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CHAPTER1

Introduction

Recent advances in molecular imaging technologies open new roads for
the decease diagnosis and treatment. These imaging techniques are used
to represent, characterize, and quantify biological processes at the cellular
and sub cellular levels within intact living organisms. Microarray
technology is one such molecular imaging technique that enables the
acquisition of genomic data on a scale that was previously unimaginable.
Image processing techniques are used to quantify the information from
microarrays. A brief introduction of the current developments in
molecular biology is presented in this chapter. The fundamental digital
image processing steps are explained. The significance of the present
study and major contributions of the present research work are
highlighted.
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1.1 Digital Image Processing

The importance of digital images in this technological era is increasing
tremendously and image processing is becoming vital component in our life. It has
become an important tool in different fields like communication, remote sensing,
robotics, industry and medicine. The rapid developments in image acquisition
systems and computer aided analysis methods provide a great help in the diagnosis
and analysis of complicated diseases and now medical imaging has emerged into
one of the most important sub-fields in scientific imaging. Digital image
processing enables to enhance features of interest and at the same time attenuate
irrelevant details in the given context. A combination of modern microscopy and
digital image processing techniques has radically changed biological research
(Kherlopian, A. R. et al, 2008). Biologists study cells and generate 3D confocal
microscopic data sets; radiologists identify and quantify tumors from MRI and CT
scans (Doi, K., 2006). Today molecular interactions and structural dynamics are
visualized as digital images to study the biological system. Automated image
analysis of tissue samples now plays an important role in speeding up the drug
discovery process. Analysis of these diverse types of images requires sophisticated
computerized quantification and visualization tools. With the advent of internet, it
is now possible to search and retrieve images from a large database of digital
images and medical image databases are key components in diagnosis and
preventive medicines.

Microarray Technology is one of the fastest-growing new technologies in
the field of genetic research in which digital image processing techniques are
applied for feature extraction and analysis. Scientists are using DNA microarrays
to investigate everything from gene discovery, disease diagnosis to drug design.
The image processing steps used in microarray experiments have major impact on

the quality of microarray data.
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1.2 Digital Image Processing Steps

A digital image can be represented as a two dimensional function f (x, y),
where x and y are spatial coordinates and the amplitude of f at pair of coordinates
(x, y) is the intensity or gray level of the image at that point (Gonzalez R.C et al.,
2002). Images can be classified according to the source of illumination as Visual,
X-ray, UV, IR, Acoustics microwave images and so on. Different sensors are used
to acquire these images depending on the application.

Digital image processing refers to the processing of digital images using
computers which can be classified as low level, middle level and high level. The
low level processing involves primitive operations like enhancement and noise
reduction where both the input and output are images. Middle level processing
involves extracting features, classification of objects, description of objects etc. In
middle level processing inputs are images, while the outputs are attributes such as
edges, contours etc. High level processing refers to image understanding from the
available knowledge. This includes pattern recognition and computer vision
applications. The following sections describe different image processing steps.
Image Enhancement: This is the preprocessing step that is applied to improve the
quality of images. This can be performed both in spatial as well as frequency
domain. Different algorithms are applied to emphasize, sharpen or smoothen the
images before further processing. Contrast enhancement, histogram equalization,
spatial and frequency filtering are some of the commonly used image enhancement
techniques.

Image Segmentation refers to the process of partitioning an image into different
regions or objects based on some criterion. The level of detail to which the
partitioning is carried depends on the problem being solved. Segmentation
techniques are classified into three categories such as region based, boundary based
and edge based. Autonomous segmentation is one of the most difficult tasks in

image processing.
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Image Restoration: This technique is used to recover an image that has been
degraded by noise, using a prior knowledge of the degradation phenomenon such
as blur, random noise, nonlinearities due to sensors and geometric distortions. Most
of the restoration techniques model the degradation process and attempt to apply
the inverse function to obtain an approximation of the original image. Blind
restoration techniques attempt to solve the problem without prior knowledge about
the degradation.

Representation and Description Segmentation results in groups of pixels
representing different regions. For further analysis, these regions should be
represented and described in suitable form. Basically representation is based on
either internal characteristics (region) or external characteristics (boundary) of the
image. The represented region should be described by descriptors. For example a
boundary can be described by features such as length, number of concavities etc.
Morphological processing deals with the tools used for extracting image
components that are useful for representation and description of shapes, such as
boundaries, skeletons, convex hull. Morphological techniques are used for pre or
post processing of images. Some of the morphological operations are filtering,
filling, and thinning. Erosion and dilation are two primitive morphological
operations.

Pattern Recognition is the process that assigns labels to the objects based on
descriptors. Pattern is an arrangement of descriptors. Pattern class is a family of
patterns that share some common properties. Pattern recognition by machine
involves techniques for assigning patterns to their respective classes.

Compression techniques are used to reduce the storage required to save an image,
or the bandwidth required to transmit it without any appreciable loss of

information. Various compression standards have been developed for this purpose.
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1.3 Image Processing in Molecular Biology Research-
A Review

Molecular biology concerns with understanding the interactions between
the various systems of a cell, including the interactions between the different types
of Deoxyribonucleic acid (DNA), Ribonucleic acid (RNA), Protein biosynthesis as
well as learning how these interactions are regulated. Much of the work in
molecular biology is quantitative, and recently much work has been done at the
interface of molecular biology and computer science, in bioinformatics and
computational biology. As of the early 2000s, the study of gene structure and
function, and molecular genetics has been among the most prominent sub-fields of
molecular biology. Expression cloning, Polymerase chain reaction (PCR), Gel
electrophoresis, Macromolecule blotting and probing arrays are some of the major
technologies used in molecular biology to characterize, isolate, and manipulate the
molecular components of cells and organisms. Molecular Imaging emerged in the
early twenty-first century as a discipline at the intersection of molecular biology
and in vivo imaging. It enables the visualization of the cellular function and the
follow-up of the molecular process in living organisms without perturbing them
(Massoud et al., 2003; Betzig E. et al., 2006). Many areas of research are being
conducted in the field of molecular imaging. Advancements arising from this
research can enhance our knowledge of disease, lead to earlier disease detection
and accelerate drug discovery. The present pace of advancements in biotechnology
and functional genomics is making parallel progress in molecular imaging
innovations and applications (Subramanian et al., 2001). The development,
validation, and application of these novel imaging techniques in living subjects
should further enhance our understanding of disease mechanisms and go hand in

hand with the development of molecular medicine. The various existing imaging



Chapter 1 Jntreduction

technologies differ in five main aspects: spatial and temporal resolution, depth of
penetration, energy expended for image generation (ionizing or non ionizing,
depending on which component of the electromagnetic radiation spectrum is
exploited for image generation), availability of injectable/biocompatible molecular

probes, and the respective detection threshold of probes for a given technology.

Inventions of fluorescent molecule and developments in image processing
techniques have great impact on the way research is being conducted in molecular
biology (Zhang. J et al., 2002). Fluorescence is a quantum mechanical property of
molecules and atoms whereby a photon of one energy level (typically the higher
energy) is absorbed, and a photon of another energy level (typically the lower
energy) is emitted. With precisely designed probes and instruments it is now
possible to monitor the behavior of hundreds to thousands of single molecules
within a living cell, at spatial resolutions that approach molecular-length scales
(Bruchez M. P. et al., 2009) .

Fluorescence in situ hybridization (FISH) is a cytogenetic technique
developed by biomedical researchers in the early 1980°s used to detect and localize
the presence or absence of specific DNA sequences on chromosomes. FISH tests
provide promising molecular imaging biomarkers to accurately and reliably detect
and diagnose cancers and genetic disorders (Moter, A et al., 2000). FISH uses
fluorescent probes that bind to only those parts of the chromosome with which they
show a high degree of sequence complementarily. Fluorescence microscopy can be
used to find out where the fluorescent probe is bound to the chromosomes. FISH is
often used for finding specific features in DNA for use in genetic counseling, study

of copy number variation (CNV), and species identification.

DNA Microarray technology has empowered the scientific community to
understand the fundamental aspects underlining the growth and development of life

as well as to explore the genetic causes of anomalies occurring in the functioning
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of the human body. Microarray technology evolved from Southern blotting, (E. M
Southern, 1975), where fragmented DNA is attached to a substrate and then probed
with a known DNA sequence. The first DNA microarray produced in Patrick
Brown’s laboratory in Stanford by Schena et al in1995.They utilized gridding
robots to print DNA from purified cDNA (complementary DNA) clones on glass
microscope slides. The slides were interrogated with fluorescently labeled RNA
samples and the specific hybridization between a cDNA clone on the slide and
labeled RNA in the sample used to infer the expression levels gene corresponding
to each clone. This technology enables the analysis of expression of thousands of
genes in a single experiment. Now microarrays have wide range of applications.
Types of microarrays include: DNA microarrays, Protein microarrays, Peptide
microarrays, Tissue microarray, Cellular microarrays, Chemical compound
microarrays, Antibody microarrays, Carbohydrate arrays. Data drawn from the
microarray chip are mainly fluorescent images organized into matrix of spots,
whose intensity is proportional to specific, site dependent, DNA hybridization. One
of the major advantages of this technique is the parallelism of the process. With
just one experiment it is possible to collect large number of relevant data necessary
for genomic analysis. One of the major challenges in the data extraction from
microarray is the image processing phase. The accuracy of this phase has
substantial impact on the accuracy and effectiveness of the subsequent steps.
Development of advanced intelligent image processing technique is a major
requirement for speeding up the real time diagnosis and implementation procedures

of microarray based analysis.
1.4 Significance of the Study

The rapid advancement of technologies for fabrication of high quality
microarray makes image analysis and quantification of microarray data become a
major task. Fabrication inconsistency, irregularities of spot morphology and
varying surface intensity distribution are common problems with these high density
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arrays. Moreover, the experimental conditions and image acquisition stages
introduce noise and other sources of variability. In real microarray experiments, the
exact position and size of the spots may vary due to the several reasons, mainly
related to mechanical constraints and hybridization inconsistencies. In addition,
spot intensity levels are highly variable and weak spots are often difficult to be
detected. During the last few years, different image analysis methods have been
developed; most of them require input parameters and at times manual intervention
for accurately extracting information from the array. This imposes big burden for
the biologists who use microarrays in their research. Image analysis has large
impact on downstream analyses such as clustering or the identification of
differentially expressed genes. An automatic image analysis method capable of
handling high density microarrays is essential for the high throughput analysis. The
method should be robust against noise and contaminations that commonly occur in

different stages of microarray development.

1.5 Objectives

The main objectives of the research are:

1. To develop a novel method for automatic gridding of high density microarray
images.

2. To develop a novel method for image adaptive segmentation of microarray
spots.

3. Perform intensity quantification and develop a novel method for spot quality

assessment
1.6 Contributions of the Thesis

The major contributions of the thesis are summarized as follows:

1.6.1 Development of a Novel Gridding Method for High Density Microarray
Images

A novel method for locating subarrays and individual spots within the
microarray image has been developed using the intensity projection profile of the

best subimage. The method is capable of processing the image without any user

8
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intervention, does not demand any input parameters, and is found to be suitable for
gridding microarray images with irregular spots and varying surface intensity
distribution. Performance analysis indicates that the new method is robust against
various noises and contaminations that are found common in microarray images.
On comparison with an existing intensity projection profile method, the new
scheme shows superior performance while gridding images with large coefficient

variations. The new method has been implemented using MATLAB software.

1.6.2 Development of Automatic Adaptive Seed Region Growing (AASRG)
Method for Microarray Images

A novel segmentation method called image adaptive seed region growing
has been developed. The seed and threshold value are selected automatically
depending on the characteristics of the spot. Local background intensity was
calculated by considering the both local and global background intensity
characteristics which is found to be accurate for high density microarray images.
Block processing method is used for reducing the computation time required for
implementing the algorithm on high density microarray images. Monte-Carlo
simulations were conducted to study the segmentation accuracy and classification
error of the AASRG method. The new segmentation algorithm has been
implemented on different real microarray from Stanford Microarray
Database (SMD). The performance of the new algorithm is compared with
MAGIC 2.2 which uses conventional SRG method for feature extraction, and it is
found that better segmentation accuracy is attained with AASRG while segmenting
spots with low intensity, irregular shape and size.
1.6.3 Development of New a Spot Quality Assessment Method

Various quality measures are used during image processing step to
evaluate the quality of individual spots so that bad spots can be excluded from
further analysis. A new scheme for automatic filtering of low quality spots has

been developed. Different quality measures are defined for this purpose. A
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Composite quality score was assigned to each spot which has been used to check
the quality of microarray spots.

The new image analysis tool has been tested on various real cDNA and
array CGH microarray images available at Stanford Microarray Database (SMD).
Quantification of image intensities were carried out and expression ratio was
computed. Normalization techniques were used to reduce the systematic errors and

bias introduced during the microarray experiment.

1.7 Thesis Outline

Chapter 1 presents an introduction to digital image processing and its applications
in biological research. Significance of the present study, objectives and

contributions of this research work are also summarized.

Chapter 2 provides a biological background and discusses the need for microarray
based analysis. Basic principle of microarray technology and different steps in
developing a microarray are explained. Types of microarrays and their applications

are also presented.

Chapter 3 deals with various stages of the microarray data analysis. Image
processing steps are also explained in detail. The challenges in applying the image
processing methods on real microarray images are described. An overview of

relevant image analysis methods for microarray images is described.

In Chapter4, a novel method for gridding high density microarray images has
been proposed. The state of the art gridding methodologies for microarray images
are explained. Implementation, performance measures such as accuracy, robustness
against noise and computation time is narrated. The suitability of proposed

algorithm for gridding high density microarray images is described.

In Chapter 5, a novel segmentation algorithm using automatic adaptive seed

region growing method is explained. A review of literature on various

10
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segmentation techniques used for extracting the foreground and background
intensities from the microarray is presented. The implementation and performance
analysis are also illustrated. Comparison of the new method with existing method
and advantages of using the new method for high density microarray images are

explained.

Chapter 6 explains the quantification of spot intensity and normalization methods
used in this research. The log transformation methods and graphical tools used for
the examining the results are described. The implementations of normalization on

various microarray images are narrated.

In Chapter 7 a new scheme for spot quality assessment is explained. Various
factors that effect the quality of microarray spots are described. State of the art
quality assessment techniques for automatic filtering out of low quality spots in the
high throughput analysis is presented. Performance analyses of the new method on

various microarray spots are presented.

Chapter 8 describes implementation of the new fully automated image analysis
method on arrayCGH images. HT29 cell line based array CGH image has been
used for testing and biological validation. The implementation and the results are
highlighted in this chapter.

A brief summary of the research work and important conclusions are highlighted in

Chapter 9. Suggestions for future research are also provided. Remaining sessions
of the thesis include the bibliography followed by list of publications.

11






CHAPTER2

Microarray Technology

Life sciences are currently at the center of information revolution.
Dramatic changes are being registered as a consequence of the
development of techniques and tools that allow collection of biological
information in extremely large quantities. Development of microarray
technology empowered the biological researches to monitor the bioactivity
of populations of the cells on a high throughput basis. This chapter give

an introduction to the microarray technology and its applications.
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2.1 Introduction

There has been a dramatic change in the field of biological technologies
over the last decade, which resulted in complete sequencing of many important
model organisms including human genome. The fundamental strategy of the era of
functional genomics is to expand the scale of biologic research from studying
single genes or proteins to studying all genes or proteins simultaneously using a
systematic approach. Microarray technology has made it possible to monitor the
expression levels of thousands of genes in parallel and become a standard tool in
molecular biology. A brief review of the basic biology is presented in the following

session.

2.2 Biological Background

All living organisms consist of cells, which contain nucleic acids and
proteins. Within cells there is an intricate network of organelles that all have
unique functions. Figure 2.1shows the internal structure of an animal cell. Nucleus
is the largest organelle within the cell. The nucleus of the cell contains most of the
cell's genetic material, organized as multiple long linear DNA molecules in
complex with a large variety of proteins, such as histones, to form chromosomes.
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Figure 2.1 Cell structure
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2.2.1 Deoxyribonucleic acid (DNA)

The information in DNA is stored as a code made up of four chemical
bases: adenine (A), guanine (G), cytosine (C), and thymine (T). Human DNA
consists of about 3 billion bases, and more than 99 percent of those bases are the
same in all people. The order, or sequence, of these bases determines the
information available for building and maintaining an organism. DNA bases pair
up with each other, A with T and C with G, to form units called base pairs. Each
base is also attached to a sugar molecule and a phosphate molecule. Thus, a base,
sugar, and phosphate together are called a nucleotide. Nucleotides are arranged in
two long strands that form a spiral called a double helix. An important property of
DNA is that it can replicate, or make copies of itself. Each strand of DNA in the
double helix can serve as a pattern for duplicating the sequence of bases. This is
critical when cells divide because each new cell needs to have an exact copy of the
DNA present in the old cell. DNA contains the instructions needed for an organism
to develop, survive and reproduce. To carry out these functions, DNA sequences
must be converted into messages that can be used to produce proteins, which are
the complex molecules that do most of the work in our bodies. Figure 2.2 shows
the DNA double helix structure and its building clocks.
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Figure 2.2 DNA structure



Chapter 2 Microarray Technology

2.2.2 Chromosomes

The DNA is coiled and super coiled to form chromosomes. Each
chromosome has around 50 to 250 million bases. Human cells contain two sets of
chromosomes, one set inherited from the mother and one from the father. The egg
from the mother contains half of the 46 (23) and the sperm from the father carries
the other half of 46 chromosomes. Together the baby has all 23 pairs of
chromosome in which 22 pairs are autosomes and 1 pair of sex chromosomes.
Figure 2.3 shows the structure of chromosome. Each chromosome has a
constriction point called the centromere, which divides the chromosome into
two sections, or “arms.” The short arm of the chromosome is labeled the “p

rm.” The long arm of the chromosome is labeled the “q arm.” The location
of the centromere on each chromosome gives the chromosome its

characteristic shape, and can be used to help describe the location of
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Figure 2.3 Chromosome structure
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2.2.3 Genes

Genes are the working subunits of DNA. Each gene contains a particular
set of instructions, usually coding, for a particular protein or for a particular
function. There are nearly 50,000 to 100,000 genes, each being made up of
hundreds of thousands of chemical bases. The genes contain the information to
make the necessary proteins. Gene expression is the process by which genomic
information at DNA level is converted into functional proteins. Each cell
expresses, or turns on, only a fraction of its genes. The rest of the genes are
repressed, or turned off.

The genetic code is the set of rules by which information encoded within
genetic material (DNA) is translated into proteins (amino acid sequences) by living
cells. The genetic code can be expressed in a simple table with 64 entries. The
Genetic code comprises of 64 triplets of nucleotides which are called as the
codons. Except few exceptions, each codon encodes for one of the 20 amino acids
which produces redundancy in the code that is most of the amino acids is encoded

by more than one codon. This is known as the degenerative property of the codon.

2.2.4 Proteins

They are involved in virtually in all cell functions. Each protein within the
body has a specific function. Some proteins are involved in structural support,
while others are involved in defense against germs. Proteins are important building
blocks for all body parts, including muscles, bones, hair, and nails. Proteins
circulate throughout the body in the blood and are normally harmless. Proteins
vary in structure as well as function. They are constructed from a set of 20 amino
acids and have distinct three-dimensional shapes. Occasionally, cells produce
abnormal proteins that can settle in body tissue, forming deposits and causing

disease.
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2.3 Central Dogma of Molecular Biology

The central dogma of molecular biology describes the flow of genetic
information within a biological system. This flow is from DNA to RNA to
proteins. In order to make proteins, the gene from the DNA is copied by each of
the chemical bases into the messenger RNA (ribonucleic acid) or mRNA. The
composition of mRNA is similar to DNA except for a few characteristic
differences.

The sugar molecule present in mRNA is ribose, and among the four
nitrogenous bases, thymine (T) is replaced by uracil (U).The mRNA moves out of
the nucleus and uses cell organelles in the cytoplasm called ribosomes to form the
polypeptide or amino acid that finally folds and configures to form the protein.
Biological decoding is accomplished by the ribosome, which links amino acids in
an order specified by mRNA, using transfer RNA (tRNA) molecules to carry
amino acids and to read the three mRNA nucleotides at a time. Figure 2.4 shows

genetic code and formation of amino acids by triplets of nucleotides.

2nd base
u c A [

UUU | (Phe/F) Phenylalanine UCU (Ser'S) Serine  UAU (Tyr¥) Tyrosine | UGU |(Cys/C) Cysteine

UUC  |{PheiF) Phenylalanine UCC (Ser/S) Serine | UAC (TyrfY) Tyrosine UGC |(Cys/C) Cysteine
Soson2 Yun l(euttessne  |UCA (SerS) Serine  UAk (O (SR UGA Opal (Sto)
UUG  |(Leull) Leucne UCG (SerfS) Serine  UAG Amber (Stop) UGG |(Trp/W) Tryptophan
|CUU  (Lowl)Leucine  |CCU (FroP) Proline  CAU (HisH) Hisidine  CGU (Arg/R) Arginine
i 2 o[OUC |fout)Loucne | CCC (o) Proine  CAC(Hish) Hitdne | CGC (Arg/R) Argnne

CUA  (LeulL) Leucine CCA (Pro/P) Proline  CAA [(GIn/Q) Glutamine | CGA (Arg/R) Arginine.

CUG |(Leul)Leucne  CCG|(Pro)Proline  CAG (GIn/Q) Giutamine  CGG (Argi) Arginine

Codon 1

Codon 3

OPFPCOOPFPFOO0CCOOTO OO ODCP

Codon 5 1stbase

| AUU  |(Bef) lsoleucine | ACU |(ThuT) Threonine AAU |(Asn/N) Asparagine | AGU |(Ser/S) Serine

H L L AUC (b bolowcine  AGC, (T Trmorine AAC (Asn) Asparagine | AGC (Ser) Srine
| AUA |(lef) lsoleucine | ACA |(ThuT) Threonine AAA |(Lys/K) Lysine AGA (Arg/R) Arginine
iy UG (MoUM) Methionine | ACG (ThiT) Thveonine AAG (Lysh) Lysne | AGG (Arg/R) Arginine

_ |GUU | (Valrv) Valine GCU | (Ala/A) Alanine | GAU (Asp/D) Aspartic ackd. GGU (Gy/G) Giycine

a GUC | {val/v) Valine GCC (Ala/A) Alanine  GAC | (Asp/D) Aspartic acid GGC | (Gly/G) Glycine

ORI o GUA | (VallV) Valine GCA (Nalh) Nanina | GAA (GhiE) Gltaric.acd GGA (GG Giyone
GUG |{valv) Vaiine GCG (Al/A) Alanine  GAG (GIW/E) Glutamic acid GGG (Gly/G) Glycine

Figure 2.4 Genetic Code and Amino acids corresponding to Codons
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Three different processes are responsible for these transformations are shown in

Figure 2.5. They are:

Replication: A double stranded nucleic acid is duplicated to give identical copies.
This process perpetuates the genetic information.

