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Abstract
The Majority Strategy for finding medians of a set of clients on a graph

can be relaxed in the following way: if we are at v, then we move to a neighbor
w if there are at least as many clients closer to w than to v (thus ignoring the
clients at equal distance from v and w). The graphs on which this Plurality
Strategy always finds the set of all medians are precisely those for which the
set of medians induces always a connected subgraph.
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1 Introduction

The Median Problem is a typical problem in location: given a set of clients one
wants to find an optimal location for a facility serving the clients. The criterion for
optimality is minimizing the sum of the distances from the location of the facility to
the clients. The solution of this location problem is generally known as a median.
One way to model this is using a network, where clients are positioned on points
and the facility has to be placed on a point as well, see for instance [18, 19, 14]. On
may also formulate the median problem in terms of achieving consensus amongst
the clients. This approach has been fruitful in may other applications, e.g. in social
choice theory, clustering, and biology, see for instance [5, 13, 2].

From the view point of consensus the result of Goldman [10] is very interesting:
to find the median in a tree just move to the majority of the clients. In [16] this
majority strategy was formulated for arbitrary graphs. The problem now is that in
general this strategy does not necessarily find a median for every set of clients. It
was proved that majority strategy finds all medians for any set of clients if and only
if the graph is a so-called median graph. The class of median graphs comprises that
of the trees as well as that of the hypercubes and grids. It allows a rich structure
theory and has many and diverse applications, see e.g. [15, 12, 11]. In the majority
strategy we compare the two ends of an edge v and w: if we are at v and at least half
of the clients is strictly nearer to w than to v, then we move to w. One could relax
the requirement for making a move as follows: one may move to w if there are at
least as many clients closer to w than to v. Note that in the latter case less than half
may actually be closer to w because there are many clients having equal distance to
v and w. We call this strategy the Plurality Strategy. The aim of this paper is to
answer the analogous question: for which graphs does the Plurality Strategy always
produce all medians for any set of clients. It turns out that this is exactly the case
when the set of all medians induces a connected subgraph, for any set of clients (see
[1]). The same holds for two other strategies from the literature: Hill Climbing and
Steepest Ascent Hill Climbing, cf. [9].

2 Consensus Strategies

All graphs considered in this paper are finite, connected, undirected, simple graphs
without loops. Let G = (V, E) be a graph with vertex set V and edge set E. The
distance function of G is denoted by d, where d(u, v) is the length of a shortest u, v-
path. We call a subset W of V a connected set if it induces a connected subgraph
in G.

A profile π = (x1, x2, . . . , xk) on G is a finite sequence of vertices in V , and
|π| = k is the length of the profile. Note that the definition of a profile allows
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multiple occurrences of a vertex. The distance of a vertex v to π is defined as

Dπ(v) = D(v, π) =
k∑

i=1

d(xi, v).

A vertex minimizing D(v, π) is a median of the profile. The set of all medians of
the profile π is the median set of π and is denoted by M(π). A vertex x such that
D(x, π) ≤ D(y, π), for all neighbors y of x is a local median of π. The set of all
local medians is denoted by Mloc(π). For an edge vw in G, we denote by πvw the
subprofile of π consisting of the elements of π strictly closer to v than to w.

Let T = (V, E) be a tree, and let π be a profile on T . In the classical paper of
Goldman [10] the majority algorithm was formulated for finding a median vertex
of π. We rephrase it here so as to serve our purposes. We can find the median set
M(π) of π as follows. Assume we are in a vertex v of T , and let w be a neighbor
of v. If at least half of the elements of π is nearer to w than to u, then we have
D(w, π) ≤ D(v, π). So, in moving from v to w, we improve our position (strictly
speaking, our position does not get worse). We proceed in this way (moving to
majority) until we arrive at a median vertex x of π. If x is the unique median vertex
of π, then, for each neighbor z of x, there is a strict minority of π at the side of z,
that is, there are strictly less elements of π nearer to z than to x. So we will not
move to z. If π is even, then it is possible that we have an edge xy such that at
both sides of this edge there lies exactly half of π. In this case both x and y must be
in M(π), and we can move back and forth along the edge xy. Now M(π) is a path
containing xy, and for each edge on this path exactly half of π is on one side of this
edge and exactly half is on the other side. So, according to our rule, we can move
freely along this path, but we may never leave this path, because for each neighbor
z of this path there is only a strict minority of π nearer to z than to the path. Thus
we can formulate the stopping rule: either we get stuck at a vertex (in which case
this vertex is the unique median vertex), or we visit some vertices at least twice,
and for each neighbor z of such a vertex, either z is also visited at least twice or
there is a strict minority at the side of z.

