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ABSTRACT AND KEY WORDS

The thesis is divided into nine chapters including introduction.

Mainly

• we determine ultra L-topologies in the lattice of L- topologies and

study their properties.

• We find some sublattices in the lattice of L-topologies and study

their properties.

• Also we study the lattice structure of the set of all L-closure opera-

tors on a set X.

Keywords: Ultra L-topology, principal ultra L-topology, non principal

ultra L-topology, scott continuous function, T1-L topology, weakly induced

T1-L topology, stratified T1-L topology, principal L-topology, weakly in-

duced principal L-topology, stratified principal L-topology, L-closure oper-

ator, infra L-closure operature, ultra L-closure operator, join complement,

meet complement, complement, F -lattice, atom, dual atom.
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Chapter 1

Introduction

1.1 Introduction

“One should study Mathematics because it is only through Mathematics

that nature can be conceived in harmonious form”

Birkhoff

“In most sciences one generation tears down what another has built and

what one has established another undoes. In Mathematics alone each

generation builds a new story to the old structure”

Herman Hankel

In the first half of the nineteenth century, George Boole’s attempt to

formalize propositional logic led to the concept of Boolean algebra. While

1
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investigating the axiomatics of Boolean algebra at the end of the nine-

teenth century, Charles S. Peirce and Earnst Schröder found it useful to

introduce the lattice concept. Independently, Richard Dedekind’s research

on ideals of algebraic numbers led to the same discovery. Dedekind also

introduced modularity, a weakened form of distributivity. The hostility

towards lattice theory began when Dedekind published two fundamental

papers that brought the theory to life.

Lattices are partially ordered sets in which least upper bounds and

greatest lower bounds of any two elements exist. Dedekind discovered

that this property may be axiomatized by identities. A lattice is a set on

which two operations are defined called join and meet, denoted by ∨ and ∧,

which satisfy the idempotent, commutative and associative laws, as well as

absorption laws a∨ (b∧a) = a, a∧ (b∨a) = a. Lattices are better behaved

than partially ordered sets lacking upper or lower bounds. The contrast

is evident in the example of the lattice of partitions of a set and the

partially ordered set of partitions of a number. The family of all partitions

of a set(equivalence relations) is a lattice when partitions are ordered by

refinement. Although some of the early results of these mathematicians

and of Edward V. Huntington are very elegant and far from trivial, they

did not attract the attention of the mathematical community.

It was Garret Birkhoff’s work in the mid-thirties that started the gen-

eral development of lattice theory. In a brilliant series of papers he demon-

strated the importance of lattice theory and showed that it provides a

unifying framework for unrelated developments in many mathematical

disciplines. Birkhoff himself, Valere Glivenko, Karl Menger, John Von

Neumann, Oystein Ore and others had developed enough of this new field

for Birkhoff to attempt to “sell” it to the general mathematical commu-
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nity, which he did with astonishing success in the first edition of his book

Lattice Theory. The further development of the subject is evident from

the first, second and third editions of his book (G. Birkhoff 1940 [8], 1948

[9] and 1967 [10]).

In George Grätzer’s view, distributive lattices have played a many

faceted role in the development of lattice theory. Historically lattice the-

ory started with (Boolean) disributive lattices and the theory of distribu-

tive lattices is one of the most extensive and most satisfying chapters of

lattice theory. Many conditions on lattices and on elements and ideals of

lattices are weakened forms of disributivity. Also, in many applications

the condition of disributivity is imposed on lattices arising in various areas

of mathematics in topology and related topics.

General topology and lattice theory are two related branches of math-

ematics, each influencing the other. Many mathematicians obtained a

lot of excellent results combining topology and lattice theory ([17], [22],

[53], [61], [69], [71], [70]). Correspondence between order and topology

was investigated by many mathematicians in different contexts. Perhaps

Birkhoff [11] and Vaidyanathaswamy [66] are the fore runners in this di-

rection.

