined as 2\1 p(ug_y,u; ).

In other words, the strength of a path is defined to be the degree of membership of
a weakest arc of the path. If the path has length 0, it is convenient to define its strength to

be o (ug).

Next we have the concept of a strongest path in a fuzzy graph which plays an

important role in the structure of fuzzy graphs.

Definition 1.19. A strongest path joining any two nodes » and v is that path which has

strength 4™ (u, v) and u” (u, v) is called the strength of connectedness between u and v.

Example 1.3. In Example 1.1(a), a strongest path joining u, and us is the path
P: Uy Ug,Us with ,Uw (uz, u5) =(0.8.
Also , 1% (uy, uz) = 1= (ug, uz) = 1= (ug, ug) = 1= (uy, us) = 0.3,

U7 (uz u3) = 0.7, 4 (u, ug) = 0.8, 1 (u3, ug) = 0.7 = 4 (us, us) and y” (uq, us) = 0.9.

Definition 1.20. A fuzzy graph G : (o, 1) is connected if any two nodes are joined by a

path. Maximal connected partial subgraphs are call ed components.



Note. A fuzzy graph G : (g, i) is connected if and only if 4® (4, v) > 0 Vu, v € V.

Also, in a (crisp) graph each path is a strongest path with strength 1.

Definition 1.21. A maximum spanning tree of a connected fuzzy graph G : (o, 1) is a

fuzzy spanning subgraph T (o, v), such that T* is a tree, and for which Zv( u,v) is

u#y

maximum,

Analogous to minimum spanning tree algorithm for crisp graphs, an algorithm to
obtain a maximum spanning tree of a connected fuzzy graph is given in [4 ]. Note that
the strength of the unique u-v path in T gives the strength of connectedness between » and
v for all u,v. Also if G : (o, ) is such that G* is a tree, then T is G itself . In example

1.1a, amaximum spanning tree is given in Fig. 1.3.

u; (4)

uz (1)

(Dug

Fig.1.3
The notions of bridge , cutnode, tree, block and metric are extended to fuzzy graphs as

follows.

16



Definition 1.22. An arc (u,v) is a fuzzy bridge of G : (o, u) if the deletion of (u, v)

reduces the strength of connectedness between some pair of nodes.

Equivalently, (4, v) is a fuzzy bridge if and only if there are nodes x , y such that

(u, v) is an arc of every strongest x - y path.

Definition 1.23. A node is a fuzzy cutnode of G : (o, 1) if removal of it reduces the

strength of connectedness between some other pair of nodes.

Equivalently, w is a fuzzy cutnode if and only if there exist u, v distinct from w

such that w is on every strongest u — v path.

Examplel.4. In Fig.1.1a, (u;, us) , (u3, uz), (ua, uy) and (u,, us) are the fuzzy bridges and

uy u3, uy are the fuzzy cutnodes of G : (o, u).
Definition 1.24. A connected fuzzy graph G : (o, i) is a fuzzy tree if it has a fuzzy
spanning subgraph F : (o, v) , which is a tree, where for all arcs (4, v) not in F

U v) < V< (u v).

Equivalently, there is a path in F between u and v whose strength exceeds u (u ,v)

for all (», v) not in F. Note that if G is such that G* is a tree then Fis G itself.

17



Examplo 1.5

y v
1
1
X o W
1
Fuzzy tree G : (o, u) Fig.1.4  Spanning subgraph F: (o, v)

Here p(u,y)=.2< 3=Vwy),uvw =.5<1=v"v, w)and

U, x)=.5<1=v(,x).

Definition 1.25. Let G : (o, ) be a fuzzy graph such that G * is a cycle. Then G is

called a fuzzy cycle if it has more than one weakest arc.

Definition 1.26. A connected fuzzy graph G : (o, u) with no fuzzy cutnodes is called
a block.
In [35] it was observed that blocks in fuzzy graphs may have fuzzy bridges. In

the following Example, G; is a block without fuzzy bridge and G, is a block with fuzzy

bridges, (u; , uz) and (u;, uy).

—) uy é Uy

G, Fig.1.5. G;

18



Definition 1.27. The u - distance & (i, v) is the smallest u-length of any u-v path, where

........... , Uy IS Z(P)=i 1

the u - length of a path P : uy, u,, —_—
im (Ui ,u;)

If n =0, then define {(P)=0.

Note. In a connected fuzzy graph G, é (u, v) is a metric.

Based on this metric, Bhattacharya [3] has defined the concepts of eccentricity and
center in fuzzy graphs. The eccentricity e(v) of anode v in a connected fuzzy graph G is
max o (u, v) for all ¥ in G. The radius »(G) is the minimum eccentricity of the nodes, the
diameter d(G) is the maximum eccentricity. A node v is a central node if e(v) = r(G).

We call (C(G)) = H : (7, v), the fuzzy subgraph of G : (o, ) induced by the central

nodes of G, the center of G.

Example : In the following fuzzy graph G, (Fig 1.4), 6 (u, w) =3, 6 (v, x) =2, e(u) =
e(w) =3, e(x) = e(v) = 2,r(G))=2and d(G;)=3. ForG;,6(u, v)=2,6(v, x) =1, e(u)

=e(v) =e(w) =2,e(x) =1, r(G;) =1 and d(G;) = 2.

u > v
1 5 (C(Gy)): ov
0X
X 0 W
) .5 5 (C(Gy)): ox
v v oG Fig. 1.6 G;

19



The concept of isomorphism of two fuzzy graphs has been defined in [35].

Consider the fuzzy graphs G, : (o, 1;) and G, : (o7, y2) with gy* =V, and o,*=V;.

Definition 1.28. An isomorphism between two fuzzy graphs G, and G; is a bijective

map h : V; = V, that satisfies

o,u)=0o,hu) Vue Vand
o, (,v) = 11, (h(@),A(V))Vu,v e Vand we writeG, = G,.

An automorphism of G is an isomorphism of G with itself.

The operations on fuzzy graphs such as union, join, cartesian product and
composition of graphs has been defined in [30] . In the following definitions an arc

between two nodes u and v is denoted by uv rather than (u, v), because in the cartesian

product of two graphs, a node of the graph itself is an ordered pair.

Definition 1.29. Let G, : (o7, y4;) and G; : (02, 42) be two fuzzy graphs with G,* :
(Vi,E;) and G* : (Va,E) with V,nV, =g and let G* = G,*v G,* =
(Vi UV,, E; UE;) be the union of G;* and G,*. Then the union of two fuzzy graphs G,

and G, is a fuzzy graph G = G, UG, : (0, U 07, ;U yz) defined by

20



o (u)if ueV, -,
] and
o(u)if ueV, -V,
H(uw)if welX, -X, "\ ,;;\
H(uv)if welX,-X, &

(o,vo0, )(u)={

(4 U Hu, )(uv)={

Definition 1.30. Consider the join G* = G,*+G,* = (V, UV,, E; U E, U E’) of graphs
where E’ is the set of all arcs joining the nodes of V;and ¥, where we assume that
ViNnV2=¢. Then the join of two fuzzy graphs G; and G, is a fuzzy graph G = G, + G; :
(o1 + o2, u; + uz) defined by

(CT, +0'2)(u) =(cr, uaz)(u) YueV, UV, and
(a, + 11, Yuwv) ={(#l Ut Jwv) if we E, U E, and

o, wrc,v) if wekE'
Definition 1.31. Let G* = G,*xG;* = (V, E") be the cartesian product of two graphs
where V=V,;x Vyand E" = { (u, uy)(u, vo) : u € V;, ugvy € Ez } U (us, w)(vi, w) : w €
Vo, uvy € E; . Then the cartesian product G = G; x G; : (o7 x 02, 4y x uz) is a fuzzy
graph defined by
(GI xaz)(ul’uz) =0',(u,)/\0'2(u2) v(unauz)e Vand
w0, )u,v,)) =0 (@A, (uy,) VueV, Vuy, ek,
lulxlu2((ul »W)(Vl ’W)) =0, (W)/\/ll (ulvl) Vwel,,Vuyv eE,.
Definition 1.32. Let G* = G;*- G,* = (V; x V,, E ) be the composition of two graphs,
where E = { (u, up)(u, vi) :u € Vi, ugvy e E; )} Uf (u, wvi, w):weVyuv, ek} uf

(us, uz )(vi, v2) : uv; € Ej, uy#vy ). Then the composition of fuzzy graphs

G=G; -Gy : (0102, o Uy is a fuzzy graph defined by

21



(0,00, )(ul ’uz) =0, (ul)A02(u2)’ v(ul ,u2)€ ViV, and

(g © p Wosu, v, )) = 0, () A (v, ), YU €V, Y v, € By

(1o py )((“l ’W)(vl w)) = Gz(W)A:uI(ulvl L VweVy,Vuy, €E,;

(4 0y )((“1 ’“z)(vl ’Vz))= Gz(uz)/\az("z)/\ﬂl(ulvl ) V(ul v“z)(vl "’z)e E - E\’\
where E'= {e,u, Xu,v,):u eV, Nu,v, € E,}o{(u,,whv,,w):weV,,uv, eE, }

1.3 Fuzzy Graph Theory — Survey of Results

After the pioneering work of A Rosenfeld [ 35 ] and R.T.Yeh and S.Y. Bang [ 44 ]
in 1975, where some basic fuzzy graph theoretic concepts and applications have been
indicated, several authors have been finding deeper results, and fuzzy analogues of many
other graph theoretic concepts. This include fuzzy trees [10 ], fuzzy line graphs[29 ],

autmorphism of fuzzy graphs [ 5 ], fuzzy interval graphs [ 8 ], cycles and cocycles of

fuzzy graphs [31] etc.

