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CHAPTER -1 

INTRODUCTION 

1.1 Introduction 

A statistical data is useful only when we extract its important 

features. We can use those features to understand what lies behind the real 

data. The quantitative indicators such as mean, mode and standard 

deviation etc. capture useful information about the data. But usually we 

want more detailed information and that we must set up a statistical model 

for the data. This may be something like a mathematical formula that 

describes the probabilities of observing various data values or it may be a 

more complicated stochastic process, which is a mathematical system that 

models the actual physical process, which generates those values. 

A time series is a set of observations generated sequentially In 

time. The primary objective of time series modelling is to develop sample 

models capable of forecasting, interpreting and testing hypothesis 

regarding data. Examples of time series are annual yield of a crop for a 

particular period, the population of a country during a specified time, the 

number of births of babies in a hospital according to the hour at which 

they were born. The time series has an important place in the field of 

economics and business statistics. The time series relating to prices, 

consumptions, money in circulation, bank deposits and bank clearing. 

sales and profit in a departmental store, national income and foreign 
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exchange reserves, prices and dividend of shares in a stock exchange etc. 

are examples of economic and business time series. 

The original use of time series analysis is to provide an aid to 

forecasting. As such methodology was developed to decompose a time 

series into trend, seasonal, cyclical and irregular components. An 

important feature of time series is that the successive observations are 

usually dependent. When successive observations are dependent future 

values may be predicted from the past observations. If the future values of 

time series can be predicted exactly it is said to be a deterministic time 

series. But in most of time series the future is only partially determined by 

its past values. Such a time series is known as stochastic time series. In 

that case exact prediction is not possible and therefore the future values 

have a probability distribution, which is conditional by knowledge of past 

values. In that case the model can be written as 

Xn = fen) + en , n=1 ,2,3, ... p, 

where Xn, n=1 ,2,3, ... p are observations on time series made at p equally 

distant time points, f (n) is called the systematic part and {En} is the 

random or stochastic sequence, it obeys a probability law and is called the 

innovation process. There are five sections in this chapter and the details 

of each section are as follows. The Section 1.2 gives some basic 

definitions, 1.3 is a brief description of the non-linear time series models, 

lA describes the non-Gausssian time serics and Section 1.5 is a summary 

of the thesis. 
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1.2 SOME BASIC DEFINITIONS 

1.2.1 Stochastic Process 

A stochastic phenomenon that evolves in time according to some 

probabilistic law is called a stochastic process. That is , a stochastic 

process is a family of random variables {Xn , nET} defined on the 

probability space (Q,f,P). 

The time series can be regarded as a particular realization of 

stochastic process. Time series analysis is primarily an aid of specifying 

the most likely stochastic process that could have generated an observed 

time series. A model that can be used to calculate the probability of a 

future value is called the stochastic model or the probability model. 

1.2.2 Stationary process 

The estimation of the parameters of a stochastic process will not be 

possible if they change as time progresses. The most practical models will 

be those whose parameters are constant over time. This will happen when 

the finite dimensional distribution of {Xn} does not depend on the time. A 

stochastic process {Xn} is said to be strictly stationary if the joint 

distribution of Xnl ,X,12, ... ,Xnp made at time points nl,n2, ... ,np is same 

as that associated with n observations at Xnl+k,Xn2+k, ... ,Xnp+k made at 

time points nl+k,n2+k, ... ,np+k for every k. A stochastic process whose 

mean is constant and variance is finite and covariance between Xn and Xs 
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is a function of In-si IS said to be second order stationary or weakly 

stationary. 

1.2.3 Autocovariance and Autocorrelation functions 

Let {Xn} be a stochastic process, the covariance between Xn and 

Xn+k is known as the autocovariance at lag k and is defined by 

Y k = Cov(X nXII+k) 

= E(XnXn+k) - E(Xn )E(Xn+k)' 

The correlation coefficient between two random variables Xn and 

Xn+k obtained from a stationary process {Xn} is called autocorrelation 

function (ACF) at lag k and is given by 

Cov(XIIXII+k ) Yk 

Pk =-r============= 
~Var(Xn).var(Xn+k) Yo 

therefore Po = 1, Pk = P-k and -I :::; Pk :::; 1. 

1.2.4 White Noise Process 

A sequence of uncorrelated random variables with zero mean and 

constant variance is called a white noise process. 

1.2.5 Gaussian Process 

A sequence of random variables {Xn} defining a stationary 

process can have any probability distribution. A stationary process {Xn} is 

called a Gaussian process if the joint distribution of (Xn+1,Xn+2• . ,Xn+k) is 
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a k-variate normal for every positive integer k. Now we consider some 

standard time series models, which are frequently used. 

1.2.6 Autoregressive Process 

One of the most useful and simplest models used in time series 

modelling is the autoregressive model of appropriate order. A sequence of 

random variables {Xn,n ~ O} is said to follow an autoregressive process 

of order p or AR (p) if it can be written in the form 

(1.2.1 ) 

where {Gn } is a sequence of independent and identically distributed 

random variables with zero mean and variance (Ye 2 • The AR (I) sequence 

{Xn} is stationary if it satisfies the condition that I~II < I (for details refer 

Box and Jenkins, 1970). 

1.2.7 Yule-Walker equation 

An important recurrence relation for estimating the parameters of 

an AR (p) model is due to Yule-Walker (see Box and Jenkins, (1970)). 

They give the autoregressive parameters in terms of autocorrelations. 

Multiplying both sides of equation (1.2.1) by Xn-k and taking expectations 

we get a difference equation in autocovariance. Also, the autocorrelation 

function satisfies the same form of difference equation. 

Pk =~IPk-1 +~2Pk-2 +"'+~/,Pk-1' ' k=1,2,3, .... 

The variance of an AR(p) process is 
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1.2.8 Moving Average Process 

A qth order moving average process {Xn} is defined by 

where {Gn } is a sequence of independent and identically distributed 

random variables with zero mean and variance a 2 e • 

The AR model can be generalized to the integrated AR models as follows. 

1.2.9 Autoregressive Integrated Moving Average (A RIMA) process 

Many empirical time series do not have homogeneous stationary 

behaviour. In such cases the stationary behaviour can be obtained by 

taking suitable differences. The models for which dlh difference is 

stationary is a mixed autoregressive integrated moving average process 

and is given by 

where, 

e(B)=l-e,B-eJB~- ... -e B", 
- 1/ 

~ix -X -X 
11 - 11 11--1'1 
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1.2.10 Box-Jenkins Modelling Techniques 

Box and lenkins (1970) proposed a three-stage method for 

selecting an appropriate model for the purpose of estimating and 

forecasting a univariate time series. We can describe the stages as follows. 

Identification stage 

In this stage we visually examme the plots of the senes, the 

autocorrelation function and the partial autocorrelation function (P ACF). 

If the variance of the series changes along with the time, a logarithmic 

transformation will often suitable for the changes in the variance. If the 

series or its appropriate transformation is not stationary then the next step 

is to determine the proper degree of differencing. For that we can use the 

plot of the time series, plot of sample ACF, sample variance of the 

successive differences etc. The last step in the identification stage is to 

determine the values of the order 'p' and 'q'. It can be obtained by 

comparing the sample ACF and P ACF with theoretical patterns of known 

models. The values of 'p' and 'q' are usually small. After identifying a 

tentative model it is necessary to estimate its parameters by suitable 

methods. 

Estimation Stage 

A detailed discussion on this is given in Box and Jenkins (1970). 
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Diagnostic Stage 

Once we identify a model and its parameters are estimated, the 

next step is the diagnostic stage. That is, to verify whether the selected 

model satisfies the assumptions. If the assumptions are not satisfied, 

continue the above steps till a good model is obtained. After identification 

of a good model for a given set of data, it can be used for forecasting. 

Forecasting 

There are various forecasting methods available depending on the 

structure of the time series model. A good reference is Box and lenkins 

(1970). 

In practise, some of the basic assumptions, especially the linearity 

and the normality of the series, of standard Box lenkins methodology are 

not satisfied. Therefore, recently there has been a growing interest in 

studying non-linear and non-normal time series models. The following 

sections provide an introduction to those time series models and a detailed 

study on some of these models are presented in the subsequent chapters. 

1.3 Non-Linear Time Series Models 

A linear time series model is often adequate in one step ahead 

prediction. However, a linear differential equation is totally inadequate as 

a tool to analyse more intricate phenomena such as limit cycles, time 



9 

reversibility, amplitude frequency dependency etc (Tong, 1980). The non­

linear time series modelling gives a more detailed understanding of the 

data. Tong has given a detailed discussion of the merits and demerits of 

the linear Gaussian models. Here we describe some of the non-linear 

models and later we use these models to analyse a set of data. 

1.3.1 Threshold Autoregressive (TAR) models 

The concept of a threshold is the local approximation over the 

state, that is the introduction of regimes namely thresholds. The thresholds 

allow the analysis of complex system by decomposing it into simpler sub 

systems. A time series {Xn} is said to follow TAR process if, 

n 

X = '" (j) + " ",(J) X . + £ (j), 
n "Yo ~ '1', n-, n , if r j _\ < X n _d < rj , 

;=\ 

where j=1 ,2 ... k and d is a positive integer, k is the number of regimes and 

d is the delay parameter. These models allow the autoregressive 

coefficients to change over time and the changes are determined by 

comparing the previous values back shifted by a time lag d. 

1.3.2 Random Coefficient autoregressive (RCA) models 

The idea of mUltiplicative noise may be further extended to the 

class of RCA models. A time series {Xn} is said to follow a RCA model 

of order kif Xn has the form 

k 

XII = ICfJ, + BCn))XII _1 +£11 
1=1 
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where {En} is a sequence of independent and identically distributed (iid) 

random variables with zero means and variance (J2j , Pi. i=l ,2, ... k are 

constants, {B(t)} is a sequence of 1 x k vectors with zero mean and 

£[B1' (n)B(n)] = C. 

the term B T (n) is the transpose of the vector B(n). 

1.3.3 Bilinear Models 

Bilinear models lie somewhere between fixed coefficients 

autoregressive models and random coefficient models. A time senes 

{Xn} is said to follow a bilinear model if it satisfies the equation 

pr" 

Xn + Ia;Xn_; = a + I IbjkXn-jGn-k + Gn 
;=1 j=1 k=1 

where {En} is a sequence of iid random variables usually but not always 

with zero mean and a, b and a are real constants. 

1.3.4 Autoregressive Models with Conditional Hcterosccdasticity 

(ARCH) 

A sequence {Xn } is said to follow an ARCH model if Xn is of the form 

v - r;; 
An -CnV"" 

where {En} are iid random variables with standard normal distribution and 
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2 2 2 
h" =r+t/>,X,,_, +t/>2X"-2 +···+t/>rXn-r 

where Yi~O, ~i~ 0 for all i. We can see that {Xn2
} follows a bilinear model 

if {Xn} follow an ARCH model. Ifwe write the above as 

where <p~O for all i, then {Xn} is said to follow a generalized ARCH 

model or GARCH model. 

In chapter 2 we consider the applications of two non-linear models 

viz. TAR and ARCH models to analyse a set of real data. 

1.3.5 Heteroscedasticity 

The assumption of constant variance of the disturbance term of a 

regression equation is not always valid. For example, the variance of food 

expenditure among families may increase as family income increases. 

Similarly the variance of public spending may increase with city size. 

Heteroscedasticity is the formal name for the case of non-constant 

variance of the disturbance term. In applied research, heteroscedasticity is 

usually associated with data. Consider a regression model 

n = 1,2,3 ... N 

Then the heteroscedasticity assumption is 

J ) J 

£(&,,-) = kt-er 

for all i 
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1.3.6 Financial Time Series 

The fluctuations in financial markets attract our attention 

frequently. Daily reports on news papers, television and radio inform us 

the variation in the stock markets, currency exchange rates and gold 

prices etc. It is often desirable to monitor the price behaviour frequently 

and try to understand the probable development of price fluctuations. 

Suppose we planned a holiday abroad and we need to purchase some 

currency, we may look at the latest exchange rates from time to time and 

try to forecast them. We call the series of prices thus obtained as financial 

time series. 

The first objective of the price studies is to understand how prices 

behave. That is such a complex subject, for that we have to look into the 

distribution of the actual prices. Tomorrow's price is uncertain and it must 

therefore be described by a probability distribution. The second objective 

is to use our knowledge of price behaviour to take better decisions. 

Decisions based on better forecasts are profitable in trading commodities. 

Forecasts of the variance of the future price changes are very helpful in 

assessing prices at the relatively new option markets. This innovation 

leads to the development of suitable methods for analysing financial time 

series. Here in this thesis we consider the applications of ARCH models. 

1.4 Non-Gaussian Time Series Models 

Recently a considerable amoLlnt of work appears in non-GaLlssian 

time series models. The search for such time series models arises form the 

fact that many of the naturally occurring time series are clearly 11011-
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Gaussian. The method for analysing time series proposed by Box and 

Jenkins (1976) assume Gaussianity. Similarly the basic assumption in the 

non-linear models proposed by Tong(1983) also use Gaussian 

assumptions. However, most of the empirical time series are far from 

Gaussian. Some of the non-Gaussian time series models introduced in the 

literature are by Graver and Lewis (1980), Lawrence and Lewis (1985) 

and Tavares (1980). A bibliography on non- Gaussian time series is given 

by Balakrishna (1999). The rest of this section gives a small review of 

non-Gaussian time series. 

The non-Gaussian time senes provides stationary sequences 

having non-normal marginal random variables. One of the basic problems 

in non-Gaussian time series is to identify the innovation distribution for a 

specified marginal (Balakrishana, 1999). In the case of Gaussian models 

both Xn and Et have normal distributions whereas it is not the case in non­

Gaussian models. Adke and Balakrishna (1992) have studied non­

negative random variables having exponential and Gamma distributions. 

