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Abstract

Given a non empty set S of vertices of a graph, the partiality of a vertex with respect to S
is the difference between maximum and minimum of the distances of the vertex to the vertices
of S. The vertices with minimum partiality constitute the fair center of the set. Any vertex set
which is the fair center of some set of vertices is called a fair set. In this paper we prove that the
induced subgraph of any fair set is connected in the case of trees and characterise block graphs
as the class of chordal graphs for which the induced subgraph of all fair sets are connected. The
fair sets of Kn, Km,n, Kn−e, wheel graphs, odd cycles and symmetric even graphs are identified.
The fair sets of the Cartesian product graphs are also discussed.

Keywords: Partiality, Fair Center, Fair Set, Block Graphs, Chordal Graphs, Symmetric Even
Graphs.

1 Introduction

The main objective in any location theory problem is to identify the ideal locations for setting up
a facility for a set of customers. This problem is approached in different ways. The first one is
called the efficiency oriented model where the objective is to minimise the sum of the total distance
covered. This corresponds to the median problem in graph theory[10, 14, 24]. When we are looking
for locating undesirable facilities such as nuclear reactors, garbage dumps etc [5, 6, 7] the objective
becomes maximization of the sum of distances instead of minimization. This corresponds to the
antimedian problem in graph theory [1, 2]. Another approach is the effectiveness oriented model and
this corresponds to the center problem in graph theory. This model is useful in locating emergency
facilities such as ambulance, fire stations etc, [23]. The center problem in graph theory has been
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studied extensively and various variants of centers have been introduced from time to time [11, 13].
We also have the anicenter problem in graph theory [25] which is again used in obnoxious facility
location problems. A third approach is the equity oriented model where equitable locations are
chosen, that is locations which are more or less equally fair to all the customers. Issue of equity is
relevant in locating public sector facilities where distribution of travel distances among the recipients
of the service is also of importance.
Most of the equity based study of location theory concentrate either on comparisons of different
measures of equity [21] or on giving algorithms for finding the equitable locations[3, 4, 19, 20, 22].
Also in many optimization problems, we have a set of optimal vertices. If we want to choose among
these, one of the important criteria can be equity or fairness. Taking a leaf out of these literature
we define an equity measure called partiality(termed as range in [22]) and the sets of equitable
locations corresponding to this measure in graphs, defined to be fair sets. Rest of the paper is
divided as follows, In the section preliminaries, we have some definitions, and results required for
the paper. In section 3, we prove a result regarding connectedness of fair sets in trees, extend the
result to block graphs, a generalization of tress, and finally charcterise chordal graphs, whose fair
sets are connected. In Section 4, we discuss fair sets in some graph families namely complete graphs,
complete bipartite graphs, odd cycles, wheel graphs and symmetric even graphs. We also have some
partial results in the case of Cartesian Product of graphs in Section 5. In the last section 6 we sum
up giving the possibilities of some future work.

2 Preliminaries

We consider only finite simple undirected connected graphs. For the graph G, V (G) denotes its
vertex set and E(G) denotes its edge set. When the underlying graph is obvious we use V and E
for V (G) and E(G) respectively. For two vertices u and v of G, distance between u and v denoted
by d(u, v), is the number of edges in the shortest u−v path. A vertex v of a graph G is called a cut-
vertex if G−v is no longer connected. Any maximal induced subgraph of G which does not contain a
cut-vertex is called a block of G. A graph G is a block graph if every block of G is complete. A graph
G is chordal if every cycle of length greater than three has a chord; namely an edge connecting two
non consecutive vertices of the cycle. Trees, k-trees, interval graphs, block graphs are all examples
of chordal graphs. Chordal graphs form a well studied class of graphs as they have a very unique
clique-pasted structure and many of its properties are inherited by the corresponding clique-trees
[8, 15, 16]. For two vertices u and v of G, distance between u and v denoted by dG(u, v) (if G is
obvious, then we write d(u, v)), is the number of edges in a shortest u − v path. The set of all
vertices which are at a distance i from the vertex u is denoted by Ni(u). The eccentricity e(u) of
a vertex u is max

v∈V (G)
d(u, v). A vertex v is an eccentric vertex of u if e(u) = d(u, v). A vertex v is

an eccentric vertex of G if there exists a vertex u such that e(u) = d(u, v). A graph is a unique
eccentric vertex graph if every vertex has a unique eccentric vertex. The unique eccentric vertex of
the vertex u is denoted by ū. The diameter of the graph G, diam(G), is max

u∈V (G)
e(u). Two vertices

u and v are said to be diametrical if d(u, v) = diam(G). The interval I(u, v) between vertices u
and v of G consists of all vertices which lie in some u− v shortest path. A vertex u of a graph G is
called a universal vertex if u is adjacent to all other vertices of G. The Cartesian product G2H of
two graphs G and H has vertex set, V (G)× V (H), two vertices (u, v) and (x, y) being adjacent if
either u = x and vy ∈ E(H) or ux ∈ E(G) and v = y. For more on graph products see [17].
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For any x ∈ V and S ⊆ V , min(x, S) (max(x, S)) denote the minimum(maximum) of the distances
between x and the vertices of S. For an x ∈ V and S ⊆ V , max(x, S) −min(x, S) is defined to
be the partiality of x with respect to S and is denoted by fG(x, S). For a given nonempty vertex
set S, {v ∈ V : fG(v, S) ≤ fG(x, S) ∀x ∈ V } is defined as the fair center of S and is denoted by
FC(S). Any A ⊆ V such that A = FC(S) for some S ⊆ V , |S| > 1, is called a fair set of G. When
the underlying graph is obvious we use the notation f(x, S) instead of fG(x, S). When |S| = 1, we
can easily see that for all x ∈ V , f(x, S) = 0 so, FC(S) = V .