Transcription: A DNA segment that constitutes a gene is read and transcribed into
a single stranded sequence of mMRNA. The mRNA moves from the nucleus into the
cytoplasm.

Translation: the mRNA sequence is translated into a sequence of amino acids as
the proteins are formed. During translation, the ribosome reads three bases (a

codon) at a time from the mRNA and translates them into one amino acid.

Transcription | mRNA Translation

DNA > Protein

A 4

Reverse Transcription

Figure 2.5 Central Dogma of molecular biology

The presence of mRNA in a cell indicates that the gene is active. Every cell of an
individual organism contains same DNA, carrying the same information. Each cell
expresses only a fraction of its genes and produce different set of proteins that
defines the function of the cell.

Reverse transcriptase
Reverse transcription is the process by which a reverse transcriptase enzyme
mediates the creation of a DNA complement (complementary DNA or cDNA)

from an RNA strand. The discovery and use of reverse transcriptase has greatly
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improved knowledge in the area of molecular biology. Reverse transcriptase is
used for gene expression analysis, to create cDNA libraries from mRNA and, along
with other enzymes, allow cloning, sequencing, and characterization of RNA.

Figure 2.6 show the different steps in the generation of protein from gene.
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Figure 2.6. (A.) Flow of information from DNA to protein. (B). Protein synthesis
(a) Replication(b) Transcription (c)Translation(d)Protein formation
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2.4 Need for Microarrays

The amount of protein generated from each gene determines both the
morphology and the function of a given cell. Small changes in the expression
levels can change at organism level resulting in various diseases like cancer.
Therefore comparing the expression levels of the genes in different conditions such
as differing environments, treatments, time points, phenotypes, or clinical
outcomes are of extreme interest for scientists. This need stimulated the
development of high throughput techniques such as microarrays. Microarray
allows the interrogation of thousands of genes at the same time. The first
microarrays were developed at Stanford University by Schena et al. in 1995.
Development of better surface technologies, more powerful robots for arraying,
labeling techniques and improved computational power and automated analyzers
have vastly improved the power and efficiency of microarray, while also lowering
the cost of these analyses. Microarray is currently used to analyze different
systems, including the classification of microbes and human microbial pathogens,
cellular responses to pathogens, drug and toxic exposures, tumor classification,
detection of gene fusions, comparative genomic hybridization, alternative splicing
detection (exon junction array/exon arrays) and gene expression profiling via

analyzing global mRNA levels.

2.5 Fabrication of cDNA Micoarrays

A DNA microarray consists of a solid substrate (glass, nylon or plastic) on
which known single stranded DNA’s (ssDNA) corresponding to known genes are
deposited. Researchers have a database of over 40,000 gene sequences that can be
used for this purpose. Single stranded DNA fragments are prepared by either
Polymerase Chain Reaction (PCR) or by wusing already synthesized
oligonucleotides. PCR technique creates billions of copies of specified DNA
fragments and oligonucleotides have to be presynthesized. These ssDNA fragments

(called probes) are spotted at fixed locations that are arranged in regular grid like
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pattern. The attachment with the substrate is either covalent or electrostatic
attraction.

There are two technologies for making microarrays: robotic spotting and
in-situ synthesis. Manufacture by robotic deposition may proceed through the
deposition of PCR amplified or oligo nucleotide single stranded DNA segments at
specified locations wusing spotting robots. [n-situ synthesized arrays are
fundamentally different from robotic spotted array. Instead of presynthesising oligo
nucleotides, oligos are built up base by base on the surface of the array. /n-situ can
be divided into photolithography, ink jet printing and electrochemical synthesis.

Fig.2.7 shows a robotic spotting method where a robotic arm moves the
cassette containing the pins over the microtiter plates containing probes and dips
pins into the wells to collect the first batch of ssDNA. The robotic arm is then
moved over the array and the pins touch the surface of the array at specified
locations to deposit ssDNAs. If more than one array is being synthesized the
cassette is moved to subsequent arrays. Before collecting the next ssDNA batch to
be spotted, the pins are washed to ensure no contamination. The final step of array
production is fixing, in which surface of substrate is modified so that no additional
DNA can stick to it.

Figure 2.7 (a) Robotic Spotting (b) Pin structure
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2.6 Microarray Experiment

A cDNA microarray works by exploiting the ability of a given mRNA
molecule to bind specifically to, or hybridize to, the DNA template from which it
originated. A typical two channel or two colour microarray experiment involves
two samples such as tumor tissue (test sample) and healthy tissue (reference
sample). Once the known ssDNA segments corresponding to different genes are
fabricated on the slides, there are four steps in the microarray experiment to
measure the gene expression.
Step 1: Sample Preparation and Labeling

Sample preparation refers to extracting and purifying the mRNA from the
tissues of interest (eg: normal as well as tumorous tissues). Extracted mRNA is
reverse transcribed into cDNA. To allow detection of which cDNA that will bind
to the complementary part in glass substrate, a labeling process is carried out .The
tumor and the normal ¢cDNA samples are labeled with different fluorescent dyes.
Now most laboratories use fluorescent labeling by using two dyes Cy5 (excited by
red laser) and Cy3 (excited with green laser). For Cy5 the excitation wavelength is
550nm and emission wavelength is 581nm and for Cy3 the excitation and emission
wavelengths are 649nm and 670nm respectively (Dov Stekel, 2003).
Step2: Hybridization

Hybridization is the step in which the ssDNA sequences on microarray
slide (called probes) and the labeled cDNA(called targets) forms hetroduplexes
according to Watson —Crick base pairing rule known as cross hybridization (Sorin
D ,2003).The fluorescently labeled targets are pooled and allowed to hybridize
under stringent conditions. The chip is then incubated for 12 to 24 hours in
temperature. At this temperature, DNA strands in the slide encounter the
complementary strands and match together to create a double stranded DNA.
Step3: Washing

After hybridization the slides are washed to remove excess labeled samples
(which are not hybridized) from the array and the array is dried using a centrifuge

or blowing clean compressed air.
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Step 4: Scanning

The final step of the laboratory process is to produce an image of the
surface of the hybridized array. The slide is placed in a scanner. It is essentially a
fluorescent microscope that is specialized for acquiring microarray fluorescent
image on the standard microscopic slide format. The scanner contains lasers that
are focused onto the array. Lasers excite dyes in the labeled targets and emit
photons. The emitted photons are amplified by using photon multiplier tube
(PMT). The fluorescence of the dye measured by a PMT is converted to digital
image. With two colour arrays, the output of the scanner is two monochrome
images; one for each of the two lasers in the scanner. These monochrome images
are imported into a software in which these are combined to create the red-green
composite image of the microarray. Both the monochrome and the composite
image are usually stored in tagged image file format (TIFF) with a resolution of
either 8 or 16 bits. The amount of dye on the slide at each spot position is detected
and this signal indicates which genes are active and how much mRNA was
produced. Fig 2.8 shows the typical two channel microarray experiment.
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Figure 2.8 Experimental procedures for microarray experiment.
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2.7 Applications of Microarrays

Microarrays have been extensively used for biological research such as
sequencing, single nucleotide polymorphism (SNP) detection, investigation of
genetic mechanism in living cell such as comparing healthy and malignant tissues,
studying cell phenomena over time, study the effect of various factors such as
interferons, oncogene transfection. Other applications include:
Gene Discovery: DNA Microarray technology helps in the identification of new
genes, know about their functioning and expression levels under different
conditions.
Genotyping: It is the process of determining differences in the genetic make-up
(genotype) of an individual by examining the individual's DNA sequence using
biological assays and comparing it to another individual's sequence or a reference
sequence.
Disease Diagnosis: DNA Microarray technology helps researchers learn more
about different diseases such as heart diseases, mental illness, infectious disease
and especially the study of cancer. Until recently, different types of cancers have
been classified on the basis of the organs in which the tumors develop. Now, with
the evolution of microarray technology, it will be possible for the researchers to
further classify the types of cancer on the basis of the patterns of gene activity in
the tumor cells. This will tremendously help the pharmaceutical community to
develop more effective drugs as the treatment strategies will be targeted directly to
the specific type of cancer.
Drug Discovery: Microarray technology has extensive application in
Pharmacogenomics. Pharmacogenomics is the study of correlations between
therapeutic responses to drugs and the genetic profiles of the patients. Comparative
analysis of the genes from a discased and a normal cell will help in the
identification of the biochemical constitution of the proteins synthesized by the
diseased genes. The researchers can use this information to synthesize drugs which
combat with these proteins and reduce their effect. They can also be used to
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monitor changes in gene expression in response to drug treatments. Gene
expression microarray analysis can be valuable at all stages of the drug discovery
process , including target identification and validation, mechanism of action studies

and the identification of pharmaco dynamic endpoints.

Toxicological Research:

Microarray technology provides a robust platform for the research of the
impact of toxins on the cells and their passing on to the progeny. Toxicogenomics
establishes correlation between responses to toxicants and the changes in the
genetic profiles of the cells exposed to such toxicants). They are widely used for
ecotoxicology to understand the mechanism of action of toxicants on living
organisms. Such knowledge would help to develop predictive simulation models of
toxic effects, to link molecular biomarkers with population-level effects, and then
to anticipate ecologic risk assessment issues for new chemicals. Gene expression
profiles represent the primary level of integration between environmental factors
and the genome, providing the basis for protein synthesis, which ultimately guides

the response of organisms to external changes.

2.8 Challenges in Using Microarrays

The advantages and possibilities of the microarray technology are
numerous, but their users are challenged by many issues. Even if the experiment is
performed several times with exactly same material and preparations in exactly the
same experimental conditions, after scanning and image analysis, they show
variation in the quantified values. Noise is introduced at each step of the various
procedures such as mRNA extraction, transcription, labeling, non-specific
background hybridization, and other artifacts. Scanning issues such as dynamic
range limitation and inter channel alignment, type of the image processing
techniques used , characteristics of individual pin tips, properties of specific probe
source plates, are some of the sources variation. Due to the mechanical constrains,

it is common to have irregular-shaped spots in microarray slides such as doughnut
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shaped spots and spots with irregular edges. One of the major problems involved
with the technique of DNA microarrays is concerned with the amount of data that
is produced. Large-scale, high-throughput experimental methods require a great

deal of information processing and data analysis.
2.9 Types of Microarrays

Microarrays are not limited to gene expression analysis. Different
microarrays are developed for studying the interaction between various
bimolecules such as protein microarrays, tissue microarrays, antibody microarray
and chemical compound microarray .

2.9.1 arrayCGH Microarrays

Copy-number variations (CNV) are form of structural variations, which are
alterations of the DNA of a genome that results in the cell having an abnormal
number of copies of one or more sections of the DNA. CNVs correspond to
relatively large regions of the genome that have been deleted (fewer than the
normal number) or duplicated (more than the normal number) on certain
chromosomes. Most CNVs are benign variants that will not directly cause disease.
However, there are several instances where CNVs that affect critical
developmental genes do cause disease. These gene amplifications and deletions
cause various genetic disorders and even cancer.

DNA microarray based comparative genomic hybridization (array CGH) is
a technique that allows simultaneous monitoring of copy number of thousands of
genes throughout the genome. In this technique, DNA fragments or "clones" from
a test sample and a reference sample differentially labeled with dyes (typically,
Cy3 and Cy5) are hybridized to mapped DNA microarrays and imaged. Copy
number alterations are related to the Cy3 and Cy5 fluorescence intensity ratio of
the targets hybridized to each probe on a microarray. Clones with normalized test
intensities significantly greater than reference intensities indicate copy number

gains in the test sample at those positions. Similarly, significantly lower intensities
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in the test sample are signs of copy number loss. BAC (bacterial artificial
chromosome) clone based CGH arrays have a resolution of the order of one million
base pairs (1Mb).

2.9.2 Protein Microarrays

They are used to track the interactions and activities of proteins, and
determining function on a large scale. Its main advantage lies in the fact that large
numbers of proteins can be monitored in parallel. Protein microarrays are rapid,
automated, economical, and highly sensitive, consuming small quantities of
samples and reagents. The high-throughput technology behind the protein
microarray is relatively easy to develop since it is based on the previously-

developed DNA microarray technology.

2.9.3 Tissue Microarrays

Tissue microarrays enable the high throughput analysis of a large number
of tissue samples that have been collected and archived through the use of paraffin
blocks or formalin. Tissue microarrays are different from DNA microarrays where
each spot on an array represents a cloned cDNA or oligonucleotide that binds to
the target sequence. With tissue microarrays, each array has patient specific
histological samples from cancer infected tissues. The tissue microarray technique
is best suited for screening one genetic marker or protein across thousands of
samples where as DNA microarrays are best suited to study gene expression across

thousands of genes.
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CHAPTER 3

Overview of Microarray Image Analysis

Image processing is the first step in knowledge discovery from the
microarray and has a potentially significant impact on downstream
analyses. Mroarray image processing consists of three major stages
such as gridding, segmentation and quantification. This Chapter explores
the different image processing steps and discusses the challenges in
microarray image analysis.
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3.1 Introduction

The microarray data processing starts with image acquisition using laser
scanners and ends with the results of data mining that have to be interpreted by
biologists. The major steps of data handling in a microarray processing are shown
in Figure 3.1.The microarray data processing workflow includes image processing
(grid alignment, foreground separation, spot quality evaluation, data quantification
and normalization) (2) data analysis (identification of differentially expressed
genes, data mining, integration with other knowledge sources, and quality

evaluation and repeatability of results, and (3) biological interpretation
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Figure 3.1 Microarray Data Processing Steps

The raw microarray image from the scanner needs to be preprocessed so
that fluorescent intensity associated with each arrayed spot can be determined
accurately. The scanner resolution is an important factor that determines the quality

of the microarray image.

The composite image provides a convenient way of identifying genes or
gene transcripts present in greater abundance in the test sample compared to the

reference sample. Usually reference sample is labeled with green dye (Cy3) and
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test sample is labeled with red dye (Cy5). A green spot in the composite
microarray image indicates that the gene present in greater concentration in the
reference sample compared to test sample. A gene expressed more in test sample
will produce a red spot and a gene that equally expressed in both test and reference
samples will appear as yellow. A gene that is not expressed in both samples will
appear as a black spot. Figure. 3.2 shows an example of spots in a microarray with
different fluorescent intensities. The red and green channels are shown separately
by adding colours to each channel. The composite image is obtained by
overlapping these channels. Consider a gene that is expressed abundantly in tumor
tissue compared to normal tissue (spot2). The spot corresponding to this gene will
yield an intense spot on red channel compared to green channel. Spot 1 with green
intensity indicates that the corresponding gene is more expressed in normal tissue
compared to tumor tissue, while spot 3 corresponds to a gene that expressed
equally in both tissues. Spot 4 represents a gene that has not expressed in either
tissue.

Red
channel

Green
Channel

i
1

Composite image

Figure 3.2 Composite Microarray Image
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3.2 Microarray Image Processing

In microarray experiments the data extraction from the scanned slides has
large impact on subsequent analysis. Fluorescent intensities correspond to levels of
hybridization of targets to probes spotted on the slide. Measured intensity of the
spot also includes contribution of nonspecific hybridization and fluorescence
emission from the chemicals on the slide. It is important in microarray image to
adjust these background intensities for accurate estimation of the spot intensity.
Image processing is the first processing step in the analysis of microarray data to
quantify the intensity values of the spot and its local background. Fig. 3.3 is the
structure of an ideal microarray image. Spots within the array are aligned
horizontally and vertically in blocks called subarrays. The ideal microarray image
has the following properties:

e All the subarrays are of the same size.

e The spacing between subarrays is regular.

e The size and shape of the spots is the same for all the spots.

e No dust or scorches and other contamination are on the slide.

e There is minimal and uniform background intensity across the image.

e A perfect image should only reflect measures of the fluorescence
intensities for the dye of interest.

Figure 3.3 Structure of an Ideal Microarray Image
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Real microarray images deviates from perfect regularity in the positions of the
subarrays and positions of individual spots within the subarray. Also, there are
deviations from the ideal uniform shape, size and background intensity levels.

3.2.1 Gridding

The first step of the image processing is the identification of the position of
subarrays and then that of each spot within a subarray. This addressing procedure
is called “gridding” in microarray literature. To address each spot a number of
parameters must be estimated, including separation between rows and columns of
subarrays, row and column spacing between spots and average diameter of the
spots. Figure 3.4 shows an exmple of gridded spots.

Several academic and commercial packages are available for gridding;
most of them require prior knowledge of the image specific parameters or direct
user intervention to find the position of the spots. It is important that the addressing
procedure be accurate, to ensure precision of the subsequent steps of image

analysis.

Figure 3.4 Gridding
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3.2.2. Segmentation

Segmentation of the image is generally defined as the process of partitioning
the image into different regions, each having certain properties (Soille, 1999).
Identifying the spots and separating the background from the foreground is a
fundamental problem in DNA microarray data analysis. Existing segmentation
techniques for microarray images can be categorized into four groups. They are:

1. Fixed circle segmentation

2. Adaptive circle segmentation

3. Adaptive shape segmentation

4. Histogram segmentation
Ked circle segmentation fits a circle with constant diameter to all the spots in the
image. All the pixels inside the circle are collected and used for foreground
calculation. The problem with fixed circle segmentation is that it gives inaccurate
results if the spots are of different size, which is a common case in microarray
images. Figure 3.5 (a) shows fixed circle implementation.
daptive circle segmentation  method fits a circle with variable diameter onto the
region containing the spots. This method is able to resolve spots of different size,
but performs less well on irregular shaped spots. One approach is to fit concentric
circles over the spot. The pixels inside the inner circle are used for calculating the
signal intensity. Pixels outside the outer circle are used for calculating the
background intensity as shown in Figure 3.5(b).
daptive Shape segmentation  method uses two common approaches, Seed region
growing (SRG) (Adams et al., 1994) and Watershed (Vincent et al., 1991). Both
these methods require the specification of starting points, or seeds. These methods
have the advantage of being able to cope with the irregular shaped spots.

Figure.3.5(c) shows adaptive shape segmentation.
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a b C
Figure 3.5 Different Segmentation Schemes (a) Fixed circle (b) Adaptive
circle (c) Adaptive shape
Histogram segmentation method does not explicitly classify pixels into
foreground and background. Instead, this method analyzes the pixels within
designated region and estimate the foreground intensity from the intensity
distribution of pixels. This method uses a target mask that is chosen to be larger
than any given spot in the microarray. For each spot foreground and background
intensity estimates are determined from the histogram of pixel intensities within
the masked area. Histogram based method give reliable results for irregular shaped
features. But the method is found unstable if the spot size is small compared to the

circular mask chosen.

3.2.3 Identifying Background pixels

Signal intensity of the spot includes contributions from the nonspecific
hybridization and other fluorescence from the substrate. Background intensity is
subtracted from the signal intensity to provide more reliable estimate of
hybridization intensity of each spot. It is a common practice to identify the back
ground pixels from the local background pixels that are not part of the foreground
region within each grid after segmentation. Local background calculation is a
difficult task for high density microarray images. Different image analysis software

defined the local background differently. Some of the commonly used local
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background regions are shown in Figure 3.6. For a spot with foreground region
marked as f, back ground intensity is calculated using the pixels within region

marked as ‘b’.

Figure 3.6 Local background regions used by different software (a) Scanalyze
(b) ImaGene (c) Spot and GenePix

3.2.4 Quantification of Spot Intensity

After the pixels belonging to foreground and background have been
separated, the next step is calculation of intensity of the spot. Image analysis

software usually calculates the following intensity measures for each channel.

1. Signal Mean (Foreground Mean): Mean of the pixel intensities of the foreground

region.

2. Background Mean: Mean of the pixel intensities of the back ground region.

3. Signal Median: Median of the pixel intensities of the foreground region.

4. Background Median: Median of the pixel intensities of the back ground region.

5. Signal Standard deviation: The standard deviation of pixel intensities of foreground
region.

6. Background Standard deviation: The standard deviation of pixel intensities of

background region

7. Number of pixels: Number of pixels in the foreground region.
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The purpose of spot intensity quantification is to combine the pixel intensity values
into a unique quantitative measure that can be used to represent the expression
level of a gene deposited in a given spot (for cDNA arrays) or copy number
variation in array CGH microarrays. The true signal intensity of each channel is

measured as difference between foreground and background intensity.

Data Transformation

It is common practice to transform microarray data before proceeding with the
further analysis in order to improve comparability and signal to noise ratio. Usually
the raw intensities are transformed into log intensities.There are several
advantages for this transformation:

o The variability should be constant at all intensity levels.

o The distribution of experimental errors should be approximately normal.

e The distribution of intensities should be approximately normal.

In microarray data analysis logarithm to base 2 is common. The reason is that the
ratio of intensities of the two channels (Cy5/Cy3) is transformed into the difference
between log intensities of the Cy5 ad Cy3 channels. Therefore a 2 fold up regulated
genes correspond to a log ratio of +1 and 2 fold down regulated genes correspond

to a log ratio of -1. Genes that are not differentially expressed have a log ratio of 0.

Log ratio is defined asjog R where R (red) is the intensity value of the Cy5
G

channel and G (green) is the intensity value for the Cy3 channel.

3.2.5 Normalization

The complexity of the microarray experimentation process often
introduces systematic bias into intensity measurements. Systematic biases can be
caused by concentration and amount of DNA placed on the microarrays, wear of
arraying equipment such as spotting pins, the quantities of mRNA extracted from
samples, reverse transcription bias, lack of spatial homogeneity of the slides,
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scanner settings, saturation effects, background fluorescence, linearity of detection
response and ambient conditions (D. Amaratunga et al., 2003). Normalization is a
general term for collection of methods that are used for solving these systematic
biases. In addition dye bias is a common problem in almost all multichannel
experiments. Generally, Cy5 (red) intensities tend to be higher than Cy3 (green)
intensities. The reasons of imbalance between the channels occurs due to following
e The Cy3 and Cy5 labels may be differentially incorporated into DNA of
different abundance.
e The Cy3 and Cy5 dyes may have different emission response to excitation at
different abundance
e The Cy3 and Cy5 emissions may be differentially measured by the
photomultiplier at different intensities.
e The Cy3 and CyS5 intensities measured at various areas on the array may differ
due to tilt in the array.
The normalization can be performed on within array level correcting for
technical bias inside each array and on between array level correcting for

distributional differences between different arrays from the experiment.

