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Abstract

There are several centrality measures that have been introduced and studied for real world
networks. They account for the different vertex characteristics that permit them to be ranked
in order of importance in the network. Betweenness centrality is a measure of the influence
of a vertex over the flow of information between every pair of vertices under the assumption
that information primarily flows over the shortest path between them. In this paper we present
betweenness centrality of some important classes of graphs.

Keywords: betweenness centrality measures, perfect matching, dual graph, interval regular,
branch of a tree, antipodal vertices, tearing.

1 Introduction

Betweenness centrality plays an important role in analysis of social networks [21, 22], computer
networks [16] and many other types of network data models [7, 11, 15, 17, 19, 23].

In the case of communication networks the distance from other units is not the only important
property of a unit. More important is which units lie on the shortest paths (geodesics) among
pairs of other units. Such units have control over the flow of information in the network. Between-
ness centrality is useful as a measure of the potential of a vertex for control of communication.
Betweennes centrality [3, 4, 5, 8, 12] indicates the betweenness of a vertex in a network and it
measures the extent to which a vertex lies on the shortest paths between pairs of other vertices. In
many real-world situations it has quite a significant role.

Determining betweenness is simple and straightforward when only one geodesic connects each
pair of vertices, where the intermediate vertices can completely control communication between
pairs of others. But when there are several geodesics connecting a pair of vertices, the situation
becomes more complicated and the control of the intermediate vertices get fractionated.

∗Under the Faculty Development Program of the University Grants Commission, Government of India.
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2 Background

The concept of betweenness centrality was first introduced by Bavelas in 1948 [1]. The importance
of the concept of vertex centrality is in the potential of a vertex for control of information flow in
the network. Positions are viewed as structurally central to the degree that they stand between
others and can therefore facilitate, impede or bias the transmission of messages. Linton C. Freeman
in his papers [10, 11] classified betweenness centrality into three. The three measures includes two
indexes of vertex centrality - one based on counts and one on proportions - and one index of overall
network or graph centralization.

2.1 Betweenness Centrality of a Vertex

Betweenness centrality CB(v) for a vertex v is defined as

CB(v) =
∑

s 6=v 6=t

σst(v)

σst

where σst is the number of shortest paths with vertices s and t as their end vertices, while σst(v)
is the number of those shortest paths that include vertex v [10].High centrality scores indicate that
a vertex lies on a considerable fraction of shortest paths connecting pairs of vertices.

• Every pair of vertices in a connected graph provides a value lying in [0,1] to the betweenness
centrality of all other vertices.

• If there is only one geodesic joining a particular pair of vertices, then that pair provides a
betweenness centrality 1 to each of its intermediate vertices and zero to all other vertices. For
example in a path graph, a pair of vertices provides a betweenness centrality 1 to each of its
interior vertices and zero to the exterior vertices. A pair of adjacent vertices always provides
zero to all others.

• If there are k geodesics of length 2 joining a pair of vertices, then that pair of vertices provides
a betweenness centrality 1

k
to each of the intermediate vertices.

Freeman [10] proved that the maximum value taken by CB(v) is achieved only by the central vertex
in a star as the central vertex lies on the geodesic (which is unique) joining every pair of other ver-
tices. In a star Sn with n vertices, the betweenness centrality of the central vertex is therefore the
number of such geodesics which is

(

n−1
2

)

. The betweenness centrality of each pendant vertex is zero
since no pendant vertex lies in between any geodesic. Again it can be seen that the betweenness
centrality of any vertex in a complete graph Kn is zero since no vertex lies in between any geodesic
as every geodesic is of length 1.

2.2 Relative Betweenness Centrality

The betweenness centrality increases with the number of vertices in the network, so a normalized
version is often considered with the centrality values scaled to between 0 and 1. Betweenness
centrality can be normalized by dividing CB(v) by its maximum value. Among all graphs of n
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vertices the central vertex of a star graph Sn has the maximum value which is
(

n−1
2

)

. The relative
betweenness centrality is therefore defined as

CB
′(v) =

CB(v)

MaxCB(v)
=

2CB(v)

(n− 1)(n − 2)
0 ≤ CB

′

(v) ≤ 1

2.3 Betweenness Centrality of a Graph

The betweenness centrality of a graph measures the tendency of a single vertex to be more central
than all other vertices in the graph. It is based on differences between the centrality of the most
central vertex and that of all others. Freeman [10] defined the betweenness centrality of a graph
as the average difference between the measures of centrality of the most central vertex and that of
all other vertices.