We shall list below some of the known results.
Theorem 1.4 [ 35] . The following statements are equivalent for an arc (v, v) of a fuzzy
graph G - (o, u).

(1) (uv) is a fuzzy bridge

(2) (u,v) is not a weakest arc of any cycle in G. :

22



Theorem 1.5 [34 ]. An arc (a node) is a fuzzy bridge (a fuzzy cutnode) iff there exists a
partition ¥ of nodes into subsets U, W, and X such that all nodesu € Uand w € W, the

arc (the node) is on every strongest u - w path.

»

Theorem 1.6 [ 31]. Let G : (o, u) be a fuzzy graph with ¥V = {v,, vy,........ 'vo4 and let C
be the cycle vy, vy,........ Vo, v; . If p* 2 C and for every arc (v;, v )€ u*-C,

B, vi) <Max { y(vi, viey) - i = 1,23,........ n }, where v,+; = v, then either u is a

constant on C or G has a fuzzy bridge.

Theorem 1.7 [ 35] . Let G be a connected fuzzy graph. Then G is a fuzzy tree if and
only if in any cycle of G, there is an arc (u,v) such that z(u,v) <u’“(u,v), where the prime

denotes the deletion of the arc (u,v).

Theorem 1.8 [ 35] . Let G be a connected fuzzy graph. If there is .a[ufnost one strongest

path between any two nodes of G, then G is a fuzzy tree.
Theorem 1.9 [ 35 ] . If G is a fuzzy tree then arcs of F are the fuzzy bridges of G. £

Now, regarding the blocks in fuzzy graphs [ 35 ], if between every two nodes u,v of G

there exist two strongest paths that are disjoint, then G is a block and the converse is not

true.
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Bhattacharya [ 3 ] has extended the definitions of eccentricity and center based on the

metric in fuzzy graphs defined in [ 35 ], and the inequality #(G) < d(G) < 2r(G) also has

been proved.

Automorphism of fuzzy graphs has been studied by Bhattacharya and Bhutani and they
have shown how to associate a fuzzy graph with a group as the group of automorphism
of fuzzy graphs [ 3,5 ].

One can also attempt to compute 4” (u, v) using the concept of fuzzy matrix A of
a fuzzy graph G : (o, u) where the rows and columns are indexed by the set V of nodes
and the (v, v) entry of Ais u(u, v} Vus=v and u(u, u) = o(u) . The matrix product
AA = A is defined where the usual addition and multiplication of real numbers are
replaced by maximum and minimum respectively. Higher powers A* are defined

recursively. It can be shown that u‘ (u, v) is the (u,v) entry of A’ ¥u, v and there exists

some k such that 4% = 4 ¥*/ where

k= Max {length of P(u,v) : P is a shortest strongest u-v path} [4 ], [ 44 ]. An

algorithm to find the connectedness matrix of a fuzzy graph isin [ 41 ].

Yeh and Bang’s [ 44] approach for the study of fuzzy graphs were motivated by
its applicability to pattern classification and clustering analysis. They worked more with
the fuzzy matrix of a fuzzy graph, introduced concepts like vertex connectivity «(G) ,

edge connectivity A(G) and established the fuzzy analogue of Whiteney’s theorem. They

also proved that for any three real numbers q, b, ¢ such that 0 < a <b <c, there exists a
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fuzzy graph G with (G) =a, 4(G) = b and &G) = c. Techniques of fuzzy clustering

analysis can also be found in [44].

The concepts of connectedness and acyclicity levels were introduced for fuzzy
graphs [10 ] and several fuzzy tree definitions which are consistent with cut - level
representations were given in [10]. Introducing the notion of fuzzy chordal graphs,
Craine. W. L.[ 8 ] has obtained the fuzzy analogue of the Gilmore and Hoffman

characterization of interval graphs and also that of Fulkerson and Gross.

J.N.Mordeson and P.S. Nair [30] have introduced the notions of union, join,

cartesian product and composition of fuzzy graphs and have studied some basic

properties.

Applications of fuzzy graphs to database theory[ 19], to problems concernig the

group structure [40 ] and also to chemical structure research [ 43] are found in literature.

To expand the application base, the notion of fuzzy graphs have been generalized

to fuzzy hypergraphs also[12 ], [ 13}, [14], [15].
Zimmermann [47 ] has discussed some properties of fuzzy graphs. The book [33 ] by

Mordeson and Nair entitled “ Fuzzy graphs and Fuzzy hypergraphs “is an excellent

source for research in fuzzy graphs and fuzzy hypergraphs.
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Fuzzy graphs have also been discussed in [6 ], [7 1, [9 1, [11 ], [16 ], [22 ], [26 ],

[271,[32 ], [39] and [42].

1.4 Summary of the Thesis

This thesis consists of five chapters including this introductory one. In this thesis an
attempt to study more on the basic concepts in fuzzy graphs given by Rosenfeld [ 35 ]
such as fuzzy bridges, fuzzy cutnodes, fuzzy trees, blocks and metric concepts in fuzzy
graphs has been made. Also, we modify the definition of the complement of a fuzzy

graph and some of its properties are studied.

In the second chapter we have studied in detail the notions of fuzzy bridges, fuzzy
cutnodes and fuzzy trees and various interconnections. We call for convenience, an arc,
and anode of G : (o, 1), a bridge and a cutnode of G : (g, i) if they are the bridge and
cutnode of G* respectively. Note that a bridge and a cutnode of G* is a fuzzy bridge and

a fuzzy cut node of G : (o, u) , respectively.

One can see that identification of fuzzy bridges and fuzzy cutnodes is not easy.
We observe that if an arc (i, v) is a fuzzy bridge then it is the unique strongest « - v path
and the converse holds only in fuzzy trees. Also if G* is a cycle then all arcs of G except

the weakest are fuzzy bridges.
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Some significant differences from crisp theory are

(1) existence of a fuzzy bridge need not imply existence of a fuzzy cutnode.
(2) a complete fuzzy graph can have atmost one fuzzy bridge.
(3) there are fuzzy graphs with diametrical nodes, as fuzzy cutnodes (Chapter 4).

(4) anode can be a fuzzy cutnode of both G and its complement (Chapter 5).
Next we present a sufficient condition for a node to be a fuzzy cutnode as a
common node of atleast two fuzzy bridges. This also becomes necessary in the cases

when (1) G is a cycle and (2) G is a fuzzy tree.

Now, using the concept of maximum spanning tree we characterise fuzzy bridges

and fuzzy cutnodes in connected fuzzy graphs as follows.

Theorem 1.  An arc (u, v) is a fuzzy bridge of G if and only if (u, v) is in every

maximum spanning tree T of G.

Corollary. If G : ( o, 1) is a connected fuzzy graph with | ¥ | = n then G has atmost n -1

fuzzy bridges.

Theorem 2. A node is a fuzzy cutnode of G if and only if it is an internal node of every

maximum spanning tree T of G.
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Corollary. Every fuzzy graph has aifast two nodes which are not fuzzy cutnodes. A

In the second part of this chapter we concentrate on fuzzy trees.
Theorem 3. Let G : (o, 1) be a fuzzy tree and G* #K;. Then G is not complete.

Theorem 4. If G is a fuzzy tree, then internal nodes of F are the fuzzy cutnodes of G.

Corollary. A fuzzy cutnode of a fuzzy tree is the common node of ail\east two fuzzy

bridges.
Next, using the concept of fuzzy bridges we characterize fuzzy trees as follows.

Theorem 5. G : (o, u) is a fuzzy tree if and only if the following are equivalent.

l(l) An arc (u, v) is a fuzzy bridge

2 #wv)=p@v)

In this proof we establish that a maximum spanning tree T of G is the required fuzzy

spanning subgraph F for G to be a fuzzy tree and that arcs of T are the fuzzy bridges of

G, which leads to another characterization of fuzzy trees.

Theorem 6. A fuzzy graph is a fuzzy tree if and only if it has a unique maximum

spanning tree.
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Corollary . If G : (o, u) is a fuzzy tree with |V] = n, then G has n - I fuzzy bridges.

Mordeson [ 31 ] has defined a cycle C as a fuzzy cycle if it has more than one
weakest arc and proved that a cycle is a fuzzy cycle iff it is not a fuzzy tree. We present a

sufficient condition for a fuzzy graph G to be a fuzzy tree .

Theorem 7. Let G : ( o, u) be a connected fuzzy graph with no fuzzy cycles. Then G

is a fuzzy tree.

Third chapter deals with blocks in fuzzy graphs. We observe that block may
have more than one fuzzy bridge and that no two fuzzy bridges in a block can have a

common node. Also it follows that a complete fuzzy graph is a block.

-

Now, recall that when a fuzzy bridge is removed from a fuzzy graph, the strength
of connectedness between some pair of nodes of G is reduced. We have some

interesting observations regarding the reduction of strength of connectedness when G

is a fuzzy tree or a block.

Theorem 8. If G is a fuzzy tree, then removal of any fuzzy bridge reduces

the strength of connectedness between its end nodes and also between some other

pair of nodes .
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In the fourth chapter , we discuss some metric aspects of fuzzy graphs.
We introduce the notion of a self centered fuzzy graph. We denote by (C(G), the
center of a connected fuzzy graph G : (o, u) , the fuzzy sug\graph induced by the

central nodes of G. A connected fuzzy graph is self centered if (C(G)) is

isomorphic to G.

Theorem 11. A connected fuzzy graph G : (o, y) is self centered if u™(u, v) = u(u, v) for

allu, vin Vand r(G) = —(l—where H(u, v) is least.
u(u

’

1

Corollary. A complete fuzzy graph is self centered and r(G) = )
o(u

where ofu) is least.