3.2.6 Spot Quality Assessment

Noise, irregularities of spot, shape and position are common problems,
especially in large-scale high density microarrays. Quality control is a major
requirement to flag out low quality spots. Without a good scheme to produce high
quality data, any data mining tools can lead to misleading results. Most of the
image analysis methods include procedures for flagging out spot on the basis of
one or more quality measures, so that flagged spots are rejected from further
analysis. Area of the spot, signal to noise ratio, spot regularity, variation in the
intensity of foreground and background are some of the commonly used quality

measures.
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3.3 Image Processing- Challenges

The microarray technology is a complex electrical-optical-chemical
process and there are several sources of variability, that lead image processing a
difficult task. Figure 3.8 shows various defective microarray images. Figure 3.7 (a)
is a common problem called comet tail that arise due to either excess DNA on the
slides or use of defective slides. Figure 3.7(b) shows an image with irregular spot
morphology mainly due to use of damaged pins. Figure 3.7 (¢) shows a high
background image in combination with weak signals, due to either insufficient
blocking, or precipitation of the labeled probes. Figure 3.7(d) indicates the Spot

overlap, due to big amount of dehydration during post processing.

A.
Figure.3.7 Examples of Defective Microarrays. (A). (a) Comet tails (b) Irregular
spot morphology(c) High background intensity (d) Spot overlap
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Figure 3.8 shows more problems with the microarray images. Figure 3.8(a)
shows particle contamination. In (b) there is large bubble in the image mainly
due to poor set up technique or particulate material in hybridization solution.

Figure 3.8 (c) shows misalignment of red and green channels.

FE8 SBadenEaN
a8 " L N

B c
Figure 3.8 Examples of Defective Microarrays. (B). (a) Microarray image

with particle contamination. (b) Bubbles (c) Misalignment between channels.
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Spot morphology influences the measurement of gene expression level. It
depends on many factors, such as amount of material carried in pins, period of time
the pin in contact with the slide, composition of arrayed material. For ideal spotted
microarray images circular shape is common and all the spots are of same shape
and size. Variations from the ideal characteristics are a major challenge while
implementing gridding and segmentation techniques. Different classes of
morphological deviations are shown in Figure 3.9. A doughnut-shaped spot is
shown in Figure 3.9 (a), which consists of pixels of high intensity at the perimeter
and those of low intensity in the central area. Such patterns of spot images are
primarily due to the non-uniform distribution of cDNA molecules while the cDNA
solution dries out during the microarray printing process. 3.9(b) is a dilated spot
which happens due to excessive delivery of DNA during printing or damaged pins.
Fig 3.9 (c) is an irregular shaped spot and (d) is a saturated spot with spot pixel
intensity value exceed the detection range of the photo multiplier tube. An image

analysis method should be capable of handling all these problems.

L -8

d
b c d
Figure 3.9.Different morphological deviations in microarray spots

(a) Doughnut (b) Dilated spot(c) Irregular shape spot (d) Saturated spot
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3.4 Microarray Databases

Microarray experiments produce a great deal of data, not just in terms of
the data output from the scanned slide, but also in terms of recording such as how
the experiment was performed, Information about the identity of the probes,
methods in slide fabrication, hybridization conditions of the experiment etc. Data
base help the researchers to efficiently retrieve these information for their studies.
The present work mainly uses two data bases.

Stanford Microarray Database (SMD)

The Stanford Microarray Database (SMD) stores raw and normalized data
from microarray experiments, and provides web interfaces for researchers to
retrieve, analyze and visualize their data. The two immediate goals for SMD are to
serve as a storage site for microarray data from on going research at Stanford
University, and to facilitate the public dissemination of that data once published, or
released by the researcher. Many useful tools are available with the database, and
the software allows users to view images of microarray scans to evaluate the
results visually.

Gene Expression Omnibus (GEO)

GEO is a gene expression and hybridization array data repository, as well
as an online resource for the retrieval of gene expression data from any organism
or artificial source. The database has a flexible design that can handle diverse styles
of both unprocessed and processed data in a MIAME- (Minimum Information
About a Microarray Experiment) supportive infrastructure that promotes fully
annotated submissions. Several user-friendly Web-based interfaces and
applications have been implemented that enable effective exploration, query, and

visualization of these data, at the level of individual genes or entire studies.
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CHAPTER 4

Development of a Fully Automatic Gridding

Technique for High Density Microarray Images

Ideally the spots in most microarrays are arranged in regular pattern,
with multiple distinct 2D sub-arrays of spots. Gridding is the first step in
the analysis of microarray images for locating these subarrays and
individual spots within each subarray. This chapter describes state of the
art gridding methodologies and explains a novel method for automatic
grid alignment for high density microarray images using intensity
projection profile of best subimage. Experimental results show that the
method is capable of gridding microarray images with irregular spots,
varying surface intensity distribution and contamination. Performance of
the system has been evaluated in terms of gridding accuracy, robustness

against noise and computation time.
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4.1 Introduction

Denser layout of high density microarray images encounters big challenges
in gridding and segmentation using traditional techniques. The four common
difficulties while implementing the gridding methods are:

Uneven subarray position: The subarrays are not aligned with one another. This
can happen if the pins are not perfectly aligned.

Curves within the subarray: Glass slides are not completely horizontal or pin has
moved slightly in the array and so the features (spots) are printed in a curved
pattern.

Uneven spot spacing: Slight variations in pin tip positions or the surface of the
array is not flat.

Irregular shape and size spots: More or less fluid has been deposited on the slide
during manufacture.

Other parameters like misregistration of the red and green channels,
rotation of the array in the image, deviation from symmetry are due to printer or
scanning artifacts (Bowtell D. et al., 2003). Different background noises like
Gaussian noise and sharp noise peaks that appear during the preparation of the

microarrays may also introduce difficulties while gridding.

4.2 Literature Survey
At present there are three different types of gridding methodologies,
corresponding to the degree of human intervention in the process. They are

manual, semiautomatic and automatic technique for gridding.

4.2.1 Manual Gridding

This is essentially a computer aided image analysis method. This was the
first method used in early days of microarray technology. In this method, all the
parameters required for gridding have to be provided manually. Existing software
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Scanalyze (M.B.Eisen, 1999) uses manual gridding method. The method is very
time consuming and not applicable for high density microarray images.
Moreover, considerable inaccuracy may be introduced due to human errors,
particularly with arrays having irregular spacing between the spots and large

variation in spot sizes.

4.2.2 Semiautomatic Grid Alignment Technique

The semiautomatic method requires some level of user interaction. This
approach typically uses algorithms for automatically adjusting the location of the
grid lines, or individual grid points after the user has specified the approximate
location of the grid. ImaGene (Medigue.C et al., 1999), Dapple (Jeremy Buhler et
al., 2000), UCSF Spot (Jain, A. N. et al. 2002), MAGIC (L. J. Heyer, 2005), Spot
Finder (Saced A. I et al., 2006) are some of the commercially available software in
this category. However, these methods might not sufficient to meet the requirement

of high throughput microarray image processing.

4.2.3 Fully Automatic Grid Alignment Techniques

These methods should reliably identify all spots without any human
intervention. Automatic gridding algorithm utilizes the image processing
techniques for calculating the parameters like spot diameter, spacing between spots
and between sub arrays automatically. This will greatly reduce the human effort,
minimize the potential for human error, and offer great deal of consistency in the
quality of the data (Draghici, S, 2003). Automation of the gridding process is
important to guarantee the repeatability of microarray image processing. i.e when
the algorithm executed with the same data, result obtained should be same at each
time. However, even for these algorithms, there are always limitations due to
unpredictable deviations from the assumed array design, high contamination level,
and large number of missing spots (Novikov E et al., 2006).

In the past several years, many gridding approaches have been proposed.

Only a few state of the art methods have been proposed as providing fully
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automatic gridding, but most of them do not address all requirements of fully
automatic gridding, i.e. handling of irregular spots and robustness against noise,
artifacts and image rotation.

Jain et al. (2002) used a gridding algorithm based on axis projection of
image intensity. Integrated image intensities in both image dimensions, is used for
automatic location of subarray grids. The algorithm requires a large number of
bright spots and is not robust to misalignment of different grids.

Mathematical morphology is a technique used for analysis and processing
geometric structures, based on set theory, topology, and random functions. It helps
remove peaks and ridges from the topological surface of the images. One approach
of gridding based on mathematical morphology method has proposed by Angulo, J
et al. (2003) requires that, the blocks are well separated, and representative number
of bright spots must be available to evaluate correctly the spot size using “spot size
distribution law”.

X.H. Wang et al. (2003) reported a wavelet modulus maxima based for
spot identification method. The approach is based on the detection of wavelet
modulus maxima in the microarray images. The detected maxima are actually the
contour of the spot.

Wang.Y. et al. (2005) has proposed a fully automatic gridding
methodology using intensity projection profile of whole microarray image for
estimating parameters necessary for gridding. It is found that, the method is
sensitive to contaminations and large number of missing spots

Novikov E. et al. (2006) implemented a noise resistant grid finding
algorithm which also uses intensity projection profile by transforming the
fluctuations of the intensity of each row or column to special parameter and
systematically penalizing the irregular region. Algorithm requires some basic
parameters such as number of subarrarys and number of spots in horizontal and
vertical directions as input.

A method for detecting spot locations based on a Bayesian model has been

recently proposed, and uses a deformable template to fit the grid of spots using a
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posterior probability model for which the parameters are learned by means of a
simulated-annealing-based algorithm (Ceccarelli B. et al., 2006).

Another method for finding spot locations uses a hill-climbing approach to
maximize the energy, seen as the intensities of the spots, which are fit to different
probabilistic models (Rueda L, et al., 2006).

An algorithm for recognizing distorted grids with perspective
transformations is developed by. Qi F, et al. (2006). The proposed approach
contains three parts: (a) recognizing parameters of affinely distorted grids by fitting
Gaussian mixture models (GMMs) to grid spectrums, (b) rebuilding the grid
structures via a generating iteration based on the acquired parameters, and (c)
eliminating nonlinear effects caused by perspective transformations with the
median of infinite lines from local structures (MILLS) method.

A Radon-transform-based method that separates the sub-grids in a cDNA
microarray image has been proposed by Rueda et al. (2007). The method applies
Radon transform to find possible rotations of the image and then finds the sub-
grids by smoothing the row or column sums of pixel intensities; however, that
method does not automatically find the correct number of sub-grids, and the
process is subject to data-dependent parameters.

Another approach for cDNA microarray gridding is a gridding method that
performs a series of steps including rotation detection and compares the row or
column sums of the top-most and bottom-most parts of the image (Wang Y et al.,
2007). This method, which detects rotation angles with respect to one of the axes,
either x or y, has not been tested on images having regions with high noise.

An automatic gridding method based on Evolutionary algorithm was
suggested by Zacharia E et al. (2008). It is based on a genetic algorithm that
discovers parallel and equidistant line segments, which constitute the grid
structure. Thereafter, a refinement procedure follows which further improves the
existing grid structure, by slightly modifying the line-segments.

Using maximum margin is a method for automatic gridding of cDNA

microarray images based on maximizing the margin between rows and columns of
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spots (Bariamis D et al., 2010). Initially, a set of grid lines is placed on the image
in order to separate each pair of consecutive rows and columns of the selected
spots. Then, the optimal positions of the lines are obtained by maximizing the

margin between these rows and columns using a maximum margin linear classifier.

The following section describes the novel method developed for automatic
gridding of high density microarray images.

4.3 Automatic Gridding of microarray images using intensity
projection profile of best subimage.

One of the major difficulties while implementing the automatic gridding
algorithm using the intensity projection profile of the whole image is that, the
parameters estimated will not be accurate, if the image consists of spots with high
variability in luminance, size and shape such as blooming spots, doughnuts,
comets. Accuracy of parameter estimation will also be affected, if the image has

hybridization inconsistencies and other contaminations.

The developed method first locates each subarray by a global gridding
technique and then identifies an optimum subimage within each subarray to
accurately estimate parameters for locating each spot. The different steps involved

in the gridding process are:

(1) Pre-processing
(2)Global gridding
(3) Local gridding
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4.3.1. Pre-Processing

The pre-processing steps are used to construct a binary reference image
from the input image and keep the input image intact for further analysis. Different
image processing techniques are used to create the binary reference image. The

different pre processing steps are mentioned below:

Stepl: Convert composite image (RGB) to gray level Image: The composite
microarray image is converted to grayscale intensity image by eliminating the hue
and saturation information while retaining the luminance. In a gray scale image,
each pixel has only one value representing the intensity (I). RGB image can be

converted to gray scale image by applying the following equation to each pixel.
[=0.2989 * R+ 0.5870 * G+ 0.1140 * B 4.1)

Here R, G and B are the red, green and blue components of the each pixel in the
composite image. For a two colour (red, green) composite microarray image, the

blue component is set as zero.

Step2: Perform contrast enhancement using contrast-limited adaptive histogram
equalization followed by intensity rescale so that it fills the data type's entire

dynamic range.
Histogram equalization

Histogram of the digital image ‘f *with intensity levels in the range [0, L-1] is the
discrete function h (ry) = ny, where ry is the k™ intensity value and ny is the number
of pixels in the image with intensity r,. Normalized histogram, p (ry) is obtained
as:

) _n 0<rk< L 4.2)

ko
n
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where ‘n’ is the total number of pixels in the image and cumulative distribution
Jfunction corresponding to p (1) as

& 4.3
cdf ()= Y p, (1) )

which is the image's accumulated normalized histogram.

Histogram based image enhancement method uses a transformation (T) on every
intensity level ry of the input image, of the form s, = T (1) to produce a new image
/1, such that its cdf will be liberalized across the value range, i.e. the transformed
intensities will have a uniform probability density function (PDF) .The new

intensity level sy is:
k
se=(L-1)> p,(m) (4.4)
=0

This process is called histogram equalization and it is commonly used for image
enhancement.

Adaptive histogram equalization (AHE) differs from normal histogram
equalization in the respect that it operates on small regions in the image, called
tiles, rather than the entire image. Each tile's contrast is enhanced, so that the
histogram of the output region follows uniform distribution. It is therefore suitable
for improving the local contrast of an image and bringing out more detail. The
neighbouring tiles are then combined using bilinear interpolation to eliminate
artificially induced boundaries. In contrast limited adaptive histogram equalization,
the contrast especially in homogeneous areas, can be limited to avoid amplifying
any noise that might be present in the image.

Figure 4.1 (a) shows the gray level converted microarray image and (b) is
the corresponding histogram equalized image. Better contrast enhancement can be

achieved by adaptive histogram equalization as shown in (c). Intensity rescaling
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maps the pixel’s intensity into entire range. This helps to obtain maximum

information from any spot.
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Figure.4.1 Preprocessing steps 1 and 2 (a) Gray scaled microarray image (b)

Histogram equalized image(c) Adaptive histogram equalized image.

Step3: Edge detection using canny method

Edge detection is the process of finding meaningful transitions in an
image. The points where sharp changes in the brightness occur typically form the
border between objects. Edge pixels are pixels at which the intensity of an image
function changes abruptly and edges are set of connected edge pixels. Most of the
edge detectors work on measuring the intensity gradient at a point in the image.
Canny edge detection method (J.F. Canny, 1986) was developed to obtain an edge
detector with the following properties:

1. Good detection: Mark as many real edges in the image as possible.
2. Good localization: Edges marked should be close to the edge in the real image.
3. Minimal response: A given edge in the image should only be marked once, and

where possible, image noise should not create false edges

Canny edge detector defines edge as zero-crossings of second derivatives
in the direction of the greatest first derivative. The Canny operator works in
multistage process. First, the image is smoothened by a Gaussian convolution.
Next, a 2D first derivative operator is applied to the smoothed image to highlight
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regions of image with high spatial derivatives. Edges give rise to ridges in the
gradient magnitude image. The algorithm then tracks along the top of these ridges
and sets to zero all pixels that are not actually on the rigid top so as to give a thin
line in the output. The tracking process exhibits hysteresis controlled by two
thresholds T, and T, with T1. T, thresholds. Tracking can only begin at a ridge
higher than T,.Tracking then continues in both directions out from that point until
the height of the ridge fall below T, Canny edge detection is applied to microarray
contrast enhanced images to detect the boundaries of the spots. After the edge
detection a binary image with only boundary of the spots are generated as shown in
Figure 4.2(b).

Step 4. Morphological Hole Filling

In image processing a hole is defined as a background region surrounded
by a connected border of foreground pixels. The boundary of the spot created by
edge detector creates a hole. Morphological filling can be applied to fill these
holes.

Morphological operations

Mathematical morphology is a collection of non-linear processes
that can be applied to an image. Dilation and erosion are fundamental
operations of morphological processing. In fact, many of the morphological
algorithms are based on these two primitive operations. Dilation, in general, causes
objects to dilate or grow in size; erosion causes objects to shrink. The amount and
the way that they grow or shrink depend upon the choice of a structuring element.
Size and shape of the structuring element is determined by number of 0’s and 1’s
in it. Morphological operations are defined by moving the structuring element over
the binary image to be modified in such a way that it is centered over every image

pixel at some point. When the structuring element is centered over a region of the
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image, a logical operation is performed on the pixel covered by structuring
element, yielding a binary output.With A as the image to be processed and B the
structuring element, the dilation of A by B, denoted A @ B, is defined as:

A®B={z|(B).-N4= D} .5)
i.e. reflecting B about origin and, shifting this reflection by z .Here sets A and B
are in Z* (2D integer space).  'Erosion of A by B is denoted by A ® B is
defined as:
A®B=1{z|(B).C A4}
(4.6)

i.e., erosion of A by B is the set of all points z such that B, translated by z, is
contained in A. The simplest kind of erosion is to remove any pixel touching
another pixel that is part of the background. This removes a layer of pixels from
around the periphery of all features and regions, which will cause some shrinking
of dimensions and may create other problems if it causes a feature to break up into
parts. Dilation can be used to add pixels. A combination of dilation and erosion can

be used for different morphological operations.

Hole filling

Let A denote the set whose elements are 8-connected boundaries, each
boundary enclosing a background region (hole). Given a point in each hole, the
objective is to fill the hole with 1s. Let X, represent an array of Os (with size as the
array containing 4), except at locations in X, corresponding to the given edge point
in each hole, which is set to 1. Then, the following procedure fills the hole with 1°s
which can be mathematically expressed as:

k=1, 2, 3... 4.7
XK=(XK—1(—DB)HAC ( )
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Here also B is the structuring element. The algorithm terminates at
iteration step k if X=X .;. The set Xy then contains all the filled holes. The set
union of Xy and A contains all the filled holes and their boundaries. In Figure 4.2,
(a) shows an example of a spot (b) is the resultant binary image after edge
detection and (c) is the filled hole using a disc structuring element.

Figure 4.2 Preprocessing-3 and 4 (a) spot (b) Edge detected spot (c)
After filling holes.

Step5: Morphological filtering

Morphological operations can be used to construct filters that remove
noise. The filters are implemented by applying the operation called opening.
Morphological opening are used to smoothen the contours of the object; it
break narrow isthmuses and eliminate thin protrusions. Opening of an input
image A by structuring element B is the erosion of 4 by B followed by
dilation. Opening operation of input image A and structuring element B is
represented as

AB=(A® B)®B (4.8)
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Morphological opening is used to remove islands as well as the noise that
has been emphasized by the edge detection process in step3. Figure (4.3) shows the
different preprocessing steps, here (a) is gray level image(b)is the image after edge
detection(c)shows the filled holes and (d) is the noise eliminated image after

applying the opening operation using a disk structuring element.

Figure 4.3 Different morphological operations (a) gray level Image (b) image
after Edge detection (c) Hole filling (d) Morphological opening.

Figure4.4 (a) shows an array CGH image consisting of approximately 7500 spots.
Here each subarray consists of 462 spots. The preprocessing step is applied in
the whole array, consists of approximately 7500 spots. The preprocessed binary
image is shown in Figure 4.4 (b).This binary image generated after the five
preprocessing steps is now suitable for estimation of parameters necessary for

gridding.
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Figure 4.4. (a) Microarray image (b) Reference binary image
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4.3.2 Global Parameter Estimation (Global gridding)

Global gridding refers to the process of locating each subarray within a
microarray image. The global parameters required for locating subarrays are width
and height of each subarray as well as spacing between them. These parameters are
estimated using the intensity projection profiles of the binary reference image
generated after the preprocessing step. Horizontal and vertical intensity projection
profiles of binary reference image are the sum of pixel intensities along each row
and column respectively.

Let [, indicates the binary reference image of size Mx N. Then, the

th

intensity projection profile along r ™ row (Ipr) and ¢ ™ column (Ipc) are

computed using equation (4.9) and 4.10)

N

]pr = Z]b(l", ]) (4.9)
7=l
M

Ipe =) " In(i,c) (4.10)
i=1

Figure4.5 (a) and (b) shows intensity projection profile of the reference image in
Figure4.4 (b). These intensity projection profiles have to be thresholded for the
estimation of the global parameters. Let T, and T. be the threshold values for row

and column profiles respectively. Then thresholded values Ipr(7) and Ipc(T)are

calculated using equations 4.11 and 4.12.

Iorcry =1, if Ipr>T, 4.11)
= ( otherwise
Ipecry=1 if, Ipc>T. (4.12)
=0 otherwise
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Figure 4.5(c, d) shows the thresholded projection profile. Here ‘w,’ and
‘ W.’denotes the row and column width of the subarrays respectively. ‘s,”and © S¢”’
are the row and column spacing between the subarrays. Regions with
contaminations or other artifacts show large variation in these parameter values

from their mean value.
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Figure4.5 Intensity Projection profiles (a)JRow profile (b)Column profile
(c)Thresholded row profiles (d) Thersholded column parameters

Accuracy of the gridding parameters can be increased by eliminating these
irregular elements. Let, Wz is the set of allwr and Wcis the se tofallWe as
given in equation 4.13 and 4.14.