The betweenness centrality of a graph G is defined as

CB(G) =

∑n
i=1[CB(v

∗)−CB(vi)]

Max
∑n

i=1[CB(v∗)−CB(vi)])

where CB(v
∗) is the largest value of CB(vi) for any vertex vi in the given graph G and

Max
∑n

i=1[CB(v
∗)−CB(vi)] is the maximum possible sum of differences in centrality for any graph

of n vertices which occur in star with the value n − 1 times CB(v) of the central vertex. That is,
(n− 1)

(

n−1
2

)

.
Therefore the betweenness centrality of G is defined as

CB(G) =
2
∑n

i=1[CB(v
∗)− CB(vi)]

(n− 1)2(n− 2)
or CB(G) =

∑n
i=1[CB

′(v∗)− CB
′(vi)]

(n− 1)

The index, CB(G), determines the degree to which CB(v
∗) exceeds the centrality of all other vertices

in G. Since CB(G) is the ratio of an observed sum of differences to its maximum value, it will vary
between 0 and 1. CB(G) = 0 if and only if all CB(vi) are equal, and CB(G) = 1 if and only if one
vertex v∗, completely dominates the network with respect to centrality. Freeman showed that all
of these measures agree in assigning the highest centrality index to the star graph and the lowest
to the complete graph.

G CB(v) CB
′(v) CB(G)

Sn







(

n− 1

2

)

for central vertex

0 for other vertices

{

1 for central vertex

0 for other vertices
1

Kn 0 0 0

Table 1: Graphs showing extreme betweenness

In this paper we present the betweenness centrality measures in some important classes of
graphs.

3



3 Betweenness centrality of some classes of graphs

3.1 Betweenness centrality of vertices in wheels

Theorem 3.1. The betweenness centrality of a vertex v in a wheel graph Wn, n > 5 is given by

CB(v) =











(n− 1)(n − 5)

2
if v is the central vertex

1

2
otherwise

Proof. In the wheel graph Wn the central vertex is adjacent to each vertex of the cycle Cn−1. When
n > 5 consider the central vertex. On Cn−1 each pair of adjacent vertices contributes 0, each pair
of alternate vertices contributes 1

2 and all other pairs contribute centrality 1 to the central vertex.
Since there are n− 1 vertices on Cn−1, there exists n− 1 adjacent pairs, n− 1 alternate pairs and
(

n−1
2

)

− 2(n − 1) = (n−1)(n−6)
2 other pairs. Therefore the central vertex has betweenness centrality

1
2(n − 1) + 1 (n−1)(n−6)

2 = (n−1)(n−5)
2 . Now for any vertex on Cn−1, there are two geodesics joining

its adjacent vertices on Cn−1, one of which passing through it. Therefore its betweenness centrality
is 1

2 .

Note
It can be seen easily that CB(v) = 0 for every vertex v in W4 and

CB(v) =











2

3
if v is the central vertex

1

3
otherwise

in W5.

The relative centrality and graph centrality are as follows

CB
′(v) =

2CB(v)

(n− 1)(n − 2)
=















(n− 5)

n− 2
if v is the central vertex

1

(n− 1)(n − 2)
otherwise

CB(Wn) =

∑n
i=1[CB

′(v∗)− CB
′(vi)]

(n− 1)
=

n2 − 6n+ 4

(n− 1)(n − 2)

3.2 Betweenness centrality of vertices in the graph Kn − e

Theorem 3.2. Let Kn be a complete graph on n vertices and e = (vi, vj) be an edge of it. Then
the betweenness centrality of vertices in Kn − e is given by

CB(v) =







1

n− 2
if v 6= vi, vj

0 otherwise
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Proof. Suppose the edge (vi, vj) is removed from Kn. Now vi and vj can be joined by means of any
of the remaining n − 2 vertices. Thus there are n − 2 geodesics joining vi and vj each containing
exactly one vertex as intermediary. This provides a betweenness centrality 1

n−2 to each of the
n− 2 vertices. Again vi and vj do not lie in between any geodesics and therefore their betweenness
centralities zero.