3 Graphs with Connected Fair Sets

In this section we characterize those chordal graphs for which the subgraph induced by fair sets are
connected.

Lemma 1. For any tree T , the subgraph induced by any fair set is connected.

Proof. Let A be a fair set with A = FC(S) where S = {v1, . . . , vk}. Let u, v ∈ A. Assume
that v1, . . . , vk are such that d(u, v1) ≤ · · · ≤ d(u, vk). Let P be the path uu1 . . . umv. At each
stage as we move from u to v through the path P , let d1, . . . , dk denote the distance between the
corresponding vertex of the path and v1, . . . , vk respectively. At u, f(u, S) = dk − d1. Since in any
tree, the distances of two adjacent vertices from a given vertex differ by one, we have f(u1, S) is
either f(u, S) or f(u, S) + 1 or f(u, S) + 2. To prove f(u1, S) = f(u, S), we consider the following
cases.
Case 1: f(u1, S) = f(u, S) + 2.
We first consider f(u1, S) = f(u, S) + 2. This is possible only when dk increases by one and d1
decreases by one as we move from u to u1. Therefore, as we traverse from u to v through P ,
and the graph is a tree, dk always increase by 1, so that the partiality cannot decrease. Hence
f(v, S) > f(u, S) which is a contradiction to the assumption that u, v ∈ A.
Case 2: f(u1, S) = f(u, S) + 1.
Subcase 2.1: As we move from u to u1, dk increases by one and the role of v1 is taken by some other
vertex say v2. Then similar to the Case 1, we can see that f(v, S) > f(u, S), and a contradiction is
obtained.
Subcase 2.2: The role of vk is taken by another vertex, (say) vk−1, so that the maximum distance
remains the same(here dk−1) and d1 decreases by one. Now as we move from u1 to u2, since there
was an increase in d(u1, vk−1) as compared to d(u, vk−1) the maximum distance keeps on increasing
so that the partiality becomes non decreasing. Hence the f(v, S) > f(u, S), a contradiction to our
assumption that u, v ∈ A.
From the contradictions of Cases 1 and 2, we obtain f(u, S) = f(u1, S). So that u1 ∈ A and in a
similar fashion we can show that V (P ) ⊆ A. Since u and v are arbitrary vertices of A, we can see
that A is connected. Hence, we have the lemma.

Proposition 1. In a block graph the induced subgraph of any fair set is connected.

Proof. Let G = (V,E) be a block graph. Let v1, v2, . . . , vn be the vertices of G. Let B1, B2, . . . , Br

be the blocks of G. From this form the skeleton SG of G whose vertices are v1, . . . , vn, B1, . . . , Br.
Here we draw an edge between vi and Bj if vi ∈ Bj . For any block graph G, its skeleton SG is a
tree [18].
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Figure 1: A block graph and its skeleton graph

Also if dG(vi, vj) = d then dSG
(vi, vj) = 2d. If S = {v1, . . . , vk} is a subset of V (G), then for

any vertex vi, partiality fG(vi, S) = 1
2fSG

(vi, S). Hence if vl ∈ FC(S) with fG(vl, S) = p, then
fSG

(vl, S) = 2p. Also for every vi 6= vl, fSG
(vi, S) ≥ 2p. Now, let vm be another vertex in

G such that fG(vm, S) = p. Then fSG
(vl, S) = 2p, fG(vm, S) = 2p and fSG

(vi, S) ≥ 2p for
every i = 1, . . . , n. Since SG is connected there exists one path connecting vl and vm in SG, say
vlBlvl+1Bl+1 . . . Bm−1vm. Since we know that in a tree as we move along a path once partiality
increases it cannot decrease fSG

(vi, S) ≤ 2p, i = l + 1, . . . ,m − 1. But since partiality always
greater than or equal to 2p, fSG

(vi, S) = 2p, i = l, l + 1, . . . ,m − 1,m. Therefore fG(vi, S) = p,
i = l, l + 1, . . . ,m − 1,m. Since vl and vl+1 are adjacent to Bl they belong to same block in G.
Therefore vl and vl+1 are adjacent in G. Similarly vl+1 and vl+2 are adjacent in G. Hence we get
a path vl, vl+1, . . . , vm−1vm in G connecting vl and vm all of whose partiality is p, the minimum.
Therefore induced subgraph of any fair set is connected.