Wr = (Wi, W2, oW} (4.13)

We ={wci,wea,........ wer} “4.14)

The median values of Wrand Wc are evaluated as Wrand We
respectively. Any row width Wri (for i=1, 2, k) and column width Wgj (for j=1,

2,...1) will be considered for the evaluation of final parameters of the subarray, if

the following condition is satisfied.
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OSW}' <Wr< ISWr (415)
0.5We < Wej < 1.5We (4.16)

Thus the irregular elements in W and Wc are rejected. Using the selected Wi

and W¢ new median values W and Weare estimated. The same procedure is
applied for the spacing parameters S,; and S¢; to reject irregular spacing variables.

New median spacing values are denoted by S and. Sen . The global gridding
parameters, subarray rowwidth (Gr) and subarray column width (G¢) are estimated

as:

Gr = \Z/’rn-l-grn (4-17)
GC = WCn+§cn (418)

Thus, the subarray grid size is defined using rectangular window of size GrxGe.

The resultant image after applying the gridding algorithm is shown in Figure.4.6.

Figure 4.6. Microarray image after global gridding
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4.3.3 Local Gridding

A typical microarray slide consists of rectangular subarrays of spots.
There are variations among the individual subarray due to non-uniformity in the
hybridization, artifacts on the surface of the array and gaps or dark areas where
little or no hybridization has occurred. Once each subarray has been located
correctly, the next step is locating each spot within the subarray. This process is
called local gridding. The preprocessing steps are applied to each subarray for
generating binary reference subarray. Fig.4.7 illustrates different preprocessing

steps applied to a subarray consisting of 196 spots.
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Figure 4.7 Different Preprocrssing steps (a) A subarrayof microarray image (b)
Grayscale image (c)Adaptive histogram equalization (d)Canny edge detection(e)
Morphological filling (f)Binary reference image after applying Morphological
filter.
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Parameters for locating individual spots are estimated from the most suitable
subimage within the reference image. Local gridding process consists of. two steps

(i) Identification of an optimum subimage (ii) Parameter estimation.

4.3.3.1 Identification of the best subimage
Block processing method is used to identify the best subimage within the
reference image. The different steps involved in this process are explained below:

Step 1: Identify the optimal block size for block processing.

Consider a subarray of size [m n]. To determine the row and column dimension of
the optimum block (subimage) for block processing, First define the maximum size
of the subimage using a scalar K. Let K = maximum (m/2, n/2). The algorithm for
determining block size (p1xp2) is as follows:

e Ifmis less than or equal to K, return m.

e Ifm is greater than k, consider all values between min (m/10, k/2) and k.

e Return the value that minimizes the zero padding required. The same

algorithm is repeated for n also.

Step2: Once the block size has been identified as p1xp2, using the sliding window
approach, calculate the mean intensity value of each block, as window slides pixel

by pixel from the top left to bottom right of the binary reference image.
Step4. Select the block with maximum mean intensity Iyax

Step5. Find thresholded intensity projection profile of this image block using the
same procedure given by equations (4.11) to (4.14)

Step 6: Let, wwand We be the row and column widths of the thresholded
projection profiles ( shown in Fig.4.9) and let Wiz be s the set of all W ’s and
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Wep 1s the set of all we’s with their median values Wr» and Web and standard
deviation 6rband Geb .

4.19
Wrs = {Wrb1, Wi, ........ s Wrbp} ( :

(4.20)
Wes = {WCbl, Weba, ......... Webg}

Then, the subimage is selected as the best sub image if both 6r» and Geb are less
than 50% of W and Wes and respectively. Otherwise, the selected subimage is
rejected. Then search next subimage with next lower mean intensity and repeat
steps 5 and 6 until the optimum sub image has been identified. The median value
of all the row spacing () and column spacing (Scb ) in the selected subimage are
estimated from the thresholded projection profile. Figure (4.8) shows a reference
image and its optimum subimage. Fig (4.9) is the projection profiles of the

subimage before and after thresholding.
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Figure 4.8. (a) Binary reference image (b) Identified optimum sub image
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4.3.3.2 Parameter Estimation

Parameters required for exactly locating the spot are spot diameter and
row and column spacing between spots. Using these parameters grid size is

evaluated. Spot diameter (D) is calculated using equation 4.21.

a |
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Figure 4.9. Intensity projection profile of optimum subimage (a) column (b)
row. (c) Thresholded column profile (d) Thresholded row profile

D _ (Wrb‘f’ﬂ/cb) (421)
2

Row distance (Lg) and column distance (L¢) of each local grid are evaluated as in
equation 4.22 and 4.23

Lr=D+35» (4.22)

Lc =D+35e (4.23)

The local grid size for each spot is LgXLc. Fi The accuracy of the gridding
algorithm is calculated as:

Numberof spots perfectly gridded

Percentage Accuracy= %100 (4.24)
Total number of spots
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Figure. (4.10) shows the resultant image after applying the gridding algorithm.
Gridding accuracy obtained is 100%.

Figure 4.10. Gridded Image

4.4 Implementation

This algorithm has been implemented using MATLAB software. The
microarray images available from Stanford microarray database (SMD) were used
to implement the gridding algorithm. Stanford Microarray data base provide the
images from each channel separately as well as in the composite RGB image
format. It is a common practice that, before applying the gridding algorithm, the 16
bit tiff images from each channel are compressed to 8 bits. Then, the 24 bits
composite RGB image is created using the intensities from red channel (Cy5),
green channel (Cy3) and blue channel zero values Yang Y.H et al. (2001). The
present work implements gridding algorithm on 24 bit composite image. The

validity of the algorithm has been tested and confirmed using 10 real images with
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high intensity spots(From Lung cancer studies), 20 images with different level of
contaminations(images from brain tumor ,diabetics studies ),10 different noisy
images (leukemia studies). The variation of gridding accuracy with the coefficient
of variation (ratio of standard deviation to mean intensity) was studied on different
subarrays within a microarray as well as between different arrays with varying spot
size. Performance of the spot gridding algorithm was evaluated by comparing the
results with the method demonstrated Wang Y.et al. (2005), which was also
implemented for comparison. To study the influence of various noises that
commonly occur during microarray image acquisition, artificial images were
generated with known parameters. Noises that are common in microarrays like
Gaussian and Salt and Pepper noise are added with these images and the gridding
accuracy was evaluated and compared with the existing method.

4.5 Experimental Results and Performance Analysis

The new gridding method has been tested on subarrays from 40 different
microarray images with different characteristics. Figure 4.11 shows two subarrays
and their gridded images. In Figure.4.11, (a) is a subarray (ID-11712) with 756
good quality spots having uniform shape and size. The gridding method was
applied and spots were located with an accuracy of 98% as shown in shown in
Figure 4.11 (c). Figure 4.11 (b) is a sub array (ID-18842) with a large bubble and
(d) shows the corresponding gridded image with gridding accuracy of 91%.

Figure 4.12 shows part of the subarrays with different contaminations, (a)
is a sub array (ID- 27746) with high background. b) is subarray from ID 27746
itself, but the spots have different size and shape. (c) is a part of the subarray
consisting of 900 spots with large number of comet tail spots and (d) is a noisy
subarray. Since the intensity projection profile of the best subimage was used for
the evaluation of gridding parameters high gridding accuracy was obtained in all

these cases.
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Figure 4.11 Implementation of new gridding method on two sub arrays (a&b)
and the resultant gridded images (c&d)
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Fig.4.13 shows 1024x1024 pixels microarray image with 7392 spots provided by
microarray image analysis software package MAIA. The contamination level of
different subarrays are different as can be seen from Figure 4.13(ii).It has been
shown that the algorithm was able to grid the spots with an accuracy of 97% even

for a subarray with more than 50%contamination.
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Figure 4.13 (i) A gridded subarray with more than 50%comtamination

(ii)Microarray image

Performance of the spot gridding algorithm was evaluated by comparing
the results with the method proposed by Wang. Y. et al. (2005), which was also
implemented for comparison. In this method intensity projection profile of the
whole image was used to estimate the parameters necessary for gridding. Figure
4.14 shows the results of applying this algorithm on subarray images shown in
figure 4.7(a) and 4.11(a). Arrow shows some of the misaligned grids. Gridding
accuracy of 81.72% and 64.12% were obtained for the images in. 4.7(a) and
4.11(a) respectively using this previous method. The accuracy obtained with the
present work while implementing on the same sub arrays were 100% and 98%

respectively.
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Figure 4.14 Results of applying Gridding by using the intensity projection
profile of whole subarray (Wang Y. et al.)on images in Fig 4.7(a) &4.11(a)

Using Wang’s method gridding accuracy was found very low for
microarray images with contamination. Table 4.1shows the comparison of gridding
accuracy between two methods when applied to subarrays with varying number of
spots and intensity levels/contamination. Since the new method selects an optimum
subimage for parameter estimation high gridding accuracy was obtained.
Coefficient of variation of an image is defined as ratio between standard deviation
and mean intensity.Table 4.2 shows the gridding accuracy when the two methods
were applied to 12 different sub arrays with same number of spots but varying
coefficient of variation. As the coefficient of variation changes from 0.5 to 2.15,
gridding accuracy of the earlier method decreases from 94.55% to 68.66%. But
using the new method an accuracy of 99.14% to 89.43% was obtained. Figure 4.15
shows the plot between the coefficient of variation and the gridding accuracy.
Result indicates the superior performance of the present work when compared with

the method that uses intensity projection profile of the whole image.
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Table 4.1 Comparison of Gridding accuracy between two methods-

Using Different subarrays

Number of Mean Standard | Coefficient Gridding Accuracy
spots in intensity | deviation | of Variation (%)
Subarray (CV) New Wang ’s
method method
1024 29.5 25.66 0.87 97.15 83.25
756 37.9 49.09 1.29 96.97 81.74
756 22.93 36.6 1.59 93.53 81.51
900 29.94 45.2 1.51 93.90 82.92
756 26.12 47.08 1.80 91.84 77.65
196 21.33 45.63 2.14 90.51 64.12

Table 4.2 Comparison of Gridding accuracy between two methods for

subarrays with same number of spots but different CV values

Coefficient of Variation Gridding Accuracy
(CV) (%)
New method Wang ’s method
0.5 99.14 94.55
0.7 98.37 90.89
0.85 98.56 89.21
1.295 97.81 87.74
1.3300 96.53 85.98
1.3900 94.21 84.63
1.5000 93.68 83.47
1.7000 92.13 82.16
1.8000 91.44 80.07
1.8130 89.69 78.39
2.15 89.43 68.66
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Figure 4.15 Gridding accuracy vs. Coefficient of Variation (CV) of subarray

images -Comparison between Method 1 (New method), Method 2 (Wang.Y. et

al).

Effect on Noisy Microarrays

To study the influence of various noises that commonly occur during microarray
image acquisition, artificial images were generated with known parameters.
Background in microarray images contains many small, sharp noise peaks as well
as weaker Gaussian noise (Katzer.M et al.,2003). Gaussian and Salt and Pepper
noises were artificially added to the microarray images and the gridding accuracy
was evaluated for varying variance values. Figure 4.16 shows the gridded noisy
images when Gaussian noise at different variance levels were added. Table 4.3
shows the performance of the gridding algorithm against Gaussian and Salt and
Pepper noise. Results shows that using the new method at a variance of 0.8,
gridding accuracy of 91.84% was obtained for microarray images with good
quality spots, while the accuracy obtained by considering the intensity projection
profile of the whole image was only 18.88%.To study the effect of sharp noise
peaks, Salt and Pepper noise with various density levels were added Figure 4.17(a)
and (b) shows the results of applying gridding algorithm on microarray images

contaminated with Salt and Pepper noise. It is clear from (b) that, with a noise
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density of 0.3 the image is highly contaminated. Figure 4.18(a) shows a
preprocessed image from a noisy microarray and (c) is the optimum subimage
identified. Large amount of noise peaks were eliminated using morphological
filters during the preprocessing step. Since parameters are estimated using the
binary reference image after the preprocessing step, the effect of this noise can be
greatly reduced. Figure 4.17(b) shows the gridded image using the intensity
projection profile of the optimum subimage in 4.18(b). Figure 4.19 shows the
gridded noisy image using previous method.

Table 4.3 shows that gridding accuracy obtained for the two methods using
Gaussian noise (with variance upto 0.8) and Salt and Pepper noise (with noise
density upto 0.3). It is seen that an accuracy of 100 % to 97.6% and 56.12% to
5.1% respectively were obtained, for Salt and Pepper noise with noise density
varying from 0.05 to 0.3, using the new method and the Wang‘s method. Similarly
the values are  100% to 91.84 % and 61.22 % to 18.88 % respectively with the
Gaussian noise as noise variance varies from 0.05 to 0.8, for the two methods.

Table 4. 3 Gridding accuracy for noisy Microarray images

Gaussian Noise Salt and Pepper Noise
Variance | Gridding Accuracy (%) | Noise Gridding Accuracy (%)
v) Density
) d 3
New Wang’s @ New method Wang °s
method method
method
0.05 100 61.22 0.05 100 >6.12
0.1 100 >7.14 0.1 100 3571
0.2 100 5051 0.15 100 30.61
0.3 100 4592 0.2 100 153
0.4 98 35.70 0.25 99.4 10.20
0.8 91.84 18.88 0.3 97.6 31
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v=0.5 v=0.8

Figure 4.16 Results of applying gridding algorithm on Gaussian Noise added

Microarray image for different variance (v) level.
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Figure 4.17 Results of implementing gridding method on Salt and Pepper

noise added microarray image for different noise density (d)
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Figure 4.18 (a) Pre processed image from Salt and Pepper noise added image
(b) Optimum subimage
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Figure 4.19 4 gridded noisy image (a) Salt and Pepper noise with noise density
0.03 (b) Gaussian noises with variance 0.3 -using the projection profile of whole
image

Comparison with the existing software MAGIC2.2 has shown similar performance
for images with good quality spots. While locating the spots in arrays with low
mean intensity as well as large contaminations the new method shows superior
performance. Eventhough searching the best subimage is a time consuming task,
especially if the contamination is high, using the block processing capability of the
MATLAB software the computation efficiency has been improved.

Table 4.4 shows the execution time required for gridding subarrays with
different number of spots using Pentium (R), Dual Core Processor 3GHz with 2GB
of RAM system. The method takes less than 3 seconds for gridding a microarray
image consisting of 900 spots with 1024x1024 pixels, making it suitable for
gridding high-density arrays.
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Table 4.4. Execution time for gridding sub arrays with different number spots

Number of spots in the subarray | Time required (sec)
100 0.832361
196 1.432831
552 2.294093
756 2.586965
900 2.7523924

4.6. Conclusions

A new method of automatic gridding of microarray images based on intensity
projection profile of best subimage has been introduced in this chapter. The
method involves various tasks like preprocessing, identification of a subimage and
parameter estimation. The most suitable subimage with maximum mean intensity
and regular profile has been used to determine the parameters. It has been proved
that accuracy is very high when compared with the existing methods that use
projection profile of the entire image. It can automatically locate both subarrays
and individual spots without any input parameters and human intervention.
According to results obtained, the accuracy of our algorithm is between 90-100%
for microarray images with coefficient of variation less than two. Experimental
results show that the method is capable of gridding microarray images with
irregular spots, comet tails, bubbles, dilated spots, varying surface intensity
distribution and with more than 50% contamination. The method is robust with
respect to different types of contamination and can tolerate a high percentage of
missing spots to make it a suitable for gridding high density microarray images.
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CHAPTER 5

Development of Automatic Adaptive Seed Region
Growing Technique for Microarray Spot Segmentation

One main challenge in spotted microarray image processing is the
variation of results obtained by different researchers on the same
microarray images even with a perfect placement of grids. Such a lack of
robustness is mainly related to segmentation methods. This chapter
presents state of the art segmentation techniques for microarrays and
explains a novel segmentation method called automatic adaptive seed
region growing. The method is fully automatic and is independent of size
and shape of the spots. Experimental results show that the method is
capable of accurately segmenting spots with low intensity and irregular
morphology. Monte Carlo simulations on artificial spots shows that the
proposed algorithm provide good segmentation accuracy and mean
squared error of ratio, specifically at low signal to noise ratio (SNR)

levels.
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5.1 Introduction

Accuracy of the segmentation algorithm plays a vital role in the analysis of
microarray images. Irregularity in spot size and shape is a major hurdle while
developing segmentation methods for microarray images. Although many software
packages exist for segmenting microarray data, continual efforts are still been put
for the segmentation of spots from high density microarray images. Moreover as
the density of microarray increases number of pixels in the local background
region decreases dramatically makes the background estimation a difficult task. In
this chapter a novel spot segmentation method known as automatic adaptive seed
region growing is described. Theory, implementation and performance analysis are
discussed. A new local background estimation technique is developed which uses
the information about the global background pixels to set a threshold for selecting
local background.

5.2 Image Segmentation Techniques

Image segmentation is the process of partitioning the image into a set of
non-overlapping regions. The level of detail to which this partitioning is carried out
depends on the problem being solved. The segmentation should stop when the
object or region of interest in an application has been detected. Generally
segmentation algorithms are based on one of the two basic properties of the
intensity values such as discontinuity and similarity. In the first category, the
approach is to partition the image based on abrupt change in the intensity, with the
assumption that the boundaries of the regions are sufficiently different from each
other and from the background. Edge based segmentation is the principal approach
used in this category. The principle of second category is the partitioning the
image into regions that are similar according to a set of predefined criteria. Region
based segmentation is based on second category.

Figure 5.1 (a) shows an image which consists of an object with constant
intensity superimposed on a darker background which is also of constant intensity.
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The object can be segmented using edge based method. Image in Figure 5.1 (b) has
lots of spurious change in intensity and edge based segmentation is not suitable for
feature extraction. Third image in Figure 5.1 (b) shows the results of region based

segmentation for extracting the region of interest.

b

Figure 5.1 Different segmentation schemes (a) Edge based (b) Region based

The existing automatic image segmentation techniques can be classified
into five approaches, namely, thresholding techniques, boundary-based methods,
region-based methods, hybrid techniques and clustering-based techniques.

Seeded region growing (SRG) method of segmentation was introduced by
Adams et al.(1994).This method is robust, rapid and free of tuning parameters.
SRG is also very attractive for semantic image segmentation by involving the high-
level knowledge of image components in the seed selection procedure. In
microarray image segmentation seed region growing is the most suitable method

for extracting features from irregular shaped spots.
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5.3 Microarray Image Segmentation: A Review

Fixed circle algorithm is one of the first segmentation methods used in
microarray studies. The algorithm is based on the assumption that all microarray
spots are considered circular with a constant radius. After gridding, a circular mask
of a fixed radius is placed on each spot location; pixels inside the mask are
considered as spot foreground, everything else as background. The software tool
ScanAnalyze (Eisen, 1999) uses this method for feature extraction.

Adaptive circle algorithm provides flexibility for the traditional fixed
circle. Similarly, the algorithm assumes all spots as circular. However, the radius
for each spot is estimated separately. This permits user interaction to adjust the
radius for each spot. For high density microarrays such approach is extremely
laborious and time consuming. An automated version of the adaptive circle is
available in the Dapple software (Buhler et al.,, 2000), where the radius of each
spot is estimated using edge detection. First, the outline of each spot is enhanced
using the second-difference approximation of Laplacian. Thereafter, the radius of a

circle, matching the given enhanced edges is identified with matched filtering.

In the software ‘Spot’ (Yang et al., 2002), the seed region growing
algorithm was used for microarray segmentation for the first time. The algorithm
segments each spot by iteratively growing separate regions with respect to a set of
predefined seed points providing a starting point for the segmentation. In each
iteration, the algorithm includes the most homogenous pixels from the
neighborhood to the segmented regions. Finally, the region originating from the
foreground seeds is considered as the spot foreground, and the region originating

from the background seeds as the background.

A segmentation algorithm based on the statistical Mann—Whitney test was
first suggested by Chen et al. (1997). The algorithm iteratively computes the
threshold between foreground and background using the Mann—Whitney test,
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which is a non-parametric statistical test for assessing the statistical significance of
the difference between two distributions. First, a circular target mask enclosing all
possible foreground pixels separating them from the known background is
selected. Second, a set of random pixels from the background are compared against
a selected amount of pixels with the lowest intensity within the target mask using
Mann—Whitney test. If the difference between the two sets is not significant, the
algorithm discards some predetermined number of pixels from the target area and
selects new pixels from the target area. The iteration is terminated when the two
sets significantly differ from each other. Finally, the spot foreground is considered

as the pixels remaining inside the target mask after iterations.

Another method is the k-means segmentation, based on the traditional -
means clustering, and was first used in connection with microarray images
(Bozinov et al.,, 2002). The segmentation result is derived using simultaneous

information from two channels.

The hybrid k-means algorithm (Rahnenfiihrer et al., 2004) is an extended
version of the original k-means segmentation approach. The algorithm uses
repeated clustering to increase the number of foreground pixels. As long as the
minimum amount of foreground pixels is not reached, the remaining background
pixels are clustered into two groups and the group with higher intensity pixels is
assigned into the foreground. In addition, the number of outlier pixels in the

segmentation result is reduced with mask matching.

The Markov random field (MRF) modeling for the microarray spot
segmentation was introduced by Demirkaya et al. (2005). The method models spot
foreground and background intensities as exponential distributions. In addition to
the intensity information, the method takes the spatial information into account by
modeling the neighborhood pixel labelings with MRF. Initial classification into
spot foreground and background is used as a basis for the segmentation, and the

initial segmentation affects the final result given by MRF.
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Model-based segmentation algorithm (Li et al., 2005) is a two-step method for spot
segmentation. It consists of model-based clustering of pixel values and spatial
extraction of connected components. Initially segmentation into at most three
different clusters sharing similar intensity values, which are the background, the
spots with background or artifact, and the foreground. Model-based clustering
relies on Gaussian mixture models, and the number of clusters is defined based on
data by using Bayesian Information Criterion (BIC). Spatial connected component
removal is used for excluding small disconnected clusters that are assumed to be
artifacts from the spot foreground pixels. Globally Optimal Geodesic Active
Contours (GOGAC) is another segmentation method which was implemented in
Spot (2007). Shenghua NI et al. (2009) presented an Active Contour without Edges
(ACWE) method to detect objects' boundary by solving numerical finite difference

equations .The major drawback of this method was the computation time.

5.4 Region Growing Based Segmentation

Region in an image is a group of pixels with similar properties. Let Rg
represent the entire spatial region occupied by an image. Segmentation is referred
as a process that partitions Ry into ‘n’ subregions R1 Ry, Rs,....Rn_ The basic

formulations for region-based segmentation are:

(a) U Ri=Rg
i=1

(b) R:is a connected region, i=1, 2
(c)RINR = foralli=1,2,3...n
(d) P(Ry)=True fori=1,2,3,....,n
(e)(RUR) = False for i#]

P (R)) is a logical predicate defined over the points in set R; and & is the null set.