In [16] this majority strategy was formalized for arbitrary graphs.

Majority Strategy
Input: A connected graph G, a profile π on G, and an initial vertex in V .
Output: The unique vertex where we get stuck or the set of vertices visited at least
twice.

1. Start at the initial vertex.

2. [MoveMS] If we are in v and w is a neighbor of v with |πwv| ≥ 1
2
|π|, then we

move to w.

3. We move only to a vertex already visited if there is no alternative.
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4. We stop when
(i) we are stuck at a vertex v or
(ii) [TwiceMS] we have visited vertices at least twice, and, for each vertex v
visited at least twice and each neighbor w of v, either |πwv| < 1

2
|π| or w is also

visited at least twice.

In general the output of the Majority Strategy will depend on the profile as well as
the initial vertex from which we start. For instance, take the complete graph K3 on
the three vertices u, v, w and take the profile π = (u, v, w). Then M(π) = {u, v, w}.
Now take, say, u as initial vertex and consider its neighbor v. Then only v is closer
to v than to u, hence we may not move to v. Similarly, we may not move to w, and
we are stuck at u. So we do not find the whole median set M(π). Moreover, the
output depends on the choice of the initial vertex. This gives rise to the question
for which graphs the Majority Strategy will actually always find the median set for
each profile, and for which graphs the output does not depend on the choice of the
initial vertex. This was answered in [16].

Theorem A Let G be a graph. Then the following conditions are equivalent.

1. G is a median graph.

2. Majority Strategy produces the median set M(π) from any initial vertex, for
each profile π on G.

3. Majority Strategy produces the same set from any initial vertex, for each profile
on G.

It was even proved in [16] that the above theorem also holds when we restrict
ourselves to profiles (x, y, z) of length 3 such that d(y, z) ≤ 2.

Note that in the Majority Strategy vertices at equal distance from v and w are
“assigned” to v when deciding on which side of the edge the majority of the profile is
located. Such vertices do not exist in bipartite graphs, but in the non-bipartite case
they make a difference. From the viewpoint of finding medians however, one would
like to ignore such vertices at equal distance from v and w. This is the reason for the
Plurality Strategy1 below. We collect also similar strategies from the literature: Hill
Climbing and Steepest Ascent Hill Climbing from Artificial Intelligence cf. [9]. Then
conditions under which a move is made differ, whence also the stopping rule in case
vertices are visited twice. We only recite the moves in which the strategies differ
from the Majority Strategy. Loosely speaking one could say that the rule for the
Plurality Strategy is “moving towards more”. For the Hill Climbing strategies we
actually have to compare the distance sums (i.e. the “costs”) at v and its neighbors.

1The idea of the Plurality Strategy was already proposed by Mulder in 1996.
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Plurality Strategy

2. [MovePS] If we are in v and w is a neighbor of v with |πwv| ≥ |πvw|, then we
move to w.

4. (ii) [TwicePS] we have visited vertices at least twice, and, for each vertex v
visited at least twice and each neighbor w of v, either |πwv| < |πvw| or w is
also visited at least twice.

The next two strategies were introduced to find a (local) minimum based on a
heuristic function in a search graph. So the versions as in [9] make a move only
to previously unexplored vertices. Because our purpose in this paper is to find all
medians (i.e. the median set) of a profile, we have adapted the strategies such that
we are able to visit vertices more than once (as in the above description of the
Majority Strategy).

Hill Climbing

2. [MoveHC] If we are in v and w is a neighbor of v with D(w, π) ≤ D(v, π), then
we move to w.

4. (ii) [TwiceHC] we have visited vertices at least twice, and, for each vertex v
visited at least twice and each neighbor w of v, either D(w, π) > D(v, π) or w
is also visited at least twice.

Steepest Ascent Hill Climbing

2. [MoveSA] If we are in v and w is a neighbor of v with D(w, π) ≤ D(v, π) and
D(w, π) is minimum among all neighbors of v, then we move to w.

4. (ii) [TwiceSA] = [TwiceHC].