Zadeh’s pioneering paper “Fuzzy Sets” in 1965 opened a new discipline

in mathematics. Only in twentieth century, mathematicians defined the

concept of sets and functions to represent problems. This way of repre-

senting problems is more rigid. In many circumstances the solutions using

this concept are meaningless. The difficulty was overcome by the fuzzy

concept. But the origin of fuzzy sets dates back to the well known contro-
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versy between Cantor and Kronecker regarding the mathematical meaning

of infinite sets that took place during the later half of the nineteenth cen-

tury. Cantor was in favour of infinite sets where as Kronecker refused to

accept the concept of infinite sets. The mathematician Dedekind came in

support of Cantor. A compromise between Kronecker’s and Dedekind’s

point of view was reached which could be given as follows. A set S is com-

pletely determined if and only if there is a decision procedure satisfying

whether an element is a member of S or not. Using the ideas of naive set

theory such an approach leads to characteristic functions in the context of

binary logic whereas in the case of many-valued logic the approach leads

to the concept of membership functions introduced by Zadeh. Thus the

rejection of infinite sets by Kronecker and the defence of Cantor’s notion

of infinite sets by Dedekind paved the way for the advent of fuzzy set

theory. According to S. Mac Lane-“Math Intelligencer Vol.5 no.4, 1983”

“ ....The case of fuzzy sets is even more striking. The original idea

was an attractive one..... Someone then recalled (Pace Lowere) that all

Mathematics can be based on set theory; it followed at once that all

mathematics could be rewritten so as to be based on fuzzy sets. Moreover,

it could be based on fuzzy sets in more than one way, so this turned out

to be a fine blue print for the publication of lots and lots of newly based

mathematics.” Hence it is a must to popularise these ideas for our future

generation.

In order to study the central problems of complicated systems and

dealing with fuzzy information, American Cyberneticist Zadeh [77] in-

trodued fuzzy set theory, describing fuzziness mathematically. Following

the study on certainity and randomness, the study of mathematics began

to explore the previously restricted zone-fuzziness. Fuzziness is a kind
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of uncertainity. Since the sixteenth century, probability theory has been

studying a kind of uncertainity-randomness, i.e., the uncertainity of the

occurrance of an event; but in this case, the event itself is completely

certain, the only uncertain thing is whether the event will occur or not.

However, there exists another kind of uncertainity-fuzziness, i.e. for some

events, it cannot be completely determined that which cases these events

should be subordinated to, they are in a nonblack nonwhite state; that is

to say, the law of excluded midddle in logic cannot be applied any more.

In mathematics, a set A can be equivalently represented by its character-

istic function- a mapping χA from the universe X of discourse containing

A to the 2-valued set {0, 1}; that is to say x belongs to A if and only if

χA(x) = 1. But in “fuzzy” case “belonging to” relation χA(x) between x

and A is no longer “0 or otherwise 1”, it has a degree of “belonging to”,

i.e., membership degree such as α, where α lies between 0 and 1. There-

fore the range has to be extended from {0, 1} to [0, 1]; or more generally, a

lattice L because all the membership degrees, in mathematical view, form

an ordered structure, a lattice.

A mapping from X to [0, 1] or a lattice L called a generalized char-

acteristic function describes the fuzziness of “set” in general. A fuzzy set

on a universe X is simply just a mapping from X to [0, 1]. Such a set

is characterized by a membership function which assigns to each object

a grade of membership ranging btween zero and one. When compared

with ordinary set theory, fuzzy set theory has greater applications and it

enables researchers to review various concepts and theorems of mathemat-

ics in the broader frame work of fuzzy setting. The notion of inclusion,

union, intersection, complement relation, convexity etc. are extended to

such sets and various properties of this notions in the context of fuzzy sets
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are established.

Thus fuzzy set extended the basic mathematical concept-‘set’. In view

of the fact that set theory is the cornerstone of modern mathematics, a

new and more general framework of mathematics was established. Fuzzy

mathematics is just a kind of mathematics developed in this framework

and fuzzy topology is just a kind of topology developed on fuzzy sets.

Hence fuzzy mathematics is a kind of mathematical theory which contains

wider content than the classical theory.