As a consequence, there exists self centered fuzzy graph of radius ¢ for each real

number ¢ > 0. Also, for any two real numbers a, b such that 0 < a < b < 2a, there

exists a fuzzy graph G such that r (G) =aandd (G) =b.

An obvious necessary condition for a fuzzy graph to be self centered is that each

node is eccentric and examples are given to show that this is not sufficient.

Note that in the crisp case, cycles C, are self centered with #(C,) =n/2, ifn

is evenand r(C,) = (n—1)/2 ifnisodd. We investigate this property in a fuzzy graph

31



G:(o,u) where G* isa cycle and a sufficient condition for G to be self centered

depending on various values of n is also obtained.

Analogous to Hedetniemi’s construction in the crisp case we prove that every
fuzzy graph H can be embedded as the central subgraph of a fuzzy graph G. Also if H

is connected with diameter d , we construct G with r(G) = d, and d(G) = 2d.

A similar problem for fuzzy trees is also discussed. If H is a fuzzy tree with diameter d ,
then there exists  a fuzzy tree G such that (C(G)) ~H . Note that even if H is not a
fuzzy tree, this gives another construction of G such that (C(G)) = H. It is noted that

center of a fuzzy tree need not be a fuzzy tree.

In the last chapter we mention some drawbacks in the definition of complement of a
fuzzy graph given in [30] and suggest a new definition. We study the properties of G
and its complement G and prove that the automorphism group of Gand G are
identical. Distinct from crisp theory, we observe that a node can be a fuzzy cutnode of

both G and G .

IfG ~ G, then we call G, a selfcomplementary fuzzy graph and independent necessary

and sufficient conditions for a fuzzy graph G to be self complementary are obtained.

Theorem 12. Let G : (o, 1) be a selfcomplementary fuzzy graph. Then



> u(uv) =2 X (o) na(»)

u+y uxy

Theorem 13. Let G : (0, 1) be a fuzzy graph. If u(u,v)= %(o'(u)/\ o)V uver,

then G is self complementary.

In the second part of this chapter, we study some operations on fuzzy graphs and
prove that complement of the union two fuzzy graphs is the join of their complements
and complement of the join of two fuzzy graphs is the union of their complements.

Finally we discuss the complement of the composition of two fuzzy graphs.

The study of fuzzy graphs made in this thesis is far from being complete. We
conclude the thesis with some suggestions for further study. We sincerely hope that the
wide ranging applications of graph theory and the interdisciplinary nature of fuzzy set
theory, if properly blended together could pave a way for a substantial growth of fuzzy

graph theory. 1



Chapter 2

FUZZY BRIDGES, FUZZY CUTNODES AND FUZZY TREES

The first part of this chapter deals with fuzzy bridges and fuzzy cutnodes . A
sufficient condition for a node to be a fuzzy cutnode is obtained which becomes also
necessary in the case of fuzzy trees. A characterization of fuzzy cutnode is obtained for
fuzzy graphs G such that G* is a cycle. Some significant differences from the crisp
theory are pointed out. Note that , bridges and cutnodes of the crisp graph G* are fuzzy
bridges and fuzzy cutnodes of the fuzzy graph G respectively. Next we present a
necessary condition for an arc (u, v) to be a fuzzy bridge and prove that this condition is
also sufficient in the case of fuzzy trees. Also fuzzy bridges and fuzzy cutnodes are
characterized using maximum spanning trees. Consequently it is shown that every fuzzy
graph has atleast two nodes which are not fuzzy cutnodes and that a fuzzy graph with |V]

= n has atmost n - / fuzzy bridges.

In the second part we discuss fuzzy trees. The concept of maximum spanning tree

plays a key role in the characterization of fuzzy trees. A fuzzy graphis a

Some results of this chapter are included in the paper *“ A characterization of fuzzy trees”, Information

Sciences, 113, 293 — 300(1999) and also in the book “Fuzzy graphs and Fuzzy Hypergraphs”,

J.N.Mordeson and P.S.Nair, Physica Verlag(2000).
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a fuzzy tree if and only if it has a unique maximum spanning tree. A sufficient condition

for a fuzzy graph to be a fuzzy tree is also obtained using the concept of fuzzy cycle.

2.1 Fuzzy Bridges and Fuzzy Cutnodes

The notion of strength of connectedness plays a significant role in the structure of
fuzzy graphs. When a fuzzy bridge (fuzzy cutnode) [Definitions 1.22 & 1.23] is removed
from a fuzzy graph, the strength of connectedness between some pair of nodes is reduced
rather than a disconnection as in the crisp case. Note that weakest arcs of cycles cannot
be fuzzy bridges [Theorem 1.4] and it follows that if G is a fuzzy graph such that G* is a

cycle, then all arcs except the weakest are fuzzy bridges. Moreover we have,

Theorem 2.1. Let G : (o, u) be a fuzzy graph and let (¥, v) be a fuzzy bridge of G.

Then 4 (u, v) = u(u, v).

Proof : Suppose that (u, v) is a fuzzy bridge and that 4 (u, v) exceeds u (4, v) . Then
there exists a strongest ¥ — v path with strength greater that x4 (4, v) and all arcs of this
strongest path have strength greater than x (4, v) . Now, this path together with the arc

(u, v) forms a cycle in which (u, v) is the weakest arc, contradicting that (u, v) is a fuzzy

bridge[Theorem 1.4].

Remark 2.1. 1t follows from Theorems 1.4 and 2.1 that an arc (u, v) is a fuzzy bridge if

and only if it is the unique strongest u - v path. However, the converse of Theorem 2.1
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is not true. In the following fuzzy graph (Fig 2.1), (u;, u4) and (u3, uy) are the only fuzzy
bridges and u™ (u;, uz) = p (uy, uz) = 0.4=u™ (u;, uz) = p(u;, ug), but (u;, up) and (u,
, u3) are not fuzzy bridges. The condition for the converse to be true is discussed in

Theorem 2.11.

4
Uy u;
4 6
U3 U4
i
Fig. 2.1

We first observe that the identification of fuzzy cutnodes [Definition 1.23] is not
easy. In the next theorem, we characterize fuzzy cutnodes in G such that G* is a cycle
and then present a sufficient condition for a node to be a fuzzy cutnode in the general

case.

Theorem 2.2. Let G : (o, u) be a fuzzy graph such that G* is a cycle. Then, a node is

a fuzzy cutnode of G if and only if it is a common node of two fuzzy bridges.

1 .
Proof : Let w be a fuzzy cutnode of G. Then there exist7/ u and v, distinct from w, such
that w is on every strongest u — v path which is unique since G* is a cycle and it follows

that all its arcs are fuzzy bridges. Thus w is a common node of two fuzzy bridges.
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Conversely, let w be a common node of two fuzzy bridges (», w) and (w, v). Then

both (4, w) and (w, v) are not the weakest arcs of G[Theorem 1.4]. Also, the path from u
to v not containing the arcs (4, w) and (w, v) has strength less than
M, w) A (w,v). Thus the strongest u — v path is the path u, w, vand x™(u, v) = u(u,

w) A u(w, v). Hence w is a fuzzy cutnode.

In general we have,

Theorem 2.3. Let G : ( o, u) be a fuzzy graph and let w be a common node of at)east

two fuzzy bridges, then w is a fuzzy cutnode.

Proof : Let (4, ,w) and (w, u,) be two fuzzy bridges. Then there exists some u, v such
that (u,,w) is on every strongest u — v path. If w is distinct from u and v it follows that w
is a fuzzy cutnode. Next, suppose one of v, u is w so that (4,,w) is on every strongest u —
w path or (w, u,) is on every strongest w — v path. If possible let w be not a fuzzy
cutnode. Then between every two nodes, distinct from w, there exists atleast one
strongest path not containing w. In particular there exists atleast one strongest path P ,
joining u, and u, not containing w. This path together with (u;,w) and (w, u,) forms a

cycle. Now we have the following two cases.

Case 1. u;,w, u, isnot a strongest path.

Then, clearly either (u,,w) or (w, u,) or both become the weakest arcs of the cycle which

contradicts that (u,,w) and (w, u,) are fuzzy bridges.
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Case 2. u,,w, u, is also a strongest path joining u, to u;.

Then, u” (u;, u) = p(u;,w) A u (w, uy), the strength of P. Thus , arcs of P are atheast

f
as strong as u (u,,w) and

U (w, u,) which implies that (u,,w), (w,u,) or both are the weakest arcs of the cycle ,

which again is a contradiction.

Remark 2.2. The condition in the above theorem is not necessary . In Fig 2.2, w is
the fuzzy cutnode ; (4, w) and (v, x) are the only fuzzy bridges, in Fig. 2.3, w is the fuzzy
cutnode and (%, w) is the only fuzzy bridge and in Fig 2.4, w is the fuzzy cutnode and no

arc is a fuzzy bridge. But the converse of Theorem 2.3 holds in fuzzy trees[Corollary to

Theorem 2.10].

Fig.2.2 Fig.2.3 Fig.2.4
Remark 2.3. As distinct from crisp graph theory ,there are fuzzy graphs with fuzzy
bridges and having no fuzzy cutnodes . In Fig. 2.5, (4, w) and (v, x) are the fuzzy bridges

and no node is a fuzzy cutnode, where 0 <a < b < 1.
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Fig 2.5

Lemma 2.1[5]. If G: (o, i) is a complete fuzzy graph then 4™ (u,v) = u (u,v).

Lemma 2.2[5 ]. A complete fuzzy graph has no fuzzy cutnodes.

Remark 2.4. From lemma 2.1 we have in a complete fuzzy graph that each arc (i, v) is a
strongest u — v path . But the converse does not hold as we see in the Fig. 2.6. Also it
follows from Lemma 2.2 that ifin G: (o, u), £~ (4, v) = p(u, v) forall u, v, then G

has no fuzzy cutnodes.