Theorem 1. [9] A graph G is chordal if and only if it can be constructed recursively by pasting
along complete subgraphs, starting from complete graphs.

Theorem 2. Let G be a chordal graph. Then G is a block graph if and only if the induced subgraph
of any fair set of G is connected.

Proof. Suppose G is a block graph. Then by Corollary 1, for any S ⊆ V the induced subgraph of
FC(S) is connected. Conversely assume that the induced subgraph of all fair sets of G is connected
and let G is not a block graph. Since G is chordal, there exist two chordal graphs G1 and G2 such
that G can be got by pasting G1 and G2 along a complete subgraph say, H, where |V (H)| > 1.
Then there exists two vertices u and v such that u ∈ V (G1) \ V (H), v ∈ V (G2) \ V (H) and u and
v are adjacent to all vertices of H. Consider the vertex set V (H). Since u and v are adjacent to
all vertices of H, f(u, V (H)) = f(v, V (H)) = 1− 1 = 0. For all x ∈ V (H), f(x, V (H)) = 1. Hence
FC(V (H)) contains the vertices u and v and any path from u to v pass through the vertices of H
which have partiality one. In other words the induced subgraph of the fair center of V (H) is not
connected, a contradiction. Therefore induced subgraph of all fair sets of G is connected implies G
is a block graph.

As an illustration of Theorem 2, we have the following example.
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Example 1. For V (H) = {v3, v4, v5}, we have A = FC(V (H)) = {v2, v6}, the induced subgraph of
A is not connected.

Figure 2: G1 = G[{v1, v2, v3, v4, v5}], G2 = G[{v3, v4, v5, v6}], H = G[{v3, v4, v5}]

4 Fair sets of some class of graphs

In this section, we find out the fair sets of some class of graphs, namely Complete graphs, Kn − e,
Km,n, the wheel graphs Wn, odd cycles and, symmetric even graphs. Before that we have the
following lemma.

Lemma 2. For any graph G = (V,E) all the fair sets A of G are of cardinality either |V | or less
than |V | − 1.

Proof. Let A be fair set of G and assume that A 6= |V |. To prove |A| < |V | − 1. If possible let
|A| = |V |− 1. Let A = FC(S) where S ⊆ V . Let y be the vertex which is not in A. For each x ∈ A
let f(x, S) = k. Also we have f(y, S) > k.
If y ∈ S then we have min(y, S) = 0. So we must have max(y, S) > k. Therefore there exists an z
in S such that d(y, z) > k and this implies that z /∈ A, a contradiction to the fact that |A| = |V |−1.
Hence for each x in S, f(x, S) = k.
Next let y /∈ S. Let min(y, S) = r and max(y, S) = k + r + s where r, s > 0. Since min(y, S) = r
there exists a vertex w adjacent to y such that min(w, S) = r − 1. Since f(w, S) = k we have
max(w, S) = k + r − 1 = k + r + s − (s + 1) = max(y, S) − (s + 1). Since s ≥ 1, we have
|max(y, S)−max(w, S)| ≥ 2, a contradiction.

Proposition 2. For the complete graph on n vertices Kn, any A ⊆ V such that |A| 6= n − 1, is a
fair set.

Proof. Let S ⊆ V with |S| > 1. Then for every x ∈ S, f(x, S) = 1 − 0 = 1 and for every y /∈ S,
f(y, S) = 1 − 1 = 0. Therefore FC(S) = Sc. Also if |S| = 1 then FC(S) = V . Hence all A ⊆ V
such that |A| 6= n− 1 is a fair set.

We get a different result if we delete an edge from a complete graph.

Proposition 3. Let G be the graph Kn − e with V (G) = {v1, . . . , vn} and let e be the edge v1v2.
Then A ⊆ V is a fair set if and only if |A| 6= n− 1 and either {v1, v2} ⊆ A or {v1, v2} ⊆ Ac.
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Proof. Let {v1, v2} ⊆ A with |A| < n − 1. Then |Ac| ≥ 2. For each x ∈ A, f(x,Ac) = 1 − 1 = 0.
For each x ∈ Ac, f(x,Ac) = 1 − 0 = 1. Therefore FC(Ac) = A. Now, let {v1, v2} ⊆ Ac. For each
x ∈ A, f(x,Ac) = 1− 1 = 0. f(v1, A

c) = 2− 0 = 2, f(v2, A
c) = 2− 0 = 2 and for every other x in

Ac, f(x,Ac) = 1− 0 = 1. Hence FC(Ac) = A.
Conversely, Let A be a fair set. We first prove that |A| 6= n − 1. If |A| = n − 1 then |Ac| = 1 so
we have FC(Ac) = V . If B is any set such that FC(B) = A then |B| > 1. If {v1, v2} ⊆ B, then
FC(B) = Bc 6= A. If v1 ∈ B ∩ A and v2 /∈ B then FC(B) = Bc \ {v2} 6= A. If {v1, v2} ⊆ Bc, then
again FC(B) = Bc 6= A. Hence |A| 6= n− 1.
Now let us assume that there is a set B with FC(B) = A. Suppose neither {v1, v2} ⊆ A nor
{v1, v2} ⊆ Ac. With out loss of generality, we assume v1 ∈ A and v2 /∈ A. If {v1, v2} ⊆ B, then
FC(B) = Bc 6= A. If v1 ∈ B ∩ A and v2 /∈ B then FC(B) = Bc \ {v2} 6= A. If {v1, v2} ⊆ Bc,
then again FC(B) = Bc 6= A. From these we arrive at a contradiction to our assumption that
FC(B) = A. Hence our supposition is wrong so either {v1, v2} ⊆ A or {v1, v2} ⊆ Ac. Hence the
proposition.