Denote the family of all fuzzy sets on the universe X which takes

I = [0, 1] as the range, by IX . After introducing the fuzzy set, Chang

[13], in 1968, introduced fuzzy topology on a set X as a family τ ⊂ IX ,

satisfying the arbitrary union condition and finite inersection condition,

substituting inclusive relation by the order relation in IX . Now a days it is

called I-topology rather than I-fuzzy topology. He introduced a topologi-

cal structure naturally into IX so that fuzzy topology is a common carrier

of ordered structure and topological structure. According to the point of

view of Bourbakian School, there are mainly three kinds of structures in

mathematics-topological structure, algebraic structure and ordered stuc-

ture. Fuzzy topology fuses just two large structures-ordered structure and

topological structure. Therefore even if we consider only its mathemat-

ical significance but not its practical background, fuzzy topology do has

important value to research.

Fuzzy topology is a generalization of topology in classical mathemat-

ics. But it also has its own marked characteristics. Also, it can deepen

the understanding of basic structure of clssical mathematics, offer new

methods and results, and obtain significant results of classical mathemat-
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ics. Moreover it also has applications in some important aspects of science

and technology.

In Chang’s definition of fuzzy topology some authors notice fuzziness

in the concept of openness of a fuzzy set has not been considered. Keeping

this in view, Shostak [52] began the study of fuzzy structure of topological

type. Chattopadhyay et. al. [14] rediscovered the Shostak’s fuzzy topol-

ogy concept and called gradation of openness. After this, a fuzzy topology

in Shostak’s sense will be called gradation of openness and define a fuzzy

topoloical space or fts for short, as a pair (X, τ) where τ is a fuzzy topol-

ogy in Chang’s sense on X. A set is called open if it is in τ and closed if

its complement is in τ . The interior of a fuzzy set f is the largest open

fuzzy set contained in f . The closure of a fuzzy set f is the smallest closed

fuzzy set containing f . A fuzzy set which is both open and closed is said

to be clopen.

In 1973 Goguen [23] generalized the concept of fuzzy sets with L-fuzzy

sets, where L is a lattice. He considered different order structures for the

membership set. The ordinary set theory is a special case of L-fuzzy set

theory where the membership set is {0, 1}. The theory of general topology

is based on the set operations union, intersection and complementation.

L-fuzzy sets do have the same kind of operations. It is therefore natural

to extend the concept of point set topology to L-fuzzy subsets resulting

in a theory of L-fuzzy topology. The study of general topology can be

regarded as a special case of L-fuzzy topology, where all fuzzy subsets in

questions take 0 and 1 only.

The definitions, theorems and proofs of L-fuzzy set theory always hold

for non fuzzy sets. The theory of L-fuzzy sets has a wider scope of appli-
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cability than classical set theory in solving problems. L-fuzzy set theory

has now become a major area of research and finds applications in various

fields like lattice theory, algebra, topology, functional analysis, operational

research, artificial intelligence, image processing, biological and medical

sciences, economics, geography and many related topoics. Our interest

of L-fuzzy set theory is in its application to theory of general topology

and lattice theory. The concept of L-fuzzy sets and fuzzy topology led to

the discussion of various aspects of L-fuzzy topology by Lowen([35], [36]),

Warren [74], Hutton [26], Rodabaugh [46], Ulrich Höhle [65] and many oth-

ers. Lowen obtained a fuzzy version of Tychonoff theorem. Here we call

L-fuzzy subsets as L-subsets and L-fuzzy topology as L-topology. We take

the definition of L-topology in the sense of Chang [13] as in [34]. While

developing the theory of L-topology, Mathematicians have used different

order structure like (i) complete chain (ii) complete Heyting Algebra (iii)

complete and distributive lattice (iv) complete Boolean Algebra and many

other related structures.

Let (X, τ) be a topological space. A function f : X → [0, 1] is lower

semi continuous(l. s. c) if f−1(α, 1] is open in X for every 0 6 α < 1. Let

ω(τ) be the set of all l.s.c. functions on X. Then clearly ω(τ) is a fuzzy

topology on X. Conversely let (X,F ) be a given fuzzy topological space.

Then the smallest topology on X which makes every f ∈ F l.s.c. is called

the associated topology for F and is denoted by i(F ). The concept of

induced fuzzy topological space was introduced by Weiss [75]. Lowen [35]

called these spaces as topologically generated spaces. A fuzzy topology

F on X is called topologically generated if there exist a topology τ on

X such that F = ω(τ). Martin [38] introduced a generalized concept

weakly induced fuzzy topolgical space, which was called semi induced
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space by Mashhour, Ghanim, Wakeil and Morsi [40]. The notion of l.s.c.

function plays an important tool in defining the above concept in ([5], [7]).

