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The role of lower partial moments
in stochastic modeling

Summary - Lower partial moments plays an important role in the analysis of risks and
in income/poverty studies. In the present paper, we further investigate its importance
in stochastic modeling and prove some characterization theorems arising out of it. We
also identify its relationships with other important applied models such as weighted
and equilibrium models. Finally, some applications of lower partial moments in
poverty studies are also examined.
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1. Introduction

The concept of risk and its measurement plays an important role in many
problems of economics, business and industry. There are several important
risk measures available in literature. Many experimental studies (Adams and
Montesi (1995), Unser (2002)), however, shows that corporate heads are mostly
concerned with one sided risk, namely, the ‘downside risk’, a measure of
distance between a risky situation and the corresponding risk free situation (see
Dhaene et al., 2003)).

Popular in literature, an important downside risk measure is the Lower
Partial Moment (LPM) (see Bawa (1975), Fishburn (1977)). Consider a port-
folio with a random return X and assume individual has a target return t . An
outcome larger than t is nonrisky and desirable, then individual faces only a
one-sided risk called the downside risk that occurs when X falls short of t .
Therefore LPM provides a measure that a specified minimum return (target
return) may not be earned by a financial investment. Clearly, lower partial
moments provide a summary statistics for the downside risk. In the case of a
continuous distribution, for a positive integer, the r th order LPM of X is defined
as a random variable (rv) having an absolutely continuous cumulative distribu-
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tion function (cdf) and a probability density function (pdf) f (x), a subset of
the real line (a, b), where a and b can be finite or infinite. If E(Xr ) < ∞,
then the r th order LPM about a point t is defined as

lr (t) = E
[
(X − t)−]r ; r = 0, 1, 2, . . . ; t > 0 (1.1)

where

(X − t)− =
{

(t − X); X < t

0; X ≥ t.

When the cdf associated with X is F(t) and t is the target rate of returns, then
(1.1) can be written as

lr (t) =
t∫

−∞
(t − x)r d F(x). (1.2)

Clearly, LPM is a function of the underlying distribution function and it is
an increasing function of the target return; as t increases, lr (t) also increases.
Some of the most frequently used risk measures are special cases of LPM’s.
For example, when the weighing coefficient r = 0, the probability of loss
equals the 0th order LPM l0(t) and for r = 1, it is the expected loss l1(t). In
all these cases, the target value t is considered as a threshold point separating
gains and losses.

Setting r = 2 yields a measure known as Target Semi-Variance (TSV). One
reason for the interest in LPM measures of risk such as TSV is that they reflect
investors’ preferences better than the traditional measure, variance. Here, risk is
measured by squared deviations below the target t and therefore it penalizes any
extremely low returns in the same way that variance penalizes extreme values
in either direction. In these cases, TSV fits investors risk preferences better
than variance. Thus LPM’s have several advantages over traditional measures
of risk and for a survey of literature on LPM and its related topics we refer to
Bawa (1975), Price et al. (1982), Harlow (1991), Eftekhari (1998), Lien and
Tse (2000, 2001) and Brogan and Stidham (2005).

The standard practice in modeling statistical data is either to derive an
appropriate model based on the physical properties of the system or to choose
a flexible family of distributions and then find a member of the family that is
appropriate to the data. In both the situations it would be helpful if we find
characterization theorems that explain the distribution using important measures
of indices. A plethora of work is being done in connection with the charac-
terization of various probability distributions under different measures such as
moments, hazard function, residual life function, coefficient of variation etc. For
example, the characterization of log normal distribution came out by Krumbein
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and Pettijohn (1938) with the fact that this distribution provides a good fit to
the observed particle sizes and along with the wide applicability of it in income
studies, it has also been found applied recently in the context of mean lower
partial moments (see Lee and Rao (1988)). Similarly, for various properties
and characterizations of probability distributions which are useful in income
studies and related areas we refer to Dimaki and Xekalaki (1990) and Reed
(2006) and the references therein. Accordingly in the present paper, we focus
attention on identifying various characterization relationships between LPM’s
to model some important probability distributions and families of distributions.

The measurement of downside risk is formally related to the measurement
of poverty (see Breitmeyer et. al. (2004)). The target value could be interpreted
as poverty line and the shortfall of an outcome as poverty gap. Thus in
the present note, an attempt is also made to prove new characterizations to
distributions such as Pareto, exponential and beta densities using the poverty
measures such as average income below poverty line and income gap ratio.

