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a b s t r a c t

In this paper, the residual Kullback–Leibler discrimination information measure is
extended to conditionally specified models. The extension is used to characterize some
bivariate distributions. These distributions are also characterized in terms of proportional
hazard rate models and weighted distributions. Moreover, we also obtain some bounds
for this dynamic discrimination function by using the likelihood ratio order and some
preceding results.
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1. Introduction

Let X and Y be two absolutely continuous random variables with the common support S = (l, ∞) for l ≥ 0. Denote by
f , F and F , the probability density function (PDF), the cumulative distribution function (CDF) and the survival (or reliability)
function (SF) of X , respectively, and by g,G and G, the corresponding functions of Y . As an information distance between
X and Y , Kullback and Leibler (1951) proposed a directed divergence (also known as information divergence, information
gain, relative entropy or discrimination measure) given by

IX,Y =

∫
∞

l
f (x) log

f (x)
g(x)

dx.

This function is a measure of the similarity (closeness) between the two distributions and it plays an important role in
information theory, reliability and other related fields. Further, note that if f = g (a.e.), then IX,Y = 0.

Length of time during a study period has been considered as a prime variable of interest in many fields such as
reliability, survival analysis, economics, business, etc. In particular, consider an item under study, then the information
about the residual (or past) lifetime is an important task in many applications. In such cases, the information measures are
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functions of time, and thus they are dynamic. Based on this idea, Ebrahimi and Kirmani (1996) defined the Kullback–Leibler
discrimination information measure of X and Y at time t by

IX,Y (t) =

∫
∞

t

f (x)

F(t)
log

f (x)G(t)

g(x)F(t)
dx.

Note that IX,Y (t) = IXt ,Yt , where Xt = (X − t|X > t) and Yt = (Y − t|Y > t) are the residual lifetimes associated to X
and Y . A similar function is obtained in terms of the inactivity times (t − X |X < t) and (t − Y |Y < t) in Di Crescenzo and
Longobardi (2004) (see alsoMaya and Sunoj, 2008). Interesting extensions to themultivariate case are obtained in Ebrahimi
et al. (2007). For additional information on these measures, see Ebrahimi et al. (2010) and the references therein.

The concept of weighted distributions is usually considered in connectionwithmodeling statistical data, where the usual
practice of employing standard distributions is not found appropriate in some cases. In recent years, this concept has been
applied inmany areas of statistics, such as analysis of family size, human heredity, wildlife population study, renewal theory,
biomedical, statistical ecology, reliability modeling, etc. Associated to a random variable X with PDF f and to a nonnegative
real function w, we can define the weighted random variable Xw with density function

f w(x) =
w(x)f (x)
E(w(X))

,

where we assume 0 < E(w(X)) < ∞. When w(x) = x, Xw is called the length (or size) biased random variable and it is
denoted by X∗. For recent works on weighted distributions, we refer the reader to Bartoszewicz and Skolimowska (2006);
Navarro et al. (2006); Blazej (2008); Maya and Sunoj (2008); Bartoszewicz (2009); Navarro and Sarabia (2010); Sunoj and
Linu (in press).

The obtention of the joint distribution of (X, Y ), when conditional distributions of (X |Y = y) and (Y |X = x) are known,
has been an important problem dealt with by many researchers in the past. This approach of identifying a bivariate
density using the conditionals is called the conditional specification of the joint distribution (see Arnold et al., 1999).
These conditional models are often useful in many two component reliability systems, when the operational status of one
component is known.

In the present paper, the Kullback–Leibler discrimination informationmeasure IX,Y (t) proposed by Ebrahimi and Kirmani
(1996) is extended to conditionally specified models. This extension is used to characterize some bivariate distributions.
These distributions are also characterized in terms of proportional hazard rate models and weighted distributions. These
results are given in Section 2. Moreover, in Section 3, we obtain bounds for this dynamic discrimination function by using
the likelihood ratio order and some preceding results. The proof of the main result is given in Section 4.

2. Main results

Let (X1, X2) and (Y1, Y2) be two bivariate random vectors with joint PDF f and g , joint CDF F and G and joint SF F and G,
respectively. Let us assume that the common support is S = (l, ∞) × (l, ∞) for l ≥ 0. Also let fi(s|t) and gi(s|t), F i(s|t) and
Gi(s|t) denote the PDF and the SF of (Xi|X3−i = t) and (Yi|Y3−i = t), respectively, for i = 1, 2. Thenwe define the conditional
Kullback–Leibler discrimination (CKLD) information functions as

IXi,Yi(s|t) =

∫
∞

s

fi(x|t)

F i(s|t)
log

fi(x|t)Gi(s|t)

gi(x|t)F i(s|t)
dx

for i = 1, 2 and s, t ≥ l. Note that

IXi,Yi(s|t) = I(Xi|X3−i=t),(Yi|Y3−i=t)(s) (1)

for i = 1, 2 and s, t ≥ l. Hence, IXi,Yi(s|t) is the dynamic Kullback–Leibler discrimination information measure at time s
defined by Ebrahimi and Kirmani (1996) but applied to the conditional random variables (Xi|X3−i = t) and (Yi|Y3−i = t)
for i = 1, 2. As in the univariate case, these functions measure the information distance between the residual lifetimes of
the conditional distributions of the two random vectors. Of course, in the bivariate case, there are other interesting options
(see, e.g., Ebrahimi et al., 2007).