They studied the properties such as mixing , time reversibility and 

estimation problems for EAR(I) and NRAR(\) processes. Jayakumar and 

Pillai (1993) introduced Mittag-Leffler process; Abhraham and 

Balakrishna (1999) introduced inverse Gaussian AR process. Similarly 

other AR( 1) models are available with marginal distributions such as 

Logistic, exponential and Laplace. The AR models with infinite variance 

innovation is studied by Cline and Brockwell (1985) and Brockwell and 

Davis (1987). 

Generating functions such as Lap1ace transform and characteristic 

functions are the tools used for finding solutions for AR models. But if the 
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generating functions do not have closed fonns it is difficult to find these 

solutions. Another important non-Gaussian process is the autoregressive 

minification process. This process with marginal distributions such 

We~ bull, logistic etc. are studied by many authors. Balakrishna and 

Jayakumar (1997, 1997a) have studied multivariate versions of non­

Gaussian models for certain distributions like Pareto, semi-Pareto and 

exponential. An important problem involved is the estimation of the 

parameters. Now we explain the definitions of some of the probabilistic 

properties of a time series which are useful in studying the properties of 

the estimators. This is followed by a summary of the thesis. 

1.4.1 Ergodic Sequences 

A sequence {Xn} ofr.vs is stationary and ergodic if Pr{(XO,X\,X2, 

... )EA} is either zero or one whenever A is a shift invariant event. 

1.4.2 Mixing Properties 

The strong mixing properties for a sequence of random variables is 

useful as a tool in establishing central limit theorems. [n the context of 

time series, the asymptotic normality of various estimators can be 

established by assuming the strong mixing properties of the series. We can 

define the strong mixing property as follows. 

Let {Xn} be a sequence of random variables in the probability 

space (D.,S,P). Then {Xn} is said to be strong mixing if 

a(m) = sup 1 P(A n B) - P(A).P(B) I, ~ 0 n ~ Cl) 
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when the supreme is taken over all AEFo'\ BEFn+m"', where Foil and Fntm'l­

are the are the minimal sigma fields induced by (Xo , Xl, ... ,Xn) and 

(Xn+m,Xn+m+I, ... ) respectively. 

1.4.3 Harris Recurrent Markov Cahin 

A Markov chain {Xn} is Harris recurrent if there exits a non-tri val 

a-finite measure <r(.) on (S,8) such that <r(E»O implies that Px[XnE E, for 

some n21 ]=1 for all x in S where Px refers to the probability measure 

corresponding to the initial condition Xo=x. 

1.4.4 Time Reversibility 

A stationary time series {Xn} is said to be time reversible if for 

every k and every nl,n2, ... ,nk, {Xnl ,Xn2, ... ,Xnd and {X-nl,X-n2, ... ,X-nd 

have the same joint probability distributions. Otherwise {Xn} is said to be 

time irreversible. 

1.5 Summary of the Thesis 

In this thesis we consider some of the non-linear Gaussian and 

non-Gaussian timc series models and mainly concentrated in studying the 

propcl1ics and application of a tirst order autorcgrcssive process with 

Cauchy marginal distribution. The major part of the thesis is devoted to 

Cauchy AR (1) process. The main objective here is to identify an 
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appropriate model to a given set of data. The data considered are the daily 

coconut oil prices for a period of three years. Since it is a price data the 

consecutive prices may not be independent and hence a time series based 

model is more appropriate. It is well known that the price data usually 

follow heavy tailed distributions. One of the important distributions to 

study the price behaviour is the Cauchy distribution. The chapter-wise 

summary is as follows. 

The second chapter discusses mainly the non-linear Gaussian time 

senes models. There are three main sections in this chapter. The first 

section discusses the application of a threshold autoregressive (TAR) 

model. Here we try to fit a TAR model to a time series data. This model 

was introduced by Tong(1980). Because of the complexities of the method 

proposed by Tong , it is not widely used in practice. Tsay (1989) 

proposed a simultaneous method for testing the non-linearity and 

identification of the delay parameter. Here we essentially follow the 

method proposed by Tsay(l989). This Section explains the methodology 

used for the analysis followed by a detailed analysis of the data. The fitted 

model is compared with simple autoregressive model. The results are in 

favour TAR process. Another important non-linear Gaussian model 

discussed in this chapter is the ARCH model introduced by Engle(l982). 

This Section discusses the importance of this model followed by the 

definition and the modelling technique. Here also we mainly concentrate 

on the applications of the ARCH model. A discussion of the an empirical 

data analysis is also included here. The third important non-linear model 

we discussed here is the TARCH models, that is threshold models with 

ARCH effect. This threshold plus ARCH effect has many applications in 
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modelling financial time series. Here we discusses the definition of the 

model followed by a real data analysis. 

The chapter 3 is the most important part of the thesis, where we 

define a first order autoregressive process with one-dimensional Cauchy 

marginal distribution. The first Section contains an introduction to the 

chapter, while the second Section gives the definition, the innovation 

distribution and the joint distribution of 'n' consecutive random variables 

of the process. This Section also discusses the properties like ergodicity, 

mixing property and time reversibility. The rest of this chapter discusses 

various estimation procedures used to estimate the unknown parameters of 

the process. The maximum likelihood estimation is discussed in section 

3.3. Since the likelihood equations do not have closed form for their 

solutions, we obtained mle by Newton-Raphson method. The estimators 

are consistent and asymptotically normal under certain regularity 

conditions .. Therefore this is followed by the verifications of the regularity 

conditions. Since some of the regularity conditions do not hold when both 

of the model parameters are unknown, we assume that one is known and 

verify the conditions. Here also we find some problems when AR 

coefficient is unknown. Therefore we go for an alternative method of 

estimation. The alternative method of estimation is discussed in the 

Section 3.4. Here we use the method proposed by Brockwell and Davis 

(1987) for estimating the AR coetlicient. The scale parameter is estimated 

using an empirical distribution function method The asymptotical 

properties of the estimators are also discussed in this Section 

The chapter 4 discusses the application of the Caucl1y AR( I) 

model introduced in the previous chapter. The tirst section is a simulation 
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study to investigate the performance of the estimators and the second 

section is a real data analysis. This section explains how we arrive at this 

model. The daily coconut oil prices at Cochin market for period of three 

years is used for the analysis. The importance of this commodity, its 

characters, nature etc. are discussed followed by the estimation of the 

parameters using different methods. 
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CHAPTER-2 

SOME NON-LINEAR GAUSSIAN TIME SERIES 

MODELS 

2.1 INTRODUCTION 

Linearity is one of the basic assumptions in the classical analysis 

of time series by Box-Jenkins methodology. But non-linearity can often be 

detected in time series. There are several types of non-linear time series 

models proposed by Tong (1990), among those we studied the 

applications of some of these models. In this chapter we consider some of 

the non-linear Gaussian time series models. Section 2.2 discusses the 

definition, properties along with an empirical analysis of a Threshold 

Autoregressive (TAR) model, Section 2.3 gives the application of 

Autoregressive Conditional Heteroscedastic models (ARCH) and the 

Section 2.4 discusses Threshold Autoregressive Conditional 

Heteroscedastic (T ARCH) models. 

2.2 THRESHOLD AUTORESSIVE MODELS 

The idea of threshold autoregressive models (TAR) was introduced 

by Tong (1980a). The essential idea underlying the class of threshold AR 

models is the piece-wise liberalization of non-linear models over the state 
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space by the introduction of the thresholds. These models are locally 

linear. Similar ideas were used by Priestely(1965). Priestely and 

Tong(1978) and Ozaki and Tong(1975) in the analysis of non-stationary 

time series and time dependent systems, in which local stationary was the 

counterpart of the local linearity. The local linearity has an important role 

in practical situations. For example, Tong (1980a) has adopted piece-wise 

linear models in the analysis of Canadian lynx data and Wolf Sunspot 

numbers. 

Motivated by the complex behaviour of the solutions of non-linear 

systems, Tong(l990) has introduced a class of time series models which 

could reproduce some of the features of these solutions. In threshold 

autoregressive models, different autoregressive models may operate and 

the chang~s between the various autoregressions is governed by threshold 

values and a time lag. These models have been reviewed by many 

researchers and compared with classical time series models with respect to 

data sets such as Wolfs Sunspot numbers and Canadian lynx data. Tsay 

(1989) proposed a simultaneous method for testing the non-linearity and 

the identification of the delay parameter. Here we essentially follow the 

steps proposed by Tsay (1989) and compare it with a simple 

autoregressive (AR) model. In the following sections the TAR modelling 

technique is briefly described followed by the results and discussions. 

2.2.1 Definition 

A time series {Xn } is TAR process if it follows a model of the 

fOfm 
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I 

X = A, (J) + " A,(}) X + £ U) 
n '1"0 ~'f'1 n-I n (2.2.1 ) 

1=1 

where j= 1 ,2 ... k, k is the number of regimes, with the regImes being 

separated by k-I threshold values rj (ra = -<X); r
k 

= +00), dE N+ is the delay 

parameter (d :S: p), {ao(i), a2(i)}, i=I,2 .... p, j=I,2 ... k are the model 

parameters regime j and {En (i)}, j= 1,2 ... k are sequences of independent 

normal variates with zero mean and variance (J2 &j. 

The procedure proposed by Tong(l980) is complex. It involves 

several computing stages and there was no diagnostic statistic available to 

assess the need for a threshold model to a given set of data. Tsay( 1989) 

proposed a procedure for testing the threshold non linearity and building, 

if necessary, a TAR model. The procedure consists ofthe following steps. 

Stepl- Select the order 'p' of the autoregression and the set of possible 

threshold lags's'. 

Step2- Fit an arranged autoregressive model for a given 'p' and perform the 

threshold non-linearity test. If non-linearity of the process is 

detected, select the delay parameter dp• 

Step3- For a given 'p' and 'dp' locate the threshold values using the scatter 

plots. 

Slep4- Refine the AR order and threshold values, if necessary, in each 

regime by using linear autoregression techniques. 

The AR order 'p' in 'step l' may be selected by considering the 

autocorrelation function (ACF) and partial autocorrelation function 



22 

(P ACF) or some information criteria like Akaike information Criteria 

(AIC) as described in Enders (1995). 

2.2.2 Tests for non-linearity. 

Before estimating a TAR model, it is necessary to detect specific 

non-linear behavior in the series by using an appropriate test. Classical 

non-linearity tests based on maximum likelihood are complicated as the 

likelihood function is not differentiable with respect to the unknown 

threshold values rj (Tong, 1990). Several researchers have proposed 

methods for testing these types of non-linearity. For example see Tong and 

Lim 1980, Kennen 1985, Tsay 1986, Petrueelli and Davis, 1986. Here we 

prefer the test proposed by Tsay (1989) for the reasons stated above. It is 

fairly simple and widely applicable. Its asymptotic distribution under the 

linear manipulation is the classical F-distribution. The procedure is as 

follows: 

Consider an example of TAR (2,p,d), which consists of two 

regimes and one threshold value r,. Assume the order of the 

autoregression is 'p' in each regime and the delay parameter is equal to 'd'. 

Then the model can be written as: 

p 
X = A. (I) + " A. (I) X + c (I) 

n 'f'o ~'f/v n-v n 

1'=1 

p 

= rPo (2) + LrP,.(2) X
n

_
l
• + c"m (2.2.2) 

v=1 

where nE {p + I, ... ,I}, I being the number of observations and other 

parameters are defined as before. Now arrange the observations in the 
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ascending order. Let 1tj be the time index of ith smallest observation, then 

the above model can be written equivalently as 

P 
(I) " (I)X (I) 

X",+" =cPo + ~cP" ",+"_1' +£,7,." if i ::;; s 
"=1 

p 

= At (2) + " At (2) X + £ (2) if i>s , 
'1'0 ~'f'v 1r,+d-v .tr,+d (2.2.3) 

"=1 

with i E {p + 1, ... , m - d} and s satisfying X,,-. < rl ::;; X". +1' This is an 

arranged autoregression with the first's' cases in the first regime and the 

rest in the second regime. The arranged autoregression provides a mean by 

which the data points are grouped so that all the observations in a group 

follow the same AR model. The separation does not require the precise 

value of rl; it only requires that the number of observations, in each group 

depends on rl. 

Tsay described the motivation for the test as follows. If one knew 

the threshold value rl. then the consistent estimator of the parameters could 

easily be obtained. Since the threshold values are unknown, one must 

proceed sequentially. The least squares estimates of the ~,,(I) of cP" (I) is 

consistent if there are large numbers of observations in the first regime (ie. 

many i::;; s). [n this case, the predictive residuals are white noise 

asymptotically and orthogonal to the regressors {X "-,+d-I' I v = 1,2, ... , p} . 

On the other hand, when 'i' arrives at or exceeds's' the predictive residual 

for the observation with time index 1[,. + d is biased because of the model 

changes at time 1[, + d . That is, the predictive residual is a function of the 

regressors {X ir,+"-I' I v = 1,2, ... , p} . Consequently the orthogonality 
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between the predictive residuals and the regressors is destroyed once the 

recursive autoregression goes on to the observation whose threshold value 

exceeds rl. Based on the above, one way to test the non-linearity is to 

regress the predictive residuals of the arranged autoregression (2.1.3) on 

the regressors {X Il",+d-v I v = 1,2, ... , p}, and use the F-statistic of the 

resulting regression. The F-statistic is defined in (2.2.6) below. 

Consider the arranged autoregression (2.1.;3), let Pm be the vector 

of least squares estimates based on the first 'm' cases, Pm be the associated 

X'X inverse matrix and Xm+l, the vector of regressors of the next 

observation to enter the autoregression, namely X Jr +d. These vectors and 
",·d 

matrices are given below. Then the recursive least squares estimation of 

the parameters can be done using the following algorithm given by Ertel 

and Fowlkes (1976). 