The paper is organized as follows: Section 2 obtains some fundamental
relationships and proves some characterization theorems for certain probability
distributions. Sections 3 describe the usefulness of families of distributions in
modeling problems and derive some new recurrence relationships pertaining to
it using various LPM’s. In Section 4 we introduce the concept of weighted
distributions and obtain relationships for lr (t) and prove characterization the-
orems in the context of length biased and equilibrium models. Finally in
Section 5, applications of LPM’s in poverty studies are studied and obtained
characterization theorems arising out of it.

2. Characterizations of distributions

By virtue of the relationship (1.2), we have

lr (t) = r

t∫
−∞

(t − x)r−1 F(x)dx . (2.1)

Differentiating (1.2) with respect to t , successively we get

d

dt
lr (t) = r

t∫
−∞

(t − x)r−1 f (x)dx,

and

d2

dt2
lr (t) = r(r − 1)

t∫
−∞

(t − x)r−2 f (x)dx .
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Proceeding similarly r times, we obtain

dr

dtr
lr (t) = r !F(t), where F(t) =

t∫
−∞

f (x)dx

or

F(t) = l(r)
r (t)

r !
, (2.2)

where l(r)
r (t) is the r th derivative of lr (t) with respect to t . Thus from (2.2),

lr (t) determines the cdf uniquely.
It has been shown by Dimaki and Xekalaki (1990) about the importance of

power distribution in income study. Now we give the following characterization
theorem for power distribution based on a relationship between two consecutive
LPM’s.

Theorem 2.1.Let X be a non-negative rv defined as in (1.1) and such that lim
t→0

t f (t)=
0. Then the ratio of consecutive lower partial moments, is of the form

lr (t)

lr−1(t)
= Ct, (2.3)

where 0 < C < 1 is a constant characterizes power distribution with cdf

F(t) =
(

t

b

)c

, 0 < t < b, b, c > 0. (2.4)

Proof. Suppose that the relation (2.3) holds, by using (1.2), we have

t∫
0

(t − x)r f (x)dx = Ct

t∫
0

(t − x)r−1 f (x)dx . (2.5)

Use t = (t − x + x) in (2.5) and on simplification, we get

(1 − C)

t∫
0

(t − x)r f (x)dx = C

t∫
0

x(t − x)r−1 f (x)dx . (2.6)

Differentiating (2.6) r times and using (2.2), we obtain

(1 − C)F(t) = Ct f (t)
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or

λ(t) = (1 − C)

Ct
. (2.7)

which is the inverse Mill’s ratio (see Tobin (1958)). Now from the uniqueness

property of λ(t) using the relationship F(t) = exp
(

−
∞∫
t

λ(x)dx
)

, equation

(2.7) corresponds to the power distribution with cdf (2.4).
Conversely, assuming (2.4) holds. Substituting for f (t) in (1.2) and on

simplification we get (2.3) and it is obtained from Table 2.
Next to the normal distribution, the exponential distribution is possibly

the most widely referenced continuous probability law. It appears as a text
book or an in-class example in introductory probability and statistics course.
A traditional characterization of exponential distribution is by the memory-
less property. Therefore, in the following theorem a characterization of the
exponential distribution using the LPM is proved.

Theorem 2.2. Let X be a non-negative rv defined as in (1.1), then the r th order
LPM satisfies a relationship of the form

lr (t) + Clr−1(t) = tr , (2.8)

where C > 0 for all t > 0 if and only if X follows exponential distribution with cdf

F(t) = 1 − e−λt; t > 0, λ > 0. (2.9)

Proof. Assume that the relation (2.8) holds, using (1.2), we get

t∫
0

(t − x)r f (x)dx + C

t∫
0

(t − x)r−1 f (x)dx = tr . (2.10)

Differentiating (2.10) r times with respect to t and using (2.2), we get

f (t)

1 − F(t)
= r

C
, (2.11)

which is the reciprocal of the Mills ratio (hazard rate) (see Boyd (1959)). Now
from the uniqueness property of hazard rate through the relationshipF(t) = 1−
exp
(

−
t∫

0
h(x)dx

)
, equation (2.11) corresponds to the exponential distribution

(2.9). The converse part is obtained by direct calculation and is given in
Table 2.

In the next theorem, a functional relationship for lr (t) is identified to
characterize uniform distribution.
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Theorem 2.3. Let X be a non-negative rv defined as in (1.1), a relationship
connecting the r th order LPM

lr (t) = C(t − a)r+1, (2.12)

where C > 0 is a constant is satisfied for all t > 0 if and only if X follows uniform
distribution with pdf

f (t) = 1

(b − a)
; a < t < b. (2.13)

Proof. Assume (2.12) holds, using the similar steps as in Theorem 2.2, we get
(2.13). The converse part is directly obtained from Table 2.