Fig 2.6

Note that a fuzzy graph with a fuzzy bridge need not have fuzzy cutnodes

(Fig.2.5) and a complete fuzzy graph has no fuzzy cutnodes[Lemma 2.2]. But we have,

1
Theorem 2.4. A complete fuzzy graph has afnost one fuzzy bridge. /< ;’3’
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Proof : Let G : ( o, u) be a complete fuzzy graph with | ¥ | = 3. Then G can have

atmost one fuzzy bridge by Theorem 2.3 and Lemma 2.2. Now , let| V|24 and let 4, u;
N

, u; and u, be any four nodes of G. Wi@ out loss of generality , let u; be such that o (u,)

is least among o (4, )’s, i = 1,2,3,4. Then ( u,, u,), ( u;, us) and ( u,, u,) are not fuzzy

bridges, they being the weakest arcs of some cycle in the fuzzy subgraph induced by u,,

uy, u;, u,. Now the arcs ( u,, u;), (u,, u,) and ( u;, u,) are adjacent to each other and it

follows that atmost one of them can be a fuzzy bridge .

Moreover we have,

Theorem 2.5. Let G : (o, 1) be a complete fuzzy graph with |V] = n. Then G has a

fuzzy bridge if and only if there exists an increasing sequence { ¢,, ¢, ............ L., bt}
such that ¢,-,< ¢,., <t, wheret, = o(w,) Vi=12,..... ,n. Also, the arc (u,.,, u,) is
the fuzzy bridge of G.

Proof : Assume that G : ( o, ¢ ) is a complete fuzzy graph and that G has a fuzzy
bridge (4, v). Now, u(u,v) =0 (u) A o(v). With out loss of generality, let

o(uw) <o (v),sothat u(u v) = o(u). Also, note that (u, v) is not a weakest arc of any
cycle in G. Now required to prove that o (u) > o (w) ¥ w #v. On the contrary assume
that there is atleast one node w = v such that o (1) < o (w). Now consider the cycle C :

u, v, w, u. Then u(u, v) = u(u, w) = o (u) and



o) = G(V),ifd(u)=a(v) or ifo(u)<a(v)sa(w)
o) {O'(W)ifo'(u)<0'(w)<a(v).

In either case the arc (u, v) becomes a weakest arc of the cycle which contradicts our

assumption that (u, v) is a fuzzy bridge.
Conversely, lett;, < ¢, <............... Stys <ty Styand ¢ = o(u) Vi

Claim: Arc (u,.;, u») is the fuzzy bridge of G.
Now, u(u,_,, u,)= o u,.)» ofu,)= of u,_,) and clearly by hypothesis, all other arcs of
G will have strength strictly less than o' u,.,). Thus the arc (u,_,, 4,) is not a weakest

arc of any cycle in G and hence is the fuzzy bridge.

Example : G; and G; (Fig. 2.7) are complete fuzzy graphs where G; has no fuzzy
bridges. The increasing sequence { ¢ } in G, is { .2, .5, 1, 1} and (u3, uy) is the fuzzy

bridge.

(-5 &) us (D) (-5)u;

Fig.2.7
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Now using the concept of maximum spanning tree of a fuzzy graph [Definition
1.21] we present a characterization of fuzzy bridge and fuzzy cutnode. Also , in a (crisp)
graph G* note that each spanning tree is a maximum spanning tree . The following are

characterizations of fuzzy bridge and fuzzy cutnode ,which are obvious in crisp case.

Theorem 2.6. An arc (u, v) is a fuzzy bridge of G : (o, 1) if and only if (¥, v) is in

every maximum spanning tree of G.

Proof : Let (u, v) be a fuzzy bridge of G. Then arc (u, v) is the unique strongest

u — v path and hence is in every maximum spanning tree of G.

Conversely, let (4, v) be in every maximum spanning tree T of G and assume that
(4, v) is not a fuzzy bridge. Then (%, v) is a weakest arc of some cycle in G and

47 (4, v) > u(u, v), which implies that (u, v) is in no maximum spanning tree of G.

Remark 2.5. From Theorem 2.6, it follows that arcs not in T are not fuzzy bridges of G

and we have,

Corollary. If G: (o, u) is a connected fuzzy graph with | ¥'| = n then G has atmost n -1

fuzzy bridges.

Theorem 2.7. A node w is a fuzzy cutnode of G : (o, 1) if and only if w is an internal

node of every maximum spanning tree of G.
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Proof : Let w be a fuzzy cutnode of G. Then there exist u, v distinct from w such that w
is on every strongest u — v path. Now each maximum spanning tree of G contains unique

strongest u — v path and hence w is an internal node of each maximum spanning tree of

G.

Conversely, let w be an internal node of every maximum spanning tree. Let T be
a maximum spanning tree and let (4, w) and (w, v) be arcs in 7. Note that the path v, w, v
is a strongest u — v path in 7. If possible assume that w is not a fuzzy cutnode. Then

between every pair of nodes u, v there exist atleast one strongest

u — v path not containing w. Consider one such u — v path P which clearly contain arcs
notin T, Now, with out loss of generality, let 4” (4, v) = u (4, w) in T. Then arcs in P
have strength > i (v, w). Removal of (¥, w) and adding P in T will result in another

maximum spanning tree of G for which w is an end node, which contradicts our

assumption.

Remark 2.6. It follows from Theorem 2.7 that the end nodes of a maximum spanning

tree T of G are not fuzzy cutnodes of G. This results in the following corollary.

Corollary . Every fuzzy graph has atleast two nodes which are not fuzzy cutnodes of G.
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However in Chapter 4 ,we see that there are fuzzy graphs with diametrical nodes,

nodes which have maximum eccentricity, as fuzzy cutnodes, distinct from crisp graph

theory.

2.2 Fuzzy Trees

Rosenfeld [ 35 Jhas proved that if there exists a unique strongest path joining any
two nodes in G then G is a fuzzy tree[Definition 1.24] and the converse does not hold.
In Fig. 2.8, G is a fuzzy tree and P; : x ,u, v, w, y & P; : x, v, w, y are two strongest x — y
paths with 4” (x, y) =. 5, of which P, isin F. Also, note that if G* is a tree, then Fis G
itself and maximum spanning tree T of G is also G. In general we observe that a
maximum spanning tree T of a fuzzy tree G is the required fuzzy spanning subgraph and

that T is unique for a fuzzy tree[Theorem 2.12].

u u
8 5 8
v O X v o X
6 .6
7
2 N 7
w Oy w oY
.5 5
G Fig2.8 F

Lemma 2.3 35] If (7, v) is a partial fuzzy subgraph of (o, 1) . Then forall u, v,

Vi, v) Su” (u, v)
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Theorem 2.8. If G : (o, ) is a fuzzy tree and G’ : (o", i) is not a tree, then ther;é{\ o

"),:j\\ / P
exists at’fast one arc (u, v) in u” for which u (u, v) < % (u, v). | fﬁj

Proof : If G is a fuzzy tree, then by definition there exists a fuzzy spanning subgraph
F: (o, v), whichis a tree and u (u, v) < Vv (4, v) for all arcs (&, v) not in F. Also, v™ (u,
v) Su” (u, v) by lemma2.3. Thus u(u, v) < u“ (4, v) for all (4, v) not in F, and by

hypothesis there exists atlgast one arc (%, v) not in ', which completes the proof. 4

Theorem 2.9. Let G : (o, ) be a fuzzy tree and G* #K;. Then G is not complete.

Proof : If possible let G be a complete fuzzy graph. Then 4™ (v, v) = i (u, v) forall u, v
[lemma 2.1]). Now G being a fuzzy tree, u (u, v) < V™ (u, v), for all (4, v) not in F. Thus

U4~ (u, v) < V* (u, v), contradicting lemma 2.3.

Remark 2.7 Rosenfeld has proved that if G is a fuzzy tree, then arcs of Dre the fuzzy
bridges of G [Theorem 1. 9] and thus/}j' is unique’ [35]. In the next theorem
/

we characterize fuzzy cutnodes of a fuzzy tree.

Theorem 2.10. If G is a fuzzy tree, then internal nodes of F are the fuzzy cutnodes of G.
. l‘_.»:“'.'

»

Proof : Let w be any node in G which is not an end node of F. Then by Theorem 1.9, it

is the common node of atzeast two arcs in F which are fuzzy bridges of G and by
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Theorem 2.3, w is a fuzzy cutnode. Also, if w is an end node of F, then w is not a fuzzy
cutnode; for if so , there exists u, v distinct from w such that w is on every strongest u — v

path and one such path certainly lies in F. But w being an end node of F', this is not

possible.

With reference to the Remark 2.2, we have,

Corollary. A fuzzy cutnode of a fuzzy tree is the common node of at}east two fuzzy

.

bridges.

We have seen that the condition that an arc (i, v) is a strongest u — v path is only
necessary for it to be a fuzzy bridge[Theorem 2.1]. In the case of fuzzy trees this

condition becomes sufficient also and we have the following characterization of fuzzy

trees.

1

Theorem 2.11. G : (o, w) is a fuzzy tree if and only if the following are equivalent. \

e

(1) Arc (u, v) is a fuzzy bridge

2 1w v)=pv).

Proof : Let G . (g, 1) be a fuzzy tree and let (u, v) be a fuzzy bridge. Then 4™ (u, v)
= 4t (4, v)[Theorem2.1]. Now let (4, v) be an arc of G such that 4™ (4, v) = u (4, v). If
G* is a tree, then clearly (u, v) is a fuzzy bridge ; otherwise, it follows from Theorem

2.8 that (u, v} is in}/and it is a fuzzy bridge.[Theorem 1.9].