The next simple Lemma shows that Plurality Strategy and Hill Climbing produce
the same output on any connected graph. Note that on bipartite graphs Majority
and Plurality Strategy (hence also Hill Climbing) coincide, since there are no vertices
at equal distance from the two ends of an edge.

Lemma 1 Let G be a connected graph and π a profile on G. Plurality Strategy
makes a move from vertex v to vertex w if and only if D(w, π) ≤ D(v, π).

Proof. The assertion follows immediately from the following computation:

D(v, π)−D(w, π) =
∑

x∈πvw

d(v, x) +
∑

x∈πwv

d(v, x)−
∑

x∈πvw

d(w, x)−
∑

x∈πwv

d(w, x) =

=
∑

x∈πvw

d(v, x) +
∑

x∈πwv

d(v, x)−
∑

x∈πvw

(d(v, x) + 1)−
∑

x∈πwv

(d(v, x)− 1) =
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= |πwv| − |πvw|.

2

Next we present an example that shows that Steepest Ascent Hill Climbing is
essentially different from the other strategies. Note that the other strategies might
make a move from v as soon as they find a neighbor w of v that satisfies the condition
for a move, while Steepest Ascent has to check all neighbors of v before it can make a
move. For a comparison of efficiencies of these strategies, see [6]. Consider the graph
K2,3 with vertices a, b and 1, 2, 3, where two vertices are adjacent if and only if one is
a ‘letter’and the other a ‘numeral’. Now take the profile π = (b, 1, 1, 1, 2, 2, 2, 3, 3, 3).
Then we have D(a, π) = 11, D(b, π) = 9, and D(i, π) = 13, for i = 1, 2, 3. Take
1 as initial vertex and assume that we check its neighbors in alphabetical order.
Then Majority, Plurality and Hill Climbing move to a and get stuck there, whereas
Steepest Ascent moves to b and thus finds the median vertex of π.

This example also shows that the first three strategies might not even find the
median vertex at all, even if the graph is bipartite. As we will see below, the special
thing about K2,3 is that the profile ρ = (1, 2, 3) has median set {a, b}, which is not
connected.

3 Graphs with connected median sets

In general any subgraph may appear as a median set, see [17]. Graphs with con-
nected median sets were characterized by Bandelt and Chepoi [1]. We need some
concepts and notations for their main result.

A weight function on G is a mapping f from V to the set of non-negative real
numbers. We say that f has a local minimum at x ∈ V if f(x) ≤ f(y) for any y
adjacent to x. We say that a function f has a strict local minimum at x ∈ V if
f(x) < f(y) for any y adjacent to x. We call a weight function f rational if f(x) is
rational for every x ∈ V . For a vertex v of G, we define

Df (v) = D(v, f) =
∑
x∈V

d(v, x)f(x).

Note that Df is a weight function on G as well. A local median of f is a vertex u
such that Df has a local minimum at u. The set of all local medians of a weight
function f is denoted by Mloc(f). A median of f is a vertex u such that Df has a
global minimum at u. The median set M(f) of f is the set of all medians of f .

Theorem 2 ([1]) Let G be a connected graph. Then the following conditions are
equivalent.

1. The median set M(f) is connected, for all weight functions f on G.

2. M(f) = Mloc(f), for all weight functions f on G.
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Next we show that, for the purpose of computing median sets, profiles and ratio-
nal weight functions are equivalent. Using this we characterize the class of graphs
on which the Plurality Strategy produces the median set of a profile, starting from
an arbitrary vertex.

Let π be a profile on G. Then the weight function associated with π is the
function fπ, where fπ(x) denotes the number of occurrences of x in π. The following
lemma follows immediately from the definitions.

Lemma 3 Let G be a connected graph, and let π be a profile with associated weight
function fπ. Then D(v, π) = D(v, fπ), for every v in V . Furthermore, M(fπ) =
M(π), and Mloc(fπ) = Mloc(π).

Let f be a weight function on a connected graph G. For a positive real number
t, we define tf to be the weight function with (tf)(x) = t × f(x). Then we have
M(tf) = M(f). Also we have Mloc(tf) = Mloc(f). Finally, Dtf has a strict local
minimum at a vertex w if and only if Df has a strict local minimum at W .

Lemma 4 Let g be rational weight function on a connected graph G. Then there is
a profile π on G such that fπ = tg for some positive integer t.