Here 

X 
f( I'd +"-1 X 

"I'tl"} I' 

and X = 
X 

f(p+2+ d - 1 X 
f(p+2+ d -P 

X Jr,,_d+d-p 

Dm+1 = 1+ X'm+IPmXm+1 

K P,,,X,,,.I 
m+l= and 

D"1+1 

( 
X",.I X·",.I Jp 

P m+ I = f - P,,, ", 
D",+, 

and the predictive residual is given by 
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A _ X du ... , - X'Pm 
e d+ltm+(- ~ 

V Dm+1 

(2,2.4 ) 

In the above equations 'I' denotes an identity matrix of appropriate 

order. The predictive residuals can also be used to locate the threshold 

values by using various scatter plots. For fixed 'p' and 'd' the effective 

number of observations in the arranged autoregression is I-p. Assume that 

the recursive estimation begins with m = _I + p observations so that there 
10 

are (l-p-m) predictive residuals available. The test statistic proposed Tsay 

defines the classical F-.statistic as below. Corresponding to the regression 

of the predictive residuals (recursively estimated) of the arranged 

autoregression on the regressors (1, Xlti+d-! ... Xlti+d-p). That is, if 

p 

e,,+d =lUo + ""lUvX,,+d_v +C,,+d 
I ~ I I 

v=1 

for i = b+ I, ... n-p and then compute the F-statistic as 

(Ie 2
n - Ic211)/(p+l) 

F(p,d) = -------

(2.2.5) 

(2.2.6) 

The summations are over the observations in (2.1.4) and ((n is the 

least squares residual' of (2.2.5). The above statistic follows approximately 

an F-distribution, which stated in the following Lemma proved by Tsay 

(1989). 

Lemma 2.2.1: Suppose that Zt is a linear stationary AR process of order 

'p'. That is, Xn follows model (2.2.1) with k= 1. Then for large n, the 
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statistic F(p,d) defined in (2.2.6) follows approximately an F-distribution 

with p+ 1 and (l-2p-b-l) degrees of freedom (d.f). Further more, (p+ 1) 

F(p,d) is asymptotically a chi-squared random variable with (p+ 1) d.f 

The relative power, feasibility and simplicity are the major 

considerations in proposing the above statistic. Also since it requires only 

a sorting routine and the linear regression method, it can be easily 

implemented. The next step is the identification of TAR model in the 

estimation of the delay parameter and threshold values. 

2.2.3 Identification of the delay parameter. 

The threshold variable plays a key role in the non-linear nature of 

the model. For model (2.2.1) the specification amounts to the selection of 

the delay parameter d. Tong and Lim (1980) used AIC for the selection of 

d after selecting all other parameters (threshold values and AIC 

coefficients). Tsay(l989) proposed a different method, that is to identify 

the delay parameter 'd' and then the threshold values. For a given 'p' the 

delay value dp to be chosen from {I ,2 ... p} as follows: 

dp = max{F(p,8)}, 
1:s8:sp' 

~ 

where F(p,8) is the statistic defined by (2:1..6). That is, dp is the value 

that maximizes F(p,8). 
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2.2.4 Identification of the threshold values 

A graphical method is used to locate the threshold values. Two 

scatter plots are used for this purpose. 

(l) The scatter plot of predictive residuals of (2.2.4) versus X n-d • A 
p 

non-random change will be observed at the threshold values, since 

the predictive residuals will be biased at the thresholds. It is closely 

related to the traditional on-line residual plot for quality control. It 

shows the locations of the threshold values directly. 

(2) The scatter plot of the t-ratios of recursive estimate of an AR 

coefficient versus X n- d ,where the t-ratio is given by 
p 

t = --;==13::::::",=:+1== 
~RSS* R(I,I) , 

RSS denote the mean residual sum of squares and R(I,I) is the IIIl 

diagonal element of (X' X t, In this case, the t-ratios have two 

functions: (a) they show the significance of that particular AR 

coefficient, and (b) when the coefficient is significant the t-ratio 

gradually and smoothly converge to a fixed value as the recursion 

continues. To explain the use of the second scatter plot to identify the 

threshold values, consider a simple TAR models with a single 

threshold given by 

X 
- d,(I)X +. (I) 

" - 'f' 11_\ l" 

=d,(2)X +£ (2) 

'f' 11-1 " 
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The t-ratios behave exactly as that of a linear time series before the 

recursion reaches rl. Once rl is reached the estimate of ~(I) starts to change 

and t-ratio begins to deviate (see Tsay, 1989). The pattern of the gradual 

convergence of the t-ratio starts to turn and changes direction at the 

threshold value. This behaviour of the t-ratio is used to identify the value 

of the threshold. 

2.2.5 Empirical Example 

In this section we apply the above procedure to a set of real data. 

The data used in this study consists of the monthly coconut oil prices for a 

period from January 1978 to December 1996, which is presented in 

Appendix-I. The series consists of 228 observations. The Fig. 2.1 shows 

an upward trend in the process during the period. Apart from the sharp 

increase, fluctuations in prices within the year can also be seen. 

Since the observed prices arise in a time sequence. it is possible 

that the consecutive observations are dependent. Therefore a time series 

model based approach has been tried to explain the fluctuations other than 

trend and seasonal variations. A fairly good estimate of the parameters of 

the series is obtained only if the series is stationary. Plotting of the original 

data shows that it is not stationary. Therefore we take a first order 

difference of the prices (that is, if Xn is the price sequence then their first 

order difference is V'Xn = Xn-Xn-I. n=1 ,2 .... ) for further analysis (rig.2.1 , 

given below). 

Firstly we try to model the pnces uSll1g the Univariate Box 

Jenkin's (UBJ) method and then using the threshold AR method. In the 
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UB] technique a model can be fitted to data by studying the behaviour of 

the characteristics such as ACF and PACF or by using some Infonnation 

criteria like AIC. After identifying order and nature of the relationships, 

the model parameters are to be estimated. These models can be used for 

short term forecasting, because most of the auto regressive models place 

emphasis on recent past rather than its distant past. The ACF and PACF 

converge to zero reasonably quickly (Fig.2.2). The cutoff of the PACF 

after the lag two (Fig.2.2) recommends an autoregressive process of order 

two for the series. Also an examination of the AIC and residual sum of 

squares (RSS) for different orders of 'p' and 'q' (Table 2.1) suggests an 

AR(2) is more appropriate for the series. After fitting a UB] model a non­

linear model was also fixed to get a better representation. 

Fig 2.1 
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ACF and P ACF of First Order Difference 

Table 2.1 : Estimates of the parameters of ARMA(p,q) 

p=1 P=2 p=1 p=2 p=2 
q=O q=O q=1 q=1 q=2 

Constant 22.77 24.89 25.10 24.90 22.36 
(16.37) (21.16) (21.31 ) (21.23) (16.92) 

AR(I) -0.308 0.243 0.688 0.247 1.446 
(0.065) (0.066) (0.136) (0.286) (0.217) 

AR(2) - 0.236 - 0.235 -0.616 
(0.067) (0.108) (0.163) 

MA(I) - - 0.401 0.004 1.193 
(0.166) (0.293) (0.217) 

MA(2) - - - - -0.575 
(0.129) 

AIC 2981 2306 2974 2973 2971 
RSS 659277 6262937 6362139 6243104 6169479 

ErrorVariance 4833 27844 28381 27699 27753 

AIC - Akalke InformatIon Cntena. AR(p}-Autoregresslve process of order 

'p',RSS-Residual Sum of Squares MA(q}-Moving Average process of order 'q' 
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The first step in the Tsay (1989) procedure is to identify the order 

of the AR process. From the above details we can choose the order as two. 

Therefore the possible values of the delay parameters are either d=1 or 

d=2. The next step is to test the non-linearity using the statistic (2.2.6). 

Recursion starts with 25 observations, so that there are 200 predictive 

residuals. The values of the F-statistic are given in Table 2.2. The p-value 

Table 2.2 Estimates of the autoregressive parameters for TAR (3,2,1) 

and AR (2) 

Results for 
TAR (3,2,1) AR(2) 

Constant -45.11 10.88 67.67 24.89 

1 .1088 0.0297 0.3419 0.243 

(0.145) (0.118) (0.092) (0.066) 

2 -0.00418 (-0.123) 0.0169 0.236 

(0.146) (0.121) (0.125) (0.067) 

AIC 528 702 1022 2306 

RSS 2168589 1044825 3191737 6262937 

Residual 

Variance 44257 14313 32569 27844 

Values F-statistic 

d F(8,d) 

1 1.81 

2 1.20 
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is maximum for d=l. After identifying the delay parameter the next step is 

to locate the threshold value using the t-ratios of the recursive estimates of 

an AR coefficient versus VXn-dp. The scatter diagram reveals the threshold 

value directly. The t-ratios of the estimates behaves exactly as those of a 

linear time series before the recursion reaches the threshold value rl. Once 

rl is reached, t-ratio begins to deviate. The pattern of the gradual 

convergence of the t-ratio is destroyed. In effect, the t-ratio starts to turn 

and, perhaps, changes direction at the threshold value. The scatter plot 

(Fig 2.3, below) of the t-ratios indicate the possible threshold values are 

around -100, 40 and 100. Since it needs a minimum of 50 observations for 

accurate parameter estimation, we choose the value as -100 and 40, that 

is, threshold model with three regimes. There are 51, 74 and 100 

observations in the first, second and third regimes respectively. Since Ale 

is minimum for p=2 and rl=-IOO and r2=40 we choose the order of AR as 

two and the threshold values as -100 and 40. The parameters are estimated 

for all the models (Table 2.2). The identified TAR (3,2, I) is as follows. 

V Xn = -45.11 +0.1088VXn_1 -0.00418 VXn-2 + E(I)n if V Xn-I~ -lOO 

= 10.88 + 0.0297VXn_I+0.12370VXn_2+E(2)n if-IOO<VXn_I~40 

= 67.69 +0.3419VXn_l- 0.3250VXn_2 + E(3)n if otherwise. 
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In the diagnostic stage, we compute the ACF of the residuals for 

each of the models. Most of ACF are out of the 2a limit shows that the 

residuals are independent. The sum of squared residuals and AIC values 

are less for TAR model than those for an AR model (see Table 2.2). The 

forecast percent error (Fig 2.4) is also minimum for the TAR model. 

These observations are in favour of modelling the series by a TAR 

process. 

Forecast Percent Error 40,----------------------------------------------, 

... 
~ 10 
V 

i: 
11) 
u 

0 ... 
11) 

0... 

·10 
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-30 
205 210 215 220 225 

__ AR __ TAR 

Fig 2.4 

Here the values of the F-statistic do not show any non-linearity in 

the series. But no other factors like the RSS, AIC etc are in favour of TAR 

process. The percent forecast error for TAR process is lower than that of 

an AR process_ Thus most of the factors are in favour of modeling the 
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coconut oil prices using a TAR process. The TAR process gives a better fit 

for coconut oil prices. For an observation Xn, the model change is 

identified by using the difference of previous two observations. 

2.3 AUTO REGRESSIVE CONDITIONAL HETEROSCEDASTIC 

MODELS 

One of the basic assumptions In the classical Box-Jenkins 

methodology is that, the variance of the error random variable is a 

constant. But most of the financial and economic time series usually 

exhibit the characteristic feature that the variance at time 'n' is some 

varying function of the variances at times (n-l), (n-2), ... Recently, most 

of the economic research is concerned with extending the Box-Jenkins 

methodology to analyze this type of time series behavior. One of the most 

important tool in characterizing such changes in variance is the 

autoregressive conditional heteroscedastic (ARCH) model introduced by 

Engle(l982). A stochastic variable with constant variance is cal1ed 

homoscedastic and varying variance is heteroscedastic. A brief description 

ofhomoscedasticity and heteroscedasticity is given in Chapter 1. 

The prices of commodities, stock market indices, stock returns etc. 

appear to vary through time according to some probabilistic laws. If the 

time series of stock returns consists of independent and identically 

distributed random variables, the process is called random walk process. 

In the early 1960's, the random walk model was favorite for modelling 

financial data. Since then, the independent and identically distributed 

nature has been challenged by many researches, for example see the 
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references in Li (1995) in the field of finance. In random walk models, it is 

difficult to predict the direction of the future return by using the past 

return, the future magnitude is more predictable (see Li (1995». This 

invalidates the assumptions of the random walk hypothesis and points out 

the necessity of modelling time series, which have changing conditional 

vanances. 

The ARCH model proposed by Engle (1982) becomes widely 

acceptable for financial time series with conditional heteroscedasticity. If 

the series exhibits periods of very large volatility followed by periods of 

relative tranquility (Enders, 1995), the assumption of constant variance 

becomes inappropriate. Also forecasting will be meaningful, if we can 

forecast the future prices along with their variances. If ARCH effect is 

present, ordinary method of fitting an ARMA model to the time series lead 

to ineffective estimates and sub optimal inference (Bollerslev et aI., 1992). 

Here in this part, the autoregressive nature of the monthly coconut prices 

is studied by taking into account the ARCH effect present in the series. 

2.3.1 Description of ARCH model 

There are several models for changing variances and covariances. 

One approach to forecast the variance is to introduce an independent 

(exogenous) variable that helps to predict the volatility. Consider the 

simplest case in which X"=C,,V"_I, where X" is the variable of interest. ell 

is a white noise process with E(c,,)=O and Var(<=,,) = (J~ and YII _ 1 is the 

independent variable observed at time' n-\ '. The condit ional variance of 

X" is (J2y2,,_1. which depends on the realized values of V" If the magnitude 
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of y 2
n_1 is large (small) the variance of Xn will be large (small) as well. 

Further more, if the successive values of {Yn} exhibit positive serial 

correlation, the conditional variances of Xn also follows positive serial 

correlation. In this way the introduction of the independent variable can 

explain the periods of volatility. The procedure is also simple to 

implement. A major difficulty in this strategy is that it requires the 

specification of the changing variance. Also we may not have theoretical 

reason for selecting one candidate for the Yn sequence over the other 

reasonable choices. The bilinear model given in (1.3.3) also allows 

conditional variance to depend on the past realization of the series. The 

model is Xn= CnXn-1 and the conditional variance is cr2X2n_1. A similar 

model, not exactly the same but very close to the bilinear model was 

introduced by Engle(1982). He showed that it is possible simultaneously 

to model the mean and variance of the series. Before getting into the 

details of the model, we shall explain some of the importance of the 

conditional forecasts. To explain this, let us consider a AR( 1) model 

defined by 

and suppose that the parameters are already estimated. 

