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Abstract The median (antimedian) set of a profile π = (u1, . . . , uk) of vertices of a
graph G is the set of vertices x that minimize (maximize) the remoteness

∑
i d(x,ui).

Two algorithms for median graphs G of complexity O(n idim(G)) are designed,
where n is the order and idim(G) the isometric dimension of G. The first algorithm
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computes median sets of profiles and will be in practice often faster than the other
algorithm which in addition computes antimedian sets and remoteness functions and
works in all partial cubes.

Keywords Median · Antimedian · Profile · Hypercube · Isometric subgraph ·
Median graph · Weak contraction

1 Introduction

The problems of locating medians and antimedians of profiles are natural general-
izations of facility location problem in graphs. Given a profile (that is, a multiset of
vertices) on a graph/network one wants to locate vertices whose remoteness, that is,
the sum of distances to the vertices of the profile, is minimum or maximum. This is
a model for those practical problems where vertices of the profile present customers
and the resulting median (resp. antimedian) set consists of optimal locations of desir-
able (resp. undesirable) facilities in the network.

The median problem for profiles on graphs was considered by many authors; see,
for example [1, 3, 4, 6, 18]. On the other hand, not much work has been done so far
for the general antimedian problem for profiles on graphs. To be exact, there are some
papers that deal with the special case of this problem—the obnoxious facility location
problem on graphs—where profiles always coincide with the vertex set of a graph;
see [7, 9, 20, 22, 24]. We think that the problem of antimedian for profiles could be of
similar interest for applications, as well as theoretically, being the opposite extremum
to the median problem.

Median graphs form a closely investigated and well understood class of graphs;
see [16] for a survey, in particular for their role in location theory. Many important and
interesting classes of graphs are median, let us just mention trees, hypercubes, square
grids, graphs of acyclic cubical complexes, simplex graphs, and Fibonacci and Lucas
cubes. Most of these classes have been considered from the algorithmic point of view.
Median graphs themselves can be recognized in subquadratic time [12, 14], in fact,
their recognition complexity is essentially the same as the complexity of recognizing
triangle-free graphs [15], see also [10]. On the other hand, the recognition complexity
can be reduced to O(m logn) for acyclic cubical complexes [13] and for Fibonacci
cubes [21]. Here and later n and m denote the number of vertices and edges of a given
graph. For additional fast algorithms on classes of median graphs see [8].

The main purpose of this paper is to present efficient algorithm(s) for comput-
ing median and antimedian sets of profiles on median graphs. As the main tool we
use isometric (that is, distance preserving) embeddings of median graphs into hyper-
cubes. In the next section we fix notation, state necessary definitions, and present a
simple algorithm for computing median and antimedian sets in general graphs. In the
subsequent section we prove that, given a graph G, embedded via a weak contraction
into a graph H , the median set of a profile on G can be obtained from the correspond-
ing median set in H . We elaborate this idea in Sect. 4 for the case when a median
graph G is isometrically embedded into a hypercube to obtain a fast algorithm for
computing median sets in median graphs. (Unfortunately, a similar theorem does not
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hold for antimedians.) We follow with another algorithm in Sect. 5 that in addition
computes antimedian sets and the remoteness functions within the same time and
works in arbitrary isometric subgraphs of hypercubes. In practice, however, the first
algorithm will often be faster. In the final section we consider possible generalizations
and variations of our approach.

2 Preliminaries

In this paper we consider simple, undirected, connected graphs. The distance consid-
ered is the usual shortest path distance d . For a connected graph G and subsets of
vertices X,Y ⊆ V (G) we will write d(X,Y ) = min{d(x, y) | x ∈ X,y ∈ Y }. In par-
ticular, for a vertex u of G and a set of vertices X we have d(u,X) = min{d(u, x) |
x ∈ X}. The distance d(x,π) between the vertex x and the profile π is defined anal-
ogously.

A profile π = (x1, . . . , xk) on a graph G is a finite sequence of vertices of G. Note
that in a profile a vertex may be repeated. Given a profile π on G and a vertex u of G

the remoteness D(u,π) (see [17]) is

D(u,π) =
∑

x∈π

d(u, x).

The vertex u is called a median (antimedian) vertex for π if D(u,π) is minimum
(maximum). The median (antimedian) set M(π,G) (AM(π,G)) of π in G is the set
of all median (antimedian) vertices for π .

A vertex x is a median of a triple of vertices u, v and w if d(u, x) + d(x, v) =
d(u, v), d(v, x)+d(x,w) = d(v,w) and d(u, x)+d(x,w) = d(u,w). A (connected)
graph G is a median graph if every triple of its vertices has a unique median. The
hypercube or d-cube Qd , d ≥ 1, is the graph with vertex set {0,1}d , two vertices
being adjacent if the corresponding tuples differ in precisely one position. A vertex
u of Qd will be written in its coordinate’s form as u = u(1) · · ·u(d). Note that the
distance in Qn between two vertices is the number of coordinates in which they
differ. The latter distance is known as the Hamming distance.