The applicability of generalized Pareto distribution in economics, reliability
etc. is well known (see Arnold and Laguna (1977), Nadarajah and Kotz (2003)).
Therefore in the following theorem, we obtain a recurrence relationship between
LPM’s that characterize generalized Pareto distribution.

Theorem 2.4. Let X be a non-negative rv defined as in (1.1) with lim
t→0

t f (t) = 0, a

relationship of the form

lr (t) + r(C1t + C2)lr−1(t) = (C1 + 1)tr , (2.14)

where Ci > 0; i = 1, 2 are constants holds for all t > 0 if and only if X follows
generalized Pareto distribution with cdf

F(t) = 1 −
(

q

pt + q

) 1
p +1

; t > 0, p > −1, q > 0. (2.15)

Proof. The ‘if’ part of the theorem can be obtained from Table 2. To prove
the ‘only if’ part, assume (2.14) holds. Using (1.2) and on simplification, we
obtain

t∫
0

(t − x)r f (x)dx + r(C1t + C2)

t∫
0

(t − x)r−1 f (x)dx = (1 + C1)t
r . (2.16)

Putting t = (t − x + x) in (2.16) and on simplification, we get

(1+C1)

t∫
0

(t − x)r f (x)dx+
t∫

0

(C1x + C2)(t − x)r−1 f (x)dx =(1+C1)t
r . (2.17)

Differentiating (2.17) r times with respect to t using (2.2), and on further
simplification

r(1 + C1)F(t) + (C1t + C2) f (t) = r(1 + C1)

which implies that
f (t)

1 − F(t)
= r(1 + C1)

(C1t + C2)
. (2.18)

Now from the uniqueness property of hazard rate, (2.18) yields the required
result.
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3. Recurrence relationships for families of distributions

In modeling problems, a common approach adopted is that the investigator
initially chooses a family of distributions consisting of a wide variety of mem-
bers with differing characteristics and then a member of the family that agrees
with the data and/or the physical properties of the system are chosen as the
final model. When using families of distributions as the starting point, often
the general properties of the family will be of considerable use in identifying
the appropriate member. Accordingly, there are several investigations available
in literature for identifying some common characteristics pertaining to various
systems of distributions and therefore any attempt at unearthing new properties
is a worthwhile exercise. It also helps to unify the results obtained in the
case of individual distributions that are obtained in separate studies. In terms
of versatility, richness of members, the general family of distributions (Ruiz
and Navarro (1994)), Pearson family, generalized Pearson family of distribu-
tions (see Ord (1972)) and exponential family appears to stand out as the best
families of distributions in model building. Therefore in the present section,
we prove some new recurrence relationships pertaining to these families of
distributions using various LPM’s .

Theorem 3.1. Assume lg(r−1)(t) =
t∫

−∞
(t − x)r−1 f (x)g(x)dx, then the pdf of a

random variable X belongs to general family of distributions (see Ruiz and Navarro
(1994)) given by

f ′(t)
f (t)

= µ − t − g′(t)
g(t)

, (3.1)

where µ is a constant and g(t) is a real function in (−∞, ∞), if and only if its
r thorder LPM satisfies a recurrence relationship of the form

K (t − a)r + rlg(r−1)(t) = (µ − t)lr (t) + lr+1(t), (3.2)

where K = − f (a)g(a).

Proof. Assume that the relation (3.2) holds. By using (1.2) and on simplification,
(3.2) becomes

K (t − a)r + r

t∫
−∞

(t − x)r f (x)g(x)dx

= µ

t∫
−∞

(t − x)r f (x)dx −
t∫

−∞
x(t − x)r f (x)dx .

(3.3)
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Differentiating (3.3) (r + 1) times using (2.2) and on simplification, we get
(3.1).

Conversely assuming (3.1) and multiplying both sides of (3.1) by (t − x)r

and on integration using the assumption given in the theorem, we get (3.2).
Table 1 provides some of the important members of the family (3.1) and

identifies each of its recurrence relationships using (3.2).