A forecast OfXn+1 is given by 

I f we lIse the condit ional mean to forecast X .. I , the forecast error variance 

IS 

Instead, ifunconditional forecast arc used, then 
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and the unconditional forecast error variance is 

Var(X ) = I~(X _~)2 
" n 1 - <PI 

Since _1_, > 1, the unconditional forecast has a greater variance than 
1 - <PI· 

that of a conditional forecast. Thus conditional forecasts are superior to 

unconditional forecasts in terms of their variances. The model proposed by 

Engle (1982) is 

x" = [;"A, , (2.3.1) 

where {En} is a white noise process with E( En)=O and Var( En)= 1 and 

(2.3.2) 

00 and al are constants such that 00>0 and 0< al . Also assumes that En 

and Xn-I are independent of each other and En follows a standard normal 

distribution for each 1. Let qJ" = {Xl' j S /I} be the past history of { Xn} Up 

to time n. It is referred as the information set up to n. Also assumes the 

conditional distribution of Xn given qJ" I is normal with mean zero and 

variance h". This is an ARCH process of order one The propeI1ies of an 

ARCH process are discussed by Engle (1982). The conditional variance 
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follows an autoregressive process. In order to ensure that the conditional 

variance is positive it is necessary to assume that the unknown parameters 

Uo and UI are positive. Thus {Xn} is a zero mean serially uncorrelated 

process with non-constant unconditional variance and constant conditional 

variance. Also it generates a data with fatter tails than the normal density 

as it has the coefficient of kurtosis given by 

Note that y>3. 

E(Xn4) 

r = [E(Xn 2 )]2 

_ 3(1-a)2) 
2 ' (1-3a) ) 

The simplest and often useful ARCH model is the first order linear 

model given by (2.3.1) and (2.3.2). The generalization of the first order 

linear ARCH model is given by Engle( 1982). The model is defines as 

XII =clIA. ' 
where {Etl is a standard normal variable and 

assume that the conditional distribution of Xn is normal with mean zero 

and variance hn. This is an ARCH process of order 'p' or ARCH (p) 

process. The following theorem gives a set of conditions for stationarity of 

an ARCH(p) process. 

Lemma 2.3.1 The ptll order linear ARCH process with 

a o > O,a) .... a p 2: 0, is covariance stationary if and only if all the roots of 
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the associated characteristic equation lie outside the unit circle. The 

stationary variance is given by 

Proof: See Engle (1982). 

The technique of constructing an ARCH process explained by Enders 

(1995) is as follows. 

Estimate the best fitting ARMA model to the sequence {Y n}and obtain the 

squares of the residuals i~ . Calculate the sample variance of the residuals 

0- 2 as 

where T = number of residuals. Obtain the sample autocorrelations of the 

squared residuals as 

11=1+1 

In large samples, the standard deviation of p( i ) can he approximated 

by Jr. Individual values of p( i ) with a value that is significantly 

different form zero is an indicative of ARCH effect. The Lung-Box Q 

statistic, given by 
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Q = T (T+2) t p(i). , 
;=1 (T -z) 

(2.3.3) 

can be used to test for groups of significant coefficients (Enders, 1995). 

This statistic Q has an approximate chi-square distribution with n (total 

number of observations) degree of freedom if i 2
" are uncorrelated. 

Rejecting the null hypothesis that the i 2
" are uncorrelated is equivalent to 

rejecting the null hypothesis of no ARCH effects. In practice consider the 

T 
value of up to n = -. 

4 

The Lagrange multiplier test procedure proposed by Engle (1982) 

may be described as follows. Consider an AR(P) model defined by 

Xn = ao+aIXn-I+ ........... + apXn-p +cn • 

Obtain the squares of the residuals of the error and denote it by i2,. 

Regress these squared residuals on a constant Uo and on the p lagged 

values, &;"-1 , .. .i2
",_p . That is, obtain the estimate as 

If there is no ARCH effect then UI = U2 ... up = o. Obtain the statistic TR2 

where R2 is the usual coefficient determination. With a sample of T 

residuals, under the null hypothesis of no ARCH effect, the test statistic 

TR2 converges to a chi-square distribution with p degrees of freedom. 

Therefore, rejection of Ho is equivalent to say that there is no ARCH 

effect. Or if TR 2 is sufficiently small, it is possible to conclude that there 

is no ARCH effect. 
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Empirical Analysis 

The time series data of the monthly coconut oil prices at Cochin 

Market, described in the previous section is used for the analysis. The data 

shows that the process undergoes wide and violent fluctuations (Fig 2.1). 

Also we can observe periods of high variability followed by relatively 

smaller ones. 

The prices have increased nearly four times during the period 

(1978-96). It is below the average up to 1987 while it fluctuates around the 

means form December 1987 to July 1990 and after that it never comes 

down below the average. The actual data set is provided in the Appendix I. 

Similarly the variance also undergoes fluctuations. These variations in the 

means and variances of the process lead to test the presence of ARCH 

effect in the series. Using the Box-Jenkins procedure, an autoregressive 

process of order two, (that is, AR (2) is found suitable for the series 

(details are given in the previous section). 

The above modelling procedure is based on the assumption that the 

error variance is a constant. This may not true always. Therefore, the next 

step is to check whether there is any ARCH effect present in the series. 

The significant autocorrelation coefficient of the squared residuals is 

shown in Fig 2.5 given below. Since the calculated value of the Q-statistic 

(Q=180.75 for n=50) is greater than the table value (76.15 at 1 % level of 

significance) we reject the hypothesis of no ARCH effect. The Table 2.3 

given below gives the values of the regression coefficients and the 

corresponding TR2 values. We estimated the values up to lag six. The 

significant value of TR2 is obtained when the number of independent 
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variables is SIX. Since the regression coefficients corresponding to 

A2 " 2 d " I £ ,,-2. & /1-4 an E /I-S are very OW 

Fig 2.5 
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(also the value is negative for i 2 n-4) we omit those squared errors and 

continued the procedure. The value of the TRl has not much reduced even 

when there are three independent variables and the t-value of those 

coefficients are significant also. These coefficients satisfy the stationarity 

conditions (Lemma 2.3 .1) of a pID-order ARCH process. Thus finall y the 

model tS 
'\7Xn = 24.89 + O.243V'X11_1 + O.236VXn_2+ E" , 

(21.16) (0.066) (0.067) 
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where & is assumed to be normally distributed with means zero and 
tI 

conditional variance given by 

hn = 16384+0.10431i 2
n-1 +0.1811i 2

n_3 +0.1529i 2
n_6. 

The numbers in the parentheses are the standard errors. By conditioning 

on the previous rise and falls in the market can easily capture the 

asymmetry in the process. 

TABLE 2.3 : Estimates of the parameters of the regression 

coefficients of the squares of the residuals 

No of Constant ~2 

& n-I 
~2 

& n-2 
"2 

& ,,-J 
~2 

& n-4 
~2 

& n-5 
~2 

& n-6 

independent 
variables 
1 24971 0.1274 - - - - -

(1.88) 
2 24091 0.1230 0.0362 - - - -

(1.79) (0.53) 
3 19185 0.1156 0.0113 0.2108 - - -

(1.72) (0.17) (3.14) 
4 19547 0.1193 0.0114 0.2129 - - -

(1.74) (0.17) (3.14) 0.0198 
5 18120 0.1206 0.3462 0.2125 ( -0.28) 0.077 -

(1.76) (0.05) (3.14) - (1.11) 
6 15572 0.1086 0.00016 0.1831 0.0288 0.059 0.1529 

(1.59) (0.002) (2.68) (-0.41) (0.85) (2.21 ) 
3 16384 0.1043 - 0.1811 - - 0.1596 

(1.58) (2.69) 0.0286 (2.33) 
(-
0.411 ) 
-

Figures in parenthesis denote the student t-value. 

TR2 

3.60 

3.80 

13.50 

14.85 

19.58 

19.36 

18.68 
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2.4 THRESHOLD AUTOREGRESSIVE CONDITIONAL 

HETEROSCADASTIC MODEL (T ARCH) 

\ 
~ 

This section deals with threshold models having ARCH effect. 

That is, extends the usual threshold specification to take care of the ARCH 

effect. This threshold specification was briefly mentioned in Tong (1990). 

The threshold plus ARCH specification has many application is modelling 

financial time series. The threshold ARCH models and Asymmetries in 

Volatility introduced by Rabemananjara and Zakoian (1993) was used to 

model the asymmetry in the conditional variance. This model allows 

relaxing the possible constraints in the parameters of the conditional 

variance and also this unconstrained model allows nonlinearity in the 

volatility. The threshold model with conditional heteroscedasticity, for XI 

is defined as 

x = ",(;) + ,P ",Cl) _ 'x + e (j) 
n 'I' 0 L..v=I'I' n I /I-v n if ';-1 < X n - d < 'J 

j= 1,2, ... k, v= 1,2, ... ,p, 

where en is assumed to be normally distributed with mean zero and 

conditional variance 

where Uj ~ 0, i =0, I, 2 .... r. The above model is a TARCH (PI, p2, r). If 

PI=P2=P3.... Pt and ~2(1)=~/2) for all i, then we have the usual 

autoregressive model with conditional heteroscedasticity that is T ARCH 

(p,r). Here hn is changing in each regime according to the previous E~S. 

The stationarity and ergodicity of TARCH model is discussed by many 

authors like Chan (1990) and Nelson and Cao (1992). Li and Lam (1995) 
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used T ARCH model to study the asymmetry in stock returns. They studied 

the asymmetric behavior of stock prices using threshold type non-linear 

time series model with conditional variance. Here we explain the method 

of estimation with the help of an empirical data. The rest of the Section 

explains details of the TARCH modelling technique for the monthly 

coconut oil price data. 

Empirical Results 

The empirical example here is the same as that we considered in 

the previous sections. Here we combined the TAR and ARCH models 

together. The method used here is as follows. First we analyse the data 

using the method given in the Section 2.2. That first we try to fit a TAR 

model to the data. The TAR model to monthly coconut oil prices is (cf 

Section 2.2.5): 

V' Xn = -45.11 +0.1 088V'Xn_1 -0.00418 V'Xn-2 + 8(1)n if V' Xn_l :5:: -100 

= 10.88 + 0.0297V'Xn_l+ 0 12370V'XIl _2+8(2)" if -1 00ZV'X,,_1:5::40 

= 67.69 +0.34 I 9V'Xn_l - 0.3250V'Xn_2 + 8(1)" if otherwise. 

That is, a TAR model with three regimes. The model is piece-wise linear. 

That is an autoregressive model of order two is fitted in each regime. Now 

the next step is to test the ARCH effect in each regime separately using the 

method explained in Section 22 Estimate the squares of the residuals and 

the Q statistic (23.3) in each regime 
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Regimes Q - statistic 

1 -18.46 (21.3,11=12) 

2 8.36 (28.87,11=18) 

3 114.60 (36.42,11=24) 

Figures in parenthesis are the table values 

By comparing the calculated values with the table values we can 

see that the ARCH effect is present only in the third regime. Thus the 

procedure continues only for the third one. By regressing the residual sum 

of squares on the lagged values we get the conditional variance. Here also 

we calculated the TR2 statistic for different regression equations (see the 

previous section). By comparing the values of TR2 values and the 

regression coefficients finally we arrived at the following equation for the 

conditional variance in the third regime. That is the T ARCH model is 

V Xn= -45.11 +0.1088VXn_1 -0.00418 VXn-2 + E(l)n ifVXn_l~ -100 

= 10.88 + 0.0297VXn_1+ 0.12370VXn_2+E(2)n if -I OOZVX II.,:S;40 

= 67.69 +0.3419VXn_,- 0.3250VX II_2 +fYl" if otherwise, 

where E(3)n follows a normal distribution with zero mean and conditional 

vanance 

Finally we arrived at a conclusion that there is an ARCH effect in the TAR 

model for the monthly coconut oil prices. 

;\ portIOn 01" tins chapter IS alreadv pllhlished in Nampoothili and Ilalaknshm (2()()()). 
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CHAPTER-3 

CAUCHY AUTOREGRESSIVE MODELS 

3.1 INTRODUCTION 

Recently there has been a growing interest in studying non-Gaussian 

time series models. The need for such models arises from the fact that 

many of the naturally occurring time series are non-Gaussian. In the 

classical Box-Jenkins method, it is assumed that the observed time series 

is realization from a Gaussian process. A variety of data, especially in the 

field of economics, tended to jump around too much and involve outliers 

that contained important information. That is, such data have tendency to 

follow distributions with heavy tails. As a consequence a number of non­

Gaussian time series models are developed to study time series data, 

which do not fit into the standard Gaussian linear models. One such class 

is the class of exponential time series models characterized by a set of 

observations distributed as exponential. This class was first introduced by 

Gaver and Lewis (1980) and later extended by Lawrence and Lewis 

(1981,1985). Other important studies in the non-Gaussian time series 

models are by Sim (1990) and Adke and Balakrishna (1992). They studied 

autoregressive models (AR) with gamma marginal. Abraham and 

Balakrishna (1999) introduced an inverse-Gaussian AR model. In their 
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study, they introduced a first order autoregressive process with one­

dimensional inverse Gaussian marginal. They obtained innovation 

distribution and estimated the unknown parameters by different methods. 

One of the important non-normal distributions suitable for 

studying the behavior of price data is the Cauchy distribution with 

probability density function 

t5 
f(x,p,t5) = 2 2 ,-00 < x < 00,0 < t5 < 00,-00 < p < 00 (3.1.1) 

t5 +(x-p) 

If a random variable X has the probability density function (3.1.1), 

then we say that X has C(t5,p) distribution, where t5 and p are the scale 

and the location parameters respectively. The distribution is symmetric 

about x= p and hence the median is p . The distribution does not possess 

finite moments of order greater than or equal to one, however p and t5 

may be regarded as being analogous to mean and standard deviation. 

(Johnson and Kotz, 1994 pp. 299). A major difference between Normal 

and Cauchy distributions is that the latter has a longer tail than the former. 