A subgraph H of a (connected) graph G is an isometric subgraph if dH (u, v) =
dG(u, v) holds for any vertices u,v ∈ H . Let G be an isometric subgraph of some
hypercube (such graphs are also called partial cubes). The smallest integer d such
that G is an isometric subgraph of Qd is called the isometric dimension of G and
denoted idim(G). An important structural result due to Mulder [19] asserts that every
median graph G can be isometrically embedded in a hypercube such that the median
set of every profile π of cardinality three in G on the hypercube coincides with the
median set of π in G.

The median and the antimedian set of a profile π on a connected graph G can
be obtained by the following straightforward algorithm. For each vertex x ∈ π (of
course, taking into account multiple occurrences of x as well), perform a BFS from x.
In this way the distances from x to all vertices of G are obtained and summed up
along the way. After this is done, the sum of the distances to the vertices of the
profile is obtained, and then the vertices with minimum and maximum sum are easily
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determined. The time complexity of this algorithm is the number of edges of G (the
time complexity for performing a BFS) times the number of different vertices that
appear in π . Although this is quite efficient, it may be the case that faster algorithms
are required, in particular in large networks when the results are needed in real-time.

3 Median sets with respect to isometric embeddings

Recall that median graphs are isometric subgraphs of hypercubes [19]. The main idea
of this paper is to compute median and antimedian sets in median graphs using these
embeddings. In this section we give a fundamental theoretical observation for this
purpose which holds in a more general setting.

The concept of a weak contraction was used by Feder [11, Theorem 6.28] to prove
a fixed box theorem for the distance center of subgraphs of Cartesian product graphs.
(The distance center of G is the median of the profile consisting of the vertex set
of G.) Let G be a subgraph of H . A mapping f : V (H) → V (G) is called a weak
contraction (or weakly nonexpansive map) if for all u ∈ V (H) and all v ∈ V (G) we
have dG(f (u), v) ≤ dH (u, v). Note that for v ∈ V (G) we have f (v) = v because
dG(f (v), v) ≤ dH (v, v) = 0. Therefore, for any u,v ∈ V (G),

dG(u, v) = dG

(
f (u), v

) ≤ dH (u, v).

Hence, since G is a subgraph of H , dG(u, v) = dH (u, v), that is, every weak con-
traction is an isometry. So the condition dG(f (u), v) ≤ dH (u, v) is equivalent to
dH (f (u), v) ≤ dH (u, v).

Theorem 3.1 Let G be a subgraph of H such that there exists a weak contraction f

from H to G. Then for any profile π on G, M(π,G) = M(π,H) ∩ V (G).

Proof Note that we only need to prove that M(π,H) ∩ V (G) �= ∅. Suppose u ∈
V (H) \ V (G) such that u ∈ M(π,H). We claim that f (u) ∈ M(π,H) (since f (u) ∈
V (G) this will be sufficient). Clearly,

DH (u,π) =
∑

x∈π

dH (u, x) ≥
∑

x∈π

dG

(
f (u), x

) =
∑

x∈π

dH

(
f (u), x

) = DH

(
f (u),π

)

which readily implies f (u) ∈ M(π,H). �

It is easily seen that every (weak) retract is a weak contraction, hence the above
theorem holds also for these two special cases. In particular, it is well-known that
median graphs are precisely retracts of hypercubes [2], hence we deduce

Corollary 3.2 Let G be a median graph, isometrically embedded into a hyper-
cube H . Then for any profile π on G, M(π,G) = M(π,H) ∩ V (G).

Not all partial cubes can be obtained as weak contractions of hypercubes. For
instance, it is easy to see that the cycle C6 is not a weak contraction of the hyper-
cube Q3. We wonder whether only median graphs have this property.
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Fig. 1 A small example

In the formula of Theorem 3.1 it is necessary to make the intersection with V (G).
For instance, let π = (u, v), then the median set of π consists of all vertices lying on
shortest u,v-paths which can in Qd yield a larger set than in G. As the smallest ex-
ample consider the path on three vertices embedded in Q2. For another small example
see Fig. 1, where G is the graph induced with black vertices. Then M(π,G) = V (G)

but M(π,Q3) = V (Q3).
Note that the analogue of Theorem 3.1 for antimedian sets does not hold in general.

In fact, in many cases the corresponding intersection will be empty which makes this
problem more difficult than the median problem.

4 Fast computation of median sets in median graphs

In this section we design an efficient algorithm for computing the median set of a
profile on a median graph by applying Corollary 3.2. Thus we first have a closer look
to median (and antimedian) sets in hypercubes. Part of this might be a folklore.