Criterion (a) means that the segmentation must be complete; that is, every pixel
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must be in a region.(b) requires that points in a region must be connected in some
predefined sense.(c) indicates that the regions must be disjoint.(d) deals with the
properties that must be satisfied by the pixels in a segmented region. For example
P(R;)=TRUE ; if all pixels R; have the same gray level.(e) indicates that region R;
and R; are different in the sense of predicate P.

Region growing method of segmentation is a procedure that groups pixels
based on predefined criteria. The basic approach starts with a set of seed points and
from these grow regions by appending to each seed those neighboring pixels that
have predefined properties similar to seed. Selection of seed points and the criteria
(such as specific range of gray level) are based on the nature of the problem. Some
researchers use edge-based method to select seeds. To get more accurate result it is
better to take the center of the region or maximum intensity pixel as seed point.
The connectivity or pixel adjacent information is helpful to determine the region
growing criteria and seed points. The basic approach for segmenting any digital
image using region growing is to start with a set of seeds Sy, S,, .S, (R.Adams
et al.1994) Sometimes individual sets will consist of single seed. The process
evolves inductively from seeds. Each step of algorithm involves the addition of one
pixel to one of the above set of seeds. For example, consider the region grown
from seed Si after ‘m’ steps. Let D be the set of all yet unallocated pixels which

border at least one of the regions.

Dz{erSi‘N(x)mUSi;t@} (5.1)

i=1 i=1

where N(x) is a set of immediate neighbours (8 neighbours) of pixel x. If, for xeD
and N(x) meet just one of S; then, an index i(x) is defined as i(x) € {1,2,.,n} such
that N(x) N Six# and 5(x) is a criteria is to measure how different x is from
the region it adjoins. The simplest definition of measure of similarity is that the
difference (8) between a pixel's intensity g(x) and the region's mean g(y) as given

in equation 5.2.
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5 =|g(x) - mean[ g(»)] (5-2)

Then a given pixel x is appended to the seed if < T., Where T is a user defined
threshold. If N(x) meets two more S; , theni(x) is chosen to be value of i for
which 8 is minimized. The process is repeated until all pixels are allocated.
Figure 5.2 shows an example of basic seed region growing approach of
segmentation applied to a spot with center pixel is defined as the seed. Regions
labeled with ‘1’ are extracted from this single seed pixel. After each iteration the

region grows.

spnt i'lEra'tinn 4 itera-linn 12
iteration 25 iteration 50

iteration 135

Figure 5.2 Basic seed region growing approach of segmentation

Region growing methods can correctly separate the regions that have the same
properties. Region growing stops when no more pixels satisfy the criteria for
inclusion in that region. An ideal candidate seed point should have these
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properties: i) It should be inside the region and near the centre of the region ii)
Assuming that most of the pixels in the region of interest (ROI) belong to the
region, the feature of this seed point should be close to the region average (iii) The
distances from the seed pixel to its neighbours should be small enough to allow
continuous growing. SRG has been implemented in microarray processing
package ¢ Spot” (Buckly M.J, 2000). In this package, the foreground seed is
chosen as the center pixel of the horizontal and vertical grid line. To avoid the
situation when the spot is small and the grid center is slipped out of the spot
foreground, a small number of nxn square pixels, whose center has the maximum
intensity in a small area around the grid center, are taken as foreground seeds. The
background seed is chosen as the point in which the grid lines intersect. After
obtaining the seeds, the process is repeated simultaneously for both
foreground and background regions until all the pixels are assigned to either
foreground or background. Those pixels that are adjacent to a region are
assigned first according to its intensity (Yang et al. 2002).

Jie Wu et al. (2008) proposed a new texture feature-based seed region
growing algorithm for automated segmentation of organs in abdominal MR
images, based on a cost-minimization approach. Frank et al. (2005) presents an
automatic seeded region growing algorithm for color image segmentation, which
satisfy the following three criteria. First, the seed pixel must have high similarity to
its neighbors. Second, for an expected region, at least one seed must be generated
in order to produce this region. Third, seeds for different regions must be
disconnected.

In the present work, a new automatic segmentation method for high
density microarray images has been developed. The following session describe the
different steps in the development of the new algorithm.
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5.5 Development of Automatic Adaptive Seed Region Growing
(AASRG) Method

In  microarray experiment, region based segmentation refers to
classification of pixels as foreground (F) or background (B) so that fluorescence
intensities can be calculated for each spot within the selected grid. This has to be
done for the two channels separately. Let R represents the region of image within a
grid. The segmentation partitions the region into two sub regions F and B, where F
and B are two different connected regions. Since spots are accurately located
during gridding stage, locating spot centre is not a difficult task. But for images
with irregular shaped spots, selecting seed as centre region will not be an effective
method, especially when spot surfaces exhibit non uniform intensity patches.

In the new method seed(S) and threshold (T) values are automatically
selected, based on the characteristics of image within each grid. Let f(x, y)
represents the image inside a grid. The different steps in AASRG algorithm are:
Stepl. High frequency noise spikes within the grid are eliminated using 3x3
median filter. Here each central pixel is replaced by the median value in the 3x3
neighbourhood.

Step2. The coordinates of pixel (i, j) with maximum intensity in the median
filtered image is considered as the locations of the seed. If there is more than one
pixel with this maximum intensity, then pixel closer to the center pixel is
considered as the seed.

Step3: If this seed pixel(S) is located within minimum distance D from the
center of the grid and if, the number of pixels having intensity within 10% of the
seed pixels intensity are greater than N,,;, then the spot is considered as a regular
spot and select S as the seed for the foreground calculation.

If the condition in step 3 is not satisfied then a circular mask with the
estimated diameter of the spot (estimated during gridding process) is placed over
the grid with center at the mid point of the grid. All the pixels inside the mask are
selected and the mean intensity value is calculated. The pixel with intensity is
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nearest to the mean value is selected as seed (S).This selection criterion is found to
be useful for selecting seeds for spots with high background (black holes).

Step4: Casel: Regular spots: A threshold value T is calculated to test if a pixel
is sufficiently similar to the seed to which it is 8-connected. For this all pixels
within each grid are collected and sorted according the intensity. Lower 10% of
them are excluded from the calculation of foreground. This determines the lower
cut off intensity value for foreground. The upper cut off intensity value is selected
as the intensity of seed S. All pixels in the grid whose intensity values are
between a lower and upper cutoff are considered for the calculation of parameters
such as mean (u) and standard deviation (o). These parameters determine the
threshold value ‘T’ for segmenting the specific spot. Let / be the set of all pixels in
the selected region having seed S and M be the number of selected pixels then the

parameters are evaluated as:

M

Z X

i=1
M

= (5.3)
(5.4)
where x; €/
Threshold value T is calculated as:
T=S—-ui <S-
i u u 5.5)

=2x0 otherwise
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Region growing criteria: A pixel in the region will pass the test if
|x,-S|<T (5.6)

i.e. if the absolute value of the difference between the gray level of the pixel and
seed is less than or equal to the threshold value and the pixel is 8 connected to the
seed and region grows. This process is repeated for all the pixels in matrix I.
Resulting image is a binary image with segmented foreground pixels are labeled
with value of ‘1’and remaining pixels labeled with ‘0°. The pixels labeled with 1
are used for calculating the intensity of the foreground signal. Figure 5.3(a) shows
an yellow spot within the grid, (b) and (c) are the red and green channels
respectively. Segmentation algorithm has been applied to each channel. Figure 5.3

(d) and (e) indicates the segmented foreground regions of red and green channels
respectively.

L0

Figure 5.3 AASRG applied to a good spot (a) Spot (b) Red channel(c) Green

channel (d) Red channel foreground region (e) Green channel foreground

region.

Step 4 Case II: Spots with high background intensity (black holes): It is a dark
spot appeared after hybridization at the position of the probeDNA printed on the
chip. The resulting spot will have fluorescent intensity which is less than that of the
surrounding background. Figure 5.4 shows a spot with large background intensity.
All the pixels within the circular mask are collected and standard deviation (o) is

evaluated. The threshold in this case, T is defined as

T=0c (5.7)
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Figure 5.4 shows the result of applying the segmentation algorithm on the grid with
high background intensity and the resulting red and green channel foreground
pixels. The algorithm correctly identified the foreground regions.

2

d e

Figure 5.4 ASSRG applied to a black hole (a) Spot with high background intensity
(b)red channel(c) Green cahnnel(d)Red channel segmented(e) Green channel

segmented
5.6 Background Extraction

Background extraction from high density microarray is a major challenge for the
researchers. Substrate noise is factor that contribute the background intensity.
Substrate noise is the sum of all non sample and non instrument contributions to
the background reading including intrinsic fluorescence of the substrate and
reflection off the substrate surface. Some of existing background extraction
methods is explained in section 3.2.3, which use the inter-spot pixels to extract
local background. Other ways of estimating the local background is using
histogram information and those using rank filters which do not depend the

segmentation and exact position of the spot (Soille, P., 2002). Angulo, J et al.
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(2003) suggested background extraction using a morphological filtering by area.
But the performance of morphological opening method is found poor with spatial
dependent bias (Bengtsson A.et al., 2006.). Ma M. Q. et al (2007) suggested a new
method called Extended local background (ELB-Q). In ELB-Q, a large extended
local background (ELB) inter spot region excluding those noise of the background
pixels are used for estimating the local background by automatically determining
an optimal threshold for background segmentation.

In the present work after applying segmentation algorithm using AASRG,
pixels labeled with logic ‘0’ are considered for background calculation.
Corresponding pixels in the original image for each grid are collected and sorted
according to the intensity. The top 10%intensity level pixels are excluded for the
purpose of estimating the global background, which helps disregard the noises such
as chemical contaminations in the microarray slide. The parameters such as the
mean Wgiona and standard deviation 6gpa are calculated using the remaining pixels
whose intensities follow roughly a shifted Gaussian distribution. Then a local
background cut-off intensity level (Tiocq) is defined as

T b local = HUglobal + o global (5.8)

This determines is the cutoff value for selecting the background pixels in each grid.
All the pixels in the local background region of each spot whose intensities are
lower than T ,c; are used for calculating the local background intensity for that
spot. This repeats for each spot. Fig 5.5 (i) shows the global background pixels and
(i1) is the intensity distribution of global background region of red and green

channels of the microarray image shown in Fig 4.11(a).
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Figure 5.5 Global back ground regions and their intensity Distribution
(histogram) (a) Red channel (b) Green channel of microarray image in
Fig.4.11(a).
5.7 Intensity Calculations

Once the pixels representing foreground and background regions are
extracted, next step is the calculation of foreground and background intensity
levels of each spot. Pixel intensity values from both channels are combined into a
unique value representing the expression levels of a gene deposited in a given spot.
Mean and median intensities in the segmented foreground region are estimated for

each channel separately as iy (mean red channel) pg (mean green channel), mg
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(median- red channel) and m¢; median- green channel). The background intensity is
subtracted from the foreground intensity to provide a more reliable estimate of
hybridization intensity to each spot. However if the background intensity is higher
than the feature intensity, the result would be negative, which would not be

meaningful. Mean and the median intensities of background are calculated

using the selected pixels of red and green layer separately as py, (mean-

background- red channel), g (mean-background- green channel), my,; (median —

background-red channel) and mpg(median —background-green- channel). Now the

True mean signal intensity is calculated for each spot for red(R) and green layers
(G) as

R= up — pror (59

G= ufe — pbe

For noisy microarray images median intensity over the mean is preferred because

median is more robust to outliers pixels than mean. The median intensity for two

channels (R and G )are evaluated as

R = mfr — IMmbr (510)

G=mfg — myg
5.7.1 Intensity Ratio

One basic purpose of a cDNA microarray experiment is to identify those
genes which demonstrate a significant change in the expression level under the
impact of certain experimental conditions, such as presence of cancerous tumors.
The foreground and background intensity levels do not give meaningful
information about the gene expression. In order to obtain estimate of gene
expression, the data need to be further processed. In a two channel cDNA
microarray experiment, in the composite RG image, red (R-Cy5 channel) is used to
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indicate particular genes expressed in the experimental (abnormal) condition, while

the green channel (G-Cy3) indicates genes expressed in control (normal) condition.
For a given spot, true ratio (#) of background subtracted mean intensity between

two channels is calculated as:
r= G (5.1

For a red spot the ratio is greater than 1 indicating gene in the corresponding
location is expressed more in abnormal tissue than normal tissue(up regulated), for
green spot it is less than 1 (down regulated)and an ideal yellow spot the ratio is
1(equally expressed) (Draghici, S. et al. (2003), Schena, M. (2003)., Stekel, D.
(2003)). The microarray data set used for the present study is available at the
Stanford Microarray Database (SMD) http://microarray-pubs.stanford.edu/eczema
and at the NCBI Gene Expression Omnibus (GEO) database
http://www.ncbi.nlm.nih.gov/geo/info/linking.html.

For example, Fig 5.6a shows a spot from the array available at SMD public
database with Exp-ID 68841 related to a study on gene expression profile
associated with skin cancer. This red spot corresponds to the S100A8 protein
coding gene, which exhibited a strong up-regulation in advanced stages of skin
cancer in mouse and human.The ratio (7) evaluated using as equation 5.11 as 6.1
indicating an up regulated gene. Similarly Fig 5.6 (b) shows a green spot
representing down regulated gene in the same array, representing TRPA1 gene.
TRPAI is anion channel gene located on the plasma membrane of many human
and animal cells. This ion channel is best known as a sensor for environmental
irritants, pain, cold and stretch. The ratio of intensity of this spot is 0.2462,
indicating that the gene is expressed only in normal skin cell. Spot 3 is a yellow
spot with ratio(r) 1.0036 representing Ribosomal protein L36a. Yellow spots
indicate the genes that are not differentially expressed.
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Click spot to see in array context
Biological Information
Cloneid IMAGE: 562729
Clusterid Hs.416073

GenBank Accession AA036471::AA112727

Gene Name 5100 calcium binding protein A8::5100 calcium binding protein A8
Gene Symbol 5100A8::5100A8

Geneid (Locusid) 6279

Reporter Name IMAGE:562729

N

Biological Infermation
Cloneid IMAGE:1898625
Clusterid Hs.716816

GenBank Accession AI340031

Gene Name transient receptor potential cation channel, subfamily A, member 1::Transient receptor potential cation channel, subfamily A, member 1
Gene Symbol TRPALITRPAL

Geneid (Locusid) 8989

Reporter Name IMAGE:1898625

Click spot to see in array context
Biological Information
Cloneid IMAGE: 384842
Clusterid Hs.444749

GenBank Accession AA659359

Gene Name [EEEEEITE =S - like: ribosomal protein L36a-like
Gene Symbol RPL36AL::RPL36AL

Geneid (Locusid) 6166

Reporter Name IMAGE:884842

Figure 5.6 Three Different spots from SMD (EXP -1D 8841) with their biological

information
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5.8 Performance Analysis of segmentation method using
Monte-Carlo simulations

To analyze the robustness of the segmentation algorithm to noise, Monte-
Carlo simulations have been conducted. Spots were artificially created with known
ground truth. These spots are having known mean intensities for red and green
channels as well as for background. The segmentation algorithm was applied to
different spots. For a given spot true ratio (») of intensity between two channels is
calculated. Next, the images were corrupted with additive Gauusian noise at ten
different levels. For statistical significance, each noise level was repeated ten
times. The ratio of the intensity of the spot in the two channels 7 is estimated over
ten repetitions at same noise level. Ten different noise levels are used in this study.
Two parameters evaluated to measure the performance were (i) Mean square
error (MSE) of ratio and classification error (CE). MSE between true ratio » and

the ratio estimated at each noise level 7 is calculated as:

10 2

MSE :iZ(f—rtm) (5.12)
10 55

Classification error (CE) is defined as percentage of misclassified pixels within the

spot after segmentation. Let O'; represent the variance of signal intensity

distribution of foreground and O'Z represents variance of pixels intensities of back

ground signals then signal to noise ratio (SNR) is calculated as:

0_2
SNR =10 log;y —% dB (5.13)
Oy
For a given spot the two parameters MSE and CE are calculated at different Signal

to Noise Ratio by varying the noise levels. Figure (5.7) shows the segmented
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foreground region when Gaussian noise at four different noise levels are added to

an artificial spot.

v=0.2
r=0.9351

v=0.4
r=1.0251

v=0.6
r=1.021

(@
Figure 5.7(a) Microarray spot after adding noise at different variance level (b)
Red channel- foreground region (c) Green channel- foreground region after

segmentation.

5.9 Implementation

The new segmentation algorithm has been implemented on different real
microarray from SMD. Microarrays with different size, shapes and contaminations
were used for this purpose. The segmentation method was applied each spot within
the grid. The ratio estimated using AASRG method was compared with the
conventional SRG used in MAGIC tool. The 16 bit uncompressed Tiff images
were used for ratio estimation. The segmentation result was also compared with the
existing segmentation methods such as fixed circle, adaptive circle and Seed region

\O
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growing. Gaussian noise at different variance levels were added to artificial spots
and Monte-Carlo simulation were conducted to study the segmentation accuracy
and classification error of the new segmentation method.
5.10 Result and Discussions

Real microarray spots with different intensity characteristics were used to study
the segmentation accuracy of AASRG method. Figure.5.8 (a) shows spots with
different defects. In Figure 5.8, (b) and (c), the region labeled with ‘1’ is the
segmented foreground region of red channel and green channel respectively. The
average intensity of pixels in the corresponding red and green channels was
calculated. Average back ground intensity for each channel was also calculated
using the method explained in section 5.6.Using these intensity values the intensity
ratio (r) for each spot was evaluated. The results indicate that the method correctly

identified the foreground regions of irregular shaped spots.

B
ad

Figure 5.8 Spots with irregular shape and the segmented foreground regions
and ratio estimates (using AASRG method). (a) Spot (b) red channel segmented

foreground regions (b) Green channel foreground region
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Here spotl is a comet shaped yellow spot. The ratio estimated is 1.01 indicates that
both channels expressed equally. Similarly the spot2 is a green spot having ratio
estimate less than 1.Spot 3 is an yellow spot with contamination. The foreground
regions are identified correctly and the intensity ratio is 1.09. Figure 5.9 shows six
different  spots with irregular shapes and size and the segmented foreground

regions.
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Figure 5.9 Different spots with irregular shape and sizes-Segmented foreground
regions and ratio estimates (using AASRG method) (a) spot (b) Red channel(c)

Green channels.
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Here spot 2 is a doughnut shaped red spot, the red and green channels are
segmented and the intensity ratio evaluated is 2.156. Spot3 is an yellow spot with
irregular shape. Foreground region is extracted and ratio is evaluated is 0.9865.
The adaptive method for selecting seed and threshold values of AASRG increases
the segmentation accuracy of irregular spots. Spot4 is a dilated yellow spot having
area greater than the normal area. The quality control algorithm can be used to
reject such spots from further analysis. Spot 6 is having large background intensity
than the normal spot. AASRG method is capable of segmenting the foreground
region of such spot and the intensity ratio estimated is 1.3499. Figure 5.10 shows a
comparison of segmentation results with Microarray Genome Imaging and
Clustering Tool (MAGIC Tool). MAGIC tool is widely used for academic purpose
to analyze all types of gene expression data on all major operating systems
(Windows, Mac OS X, Linux and Solaris). MAGIC provides semiautomatic
gridding and interactive segmentation method. Segmentation can be performed
with three algorithms: fixed circle, adaptive circle or seeded region growing. The
Seeded Region Growing algorithm (Adams and Bischof, 1994) connects each pixel
to a background or foreground region, continuing until all pixels are assigned. A
user-specified threshold and geometric considerations (i.e. foreground near the
center, background near the corners) determine which pixels are used to ‘seed’ the
regions. Maximum intensity pixel within the grid is generally assigned as seed
pixel. Ratio computation method can be selected as pixel average or total, with or
without background subtraction. Figure 5.10 shows a comparison between
conventional SRG based segmentation algorithm used in MAGIC and the AASRG
method. Here the red squares indicate which pixels are used for foreground
calculation. Pixels outside the red squares are considered for background
calculation. Estimated ratio values using the two methods are also shown in Figure
5.10. The intensity ratio calculated using AASRG for spot A is 1.014, while using
MAGIC is 1.118. For a low intensity spot (c), the MAGIC selects only bright
pixels for foreground intensity calculation while AASRG selects more low

intensity foreground pixels and hence gives a better intensity ratio value of 0.7847
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for the green spot with respect to the value 0.9571 (value nearer to ‘1’ i.e .for an
yellow spot) obtained using MAGIC. Figure 5.11 (a) shows a spot with high
background intensity. (b) and(c) are the foreground red and green channel regions
separated using AASRG while (d) and (e) are the corresponding foreground
regions using MAGIC (SRG method). In AASRG the seed values are selected
using the circular mask and the low intensity foreground region is separated
correctly, while using MAGIC the all the pixels within the grid is used for
the calculation of intensity ratio.
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AASRG 0. 7847
MAGIC: =10.9571
AASRG r=1.98
MAGIC =2.03"
2

spot Red Channel Green Channel — Red Channel Green Channel
AASRG AASRG MAGIC MAGIC
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Figure 5.10 Comparison of segmentation methods applied on different spots -
AASRG method and conventional SRG method used in MAGIC tool.

Figure 5.11. Segmentation results of a spot with high backgr;)und intensity
.(a)spot (b)Red channel Using AASRG method (c) Green channel using
AASRG(d)Red channel Using MAGIC(e)Green channel using MAGIC.
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Monte Carlo Simulation Results

MSE and CE curves as functions of SNR are used to illustrate the
performance of the segmentation algorithm. In both curves, the axis corresponds to
the signal-to-noise ratio (SNR) calculated in decibel units. Figure 5.12 shows the
results of MSE. It is clear that the MSE ratio is only 0.09 at 5dB SNR and very
low at high SNR levels. Segmentation is used to group the pixels within each grid
into foreground or background. Classification error is an indication of number of
pixels that are correctly classified. Table 5.1 shows the average classification error
(in percentage) when Gaussian noise at diffident levels were added to 10 different
artificial spots with radius 6 pixels (with known foreground and background
intensity levels). It is clear that the classification error is only 5.76% at variance
level of 0.045. Figure 5.13 shows the classification error vs SNR plot.
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Figure 5.12 Mean Square error vs. SNR (dB)
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Figure 5.13 Classification error vs. SNR

Table 5.1 classification error at different noise levels

Gaussian noise | SNR(dB) | Average Classification error (%)
Variance (V) (for spots with radius 6 pixels)
0.002 13.63991 0
0.005 10.74597 0.0143
0.01 8.374311 0.5391
0.015 7.168986 1.3716
0.02 6.392506 2.0874
0.025 5.875719 2.7919
0.03 5.200543 3.7422
0.035 4.995499 4.3307
0.04 4.720615 5.6716
.045 4.367898 5.7659
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Figure 5.14 shows a comparison of existing segmentation techniques such as fixed
circle, adaptive circle, SRG and AASRG. Fixed circle segmentation was
implemented using a circle with radius of 6 pixels. Adaptive circle method uses
two circles with minimum radius 3 pixels and maximum radius 8 pixels.SRG
method is the conventional SRG method. Figure 5.14(a) shows a regular spots with

radius 6 pixels. while (b) is an irregular shaped spot with a radius of 3 pixels.