This facilitates a better modeling of the price data using Cauchy 

distribution. The observations on a characteristic collected at different 

time points need not be independent. For example, the price of a 

commodity on a particular day depend on the previous day price. In such 

cases a Markov dependent sequence will be a better model to describe the 

data. So in this chapter we study the properties of a first order 

autoregressive model, which generates a sequence of Cauchy random 

variables. 
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A summary of this chapter is as follows. In Section 3.2 we define 

the model and study its properties. The Section 3.3 discusses the 

maximum likelihood estimation of the model parameters of a first order 

Cauchy autoregressive model while the Section 3.4 suggests some 

alternative method of estimation. 

3.2 THE MODEL AND ITS PROPERTIES 

Let {En, n~ I} be a sequence of independently and identically 

distributed (i.i.d) random variables and Xo be a random variable with 

distribution function (d.t) F independent of Et. For n~l, define 

Xn = pXn-t + En n=I,2, . . .. 0< I p I <1 (3.2.1) 

Now {Xn , n~l} defines a strictly stationary sequence of random 

variables. Sometimes {En} is referred to as an innovation sequence. Let 

<Px (t) be the characteristic function (c. f.) of Xo and <Pe(t) be that of Et . The 

c. f. of a C(8,1l )is given by 

<px(t) = exp (illt - 8 It I ,- 00 < t < 00 (3.2.2) 

If Xn - C(6,1l ) for all n then from (3.2.1) we can write 

and hence 

<Px (t) = <Px(pt) . <Pe(t) 

<p,,(t) = <Px (I) . 
<P.r (pI) 

Now substituting for <p,,(t) we get 

<po:(t) IIIr(1 J}") ')'('(.1 ",':") =e' 

That is ,En has a Cauchy distribution with parameters ~l (I -p ) and 

8(1-1 pi). There fore, the probability density function OfE" is given by 
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8(l-lpl) 
g(x) = 

82 (l-lpl)2 +[X - ,u(I- p)y 
-oo<x <00 

0< 8 < 00, -00 <,u < 00,0<1 pi <I (3.2.3) 

Clearly {Xn} defined in (3.2.l) is a stationary Markov sequence and the 

transition probability distribution of Xn at x given Xn-I=y becomes, 

P [X n ~ X I X n-I = Y] = P [c n ~ X - py ] 

X-flY 

= fg(u)du 
-a) 

The corresponding transition density is 

. _ 8(1 -Ipl) 1 
h(xiy,8,,u,p) - . ( )2 [ ? 

Jr 821-lpl + (x-py)-,u(l-p)]-

-oo<x <00 (3.2.4) 

we will use this density function for estimating the parameters in the next 

section. 

Remark 3.2.1 : In AR(l) model (3.2.1) , the parameters p is usually 

interpreted as correlation coefficient. But here we have a Cauchy marginal 

distribution for Xn and the correlation coefficient does not exist. Hence we 

refer p as a parameter of the model and not as the correlation coefficient. 

The transition distribution of Xn at x given Xo=y is 

(3.2.5) 
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since repeatedly using (3.2.1) we can write 

= p(pXn-2+ En-I) + En 

= p2Xn_2 + PEn-I) + En 

= pJXn_J + p2En_2 + pEn-I +p En 

nX n-I n-2 = p 0+ P El + P E2+ ... +p En-I + En 

There fore equation (3.2.5) becomes 

p[Xn ~xlXo =y] =p[pn-I£I +pn-2£2 +"'+P£n-I +£n ~x_pny] 

= p [Zn ~ X _ pn y] 

where 

and {£J is a sequence ofi.i.d. C(o(I-lpI1.uO - p)). 

Therefore, the characteristic function of Zn is 

t/J (t) = E( e'IZ" ) Z. 

= n tP,(p"-I/) 
J=I 

= n[e')l(I-P)/P.-' -"(I-lpl~/p·-'1 ] 

1=1 

. . 
I)I(I-I')/LI''' '-cl(l-il'i)i/iLil'i" 1 

= e I ~ I J ,I 
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= e'PI(I-p" )-"i/i(l-ipi") . (3.2.6) 

Thus we have the folIowing result. 

Result 3.2.1: If {Xn} is a sequence of Cauchy AR(I) sequence defined in 

(3 2 I) h Z n-I n-2 fi 11 C h . . , t en n = P £1 + P £2 + ... + P£n-I + £n 0 ows a auc y 

distribution with parameters £5(1-lpl
n

) and ,ll(1- pn) . 

It is well known that if {Xn} is a sequence of i.i.d C(<5,/l) then Sn 
n 

also has C(<5,/l) distribution for every n where Sn=X\+X2+ ... + Xn. In the 

case of Cauchy AR (I) sequence we have the following theorem. 

Theorem 3.2.1: Let {Xn} be a Cauchy AR (1) sequence defined by 

(3.2.1). Then Sn converges in law to C (
1 -lpl £5,,ll) distribution as 

n 1- P 

n ~ 00. In other words, the Cauchy AR (1) sequence belongs to the 

domain of attraction of a Cauchy distribution. 

Proof: 
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We have 

and 

That is 

The characteristic function of Sn becomes 

l!Jf~:n)-0l(:~pnl n. (I- P"-J+I)(l-P)] ( l(l-pn-J+I) 
e p p .exp{~>,ut - 5(l-ipi) } 

)=2 1- P 1- P 

= e I!JI( I~-:n )-°I/\I~;n l.exP{I ip/(1 _ pn-J+I ) _ ( 5(l-ipi) t(l- pn-J+I )}. 

J=2 1- p 

There fore, the c.r. of Sn is 
n 
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t/J~ (t) = 
n 

,p(tln!l-p"}ol(lln)(l-p"1 J n (~n-)+I J} 
e '\ '-P '-P .exl~i(t I n)p(l- p"-,.') - o(l-li'1{ In); _-: . 

As n ~ 00 we get 

. "II(I-Ipll ,pl-vl--
t/J~ (I) ~ e I-p 

n 

If 0 ~ p ~ 1 then 

n~ 00. 

" 
This completes the proof. 

Joint Distribution of Xo and Xn 

Lemma 3.2.1: 

If {X", n ~ 0 } is a Cauchy AR (l) sequence defined as (3.2.1) , 

then the joint distribution of Xo and Xn is a bivariate Cauchy with 

characteristic function 

(I I) )" +/,1'"1-1/,1(1-11'1") 16 
A. (t t ) = 'p, + 1 e I 
'f'x".X" I' 2 e 

Proof 
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. x . (·x .-1 ) =E(e'" 0+ 11 2 P f1+p £.+ ... +P&,,-I+£,,) 

n 

=f/Jx" (I. + t2pn). n f/Jc(l2p
n
-J

) 

J=I 

When J.1 = 0 this becomes 

which is the required result. In the next theorem, we establish some 

properties of {Xn}, which are useful in studying the properties of the 

estimators. 

In the rest of this chapter we assume that 11=0. 

Lemma 3.2.2 : Let {X n' n ~ O} be an AR( I) process defined by (3.2.1) 

with marginal p.d.f. (3.1.1). Assume that 

I. £[ {Ioglcllr ] < 00 and 

11. Cl has a non-trivial absolutely continuous component. 
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Then for any initial distribution of Xo, the Markov sequence {Xn} is Haris 

recurrent and strong mixing. 

A proof of this Lemma is given in Arthreya and Pantula (1986a) . 

Next we show that the conditions of Lemma 3.2.2 hold for the 

Callchy AR( I) sequence. 

Verification of the conditions of Lemma 3.2.2. 

Take ~l=O and 0=1 , then the {En} follow a e(I-lpl, 0) Then the 

probability distribution function is 

(I-lpl 1 
fc(Y) = 7r '(I_lpl)2+y2 

[[Ioglelll' = 0 if lell ::; 1 

= lell if lell > 1 

and E[[loglc',lr = f loglc'llft: (y)dy 

The density function becomes 

, . ) I I I( X J 'r(Y = - + -tan --
. 2![ I -lpl 
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Therefore, probability density function is 

put y = Ic,l. There fore 

+ - f 2(1 -lpl 1 
E[loglc,l] - logy. . I I 2 2 dy 

I 1r (1-p) +y 

(Since loglc,1 < 0 for O:$; Ic,1 :$; I)· 

- 2(1-lpl) r logy - I I J ) dy 1r ,l(l_p)"+y" 
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2(1-lpl) I'"~ le l 

< -dl 
;rr I) e 21 

2(1-lpl) if> -I 
le dl 

;rr () 

2(1-lpl) 
= <'XJ. 

;rr 

Further Et is absolutely continuous and (ii) automatically holds. There fore, 

the conditions of Lemma 3.2.2 are satistied. 

The following Lemma proved by Arthreya and Pantula (1986a) helps us to 

obtain the mixing coefficients of a strongly mixing sequence. 

Lemma 3.2.3: For a Harris recurrent Markov sequence {Xn], 

,.suP... Ip(A n B) - P(A)P(B)I = a' (m) s:; 2 sup E[K m-I (X,It))] 
AI:::. I· o.Be:./· Ifttn " 

where Fnn and Foc'n"" are the minimal sigma fields induced by 

(Xo, X l" '" XJ and (X"+m' X".m+) , ... ) respectively, and 

P(X,"m,) E A I X",)) denotes the m-step transition function of {Xn}, 

lip - vii is the total variation norm of the signed measure p - v for the 

probability measures p and \' and ;rr() is the stationary measure. 
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Theorem 3.2.2: The stationary Cauchy AR (l) process {Xn} defined by 

(3.2.1) is strong mixing with mixing coefficients: 

I I
m-I 

a(m) = 2p , m=I,2,3, ... 

Proof 

By Lemma 3.2.3, the strong mixing coefficients 

a(m) = 2sup E(K m _ , (XII
+I )) 

n 

where 

Km_I (X n+1 ) = IIp(X n+m+1 E A I X n+1 -1l'( A)II 

where P«X m+n+1 E A I X n+I )), 11·11 are as defined above and 1l'(.) is the 

stationary measure given by 

;r(A) = LJ(x)dx , f(x) is the probability density function of Xn given by 

(3.1.1). 

Now E[ Km_I (Xn+I)] = [co Km_I (x)J(x)dx 

= [JP, (X m _1 E A)-1l'(A)IIJ(x)dx, 

where Px (Xm-I EA) = Pr[Xm_1EA I Xo= x] and A is an 

arbitrary event. 

Now P,(Xm _1 EA) = P(Xm _ 1 E A I Xo = x) 



61 

P[ m-2 A m-I] = p &1 + ... + & m-I E - P X 

=P[Zm_1 EA-pm-I x ]. 

From the Result (3.2.6) the p.d.f of Zm-l with Jl=O can be 

written as 

Therefore, 

Px(Xm-1 EA) = r . h(z)dz ~ r h(z)dz. 
JA_pm 'x JA 

Hence for any arbitrary A, 

Note that 

Therefore consider 

Now we simplify 

IIp,(Xm-1 EA) -JZ"(A)II = II Lp"·" h(z)dz - Lf(Z)dZII· 
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If pm-I x> 0 then 

Hence 

Ilpx (X m-I E A) -7l"(A)11 ~ 11 L [h(z) - f(Z)]dZII 

= [8(l-IP1m-I). 1 _ 8 ]dZ 
L 7l" 8\1-lplm-I)2 +Z2 7l"(8 2 

+Z2) 

=Iplm-I Lf(z)dz 

~Iplm-I 

If pm-Ix < 0 then we can use the inequality 

ll
f(z)dz ~ 11 ",.,.f(z)dz 

.. "-p \ 

Then 
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IIp.(Xm - 1 E A)-7r(A)II=IILp"~lxh(z)dZ- L!(Z)dzll 

= 11 L ! (z)dz - Lp_-I
X 
h( z )dZII 

~ 11 Lpm~lx !(z)dz - Lpm~lx h(Z)dzll 

[
5 1 50-IPr-I)] 

= Lpm-Ix 7r (52 +Z2) - 7r(520-lpr-I)2 +Z2) dz 

[
5( 1 O-IPI",-I)]J ~ Lp_-IX 7r (52 + Z2) - 52 + Z2 dz 

=11 r m~1 5. 2 1 2 dZII·lpr-' 1-p x 7r 5 + z 

=Ipr-I Lp .. _lx!(z)dz 

< I 1",-1 -p . 

Therefore, in any case (if Jl=O) 

Therefore, 

a(m) = 2sup E[Km_,X,,+,)] 

= 2sup [liP, E A - H(A)lll(x)dx 
~ 2sup [Jpl",-I !(z)dz 

= 2Ipl"'-' 
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Therefore a(m) = 2lpl
nr

-
1 

can be taken as a sequence of mixing 

parameters. 

Hence the theorem. 

Theorem 3.2.3 : Let { Xn} be a sequence of Cauchy AR(1) sequence 

defined as before, then {Xn} is ergodic. 

Proof: Note that Xn can be written as a sum of independent random 

variables as 

X nX n-I " = P 0 + P Cl + ... + PC,,_I + C n 

Let Fn= cr(X I, .. Xn) and Gn = cr(Xo, El, ... , En) n=I,2, ... be the (j-

fields generated by (XI,,, Xn) and (Xo, El, ... , En) respectively. 

Then Fn~Gn , that the sigma field of Xn is contained in the sigma 

field of independently and identically random variables {En}. By 

Kolmogrov 0-1 law each event of the sigma field of independently and 

identically distributed random variables has probability zero or one. Hence 

each tail event of sigma field of {Xn} has probability zero or one. This is 

a sufficient condition for {Xn} to be ergodic. (Nicholls and Quinn (1981), 

pp37). 

Note 3.2.1 : By Lemma 3.2.1 the joint characteristic function of Xo and 

Xn is 

Similarly 
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That is, 

There fore, Cauchy AR( I) sequence is not time irreversible, unlike a 

Gaussian AR( 1) sequence. 