Now, we prove case for complete bipartite graph G = Km,n with bipartition (X,Y ) where |X| = m
and |Y | = n. We assume A = A1 ∪A2 where A1 ⊆ X and A2 ⊆ Y .

Proposition 4. Let G be a complete bipartite graph Km,n with bipartition (X,Y ) where |X| = m
and |Y | = n. Let A = A1 ∪ A2 where A1 ⊆ X and A2 ⊆ Y . Then A is a fair set if and only if
|A1| 6= m− 1 and |A2| 6= n− 1.

Proof. We prove the proposition case by case.
Case 1: |A1| < m− 1 and |A2| < n− 1.
Then Ac = (X − A1) ∪ (Y − A2). For, each x ∈ Ac, f(x,Ac) = 2 − 0 = 2 and for each x ∈ A
f(x,Ac) = 2− 1 = 1. So, FC(Ac) = A.
Case 2: A = X ∪ Y .
We can see that FC(A) = A.
Case 3: |A1| = m and |A2| < n− 1.
Then as in the Case 1, we have FC(Ac) = A.
Case 4: |A1| = m− 1 and |A2| = n− 1.
Here |Ac| = 2 let it be {xm, yn} where xm ∈ X and yn ∈ Y . For each x ∈ A1, f(x,Ac) = 2− 1 = 1,
for each x ∈ A2, f(x,Ac) = 2− 1 = 1. f(xm, Ac) = f(yn, A

c) = 1− 0 = 1. So FC(Ac) = X ∪ Y .
Case 5: |A1| = m− 1 and |A2| < n− 1.
Let A1 = X \ {x1}. For each x ∈ A1, f(x,Ac) = 2− 1 = 1, for each x ∈ A2, f(x,Ac) = 2− 1 = 1.
f(x1, A

c) = 1−0 = 1 and for each x ∈ Y \A2, f(x,Ac) = 2−0 = 2. So FC(Ac) = A1∪A2∪{x1} =
X ∪A2.
Case 6: |A1| = m− 1 and |A2| = n.
Then, we FC(Ac) = X ∪ Y .
We can easily see that the cases 1 to 6, discusses the fair centers of all types of subsets of V . Hence
the proposition.

As a simple illustration of Proposition 4, we have an example which discuss the Case 1 of the
proposition.

Example 2. G = K5,4, with partitions X = {x1, x2, x3, x4, x5} and Y = {y1, y2, y3, y4}. By
choosing A1 = {x1, x2, x3}, A2 = {y1, y2}, Ac = {x4, x5, y3, y4}, we can see that FC(Ac) = A.
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Figure 3: K5,4

Now we consider the case when the graph is a wheel Wn. We first prove the case when n > 6.

Theorem 3. Let Wn, (n ≥ 6) be the wheel graph with vertex set {v1, . . . , vn−1, vn}, where vn is the
universal vertex. Let Cn−1 be the cycle induced by {v1, . . . , vn−1}. Then the fair sets of Wn are

1. {vi}, 1 ≤ i ≤ n,

2. {vi, vj} such that vi, vj ∈ V (Cn−1), dCn−1(vi, vj) = 2,

3. V (Wn),

4. All sets of the form A1 ∪ {vn} where A1 ⊂ V (Cn−1) and A1 is not an induced path of length
greater than n− 6.

Proof. We prove the theorem first for n > 6 and for the case n = 6, the proof is similar to the case
of n > 6, so we omit the proof when n = 6.
When n > 6:
We use the notation vi+k(or vi−k) for vi+k−(n−1)(or vi−k+(n−1)) when i + k > n − 1(or i − k < 1).
First, we prove that the four types of sets described in the theorem are indeed fair sets.

1. Let S = {vi−1, vn, vi+1}, 1 ≤ i ≤ n − 1. f(vi, S) = 0 and for all u other than vi we have
f(u, S) > 0 so that FC(S) = {vi}. For S = V , f(vn, S) = 1 and for all u other than vn we have
f(u, S) = 2, so in this case we can see that FC(S) = {vn}. Hence {vi}, 1 ≤ i ≤ n are all fair sets.

2. Let S = {vn, vi}, 1 ≤ i ≤ n−1. f(vi−1, S) = f(vi+1, S) = 0 and for all other u, f(u, S) > 0. Hence
FC(S) = {vi−1, vi+1}. In other words any {vi, vj} such that vi, vj ∈ V (Cn−1), dCn−1(vi, vj) = 2
is a fair set.