Corollary 3.1. When g(t) = b0 +b1t +b2t2 with b2 �= − 1
2 , the general family (3.1)

reduces to the Pearson family of distributions whose pdf f (t) satisfies a differential
equation of the form

d

dt
log f (t) = − (t + d)(

b0 + b1t + b2t2
) , (3.4)

where f (t) is differentiable, b0, b1, b2 and d are real constants. Substitute for g(t)
in (3.2) and on integration we get a recurrence relationship for Pearson family
given by

K (t − a)r + r
[
b0 + b1t + b2t2

]
lr−1(t)

− [r(b1 + 2b2t) + (µ − t)
]
lr (t) + [rb2 − 1

]
lr+1(t) = 0 ,

(3.5)

where K = −(b0 + b1t + b2t2) f (a).

Table 1: Recurrence relationships connecting some members of general family.

Distribution f (t) g(t) lr+1(t)

Beta 1
B(a,b)

t (a−1)(1 − t)(b−1); t (1−t)
(a+b)

[r +a+b]−1
[
((2r +a+b)t−r −µ(a+b))

0 < t < 1, a > 0, b > 0 lr (t) + r t (1 − t)lr−1(t)
]

Gamma m p

)p
exp(−mt)t (p−1); mt rmtlr−1(t) + (t − rm − µ)lr (t)

t > 0, m > 0, p > 0

Normal 1√
2πσ

exp − ( t−µ
σ

)2 ; σ 2 rσ 2lr−1(t) + (t − µ)lr (t)

−∞ < t < ∞, σ > 0,
−∞ < µ < ∞

Maxwell 4λ−3/2π−1/2t2 exp
(
− t2

λ2

)
; λ2

2

(
1+ λ2

t2

)
2tlr (t) − 1

2

[
λ2(r + 3) − 2t2

]
lr−1(t)

t > 0, λ > 0 + r
2 λ2tlr−2(t)

Theorem 3.2. Assume lim
t→−∞ t f (t) = 0, then the distribution of a rv X belongs to

generalized Pearson family of distributions (see Ord (1972)), where the pdf of X
satisfies a differential equation

d

dt
log f (t) = −

(
a0 + a1t + a2t2

)(
b0 + b1t + b2t2

) , (3.6)
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where ai , bi ; i = 0, 1, 2 are real constants, if and only if its r thorder LPM satisfies
a recurrence relationship of the form

lr (t) = C(t − a)r−2 + [(c1 + 2c2t) + rd2]lr−1(t)

− [(r − 1)(d1 + 2d2t) + (c0 + c1t + c2t2)]lr−2(t)

+ (r − 2)(d0 + d1t + d2t2)lr−3(t)

where C = −1
a2

(
(b0 + b1a − b2a2) f (a)

)
, ci = ai

a2
and di = bi

a2
; i = 0, 1, 2 are real

constants provided a2 �= 0, and when a2 = 0,

lr (t) = [r(d1 + 2d2t) + (c0 + c1t)] lr−1(t)

− (r − 1)(d0 + d1t + d2t2) lr−2(t) − C(t − a)r−1,
(3.7)

where

ci = ai

(a1 + (r + 1)b2)
; i = 0, 1, dj = bj

(a1 + (r + 1)b2)
; j = 1, 2

and

C = −1

(a1 + (r + 1)b2)

(
(b0 + b1a − b2a2) f (a)

)
provided (a1 + (r + 1)b2) �= 0.

Proof. When a2 �= 0: Assume that the distribution of X belongs to the gen-
eralized Pearson family, multiply both sides of (3.6) by (t − x)r−2 and on
integration over the limits a to t we get (3.7).

Conversely assume (3.7), by using (1.2) and substituting for ci and di ;
i = 0, 1, 2 we obtain

C(t − a)r−2 −
t∫

−∞
(b1 + 2b2x)(t − x)r−2 f (x)dx

−
t∫

−∞
(a0 + a1x + a2x2)(t − x)r−2 f (x)dx

+ (r − 2)

t∫
−∞

(b0 + b1x + b2x2)(t − x)r−3 f (x)dx .

(3.8)

Differentiating equation (3.8) r times and using (2.2) we get (3.6).
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Theorem 3.3. Let X be a rv with support (0, ∞) admitting an absolutely continuous
distribution functionF(x), then the distribution of X belongs to exponential family
with pdf

f (t) = exp [θ t + C(t) + D(θ)] , x ∈ (0, ∞), θ > 0, (3.9)

where C(.) and D(.) are arbitrary functions, if and only if its r th order LPM’s
satisfy a recurrence relationship

lr+1(t) = (t + D′(θ)
)

lr (t) − d

dθ
lr (t), (3.10)

where D′(θ) is the derivative of D(θ) with respect to θ .