E " n
r=0.462
’ - .. o
i . - . . o
r=0.740
3. r=0.55%
) E o En o

(a) (b)
Figure 5.14 Different existing microarray segmentation methods applied to two
spots and the corresponding true ratio(r).1) Fixed circle 2) Adaptive circle 3) SRG
4) AASRG.
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Results show that AASRG method give better segmentation accuracy for both
regular and irregular shaped spots. Figure 5.15(a) shows a microarray subarray and
the segmented foreground regions. (b) and (c) represents the segmented red and
green channels. Fig 5.15(d) is the intensity ratio evaluated for all the 196 spots in
the array using AASRG method.
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Figure 5.15. Intensity ratio evaluated using AASRG method on a microarray
subarray with 196 spots(a) subarray (b)Red channel segmented (c) Green channel
segmented (d )Intensity Ratio (v ) between two channels.

The developed segmentation algorithm has been applied to the microarray
experiment on budding yeast -Saccharomyces cerevisia (DeRisi et al., 1997). The
experiment and data are publically available at SMD database. The authors used

DNA microarrays to study temporal gene expression of almost all genes (6400) in
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Saccharomyces cerevisiae during the metabolic shift from fermentation to
respiration. Expression levels were measured at seven time points during the
diauxic shift. The full data set can be downloaded from the Gene Expression
Omnibus website. This data can be loaded into MATLAB as yeastdata.mat which
contains gene expression data from the ‘seven time steps’ in the experiment, the
names of the genes, and an array of the times at which the expression levels were
measured. ScanAlyze version 2.41 scanning software was used for the evaluation
of these parameters. To study the performance of AASRG, true ratio was evaluated
using the microarray images of the experiment from SMD. The true ratio obtained
using AASRG was compared with data publically available. For example, Plot A
shows the true intensity ratio (») of the two channels vs the time shift corresponds
to first twenty spots in the array.
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Plot A-Gene expression (true ratio) of first 15 genes from the  Saccharomyces
cerevisiae microarrays during the metabolic shift from fermentation to

respiration.
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Here only one gene (spot 15) representing the YALO054C (ACS1 Acetyl-coA
synthetase isoform) appears to be strongly up regulated during the diauxic shift
(plot -a). Plot B shows the comparison between true intensity ratio evaluated using
AASRG and ScanAlyze for this gene alone. It is clear that the AASRG shows

better ratio for low intensity spots corresponding to lower time steps.
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Plot B-.Comparison between true ratio evaluated using AASRG and ScanAlyze
(SMD) for gene YAL054C (Spot-15) at seven time steps.

One of the disadvantages of SRG method is the computation time.
Computation time required for implementing the segmentation algorithm was
evaluated for various microarray images. The AASRG method was applied
automatically to each grid using block processing method and the true intensity
ratios were evaluated. Table 5.2 shows the execution time calculated for
segmentation using AASRG method for four different subarrays with the system
specification as given in section 4.5.The computation time was compared with that
of existing software MAGIC 2.2 which uses SRG method. Microarray Images with
different number of spots and contaminations were applied as the input and the
computation time for segmentation alone was calculated and compared with the
AASRG method. The comparison is done under identical conditions. It is found
that the AASRG is approximately 10 times faster than the convention SRG method
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applied in MAGIC software. For a microarray consist of 7300 spots the AASRG

method requires 19.6seconds for the calculation of intensity ratio.

Table 5.2 Comparison of Computation time using AASRG and SRG (MAGIC)

Number of | Execution time | Execution time

spots (sec) using | (sec)using
AASRG MAGIC

100 14 16

552 2.1 19

729 3.2 34

1024 4.18 44

5.11 CONCLUSIONS

A novel method for automatic segmentation of microarray images
using automatic adaptive region growing approach (AASRG) has been developed.
When compared with conventional SRG method, the AASRG results in better
segmentation accuracy especially for low intensity irregular shaped spots. Seed and
the threshold values are selected automatically and adaptively for each spot, the
method is found suitable for accurately segmenting doughnut shaped spots as well
as spots with high background intensity. Block processing approach has been
implemented which results in faster computation time. Monte-Carlo Simulation
results show that the developed method is robust against additive noise, which is
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common in microarray images. The local background region is extracted
considering the global background characteristics of the image. This increases the
accuracy of background calculation for high density microarrays. Since the seed
points and threshold values were selected for each spot adaptively the method is

independent of the shape and size of individual spots.

108



CHAPTER 6

Microarray Spot Intensity Quantification and

Normalization

The complexity of microarray experimentation process introduces
systematic biases into the intensity measurements. Intensity quantification
and normalization are major preprocessing steps to be done before the
analysis of microarray data. Spot quantification combine the pixel
intensity values into a unique quantitative measure that can be used to
represent the expression level of a gene deposited in a given spot. The
purpose of normalization is to remove the effect of any systematic source
of variation introduced in the microarray experiment. This chapter
presents spot intensity quantification techniques and common
normalization techniques used in microarray based studies. Experimental
results of Linear and Lowess regression based normalization techniques
are explained. Various graphical tools used for the analysis of microarray

data are also described in this chapter.
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6.1 Introduction

Microarray technology has resulted in the generation of large amount
complex data sets. Quantifying the intensity information and data analysis has
become one of the major bottlenecks in the utilization of array technology. The
amounts of data obtained from each experiment require powerful computing
techniques for identifying clusters of genes and interpreting overall patterns of
expression. At present it seems that the greatest challenges in microarray research
are not the arrays itself but the way by in which the resulting data matrices are
handled and analyzed (Fadiel, A. et al., 2003). Before analyzing the data a number
of preprocessing steps and normalization are commonly taken to ensure that the
data is of high quality and is suitable for analysis. Typical example of
preprocessing is log transformation of intensity values. Normalization techniques
are collection of methods that are used to resolve systematic error and bias
introduced in microarray experiments. This chapter explains the intensity
quantification and normalization procedure currently used. Several selected
techniques used for explorative and confirmative visualization of microarray data

are also explained in the following sections.

6.2 Log transform

Most microarray experiments investigate relationships between related
biological samples based on patterns of expression, and the simplest approach
looks for genes that are differentially expressed. The final goal of the image
processing is to compute a unique value that is directly proportional with quantity
of mRNA present in the solution that hybridized the chip. For each gene deposited
on the slide, this unique value is required. Such unique value can be obtained by
quantifying the intensity information from each spot within the array. Typically,
spots are quantified by taking the mean and median of the intensity of both
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foreground and background regions as explained in section 5.7. The microarray
data generated by the segmentation algorithm is typically in the form of text files
consist of intensity ratio of every spot in the slide. It is usual to transform the
microarray raw intensity data to logarithmic scale.

The logarithmic transformations have been used for preprocessing the raw
intensities to provide values that are more easily interpretable and more meaningful
from a biological point of view. The intensities in a microarray experiment span the
full 16 bit range, from 0 to 65,535 units, with majority data in the lower range of
values. If the data is not transformed, they must by necessity be presented in a very
compressed form in the low range. Taking the log spread the values more evenly
across the range and provides a more visually appealing data. Another reason for
log transformation is that log transformation makes the distribution symmetrical
and almost normal (T.P.Speed, 2000). Third, the random variation (as measured by
standard deviation of intensities) typically increases approximately linearly with
the average signal strength. Taking the log tends to make variability more constant.
Fourth, the ratio of raw Cy5 and Cy3 intensities which is the final parameter
evaluated is transformed into the difference between the log of intensities of Cy5
and Cy3 channels. i.e., log, (R/G) is the difference log, (R)-log, (G). It is usual in
microarray data analysis to use logarithm to base 2. Log (base 2) ratio of 1, 2, 3
corresponds of 2, 4, 8 fold changes respectively. For example in a cDNA
microarray experiment, if a specific gene at location A is expressed two times more
in tumor sample than in normal sample (i.e,2 fold up regulated) then a log ratio of
+1is obtained. Similarly a gene expressed two times more in normal sample
compared to tumor sample (2 fold down regulated)corresponds to a log ratio of -
1.Genes that are not differentially expressed (i.e,expressed equally in both samples)
corresponds to a log ratio of 0.

Log differential ratio (expression ratio) is usually denoted by M and is defined as

R
M=1 — 6.1
0g: —~ (6.1)
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Letter M is a mnemonic of minus as,
M=log; R —log, G (6.2)

Where, R and G are the background subtracted mean intensity for each spot in the
red layer and green layer respectively as mentioned in section 5.7. Table 6.1 shows
the log ratios for a range of fold differences. 0. Gene at location (2, 3) has an
expression value of 0.1241 indicating a low intensity signal and the gene is not
expressed.

Table 6.1 Conversion from fold ratios

to log (Base 2) ratios.

Log ratio
Fold ratio

(base2)
4- fold down regulated -2
3- fold down regulated -1.58
2- fold down regulated -1
1.5 fold down regulated -0.58
No change 0
1.5 fold up regulated 0.58
2- fold up regulated 1
3- fold up regulated 1.58
4- fold up regulated 2
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Figure 6.1 cDNA Microarray image with756 spots (b) A Sub image with 6 spots.

Table 6.2 Expression ratio (log 2 ratio) of spots in (b)

Expression ratio( log »(R/G)

columnl Column2 Column 3
Row 1
ow -0.0663 0.0464 -0.659
Row 2
1.2408 0.1241 0.0267
Row 3 0.0974 0.0113 0.0478
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6.3 Visualization of Microarray data using various

Representations

Visualization can be an effective tool for summarizing and interpreting
data sets, describing their contents and revealing significant features. Different
graphical tools are used to analyze the results of microarray experiments. Such
tools can assist in deciding whether the experiment was successful. Scatter plot are
the most common graphical tool used to analyze expression data of cDNA

microarray experiments.

6.3.1 Scatter Plots: Diagonal and MA Plots

A simplest scatter plot is the diagonal plot in which logyof background
corrected intensity value of one channel (Cy3) is plotted against the other channel
(Cy5) i.edogR versus log;G. Suppose a gene ‘g’ has an expression level
(intensity level) x; in Cy3 channel and y; in the Cy5 channel, the point representing
gi will be plotted at coordinates (log x;, log y,) in the scatter plot. In this way all the
genes in the data set can be plotted on a graph. In majority of the experiments
involving living organisms, most genes are expected to be expressed equally in
normal and abnormal tissues. So these genes that are expressed equally (yellow
spot) will lie on the diagonal line y = x in the scatter plot. Genes that are expressed
differentially will lie away from the diagonal line. For example, a gene expressed
more in abnormal tissue (corresponding to red spot) will lie above the diagonal line
and a gene expressed more in normal tissue (green spot) lie below the diagonal
line. Points located at a higher distance from the diagonal represent genes that are
more differentially expressed. Fig.6.2shows the scatter plot with 756 points

corresponds to 756 spots in the microarray image shown in Figure 6.1(a).
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Figure 6.2. Scatter plot of log intensities

In this plot gene A corresponds to an up regulated gene. Gene B is down regulated
and gene C is not differentially expressed. Genes with two fold change will be at a
distance of atleast 1 from the diagonal line. In general for given threshold T, the
fold change method reduces to drawing lines parallel to diagonal at a distace
tlogy(T)and selects the genes outside the lines. Majority of the genes are expected
to fall in the vicinity of the line y=x. If the plot does not exhibit these
characteristics, then the data from one channel are consistently lower or higher than
the data from the other channel, suggesting the need for preprocessing and
normalization (Zhang A.2006). Although such a plot is straightforward, the very
high correlation between the two channel intensities always dominates the plot
making the more interesting features of the plot difficult to discern. Scatter plot
visualizes data on a linear scale. Human eye and brain are better in preserving
deviations from horizontal and vertical lines than diagonal lines (D.Stekel, 2003).
Since the interest lies in deviations of the points from the diagonal line, it is
beneficial to rotate the plot by 45 degrees and to rescale the axes as in the MA-
plots (Dugout et al., 2002).
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MA Plots

These are an alternative type of scatter plots in which y axis is the log ratio M

(defined in eqn. 6.1) and x axis is the average log intensity (A) defined as :

log2(R) +log2(G)
2

A is the mnemonic for add. The MA-plot serves to increase the room available to

A=

(6.3)

represent the range of differential expression and makes it easier to see non-linear
relationships between the log intensities it also displays the important relationship
between differential expression and intensity, which is used in later analysis
steps.It is also convenient to use base 2 logarithms for both M and 4 so that M is
the units of two fold change and A is the unit of two fold increase in brightness. In
MA plots genes with a particular fold change can be selected using horizontal line.
Fig.6.3 shows the MA plot for the microarray image in Figure 6.1(a). In microarray
experiments most of the assumption is that majority of the genes are not
differentially expressed, which means majority of the genes are expected to fall in

the vicinity of the line y=0 as seen in Figure 6.3.

Figure 6.3 MA plot
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6.3.2 Box plots

Box plots are simple graphical representations of several descriptive
statistics, such as mean (or median) and variance for a given data set. In general,
vertical axis of the box plot is formed by a response variable, while the horizontal
axis corresponds to the factor of interest. Figure. 6.4 show an example of a box plot
used for analysis of microarray data. Vertical axis represents intensity levels (8 bit
tiff image) while the horizontal axis contain the of two channels (8 bit

representation).
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Figure 6.4 Box plot for intensity levels of two channels

Box plot is characterized by a central box and two tails. The center line (red) in the
box indicates the position of the median value of the data set. The upper and lower
boundaries of the box represent the locations of the upper quartile and lower
quartile which are 75 th and 25th percentiles of the intensity values respectively.
Thus, the box will represent the interval that contains the central 50 percent of the
data .The box plot is an important tool for determining whether a factor has a
significant effect on the response with respect to the location or variation. For
example, juxtaposing the distributions of measurements from Cy3 and CyS5
channels in the box plot may reveal whether the measurement of Cy5 and Cy3

channels in the box plot may reveal whether the measurement of Cy3 is
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systematically higher or lower than that of Cy5 so that a normalization method is

required to correct the bias.

6.4 Normalization Techniques

The purpose of data normalization is to minimize the effects caused by
technical variations and, as a result, allow the data to be comparable in order to
find actual biological changes. Replicate slides, hybridized with RNA from the
same extractions are used to reduce the variability. Similarly the spots are
replicated within the array by duplicating the DNA sequence by printing them in
adjacent location within the array. The precision of the particular measurement
will increase if the spot intensities of replicate spots are averaged. The
normalization methods are applied within the array as well as between arrays.
Several normalization approaches have been proposed, most of which derive from
studies using two-color spotted microarrays. Some authors proposed normalization
of the hybridization intensity ratios; others use global, linear methods, while others

use local, non-linear methods.

6.4.1 Within Array Normalization

In two colour microarray experiments, the two samples (test and reference)
have been labeled with two different fluorescent dyes in two separate chemical
reactions and the intensity is measured with two different lasers operating at two
wavelengths. In addition the features on the array are distributed on different part
of the surface of the array. One of the common problems is response of the Cy3
and Cy5 channels may vary at different intensities, and red intensities usually tend
to be lower than the green intensities. This can be corrected by applying the
following methods:

1. Linear regression of Cy5 against Cy3.
2. Linear regression of log ratio against average intensity.
3. Non-linear (Lowes) regression of log ratio against average intensity.

118



Chapter 6 Microarray Spot Intensity Quantification and Normalization

All these methods use the assumption that the majority of the genes on the

microarray are not differentially expressed.

6.4.1.1. Linear Regression of Cy5 against Cy3

This is the simplest method used to check whether the Cy3 and Cy5 channels
are behaving in a comparable manner via scatter plot of the two channels. If the
Cy3 and Cy5 channels are behaving similarly, then the clouds of points on the
scatter plot is approximately a straight line and the linear regression line through
the data should have gradient of land intercept of 0.Variations from these values

represent different response of Cy5 and Cy3 channels. They are:

1. A nonzero intercept represent one of the channels being consistently
brighter than other.

2. A slope not equal to 1 represents one channel responding more strongly at
higher intensity than other.

3. Deviations from a straight line represent nonlinearities in the intensity
response of the two channels.

The steps involved in evaluating the linear regression plots are:

(1). Plot Cy3 vs. Cy5 scatter plot.
(Ti). Fit a regression line through the scatter plot and identify the gradient
and intercept.

(iii) Replace Cy3 values with the fitted value on the regression line.

This method of normalization works well for the data where the linear fit is good
and reasonable. One of the main disadvantages of this type of plot is the difficulty
to see the nonlinearities in the data. Figure.6.5 shows the scatter plot of the

normalized log intensities of the microarray image in Figure.6.1.
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Cy5 Log intensity

Cy3 Log intensity

Figure.6.5 Scatter plot of the normalized log intensities of the

microarray image in Figure.6.1.

6.4.1.2 Linear Regression of Log Ratio Against Average Intensity

A common method for evaluating how well normalized an array is, to plot
an MA plot of the data. If the data is not symmetrical about the horizontal line, it
implies that one channel is responding more strongly than the other and
normalization is required. Intensity dependent variations can be corrected by
generating a best fit curve through the middle of the MA plot, and this becomes the
new zero line for the vertical axes. In this analysis, the M value of the pair (A, M)

is shifted by a quantity c (A) depending on the value of A as:
R
M = log, i c(A) (6.4)

Figure 6.6 shows a microarray image and its MA plot is shown in Figure 6.7 (a).
The plot shows that the average trend of the log ratio as a function of intensity. It is
clear from the plot that at low intensities Cy5 channel is responding more strongly
and at high intensity Cy3 channel is responding strongly. Plot (b) is the MA plot

after applying the normalization.
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Figure 6.7 (a) MA plot -linear regression fit through the data (b) MA plot after

linear normalization
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6.4.1.3 Lowess Regression of Log Ratio Against Average Intensity

Some microarray expression levels may have large dynamic range that will
cause scanner systematic deviations such as nonlinear response at lower intensity
range and saturation at higher intensity. Although data falling into these ranges are
commonly discarded from further analysis, the transition range, without proper
handling, may still cause some significant error in deferential expression gene
detection. To account for this deviation, locally weighted linear regression
(Lowess) is regularly employed as a normalization method for such intensity
dependent effects (Yang.Y.H. et al., 2002 G.C. Tseng et al., 2001). Lowess detects
systematic deviations in the M-A plot and corrects them by carrying out a local
weighted linear regression as a function of the log10 (intensity) and subtracting the
calculated best-fit average log2 (ratio) from the experimentally observed ratio for
each data point.

Figure 6.8(A) shows the MA plot and the nonlinear Lowess fit through the
microarray expression data of Figure 6.6. Figure 6.8. (B) is the data after Lowess

normalization. Here x axis is plotted in logartimic scale with base 10.

log2(Ratio)

: 2 25 3 315 4 45
@ log10(intensity)

ey 3jﬁ$¢ﬂ:ﬁ%‘?§:‘ et

log2(Ratio)
e

2 35 3
log1C(Intensity)

Figure 6.8 (A) MA plot and the Lowess fit through the microarray data. (B) Plot
after Lowess normalization
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6.5 Implementation

Microarray image quantifications and normalization have been tested on
various microarray images. The newly developed fully automatic gridding and
segmentation techniques were initially implemented and spot intensity ratios were
estimated. These ratios are log transformed and Scatter plots and MA plots were
used to visually analyze the expression data. Yeast genome microarray slide
provided by MAGIC was also analyzed. Different slides from SMD with spatial
bias were also used for normalizaion. The normalization techniques were applied to

eliminate spatial bias within the array.

6.6 Experimental Results

cDNA  microarray image corresponding to yeast genome provided by
MAGIC is shown in Figure 6.9. The microarray consists of 4 subarrays. Each sub
array consists of 552 spots in 23x 24 format. Gene expression values obtained after
applying AASRG based segmentation are quantified and normalization techniques
were applied. Figure 6.10 shows the MA plots before and after applying linear

regression based normalization.

-----

:
Figure 6. 9 A Microarray Image (Yeast genome)
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Figure 6.10 MA plot for four subarrays before and after linear
regression based normalization.

The straight line that has been fitted through the data points demonstrates the trend
in Cy5 and Cy3 responses. From the plots of subarray 2 and 4 it is clear that at low
intensities Cy5 channel respond more strongly and at high intensity Cy3 channel is
responding strongly. This effect is due to the experimental artifacts and should be
removed. The data has been normalized by applying linear regression which
transforms the horizontal line through zero. Points with the highest intensities lie
above the line .Figure 6.11 shows the box plot displaying the log ratio distribution
in the four subarrays. To normalize the spatial biasing effect, lowess regression
method was applied to each subarray. Figure 6.12shows the lowess regression fit
applied through the data. Figure 6.13 shows the MA plot after applying the
normalization method. Figure 6.14 shows the MA plot for the whole data in the
array before and after applying linear normalization. It is clear from Figure 6.14 (a)
that the at low intensities Cy5 channel is responding more strongly while at high
intensities Cy3 channel is more responding and the fitted line is not horizontal .
The log ratio is normalized by subtracting the fitted value on the straight line from
each log ratio. The MA plot obtained for the whole array using MAGIC tool is
shown in Figure 6.14(c ).
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Figure 6.12 Lowess regression (curve in red colour) on log: ratio
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Figure 6.14 (a) MA plot for the whole array (Fig.6.9) (b) MA plot after linear
normalization (c) MA plot for the whole array using MAGIC tool.
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Correcting for Spatial Bias

In some microarray experiments there is a spatial bias of the two channels
i.e, in some region of the array the Cy3 channel is brighter and the other region
CyS5 channel is brighter. This can result from the array not being completely flat or
horizontal in the scanner. This can affect the log ratios with some regions of the
array having positive log ratio and other regions have negative log ratio. The block
by block normalization techniques can be used to eliminate the effects of spatial
bias.Figure 6.15 shows two subarrays of a microarray image from SMD data base.
The spatial bias is clear in the images. Figure 6.16 and Figure 6.17 shows the MA
plots of each subarray. The shape of the plot indicates the spatial biasing effect.
Both linear and lowess regression methods were applied to eliminate the spatial

biasing effect are shown in Figure 6.16and Figure 6.17.