3. Let S = {vi, vi+1, vn}. f(vi, S) = f(vi+1, S) = f(vn, S) = 1 − 0 = 1. For all other u,
f(u, S) = 2− 1 = 1. Hence FC(S) = V .

4. Now let S ⊆ V be such that vn ∈ S and S contains atleast one pair of vertices vi and vj
such that dCn−1(vi, vj) > 2. Then for every u ∈ S such that u 6= vn, f(u, S) = 2 − 0 = 2,
f(vn, S) = 1− 0 = 1 and for every v /∈ S, f(v, S) = 2− 1 = 1. Hence FC(S) = Sc ∪ {vn}. This
gives us that for any A ⊆ V such that vn ∈ A and V (Cn−1) \ A is none of the following subsets
of V (Cn−1), namely

(a) {vi}, 1 ≤ i ≤ n− 1.

(b) {vi, vi+1}, 1 ≤ i ≤ n− 1.
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(c) {vi, vi+2}, 1 ≤ i ≤ n− 1.

(d) {vi, vi+1, vi+2}, 1 ≤ i ≤ n− 1

is a fair set.

The set A1 ∪{vn} where A1 is the compliment in V (Cn−1) of a set mentioned in 4c above, is the
fair center of {vi, vi+1, vi+2, vn}.

Therefore the only sets containing {vn} which have not been identified as fair sets are sets of the
type A1 ∪ {vn} where A1 is a path of length greater than n − 6. Now let A = A1 ∪ {vn} where
A1 ⊆ V (Cn−1) forms a path of length greater than n− 6. Assume there exists an S ⊆ V such that
FC(S) = A. If S ⊆ V (Cn−1) then f(vn, S) = 0 and it is impossible to have f(u, S) = 0 for every
u ∈ A1. Hence S cannot be a subset of V (Cn−1) or vn ∈ S. If S contains a vi and vj of Cn−1 so that
dCn−1(vi, vj) > 2 then FC(S) = V (Cn−1) \S ∪{vn}. So FC(S) = A implies V (Cn−1) \S = A1. We
have that vi and vj , two vertices such that dCn−1(vi, vj) > 2, does not belong to V (Cn−1)\S. By the
choice of A1 such two vertices cannot be simultaneously absent from A1. Hence V (Cn−1) \S 6= A1,
a contradiction. So assume S does not contain two vertices vi and vj such that dCn−1(vi, vj) > 2.
Hence S should be any one of the following:

a) {vi, vn}, 1 ≤ i ≤ n− 1.

b) {vi, vi+1, vn}, 1 ≤ i ≤ n− 1.

c) {vi, vi+2, vn}, 1 ≤ i ≤ n− 1.

d) {vi, vi+1, vi+2, vn}, 1 ≤ i ≤ n− 1

But we have already found out the fair centers of all these sets and none of them have A as its fair
center. Hence an A = A1 ∪ {vn} where A1 ⊆ V (Cn−1) forms a path of length greater than n− 6 is
not fair set. Now we have the following observations

A. For an S ⊂ V (Cn−1), vn ∈ FC(S)

B. If S contains vi and vj of Cn−1 where dCn−1(vi, vj) > 2 then vn ∈ FC(S)

C. Any A = A1∪{vn} is fair set if and only if A1 is not a path of length greater than n−6 in V (Cn−1).

D. For any S ⊆ V such that vn ∈ S and vi, vj ∈ S =⇒ dCn−1(vi, vj) ≤ 2, fair centers are sets of
any of the following forms.

i) {vi}

ii) {vi, vi+2}

iii) V (Wn)

iv) {v1, . . . vi, vi+2, . . . , vn−1, vn}, a set of type described in C.

Hence the only fair sets of Wn are those described in C and D above. Hence the theorem.

When n = 4, we can see that W4 = K4, so we prove the case when the graph is a wheel Wn for
n = 5, where we get a proposition, which is entirely different from the Theorem 3.
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Proposition 5. If G is W5 with V = {v1, v2, v3, v4, v5}, where v5 is adjacent to all other vertices and
v1v2v3v4v1 is the outer cycle, then the only fair sets of G are {v5}, {v1, v3}, {v2, v4}, {v1, v3, v5}, {v2, v4, v5}
and V .

Proof. Given a non empty vertex set S, let d1, d2, . . . dk be the distances of the vertex v1 from
the vertices of S where d1 ≤ d2 ≤ . . . ≤ dk. Then the distances of v3 from vertices of S are
2 − dk, 2 − dk−1, . . . , 2 − d1 where 2 − dk ≤ 2 − dk−1 ≤, . . . ,≤ 2 − d1. Hence f(v3, S) = dk − d1 =
2 − d1 − (2 − dk) = f(v1, S). Hence if A is any fair set, v1 ∈ A implies v3 ∈ A. Similarly v2 ∈ A
implies v4 ∈ A. Now f(vi, V ) = 2 for 1 ≤ i ≤ 4 and f(v5, V ) = 1. Hence FC(V ) = {v5}. Similarly
we can observe that FC({v5, v4}) = {v1, v3}, FC({v5, v3}) = {v2, v4}, FC({v1, v3}) = {v2, v4, v5},
FC({v2, v4}) = {v1, v3, v5} and FC({v1, v2, v5}) = V . Hence the fair sets of W5 are precisely those
described in the theorem.