Bhaumik and Mukherjee introduced two new classes of fuzzy topological

spaces using the tool completely l.s.c. functions [6]. These are defined with

the generalized concept of completely continuous functins introduced by

Arya and Gupta [2].

In [24] Aygün, Warner and Kudri introduced a new class of functions

from a topological space (X, τ) to a F -lattice(fuzzy lattice) L with its

scott topology called completely scott continuous function as a general-

ization of completely l.s.c. functions from (X, τ) to L is an L-topology

which is a generalization of the fuzzy topology of completely lower semi-

continuous functions presented in ([5], [7]). The L-topology ω(τ) obtained

from a given ordinary topology is called completely induced L-topology.

Completely Scott continuous functions turn out to be the natural tool for

studying completely induced L-topological space.

In this thesis we take X as a nonempty ordinary set and L = (<

,6,∨,∧,′ ) be a F -lattice. That is a completely distributive lattice with

smallest element 0 and largest element 1(0 6= 1) and with an order reversig

involuton a→ a′(a ∈ L). In 1936, Birkhoff [11] described the comparison

of two topologies on a set and proved that the collection of all topologies

on a set X forms a complete lattice. In 1947, Vaidyanathaswamy [66]

proved that this lattice is atomic and determined a class of dual atoms.

In 1964, Fröhlich [18] determined a class of dual atoms (ultra topologies)

and proved that the lattice is dually atomic.

In 1958, Juris Hartmanis [25] proved that the lattice of topologies on

a finite set is complemented and raised the question about the comple-
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mentation in the lattice of topologies on an arbitrary set. Gaifman [19]

proved that the lattice of topologies on a countable set is complemented.

In 1968, Steiner [58] proved that the lattice of topologies on an arbitrary

set is complemented. In 1968, Van Rooji [68] gave a simpler proof in-

dependently that the lattice of topologies is complemented. Hartmanis

noted that even in the lattice of topologies on a set with three elements

only, the least and the greatest elements have unique complements. Paul

S. Schnare [41] proved that every element in the lattice of topologies on

a set except the least and the greatest element have atleast n-1 comple-

ments when X is finite such that |X| = n > 2 and have infinitely many

complements when X is infinite.

In 1989, Babu Sundar [3] proved that the collection of all fuzzy topolo-

gies on a fixed set forms a complete lattice with the natural order of set

inclusion. He introduced t-irreducible subsets in the membership lattice

and solved comlementation problem in the negative. Lattice structure of

the set of all fuzzy topologies on a fixed set X was further explored by

Johnson. For a given topology τ on X, he studied properties of the lattice

Fτ of fuzzy topologies defined by families of lower semi continuous func-

tions with reference to a topology τ on X. He deduced from the lattice

Fτ that the set of all fuzzy topologies on a fixed set forms a complete

atomic lattice and the lattice is not complemented [29]. In 2002, Sunil

C. Mathew [62] introduced the concept of immediate predicessor and of

immediate successor or cover in the lattice of fuzzy topologies. He defined

simple extensions of fuzzy topologies and studied some of its properties

and consequently that of adjacent fuzzy topologies. In 2004, Johnson [30]

studied the lattice structure of the set of all L-topologies on a fixed set X

and proved that the lattice of L-topologies is not complemented. In 2008,
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Jose investigated the lattice stucture of the set of all stratified L-topologies

[32] and weakly induced L-topologies on a fixed set X [31].

The concept of a topological space is generally introduced in terms of

the axioms for the open sets. However alternate methods to describe a

topology in the set X are often used in terms of neighbourhood systems,

the family of closed sets, the closure operator, the interior operator etc.

Of these, the closure operator was axiomatised by Kuratowski and he

associated a topology from a closure space by taking closed sets as sets A

such that clA = A, where clA is the topological closure of a subset A of

X. It is also found that clA is the smallest closed set containing A.

Čech introduced the concept of Čech closure spaces. In Čech’s ap-

proach the condition ccA = cA among Kuratowski axioms need not hold

for every subset A of X. When this condition is also true, c is called a

topological closure operator. The concept of closure space is thus a gen-

eralization of that of toplogical spaces. We studied the definitions and

theorems in the topological context from [60].