Proof. Let p1/q1, . . . , pr/qr, be the rational non-zero values of g, say at the vertices
v1, v2, . . . , vr respectively. Let t be the product of the denominators q1, . . . , qr. Then
tg is an integer valued weight function, with values, say n1, . . . , nr at the vertices
v1, . . . , vr, respectively, and zero elsewhere. Now consider the profile π constructed
by taking n1 times v1, and n2 times v2, . . ., and nr times vr. Then we have fπ = tg.
2

In other words, medians of profiles are exactly medians of rational weight functions.
Next we prove that real-valued weight functions may be replaced by rational-valued
weight functions, and thus by profiles, when one wants to compute median sets.
First we prove two lemmata

Lemma 5 Let G be a connected graph, and let f be a weight function on G such
that Df has a local minimum at vertex u, which is not a global minimum. Then
there is a weight function g such that Dg has a strict local minimum at u, which
is not a global minimum. Furthermore if f is rational, then g may also be taken
rational.

Proof. First note that, for any two vertices x and y, we have d(x, y) < n = |V |.
Let D(u, f) = ε1. Let Df have a global minimum at z, that is, D(z, f) = ε < ε1.
Let ε2 = ε1 − ε. Now define the function g as follows.

g(v) =

{
f(v) if v 6= u
f(u) + ε2

n
if v = u.
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Then D(u, g) = D(u, f), because in these sums the values f(u) and g(u) of the
functions at u are multiplied by d(u, u) = 0. For any vertex w adjacent to u, we
have

D(w, g) = D(w, f) +
ε2

n
> D(w, f) ≥ D(u, f) = D(u, g).

So Dg has a strict local minimum at u. Furthermore,

D(z, g) = D(z, f) + d(u, z)
ε2

n
< D(z, f) + ε2 = D(u, f) = D(u, g).

So g has a strict local minimum at w that is not a global minimum. Also if f is
rational, then ε2 is rational. So g is also rational. 2

Lemma 6 Let G be a connected graph with the property that, for each rational
weight function g, every local minimum of Dg is also a global minimum. Then the
same property holds for any real-valued weight function f on G.

Proof. Assume that for some real-valued weight function f there is a local minimum
for Df , at some vertex u that is not a global minimum. In view of the preceding
lemma, we may assume that Df has a strict local minimum at u. Let Df have a
global minimum at z, and let

ε1 = min{D(u, f)−D(w, f) | w adjacent to u}, ε2 = D(u, f)−D(z, f),

ε =
min(ε1, ε2)

n2
.

Now choose a rational weight function g such that g(v) > f(v) and g(v)− f(v) < ε,
for all v. Then, for any vertex w adjacent to u, we have D(u, g) < D(u, f)+ε×n2 ≤
D(u, f) + ε1 < D(w, f) < D(w, g). So u is a local minimum for Dg. Moreover, we
have D(z, g) < D(z, f) + ε × n2 ≤ D(z, f) + ε2 < D(u, f) < D(u, g). So u is not a
global minimum for Dg, which is a contradiction. 2

Theorem 7 For a connected graph G the following are equivalent.

1. The median set M(f) is connected, for all weight functions f on G.

2. M(f) = Mloc(f), for all weight functions f on G.

3. M(f) = Mloc(f), for all rational weight functions f on G.

4. M(π) = Mloc(π), for all profiles π on G.

Proof. (1) and (2) are equivalent by Theorem 2. (2) ⇒ (3) follows trivially since
every rational weight function is also real-valued. (3) ⇒ (2) follows from Lemma 6.

(3) ⇒ (4): Let π be a profile on G. Now consider the weight function fπ. By
Lemma 3, D(v, fπ) = D(v, π). Since Dfπ cannot have any local minimum that is
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not a global minimum, Dπ also cannot have any local minimum that is not a global
minimum.

(4) ⇒ (3): Let g be any rational weight function on G. By Lemma 4, there is a
positive integer t and a profile π such that fπ = tg. By Lemma 3, Dfπ = Dπ, and,
as observed above, Dfπ has a local minimum that is not a global minimum if and
only if Dg have a local minimum that is not a global minimum. So Dg cannot have
a local minimum that is not a global minimum. 2

Theorem 8 The following are equivalent for a connected graph G.