Proof. From the definition of LPM’s

lr (t) =
t∫

0

(t − x)r exp (θx + C(x) + D(θ)) dx . (3.11)

Differentiating (3.11) with respect to θ , we get (3.10).
Conversely, assume that (3.10) holds, then by using (1.2) and on simplifi-

cation, we get

d

dθ
lr (t) =

t∫
0

(t − x)r (x + D′(θ)
)

f (x)dx . (3.12)

Differentiating (3.11) (r + 1) times with respect to t and on simplification we
get (3.9).

A list of various distributions with its pdf and the corresponding recurrence
relationships using LPM are given in Table 2.

In the next section, we study various properties of LPM’s in the context
of weighted distributions.

4. Weighted models

The concept of weighted distributions was introduced in connection with
modeling statistical data and in situations where the usual practice of employing
standard distributions for the purpose was not found appropriate. A survey of
research in various fields of applications is available in Gupta and Kirmani
(1990), Nair and Sunoj (2003), Sunoj and Maya (2006) and Di Crescenzo and
Longobardi (2006). Let X be a non-negative and absolutely continuous rv with
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pdf f (t), then the pdf f w(t) for the weighted rv Xw associated to X and to
a positive real function w(.) are defined by

f w(t) = w(t) f (t)

E (w(X))
(4.1)

where E (w(X)) < ∞. In this case, the r thorder LPM corresponding to the
weighted distribution at a point t is denoted as lw

r (t) and is defined as

lw
r (t) = E

(
(Xw − t)−)r ; r = 0, 1, 2, . . . , t > 0. (4.2)

By using (1.1), (4.2) can be written as

lw
r (t) = 1

µw

t∫
0

(t − x)rw(x) f (x)dx . (4.3)

In the next two subsections, we find some relationships connecting LPM’s of
original and length-biased and equilibrium models and examine its properties.

4.1. Length-biased models

When the weight function is proportional to lengths of units of interest
(i.e,w(t) = t), then the model (4.1) is known as a length-biased model. The
r thorder LPM corresponding to the length-biased model (1.2) is denoted as
l L
r (t) and is given by

l L
r (t) = 1

µ

t∫
0

(t − x)r x f (x)dx . (4.4)

Substitutingx = (t − (t − x)), (4.4) becomes

l L
r (t) = 1

µ
(tlr (t) − lr+1(t)) . (4.5)

The following theorem characterizes power distribution using a relationship
connecting the r thorder LPM’s of original and length-biased models.

Theorem 4.1. Let X be a non-negative rv as defined as in (1.1). Assume lim
t→0

t f (t) =
0, then the ratio of the r thorder LPM’s of original and length-biased model satisfies
a relationship of the form

l L
r (t)

lr (t)
= Ct, (4.6)

where C > 0 is a constant is satisfied for all t > 0 if and only if X follows power
distribution with cdf (2.4).
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Proof. Suppose that the relation (4.6) holds. Using (4.5) and (1.2) and on
simplification, we get

(
1

µ
− C − 1

) t∫
0

(t − x)r+1 +
(

1

µ
− C

) t∫
0

x(t − x)r = 0. (4.7)

Differentiating (4.7) (r + 1) times and on simplification using (2.2), we obtain

λ(t) =
(

1
µ

− C − 1
)

(
C − 1

µ

)
t

. (4.8)

Now using the uniqueness property of λ(t), (4.8) implies the required result.
The converse part is obtained from Table 2.

Theorem 4.2. Let X be a non-negative rv as defined as in (1.1) and lim
t→0

t f (t) = 0,

then the r thorder LPM’s of original and length-biased model satisfies a relationship
of the form

(C1t + C2)lr (t) − l L
r (t) = C1tr+1, (4.9)

where Ci(> 0); i = 1, 2 are constants, holds for all t > 0 if and only if X follows
generalized Pareto distribution with cdf (2.15).

Proof. Assuming (4.9), from (1.2) and (4.4), we have

C1

t∫
0

(t − x)r+1 f (x)dx+
t∫

0

(C3x + C2)(t − x)r f (x)dx = C1tr+1, (4.10)

where C3 =
(

C1 − 1
µ

)
, differentiating (4.10) (r + 1) times with respect to t

and on simplification using (2.2), we get f (t)
1−F(t) = C1(r+1)

(C3t+C2)
, which is the hazard

rate of generalized Pareto distribution. From the uniqueness property of hazard
rate, the remaining part of the theorem can be proved.