Let π = (x1, . . . , xk) be a profile on Qd . For i = 1, . . . , k, let n
(i)
0 and n

(i)
1 be the

number of vertices from π with the ith coordinate equal 0 and 1, respectively. More
formally,

n
(i)
0 (π) = |{x ∈ π | x(i) = 0}|

and

n
(i)
1 (π) = |{x ∈ π | x(i) = 1}|.

Define Majority(π) as the set of vertices u = u(1) . . . u(d) of Qd , where

u(i)

⎧
⎪⎨

⎪⎩

= 0; n
(i)
0 (π) > n

(i)
1 (π),

= 1; n
(i)
0 (π) < n

(i)
1 (π),

∈ {0,1}; n
(i)
0 (π) = n

(i)
1 (π).

We say that vertices u ∈ Majority(π) are obtained by the majority rule. Minority(π)

and the minority rule are defined analogously.
Note that it follows immediately from the definitions that if |π | is odd then

|Majority(π)| = 1 and |Minority(π)| = 1.

Proposition 4.1 Let π = (x1, . . . , xk) be a profile on Qd . Then M(π,Qd) =
Majority(π) and AM(π,Qd) = Minority(π).
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Proof Let u ∈ Majority(π) and let w be an arbitrary vertex of Qd . For b, b′ ∈ {0,1}
set δ(b, b′) = 0 if b = b′ and δ(b, b′) = 1 otherwise. Then,

D(u,π) =
k∑

i=1

d(u, xi) =
k∑

i=1

d∑

j=1

δ(u(j), x
(j)
i ) =

d∑

j=1

k∑

i=1

δ(u(j), x
(j)
i )

≤
d∑

j=1

k∑

i=1

δ(w(j), x
(j)
i ) = D(w,π).

Note that the above inequality holds by the construction of the Majority(π). More-
over, equality holds if and only if w ∈ Majority(π). We conclude that M(π,Qd) =
Majority(π).

The arguments for the antimedian set are analogous. �

Combining Theorem 3.1 with Proposition 4.1 we get the following algorithm for
computing median sets in median graphs.

Algorithm 1

Input: A median graph G isometrically embedded into a hypercube Q. A profile π .
Output: M(π,G).
Step 1: Find M(π,Q) using the majority rule.
Step 2: Compute M(π,G) = M(π,Qd) ∩ V (G).

Theorem 4.2 Algorithm 1 correctly computes the median set M(π,G) in a median
graph G and can be implemented in O(n idim(G)) time.

Proof Correctness of the algorithm follows from Theorem 3.1 and Proposition 4.1.
For the time complexity we first note that if π contains multiple occurrences of

the same vertex it is not difficult to modify the algorithm such that this vertex is
considered only once. (We do not list multiple occurrences of it but only count its
frequency when computing M(π,Q) using the majority rule.)

Since every vertex of π has idim(G) coordinates, Step 1 can be performed in
O(n idim(G)) time. Along with Step 1 we can perform Step 2 as follows. As soon as
we determine the majority in the ith coordinate, we mark all the vertices of G that
have the ith coordinate different from the majority as non-median. (Note that if the
frequency of 0’s and 1’s in the ith coordinate is equal, we do nothing.) At the end we
are left with the median set. Altogether we need O(n idim(G)) operations. �

Algorithm 1, together with the general BFS approach for computing median sets
(as described in Sect. 2) yields an algorithm of complexity

min{O(n idim(G)),O(m |π ∩ V (G)|)}
for computing median sets in median graphs. Since in these graphs m = O(n logn)

(see [14]), Algorithm 1 will be better than the general algorithm if idim(G) is smaller
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than |π ∩ V (G)| logn. In many practical situations this is indeed the case, as for
instance when the median graph G is close to a hypercube structure. (Recall that for
a hypercube Qd we have idim(Qd) = d = logn, where n = |Qd |.)

In practice Algorithm 1 can perform less than n idim(G) operations if M(π,Qd)

is relatively small and we are somehow lucky with the coordinatization of the median
graph G. Namely, when implementing Step 2 by marking vertices as non-median
it may happen that almost all vertices are marked as non-median after only a few
coordinates were checked. By putting each such vertex at the end of the list, we then
need to examine only vertices that are not marked (in the ideal case only those that are
in M(π,G)). Denoting the number of different elements in the profile π with ‖π‖, in
such events the complexity of Algorithm 1 is O(‖π‖ idim(G)), which is better than
O(n idim(G)).