In survival studies, the most widely used semi-parametric model is the proportional hazard rate (PHR) Cox model. Let X
and Y be two randomvariableswith the same support S andwith hazard rate functions hX = f /F and hY = g/G, respectively.
Then X and Y satisfy the PHR model when

hY (t) = θhX (t),

for all t ∈ S. This relationship is also equivalent to

G(t) = (F(t))θ ,

for all t (see Cox, 1959). Ebrahimi and Kirmani (1996) obtained the following result.

Theorem 1 (Ebrahimi and Kirmani, 1996). The function IX,Y (t) is constant if and only if X and Y satisfy the PHR model.
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In a similar way the random vectors (X1, X2) and (Y1, Y2) satisfy the conditional proportional hazard rate (CPHR)
model (see Sankaran and Sreeja, 2007), when their respective conditional hazard rate functions satisfy

h(Yi|Y3−i)(s|t) = θi(t)h(Xi|X3−i)(s|t) (2)

for i = 1, 2, where θi(t) is a nonnegative function of t . Then we can state the result as follows.

Theorem 2. For i = 1, 2, the function IXi,Yi(s|t) only depends on t if and only if (Yi|Y3−i = t) and (Xi|X3−i = t) satisfy the CPHR
model (2).

The proof is obtained from Theorem 1 and (1).
Next, let us consider the random vector (Xw

1 , Xw
2 ) which has the bivariate weighted distribution associated to (X1, X2)

and to two nonnegative real functions w1 and w2, that is, its joint PDF is

f w(x1, x2) =
w1(x1)w2(x2)f (x1, x2)

E(w1(X1)w2(X2))
. (3)

It is easy to see that the marginal random variable Xw
i has the (univariate) weighted distribution associated to Xi and Xi for

i = 1, 2. In particular, the length biased bivariate random vector, denoted by (X∗

1 , X∗

2 ), is obtainedwhenw1(x) = w2(x) = x.
There are other options in defining the bivariate weighted distribution which can be found in Navarro et al. (2006).

Now we can state the main result of the paper as follows.

Theorem 3. Let (Xw
1 , Xw

2 ) be a random vector which has the bivariate weighted distribution associated to (X1, X2) and to two
nonnegative and differentiable functions w1 and w2. Let us assume that the support of (X1, X2) is S = (l, ∞) × (l, ∞) for l ≥ 0.
Then the following conditions are equivalent:

(a) (Xw
1 , Xw

2 ) and (X1, X2) satisfy the CPHR model (2) for i = 1, 2.
(b) IXi,Xw

i
(s|t) only depends on t for i = 1, 2.

(c) The conditional reliability functions of (X1, X2) satisfy

log F i(s|t) =
log(wi(s)/wi(l))

θ1(t) − 1
for i = 1, 2.

(d) (X1, X2) has the following joint PDF

f (x1, x2) = ca1a2
w′

1(x1)w
′

2(x2)

w
a1+1
1 (x1)w

a2+1
2 (x2)

exp


−φa1a2


log

w1(x1)
w1(l)

 
log

w2(x2)
w2(l)


for x1, x2 ≥ l, where c > 0, φ ≥ 0 and ai > 1 or ai < 0 for i = 1, 2.

The proof is given in Section 4. Note that the conditions given in Theorem 3(c), imply that either log(wi(s)/wi(l)) or
− log(wi(s)/wi(l)) should be cumulative hazard rate functions, that is, they should be nonnegative, increasing and they
should go to ∞ when s goes to ∞. In the first case, wi should be increasing in [l, ∞) with wi(l) > 0 and wi(∞) = ∞. In the
second case, wi should be decreasing, with wi(s) > 0 for s ∈ [l, ∞) and wi(∞) = 0. These conditions can also be written as

hi(s|t) =
w′

i(s)/wi(s)
1 − θi(t)

for i = 1, 2, that is, (X1|X2 = t) and (X2|X1 = t) satisfy the conditional proportional hazard ratemodel considered by Arnold
and Strauss (1988). The reliability properties of this semi-parametric model can be seen in Navarro and Sarabia (in press).
Actually, the model in (d) is just a truncated version of Arnold and Strauss model in the support S = (l, ∞) × (l, ∞) and
when l = 0 both models coincide. Again we have two options, in the first one, λi(s) = w′

i(s)/wi(s) is a proper hazard rate
function and, in the second one, λi(s) = −w′

i(s)/wi(s) is a proper hazard rate function. In the first option, we need ai > 1
and in the second one ai < 0, for i = 1, 2. The model in (d) contains several parametric models. In particular, when l = 1
and w1(x) = w2(x) = x for x > 1, from Theorem 3, we can characterize the bivariate Pareto model with the following joint
PDF

f (x1, x2) =
ca1a2

xa1+1
1 xa2+1

2

exp(−φa1a2(log x1)(log x2))

for x1, x2 ≥ 1, where c > 0, a1, a2 > 1 and φ ≥ 0.