P
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Conversely, assume that (1) < (2). Construct a maximum spanning tree
T: (o, v)for G[4]. If (u, v)isin T, by an algorithm [4], 4" (4, v) = u (4, v) and hence
(4, v) is a fuzzy bridge. Now these are the only fuzzy bridges of G ; for, if possible let
(u’ v’) be a fuzzy bridge of G which is not in T . Consider a cycle C consisting of
(u’ v’) and the unique #’ - v/ pathin T . Now, the arcs of this u’- v’ path being fuzzy

bridges they are not weakest arcs of C and hence (u’ v’) must be the weakest arc of

C and hence cannot be a fuzzy bridge[Theorem1.4].

Moreover, for all arcs (4’ v’) not in T, we have g(u’) v’) < v (uv’); for, if
possible let g (u’ v’) 2 v (u’ v’). But u(u’v’)<u” (u’ v’) (strict inequality holds,
since (4’ v’) is not a fuzzy bridge). So, V* (ui v') < u~ (u’ v’ ) which gives a
contradiction, since v (4’ v’) is the strength of the unique u’- v’ path in T and by an
algorithm in [ , 4™ (u} v’) = v (u’ v’). Thus T is the required spanning subgraph F,

which is a tree and hence G is a fuzzy tree.

Remark 2.8. It follows from the proof of Theorem 2.11 that arcs of the maximum

spanning tree T are the fuzzy bridges of the fuzzy tree G and thus we have,

Theorem 2.12. A fuzzy graph is a fuzzy tree if and only if it has a unique maximum

spanning tree.

Using Theorems 2.6 and 2.7, the theorems 1.9 and 2.10 follow from theorem 2.12.
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Note that if G is a fuzzy graph on n nodes then the maximum number of fuzzy
bridges in G is n — / [Corollary to Theorem 2.6] and it follows from Remark 2.8 that a

fuzzy tree on n nodes have n — / fuzzy bridges.

Mordeson [31 ] has defined a cycle C as a fuzzy cycle if it has more than one
weakest arc and proved that a cycle is a fuzzy cycle iff it is not a fuzzy tree. In the

following theorem , we consider the case of a general fuzzy graph.

Theorem 2.13. Let G : (o, w) be a connected fuzzy graph with no fuzzy cycles. Then

G is a fuzzy tree.

Proof : If G* has no fuzzy cycles then G* is a tree and G is a fuzzy tree. So assume that
G has cycles and by hypothesis no cycle is a fuzzy cycle. ie. every cycle in G will have
exactly one weakest arc in it. Remove the weakest arc (say) e in a cycle C of G. If there
are still cycles in the resulting fuzzy graph, repeat the process, which will eventually
results in a fuzzy subgraph, which is a tree, and which is the required spanning subgraph

F. Hence the theorem.

Remark 2.9. Converse of the above theorem is not true. In Fig.2.9, G is a fuzzy tree and

u, v, w, u is a fuzzy cycle.






Chapter 3

BLOCKS IN FUZZY GRAPHS

The concepts of blocks and trees are antonyms of each other with reference to
bridges and cutnodes in the crisp case. But, it was observed by Rosenfeld that a block in
a fuzzy graph may have a fuzzy bridge. We observe that a block in a fuzzy graph may
have more than one fuzzy bridge and a comparative study of the reduction of the
strength of connectedness when a fuzzy bridge is removed from a fuzzy tree and from a
block is made. Rosenfeld has also pointed out that if between every two nodes there
exist two strongest paths that are internally disjoint, then G is a block and that the

converse does not hold. We observe that the converse is true for a block G with no fuzzy

bridges and then blocks are characterized.

3.1 Blocks and Fuzzy Bridges

As pointed out in Remark 2.3, there are fuzzy graphs with fuzzy bridges and
having no fuzzy cutnodes . So it is natural that there are blocks in fuzzy graphs
[Definition 1.26] with fuzzy bridges. In Fig. 3.1, arcs (¥, v) and (x, y) are fuzzy

bridges(Also see Figs. 1.5 and 2.5)).
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Fig.3.1

A block with fuzzy bridges.

Remark 3.1. No two fuzzy bridges in a block can have a common node[Theorem 2.3].

Also, a complete fuzzy graph is a block.

Recall the definition of a fuzzy bridge [Definition 1.22]. We have some
interesting observations regarding the reduction of strength of connectedness depending

on the structure of G. The cases when G is a fuzzy tree and G is a block are discussed

now.

Theorem 3.1. If G is a fuzzy tree then removal of any fuzzy bridge reduces the strength

of connectedness between its end nodes and also between some other pair of nodes .

Proof: Let G: (o, w) be a fuzzy tree and let (i, v) be a fuzzy bridge of G. Then

(u, v)-is an arc of the maximum spanning tree T of G [Theorems 2.6 & 2.12] and T has a
unique strongest path joining every pair of nodes. So, removal of (4, v) reduces the
strength of connectedness between some other pair of nodes u;, v; where u; is adjacent to

uand v; is adjacent to v, if (u, v) is an internal arc of T, and u; = u or v; = v otherwise.

51



Theorem 3.2. If G : (o, w) is a block with a¢east one fuzzy bridge then removal of any

fuzzy bridge reduces the strength of connectedness only between its end nodes.

Proof : Let G : (o, u) be a block and (u, v) be a fuzzy bridge of G . Assume on the

contrary that removal of (u, v) reduces the strength of connectedness between some other

pair of nodes u, and v,.

Case I : Both u, and v, are distinct from u and v.

Without loss of generality let 4, #u and, by assumption , every strongest
u; - v, path contains the arc (u, v) . Then, clearly removal of either u or v reduces the

strength of connectedness between u, and v,, which shows that 4 and v are fuzzy cutnodes

of G contradicting that G is a block.

Casell: Oneofu, visu,orv, .

Let u; = u and v, #v. Then as before removal of v reduces the strength of

connectedness between u; and v, showing that v is a fuzzy cutnode of G and similarly if

v; =v and u, #u then u becomes a fuzzy cutnode , both contradict the hypothesis that G

isablock. Thus the only possibility is that ¥, = u and v, = v and hence the theorem.
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Remark 3.2. The conditions in Theorems 3.1 and 3.2 are not sufficient . G, (Fig. 3.2)
has two fuzzy bridges (u, v) and (v, w), removal of each of which reduces the strength of
connectedness between u and w also but G, is not a fuzzy tree. Now

(u, v) and (x, y) are the fuzzy bridges in G, removal of each of which does not reduce the
strength of connectedness between any pair of nodes other than that between their end

nodes, but G; is not a block, as w is a fuzzy cutnode of G,.

Fig. 3.2

3.2 Characterization of Blocks

The concept of strongest paths play a major role in the study of blocks. It is
known that, if between every two nodes u, v of G, there exist two strongest paths that are
internally disjoint , then G is a block but the converse does not hold[35]. Recall that, if

an arc (u, v) is a fuzzy bridge then it is the unique strongest  — v path[Remark 2.1].
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Theorem 3.3 . The following statements are equivalent for a fuzzy graph G : (o, .
1. Gisablock.
2. Any two nodes u and v such that (4, v) is not a fuzzy bridge are joined by two

internally disjoint strongest paths.

3. For every three distinct nodes of G, there is a strongest path joining any two of them

not containing the third.

Proof :

1=2.

Let G: (o, p) be ablock. Let u and v be any two nodes such that x4 (u, v) 20 and

(u, v) is not a fuzzy bridge. If there exists a unique strongest u — v path of leng;h 22,
then the nodes on this path other than u and v are fuzzy cutnodes of G. Hence there exist
more than one strongest u — v path. If these strongest # — v paths are internally disjoint
then we are done. Note that all strongest ¥ — v paths do not have a common node , if so,

that node becomes a fuzzy cutnode. So consider the following cases.

Case |

Fig3.3
LetP,: u—w,—wy;—u;—v, P, u—u;—w, —w,—u;—v and Py u—w, —w;—u;—v

be strongest u - v paths. Let w, be the last common node of P, and P, (Fig.3.3). Then

u—w, subpath in P, together with w, — u, — v subpath in P, is a path (say) P disjoint

from P; .
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Claim : P is a strongest u — v path.

Let ¢,, e;, and e; be weakest arcs in P,, P, and P; respectively and let u (e)
= i (ey) = p(e;) = 4~ (u, v). Then e, should be in u - w, subpath of P, or e; should be
in w,-u, - v subpath of P, ; forif not, then strength of P > 4™ (u, v), contradiction .

Hence P is a strongest u — v path.

Case 11

W2

Fig 3.4

LetP,: u—-u;—w,~w,—v,P,: u—-w, — wy—u,—v and P;: u—w,—w;—v be
strongest u — v paths. Let w, be the first common node of P, and P; Then u -~ w,
subpath in P; together with w,-v subpath in P, is a path disjoint from P,. As in Case
I it can be proved that P is a strongest u — v path.

Case 111
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LetP,: u—u;—w,~wy—us—u,—v ,Py: u—u, — uy—wy—u;—v and P;: u—w, -
w;- w; —v be strongest u — v paths. Let w,and w, be the first and last common nodes
of P, and P; respectively. Then wu — w, subpath in P; and w, — w, subpat}; in
P, together with w,-v subpath in P; will give a strongest u — v path disjoint from P,.

23

Let u #v #w be any three nodes of G. Choose any two (say) u and v. If arc (¥, v)isa
fuzzy bridge it is the strongest u — v path and 3 holds. So assume (4, v) is not a fuzzy

bridge. Now by 2, there exist two internally disjoint strongest u — v paths and hence w

cannot be in both.

I=>1

If possible let w be a fuzzy cutnode of G. Then by definition there exist u, v

different from w such that w is on every strongest u — v path . But this contradicts 3.