1. Plurality Strategy produces M(π) from any initial vertex, for all profiles π on
G.

2. M(π) is connected, for all profiles π on G.

3. M(π) = Mloc(π), for all profiles π on G.

4. Hill Climbing produces M(π) from any initial vertex, for all profiles π on G.

5. Steepest Ascent Hill Climbing produces M(π) from any initial vertex, for all
profiles π on G.

6. Plurality Strategy (Hill Climbing, Steepest Ascent Hill Climbing) produces the
same set from any initial vertex, for all profiles.

Proof. (1) ⇒ (2): Suppose the median set is not connected for some profile π.
Then let v and w be two vertices in different components of M(π). Now, if Plurality
Strategy starts at v, then it cannot reach vertex w, because a move from a median
vertex to a non-median vertex is not possible by Lemma 1. So the set computed by
Plurality Strategy will not include w, which is a contradiction.

(2) ⇒ (3): This follows from Theorem 7.
(3) ⇒ (4): Starting at any vertex, Hill Climbing always finds a local minimum,

and since this local minimum is also global, we see that Hill Climbing always reaches
the median, and since the median is connected it produces all the median vertices.

(4) ⇒ (1): Assume that Hill Climbing finds the median set. This means that
Hill Climbing will move to a median starting from any vertex and finds all the other
medians. The same moves will be made by Plurality Strategy, by Lemma 1. Hence
Plurality Strategy will compute the median set correctly.

(3) ⇒ (5) follows similarly as (3) ⇒ (4). Finally (5) ⇒ (2) follows from the
fact that Steepest Ascent Hill Climbing finds a local minimum and does move from
median to median but does not move from a median to a non-median.

(1) ⇒ (6) is obvious. (6) ⇒ (1) follows from the fact that, starting from a
median, Plurality Strategy can produce only a set of medians which includes the
initial vertex. So starting from any median it produces the same set if and only if
the produced set is actually M(π). 2
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The characterizations of graphs with connected median sets in [1] all involve
statements about weight functions or rather technical statements. Unfortunately,
so far there is no characterization in terms of simple graph properties or in terms
of a listing of classes of graphs. It is quite clear that such a characterization should
be some kind of generalization of median graphs. For more information on median
graphs see e.g. [15, 11]. There are a number of well studied generalizations of
median graphs that have connected medians. First the quasi-median graphs, which
introduced in [15], see also [4]. These graphs also have interesting applications in
diverse areas, e.g. in biology, see [2]. Another class is that of the pseudo-median
graphs introduced in [3], see [8] for a study of median sets in these graphs. These
are all examples of the so-called weakly median graphs, see [7]. Another example
is that of the Helly graphs (cf. [1]) defined by the property that every pairwise
intersecting family of balls has a non-empty intersection. Here a ball is a set of the
type Sk(v) = {x | d(x, v) ≤ k}.

References

[1] H.J. Bandelt and V. Chepoi, Graphs with connected medians, SIAM J. Discr.
Math. 15 (2002) 268 – 282.

[2] H.J. Bandelt, K. Huber and V. Moulton, Quasi-median graphs from sets of
partitions, Discrete Appl. Math. 122 (2002) 23 – 35.

[3] H.J. Bandelt and H.M. Mulder, Pseudo-median Graphs: decomposition via
amalgamation and cartesian multiplication, Discret Math. 94 (1991) 161 – 180.

[4] H.J. Bandelt, H.M. Mulder and E. Wilkeit, Quasi-Median Graphs and Algebras,
J. Graph Theory 18 (1994) 681 – 703.

[5] J.P. Barthelemy and B. Monjardet, The median procedure in cluster analysis
and social choice theory, Math. Social Sci. bf 1 (1981) 235 – 268.

[6] M. Changat, K. Balakrishnan and H.M. Mulder, Median computation in graphs
using consensus strategies, Report EI 2006-??, Econometrisch Instituut, Eras-
mus Universiteit, 2006, Rotterdam.

[7] V. Chepoi, Seperation of two convex sets in convexity structures, J. Geom. 50
(1994) 30 – 51.

[8] F. Dragan and V. Chepoi, Medians in pseudo-median graphs, Operation Re-
search and management Science (Kiev) 35 (1991) 47 – 56.

[9] R. Eline and K. Kevin, Artificial Intelligence, Tata McGraw-Hill 1991.

[10] A.J. Goldman, Optimal center location in simple networks, Transportation Sci-
ence 5 (1971) 212 – 221.

10
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