Figure 6.15 Two subarrays with different spatial bias
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MAPLOT

4 4.5 5

MAPLOT

3 35 4 4.5

3 35 4 4.5 5 55 6 65 7 7.5 8

Figure 6.16 MA plot before and after applying linear regression (1)
first subarray (2) second subarray of Fig.6.15
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Figure 6.17 (1) MA plot data before and after applying lowess regression (1)

first subarray (2) second subarray
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Lowess transformation divides the data into a number of non overlapping intervals
and fit the function. This method works well for data where there is a non linear
relation between the response of Cy3 and Cy5 channels.

6.7 Conclusions

In this chapter microarray quantification methods, normalization techniques and
the various graphical tools used for visual inspection of data are presented. Box
plots, Scatter plots and MA plots are some of the common visualization tools.These
techniques provide an indication of the quality of the slides and the experiments
and help to identify systematic variations. Different normalization techniques are
used to remove such systematic effects so that the real biological difference can be
easily distinguished. Within the array normalization is used to remove the dye bias
and spatial bias. Normalization techniques using linear regression method and

Lowess regression method were implemented to remove this bias within arrays.
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CHAPTER 7

Spot Quality Evaluation

Success of microarray technology is characterized by accuracy of data
measurements at various steps. Ildentifying and removing unreliable data
is crucial to prevent the risk of receiving deceptive analysis results.
Various quality measures are used during image processing steps to
evaluate the quality of individual spots so that bad spots can be excluded
from further analysis. In this chapter a set of quality measures are defined
for testing the quality of the spot. Quality values assigned to each spot are
based on its intensity characteristics and spatial information. A composite
quality score is then assigned to each spot based on individual quality
values to give an overall assessment of spot quality. The quality control
method has been tested on various microarray spots and Receiver

operating characteristics was used to study its performance.
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7.1 Introduction

Spot quality control is of one of the essential step in automated microarray
image analysis system. To determine spot quality, a clear definition of a good spot,
or a list of all possible distortions that may affect the quality of the spot is required.
The diversity of instrumental platforms and biological factors that may influence
the quality of the spot makes the formalization a difficult task. Several attempts
have been made to approach this problem. Generally a number of quality measures
characterizing the spot, such as signal-to-noise ratio, size and circularity are used.
In this chapter six quality measures are used to define a composite quality score for
each spot. Composite quality score give an overall assessment of the spot quality.

Spots with undesired quality are discarded from subsequent data analysis.

7.2 Literature Review

Many of the early quality analysis were based on manual editing combined
with image analysis diagnosis using semi automatic software. Since manual editing
is a tedious task, now most of the commercial systems for microarray image
analysis, such as GenePix, ImaGene and MAGIC have developed features for
quality measures as flags. As these flags usually focus on the correctness of the
analysis system rather than the quality of images, they cannot represent the quality
of microarray images. Gabriel et al. (1999) defined a simple measure for noises,
to find the regularity of a microarray image in the auto gridding process, which
was the first attempt to evaluate noise levels for microarray images. Kuklin et al.
(2001) developed separate quality measures for each parameter such as signal to
noise ratio, the roundness of spots etc. instead of a single quality value for an
image. Brown et al. (2001) showed that features of images vary as intensities of
spots increase and suggest the spot ratio variability as a simple measure of
irregularity of the spot. The composite quality score introduced by Wang et al.,
(2001) provides a very comprehensive quality assessment of microarray data.

Wang et al., (2003) & Tran et al., (2002) suggested a correlation between mean and
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median of pixel intensities as a measure for spot quality. Hautaniemi et al.(2003)
developed Bayesian network based spot quality control shows what factors have an
effect on the qualities of microarray images. In this method a training data set is
required, which may times be difficult to obtain.

A quality measure model was suggested by Kim et al. (2005) where, five
functions are defined for quality measures such as signal noise, background noise,
scale invariant, spot regularity, and spot alignment. Novikov. E et al. (2005)
developed an algorithm for automatic evaluation of spot quality of microarray
images and assigns a quality score to each ratio estimate. This score is calculated
from 10 main quality characteristics reflecting different spot properties within the
microarray. The quality values assigned to each spots used to eliminate spot or to
weight contribution of each ratio estimate. The microarray quality control project-
phase I (MAQC, 2006) provide a quality control (QC) tool to the microarray
community to avoid procedural failures, variation between different platforms, as
well as variation between subarrays. An implementation of semi automated
multivariate quality control assessment for cDNA microarray was suggested by
Bylesjo et al. (2005).

Two quality estimates considered by Tang et.al (2007) were the local
similarity between the ‘red’ and the ‘green’ images, and the homogeneity of the
spot and suggested that images should be registered before the analysis so as to
reduce the variability. To avoid problems in quality analysis pre-censoring has
been  conducted to remove all poorly expressed replicates using ¢ values.
Bergemann, T. L. (2010) described two signal quality estimates that capture the
reliability of each spot printed on a microarray. A parametric estimate of within-
spot variance that assumes pixels follow a normal distribution and a non-
parametric estimate of error, called the mean square prediction error (MSPE),
assumes that spots of high quality possess pixels that are similar to their
neighbours. Wu J. (2012) proposed a multi variant method of quality contropl that
was needed to assess classification errors associated with simple model of spot
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quality. The following section describes various factors that affect the quality of

the spot.

7.3. Factors Affecting the Spot Quality

The Number technical issues during the microarray experiment affects of the

quality of the spots in microarray images. They are broadly classified as:

e Low intensity spots: This is the common problem that the signal is only
few fold above the background. The main causes for this situation are the
low expression levels, surface properties of the slide, poor labeling,
incomplete or irregular hybridization conditions, scanner defect etc.

e  Non uniform Intensity distribution: The variation in intensity distribution
is the consequence of particle contamination, non specific binding,
irregular distribution of printed materials on the slide, printing defects etc.
results in regions of pixels containing signals deviates from average
signal.

e  Morphological issues: This refers to unexpected shape variations of the
spot foreground region. This includes large variation in spot size from the
average spot size may be due to poor pin design, impurities in the printing
solution, washing problems, impurities etc.

e Background Fluorescence: The intensity fluctuations in the local
background region of a spot compared to the global background of theslide
typically, results from dye contaminants due to non-specific binding or

incomplete washing, drying during the washing etc.

7.4 Quality measures
Many image analysis programs collect a number of quantitative
measurements associated with each spot. These includes morphological measures

such as area, perimeter uniformity measures such as standard deviation of

134



Chapter 7 Spot Quality Fvaluation

foreground and background intensities in each channel and spot brightness
measures. Sometimes some quality measures are derived from the basic measures.
Shape (area/perimeter) and signal to noise ratio measures are examples. The
following sections describe a set of quality parameters, characterizing different
features of the spot. These parameters are scaled between 0 (bad spot) and 1 (good
spot) to facilitate further quality analysis.

7.4.1 Signal Level (S)

As mentioned in section 5.7 intensity level for each channel is computed as
R (Cy5) and G (Cy3) respectively as per equations given below
(7.1)

(7.2)

R= ur — por
G= pupr — pbg

Where g and g, are the is mean intensity of the pixels in the foreground region of
each channels and p,, Mg the corresponding mean intensities of the local
background regions. The following parameters are used to define the quality of the
foreground signal.

(i) Signal level Sm=max(R,G) (7.3)

(ii) Mean background level Bm = % (7.4)

(iii) Threshold level of signal Ts = cxBm, where c is a constant.
Then the quality measure g(s) is defined as

q(s)=1, if S,>T; (7.5)
q(s) =D if Sm< Ty (7.6)

Figure 7.1 shows the relationship between signal level (Sm) and quality measure
q(s) for a mean back ground level of 10. The plot indicates that for Sm/Ts=0.5, q(s)
become 0.6065. Setting this as the cut off value for signal quality measure, most of
the low quality spots can be eliminated from further analysis. Figure 7.2 shows five
different spots and their quality measure value ¢(s).
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Figure 7.1 Variation of q(s) with signal intensity(Sm)
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Figure 7.2. Five different spots and their q(s) values. (a,b,c)are spots with high

signal levels(d)low signal spot(e)low intensity noisy signal .
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Spots (a), (b) and (c) have high signal levels. So the corresponding quality value is
‘1’. Spot (d) and (e) have low signal levels and the hence the quality value are
0.232 and 0.244 respectively.

Quality matrices for the intensity variations within the spot is defined
using two parameters coefficient of wvariation (CV)  and coefficient of
determination(CD).

7.4.2 Coefficient of variation

A measure of homogeneity of intensity of the pixels of an image is the
ratio between the standard deviation (o) and mean (p) of pixel intensities, called
Coefficient of variation (CV). For a microarray spot CV is evaluated for the red and

green channels separately as Cvr andCVg.

CVr :% (7.7)
CVe =% (7.8)
g

where o and o, are the standard deviations of signal intensities of red and green

channels respectively. The mean value CV is used for calculating the quality

measure q (CV).
oV = % (7.9)
g(cn)=e (7.10)

Figure 7.3 shows the spots with different intensity profile and their quality values
estimated using equation (7.10).
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Figure 7.3 Spots with different quality measures q (CV) indicating the
homogeneity of intensities

Coefficient of variation value close to’0’corresponds to a regular (homogenous)
spot. It is found that for spots with good morphology coefficient of variation is less
than 0.3, and spots with irregular shapes and doughnut shapes have coefficient of
variation greater than 0.5 (Sauer et al.,2005).Setting a threshold as 0.35, the cutoff
value for the q(cv) is 0.7047.

7.4.3 Coefficient of Determination (CD)

Coefficient of determination of linear regression indicates degree of the linear
relationship between intensities in Cy5 and Cy3 channels (E. Novikov et al., 2005).
It is a measure of how well the regression line represents the data. If the regression
line passes exactly through every point on the scatter plot, it would be able to
explain all of the variation. The farther the line is away from the points, the less it

is able to explain. It is defined as the square of the correlation coefficient ( ).

_ Cov(R,G)
—J R.0G (7.11)
where Cov is the covariance function.
> RG—nufiufe (7.12)

V= \/ZRZ —l’l,Ufrz \/ZGZ —l’l/lﬁgz
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where ‘n’ is the number of pixels, R and G are the background subtracted mean
intensity levels of each channel. High value of CD are expected for good spots and
low values suggest either bright and uncorrelated contamination or strong noise
content. A closer CD value to 1 indicates closer the correlation between pixels in
the two channels. The spots that have low CD values must be flagged out using the

quality measures. The quality measure is defined as
q(CD)=CD (7.13)

The true intensity ratio(7) can be represented as the slope of the linear
regression fit of the pixel intensities in the two channels. The signals from the two
channels are separated and the outliers are removed using median filters for
increasing the accuracy of the ratio estimation and the values of coefficient of
determination. Figure 7.4 shows the linear regression plot for a good quality spot
with CD value 0.9970.While Figure 7.5 is that of a spot with contamination. The
CD for this spot is 0.7407. Figure 7.6 shows spots with different quality measure ¢
(CD). Setting a cutoff value q (CD) as 0.75 is sufficient to eliminate most of the

spots with low CD value.
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Figure 7.4 Scatter plot of pixel intensities of two channels and the linear
regression fit (green line) for a good quality spot (left).
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Figure 7.5 Scatter plot of pixel intensities of two channels and the linear

regression fit (green line) for spot with contamination (left)
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Figure 7.6 Spots with different g (CD) values

7.4.4 Spot Area

q(CD)=0.9992

q(CD)=0.7242

q(CD)=0.5703

The spots within a microarray are expected to be circular in shape. Spots with large

variation from normal size should be rejected from further analysis, because they

are more likely due to noise than fluorescence form the dye due to hybridization.

Similarly the spots with very large diameter usually indicate dilation, particle
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contamination etc. These spots also should be penalized. Figure 7.7 shows a
gallery of microarray spots with different morphology and three dimensional views

of their pixel intensities.
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; f
Figure 7.7 Gallery of spots from cDNA based Microarray and their red green

intensities graphed three dimensionally.

Here (a) is a high quality spot with uniform intensity (b)is a dilated spot(c) a
doughnut spot(d)black hole(e) spot peak with less number of pixels (f)spot with
comet tail. The morphology of the spot is clear from the three dimensional surface
plot. Spots with smaller than usual size should be penalized since they are more
likely due to isolated noise than dye incorporation due to hybridization; spots with
excessively large diameter, may indicate contaminants and/or spots likely to be too
close to its neighbor. These are also eliminated from further analysis. Quality
measures are defined for detecting the spot irregularity. Quality measures are used

for the morphological analysis in the present work is the area of the spot.
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The area (4) of a spot under study is calculated as the number of pixels
within the foreground region. Average diameter (D) of the spots in microarray is
estimated during the gridding process using equation 4.21. Let average area, of the

spots in the microarray image be 4,is evaluated as

Ao-7"D? (7.14)
Then quality measure for area, g (4), is defined by Wang X et al. (2001) as
_‘A—Ao‘ (7.15)
q(a)=e

Figure 7.8 shows the relationship between ratio of area (4/4y) and q (a). For an

ideal spotAizl, So selecting Ai between 0.5 and 1.5, the cut off value for
0 0

quality meaure q (a) is obtained as 0.6065. i.e, by selecting the cut off value for q
(a) is 0.6065 all spots having area ratio between .5 and 1.5 are selected as good

quality spots.

[ 0.2 0.4 0.6 08

1 i
Ratio of area{A/A0)

Figure 7.8 Relation between ratio of area (A/A) and quality q (a)

Quality measure q (a) is evaluated for the two channels separately as q, (a)
(red channel) and q, (a) (green channel). The quality of the spot is defined as
average of. q, (a) and g, (a).
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_(¢(@) + g<(a))
2 (7.16)
Figure 7.9 shows three different spots with different morphology and their quality

q(a)

measure value q (a). Figure 7.9 (a) is a good quality spot with uniform intensity
distribution. q (a) value for this spot is 0.7658, while (b) is a dilated spot .The
spread of intensity is clear from the surface plot. The quality value for the spot is
0.2343. (c).is a spot with less number of pixels. The quality values for this spot is
0.4278.

(&)

)

q(A)=0.2343

()

q(a)=0.4278

Figure 7.9 Spots with different area and the corresponding quality measures

q (a) and 3D intensity plot.
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7.4.5 Coefficient of variation in the Local background

Variations in the background reflect as either high background (fluorescence)
or black holes. High background occurs mainly due to the fluorescence of the
slide substrate, failure to adequately remove unhybridized molecules, drying
problem etc. Sometimes the spots appear as back holes with flouresent intensity of
the spot beneath that of the surrounding background. Figure (7.10) shows the two
conditions. Figure 7.10 (a) indicate high background condition while (b) indicate

the black holes.

Figure 7.10 Background variations (a) High intensity background (b) Black

holes

Quality measures are used to measure the variations in the local and global
background signal and reject spots with large back ground variations. The local
background region of each spot is extracted after applying the segmentation
algorithm. The quality measure of the variation of the intensity of background

region is defined in terms of coefficient of variation as:

cv, =22 (7.17)
b
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where ob is the standard deviation and Uy, is the mean of pixel intensities of the
local background region. The quality measure is evaluated for the two channels
separately as q (CVs ), q (CVig ). The geometric mean value of these two quality

measures is used for defining the quality measure of local background.

g(cvi)=e (7.18)
q(CVi) == (7.19)
q(cv) =[q(crin)xg(CVi)]” (7.20)

Figure (7.11) shows two spots with their local background from two channels and
corresponding quality measures.Similar to foreground region, coefficient of
variation value close to’0’corresponds to a regular (homogenous) spot. By setting a

threshold as 0.5 for CVy, the cutoff value for the q (CV,,) is 0.6065

g(cs) =0, 72 56

q(C) =0, 4273

Figure 7.11 Two spots and their local background from two channels and

corresponding quality measures q (CVj)
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7.4.6 Deviation from Global background

Problematical regions on the microarray have higher local background compared to
the global background. Quality measures are used to identify spots with such
regions. The ratio of absolute difference between the median intensity values of
local and global regions to the median intensity of global region is used as a quality

measure defined as

‘;_gb‘
g,

rgb =

(7.21)

Where l;is the median intensity level of local background region and g, is the
median intensity level of the global region. The parameter is evaluated for two
channels separately and the average value (rg_b) used to define the quality measure

as

q(gb)=¢ '@ (7.22)

Figure (7.12) shows such a spot with large coefficient of variation in the local

background region with respect to the global background in a microarray.

The quality measure for global background is evaluated for the two
channels separately as g, (gb) (red) and g, gb) (green) respectively. Then the

quality measure of global background deviation for the spot is defined as

q(gb) = min[q.(gb),q-(gb)] (7.23)
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g(gb) =0.2342

Figure7.12 A spot with high background compared to global background
7.5 Saturated Spots

Saturation occurs when spot pixel intensity values exceed the detection
range of the photomultiplier tube or the electron detector. This happens in spots of
highly expressed genes or spots that contain contaminations. Saturation issue poses
a different problem when compared with the previous issues. When saturation
happens, there is no prior reason for the variability in measurements to be high.
Instead, the measurement distribution is shifted from that of no saturation,
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especially when the instrument setting have not been adjusted to give a ratio of 1
for a differential expression of 0. Instead of constructing a continuous function qut
a threshold of tolerance is defined. A typical spot of microarray image consist of
150 -250 pixels. With a threshold of 10% of pixels as the cut off value the quality
measure for saturation is defined based on the number of saturated pixels with

respect to total number of foreground pixels. It is defined as:

q (sat) = 1, if saturated pixels is <10% (7.24)
=0, if the saturated pixels >10%
7.6 Composite Quality Factor

All the above six quality measure and quality of saturation are combined to
generate a composite quality score value for each spot. The composite quality
score is defined as:

geon =[q(5)x g(CV)x q(CD) x g(a) x g(CVb) x q(gb)]"* x g(sat) ~ (7.25)

This value can be used to flag out directly spots, with low a quality lower than a

defined threshold.
7.7 Implementation of Spot Quality Evaluation Method

The quality control algorithm is developed with the primary task is to
classify spots into two classes as faulty and good. The fundamental interest is the
classification of good spot as good and faulty spot as faulty, but the situation
becomes complicated by considering good spot as faulty and faulty spot as good.
Classifying faulty spot as good is considered harmful, since these faulty spot will

be also include in the subsequent analysis of the microarray. The new quality
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control method has been tested on several of spots different morphological
characteristics, intensity variations and background intensity variations. A
microarray subimage consist of 195 spots were tested and the results are explained
in the following section. A composite quality score q com Was evaluated for each

spot. A threshold value was defined to filter out spots with low qcom.
7.8 Experimental Results

The quality analysis method has been implemented on different real
subarrays.Table7.1 shows different spots; their quality values evaluated using
equations 7.1 to 7.24. Composite quality score q.,m Was calculated for each spot
using equation 7.25. Spot 1 is a regular spot with gcom 0.7979, spot2 has less
number of pixels as well as non uniform intensity; qc.m value for the spot is 0.6349.
Spot3 is a spot has large coefficient of variation and g, value is 0.5835, spot 4 is
spot with high back ground intensity, a lower CD value indicates that low
correlation between the two channels also less,; the qcom value for the spot is
0.5160. Spot 6 is a dilated spot and has low CD value the qeom for this spot is
0.6741. A threshold value was calculated using the cut off values for each quality
measures. Table 7.2 shows the cut off values for each quality measures. Geometric
mean of all these cut off values is taken as the threshold value to reject low quality

spots.
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Table 7.1 Spots with Quality measures

Quality
measures
Spot 1 Spot2 Spot3 Spot4 Spot5

q(s) 1 0.836688 0.613811 0.425064 0.971711
q(ev) 0.61122 0.545971 0.235812 0.583387 0.696236
q(cp) 0.994071 0.502469 0.945443 0.369605 0.47985
q(a) 0.861635 0.600086 0.581504 0.556706 0.573794
q(cvb) 0.698049 0.703434 0.62941 0.679986 0.703371
q(gb) 0.706222 0.676174 0.788128 0.54406 0.716531
q(sat) 1 1 1 1 1
Qeom 0.7979 0.6349 0.5835 0.5160 0.6741

Table 7.2 Cut off values of quality measures
Quality measures q(s) q(cv) q(CD q(a) q(cvb) q(gb)
Cutoff values 0.6065 | 0.7047 | 0.75 0.6065 | 0.6065 | 0.6065

L]

Figure 7.13 A subarray consists of 195 spots.
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Figure 7.13 shows a subarray consist of 195 spots. Figure 7.14 to 7.20.
shows the result of applying different quality measures in the spots.Figure 7.14(a)
shows quality values for each spot obtained when quality measures for signal
applied. A cut off value of 0.6065 rejects spots with low signal q(s) as shown in
(b).The spots having low quality are labeled in blue .