Theorem 4. Let the graph G = C2m+1 be an odd cycle with vertex set V = {v1, . . . , v2m+1}. A ⊆ V
is a fair set if and only if a pair of consecutive vertices say, v1 and v2 is in A implies vm+2, the
vertex which is eccentric to both v1 and v2, is also in A.

Proof. Let A = FC(S) with v1, v2 ∈ A. Let min(v1, S) = dmin and max(v1, S) = dmax. Since
v1, v2 ∈ A, f(v1, S) = f(v2, S). We shall consider here two different cases.
Case 1: min(v2, S) = dmin + 1 and max(v2, S) = dmax + 1. Then there exists a vertex v ∈ S
such that d(v1, v) = dmax and d(v2, v) = dmax + 1. Then d(vm+2, v) = m − dmax. If there ex-
ists a vertex v′ ∈ S such that d(vm+2, v

′) < m − dmax then d(v′, v1) > dmax, a contradiction.
Hence min(vm+2, S) = d(vm+2, v). Similarly there exists a vertex u such that d(u, v1) = dmin

and d(u, v2) = dmin + 1. max(vm+2, S) = d(vm+2, u) = m − dmin. Therefore f(vm+2, S) =
m− dmin − (m− dmax) = dmax − dmin = f(v1, S) = f(v2, S). That is vm+2 ∈ A.

Case 2: min(v2, S) = dmin and max(v2, S) = dmax. Let u and u′ be such that min(v1, S) = d(v1, u)
and min(v2, S) = d(v2, u

′). max(vm+2, S) = m− d(v1, u) = m−min(v1, S) = m− dmin. Let v and
v′ be such that max(v1, S) = d(v1, v) and max(v2, S) = d(v2, v

′). If v = v′ then v = vm+2. In this
case min(vm+2, S) = 0. Therefore f(vm+2, S) = m − dmin = max(v1, S) −min(v1, S) = f(v1, S).
If v 6= v′, d(v2, v) = d(v1, v

′) = dmax − 1. Hence min(vm+2, S) = d(vm+2, v) = d(vm+2, v
′) =

m−(dmax−1) = m−dmax+1. Therefore f(vm+2, S) = m−dmin−(m−dmax+1) = dmax−dmin−1 <
f(v1, S) = f(v2, S). This contradicts the fact that v1, v2 ∈ FC(S) and so we rule out this possibility.
Hence in all the possible cases v1, v2 ∈ A⇒ vm+2 ∈ A.

Conversely, assume that A ⊆ V is such that for every pair of consecutive vertices vi, vi+1 in
A, vm+i+1 belong to A. Let v1, . . . vk, k > 1, be consecutive vertices belonging to A. Then
vm+2, vm+3, . . . , vm+k belong to A. With out loss of generality we may assume that

i) A does not contain any consecutive set of vertices other than the above two.

ii) vm+1 does not belong to A.

Now, construct the set S as follows

step I) If k = 3r or 3r + 1 for some integer r then add vertices v2, v5, . . . , v3r−1 of A to S. If
k = 3r + 2 then add to S the vertices v3, v6, . . . , v3r from A.

step II) Add to S the vertices vi,m + 2 ≤ i ≤ m + k of A, which are not an eccentric vertex of
any of the vertices in S.

step III) Add Ac to S.
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Let x ∈ V \A. Then x ∈ S and therefore min(x, S) = 0. Let y and z be the eccentric vertices of x
in G. Take note that yz is an edge. If {y, z} ⊆ Sc, then we have {y, z} ⊆ A. Since x is an eccentric
vertex of y and z, we have x ∈ A, which is not true. Hence either y or z belongs to S, and we have
max(x, S) = m, so that f(x, S) = m.
Let x ∈ A be such that both the neighbours of x do not belong to A. Then x /∈ S and neighbours of x
belong to S and min(x, S) = 1. Let x1 and x2 be the eccentric vertices of x. Then x1, x2 /∈ S implies
either x1, x2 ∈ {v1, . . . , vk} or x1, x2 ∈ {vm+2, . . . , vm+k}. In the former case x ∈ {vm+1, . . . , vm+k}
and in the latter case x ∈ {v1, . . . , vk} and this is not possible by the choice of x. Hence either
x1 or x2 belong to S. Hence max(x, S) = m. Therefore f(x, S) = m − 1. By the way of choice
of vertices vi, 1 ≤ i ≤ k, in S either min(vi, S) = 1 and max(vi, S) = m or min(vi, S) = 0 and
max(vi, S) = m − 1. Hence f(vi, S) = m − 1 for 1 ≤ i ≤ k. For m + 2 ≤ i ≤ m + k, vi /∈ S
implies eccentric of vi belong to S. Therefore in this case min(vi, S) = 1 and max(vi, S) = m or
f(vi, S) = m − 1. Now, for m + 2 ≤ i ≤ m + k, vi ∈ S implies min(vi, S) = 0. Now an eccentric
vertex of vi, m + 2 ≤ i ≤ m + k, belong to S implies vi /∈ S. Hence for vi ∈ S eccentric vertices of
vi /∈ S. Also there are no three consecutive vertices among vi’s, 1 ≤ i ≤ k, absent from S. Hence
max(vi, S) = m− 1 for m + 2 ≤ i ≤ m + k. Also the two eccentric vertices of vm+k+1, vk and vk+1

does not belong to S. Hence if vm+k+1 ∈ S, f(vm+k+1, S) = m − 1. Therefore for each vi ∈ A,
f(vi, S) = m− 1 and for each vi /∈ A, f(vi, S) = m. Hence FC(S) = A or A is a fair set.