The relative centrality and graph centrality are as follows

CB
′(v) =

2CB(v)

(n− 1)(n − 2)
=







2

(n− 1)(n− 2)2
v 6= vi, vj

0 otherwise

CB(G) =

∑n
i=1[CB

′(v∗)− CB
′(vi)]

(n− 1)
=

4

(n− 1)2(n− 2)2

3.3 Betweenness centrality of vertices in complete bipartite graphs

Theorem 3.3. The betweenness centrality of a vertex in a complete bipartite graph Km,n is given
by

CB(v) =















1

m

(

n

2

)

if deg(v)=n

1

n

(

m

2

)

if deg(v)=m

Proof. Consider a complete bipartite graphKm,n with a bipartition {U,W} where U = {u1, u2, ..., um}
and W = {w1, w2, . . . , wn}. The distance between any two vertices in U (or in W ) is 2. Consider
a vertex u ∈ U . Now any pair of vertices in W contributes a betweenness centrality 1

m
to u. Since

there are
(

n
2

)

pairs of vertices in W . CB(u) =
1
m

(

n
2

)

. In a similar way it can be shown that for any
vertex w in W , CB(w) =

1
n

(

m
2

)

.

The relative centrality and graph centrality are as follows

CB
′(v) =

2CB(v)

(m+ n− 1)(m+ n− 2)
=















2

(m+ n− 1)(m + n− 2)
×

1

m

(

n

2

)

if deg(v)=n

2

(m+ n− 1)(m + n− 2)
×

1

n

(

m

2

)

if deg(v)=m

CB(Km,n) =

∑n
i=1[CB

′(v∗)−CB
′(vi)]

(m+ n− 1)
=



















m3 − n3 − (m2 − n2)

n(m+ n− 1)2(m+ n− 2)
if m > n

n2(n− 1)−m2(m− 1)

m(m+ n− 1)2(m+ n− 2)
if n > m
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3.4 Betweenness centrality of vertices in cocktail party graphs

b
v1

bv2

bv3

b

v4

b v5

b v6

Figure 3.1: Cocktail party graph CP(3)

The cocktail party graph CP (n) [6] is a unique regular graph of degree 2n − 2 on 2n vertices. It
is obtained from K2n by deleting a perfect matching. The cocktail party graph of order n, is a
complete n-partite graph with 2 vertices in each partition set. It is the graph complement of the
ladder rung graph Ln′ which is the graph union of n copies of the path graph P2 and the dual graph
of the hypercube Qn [2].

Theorem 3.4. The betweenness centrality of each vertex of a cocktail party graph of order 2n is
1
2 .

Proof. Let the cocktail party graph CP (n) be obtained from the complete graph K2n with vertices
{v1, . . . , vn, vn+1, . . . , v2n} by deleting a perfect matching {(v1, vn+1), (v2, vn+2), ..., (vn, v2n}. Now
for each pair (vi, vn+i) there is a geodesic path of length 2 passing through each of the other 2n− 2
vertices. Thus for any particular vertex, there are n − 1 pairs of vertices of the above matching
not containing that vertex giving a betweenness centrality 1

2n−2 to that vertex. Therefore the

betweenness centrality of any vertex is given by n−1
2n−2 = 1

2 .

The relative centrality and graph centrality are as follows

CB
′(v) =

2CB(v)

(2n − 1)(2n − 2)
=

1

(2n− 1)(2n − 2)
,

CB(G) = 0

3.5 Betweenness centrality of vertices in crown graphs

The crown graph [2] is the unique n − 1 regular graph with 2n vertices obtained from a complete
bipartite graph Kn,n by deleting a perfect matching. A crown graph on 2n vertices can be viewed
as an undirected graph with two sets of vertices ui and vi and with an edge from ui to vj whenever
i 6= j. It is the graph complement of the ladder graph L2n. The crown graph is a distance-transitive
graph.

Theorem 3.5. The betweenness centrality of each vertex of a crown graph of order 2n is n+1
2 .
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b
u1

b
u2

b
u3

b
u4

b

v1
b

v2
b

v3
b

v4

Figure 3.2: Crown graph with 8-vertices

Proof. Let the crown graph be the complete bipartite graphKn,n with vertices {u1, . . . , un, v1, . . . , vn}
minus a perfect matching {(u1, v1), (u2, v2), ..., (un, vn)}. Consider any vertex say u1. Now for each
(ui, vi), i 6= 1 each pair other than (u1, v1) there are n − 2 paths of length 3 passing through u1
out of (n − 1)(n − 2) paths joining ui and vi. Since there are n − 1 such pairs, it gives v1 a be-
tweenness centrality (n − 1) × n−2

(n−1)(n−2) = 1. Again for each pair from {v2, v3, v4, ..., vn} there
exists exactly one path passing through v1 out of n− 2 paths. It gives the betweenness centrality
n−2
n−2 +

n−3
n−2 + ...+ 1

n−2 = 1
n−2 [(n− 2)+ (n− 3)+ ...+1] = n−1

2 . Therefore the betweenness centrality

of v1 is given by 1+ n−1
2 = n+1

2 . Since the graph is vertex transitive, the betweenness centrality of
any vertex is given by n+1

2 .