3. Bounds

In this section, we obtain bounds for the CKLD functions by using the likelihood ratio (LR) order. The results are similar
to that given in Di Crescenzo and Longobardi (2004). First, we need the definition of the LR order. If X and Y have PDF f and
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g , respectively, then X is said to be less than Y in the likelihood ratio order (denoted by X ≤LR Y ) if g/f is increasing in the
union of their supports. Then we have the following results.

Theorem 4. For i = 1, 2, if (Xi|X3−i = t) ≤LR(Yi|Y3−i = t), then

IXi,Yi(s|t) ≤ log
hXi|X3−i(s|t)
hYi|Y3−i(s|t)

.

Theorem 5. For i = 1, 2, if wi is increasing, then

IXi,Xw
i
(s|t) ≤ log

E(wi(Xi)|Xi > s, X3−i = t)
wi(s)

.

Theorem 6. For i = 1, 2, if (Yi|Y3−i = t) ≤LR(Zi|Z3−i = t), then

IXi,Yi(s|t) ≥ IX1,Z1(s|t) +
hZi|Z3−i(s|t)
hY1|Y2(s|t)

.

4. Proof of Theorem 3

The equivalence between (a) and (b) is a consequence of Theorem 2.
Let us prove that (a) implies (c). So, let us assume that (Xw

1 , Xw
2 ) and (X1, X2) satisfy the CPHRmodel (2) for i = 1, 2. From

the expression of the PDF of (Xw
1 , Xw

2 ) given in (3), it is easy to prove that the PDF of (Xw
i |Xw

3−i = t) is given by

f w
i (s|t) =

wi(s)fi(s|t)
E(wi(Xi)|X3−i = t)

for i = 1, 2, where fi(s|t) is the PDF of (Xi|X3−i = t). Then, for i = 1, 2, the hazard rate hw
i (s|t) of (Xw

i |Xw
3−i = t) is given by

hw
i (s|t) =

wi(s)fi(s|t)
∞

s wi(x)fi(x|t)dx
. (4)

Moreover, from (2), we have

hw
i (s|t) = θi(t)hi(s|t)

and hence
wi(s)fi(s|t)

∞

s wi(x)fi(x|t)dx
= θi(t)

fi(s|t)

F i(s|t)
.

Therefore,
1

F i(s|t)

∫
∞

s
wi(x)fi(x|t)dx =

1
θi(t)

wi(s).

Then, differentiating both sides with respect to s, we obtain

−wi(s)fi(s|t) =
1

θi(t)
(w′

i(s)F i(s|t) − wi(s)fi(s|t)),

that is,

hi(s|t) =
w′

i(s)
(1 − θi(t))wi(s)

.

Hence

log F i(s|t) = −

∫ s

l
hi(x|t)dx =

1
(θi(t) − 1)

log
wi(s)
wi(l)

for i = 1, 2 and (c) holds.
Let us prove that (c) is equivalent to (d). The expressions given in (c) are equivalent to

hi(s|t) =
w′

i(s)/wi(s)
1 − θi(t)

for i = 1, 2, that is, (X1|X2 = t) and (X2|X1 = t) satisfy the conditional proportional hazard ratemodel considered by Arnold
and Strauss (1988) which is equivalent to (d).
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Finally, let us prove that (d) implies (a). From the expression of the joint PDF given in (d), it is easy to prove that the
conditional hazard rate functions are given by

hi(s|t) = ai


1 − φa3−i log

w3−i(t)
wi(l)


w′

i(s)
wi(s)

for i = 1, 2. Moreover, the weighted version associated to w1 and w2 has the following joint PDF

f w(x1, x2) = c
w′

1(x1)w
′

2(x2)
w

a1
1 (x1)w

a2
2 (x2)

exp


−φa1a2


log

w1(x1)
w1(l)

 
log

w2(x2)
w2(l)


which is also a model included in the type of the PDF given in (d) with parameters a1 − 1 and a2 − 1. Therefore, its hazard
rate functions are

hw
i (s|t) = (ai − 1)


1 − φ′(a3−i − 1) log

w3−i(t)
w3−i(l)


w′

i(s)
wi(s)

for i = 1, 2. Hence (a) holds.
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