A B € D E. E G H 1 J K L M N o}
ik 1 0.747183 0.56485 0.766893 1 0.436279 0.886618 0.93058 1 0.501374 1 0.985881 1 0.90445 1]
i 1 1 1 0.591011 1 1 0.59561 1 0.660343 0.631964 1 0.637051 1 1 0.460925)
3 1 il 1 0.438052 il al il 1 0.550376 1 al il 1 1 0.357334)
4 0.47767 0.756353 0.451676 1 0.734024 0.6683183 0.441003 0.590791 0.516823 0.643368 1 0.522776 0.457201 0.473232|
5 | 0.479963 0.409791 0.438548 0.552995 0.401666 0.434582 0.420139 0.438257 (.422835 0.410331 0.426338 0.431925 0.521349 (.539887 1]
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8 | 0.566517 0.431961 0.708744 0.480121 0.46531 0.501173 0.510818 0.51329 0.584721 0.460523 0.453987 0.733642 0.463593 0.455856 0.518262|
9 | 0.518386 0.45215 0.435959 0.57536% 0.995826 0.538782 0.900951 1 0.573032 1 0.467586 0.636764 0.666936 0.631432 0.416587
10 | 0.436477 0.516531 0.737094 0.634532 1 1 0.874214 1 1 0.711%45 1 0.698613 0.595855 1 0.699154
11| 0.61375 1 0.858364 0.701463 0.501684 1 0.518647 0.692587 0.967424 1 0.568318 0.622917 0.534833 1 0.436358
12| 0.803158 0.42137 0.425781 0.493072 1 0.552112 ik 1 0.602021 ik 1 0.460554 0.792846 1 0.308687
13 1 1 il 1 0.468718 0.475775 0.534821 0.524114 0.639792 0.477462 1 0.64279 0.5831 1 0.776855
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Figure 7.14 Results of applying quality measure for signal (a) Quality value (b)
rejected spots (blue colour)

Figure 7.15 (a) shows quality values obtained when quality measures for
Coefficient of variation q (CV) applied. A cut off value of 0.7047 rejects spots with

large variation of intensity within the spot as shown in (b).
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Figure 7.15 Results of applying quality measure for coefficient of variation q(cv)
(a)Quality value (b) Rejected spots (blue color)

Figure 7.16 (a) shows quality values obtained when quality measures for
Coefficient of determination q (CD) applied. A cut off value of 0.75 rejects spots

with large variation of intensity within the spot as shown in (b).
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Figure 7.16 Results of applying quality measure for coefficient of

determination (a) Quality value (b) Rejected spots

Figure 7.17 (a) shows quality values obtained when quality measures for area q (a)

applied. A cut off value of 0.6065 rejects spots with large variation of intensity

within the spot as shown in (b)
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Figure 7.17 Results of applying quality measure for area (a) Quality value
(b) Rejected spots

Figure 7.18 (a) shows quality values obtained when quality measures for local
background variations q (cvy) applied. A cut off value of 0.6065 rejects spots with

large variation of local background (b)
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Figure 7.18 Results of applying quality measure for local background q (CVb)
(a) Quality value (b) Rejected spots

Figure 7.19 (a) shows quality values obtained when quality measures for global
background variations q (gb) applied. A cut off value of 0.6065 rejects spots with

large variation of intensity in the global background is shown in (b)
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Figure 7.19 Results of applying quality measure for global background q (gb) (a)

Quality value (b) Rejected spots

Figure 7.20 shows the rejected spots with composite quality less than the threshold

value of 0.6442 calculated from table 7.2 using equation 7.25.
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Figure 7.20 Results of applying q c.m and rejected spots

The quality control algorithm has been applied to spots in 10 different real
microarrays with different level of contaminations and background intensity. The
images were taken from Stanford Microarray Database. The SMD provides the
facility to add control flags which is used to eliminate bad spots from further
analysis. For example, Figure.7.21 shows two subarrays of the microarray used for
lung cancer study (Experiment ID-11712) and the filtered spots (yellow square)
using SMD tool.

The developed quality control method has been applied to the same
subarrays and the results were analyzed for different threshold values. Figure 7.23
shows the flagged spots (blue square) while implemented the developed algorithm
for a threshold of 0.5.The accuracy of the proposed scheme to detect faulty spots
and how well the individual spots are classified correctly and how often the spots
are misclassified in the two possible directions (good as faulty and faulty as good)

was analyzed using Receiver Operating Characteristics (ROC) curves.
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Figure .7.22 Flagged spots using new quality control algorithm on a Microarray

(Exp. ID-11712 -subarray (1, 2)) for threshold 0.5
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ROC visualizes the tradeoff between false alarms and detection, helping the user in
choosing an optimal decision function. The spots were determined to be either
good or faulty using the SMD tool enabling the derivation of the class separating
discriminate functions. Data consisting of 1512 spots, of which 1285 were found as
valid spots and 227 as faulty using SMD tool. Each test spot was considered to be
an independent sample. The results are presented with a ROC curve for three
different threshold value for the composite quality score such as 0.5, 0.6442 and
0.75. As shown in Figure. 7.23. Results show that the optimal working point of the
classifier is found when threshold is 0.6442 plot (a) which agrees with the result

obtained from equation 7.25.

4 B Receiver Operating Characteristic (plotroc) IR = .

True Pasitive Rate

. L . L . s L L L )
0 01 02 0.3 04 0.5 0.6 07 0.8 09 1
False Positive Rate

Figure.7.23 ROC plot for different thresholds (a) 0.6442(b) 0.75(c) 0.5
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Chapter 7 Spot Quality Fvaluation

The performance of the quality control algorithm was also compared with
the work done by Sauer, U et al. (2005) in which a sets of quality scores are
designed considering the individual quality factors such as number of foreground
pixels per spot (gsiz,) signal to noise ratio(gsig-noise),variability of local back
ground (que1) and variability of background with respect to the global average
background (quwg) coefficient of variation of pixel intensities(gcy) and quality

factor corresponding to saturation level as given in equation 7.26.

1/
qeoml = [qsize X qsigfnoise X qbgkl X qkaquV] ’ x q(sal) (726)

The developed quality analysis method includes a new quality parameter gcp that
indicates the degree of linear relation between the intensities of two channels
which greatly improve the filtering of spots with noise or other contaminations. Fig
7.24 shows the plot between q.,m, and coefficient of determination (CD) when new
method is applied to a subarray consists of 756 spots. Figure 7.24 shows that
variation of qcom for spots having different Coefficient of determination. It is clear
that gcom decreases from 0. 85 to 0.35 when CD decreased from 0.99 to 0.01 as
required. Fig.7.25 shows the qcom1 Vs CD plot while applying quality measures on
the same subarray using method suggested by Sauer, U et.al (2005) where the
quality measure for CD was not considered. Hence the developed method shows

better performance for rejecting spots with low CD values.
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7.9 Conclusions

The definitions of spot quality measures are a difficult task in a microarray
image analysis. There are factors causing variability that cannot be captured using
composite quality scores. In this chapter an automatic spot quality assessment
techniques have been developed, which on implementation found capable of
filtering out spots with unusual morphology, non uniform intensity, low signal
levels and large background variations. For each spot six quality measures are
defined for evaluating a composite quality score. The saturation problem is
considered as a separate case and spots with more than 10% saturated pixels are
rejected from further analysis. Cut off values of each quality score is computed and
using these cutoff values a threshold value is formulated. All spots with composite
quality score less than threshold are rejected. The method has been implemented
on real microarray images available at SMD database. Using SMD tool bad spots
were flagged and compared the results with the developed quality analysis method.
An automated classification of microarray image spots to classes faulty and good
based quality measures were conducted. The assessment was presented for
classification of individual spots using ROC analysis for different threshold values.
Results show that the quality analysis method is capable of filtering the low quality

spots efficiently in high density microarrays.
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CHAPTER 8

Implementation of Image Analysis Method on

array CGH Images

Array based comparative genomic hybridization (array CGH) has been emerged
as an efficient molecular cytogenetic technique for the detection of chromosomal
imbalances. Studies based on DNA copy number variations provide insights into
cancer and many genetic disorders. Array CGH log2-based intensity ratios
provide useful information about genome-wide Copy number variations. This
Chapter presents the implementation of new fully automated image analysis
method on arrayCGH microarrays. The copy number variations at different

chromosomes are identified and compared with the known results.




Chapter 8 Implementation of Image Analysis Method on array CGH Images

8.1 Introduction

Comparative genome hybridization (CGH) identifies and maps sites of
variation in DNA copy number throughout the genome (Chen, W.et al, 2005).
Cytogenetic (chromosome) testing can detect if there is too much (gain) or too
little (loss) of chromosomes or pieces of chromosomes. People with changes in
their DNA or in the number or structure of their chromosomes may have an
increased risk of birth defects, mental retardation developmental delay, behavioral
problems and intellectual disability. Conventional cytogenetic analysis can detect
unbalanced structural rearrangements within the limits of resolution of the
technique. The resolution of the current conventional cytogenetic analyses lies in
the range of 3—10 Mb (1 Mb = 1 million base pairs) and requires dividing cells.
Therefore, chromosomal micro deletions or micro duplications (those smaller than
3Mb) will go undetected with conventional cytogenetic analyses (ACOG
committee, 2009). Fluorescence in situ hybridization technology (FISH) can be
used to detect chromosomal abnormalities smaller than 3 Mb (DiGeorge syndrome
for example), but because of technical limitations, it can only screen for a limited
number of chromosomal abnormalities at one time.

Microarray implementation of CGH, (Pinkel et al. 1998) have the potential
to overcome many of the limitations of traditional cryptogenic CGH. arrayCGH
improves resolution in detecting chromosomal abnormalities smaller than 3 Mb. In
addition, array CGH has been a useful tool in discovering underlying genetic
mutations in known, but genetically undefined, human genetic syndromes.
arrayCGH does not require dividing cells. The disadvantages of array CGH include
the inability to detect balanced inversions or translocations as well as certain forms
of triploid, and array CGH costs significantly more than conventional karyotype

analysis.

The two types of arrays currently available are targeted and genome-wide
arrays. Targeted arrays are currently preferred in clinical genetic practice because

they can detect chromosomal abnormalities for known genetic syndromes.
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Genome-wide arrays, however, are designed to cover a greater portion of the
human genome than targeted arrays. Genome-wide arrays have been particularly
useful in research efforts to discover new submicroscopic syndromes. In this
chapter the new automatic image analysis method has been implemented in
arrayCGH microarray. log, ratio were validated with on known data. The copy
number variations at different chromosomes are identified and compared with the

known results.
8.2 Comparison between arrayCGH and cDNA arrays

The main difference between array CGH and cDNA is that, genomic DNA
rather than mRNA transcripts are hybridized in array CGH (Lai, W. R.et al, (2005).
In Array CGH microarrays DNA from the test cell is directly compared with the
DNA from the normal cell using several thousands of small DNA fragments, with
known identity and genomic position known as BAC (bacterial artificial
chromosome). DNA fragments or clones from the test sample and reference sample
are differentially labeled with dyes (typically Cy3 and C y5) are hybridized to each
probe on the microarray. Clones with normalized test intensities significantly
greater than the reference intensities indicate copy number gain in test sample at
those positions. Similarly, significantly lower intensities in the test sample are
signs of copy number loss. BAC (clone based CGH arrays have a resolution in the
order of one million base pairs (1Mb) Snijders, A.M.,Pinkel, D., et al. (1996)
Oligonucleotide and cDNA arrays provide a higher resolution of 50-100kb
Snijders, A.M., (2001). Array CGH log,-based intensity ratios provide useful
information about genome-wide CNVs. In humans, the normal DNA copy number
is two for all the autosomes. In an ideal situation, the normal clones would
correspond to a log, ratio of zero. The log, intensity ratios of a single copy loss
would be -1, and a single copy gain would be 0.58. The goal is to effectively
identify locations of gains or losses of DNA copy number.

Figure 8.1 shows log, intensity ratios for cell line GMO03576 for
chromosomes 1 through 23 provided by Coriell cell line BAC arrayCGH data
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analyzed by Snijders et al. (2001). Coriell cell line data is widely regarded as a
"gold standard" data set. The Coriell Cell Repositories provide essential research
reagents to the scientific community by establishing, verifying, maintaining, and
distributing cell cultures and DNA derived from cell cultures. These collections,
supported by funds from the National Institutes of Health (NIH) and several
foundations, are extensively utilized by research scientists around the world. A cell
line is a product of immortal cells that are used for biological research. Cells used
for cell lines are immortal, that happens if a cell is cancerous. The cells can
perpetuate division indefinitely which is unlike regular cells which can only divide
approximately 50 times. In the plot, borders between chromosomes are indicated
by grey vertical bars. The plot indicates that the GM03576 cell line is trisomic (A

diploid cell with an extra chromosom) for chromosomes 2 and 21(gain of 0.5).

GMO3576
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Figure 8.1 Log ;ratios vs. chromosome plot
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8.3 arrayCGH Image Analysis - Case Study

The new fully automatic image analysis method has been implemented in a
array CGH microarray image used by Snijders et al. (2001). The array was
assembled with 2463 BAC clones in triplicate. There are 16 subarrays (4 x 4) with
462 spots in each subarray. Spot diameter is approximately 70-100 um, In the array
each DNA solution was printed in triplicate to create an array of ~7500 elements in
a 12 mm square area. Figure 8.2 shows the arrayCGH microarray used for the
CNYV analysis of colorectal cancer (colorectal adenocarcinoma). In this experiment,
the tumor cell line HT-29 was derived from a primary adenocarcinoma of the recto
sigmoid colon. HT-29 is hypertriploid (3n+) and has accumulated numerous
chromosomal structural aberrations. In the arrayCGH experiment cell line HT29 is
the test sample labeled with Cy3 (green) and normal reference genomic DNA (red)
is labeled with Cy5. The arrays provide precise measurement (S.D. of log2ratios of
0.05-0.10). Different image analysis steps used are explained in the following

section.

Figure 8.2 Microarray image with 2463 BAC clones in triplicate
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Step1: Global Gridding
Figure 8.3 shows the image after implementing the new global gridding
method using threholded intensity projection profiles. Threshold value was

selected as 10% maximum of the row and column intensity projection profiles.

Figure 8.3 Image after global gridding

Step2: Local gridding

Individual spots within each subarray are identified using intensity
projection profile of best subimage, with maximum block size half the size of each
subarray. Figure 8.4 shows locally gridded image.
Step3: Segmentation

AASRG based segmentation method has been implemented on each spot

within the subarray and log, ratio was evaluated.
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Step4: Quality Control

Quality control method explained in chapter 7 was applied to each spot
within the grid. In the Table 8.1 and 8.2, positions marked with ‘x’ symbol indicate
position of the spots with low quality.

Step 5: Intensity Quantification and Normalization

Background subtracted mean intensity was calculated for all spots in the
array. This has been done for both red and green channels separately. Lowless
normalization technique was used to eliminate the spatial bias.log , ratio obtained
using the image analysis algorithm was confirmed with existing well defined
results provided by (Snijders, A.M., 2001). \
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8.4 Experimental Results

Chromosome2 and Chromosome 8 were considered in the present study. The log,
ratio plots for these chromosomes shows breakpoints. Figure 8.5 shows the plot
between the log ratio and the genomic position provided by Snijders, A.M.,
(2001) for chromosome 2 and chromosome 8. In Figure 8.5 a deletion in the
chromosome 2 has been identified. In chromosome 8 known deletions across the
8p arm, amplification along the 8q arm in the 8q23.3-24.23 and a focal deletion in
8923.1 have been identified.

Chr.2 Chr.8

Dytpn +% ot3p, - b o daht ok df
-
150000

00

log2ratio
=

log2ratio
o

Figure 8.5 Log: ratio vs. genomic position plot for chromosomeZ2 (left) and

chromosome 8.

The developed image analysis algorithm has been implemented on
the arrayCGH image and log; ratio was evaluated. The average log, ratioof the
triplicates was evaluated to increase the accuracy in ratio estimation. Table 8.1
and 8.2 shows the genomic position, known log, ratio, the location of the
corresponding spots in the array, log, ratio calculated from the three
replicate spots and the average log2 ratio obtained using AASRG method
for chromosome2 and chromosome 8 respectively. The known log, based
ratios and the supplemental table of known karyotypes can be downloaded
from http://www.nature.com/ng/journal/v29/n3/suppinfo/ng754 S1.html.
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This information is also given in table 8.1 and 8.2.Figure 8.6(a) shows the log, ratio

vs Genomic position plot for chromosome 2.

0.4 T +
0.2t - - . B
» . * - -
of . % - .
ol * - . - L4 “ » * PR . 0‘: - |
» : . L . + » e
021 B
o
E 04 B
o
g 06t B
0.8 B
K]S 4
(a)
A2 4
-
14 L L L L
0 0.5 1 15 2 25
Genomic Position x10°
0.5 T T . T
o PN /WJ
2
s
© o5 B
=2}
o
—
-1k g
1.5 1 1 L 1
0 0.5 1 1.5 2 25
. . 5
Genomic position x1Q

(b)
Figure 8.6 (a) logZ2 ratio vs. genomic positions plot for chromomsomeZ2 (b)
Plot after smoothening
Plots of array Comparative Genomic Hybridization (CGH) data often show special

patterns: stretches of constant level (copy number) with sharp jumps between them.
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There can also be much noise. Simple approach to smoothing is to use a median
filter. The median filter removes outliers while preserving sustained changes in the
input data. Figure 8.6 (b) shows the smoothened plot of log ratio given in Figure
8.6 (a). Figure 8.7(a) and 8.7(b) are the log ratio and smoothened plots respectively

for chromosome 8.
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Figure 8.7 (a) log2 ratios vs. genomic positions plot for chromosome 8
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The smoothened log ratio data can be used for better visualization and
later validation of the locations of copy number changes using cytoband
information available at National Center for Biotechnology Information
(NCBI).Results shows that known deletion across the 8p arm, amplification along
the 8q arm in the 8q23.3-24.23 region and a focal deletion in 8q23.1 have been
correctly identified. Similarly the deletion in chromosome 2 identified correctly.
Spectral karyotyping studies by Abdel-Rahman et al.,(2001) and studies with
Oligonucleotide Array CGH Analysis of a Robust Whole Genome Amplification
Method (Buhler, J. et al.) as well as CGH Analytics views of Agilent Human
Genome CGH 44B microarrays of chromosome 8 in the human colon carcinoma
cell line HT29 vs. normal female revealed identical known deletion across the 8p
arm amplification along the 8q arm in the 8q23.3-24.23 region, and a focal deletion
in 8q23.1 agrees with the results obtained in the present study.

8.5 Conclusions

In this chapter the developed image analysis method has been implemented on
array CGH microarray. Gridding, segmentation and quantification quality control
and normalization was done automatically. log, ratio of the results was compared
with known data. Two chromosomes were selected specifically to validate the
results. Experimental results shows that the developed method correctly locate the

amplification and deletion regions within the chromosomes.
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CHAPTER 9

Conclusions and Future work

Brief summary of the research work conducted and the important
conclusions there on are highlighted in this chapter. The scope for further

work in this field as an extension of the present study has also discussed.




Conclusion and Future Work

9.1 Conclusions

In this thesis, different techniques for image analysis of high density
microarrays have been investigated. Most of the existing image analysis techniques
require prior knowledge of image specific parameters and direct user intervention
for microarray image quantification. The objective of this research work was to
develop of a fully automated image analysis method capable of accurately
quantifying the intensity information from high density microarrays images. The
method should be robust against noise and contaminations that commonly occur in
different stages of microarray development.

The research work concentrates on three main areas of microarray image
analysis such as gridding, segmentation and spot quality control analysis. Various
two channel cDNA and array CGH microarray images available from Stanford
microarray data base were used for the analysis. First, a novel method for
automatic gridding has been developed. Each subarrays and individual spots were
addressed using this method. The method identifies an optimum subimage with
regular profile within each subarray using a moving window approach. Using the
intensity projection profile of the identified subimage the parameters necessary for
gridding are estimated. The method has been validated with different real
microarray images with irregular spot size shape and contamination level.
Performance of the system has been evaluated in terms of gridding accuracy,
robustness against noise and computation time. The morphological filters used in
the preprocessing steps make the method robust with respect to different types of
noises. The new gridding technique can tolerate a high percentage of missing spots

make it a suitable for gridding high density microarray images. Existing method
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for automatic gridding based on intensity projection profile of the whole
microarray has been developed for comparison. When compared with this method,

the new method is found superior in gridding of microarrays with comet tails,
doughnut and dilated spots as well as images with large coefficient of variation.

In the second stage of the work a novel segmentation technique (AASRG)
has been developed for extracting the foreground and background regions. The
method uses the principle of region growing for image segmentation. The seed and
threshold values were selected automatically depending on the spot characteristics.
The AASRG algorithm was applied on each spot within the array, using block
processing technique. Monte Carlo simulations were conducted to study the
segmentation accuracy of the method. Various real microarray spots with different
morphology, Intensity variations, different levels of contaminations were use to
test the segmentation accuracy. The performance of the algorithm has been
compared with existing segmentation methods such as fixed circle, adaptive circle
and conventional seed region growing method used in MAGIC software. It was
observed that the new method is capable of segmenting spots with low SNR levels.
The background extraction was carried out considering the characteristics of both
global and local background pixels. This method greatly improves the
segmentation accuracy of spot with high local background intensity especially for
high density microarrays.The ratio of intensity between the two channels in
evaluated and log transformation was performed. Different data visualization tools
like Scatter plot, MA plots and Box plots were used to examine the results
obtained. Normalization techniques based on linear and lowess regression were

applied to remove the systematic errors that occurred within the arrays.

Spot quality analysis is an essential part of microarray image analysis. This

problem is difficult to formalize due to the diversity of instrumental and biological
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factors that can influence the result. Third part of this research work concentrates
on the development of spot quality control measures to analyze the quality of
microarray spots to filter out low quality ones. Six quality measures are defined
for this purpose. These parameters characterize different features of the spot. These
parameters are scaled between O(bad spot) and 1 (good spot) to facilitate further
quality analysis. The overall quality of the spot is defined by a composite score.
Using thresholding low quality spots were identified and discard them from further
analysis. The developed procedure provides an automatic tool to quantify the

microarray spot quality for high density microarray images.

arrayCGH log,-based intensity ratios provide useful information about genome-
wide CNAs. The developed new automatic image analysis algorithm has been
implemented on arrayCGH microarray to study the chromosomal abnormalities
related to human colon carcinoma. Chromosome 8 and 2 in the human colon
carcinoma cell lines HT29 vs. normal female HT 29 cell line microarray were
considered for the study. Log, ratio of the intensity values results were validated
with already known data. The developed new automatic image analysis algorithm
has been implemented in MATLAB. The method is fully automatic, robust and can
aid high throughput microarray image analysis. It can process microarray images
with different spot size, with broad range of experimental distortions such as non

uniform background level, intensive dust spots and large bubbles.

9.2 Scope for Further Investigations

Arrays have become an increasingly diverse set of tools in various
scientific fields and wide range of cutting edge research is being conducted using
them. DNA / Protein expression profiling and genotyping, tissue arrays for

histological analysis and biomarker discovery are some of these areas. The
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technology, formats and protocols of microarray are continuing to evolve.
Investigators can choose from the growing range of options, when selecting an
array technology that is appropriate for reaching their research objectives. A
common image analysis platform for the analysis of these microarrays is a
mandatory requirement in such situations. With the rapid development of
microarray fabrication technology, analysis of huge amount of data is also a major
challenge. A more precise quality measures is necessary that uses a set of
parameters corresponding to the common quality problem in microarray and set a

threshold for each, rather than defining composite quality score.
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