The concept of a fuzzy closure space has been introduced and stud-

ied by Mashhour and Ghanim in [39] and Srivasthava et. al. in [54].

The definitions of Mashhour and Ghanim is an analogue of Čech closure

spaces and Srivasthava et. al. have introduced it as an analogue of the

definition of closure space given by Dikranjan et. al. [16]. In 1985, Ra-

machandran [43] studied the properties of the lattice of closure operators.

In 1992 Johnson [28] determined completely homogenous fuzzy closure

spaces and proved that the set L(X) of all fuzzy closure operators on a

fixed set X forms a complete lattice. Some other properties of the lattice

including complementation are also discussed. In 1994, Sunitha [63] in-
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troduced and studied T0 and T1-closure spaces in topological context. In

1994, Srivasthava et. al [54] introduced the concept of T0-fuzzy closure

spaces. The notion of T1-fuzzy closure space was introduced by Rekha

Srivasthava and Manjari Srivasthava [45]. They have studied T0 and T1

separation axioms in a fuzzy closure spaces. Also they observed that T0

and T1 satisfied the hereditary, productive and projective properties and

in addition both were “good extensions” of the corresponding concepts in

a closure space. In 2005, Wu-Neng Zhou [76] introduced the concept of

L-closure spaces and the convergence in L-closure spaces. In 2012, Mad-

havan Namboothiri [37]discussed the properties of L-fuzzy Čech closure

operators on a set in relation with associated c-reflexive relation on the

set of all L-fuzzy points.

Many results and theorems in L-topological spaces can further be ex-

tended to L-closure spaces. Mashhour and Ghanim studied Čech fuzzy

closure spaces and extended many results to Čech fuzzy closure spaces

[39]. So it is quite natural to search for validity of our results and theo-

rems in L-closure spaces. With this in view, we introduce the concept of

T1-L closure space.

A related problem in the lattice of L-topologies is

(i) to determine ultra L-topologies in the lattice of L-topologies and to

study their properties.

(ii) to find sublattices in the lattice of L-topologies and study their prop-

erties.

(iii) to study the lattice structure of set of all L-closure operators on a set

X.

In this thesis we have attempted to present our studies on these problems.
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1.2 Basic Concepts and Definitions

In this section we include certain definitions and known results needed for

the susequent development. Throughout our discussions X always denote

a non empty ordinary set and L, a F -lattice

Definition 1.2.1. [34] Let L be a lattice. L is called distributive, if

L satisfies the following two conidtions

(i) ∀a, b, c ∈ L, a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

(ii) ∀a, b, c ∈ L, a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

A distributive lattice L is also called finitely distributive.

Definition 1.2.2. [34] Let L be a poset. L is called a complete join-

semilattice if every join for an arbitrary subset of L exists; partiuclarly the

smallest element exists as a join of empty subset. L is called a complete

meet-semilattice if every meet for an arbitrary subset of L exists; partic-

ularly the largest element exists as the meet of empty subset. L is called

a complete lattice if it is both a complete join-semilattice and a complete

meet-semilattice.

Definition 1.2.3. [34] Let L be a complete lattice. L is called in-

finitely distributive, if L satisfies the following two conditions :

(i) ∀a ∈ L,∀B ⊂ L, a ∧
∨
B =

∨
b∈B

(a ∧ b),



14 Chapter 1. Introduction

(ii) ∀a ∈ L,∀B ⊂ L, a ∨
∧
B =

∧
b∈B

(a ∨ b),

Definition 1.2.4. [34] Let L be a complete lattice. L is called

completely distributive if L satisfies the following two conditions :

∀{{ai,j : j ∈ Ji} : i ∈ I} ⊂ ℘(L)\{φ}, I 6= φ

(i)
∧
i∈I

(
∨
j∈Ji

ai,j) =
∨

ϕ∈ΠJi

(
∧
i∈I
ai,ϕ(i)),

(ii)
∨
i∈I

(
∧
j∈Ji

ai,j) =
∧

ϕ∈ΠJi

(
∨
i∈I
ai,ϕ(i))

Definition 1.2.5. [20] A lattice L is called modular if it satisfies the

condition x > z implies that (x ∧ y) ∨ z = x ∧ (y ∨ z),∀x, y, z ∈ L.