Remark 3.3. We observe that the other equivalent conditions [1], [17] of a block cannot

as such be extended to fuzzy graphs. |
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Chapter 4

METRIC IN FUZZY GRAPHS

In this chapter some metric aspects of fuzzy graphs are discussed, focussing more
on center problems. The notion of a self centered fuzzy graph is introduced and a

sufficient condition for a{’for éjfuzzy graph to be self centered is obtained, from which it

\
N

also follows that complete fuzzy graphs are self centered. As a consequence, for each
real number ¢ > 0, there exists a self centered fuzzy graph of diameter ¢. Also, for any
two real numbers a, b such that a < b < 2a, there exists a fuzzy graph G such that
r(G) = a and d(G) =b . Using the concept of eccentric nodes, a necessary condition for a
fuzzy graph to be self centered is obtained and sufficient conditions for a fuzzy graph G

such that G* is a cycle to be self centered are also given.

Analogous to the Hedetniemi’s construction in the crisp case, it is proved that
every fuzzy graph H can be embedded as the central subgraph of a fuzzy graph G. In
particular if H is connected with diameter d, the resulting fuzzy graph G has radius d and

diameter 2d. A similar problem for fuzzy trees is also discussed.

Some results of this chapter are included in the paper * Some metric aspects of fuzzy graphs”, Proceedings

of the Conference on Graph Connections, Allied Publishers, (1999), 111-114,
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4.1 Self centered fuzzy graphs

Recall the definition of a metric in fuzzy graphs[Definition 1.27], which infact
models the idea that “stronger” is the relation , “lesser” is the “distance”. We call a fuzzy
graph G self centered if (C(G)) is isomorphic to G [Definition 1.28]. The following

theorem gives a sufficient condition for a connected fuzzy graph to be self centered.

/

Theorem 4.1 . A connected fuzzy graph G : (o, ) is self centered if

12w, v) = u(u, v) forallu, vin ¥ and #(G) = —(—l—gwhere M(u, v) is least.
u

Proof : By assumption G*: (o* u*) is a complete graph. Also, the arc (u, v) is a

strongest u - v path. It follows that weight of the weakest arc in any other strongest

u - v path is u(u, v) and hence u - length of a strongest « - v path is attast #(;’v) . il\

Now let P : u = ug, uy, ........... u, = v be any u - v path which is not strongest.

1 1
< .
u(u,v) Strengtiff P

Then strength of P is strictly less than M, v) . So Thus u -

and hence &u, v) = !

length of P is strictly greater than .
s Ve () ()

1
p(uy) Min u(u,v)

Now e(u) = max, &u, v) = max,
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Claim : e(vy) = e(v)) for all v; #=v;
If not, let e(vy) < e(v) (1)

and let u; and u; be such that e(v) = —— and e(y) = ——— . (Note that u; may

u(v;,u;) ,U(Vj ’uj)

or may not be equal to u;). Consider the path P v;, v;, u;. Then,
L (vi, v) 2 pvi, w) and p(vi, w) 2 pvi, uy.

So, u(vi, vi) A p(vi, w) 2 u(vi, u) > p(v;, u) by (1)
i.e.strength of P > u(v;,uy).
i.e.strength of a v; - u; path exceeds u(v;, ) which contradicts our assumption that every

arc is a strongest path. Interchanging i and j, a similar argument holds and thus e(v) =

e(vy) for all v; #v;. Hence G is self centered.

Remark 4.1 The condition in the above theorem is not necessary for a fuzzy graph to be

self centered as seen from the following example.

W Q Uz

Ya Ya

Uy : u3
Fig. 4.1
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InFig 4.1, e(uy) = 3,1=1,2,3,4. But, u”(u;, u3) = u*(uz, uy) =" and
u(u;, uz) = p(uy, ug) = 0.

Note that in a complete fuzzy graph 4*(u, v) = y(u, v) for all 4, v and it follows

that a complete fuzzy graph is self centered and r(G) = —%—) where ofu) is the least.
o(u

We prove this result independently.

Theorem 4.2, A complete fuzzy graph is self centered and »(G) = % where ofu) is
o(u

the least.

Proof : Let G :(o; u) be a complete fuzzy graph. Choose some u € o* such that o{u) is

least. Letv=uand, yu, v) = ofu) Ao(v) = ofu). Also &u, v) = for all v, since

o(u)

any other u — v path will have one of its arc with strength o{u) and thus its

plength will exceed 1 .
a(u)

Now u(v, w) = o(v) Aofw) 2 ofu) and hence ! < 1 for all v, w.
uv,w)  o(u) :

Now, if P : v,v;,w is a v—w path of length 2 ,then

{(Py=— "ty ! 2

/l(v’vl) :u(vl ’W) s O'(u).

In general, any v — w path of length n has u - length <n/ ofu) and thus
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1

@)

5(v,w) < Vv,w.

Now, e(u) = max &u, v) = 1/ o(u) and e (v) = max &v, w) = 1/ ofu) forallv #u.

1
o(u)

Thus G is self centered with r(G) =

Corollary. For each real number ¢ > 0, there exists a self centered fuzzy graph with
radius c.

Theorem 4.3. For any two real numbers a, b such that 0 < a <b <2a, there exists a
fuzzy graph G such that 7(G) = q, d(G) = b.

Proof : The proofis by construction. Let V={u v,w} withuwu v)= 1/a,

uv, w) = 1/a and y(u, w) = 1/b. Then e (v) =aande (u) =e(w) = b.

A necessary condition for a fuzzy graph to be self centered is obtained in the following
theorem using the concept of eccentric nodes. An eccentric node [i7] of a node v, is a node
v* such that e(v) = &V, v¥).

Theorem 4.4. If G: (o, ) is a self centered fuzzy graph, then each node of G is

9]
eccentric. !

Remark 4.2. This condition is not sufficient. In the following example each node is

eccentric but G is not self centered.

uy uz

Uy u3

Fig. 4.2
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e(u;) = 3 = e(u;) , e(uz) = 2 = e(uy) and
up * =y, w =g u, w3t =uy, Ut =g, us.
Note that in the crisp case, cycles are self centered with #(C,) = n /2 if n is even

and r(C,) = (n-1) /2 if nis odd.

Theorem 4.5. Let G be a fuzzy graph such that G * = C, with arcs e; = (u;, u; +1),

=12, ,n—1n. Leto <t <s <1. Then G is self centered if

]

s

lule)=t,i=135,....... n—1and ule)=s,i=246,....,n whenniseven
2.y(e,.)=t,i=1,3,5, ........ ,n—2.n and ,u(e,.)—s,z=2,4,6, ....... ,n—1whennisodd and

n=4k -1
3.p(e,.)=t,i=1,3,5, ........ ,n—2,and ,u(e,.)=s,i=2,4,6, ......... ,hn—1,n whennisodd and
n=4k+1
Also,
(n 1
[—+—] n=4k, k=1,23,.cccoveeirnrrennnn.
4 s
L [1+l]n=4k+2,k=2,4,6, .............
S 4 |t s
(G =1ts 24 1= 6[1+l],n=4k+2,k=1,3,5, ............
t s 4 |t s

n+l[ }+n 3[1 n=dk—1, k=123
4 4 |s

1
3
n-111
o

+ l] n=4k+1L,k=123, . cocrrivrrecrirnn.
s
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Illustration : Take t = % ands=1 .

Case 1. nisevenand n =4k r(Cy) =3 and r(Cg) = 6.

ug R Y]
) =
u ! 15 U7 [35]
l i
1 1 Ug U3
|ll l/)_
Uy u3 Us U4

)

Case2.nisevenand n =4k + 2wherek=12.r(Cg) =4, r(Cig) = 7.

Case3. nisoddandn =4k~ 1,wherek=12.r(C;) =2, r(C;) = 5.

W\

Uj
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Case 4. nisodd and n = 4k + 1, where k = 1,2. r(Cs) = 3, r(Cy) = 6.

U

us u;

4.2 Two Constructions

In this section, we shall consider the construction of a fuzzy graph G such that

C(G))~H.

Theorem 4.6 Let H = (0'/ , ,u/ ) be a fuzzy graph . Then there existra fuzzy graph
G: (o, ) such that (C(G)) is isomorphic to H.

Proof : Letc = A o (u). Construct G: (o, w) as follows.

Take new nodes u;, u;, v, v; and put o* = o'* U uy, uy vy, vy}, where

o= forall uinH, ,u=,u/for all (u, v)in Hand o{uy) = ofvy) =t(t<c),i=12,
pluy, ug) =p( vy, v)) =tand pu(us w) =u(w, vy)) =t forall win H. Then clearly

G: (o, w is a fuzzy graph and e(w) = 2/t for all win H, e(u;) = 3/t = e(v;) and
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e(u)) = 4/t = e(v1). Thus (C(G)) ~H with 1(G) = 2/t and d(G) = 4/.

Theorem 4.7: Let H = (. o/ , ,u/) be a connected fuzzy graph with diameter d. Then there

exist a connected fuzzy graph G : (o, ) such that (C(G)) is isomorphic to H. Also r(G)

=dand d(G) = 2d.

Proof : Construct G : (o, u) from H as follows: Take two nodes u and v with o(u) =
o(v) = 1/d and join all nodes of H to both u and v with gu, w) = y(v, w) = i/d for all w

inH.

Put o= o' for all nodes in H and u= /1/ for all arcs in H.

Claim: G: (o, 1) is a fuzzy graph.

First note that ofu) < oyw) for all w in H; for, if possible let o{u) > ofw) for atleast one

node win H. Then 1/d > o(w).