The relative centrality and graph centrality are as follows

CB
′(v) =

2CB(v)

(2n − 1)(2n − 2)
=

n+ 1

(2n− 1)(2n − 2)
,

CB(G) = 0

3.6 Betweenness centrality of vertices in paths

Theorem 3.6. The betweenness centrality of any vertex in a path graph is the product of the
number of vertices on either side of that vertex in the path.

b

v1
b

v2
b

v3
b

v4
b

vk−1

b

vk
b

vk+1

b

vn−1

b

vn

Figure 3.3: Path graph Pn

Proof. Consider a path graph Pn of n vertices {v1, v2, ..., vn}. Take a vertex vk in Pn. Then there
are k − 1 vertices on one side and n − k vertices on the other side of vk. Consequently there are
(k − 1)× (n− k) number of geodesic paths containing vk. Hence CB(vk) = (k − 1)(n − k).

Note that by symmetry, vertices at equal distance away from both the ends have the same
centrality and it is maximum at the central vertex and minimum at the end vertex.

Max CB(vk) =















n(n− 2)

4
when n is even

(n− 1)2

4
when n is odd
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Relative centrality of any vertex vk is given by

CB
′(vk) =

2CB(vk)

(n− 1)(n − 2)
=

2(k − 1)n − k)

(n− 1)(n − 2)

Corollary 3.1. Graph centrality of Pn is given by

CB(Pn) =















n(n+ 1)

6(n− 1)(n − 2)
if n is odd

n(n+ 2)

6(n− 1)2
if n is even

Proof. When n is even, by definition

CB(Pn) =
2

(n− 1)2(n− 2)

n
∑

i=1

[CB(v
∗)− CB(vi)]

=
4

(n− 1)2(n− 2)

{[n(n− 2)

4
− 0

]

+
[n(n− 2)

4
− 1.(n − 2)

]

+ . . . +
[n(n− 2)

4
−

(n− 4

2

)(

n−
n− 2

2

)

]}

=
4

(n− 1)2(n− 2)

{[n(n− 2)

4
×

n− 2

2

]

−
[

1(n − 2) + 2(n − 3) + · · ·+
(n− 4

2

)(

n−
n− 2

2

)

]}

=
4

(n− 1)2(n− 2)

{n(n− 2)2

8
− n

n−4

2
∑

k=1

k +

n−4

2
∑

k=1

k(k + 1)
}

=
4

(n− 1)2(n− 2)

{n(n− 2)2

8
−

n(n− 2)(n − 4)

8
+

(n− 2)(n − 4)

8
+

(n− 2)(n − 3)(n − 4)

24

}

=
n(n+ 2)

6(n− 1)2

When n is odd, by definition

CB(Pn) =
2

(n− 1)2(n− 2)

n
∑

i=1

[CB(v
∗)− CB(vi)]

=
4

(n− 1)2(n− 2)

{[(n − 1)2

4
− 0

]

+
[(n− 1)2

4
− 1.(n− 2)

]

+ . . .+
[(n− 1)2

4
−
(n− 3

2

)(

n−
n− 1

2

)

]}

=
4

(n− 1)2(n− 2)

{[(n − 1)2

4
×

n− 1

2

]

−
[(

1(n − 2) + 2(n − 3) + · · ·+
(n− 3

2

)(

n−
n− 1

2

)

]}

=
4

(n− 1)2(n− 2)

{(n − 1)3

8
− n

n−3

2
∑

k=1

k +

n−3

2
∑

k=1

k(k + 1)
}

=
4

(n− 1)2(n− 2)

{(n − 1)3

8
−

n(n− 1)(n − 3)

8
+

(n− 1)(n + 1)(n − 3)

24

}

=
n(n+ 1)

6(n− 1)(n − 2)
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3.7 Betweenness centrality of vertices in ladder graphs

The ladder graph Ln [14, 20] is a planar undirected graph with 2n vertices and n+2(n− 1) edges.
It can be defined as the cartesian product P2 × Pn.

b
v1

b
v2

b
v3

b
v4

b
v5

b

v6
b

v7
b

v8
b

v9
b

v10

Figure 3.4: Ladder graph L5

Theorem 3.7. The betweenness centrality of a vertex in a Ladder graph Ln is given by