We have an immediate corollary for the theorem 4 and the proof follows from the proof of the
theorem 4.

Corollary 1. If G is an odd cycle, and U ⊂ V (G) contains no adjacent vertices then U will be a
fair set of G.

Corollary 2. The only connected fair sets of an odd cycle C2m+1 are singleton (vertex) sets and
the whole vertex set V .

Proof. By the Theorem 4, {vi}, 1 ≤ i ≤ 2m + 1 and V are fair sets. Now let A ⊆ V be a connected
fair set of C2m+1 which contains more than one element. Let vi, vj ∈ A. Then there exists a
path connecting vi and vj in A with out loss of generality we may assume that it is vi, vi+1, . . . vj .
vi, vi+1 ∈ A implies vm+i+1 ∈ A. Therefore a path connecting vi and vm+i+1 lies in A. Since this
path contains m+2 consecutive vertices by the theorem we can conclude that A should also contain
the other m− 1 vertices or A = V .

4.1 Fair sets of Symmetric Even graphs

A graph G is called even if for every u ∈ V (G) there exists a v ∈ V (G) such that d(u, v) = diam(G).
An even graph G is symmetric if for every u ∈ V (G) there exists a v ∈ V (G) such that I(u, v) = G,
see Gobel et.al [12]. Hypercubes, even cycles etc are well known examples of symmetric even graphs.
From the definition of symmetric even graphs it is clear that they are unique eccentric vertex graphs
and every vertex of such a graph is an eccentric vertex. For more examples of symmetric even
graphs and one way of constructing such graphs, see, Gobel et.al [12]. We first write the following
proposition.

Proposition 6 (Proposition 4 of [12]). Let u and v be vertices of a symmetric even graph G of
diameter d. If v ∈ Ni(u) and v̄ ∈ Nj(u), then i + j = d.

Next we identify the fair sets of symmetric even graphs.
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Theorem 5. Let G be a symmetric even graph. An A ⊆ V is a fair set if and only if a vertex
x ∈ A⇒ x̄ ∈ A.

Proof. Let diam(G) = d. Assume A ⊆ V is a fair set with FC(S) = A where S = {v1, . . . , vk}
and and let x ∈ A. Let d(x, vi) = di, 1 ≤ i ≤ k. With out loss of generality we may assume that
d1 ≤ d2 ≤ . . . ≤ dk. Then f(x, S) = dk − d1. By proposition 6, d(x, vi) = di ⇒ d(x̄, vi) = d − di.
Therefore f(x̄, S) = d− d1 − (d− dk) = dk − d1. Hence x ∈ A⇒ x̄ ∈ A.
Conversely, assume that A ⊆ V is such that x ∈ A⇒ x̄ ∈ A. To prove A = FC(S) for some S ⊆ V .
Let A = {x1, . . . , xm, x̄1, . . . , x̄m}. Let S1 = S \ {x1, . . . , xm}. Suppose for every y ∈ v either y ∈ S1

or some neighbour of y is in S1. Then for each xi, i ≤ i ≤ m, f(xi, S) = d(xi, x̄i)− 1 = d− 1(Here
the minimum distance is 1 since xi /∈ S and some neighbour of xi is in S). For each x̄i, 1 ≤ i ≤ m,
f(x̄i, S) = d−1−0 = d−1(Here the maximum distance is d−1 since xi /∈ S and some neighbour of
xi is in S. The minimum distance is 0 since x̄i ∈ S). Now, for a y different from xi, x̄i, 1 ≤ i ≤ m,
min(y, S) = 0 since y ∈ S and max(y, S) = d since ȳ ∈ S. Therefore f(y, S) = d− 0 = d. In other
words FC(S) = A. Now, assume that there exists vertices in V such that neither those vertices nor
any of their adjacent vertices are in S. Assume that x1 is one such vertex. Then min(x1, S) > 1 and
max(x1, S) = d. Therefore f(x1, S) = max(x1, S)−min(x1, S) ≤ d− 2. Let xk be vertex such that
a neighbour of xk is in S. Then min(xk, S) = 1 and max(xk, S) = d and therefore f(xk, S) = d− 1.
Therefore FC(S) 6= A. Let S1 = {x1}∪S \{x̄1}. Now, min(x1, S1) = 0 and max(x1, S1) = d−1. If
for every v ∈ V either v ∈ S1 or some neighbour of v is in S1 then FC(S1) = A. Otherwise continue
the above process until we get an Si such that FC(Si) = A and that proves the theorem.