1
o(w) ~ p(w,w')’

ierd <

where the last inequality holds for every w! in H, since His a

fuzzy graph. i.e. >d for all w/in H, which contradicts that d(H) = d. Therefore

p(w,w/)

ou) <ofw) forall win Hand u (u, w) = o(u) Ao(w) = o(w) = 1/d. Similarly, uv, w) =

o) Aofw) = 1/d for all win H. Thus G: (o, y is a fuzzy graph.

Also, e(w) = d for all w in H and e(u) = e(v) = ! + ! = 2d. Thus
' p(u,w)  p(w,v)

1(G)=d, d(G) = 2d and (C(G)) is isomorphic to H.
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Example 1.

Mo

(w13 1713 (13) vy

(h) oo (113) (2) ¥ b (1/3)

H=(s u)) G: (o, 1) where (C(G))=H.

Example 2.

Let H = (c', pl) be the fuzzy graph in Fig 4.2 where d (H) = 3. Then G: (o, p) such

that (C(G))=H and r(G) = d is constructed as follows.
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4.3.Center of a Fuzzy Tree

It is well known that center of a tree is either K, or K;. But, for a fuzzy tree it

need not be so. (Fig. 4.3). In fact, there are self centered fuzzy trees. (Fig. 4.4).

U3
Va 13
Uy O L D Us U4T
1 1 V2 1
. '{2 1/2
Up 1 [} §] UO(L T O U
G: (o Fig.4.3 C(G))

Fig 4.4

G: (o, 1) is a self centered fuzzy tree with e(uy) = 5, i = 0,1,2,3.

Theorem 4.8. Let H : ( cr{ ,u/ ) be a fuzzy tree with diameter d. Then there exists a fuzzy

tree G : (o, ) such that (C(G)) is isomorphic to H.
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Proof : Put ¢t = max {0'/(w): w e (0'/)*}. Construct G : (o, 1) from H: (a/, ,u/) as

follows:

Take two nodes u and v with o{u) = o(v) = 1/d and join all nodes in H to both u

and v. Let w and w/be any two nodes in H.

Put pu(u, w) = 1/d; p(w, v) = 1
d +;

1

pl, w') =

T y(w{ v) = 1/d and put as the strength of all the other new arcs.

d+— d+-
t t

Also, put o= o for all nodes in H and u= ,u/ for all arcs in H.

Claim 1. G : (o, W) is a fuzzy graph.

As in the proof of Theorem 4. 7, o(u) < o{w) and ofv) < ofw) for all nodes w in H.

So p(u, w) = ofw) A ofw) and uw’ v) =a(w') A o (v). Also, since

1
d+1 d

uw,v) <o(w)Ao®), uu, w/) <o A a(w/) and the inequality holds for all the

other new arcs. Hence G : (o, u) is a fuzzy graph.

Claim 2. (C(G)) is isomorphic to H.

Note that u(w; w;) <t for every arc (w;, w)) in H. ie. 1 < !

t o u(w,w;) (2)
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1

Now, u*=v, v*=uand e(v) = e(u) = z}—)+ i =2d+7
4’/
d+1

Also, w* = v, (wﬁ* =y,

e(w) = e(wﬁ = L=d + '/, and all other nodes in H have eccentricity equal to d + AN

1
d+’

(2), with u and v as their eccentric nodes. Thus each node in H is a central node of G

with (G) =d+ 1/t, d(G) = 2d + 1/t and (C(G))is isomorphic to H.

Finally we claim that G : (o, 4 is a fuzzy tree; for, H being a fuzzy tree, it has a
spanning subgraph Fy , which is a tree, satisfying the requirements. Now, Fy together

with the arcs (4, w) and (w / ,v) is the required spanning subgraph of G.

Illustration:
Wi
12 13
w WI
A
H:(c!, ul) Fig. 4.5 G:(oc,u)

dH)=4, t="%, e =e(v)=10, e(w)=e(w')=e(w|)=6.



Remark 4.3 : The center of a fuzzy tree need not be a fuzzy tree.

172 1

G:(o,u) Fig. 4.6 C(G))
There are fuzzy graphs with diametrical nodes (nodes with maximum eccentricity) as

fuzzy cutnodes. See u; and u; in the following example.

Us

1/4

Fig. 4.7

e(u;) = e(uy) = e(u3) = e(us) =7 and e(uy) = 5. |
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Chapter 5

SOME OPERATIONS ON FUZZY GRAPHS

Mordeson [30] has defined the complement of a fuzzy graph G : (o, 1) as a fuzzy
graph G€: (o, 1) where o“=0o and u“(u, v)=0if u (4, v) > 0 and
u(u, v) = o) A ov) otherwise. It follows from this definition that G ¢ is a fuzzy
graph even if G is not and that (G ©)° = G if and only if G is a strong fuzzy graph
[Definition 1.16]. Also, automorphism group of G and G ¢ are not identical. These
observations motivate us to modify the notion of complement of a fuzzy graph. Some

properties of self complementary fuzzy graphs are also studied. We also show that

automorphism group of G and its complement G are identical.

In the second part of this chapter we consider some operations on fuzzy graphs
and prove that complement of the union of two fuzzy graphs is the jqin of their
complements and the complement of the join of two fuzzy graphs is the union of their
complements. Finally we prove that complement of the composition of two strong fuzzy
graphs is the composition of their complements. We conclude this chapter with a

discussion on some open problems.
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5.1 Complement of a Fuzzy Graph

We first illustrate the drawbacks in the definition of complement of a fuzzy graph

mentioned above. In Fig. 5.1, (G )° # G and note that they are identical provided Gis a

strong fuzzy graph[Definition1.16].

5
u; (.6) Sy u, (.6) (-5 u, u, (.6)
2 4 3
us (.3) (4) u, u(3)  (4)ue 3 us (:3)
G G*® (G c)c

Fig 5.1

~

Now, consider the fuzzy graph G and G ¢ in Fig. 5.2. The automorphism group of G
consists of two maps A, and h; where h; is the identity map and 4, is given by the
permutation (v;) (v; v¢) (v3). But the automorphism group of G ¢ consists of four maps
hi, ha, hs and hy where h; and A, are automorphisms of G and h; and k4 are given by

hs= (v v3) (v)) (vg and hy=(v; v3) (v2 v).

(5) Vi e—2 5 v,(.5) (5)vi0 v2(.5)

25 N

(:5) va0 vy (.5) (:5)va o vy (.5)

Fig 5.2
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Definition 5.1. The complement of a fuzzy graph G : (o, 1) is the fuzzy graph

G:(T,H) where o =0 andii (u,v)=o(u) no(v)- u(u,v)forallu, vin V.

Example.
(5w u; (.6)
3 2
(4 u, uy (.3)
G G
Fig 5.3
We have
G=0=cand U(u,v)=3aWu)ATWV)-1(u,v)
=ocu)no(v)- ((O'(u) A a(v))— y(u,v))
= u(u,v) Vu,v.
Hence 5=G.

Remark 5.1. A node can be a fuzzy cut node of both Gand G .

In Fig.5.4, w is a fuzzy cutnode of G and G .

(.25)

(:3)

Fig. 5.4
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Definition 5.2. A fuzzy graph G is self complementary if G~ G ..

In the following theorems we present a necessary and then a sufficient condition

for a fuzzy graph to be self complementary.

Theorem 5.1. Let G : (g, u) be a selfcomplementary fuzzy graph. Then

> )= T (o (u)Aa(v)).

uzy uny

Proof : Let G : (o, 1) be a selfcomplementary fuzzy graph. Then there exists an
isomorphism 4 : ¥ — V such that

Fh(u): o(u) YueVand
H(h(u),h(v)): p,v)Vu,ver.

Now.by definition of G , we have,

B A0) = S() AT(H0) - () HG)
o Wwy) = olu)rol)-u(hu)HG)
ie. Y )+ L) h6) = Yo)ach)

u#v u+y u#v

ie., 22p(u,v)= Zc(u)/\ c(v))

u#v uzv

ie., Zp.(u_,v)= —;—Z(c(u)/\ o(v)).

u#v u#y
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Hence the theorem.

Remark 5.2. If G : (V,E) is a self complementary (crisp) graph, then from

Theorem 5.1, it follows that 2m = n(nT_l)where m = |E| and n = |V] which is equivalent

to the result that every self complementary (crisp) graph has 4k or 4k +/ nodes for some

k.

Remark 5.3. The condition .given in Theorem 5.1 is not sufficient. In the following

example (Fig. 5.5) ,G is not isomorphic to G but,

&)
25

) ()

Q
Q| 3

Fig. 5.5

Theorem 5.2. Let G:(0, w) be a fuzzy graph. If u(u,v)= %(a(u)/\ o(V))V u,v eV, then

G is self complementary.
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Proof: Let G :(o; 1) be a fuzzy graph such that u(u,v)= —;—(O'(u)/\ o(v))Vu,veV. Then

G ~G under the identity map on V.

Remark 5.4. The condition in Theorem 5.2 is not necessary. In the following example
(Fig. 5.6) G~ G where the isomorphism h : ¥ — Visgivenby h (u) =v, h (v) =x, h (w)

=u, h(x)=w h(y) =y.

Sy v(l)

() x w (1)

Fig. 5.6

Note that if 4 is an automorphism of G then 4~/ is also an automorphism of G, for ;

olh(u))=0(u')=o(h(u' ))=0(u) and

™ ), b7 (v))= ' ') = (B )R )= pa,v).

Similarly if 4 and g are automorphism of G then their composition 4 o g is also an

automorphism of G [3] and we have,
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Theorem 5.3[3]. The set of all automorphisms of a fuzzy graph G is a group under set-

theoretic composition of maps as the binary operation.

Notation: We denote by /G, the group of automorphisms of the fuzzy graph G.

Theorem 5.4. Let G : (o, ) be a fuzzy graph. Then the automorphism groups of G and

G are identical.