Conversely assume that X is specified by generalized Pareto distribution.
Substituting (2.15) in (4.5) and using (1.2) and on simplification, we get (4.9)
with C1 = (p+1)

q(1−pr)
and C2 = (r+1)

(1−pr)
.

Table 2 provides LPM of some of the distributions in original and length
biased case.
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Table 2: lr (t) and l L
r (t) of certain probability distributions.

Distribution f (t) lr (t) l L
r (t)

Exponen. λ exp(−λt); tr − r
λ

lr−1(t) (r + 1 + λt)lr (t) − λtr+1

λ > 0, t > 0

Pareto I ckct−(c+1); t > k, c
(c−r)

[
(t − k)r − r t

c lr−1(t)
]

(c−1)
k(c−r−1)

[
tlr (t)−(t−k)(r+1)

]
k, c > 0

Power c
bc t (c−1); r t

(r+c) lr−1(t)
(c+1)t

b(r+c+1)
lr (t)

function t > 0, b, c > 0

Finite pd(1 − pt)d−1; d
(d+r)

[
tr− r

pd (1− pt)lr−1(t)
]

pd(d+1)
(d+r+1)

[
(r+1+pdt)

pd lr (t)−tr+1
]

range 0<t < 1
p , p, d>0

Pareto II pq(1 + pt)−q−1; q
(q−r)

[
tr− r

pq (1 + pt)lr−1(t)
]

pq(q−1)
(q−r−1)

[
(r+1+pqt)

pq lr (t) − tr+1
]

t > 0, p, q > 0

Uniform 1
(b−a)

; (t−a)r+1

(b−a)(r+1)
2[t+(r+1)a]

(b2−a2)(r+1)(r+2)
(t − a)r+1

a < t < b

General. q
1
p +1

(p+1)

(
1

(pt+q)

)1
p +2

1
[1+p(1−r)]

[
(p + 1)tr (p+1)

q(1−pr)

[
tlr (t) − tr+1

]+ (r+1)lr (t)
(1−pr)

Pareto t > 0, p > −1, q > 0 −r(pt + q)lr−1(t)
]

4.2. Equilibrium models

The equilibrium distribution arises naturally in renewal theory (see Cox
(1962)). It is the distribution of the backward or forward recurrence time
in the limiting case. A formal definition of the equilibrium distribution is as
follows. Let X be a rv admitting an absolutely continuous cdf F(t) with respect
to Lebesgue measure in the support of the set of non-negative real numbers.
Associated with X , the equilibrium rv X E is defined with pdf

fE(t) = R(t)

µ
; t > 0 (4.11)

where R(t) = 1 − F(t) and µ = E(X) < ∞. The form of the equilibrium
distribution (4.11) can also be obtained as a particular case of weighted dis-
tribution (4.1), the case when weight function is equal to Mill’s ratio, i.e.,
w(t) = R(t)

f (t) . Then the r thorder LPM corresponding to the equilibrium model

is denoted as l E
r (t) and is defined as

l E
r (t) = 1

µ(r + 1)

(
tr+1 − lr+1(t)

)
; t > 0. (4.12)
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Equilibrium distribution has also been found application in economics. For a
recent discussion of it and its usefulness in economics, actuary and reliability
studies we refer to Hesselager et al. (1997), Sunoj (2004), Willmot et al. (2005)
and Gupta (2007).

Theorem 4.3. Let X be a non-negative rv with an absolute continuous cdf F(t),
then a relationship lr (t) = l E

r (t) is satisfied for all t > 0 if and only if X follows
an exponential distribution with cdf (2.9).

Proof. Assume lr (t) = l E
r (t), by using (4.1) and (1.2) we get

1

µ(r + 1)


tr+1 −

t∫
0

(t − x)r+1 f (x)dx


 =

t∫
0

(t − x)r f (x)dx . (4.13)

Differentiating (4.13) (r +1) times with respect to t and on simplification using
(2.2) we obtain

f (t)

1 − F(t)
= 1

µ
. (4.14)

From the uniqueness property of hazard rate, (4.14) corresponds to exponential
distribution. The converse part is obtained from Table 3.

Theorem 4.4. For a non-negative rv X having an absolute continuous cdf F(t) and
assume lim

t→0
t f (t) = 0, then the r th order LPM of original and equilibrium model

satisfies a relationship of the form

l E
r (t) + Btlr (t) = Atr+1, (4.15)

where A > 0 and B > 0 are constants, holds for all t > 0 if and only if X follows
power distribution with cdf (2.4).