CB(vk) = (k − 1)(n − k) +

k−1
∑

j=0

n−k
∑

i=1

k − j

k − j + i
+

k−2
∑

j=0

n−k
∑

i=0

i+ 1

k − j + i
, 1 ≤ k ≤ n

b
v1

b
v2

b
v3

b
vk−1

b
vk

b
vk+1

b
vn−2

b
vn−1

b
vn

b

vn+1

b

vn+2

b

vn+3

b

vn+k−1

b

vn+k

b

vn+k+1

b

v2n−2

b

v2n−1

b

v2n

Figure 3.5: Ladder graph Ln

Proof. By symmetry, let vk be any vertex such that 1 ≤ k ≤ n+1
2 . Consider the paths (in fig

3.5) from upper left vertices {v1, . . . , vk−1} to upper right vertices {vk+1, . . . , vn} which gives the
betweenness centrality

(k − 1)(n − k) (1)

Now consider the paths from lower left vertices {vn+1, . . . , vn+k} to the upper right vertices {vk+1, . . . , vn}
of vk. It gives the betweenness centrality

k

{

1

k + 1
+

1

k + 2
+ · · ·+

1

n

}

+(k−1)

{

1

k
+

1

k + 1
+ · · ·+

1

n− 1

}

+· · ·+

{

1

2
+

1

3
+ · · ·+

1

n− (k − 1)

}

=

k−1
∑

j=0

n−k
∑

i=1

k − j

k − j + i
(2)

9



Consider the paths from upper left vertices {v1, . . . , vk−1} to the lower right vertices {vn+k, . . . , v2n}
of vk. It gives the betweenness centrality
{

1

k
+

2

k + 1
+ · · ·+

n− (k − 1)

n

}

+

{

1

k − 1
+

2

k
+ · · ·+

n− (k − 1)

n− 1

}

+· · ·+

{

1

2
+

2

3
+ · · ·+

n− (k − 1)

n− (k − 2)

}

=

k−2
∑

j=0

n−k
∑

i=0

i+ 1

k − j + i
(3)

The above three equations when combined get the result.

3.8 Betweenness centrality of vertices in trees

In a tree, there is exactly one path between any two vertices. Therefore the betweenness cen-
trality of a vertex is the number of paths passing through that vertex. A branch at a vertex v of
a tree T is a maximal subtree containing v as an end vertex. The number of branches at v is deg(v).

Theorem 3.8. The betweenness centrality CB(v) of a vertex v in a tree T is given by

C(n1, n2, . . . , nk) =
∑

i<j

ninj

where the arguments ni denotes the number of vertices of the branches at v excluding v, taken in
any order.

Proof. Consider a vertex v in a tree T . Let there are k branches with number of vertices n1, n2, . . . , nk

excluding v. The betweenness centrality of v in T is the total number of paths passing through v.
Since all the branches have only one vertex v in common, excluding v, every path joining a pair
of vertices of different branches passes through v. Thus the total number of such pairs gives the
betweenness centrality of v. Hence C =

∑

i<j ninj

Example 1. Consider the tree given below

b

v1
b

v2
b

v3
b

v4

bv5

bv6

v5

b v7

Figure 3.6: A tree with 7 vertices

Here

CB(v1) = CB(v4) = CB(v6) = CB(v7) = C(6) = 0
CB(v2) = C(1, 3, 2) = 11
CB(v3) = C(5, 1) = 5
CB(v5) = C(1, 1, 4) = 9
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Example 2. The following table gives the possible values for the betweenness centrality of a vertex
in a tree of 9 vertices.

We consider the different possible combinations of the arguments in C so that the sum of argu-
ments is 8.

No.of args. Possible combinations Values

8 C(1, 1, 1, 1, 1, 1, 1, 1) 28

7 C(2, 1, 1, 1, 1, 1, 1) 27

6 C(2, 2, 1, 1, 1, 1) 26
C(3, 1, 1, 1, 1, 1) 25

5 C(2, 2, 2, 1, 1) 25
C(3, 2, 1, 1, 1) 24
C(4, 1, 1, 1, 1) 22

4 C(2, 2, 2, 2) 24
C(3, 2, 2, 1) 23
C(3, 3, 1, 1) 22
C(5, 1, 1, 1) 18
C(4, 2, 1, 1) 21

3 C(3, 3, 2) 21
C(4, 2, 2) 20
C(4, 3, 1) 19
C(5, 2, 1) 17
C(6, 1, 1) 13

2 C(4, 4) 16
C(5, 3) 15
C(6, 2) 12
C(7, 1) 7

1 C(8) 0

Table 2: Possible values for betweenness centrality in a tree of 9 vertices

3.9 Betweenness centrality of vertices in cycles

Theorem 3.9. The betweenness centrality of a vertex in a cycle Cn is given by

CB(v) =















(n− 2)2

8
if n is even

(n− 1)(n − 3)