3.3 MAXIMUM LIKELIHOOD ESTIMATION 

In this section we obtain the maximum likelihood estimator of the 

parameters 8 and p • Let X = {Xo XI' .. X,,} be a sample from a Cauchy 

AR ( I) sequence. The likelihood function of G = (8,p) based on X is given 

by 

L= {(8,p)IX II ,XI, ... ,X,,} 

" 
= f(XIJ)· n h(X, I X)_I), 

)=1 

where h(X, IX,_I)is the one-step transition density of {Xn} given by 

(3.2.4). The parameter space here is given by 

e = {(6,p) I c'i > 0,0 < Ipl < I}. 

Now consider 

" 
log L = log(nXo)) + Ilogh(X] I X] I) 

] I 
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Differentiating with respect to 8 and p and ignoring the terms 

corresponding to Xo we get, 

810gL n n 28(1-lpl)2 

88 = 8- ~[82(1-lpl)2 +(X,_pX
H

)2] 

and 

where a = ±1 = 81pl , the sign of p. Here a = + 1 if P > 0 and a = -1 if 
8p 

These likelihood equations do not have closed form expressions 

for their solutions and hence an iterative procedure of Newton - Raphson 

type is used to estimate the parameters. The procedure is as follows. The 

estimator after k iterations is given by 

82 10gL 

88 2 

8 2 log L 

88ap 

8 2 log L 

8lXJp 
8 2 log L 

8p2 

810gL 

88 
810gL ' k=1,2, 3, ... 

8p 

(3.3.2) 

The second term on the right hand side is evaluated at (S" p,) and 

«(50' Po) is an initial value. In this ease 
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a2 10gL -na 2 

----"'---= + 
8p2 (1-lpIY 

2*H52(1-IAY +(X; -prjJ2I-{82d +~~ 2,)] +~8, 2a{1-IA)+(~ - pYj_lk~]2] 
'~ [82(1-IAY +(~ -pYj-J2f 

and 

a2 10gL 

apa8 

_ 2«~2(1-IA)' +(x,~-I r l-],~) -IA~l+"~) -IA)'[~o2(1-IA)~+(XA_, )x,-, 1] 
'~ [82(1-IA) +(Xj -p¥I-l~r 

According to Billingsley (1961), under certain regularity 

conditions (which are stated below) the maximum likelihood estimate 

(mle) of (8, p) is consistent and asymptotical1y normal. But some of the 

regularity conditions of Billingsley, in particular the moment conditions 

do not hold if both 8 and p are unknown. However, if we assume that p is 

known then the maximum likelihood estimator of 8 has optimal properties. 

The mle of 8 can be obtained by solving the equations a log L = 0 by 
a8 

Newton-Raphson method. In this case it is readily verified that al1 the 

regularity conditions of Billinsley (1961) hold and the maximum 

likelihood estimates 8 of 8 is consistent and asymptotically normal 
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(CAN) estimate with mean 8 and asymptotic vanance 282/n. The 

performance of the mle based on simulation experiment is discussed in 

Chapter 4. We will state the regularity conditions given by 

Billingsley( 1961) before their verification. 

Let {Xn} be a Markov process, f(£;B) be the density of the initial 

distribution and f(£, '7; B) be the densities of all transition measures. Let 

B = (Bp ... ,Br ) be the unknown parameter vector and e be the parameter 

space. 

Condition 3.3.1 : For any £, the set of '7 for which f(£,'7;B) > Odoes 

not depend on B. For any £ and '7, fu(£,'7;B),/.,(£,'7;B),fuv(£,'7;B) 

and ful'w (£, '7; B) exist and are continuous through out e (where 

partial derivatives). For any BEe there exists a neighbourhood N of 

B such that for any u, v, W,£, 

JsuPIf.,(£''7;B'~'7 < 00 

X O'eN 

Jsupifu,,(£,'7;B'iM'7 < 00 and 
.I' O'eN 

E(J{sup!.R""W(x"x 2 ;B')!} <00. 
(Jell' 

Finally, for u= 1 ,2, ... ,r 
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and if o-IIV (0) is defined by 

o-UV(O) = E{gu (XPX2 ;O)g ,(XPX2 ;O)} 

then the rxr matrix 0-(0) = (0-(0» is nonsingular. 
ILIt 

Condition 3.2.2: (i) For each 0 E e, the stationary distribution, for 

(which by assumption exists and is unique) has the property that for each 

c in the state space, is absolutely ontinuous with respect to Po (.). That 

is, 

Po (c,.) «Po(.)· 

(ii) There is some 5> 0 such that for u=1,2, ... r, 

The 5 in the above equation may depend on O. 

Lemma 3.3.1: If part (i) of the second condition holds, then, for any 

o E e, the process {Xn} is metrically transitive if the initial distribution is 

the stationary one. No matter what the initial distribution is, if qJ is 

measurable I, X I, and if E{jqJ(x p x2)j} < 00, then 

n 

(i) lim n-I LqJ(xk 'Xk+ l ) = Eo {qJ(XI' x2 ) },with probability one. 
11-+00 k=1 

(ii) The second condition implies that for every SEe and for any 

initial distribution, the randoI11Vectorn-li2L~=lglI(Xk.Xktl;0) 

converges in law to N(O,cr(S». 

Proof - See Billingsley (1961). 
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Verification of Regularity conditions when 8 and p are unknown 

Consider the conditional covariance matrix 

~ E [aIOgh~t'_I) J 
DI', I a2 logh(x} / X,_I) 

a2 Iogh(x} / x j _ l ) 

aoap 

[ a log h~;' x ,-I) J 
aoap 

=E 6 i say, 
[

g2 g] 
gt5p g p 

where 

= - . 
5 52 (1- ipi)2 + (x, _ PX,_1)2 

where a = ±l. 

and 

a 2 h( x, I X ,_I ) 

KI"; = apa5 
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48(l-lpl)2 {8 2a(l-lpl) + (Xj - PXj_1 )X j _ l } 
-- ---- - - ----- -

[8\1-lpl)2 + (X jPXj_I)2]2 

~ r. {}, + [5' (l-i;~:~ &~~~ jj]' - [5'(1 -=ip~~ : ~~ ~ j_;)'] } 

{O(l:iPi) 5 '(I-ipi) i! (;, _ Px j1 )2} dXj 
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Next we will use a beta integral defined by 

B(x,y)= i 1,,-1 (I-lV-I dl = 2 i Ih-I (1-/ 2 V-I dl 

Now the above equation becomes, 

= _I +~B(! ~)-~B(! ~) 
52 52 2' 2 52 2' 2 

= _I [I +i [(1I2).f(5/2) _~. f(1/2)[(3/2)] 
52 rc f3 8rc f2 

after simplification we get 

2 1 [ 3 ] 1 E(g 0 (X I X )) = - 1 + - - 2 =-
) )-1 52 2 252 

Consider the conditional expectation of ag given Xj.l. 
ap 

E[ ag(X, I X ,-I)) = [f -a 25
2 

(1 -Ipl)a + 2(x, - Px ,_I )x '_I} 
ap -0) 1 (I-Ipl + 5\1-lpl)2 + (x, _ PX,_1)2 . 

5(1 -Ipl) dx , 

J[ 5\1-lpl)2 +(x, -0,_1)2 
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= + - 0(1- p )dx -a 2 [{a0
2
(1-\P\)+X,_I(X,-PX,_I)} \ \ 

(l-\p\) 7r <Xl (02(1-\pl)2 +(Xj _PXj_I)2)2 J 

- a 2 r a0
2
(l-\p\) + xJ_1uo(l-lpl) 2 2 

= ~\_\p\)+--; l-"'\(jl~\_\p\)l + (jl\\_\p\)lU1Y 0 (l-~p~) du 

-a 2 [03(l-l pl)3[ao+UX H ]dU 

= I-Ipl + 7r <r) 0 4 (1-lpl)4 [1 + u2 f 

Therefore, the expectation is equal to 

-a 2a 
=-1 I + I I 8(1/2,3/2) 1- P 7r(l- p) 

" k~.J; 
- a L.a 2 

=---+--~~-~~-

1 -Ipl 7r(l-lpl) f2 

=0 
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Now consider 

[
8g (Xj IXj_I]2_ [-a 28

2
(l-lpl)a+2(x j -PXj_l)xJ_1 ]2 E -E --+ -----::-----'---:-:.......,..-...-----=----~~-

8pr I-lpl 8 2(l-lpl)2+(X j -PXJ_I)2 

-E[ a
2 

] + £[282 
(l-lpl)a + 2(x, - PX,_I)X J-I ]2 

(l-lpl)2 8 2(l-lpl)2 + (x, _ PX,_1)2 

-2a £[28
2
(l-IPI)a+2(XJ -PXJ-I)XJ-1 ] 

(l-lpl) 8\1-lpl)2 + (Xi - pxj-l)2 
(3.3.4) 

Now the second tenn in (3.3.4) is 

Now 

[ 
48\I-lpl)2a2 ] 

E [82(l-lpl)2 +(x, _ p.X",_1)2f 

=48~(I-1 1)2a 2 ( 8(l-lpl) ~(h 
p <Xl [8 2 (l _I pi) 2 + (x, - Px ,_I ) 2 ]) Jr • I 
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= 48
4
(l-lpl)2a

2 
[8

2
(l-l p l)2 dU 

8 6(l_lpl)6 et) Jr(l+U 2)3 

= 4a
2 

l2 r 1 du 
(l-lpl)2 . Jr' (l + U 2 )3 

~ 12 .lB(l/2,5/2) 
(l-p) Jr 

4 )172.)172.3 / 4 

(1-lpl)2 . Jr.2 

3 1 
- 2'(l-lpl)2 

=4 a 
. (l-Ipl) 

by (3.3.3) 
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The third term in equation (3.3.4) 

= - 2a E[28
2 
(l-lpl)a + 2(x, - Px j-' )X j _, 1 

(l-Ipl) [82(l_lpl)2 +(Xj _pxj_,)2 

= 

+ 

[. 2x j_,(x j -pxj_') 8(l-lpl) dx 

"'[82(l-lpl)2 +(x,px,_,)2]n[8 2 (l-lpl)2 +(x,_px,_,)2] , 

-2a {f 2adll f 2x,_,8
1
(1-lpl)1 I1du } 

= (l-Ipl) (l_lpl)4(1+1I 2)2 + m5 4 (1_lpl)4(l+1I2)2 

-4a 2 

= 1 I' B(l/2,312) n(l- Pt . 
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After simplification we get 

-2 
The Third Term = I I 0 

(1- p)-

Now the conditional expectation becomes 

E[Jg(Xi / Xl-I )]2 
Jp 

1 3 1 4a xi_I' 2a 2 

(1-lplf +"2 (1-lpl)2 + (l-Ipl) + 28 2 (l-lpl)2 - (1-lpl)2 

(3.3.5) 

Thus we have the elements of the conditional information 

matrix Dxj-I . Under stationarity, Xj has C( 8,0) distribution for every 

j. Hence the information matrix can be obtained by considering the 

unconditional expectation of f)\ I I with respect to Xi-I But unconditional 

expectation does not exist (not finite). That is, the regularity conditions are 

not satisfied for Cauchy AR (1) process. Thus some of the regularity 

conditions of Billingsley (1961) are violated. Hence we cannot use the 

theory by Billingsley to study the asymptotic properties of the Maximum 

Likelihood Estimators for stationary Markov sequence. But MLE of 0 and 

p can be obtained by solving the likelihood equations 

It is also readily veri tied that some of the regularity conditions arc 

violated when 0 is known and p is unknown. 
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Verification of the regularity conditions with respect to b when p is 

known. 

(1) R = {x, : I(x, I X,_I) > O} is real line does not dependent on b . 

(2) Conditions on partial derivatives of I(x, I x ,-I) = hex, I x ,-I) with 

respect to b. 

dh = (I-lpl) {8
2
(I-l p l)2 +(Xj _PXj_I)2 -28

2
(I-lp l)2} 

d8 7r' [8 2(I_lpl)2+(Xj_PXj_I)2]2 

d 2 h = 28(l-lpl)' [- [8 2 (1-lpl)2 + (x, - Px ,_1)2 - 2(x, - Px ,_1)2 - 8 2 (l-lpl)2 ]] 

d8 2 
7r [8 2(l-lpl)2+(X,_px,_1)2f 

These derivatives exists and are continuous. Thus the conditions on 

derivatives of h with respect to b hold. 

Now let 

g(X, I X,-I) = logh(x, I X,_I) 

That is 
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dg I 20(1_\p\)2 

do = 0 - [02(1-lpl)2 +(x) _PX)_1)2] 

d 2 g = =! _ [[0 2 (1-lpl)2 + (X) - PX)_1)2 ]2(1_\p\)2 - 20(1-lp\)2 20(1-\pl)2] 

d0 2 0 2 [0\1-lpl)2 +(X) -px,-l)2f 

and 

d J g = ~ _ {2(1-\pl)2 [[0\1-\p\)2 + (XI - Px /_ 1)2 f[-20(1-lpl)2]]-

do' 0' [0\1-lpl)2 + (x) - PX}_1)2]4 

[(Xj - (JXj.,)' -5' (I-I p I' 1.25'(I-!p!)'[5'(I-!~)' +(X,{JXj.,)'25(1-!P!)'} 

Here also it follows that expectation of modulus of all derivatives are 

finite. 

Now Fisher information is given by 

I((0)=_E[a
2g

(X I I X,-I)] 
a0 2 
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I 2 [(l-lpl)\5 2
u

2 -82(1-lpl)4]8 2(1-lpl)2 

=51+ 1( J [82(1-lpl)2 +82(1-lpl)2U 2]21([8 2(1-lpl)2 +82(1-lpl)2U 2] 

= ;2 + :2 [~ B(3/2,3/2)- ~B(1/2,5/2)] 

= ; 2 + :2 [~- i] 

The unconditional Fisher Information function is also _1_2 . 
28 

Result : The mle of 0 denoted by 8 is consitant and asymptotically 

normal for o. 
~ /' 

That is, 8 ~ 8 as n ---t 00 and 

fn(J" -8)~N(O,282) 

or I n -AN(8, 28
2

), by (ii) of Lemma (3.3.1). 
n 

/. /' 

Where ~ means converges in law and ~ means converges in 

probability. 
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3.4 ALTERNATIVE ESTIMATORS FOR 0 AND P 

The discussion on the previous section shows that mles of 0 and p 

do not have closed form expressions. Further numerical solutions also 

have some problems as we can see in the next chapter. So in this section 

we propose some alternative estimators for 0 and p. For the estimation of 

p we used the method proposed by Brockwell and Davis (1987, p.480). 