Proof. Assume that (4.15) holds. Using (4.12), (1.2) and on simplification, we
get(

1

µ(r + 1)
− A

)
t (r+1)

−
(

1

µ(r + 1)
− B

) t∫
0

(t − x)r+1 f (x)dx + B

t∫
0

x(t − x)r f (x)dx = 0.

(4.16)

Differentiating (4.16) (r + 2) times with respect to t and using (2.2) and the
regularity condition, we obtain

f ′(t)
f (t)

= B2

t
, (4.17)

where B2 =
(

1
µB − (r + 2)

)
. Integrating (4.17) with respect to t , yields the

required result. Converse part of the theorem is obtained from Table 3.
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Theorem 4.5. For a non-negative rv X as defined in (1.1), the r th order LPM of
original and equilibrium model satisfies a relationship of the form

(At + B)lr (t) − l E
r (t) = At (r+1), (4.18)

where A, B (≥ 0) are constants holds for all t > 0 if and only if X follows
generalized Pareto distribution with cdf (2.15).

Proof. Assume the relation (4.18) holds, from (1.2) and (4.12), we obtain

A1

t∫
0

(t − x)r+1 f (x)dx+
t∫

0

(Ax + B)(t − x)r f (x)dx = A1tr+1 (4.19)

where A1 =
(

A + 1
µ(r+1)

)
. Assume lim

t→0
t f (t) = 0 and differentiating (4.19)

(r + 1) times with respect to t and using (2.2), we get
f (t)

1 − F(t)
= A1(r + 1)

(At + B)
. (4.20)

From the uniqueness property of hazard rate, (4.20) provides (2.15). The proof
of converse part is obtained from Table 3.

The r thorder LPM’s of some probability distributions of original and equi-
librium models are listed in Table 3.

Table 3: lr (t) and l E
r (t) of certain probability distributions.

Distribution f (t) lr (t) l E
r (t)

Exponen. λ exp(−λt); tr − r
λ

lr−1(t) tr − r
λ

lr−1(t)
λ > 0, t > 0

Pareto I ckct−(c+1); c
(c−r)

[
(t − k)r− r t

c lr−1(t)
]

(c−1)
kc(r+1)

[
tr+1− c

(c−r−1)
(t−k)r+1

t > k, c, k > 0 − (r+1)t
c lr (t)

]
Power c

bc t (c−1); r t
(r+c) lr−1(t)

(c+1)
bc

[
tr+1
(r+1)

− tlr (t)
(r+c+1)

]
function t > 0; b, c > 0

Finite pd(1 − pt)d−1; d
(d+r)

[
tr− r

pd (1− pt)lr−1(t)
]

(d+1)
(d+r+1)

[
ptr+1 + (1 + pt)lr (t)

]
range 0< t < 1

p , p, d >0

Pareto II pq(1+ pt)−q−1; q
(q−r)

[
tr− r

pq (1+ pt)lr−1(t)
]

(q−1)
(q−r−1)

[
(1+ pt)lr (t) − ptr+1

]
t >0, p, q > 0

Uniform 1
(b−a)

; (t−a)r+1

(b−a)(r+1)
2

(b+a)(r+1)

[
tr+1 − (t−a)r+2

(b−a)(r+2)

]
a < t < b

General. q
1
p +1

(p+1)
(

1
(pt+q)

)1
p +2 1

[1+p(1−r)]

[
(p + 1)tr 1

q(1−pr)

[
(pt + q)lr (t) − ptr+1

]
Pareto t > 0, a > −1, b > 0 −r(pt + q)lr−1(t)

]
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5. Applications

One of the main applications of LPM is that it can be used to find some
poverty indices in the income analysis. Poverty measures are generally a kind
of inequality measure that confines attention to a specified bottom slice of the
income distribution, i.e. they only care for poor people. In measuring the
indices of poverty, an important statistic is the proportion of population that
falls below the poverty line. The measures of poverty ignore most of the
income distribution and often give substantial weight to an individual being or
just below the poverty line whereas no weight is given to those slightly above
the poverty line. These measurements involve two problems, the identification
of the poor and the aggregation of information about the poor (see Sen (1976)).
Most studies focus on income distribution as an indicator to identify the poor.