Corollary 3. The only connected fair set of an even cycle C2m is the whole vertex set V .

Proof. Let A be a connected fair set of C2m. Let u ∈ A. Then by the above theorem ū ∈ A. Since
A is connected atleast one of the paths connecting u and ū should be in A. Again by the theorem
the eccentric vertices of the vertices of this path should also be in A. Hence A = V .

5 Fair sets and cartesian product of graphs

Next we have an expression for the fair center of product sets in the cartesian product of two graphs

Theorem 6. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. Let S1 ⊆ V1 and S2 ⊆ V2. Then
FC(S1 × S2) = FC(S1) × FC(S2) where FC(S1 × S2) is the fair center of S1 × S2 in the graph
G12G2, FC(S1) is the fair center of S1 in the graph G1 and FC(S2) is the fair center of S2 in the
graph G2.

Proof. Let (x, y) ∈ V1×V2, S1 = {u11, u12, . . . , u1l} and S2 = {u21, . . . , u2m} where u11 is the vertex
nearest to x and u1l is the vertex farthest from x and u21 is the vertex nearest to y and u2m is the
vertex farthest from y. For (u1i, u2j) ∈ S1 × S2

d((x, y), (u11, u21)) = d(x, u11) + d(y, u21)

≤ d(x, u1i) + d(y, u2j)(= d((x, y), (u1i, u2j)))

≤ d(x, u1l) + d(y, u2m)

= d((x, y), (u1l, u2m))

That is, if u11 is the vertex nearest to x in S1 ⊆ V1 , u21 is the vertex nearest to y in S2 ⊆ V2,
u1l is the vertex farthest from x in S1 ⊆ V1 and u2m is the vertex farthest from y in S2 ⊆ V2 then
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(u11, u21) is the vertex nearest to (x, y) in S1 × S2 and (u1,l, u2,m) is the vertex farthest from (x, y)
in S1 × S2

fG12G2((x, y), S1 × S2) = d((x, y), (u1l, u2m))− d((x, y), (u11, u21))

= d(x, u1l) + d(y, u2m)− d(x, u11)− d(y, u21)

= d(x, u1l)− d(x, u11 + d(y, u2m − d(y, u21)

= fG1(x, S1) + fG2(x, S2)

Now, let u1 ∈ FC(S1) where S1 ⊆ V1 and let u2 ∈ FC(S2) where S2 ⊆ V2. That is fG1(u1, S1) ≤
fG1(x, S1), ∀x ∈ V1 and fG2(u2, S2) ≤ fG2(y, S2), ∀y ∈ V2. Therefore fG1(u1, S1) + fG2(u2, S2) ≤
fG2(x, S1) + fG2(y, S2). So, fG12G2((u1, u2), S1 × S2) ≤ fG12G2((x, y), S1 × S2), ∀(x, y) ∈ V1 × V2.
Hence (u1, u2) ∈ FC(S1 × S2) in G12G2.
Conversely, assume that (u1, u2) ∈ FC(S1 × S2) in G12G2 where S1 ⊆ V1 and S2 ⊆ V2. That
is, fG12G2((u1, u2), S1 × S2) ≤ fG12G2((x, y), S1 × S2), where S1 ⊆ V1 and S2 ⊆ V2, ∀x ∈ V1,
y ∈ V2. Therefore, fG1(u1, S1) + fG2(u2, S2) ≤ fG1(x, S1) + fG2(y, S2), ∀x ∈ V1 and y ∈ V2 or
fG1(u1, S1) + fG2(u2, S2) ≤ fG1(x, S1) + fG2(u2, S2), ∀x ∈ V1. That is, fG1(u1, S1) ≤ fG1(x, S1),
∀x ∈ V1. Hence, u1 ∈ FC(S1) in G1. Similarly u2 ∈ FC(S2) in G2. Thus, FC(S1 × S2) =
FC(S1)× FC(S2).

Corollary 4. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. Then the subgraph induced by
FC(S1×S2), where S1 ⊆ V1 and S2 ⊆ V2 is connected in G12G2 if and only if the subgraph induced
by FC(S1) is connected in G1 and the subgraph induced by FC(S2)is connected in G2.

6 Conclusion

In this paper we could identify the fair sets of various classes of graphs such as complete, complete
bipartite, odd cycle, wheel and symmetric even graphs. Identifying the fair sets of more classes of
graphs shall be more interesting and challenging. We also proved some partial results in the case
of Cartesian products. It will be interesting to find an expression for fair center of any set in the
product graphs in terms of the fair centers in the factor graphs. It is also natural to study the
behavior of fair centers in relation to other graph products. We identified block graphs as the only
chordal graphs with connected fair sets. We could not find graphs other than block graphs, all of
whose fair sets are connected. We conclude by posing the following conjecture.

Conjecture 1. A graph G is a block graph if and only if the induced subgraph of every fair set of
G is connected.

References

[1] Kannan Balakrishnan, Bostjan Bresar, Manoj Changat, Sandi Klavžar, Matjaz Kovše, and
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