Theorem 1.2.1. [20] A Lattice L is modular iff it does not contain

a pentagon.

Definition 1.2.6. [34] Let L be a lattice. A mapping ′ : L → L

is called order reversing if for all a, b ∈ L, a 6 b ⇒ a′ > b′, called an

involution on L if ′′ = identity mapping(idL) : L→ L

Definition 1.2.7. [34] A completely distributive lattice L is called a

F -lattice, if L has an order reversing involution ′ : L→ L

Definition 1.2.8. [34] Let X be a non empty set, L a F -lattice. An

L-fuzzy subset of X is characterized by a mapping f : X → L. We call it

L-subset rather than L-fuzzy set. Hence the family of all L-subsets on X

is just LX consisting of all mappings from X to L.

Let c be an order reversing involution on L. For any f ∈ LX , we

use the order-reversing involution c to define an operation c on X by
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[c(f)](x) = c(f(x)) for all x in X. We call c : LX → LX the pseudo-

complementary operation on LX and c(f) the pseudo complementary L-

subset of f in LX . Then c is an order reversing involution on LX .

For each point x in X, f(x) is called the membership value of x in the

L-subset f . Let f and g be L-subsets in X. Then we define

f = g ⇔ f(x) = g(x),∀x ∈ X

f 6 g ⇔ f(x) 6 g(x),∀x ∈ X

h = f ∨ g ⇔ h(x) = max{f(x), g(x)},∀x ∈ X

i = f ∧ g ⇔ i(x) = min{f(x), g(x)},∀x ∈ X

g = c(f)⇔ g(x) = c[f(x)],∀x ∈ X

Also for {fα}α∈A, we define

h =
∨
α∈A

fα = sup
α∈A

fα ⇔ h(x) = sup{fα(x) : α ∈ A}, ∀x ∈ X,

k =
∧
α∈A

fα = inf
α∈A

fα ⇔ k(x) = inf{fα(x) : α ∈ A},∀x ∈ X.

An L-subset of X with membership value α for all elements in X is

denoted by α, α ∈ L.

Definition 1.2.9. Let X be a non empty ordinary set, L a F -lattice.

A subset F of LX is called an L-topology on X if

(i) 0, 1 ∈ F
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(ii) f, g ∈ F ⇒ f ∧ g ∈ F

(iii) fα ∈ F, ∀α ∈ A⇒
∨
α∈A

fα ∈ F , where A is some index set.

The set X together with F is called L-topological space denoted by

(X,F ). The element of F are called open L-subsets. An L-subset f ∈
LX is called closed if c(f) is open L-subset in X. This definition of L-

topological space is in the sense of Chang [13] as in [34]. Particularly when

L = [0, 1], (X,F ) is called an I-topological space.

Definition 1.2.10. [34] Let X be a non empty ordinary set, L a

F -lattice, δ0, δ1 two L-fuzzy topologies on X. Then δ0 is coarser than δ1

or δ1 is finer than δ0 if δ0 ⊂ δ1.

Example 1.2.1. Let X be a non empty ordinary set, L a F -lattice.

Then

(i) δ = {0, 1} ⊂ LX is the trivial L- topology on X and is the coarsest one.

(ii) δ = LX is the discrete L- topology on X and is the finest one.

(iii δ = {α : α ∈ L} ⊂ LX , is an L- topology on X.

(iv) Suppose τ is an ordinary topology on X, then δ = {χU : U ∈ τ} ⊂ LX

is an L- topology on X.

The set {x ∈ X|f(x) > 0}is called the support of f and is denoted by



1.2. Basic Concepts and Definitions 17

supp.f . If f takes only the values 0 and 1 then f is called a crisp subset

of X.

The fuzzy subset xλ of X, with x ∈ X and 0 < λ 6 1 defined by

xλ(y) =

{
λ if y = x

0 if y 6= x
where 0 < λ 6 1

is called a fuzzy point in X with support x and value λ. Two fuzzy points

with different supports are called distinct. Note that a fuzzy point xλ is

a fuzzy subset of a fuzzy set f , that is xλ ∈ f , if and only if λ 6 f(x).