8
if n is odd

Proof. Case1: When n is even

11



bv1

b
v2

b
v3

b
v4

b
v5

b
vk−3

b
vk−2

b
vk−1

b
vk

b vk+1

b

v2k
b

v2k−1

b
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Figure 3.7: Even Cycle with 2k vertices

Let n = 2k, k ∈ Z
+ and Cn = (v1, v2, ..., v2k) be the given cycle. Consider a vertex v1. Then

vk+1 is its antipodal vertex and there is no geodesic path from vk+1 to any other vertex passing
through v1. Hence we omit the pair (v1, vk+1). Consider other pairs of antipodal vertices (vi, vk+i)
for i = 2, 3, . . . , k. For each pair of these antipodal vertices there exists two paths of the same
length k and one of them contains v1. Thus each pair contributes 1

2 to the centrality of v1 and
which gives a total of 1

2(k − 1). Now consider all paths of length less than k containing v1. There
are k − i paths joining vi to vertices from v2k to vk+i+1 passing through v1 for i = 2, 3, . . . , k − 1

and each contributes centrality 1 to v1 giving a total
∑k−1

i=2 (k − i) = (k−1)(k−2)
2 . Therefore the

betweenness centrality of v1 is 1
2(k − 1) + (k−1)(k−2)

2 = 1
2 (k − 1)2 = 1

8(n − 2)2. Since Cn is vertex
transitive, the betweenness centrality of any vertex is given by 1

8(n− 2)2.

Case2: When n is odd

bv1

b
v2

b
v3

b
v4

b
v5

b
vk−2

b
vk−1

b
vk

b
vk+1

b

v2k+1

b

v2k
b

v2k−1

b

v2k−2

b

vk+5

b

vk+4

b

vk+3

b

vk+2

Figure 3.8: Odd Cycle with 2k+1 vertices

Let n = 2k + 1, k ∈ Z
+ and Cn = (v1, v2, ..., v2k+1) be the given cycle. Consider a vertex v1.

Then vk+1 and vk+2 are its antipodal vertices at a distance k from v1 and there is no geodesic path
from the vertex vk+1 and vk+2 to any other vertex passing through v1. Hence we omit v1 and the pair
(vk+1, vk+2). Now consider paths of length ≤ k passing through v1. There are k+1−i paths joining
vi to vertices from v2k+1 to vk+1+iis a geodesic path through v1 giving a betweenness centrality
1 to v1. Consider paths from vi to the vertices v2k+1, v2k, . . . , vk+i+1 passing through v1 for each

i = 2, 3, . . . , k. Therefore the betweenness centrality of v1 is
∑k

i=2(k+1− i) = k(k−1)
2 = (n−1)(n−3)

8 .

Since Cn is vertex transitive, the betweenness centrality of any vertex is given by (n−1)(n−3)
8 .

The relative centrality and graph centrality are as follows
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CB
′(v) =

CB(v)

MaxCB(v)
=

2CB(v)

(n− 1)(n − 2)
=















n− 2

4(n − 1)
if n is even

n− 3

4(n − 2)
if n is odd

CB(Cn) = 0

3.10 Betweenness centrality of vertices in circular ladder graphs CLn

Figure 3.9: Circular Ladder

The circular ladder graph CLn consists of two concentric n-cycles in which each of the n corre-
sponding vertices is joined by an edge. It is a 3-regular simple graph isomorphic to the cartesian
product K2 × Cn.

Theorem 3.10. The betweenness centrality of a vertex in a circular ladder CLn is given by

CB(v) =















(n− 1)2 + 1

4
when n is even

(n− 1)2

4
when n is odd

Proof. Case1: When n is even
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Figure 3.10: Circular Ladder CL2k

Let n = 2k, k ∈ Z
+. C2k = (u1, u2, ..., u2k) be the outer cycle and C ′

2k = (v1, v2, ..., v2k) be
the inner cycle. Consider any vertex say u1 in C2k. Then its betweenness centrality as a vertex

in C2k is (k−1)2

2 . Now the geodesics from outer vertices ui to the inner vertices v1, v2k, . . . , vk+i

13



for i = 2, . . . , k (Fig 3.10) and from u2k+2−i to v1, v2, . . . , vk+2−i for i = 2, . . . , k by symmetry,
contribute to u1 the betweenness centrality

2
k

∑

i=2

(1

i
+

2

i+ 1
+· · ·+

k + 1− i

k
+
k + 2− i

2k + 2

)