Based on the properties of poverty measures, it has been known for some
time that a close formal tie between risk and inequality exists. The income
inequality arises in situations where not all people in a society earn the same
income in a given period. Similarly, a distribution of returns is called risky if
there are events where portfolio values are different. Besides, the resemblance
of poverty and downside risk is also striking as both have their focus on the
lower part of the distribution, concentrating on income of the poor and the bad
outcomes respectively. The poverty line t in income studies divides the poor
from the non poor corresponds to the critical line t that divides critical events
with portfolio values less than or equal to t from the uncritical events with
portfolio values greater than t . Thus the result that we obtained in poverty
studies is also useful in downside risk studies where X represents the random
return of a portfolio.

In the present context, suppose X represents the income of a community
of individuals and define a minimum income requirement, the poverty line t ,
such that all individuals i who earn income xi < t are said to be poor and the
rv takes the value (t −x) and zero for those individuals whose income below or
above poverty line respectively. Thus in income analysis, it is a useful measure
for studying some poverty measures. In this case, the zero order LPM l0(t)
gives the proportion of poor people and their income distribution is given as

t FX (x) =
{ l0(x)

l0(t) ; X ≤ t

1; X > t
(5.1)

(see Belzunce et al. (1995)), and l L
0 (t) measures the proportion of total income

earned by income units having income less than or equal to t . In income
studies, an index, which measures how poor the poor are, is the income gap
ratio α(t), where the income gap of an individual is (t − x). Another measure
useful in income analysis is µ(t), the average income below the poverty line
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and they are defined as

α(t) = l1(t)

tl0(t)
(5.2)

µ(t) = t − l1(t)

l0(t)
. (5.3)

From (5.2) and (5.3), it is clear that

µ(t) = t (1 − α(t)) . (5.4)

Using the above relationships, the following theorems are immediate.

Theorem 5.1. Let X be a non-negative rv representing the income of a community
of individuals and have an absolute continuous cdf F(t), then the average income
below poverty line satisfies a relationship

µ(t) = µ[1 − t (1 + Ct)λ(t)], (5.5)

where C is a constant, if and only if X follows Pareto II with cdf

F(t) = 1 − (1 + pt)−q; t > 0, p, q > 0 (5.6)

for, exponential distribution with cdf (2.9) for C = 0, or finite range distributions
with cdf

F(t) = 1 − (1 − pt)d; 0 < t <
1

p
, d > 0, p > 0 (5.7)

for C < 0.

Proof. Assume that the relation (5.5) holds. Using (5.3), (1.2) and on simpli-
fication, we get

t∫
0

x f (x)dx = µ [F(t) − t (1 + Ct) f (t)] . (5.8)

On differentiating (5.8) with respect to t using the assumption that lim
t→0

t f (t) = 0,

we obtain
f ′(t)
f (t)

= (1 + 2µC)

µ(1 + Ct)
. (5.9)

Integrating (5.9) with respect to t yields the distributions Pareto II, exponential
and finite range according to C > 0, C = 0 and C < 0 respectively.

The converse part is obtained by direct calculation.
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Remark 5.1. Even if the distributions (5.6), (2.9) and (5.7) in Theorem
5.1 satisfies the relationship (5.5), the inequality µ(t) ≤ t will be true only for
Pareto II and exponential distributions. For finite range distribution (5.7), the
inequality fails as it is not useful for modeling poverty data.

Corollary 5.1. The income gap ratio for the poor people satisfies a relationship

α(t) = 1 − µ

t
(1 − t (1 + kt)λ(t)) , (5.10)

for all t > 0 if and only if X follows Pareto II, exponential and finite range
distributions respectively according as k > 0, k = 0 and k < 0.

Theorem 5.2. Let X be a non-negative rv representing the income of a community
of individuals and have an absolute continuous cdf F(t) and if lim

t→0
g(t) f (t) = 0,

then the income gap ratio α(t) satisfies a relationship of the form

α(t) = 1 − 1

t
(µ − g(t)λ(t)) (5.11)

for all t > 0 if and only if the distribution belongs to the general family (3.1).

Proof. Assume the relation (5.11) holds, then using (5.2) and (1.2) and on
simplification we get

t∫
0

(t − x) f (x)dx = t F(t) − µF(t) + g(t) f (t). (5.12)

Differentiating (5.12) with respect to t and on simplification, we obtain the
required result.

To prove the converse, assuming (3.1), we have

d

dt
( f (t)g(t)) = (µ − t) f (t). (5.13)

Integrating (5.13) using the assumption and on simplification, we get

f (t)g(t) = (µ − t)l0(t) + l1(t). (5.14)

Dividing each term of (5.14) by tl0(t), we get (5.11).
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Corollary 5.2. For the family given in (3.1) the average income below poverty line
is

µ(t) = µ − g(t)λ(t).
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