Clearly any fuzzy set f on X can be decomposed in terms of fuzzy

points contained in it. Thus f = ∨{xλ|x ∈ X, xλ ∈ f}. We know that

the set of all fuzzy topologies on X forms a lattice under the operation of

ordinary set inclusion. We denote by FX , the lattice of all fuzzy topologies

on a set X.

Definition 1.2.11. [21] A fuzzy topological space (X,F ) is called

normal if for any two closed fuzzy sets f1 and f2 in X such that f1 6 c(f2),

there exists g, h ∈ F such that f1 6 g and f2 6 h with g 6 c(h).

Definition 1.2.12. [55] A fuzzy topological space (X,F ) is said to

be Hausdorff if for any two fuzzy points xλ and yγ, there exists f, g ∈ F
such that xλ ∈ f and yγ ∈ g with f ∧ g = 0.

Definition 1.2.13. [12] A function c from a power set of X to itself

is called a closure operator for X provided that the following conditions

are satisfied.

(i) cφ = φ



18 Chapter 1. Introduction

(ii) A ⊂ c(A)

(iii) c(A ∪B) = c(A) ∪ c(B)

A structure (X, c) where X is a set and c is a closure operation

for X will be called closure space or Čech space. A Čech space which

satisfies the condition c(cA) = cA for every A ⊂ X, is called Kura-

towski(topological)space [12].

Definition 1.2.14. [12] A closure c is said to be coarser than a

closure c′ on the same set X if c′(A) ⊂ c(A) for each A ⊂ X. In this case

we say c < c′.

Definition 1.2.15. [12] The identity relation on the powerset of X

is the finest closure for X and it will be called the discrete closure for X.

Setting cφ = φ and c(A) = X for every A ⊂ X we get the coarsest closure

for X and it will be called the indiscrete closure for X.

Definition 1.2.16. [12] A subset A of a closure space (X, c) will be

called closed if c(A) = A and open if its complement is closed. That is if

c(X − A) = X − A.

Example 1.2.2. Let X = {x, y, z}, c be defined on X such that

c{x} = {x}, c{y} = {y, z}, c{z} = {x, z}, c{x, z} = {x, z}, c{x, y} =

X, c{y, z} = X, cX = X, cφ = φ. Then c is a closure operator on X.

If (X, c) is a closure space, we denote the associated topology on X

by τ . That is τ = {A′ : cA = A}, where A′ denotes the complement of
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A. Members of τ are the open sets of (X, c) and their complements the

closed sets.

Let τ be a topology on a set X. Then a function c from ℘(X) in to

℘(X) defined by c(A) = Ā for every A in ℘(X), where Ā is the closure of A

in (X, τ), is a closure operator on X called the closure operator associated

with the topology τ . Note that a closure operator on a set X is topological

if and only if it is in the closure operator associated with a topology on X.

Also the different closure operators can have the same associated topology.

The topology associated with the discrete closure operator is the discrete

topology and the topology associated with the indiscrete closure operator

is the indiscrete topology.

Definition 1.2.17. [63] A closure space (X, c) is said to be T0 if for

every x 6= y in X, either x /∈ c{y} or y /∈ c{x}.

Theorem 1.2.2. [63] If (X, τ) is T0, then (X, c) is T0.

Converse of this result is not true.

Example 1.2.3. Let X = {x, y, z} and c be defined on X such that

c{x} = {x, y}, c{y} = {y, z}, c{z} = {x, z}, c{x, y} = c{y, z} = c{x, z} =

cX = X, cφ = φ. Then c is a closure operation on X and (X, c) is T0. But

(X, τ) is the indiscrete topology, which is not T0.

Definition 1.2.18. [63] A closure space (X, c) is said to be T1 if for

x 6= y, we have x /∈ c{y} and y /∈ c{x}.

Theorem 1.2.3. [63] Every T1 space is also T0.



20 Chapter 1. Introduction

But the converse need not be true.

Example 1.2.4. Let X = {x, y, z} and c be defined on X such that

c{x} = {x, y}, c{y} = {y, z}, c{z} = {x, z}, c{x, y} = c{y, z} = c{x, z} =

cX = X, cφ = φ. Then c is a closure operation on X and (X, c) is T0 but

it is not T1.