They discussed the problem of estimation in the context of time series 

with infinite variance. The estimator of p is given by 

~ 

P=-n--- (3.4.1) 

IX/ 2 

/=1 

This p resembles the sample autocorrelation function. But in our case the 

moments of XI do not exist and hence it is not proper to call p as an 

autocorrelation function. Brockwell and Davis (1987) propose this 

estimator for p when the innovation has an infinite variance. The 

asymptotic properties of p are stated in the following theorem whose 

proof is given in Brockwell and Davis (1987, p.482). 

Lemma 3.4.1 : Let {En} be a sequence of independently and identically 

distributed Cauchy random variahles and let f Xn} be a stationary process 

defined by (3.2.1) then 
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(_n_)(p _ p) ~ t; 
logn 

(3.4.2) 

where t; = (1- 2p2)~ ,SI and So are independent random variables 
So 

having characteristic functions 

'> 28~ 111/2 E(e"''') = exp{--J 1/2 cos(1l" / 4) t (1- isig(t) tan(1l" /4)} 
1l" 

(3.4.3) 

and 

E(e ils
,) = exp{-28 2 I t I} (3.4.4) 

then it follows that p ~ p . 

This rate of convergence to zero compare favorably with the 

slower rate in the finite variance case. The asymptotic distribution of p 

is same as that ofY I and this is distributed like (1_2p2) U where V and 
V 

U are independent random variables having characteristic functions given 

by (3.4.3) and (3.4.4) respectively with C=l. Percentiles of the 

distribution of UN can be found either by simulation of independent 

copies of UN or by numerical integration of the joint density (U,V) over 

an appropriate region. U is a Cauchy random variable with density 

and V is non-negative random variable with density 

I· () I -112 -n/(·II") 
. V = -v e 

. I 2 v 2 O . 
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The distribution function of UN is given by 

P~~ ~ xl = ~ P(U ~ xy)J.(y)dy 

r( 1 1 -I( xy )) 1 -312 -Jr/(4Y)d = - + - tan -- - ye' Y 
2 re re/2 2 

(
1 1 ) 1 (r.:z)-312 -( ~) = r 2+ re tan-I (xz) 2 2 e 2: dz 

where UN has the distribution same as that of the product of a standard 

Cauchy random variable and independent chi-square with one degree of 

freedom. 

Lemma 3.4.2 : Let the stationary sequence {Xn} be strongly mixing, with 

et) 

Ia(m) < 00 and let Xj be bounded; P(IXjl<oo)=I. then 
m=1 

co 

a 2 = E(Xo 2) + 2I E(XoX) < 00 

1=1 

and ifcr#O 
11 

lim P[a- I n- l12 IX 1 < z] = t/J(z) , 
1I~et) . 

1=1 

where <I>(z) is the d.fof a normal r.v. with mean E(Xj) and variance 1. 

For a proof see Ibragimov and Linnik (1971, pp.347). 
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For estimating 8 we use the method of empirical distribution 

function (edt). Let {Xn} be a Cauchy AR (1) sequence defined by (3.2.1) 

and define 

V, = 1 if IX ,I ~, 
= 0 otherwise, 

where {Uj} is a sequence of Bernoulli r.vs. and 

That is 

E(V, ) = p[IX,1 ~,] 

= P[ -, ~ X n ~,] 

=F(t)-F(-t) 

2 _(I) E(U) = " tan 1 8 

Var(Uj)=E(U/) -fE(lJj)21 

sInce 

=-tan - --{tan -}. 2 _I ( , ) 4 _I ( I ) 2 

" 8 ,,2 8 

tan( -x)=-tan(x) 

Since {Xn} is strictly stationary and strong mixing sequence with mixing 

parameter a(m) (see theorem 3.2.2) , it follows that {Un} is also strictly 

stationary and strong mixing sequence with mixing parameter 

a(m) = 2lpr-1 
, m=I,2,3, ... , also {Un} is a sequence of random variables 

'" 
which is almost surely uniformly bounded by unity and La(m) < 00. 

111:=1 

Then by Lemma 3.4.2 
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we have 

where Z follows Normal distribution with mean zero and (J'2 , where 

" 
(J'2 = Var(Uo) + 2ICov(UO'Uh ) > 0 

h=1 

and ~ denotes converges in distribution. That is, 

U" - AN(E(Uo ),(J'2 / n) 

means U" is asymptotically normal with mean E(Uo) and variance (J'2 / n . 

The covariance is given by, 

where 

E(UOUh ) = P[Uo = I,U h = I] 

= p[IXol S 1,IXh Is 1]1 

_ P[-I < \' < 1 _I < v < I] - _. () -, _.1. h -

= [P[-ISXa,SI,-ISP"Xo+Z" sllXa = x]!>; (x)dxfr(x)dx 

= r P[_I_ p"x 52" SI - p"x] 5 , dx 
J, 7[(5 2 +x-) 

= f[F.(t-p"x)-F.(-I-p"x)] 5 dx 
< L (s:' ') 7[ u- +x-
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8 i -I =- tan ,,2 I 
(3.4.5) 

Since tan-I(x)+tan-I(y)=tan-I(x+
y

]. 
l-xy 

That is, 

(3.4.6) 

From (3.4.6) we see that E(LJoUh) can be approximated by 

E'(U U) 28 i -I ( 218) 1 dx • 0, h ~ -2 tan 2 2 2 ? 
,,) 8 -I 8 + x-
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= -tan -tan -. 2 _I ( 2/5 ) 1 _I ( 1 ) 
7r 52 _/ 2 7r 5 

That is 

The scale parameter 5 can be estimated using the method of 

moments as follows. 

We have 

implies that 

or 

that is 

V =-tan -- 2 -I( 1 ) 
n 7r 5' 

-=tan -V 1 (7r - ) 
5 2 n 

J = ( ~ _ ) .=G.(l), say. 
tan -V 2 n 

- 7r- 7r 
Note that 0 < VII < 1 ~ 0 ~ -VII < - ~ 1 > O. 

2 2 

£[ J - 5f = E { - 5 

(
7rU 1 tan 2" 

We have 

(3.4.7) 
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Let ,0<x<1 

Then 

Therefore 

_ (J'2 1!2(2 1 
g(U,,) - AN(8,--- ( )) 

n 4 . 4 1!f.1 
Sin -

2 

2 _I (( ) 
, f.1 = 1! tan 8 (3.4.8) 

where 

Hence we have proved the following theorem. 

Theorem 3.4.4: The estimator Gn(t) defined by (3.4.7) is consistent and 

asymptotically normal for 0 and the asymptotic variance is specified in 

(3.4.8). 

Thus Gn(t) is CAN for any t>O. However for a given situation we , 
have to specify t for estimation. A method for choosing t is described in 

the next chapter. 
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CHAPTER-4 

APPLICATION OF CAUCHY AR (1) MODELS 

4.1. Introduction 

This chapter discusses the applications of Cauchy AR( 1) models. 

The Section 2 is a simulation study to investigate the performance of the 

estimators discussed in Chapter 3 while the Section 3 suggests an 

alternative method for choosing t and Section 4 deals with real data 

analysis. 

4.2 Simulation Study 

In stochastic simulations, random numbers are used to generate 

random variables from a specified distribution in order to characterize the 

system behavior. Computer simulation methods are widely used to 

generate random variables. Most of the computers have built-in pseudo 

random number generator which produce a sequence of random numbers 

using a recursive formula. The user is required only to input an initial 

value Xo, and then it produces a realization of independent uniform (0,1) 

variates. The inverse-transform method for generating random variahles is 

as follows. 
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Let X be a random variate with cumulative distribution function 

(cdf) F(x). Since F (x) is a non-decreasing function, the inverse function is 

defined as follows 

F- ' (y) = inf{x; F(x) ~ y} 

Suppose that U has a Uniform distribution over (0, I,) and let U=F(x) then 

X=F- I (U). In view of the fact that F is invertible, 

P(X ~ x) = P(F- ' (V) ~ x) 

= P(V ~ F(x))=F(x). 

Then to generate a value, say x, of a random variate X with cdf F 

(x), first generate the uniform variate U, compute FI(U) and set equal to x. 

Therefore in order to generate Cauchy random variates, first generate a set 

of uniform random variable U and then the standard Cauchy variates with 

C = tan(n(V -1/2)) . 

After generating the standard Cauchy variables C(O,l), the Cauchy 

random variable X with parameters Jl and 5 is obtained by the formula 

X= Jl + 5. C (0.1) 

We then simulate realization from an AR( 1) sequence for specified values 

of the parameters. Let {Xn} be a Cauchy AR (1) sequence defined as 

x" = pX,,_1 + G1I/ ,n=1 ,2,3, ... ° < Ipl < I, (4.2.1) 

where {G,,} is an independent and identically distributed sequence of 

C(5(1-lpl),0) r.vs. and XO IS a C(b',O) random variable with 

distribution function 

I I I( x) F(x)=-+-tan- -
2 n 5 

(4.2.2) 
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We simulate a sample of size n from iid C(£5(1-lpl),O) 

distribution for specified values of p and £5, then generate a realization 

from {Xn} iteratively using (4.2.1) for a given Xo. We use this realization 

for estimating p and £5 by discarding the first 50 observations. 

When both p and £5 are unknown the iterative procedure for 

maximum likelihood estimation discussed in Section 3.3 of the previous 

chapter does not converge. If we assume that p is known we get good 

estimators of £5. The computation is summarized in Table 4.1. The table 

gives the maximum likelihood estimates of the scale parameter £5 for 

different sample sizes n=20, 50, 100 and 500 when p is known. From the 

table it can be seen that the estimate £5 of £5 performs well even for a 

small sample of size 11=20. 

Table 4.1: Estimates of the scale parameter (mle method) 

b N=20 N=50 N=IOO N=500 

Est. b A.V. Est. b A.V. Est. b A.V. Est. b A.V. 

0.1 0.1 .0912 0.0008 0.0963 0.00037 0.0979 0.0002 0.1041 0.00004 

0.2 0.5 0.4560 0.0208 0.4815 0.0093 0.4896 0.0048 0.5204 0.00011 

0.5 1.0 0.9119 0.08316 0.9791 0.0383 0.9791 0.0192 1.0407 0.0043 

0.8 5.0 4.559 2.0784 4.895 0.9584 4.895 0.4792 5.236 0.1097 

A. V. -Asymptotic variance of the estimator 
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To study the behavior of the estimates discussed in Section 3.4, we 

simulate a sample of {Xld as discussed above and estimate p and 8 

using the formulae (3.4.1) and (3.4.7) respectively. Note that the estimator 

Gilt) of 8 in (3.4.7) is a function of t (t>O). The estimator Gn(t) of 0 is 

consistent and asymptotically normally distributed (CAN) estimate for 

every t. However to estimate the values of 0 for a given sample, we need 

to know the values of t. We followed a graphical method (proposed by 

Abraham and Balakrishna (1999)) by plotting Gn(t) versus t for choosing 

the optimum values of t. The graphs for various values of p and 0 are 

given in Fig 41 After analyzing these graphs for variolls values of p and 

0, we arrived at the following formulae to estimate 0 , that is , the 

estimate of 0 is given by 
~ 

0= Sup(Gn(t)) if 0 < Ipl < 1. 
1>0 

The Table 4.2 shows the estimates of p and o. 
Table 4.2 Estimates of the scale parameter using the empirical d.f. 

(sample size n=950) 

p &=0.1 &=0.5 &=1 

t Est. & t Est. & t Est. & 

-0.8 2.00 0.124 12.00 0.625 19.5 1.273 

-0.1 19.00 0.141 20.00 0.545 3.50 1.057 

0.01 20.00 0.148 20.00 0512 1.50 1.095 

0.1 19.00 0.141 19.25 0564 2.00 1.074 

0.4 125 0.155 5.00 052() 100 1200 

0.8 4.00 0.129 2000 0644 20.00 1.217 

0.95 1.50 0.120 7.50 0()02 14.50 1.215 
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4.3 Alternate method for choosing t 

This Section gives an alternate method for choosing the value of t. 

Since most of the estimates of the scale parameter given in Table 4.2 are 

over estimates we need an alternate method for choosing the value of t. 

The rest of this section explains the theoretical importance of the method 

followed by the estimation of the parameter using simulated samples. 

The asymptotic variance of Un is approximated by (see 3.4.6a) 

, 2 -1( I) 4 ( -1( 1 ))2 411 -1( 1 ) _,( 218) ( 4)[ -1( 1 )]2 cr- ::::: ;tan "6 - ,,2 tan "6 +~tal1 "6 tan 8 2 _/ 2 -211 ,,2 tan "6 

(52 ~ ~ tan -I (!...) tan-I ( ?-18 ,) _ (~)[tan -I (!...)] 2 =A Vet), say. 
11 Jr- 8 8- -1- Jr- 8 

Note that as t~oo 

Hence AV (t)~O as t~oo. That is the asymptotic varIance of Un is 

minimum when t=o.We use this information to choose "1" iteratively. 

Gn(t) is a function of Un and hence the minimum of AV(Gn(t) and 

AV( (I,,) are attained at the same point. Therefore, we compute the 

estimate of the scale parameter 0 by choosing the value of t for which It-81 

is very small.. We perform the estimation using the simulated sample 

described above and the values are given in the following Table 4.3. 
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Table 4.3 Estimates of the scale parameter using the empirical d.f. 