= 2
(1

2
+
1 + 2

3
+· · ·+

1 + 2 + · · ·+ k − 1

k
+
2 + 3 + · · ·+ k

2k + 2

)

= 2

k
∑

p=2

(1 + 2 + · · ·+ p− 1)

p
+

k(k + 1)− 2

2(k + 1)
= 2

k
∑

p=2

p− 1

2
+

k(k + 1)− 2

2(k + 1)
=

k2

2
−

1

k + 1

Again the pair (uk+1, v1) contributes to u1 the betweenness centrality
2

2k+2 . Therefore the between-
ness centrality of u1 is given as

CB(u1) =
(k − 1)2

2
+

k2

2
−

1

k + 1
+

1

k + 1
=

(k − 1)2

2
+

k2

2
=

(2k − 1)2 + 1

4
=

(n− 1)2 + 1

4

Case2: When n is odd

bb v1u1

b

b

v2

u2

b

b

v3

u3

b

b

v4

u4

b

b

v5

u5

b

b

vk−2

uk−2

b

b

vk−1

uk−1

b

b

vk

uk

b

b

vk+1

uk+1

b

b

v2k+1

u2k+1

b

b

v2k

u2k

b

b

v2k−1

u2k−1

b

b

v2k−2

u2k−2

b

b

vk+5

uk+5

b

b

vk+4

uk+4

b

b

vk+3

uk+3

b

b

vk+2

uk+2

Figure 3.11: Circular Ladder CL2k+1.

Let n = 2k+1, k ∈ Z
+. C2k+1 = (u1, u2, ..., u2k+1) be the outer cycle and C ′

2k+1 = (v1, v2, ..., v2k+1)
be the inner cycle. Consider any vertex say u1 in C2k+1. Then its betweenness centrality as a

vertex in C2k+1 is k(k−1)
2 . Now consider the geodesics from outer vertices ui to the inner ver-

tices v1, v2k+1, . . . , vk+i+1 for i = 2, . . . , k + 1 (Fig 3.11) and from u2k+3−i to v1, v2, . . . , vk+2−i for
i = 2, 3, . . . , k + 1 which gives a betweenness centrality

2
(1

i
+

2

i+ 1
+ · · ·+

k + 2− i

k + 1

)

= 2
(1

2
+

1 + 2

3
+ · · ·+

1 + 2 + · · · + k

k + 1

)

= 2

k+1
∑

p=2

(1 + 2 + · · ·+ p− 1)

p
= 2

k+1
∑

p=2

p− 1

2
=

k(k + 1)

2

Therefore the betweenness centrality of u1 is given as

CB(u1) =
k(k − 1)

2
+

k(k + 1)

2
= k2 =

(n− 1)2

4

.
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Relative centrality

CB
′(v) =

2CB(v)

(2n− 1)(2n − 2)
=















(n− 1)2 + 1

2(2n − 1)(2n − 2)
when n is even

(n− 1)

4(2n − 1)
when n is odd

Graph centrality
CB(G) = 0

3.11 Betweenness centrality of vertices in hypercubes

Figure 3.12: Hypercubes.

The n-cube or n-dimensional hypercube Qn is defined recursively by Q1 = K2 and Qn =
K2 × Qn−1. That is, Qn = (K2)

n Harary [13]. Qn is an n-regular graph containing 2n vertices
and n2n−1 edges. Each vertex can be labeled as a string of n bits 0 and 1. Two vertices of Qn are
adjacent if their binary representations differ at exactly one place (Fig:3.12). The 2n vertices are
labeled by the 2n binary numbers from 0 to 2n − 1. By definition, the length of a path between
two vertices u and v is the number of edges of the path. To reach v from u it suffices to cross
successively the vertices whose labels are those obtained by modifying the bits of u one by one in
order to transform u into v. If u and v differ only in i bits, the distance between u and v denoted
by d(u, v), the hamming distance is i [9, 24]. For example, if u = (101010) and v = (110011) then
d(u, v) = 3.
There exists a path of length at most n between any two vertices of Qn. In other words an n-cube is
a connected graph of diameter n. The number of geodesics between u and v is given by the number
of permutations d(u, v)!. A hypercube is bipartite and interval-regular. For any two vertices u and
v, the interval I(u, v) induces a hypercube of dimension d(u, v)[18]. Another important property
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of n-cube is that it can be constructed recursively from lower dimensional cubes. Consider two
identical (n − 1)-cubes. Each (n − 1)-cube has 2n−1 vertices and each vertex has a labeling of
(n−1)- bits. Join all identical pairs of the two cubes. Now increase the number of bits in the labels
of all vertices by placing 0 in the ith place of the first cube and 1 in the ith place of second cube.
Thus we get an n-cube with 2n vertices, each vertex having a label of n-bits and the corresponding
vertices of the two (n− 1)-cubes differ only in the ith bit. This n-cube so constructed can be seen
as the union of n pairs of (n−1)-cubes differing in exactly one position of bits. Thus the number of
(n−1)-cubes in an n-cube is 2n. The operation of splitting an n-cube into two disjoint (n−1)-cubes
so that the vertices of the two (n − 1)-cubes are in a one-to-one correspondence will be referred
to as tearing [24]. Since there are n bits, there are n directions for tearing . In general there are
nCk2