5 A more general fast algorithm

In this section we give another algorithm for computing median sets in median graphs
of the same complexity O(n idim(G)). Its advantage is that it can also be used for
computing the antimedian sets and values of D(x,π) for all x and any profile on a
(median) graph. In addition, it works in arbitrary isometric subgraphs of hypercubes.
Its disadvantage is that the number of its operations is fixed (regardless of the coor-
dinatization of the graph, the choice of the profile, etc.), which means that in practice
Algorithm 1 will in many cases run faster.

Note that when performing the majority rule values n
(j)

0 (π) and n
(j)

1 (π) are com-
puted, and then compared. We may store these values in two vectors, that is, for any
profile π on a median graph G with k = idim(G), let

−→
0 (π) = (n

(1)
0 (π), . . . , n

(k)
0 (π)),

and
−→
1 (π) = (n

(1)
1 (π), . . . , n

(k)
1 (π)).

For a vertex x of G we define the vector
−→
d (x,π) as follows:

−→
d j (x,π) =

{−→
0j (π); x(j) = 1,−→
1j (π); x(j) = 0,

for j = 1, . . . , k. It is easy to see, using the definition of the Hamming distance, that
for any vertex x ∈ V (G) we have

D(x,π) =
k∑

j=1

−→
d j (x,π). (1)

We derive the following algorithm for computing D(x,π) for any vertex of a
partial cube G.
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Algorithm 2

Input: A graph G, isometrically embedded into a hypercube Q. A profile π .
Output: D(x,π) for all vertices x ∈ V (G), M(π,G) and AM(π,G).

Step 1: Using the majority rule in Q, determine
−→
0 (π) and

−→
1 (π).

Step 2: For every x ∈ V (G) compute D(x,π) using (1).
Step 3: Determine M(π,G) and AM(π,G) as the vertices with the smallest

(largest) D(x,π).

Theorem 5.1 Let x be a vertex of a graph G, and let π be a profile on G. Then
Algorithm 2 correctly computes D(x,π), the median set and the antimedian set of π ,
and can be implemented in O(n idim(G)) time.

Proof Observations preceding the algorithm imply the correctness of the algorithm.
For the time complexity observe first that Step 1 is the same as Step 1 of Algo-

rithm 1 except that in the present algorithm vectors
−→
0 (π) and

−→
1 (π) are explicitly

determined and saved. Hence Step 1 can be performed in O(n idim(G)) time. For
Step 2 we need O(n idim(G)) operations since for every vertex of G we check each
of its coordinates, and this check is done in a constant time (upon the value of x(j)

decide to choose either
−→
0j or

−→
1j , and add this number to the sum in (1)). Along with

Step 2 we can perform Step 3 in such a way that vertices x with current largest and
smallest value of D(x,π) are kept during the entire algorithm. This yields a constant
number of operations while processing each vertex. Hence the overall time complex-
ity is O(n idim(G)). �

We conclude this section with a word on the preprocessing required by Algo-
rithms 1 and 2. In practice we suppose that a graph/network is already given, so that
we only need to embed it into a hypercube. It was proved in [12] that this can be done
in O(m logn) time for semi-median graphs (a class of partial cubes that include me-
dian graphs). On the other hand, the fastest known algorithm for recognizing median
graph is presented in [14] and is of complexity O((m logn)2ω/(ω+1)), where ω is the
exponent of matrix multiplication.

6 Concluding remarks

Median graphs have many natural generalizations; one such well studied class is
the family of quasi-median graphs; see [5]. Among many similarities with median
graphs, quasi-median graphs admit isometric embeddings into Hamming graphs.
Moreover, they are weak retracts of Hamming graphs [23], hence Theorem 3.1 can be
applied for quasi-median graphs as well. By using a natural extension of majority rule
to Hamming graphs, one can easily generalize Algorithm 1 to work for quasi-median
graphs.

Step 1 of this algorithm indeed directly extends from hypercubes to Hamming
graphs. Having in mind that the vertices of a Hamming graph are t-tuples (whose
coordinates are taken from {0,1, . . . , ki}, respectively), the majority/minority rule
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is generalized to the set of integers that are most/least frequent in a given coordi-
nate. This implies that in a Hamming graph an (anti)median set induces a Hamming
subgraph, and it yields an efficient algorithm for finding (anti)median sets in Ham-
ming graphs. We note that Algorithm 2 also extends to nonbipartite case, because the
Hamming distance can be applied in partial Hamming graphs (we leave details to the
reader).

In this paper we have embedded median graphs into hypercubes to obtain fast
algorithms for computing median and antimedian sets. Since Theorem 3.1 is more
general, it can perhaps be applied to other situations as well. In particular it could
be useful to embed isometrically median graphs into other Cartesian products, say
products of paths or trees. Moreover, one could embed isometrically other classes of
graphs into appropriate host graphs, say �1-graphs.

Acknowledgements We are grateful to the referee #3 for critical remarks that led to the more general
approach (with a much simpler proof) of Theorem 3.1.
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