Proof : Note thatif # € /G, then he IG , for;

h : V — Vis bijective

F(h(u))=o(h(u))=o(u)=5(u) and

E(h(u),h(v)) = (o h(u) Ao h(v))- ph(u),h(v))
=(o(u) Ao (v))- u(u,v)
=f(u,v) VY u,veV.

Hence the theorem.

In the following example (Fig. 5.7), TG =I'G = {I, h } , where I is the identity map and
h is given by the permutation (v;, v3) (v3, v4).

(6)yvio p v,y (4) (.6) v,

Fig. 5.7



5.2 Operations on Fuzzy Graphs

The operations on (crisp) graphs such as union
composition are extended to fuzzy graphs [Definitions 1.29 — 1.32] and some of their
properties are studied in [30]. *. In the following discussions an arc between two nodes u

and v is denoted by uv rather than (i, v), because in the cartesian product of two graphs, a

node of the graph is iriact, an ordered pair.

Theorem 5.5 Let Gy: (oy,u;) and G;: (07,u;) be two fuzzy graphs. Then

1) G, +G, ~ G, UG, and

Proof : We shall prove that the identity map is the required isomorphism.

G, UG, =G, +G,

1) Letl :V,UV, = V, UV, betheidentity map.

Ts prove oy + 0, (4) =6, U, (u)

and

Wy + i (wv) =1 U, (wv)

o; +0, (u) =(0,+0,) (u) bydefinition of complement

. |ol(u)ifueh
Noawifuew,

_|o(u)ifueh
By (u)ifueV,

G, Us,(u).
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B+ H (uv)=(01 +0'2) u A (O-I +°'2)V_(,u| + 1y Juv

_ (o.Uo,) u A(o,va,)v-(gUm)u if weE VE,
“Wo,Uog,) u A(o,Uc, )v-0,(u)rc,(v), uveE'(Definitionl.)

o,(u) Ao, (v)-p,(w), if uvek,

o(u) ano,(v)-o,(u)ro,(v)ifuve E' whereueV, ,veV,

{0',( u) Ao, (v)-u(uv), ifuveE,

H(uv)uveE,
,uz(uv) uvek,

uvekE'

Hy(uv).

(_?

QI

2) G,UG,~G,

LetI:V,UV, >V, UV, betheidentitymap .

To prove o, Uo,(u)= (&, + 7, }(uv)

and  p,Up, (uv)=(g, + I, J(uv).
o Uo,(u)=(o,Uac, )(u)
_ {a,(u),ifue 14

o,(u)ifueV,

_ o,(u)ifueV,
T \F(w),if ueV,

=(7, UE: u)

=(0, + 7, J(u).
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H U:uz(uv)=(o'1 Uaz un(o, Uo'z W=y U/‘lz Yuv)

'G,(u)/\cr,(v)—p,(uv),zfuve E,
o,(u)yno,(v)— pu,(uv),if uve E,
o (u)Ano,(v)-0,whenucV,,veV,

A

(,(uv),if uve E,
H,(uv),if uve E,
T (U)AT,(v),if ueV,,veVl,

AL

| U, Juvif uve E, or E,
B o(u)ro,(v)ifuve E'

= ([, + Hy uv).
Remark 5.5. Note that if G is a strong fuzzy graph, then G is also strong, for, letuv

u*, then
() = o) A o(v) ~ () = (@) A o (v) - o) A o (v) = 0

and if uv & u¥ then
2(w) = o) A (V) - () = o) A () 0 = o) A )
Theorem 5.6. Let G,: (o) ,u;) and G,: (03 ,u;) be two strong fuzzy graphs. Then G,0 G;

is a strong fuzzy graph and G, ¢ G, ~ G, © G,.

Proof: Let G,o G, =G: (o, g where 0= 0y o 02, 4= py ot

and G*=(V,E) where V=V, xV;, E={(u, uj)(u, v2) :u €V}, upv; € E2} U { (u,
W)(V/, W) w eV, uv G'El} U{(u/, u;)(v,, VZ) sy eEp u #v;}.

Now,

80



1) g, u)(u,vy) = Gi(w) A pa(uz, v2) [Definition 1.32]
= 01(4) A Ox(uz) A Ga(vy), G, being strong
= (01(w) A 0xuz)) A (01(1) A O2(v2))
= (01 20y (4, ux) A(0y 20 (u, v

= o(u, uy)) Ao(u, vy

2) p(us, w)vi,w) = oa(w) A (s, vi) [Definition 1.32]

= a1(u;) A 01(v;) A 'G3(w), G, being strong .
=(o1(u)) A 02o(W)) A (01(vi) A O2(W)

= (01 20 (u1, w) A (0] °03) (vi, W)

= o(u,w Ao, w

and

3) u(uy, uld(vi, v)) = py(uy, vi) A oa(uy) A o(va )[Definition 1.32]

a(uy) A oi(vy) A oa(uz) A ox(vy), G being strong

(oi(us) A 02(uz)) A (01(Vi) A O2(V2)

(01 ca3) (u), uy) A(or °03) (v1, v))

o(u;, uy) Ao, vy).

Thus from 1, 2 and 3 it follows that G is a strong fuzzy graph.

Next to prove G, oG, =G, ©G,.
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Let 5:(0’ﬁ)=G1°G2) E=pop ,G* =(V E)

G,G,:(0,00,,8 o I1,).
Now, the various types of arcs (say) ¢, joining the nodes of V are the following and it
suffices to prove that m = I, o I4,in each case.
Case 1. e =(u, uy)(u, vy), u v, € E;
Then e € £ and G being strong zi(e) =0.  Also, [, o 7, (e)=0, since u,v, ¢ E,.
Casell. e =(u, uy)(u, vz), uy #v; anduyv, ¢ £,

Here e g E , so u(e) = 0.
Now,
,Tl(e) =0o(u, uy) Aoy vy

= (0y(u) A Ox(uz) A (01(W) A gz(vy)) and since

u,v, € E, we have,

K °/‘2( ) Gl(u) (u vz)
(Ao (uz) ~ro,(v,), G, being strong

(¢).

Caselll. e = (u;, w)(vi, w), uyv; € E;

It
®l 9

Then e € E, so fi(e)=0 asin Case 1.
Also, since uv;¢ E,, we have T, o Hi,(e)=0.

CaselV. e = (u, wv, w), uv; £ E
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Here e & E, hence u(e) = 0 _and
,U(e)= o(u;, w)Ao(v, w)

= o)(u;) A o1(v;) A ox(w) and since u;v, € E,

we have,

B o By(e) =0, (W) A 1, (u,)
=o,(w)ro(u)rc,(v,), G being strong
= 71(e).

Case V. e =(uy, uy)(v,, v3), u;v; € E; and u; #v;
Here e € E, so fi(e)=0 as in Case 1.

Also, since u;v;¢ E,, we have [, o ,(e)=0.

Case VL. e = (u;, uy)(vy, v3), uyv; £ E; and uy #v;

Then e ¢ E, hence u(e) =0

Thus ﬁ(e)= o(uy;, uy)) Ao(vy, vy

= 0y(u1) A 01(V)) A Oa(uz) A O3(v2)

and since u;v; € E,, we have,
Hy o[, =/7|(u1v1)’\0'2(”2)/‘0'2("2)

=o,u,)ro,(v,)Ac,(u,)A0,(v,), G, being strong

= fle).
Case VIL e = (u;, up))(vy, va), uyv; £ Ej, upvy g £,
Here e ¢ E, hence ufe) =0

Thus ,U(e)= o (uy, uy) Ao (v, vy
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= 01(u;) A 01(v)) A Ga(uz) A Oy(v2)

Now, v, € E, and if u; = v, = w, then we have Case IV.

Next, ifu;v; € E, and if u; #v, , then we have Case VI.

Thus from Cases I to VI, it follows that G, <G, = G, = G,.

Remark 5.6. In general G, oG, # G, oG,. Consider the following example in which G,

and G are not strong.

5 3 (6) 4 1 (3)
0——— o —0
uy Vi Uy Va
G G,
(uy, uz)(.4) B (:3) (uy, v2) (uy, uz)(-4) 2 (:3) (w, v2)
2 0
3 3 1
o ’ -0
(i, u2)(.4) A (:3) (vi, v2) (Vi, up)(.4) 1 (3)(vi, v2)
G1oGy G, 0 G,
5y 2 (.6) 4 2 (3)
o—— 0 o— )
Wy A U, \/)
G, G,
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(uy, uz)(4) 2 (:3) (ui, va)

[aY

V1, uz)(.4) 2 (:3)(vi, v2)

G, -G,

Thus G|°G2 #(-; o)

N

5.3 Conclusion and Suggestions for Further Study

In this thesis an attempt to develop the properties of basic concepts in fuzzy graphs
such as fuzzy bridges , fuzzy cutnodes, fuzzy trees and blocks in fuzzy graphs have been

made.

The notion of complement of a fuzzy graph is modified and some of its properties are

studied. Since the notion of complement has just been initiated, several properties of G

and G available for crisp graphs can be studied for fuzzy graphs also.

We have mainly focussed on fuzzy trees defined by Rosenfeld. In [i9], several other
types of fuzzy trees are defined depending on the acyclicity level of a fuzzy graph. We
have observed that there are selfcentered fuzzy trees. However, which fuzzy trees are
selfcentered is yet to be analyzed. The center problems can also be carried over to other

types of fuzzy trees mentioned above.
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Identification of blocks of a fuzzy graph is still an open problem ; solving which
may lead to the study of fuzzy block graphs, fuzzy cut point graphs etc. The study of the

parameter C (G ) — the connectedness level of a fuzzy graph [10] can be done on G and
1

G.
Ty
»1 A..““

—

sf’

% %,
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