n−k number of k-subcubes associated with an n-cube.

Theorem 3.11. The betweenness centrality of a vertex in a hypercube Qn is given by 2n−2(n− 2) + 1

2

Proof. The hypercube Qn of dimension n is a vertex transitive n-regular graph containing 2n ver-
tices. Each vertex can be written as an n tuple of binary digits 0 and 1 with adjacent vertices
differing in exactly one coordinate. The distance between two vertices x and y denoted by d(x, y) is
the number of corresponding coordinates they differ and the number of distinct geodesics between
x and y is d(x, y)! [9]. Let 0 = (0, 0, ..., 0) be the vertex whose betweenness centrality has to be
determined. Consider all k-subcubes containing the vertex 0 for 2 ≤ k ≤ n. Each k-subcube has
vertices with n − k zeros in the n coordinates. Since each k-subcube can be distinguished by k

coordinates, we consider these k coordinates only. The number of k-subcubes containing the vertex
0 is

(

n
k

)

. The vertex 0 lies on a geodesic path joining a pair of vertices if and only if the pair
of vertices forms a pair of antipodal vertices of some subcube containing 0 [18]. So we consider
all pairs of antipodal vertices excluding the vertex 0 and its antipodal vertex in each k-subcube
containing 0. If a vertex of a k-subcube has r ones, then its antipodal vertex has k − r ones. For
any pair of such antipodal vertices there are k! geodesic paths joining them and of that r!(k − r)!

paths are passing through 0. Thus each pair contributes r!(k−r)!
k! that is, 1

(k
r
)
to the betweenness

centrality of 0.
By symmetry when k is even, the number of distinct pairs of required antipodal vertices are given
by

(

k
r

)

for 1 ≤ r < k
2 and 1

2

(

k
r

)

for r = k
2 . When k is odd, the number of distinct pairs of required

antipodal vertices are given by
(

k
r

)

for 1 ≤ r ≤ k−1
2 . Taking all such pairs of antipodal vertices in

a k-subcube we get the contribution of betweenness centrality as
∑

k

2
−1

r=1

(

k
r

)

1

(k
r
)
+ 1

2

(

k
k

2

)

1

(k

k
2

)
= k−1

2 ,

when k is even and
∑

k−1

2

r=1

(

k
r

)

1

(k
r
)
= k−1

2 when k is odd. Therefore considering all k-subcubes for

2 ≤ k ≤ n, we get the betweenness centrality of 0 as

CB(0) =

n
∑

k=2

(k − 1

2

)

(

n

k

)

=
1

2

[

n
∑

k=2

k

(

n

k

)

−

n
∑

k=2

(

n

k

)

]

= 2n−2(n− 2) +
1

2

Therefore for any vertex v,

CB(v) = 2n−2(n− 2) +
1

2
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The relative centrality and graph centrality are as follows

CB
′(v) =

2CB(v)

(2n − 1)(2n − 2)
=

2n−1(n − 2) + 1

(2n − 1)(2n − 2)

CB(G) = 0

4 Conclusion

Betweenness centrality is known to be a useful metric for graph analysis. When compared to
other centrality measures, computation of betweenness centrality is rather difficult as it involves
calculation of the shortest paths between all pairs of vertices in a graph. This study of betweenness
centrality can be extended to larger classes of graphs and for edges also.
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[17] Ana M Mart́ın González, Bo Dalsgaard, and Jens M Olesen. Centrality measures and the
importance of generalist species in pollination networks. Ecological Complexity, 7(1):36–43,
2010.

[18] Henry Martyn Mulder. Interval-regular graphs. Discrete Mathematics, 41(3):253–269, 1982.

[19] Mark EJ Newman. Scientific collaboration networks. ii. shortest paths, weighted networks,
and centrality. Physical review E, 64(1):016132, 2001.
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