(sample size 11=950) 

p 0=0.1 0=0.5 0=1 

t Est. 0 t Est. 0 t Est. 0 

-0.8 0.082 0.082 0.409 0.409 0.818 0.819 

-0.1 0.095 0.095 0.472 0.472 0.943 0.944 

0.01 0.104 0.103 0.519 0.519 1.(U8 1.039 

0.1 0.104 0.104 0.522 0.522 1.042 1.043 

0.4 0.117 0.115 0.588 0.588 1.175 1.176 

08 0.091 0.091 0456 0.456 0.912 0.913 

0.95 0.080 0.090 0.416 0.416 0.899 0.900 

These estimates are better than those given in table 4.2. 

4.4 PRACTICAL EXAMPLE 

This section deals with application of the Cauchy AR (1) model to 

the daily coconut oil prices at Cochin market. In Chapter 2 we discussed 

the application of the Gaussian non-linear models to the monthly average 

coconut oil prices. Here we try to fit a non-Gaussian model to the actual 

daily prices of coconut oil. This Section gives a brief description of 

coconut, coconut oil its market situation, seasonal fluctuations etc. 

followed by the application of the Cauchy AR (1) process. 

Coconut palm is one of the most useful trees in the world. The 

major producing regions of the coconuts are concentrated mainly in Asia 

and India ranks tirst (APCC Coconut Statistical Year Book, 1997) in the 

production of coconuts. In India, Kerala accounts for about 53 per cent of 

the area and 44 per cent (Directorate of Economics and Statistics, Kerala 



96 

State) of the coconut production. Also coconut makes a significant 

contribution to the national economy. Coconut provides a variety of 

products. The nuts are consumed either as such or dried to produce copra 

which after crushing yields coconut oil and oil cake. Coconut oil is a 

major vegetable oil used in every household in Kerala for culinary and 

toiletry purposes. A major portion of the nuts produced are disposed in 

the form of nuts itself by cultivator. The growers generally sell these 

products to village merchants or to the agents of the wholesale 

merchants. Sales generally take place in the garden itself. The agents 

engaged in the distribution of coconut oil are oil millers, wholesale 

merchants, commission agents and brokers. Alleppey, Cochin and Calicut 

are the major important markets in Kerala, while Bombay and Calcutta are 

outside markets. The prices at Alleppey and Cochin markets are almost 

same while the prices at Calicut market is slightly higher (Jacob Mathew, 

1978). 

Since the production of coconuts involves large investment and 

long germination period, stability in coconut prices is necessary for the 

development of the crop. The markets of coconut, coconut oil and copra 

are well integrated and prices also found to move together very closely. 

Similarly, between markets also there is a strong association. In view of 

the close relationship between the prices of different coconut products and 

prices at different markets further analysis is restricted to the prices of 

coconut oil, which is the end product, at Cochin market alone. 

Apart from the general variations seasonal fluctuations within the 

year can also seen in coconut oil prices. About sixty per cent of the nuts 

harvested during the first si:>; months of the year, similarly a major portion 
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of the oil is also produced during this season. Because of the abundant 

availability of the oil in the market,prices are generally low during the 

summer months and during the early periods of monsoon. During the later 

half, the production of coconuts and the availability of copra are low and 

this causes the market prices of coconut oil to rise. During June to October 

the prices are low because of the lack of facilities for conversion of nuts to 

copra during this period. The prices rise from October onwards because of 

the heavy demand of oil and low supply position. Though there is 

abundant supply of nuts during first half of the year, the prices have fallen 

below normal because of the heavy demand from the oil millers. 

Therefore, it is clear that the seasonal variation of the prices of coconut oil 

is more due to the demand factor than due to supply factors (Jacob 

Mathew, 1978). Detailed studies in connection with the behavior of 

coconut oil prices were done by Jacob Mathew (1978,1980 and 1984) and 

Das (1986,1990,1991). In this study a time series model based approach 

has been tried to explain the variations other than the trend and the 

seasonal tl uctuations. 

The data consist of the daily coconut oil prices at Cochin market 

from January 1994 to December 1996. The data is given in Appendix 1. 

That is, altogether there are 707 observations. The analysis is concerned in 

the daily prices recorded on each trading day. Since consecutive prices are 

highly correlated a direct analysis is difficult. Also the series is not 

stationary. Consequently it is more convenient to analyze change in prices. 

Results for such changLs Lan easily be used to give appropriate results for 

prices. From 1994 data. it appears that the prices increase almost in a 

constant rate. The follO\\ing transformation (4.3.1) is used to make the 
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senes stationary. The Fig 4.3 shows the plots of the original and the 

transfonned prices. 

Fig 4.3 
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Let Zn be the price on trading day n, then the price change may be 

defined by 

x = Z" -Z,,_I 
• sd(Z. - Z._. ) 

(4.3.1) 

where sd (Zn-Zn_l) is the standard deviation which is equal to 90.4 in the 

case of coconut oil prices. The Fig. 4.4 is the is the frequency distribution 

of the transformed values. These transformed values are used for further 

analysis, 

Fig 4.3 
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The goal of filling ~m ~mp iri ca l distribution to a data is to extract 

the natural process umh: rl ying the generation of the numerical data . Most 

of the classical Icdllliqlll':s of statistica l work are best, when the 
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assumptions about the nature of the data are met. For example, it is often 

assumed that the observed series is a realization from a Gaussian 

sequence. The classical procedure gives quite misleading results if the 

assumptions are not satisfied by the data in hand. Therefore, in recent 

times researchers are used to check that the given set of data satisfies the 

assumptions of the classical procedure before go for further analysis .. The 

histogram is a display device to get an idea about the distribution of a set 

of data. Here, the frequency of transformed coconut oil prices (fig 4.3) 

shows the similarity of a symmetric distribution. The figure suggests that 

the distributions like normal, Cauchy or Laplace will be more suitable to 

the data. In order to fit a standard distribution to the given data, the steps 

involved are, test the normality of the data, if it is not normal estimate the 

parameters of the probable distributions and test the goodness of fit. 

4.3.1 Test for Normality 

Statistical models wi 11 never fit to the data perfectly and that there 

will be some discrepancies between the data and the model. Here we have 

to test whether the differences of the prices follow a normal distribution or 

not. The normality can be tested using different test procedures. One such 

procedure is known as Geary's test, which depends on the ratio of the 

mean deviation to the standard deviation. This ratio gives the test statistic 

as 

(; 
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where x denotes the sample mean. The distribution of G is tabulated 

(Table A.S of Appendix A, Cooper and Weeks, 1988) under the 

assumption that the data follows a normal distribution. The value of G is 

always positive, but the nature of the critical region is like that, for both 

extreme small values and extreme large values of G point to the 

hypothesis of normality being invalid. Extreme small values arid extreme 

large values of G suggest that the data could be modelled by some other 

distributions. The distribution of G is tabulated under the assumption that 

the null hypothesis of normality is valid. If the null hypothesis is valid G is 

around 0.8. The normality can also be tested using the measure of 

skewness (Cooper and Weeks, 1988, pp.168) 

J;;"II. (x; - x) 
g.= .L..,_I 
In' 

(L (x; - X)2 )3/2 
;=1 

gl is zero for normal distribution and both large negative and large 

positive values constitute the critical region for rejecting the hypothesis of 

normality (Cooper and Weeks, \988). 

The next step is to test the goodness of fit. Two important test 

procedures are chi-squares test and Kolmogrov-Smirnov test. Here we use 

the Kolmogrov-Smirnov test. The chi-squares goodness of fit requires that 

the data values should be first be arranged in the form of a frequency 

distribution, but otherwise, its use is straight forward. The Kolmogrov­

Smirnov test depends on the cumulative relative frequencies (crt) of the 

data set to the cIf's of the theoretical distribution model. This test is based 

upon comparing empirical crr's and theoretical crr's having common 
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variable values. It requires that the model distribution should be 

completely specified with numerical values given to all parameters. 

The problem of fit is to test the hypothesis that the sample 

observations x I, X2. . . XII is from a specified distribution against the 

alternative that it is from some other distributions. Then Ho: XI-Fo against 

HI: XI-F, where Fo(x);t: F(x). Let the sample be from the distribution 

function F and let FO n be the corresponding empirical distribution function. 

The statistic 

D" = SuplF,,' (x) - F(x)1 
.\ 

is called Kolmogrov-Smirnov statistic. The Kolmogrov-Smirnov test treats 

the individual observations directly, where as the chi-square discretizes the 

data and sometimes losses information through grouping. This test IS 

applicable even in the case of small samples but chi-square test IS 

essentially for large samples. It assumes the continuity of the distribution 

function means that the test provides a more refined analysis of the data. 

4.3.2 Test of randollllless 

The simplest possible hypothesis that we can set up of a senes 

which shows any chance of fluctuation is that it is random. In a random 

series, the observations an~ independcnt and could have occurred in any 

order. In practice, a mere inspection of the data is enollgh to discuss such a 

possibility, but therc are cases where we need more accurate test. There 

are a number of sllch tests, here we explain only the di ffercncc-sign test. 
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This test may be conducted by counting the number of points 

where it increases. When there are n number of observations there are n-l 

differences. Define 

Xj = I ifUj+I>Uj 

= 0 ifUj+I<Uj 

For a random series the expected number of points of increases, say c, is 

11-1 1 
E(c) = E[IX;] = -(n -1). 

;=1 2 

4.3.3 Results and Discussions 

The first step in our analysis is to test the normality using the 

methods described in the previous section. There are 707 transformed 

values of the coconut oil prices. The G-statistic for the transformed values 

of the coconut oil prices is G=0.4956. Since the value of G for a sample 

size of 707 (n=707) lie outside the acceptance (0.75 to 0.84 for n=101) 

region the normality assumption is invalid· The Fig 4.3 suggests that the 

other possible distributions may be Cauchy or Laplace. Since it is a price 

data first we go for a Cauchy distribution. To confirm possibility of the 

distribution we have to test the goodness of fit. The following paragraph 

gives a small description or the estimation of the parameters of the Cauchy 

distribution for the given set oftransrormed coconut oil prices. 

For a Callchy distrihution, the median is an estimate of the location 

parameter, for the price difTerences thc estimated valuc of location 

parameter is zero. The scale parameter is estimated using the maximum 
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likelihood method (as given in 10hnson and Kotz, 1994). The maximum 

likelihood equation to estimate the scale parameter is 

and 

ulogL = ~-:t 28 
a8 8 1=1 8 2 + x/ 

(4.3.2) 

Here XI, x2, ... ,Xn are the observations from the Cauchy density in 

(3.1.1). Since above equations (4.3.2) do not have a closed form 

expression for its solution, an iterative procedure is used to estimate the 

scale parameter. The procedure is as follows. The estimator after k 

iterations is given by 

Table 4.5 gives the values of the empirical distribution function and the 

theoretical distribution functions. Since the calculated value of the 

Kolmogrov statistic (0.0488) is less than the corresponding tabulated value 

(0.06\3) value, we can accept the hypothesis that the price differences 

follow a Cauchy distribution with scale parameter 0.243 and location 

parameter zero, that is C(0.243,0). 

The next step is to test the randomness of the series. We proceed as 

above (see Section 43.2) and estimated the number of point where it 

increases. The estimated value is 325 If it is a random series the expected 

number is 353. Therefore, we can conclude that the observations are not 
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independent. The scatter diagram (Fig. 4.4) of XI and XI-I also reject any 

chance of independence of successive observations. From above steps it is 

clear that the distribution of the transformed values of the coconut oil 

prices follows a Cauchy distribution and the consecutive prices are 

correlated. Thus a time series based modelling technique with Cauchy 

marginal distribution is an appropriate choice for the prices. The 

parameters are estimated using the methods described in the previous 

chapter. The Table 4.4 gives the estimated values of the parameters (see 

Fig.4.5). 

Table 4.4 : Estimates of the different parameters of transformed 

Coconut oil prices 

Estimates of the AR coefficient 

Estimate of the scale parameter mle method 

" edf method of Section 4.2 

edf method of Section 4.3 

Finally the model identified is 

X n = 0.033277 X,,_I + &", 

0.033277 

0.2513 

0.3235 (t=0.155) 

0.2528 (t=0.208) 

where {l:,,} is a sequence of independently and identically distributed 

random variables and follow C(S.(I- 0033277),0), where () is either of 

the estimators obtained above. However, if we are following edf method 

then we recommend S = 0.2528 as the estimate for {-. 
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T bl 45 a e : va ues 0 f tl .. I d th f I d' t 'b f fu f le empmca an eore Ica IS n u IOn nc IOns 

Class 
Frequency Cum. Empirical Theoretical 

IF-F·I (t) • Frequency d.f. F F 

<-3.5 1 1 0.00141 0.0223 0.0208 
-3.2 0 I 0.00141 0.0243 0.0229 
-2.9 2 3 0.00424 0.0268 0.0226 
-2.6 0 3 0.00424 0.0299 0.0256 
-2.3 1 4 0.00566 0.0337 0.0280 
-2.0 1 5 0.00707 0.0387 0.0316 
-1.7 4 9 0.0127 0.0454 0.0326 
-1.4 I 10 0.0141 0.0549 0.0407 
-1.1 10 20 0.0283 0.0694 0.0411 
-0.8 12 32 0.0453 0.0940 0.0488·· 

-0.5 59 91 0.1287 0.1441 0.0154 
-0.2 115 206 0.2914 0.2809 0.0105 
0.1 210 416 0.5884 0.6242 0.0358 
0.4 163 579 0.8189 0.8261 0.0071 
0.7 64 643 0.9095 0.8935 0.0159 
1.0 21 664 0.9392 0.9240 0.0152 
1.3 25 689 0.9745 0.9410 0.0335 
1.6 3 692 0.9859 0.9518 0.0269 
1.9 5 697 0.9873 0.9593 0.0265 
2.2 1 698 0.9915 0.9648 0.0225 
2.5 3 701 0.9929 0.9690 0.0225 
2.8 I 702 0.9929 0.9723 0.0206 
3.1 0 702 0.9986 0.9749 0.0180 
3.4 4 706 1.0000 0.9771 0.0215 
3.7 I I 707 1.0000 0.9789 0.0216 
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Fig 4.4 
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