Definition 1.2.19. [39] A Čech fuzzy closure operator on a set X is

a function χ : IX → IX , satisfying the following three axioms:

(i) χ(0) = 0

(ii) f 6 χ(f),∀f ∈ IX

(iii) χ(f ∨ g) = χ(f) ∨ χ(g), I = [0, 1]

For convenience it is called fuzzy closure operator on X and (X,χ) is

called fuzzy closure space.

Definition 1.2.20. In a fuzzy closure space (X,χ), a fuzzy subset

f of X is said to be closed if χ(f) = f . A fuzzy subset f of X is open

if its complement is closed in (X,χ). The set of all open fuzzy subsets of

(X,χ) forms a fuzzy topology on X called the fuzzy topology associated

with the fuzzy closure operator χ.

Let F be a fuzzy topology on a set X. Then a function χ from IX in

to IX defined by χ(f) = f̄ for every f in IX , where f̄ is the fuzzy closure

of f in (X,F ), is a fuzzy closure operator on X called the fuzzy closure

operator associated with the fuzzy topology F .
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A fuzzy closure operator on a set X is called fuzzy topological if it is

the fuzzy closure operator associated with a fuzzy topology on X. Note

that different fuzzy closure operators can have the same associated fuzzy

topology.

Example 1.2.5. Let X = {a, b, c}, I = [0, 1]. Let ψ1 : IX → IX

defined by

ψ1(f) =


0 if f = 0

β iff(x) < β, ∀x
1 otherwise

Then ψ1 is a fuzzy closure operator.

ψ2 : LX → LX defined by

ψ2(f) =

{
0 if f = 0

1 otherwise

Then ψ2 is a fuzzy closure operator

Associated fuzzy topologies of ψ1 and ψ2 are same, which is the indiscrete

fuzzy topology.

Definition 1.2.21. Let χ1 and χ2 be fuzzy closure operators on X.

Then χ1 6 χ2 if and only if χ2(f) 6 χ1(f) for every f in IX . The set

L(X) of all fuzzy closure operators forms a lattice with the relation 6.

Definition 1.2.22. The fuzzy closure operator D on X defined by

D(f) = f for every f in IX is called the discrete fuzzy closure operator.

The fuzzy closure operator I on X defined by I(f) =

{
0 if f = 0

1 otherwise
is called the indiscrete fuzzy closure operator.
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Remark 1.2.1. D and I are the fuzzy closure operators associated

with the discrete and indiscrete fuzzy topologies on X respectively. More

over D is the unique fuzzy closure operator whose associated fuzzy topol-

ogy is discrete. Also I and D are smallest and the largest elements of

L(X) respectively.

Definition 1.2.23. [16] A map c : 2X → 2X is said to be a closure

operation on X if the following conditions hold for any M,N ∈ 2X ;

(i) c(φ) = φ,

(ii) M ⊆ c(M),

(iii) M ⊆ N ⇒ c(M) ⊆ c(N),

(iv) c(c(M)) = c(M).

The pair (X, c) is called a closure space and subsets M ⊆ X with

c(M) = M are called C-closed sets in X. Analogue of this has been given

in the following definition.

Definition 1.2.24. [54] A function c : IX → IX is called a fuzzy

closure operation on X if it satisfies the following conditions for any

A,B ∈ IX , α ∈ [0, 1]:

(i) c(α) = α,

(ii) A ⊆ c(A),
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(iii) A ⊆ B ⇒ c(A) ⊆ c(B),

(iv) c(c(A)) = c(A).

The pair (X, c) is called a fuzzy closure space and U ∈ IX is called a

C-closed fuzzy set if c(U) = U .

Definition 1.2.25. [54] A fuzzy closure space (X, c) is said to be

T0 if for all x, y ∈ X, x 6= y, there exists a c-closed fuzzy set U such that

U(x) 6= U(y).

Definition 1.2.26. [45] A fuzzy closure space (X, c) is said to be T1

if {x} is c-closed ∀x ∈ X.

Remark 1.2.2. [17] In a fuzzy closure space, obviously T1-ness⇒ T0-

ness but not conversely as can be seen in the following counter example.

Example 1.2.6. Let X = {x, y} and = denote the family of all

possible intersections of the members of {xα} ∪ {α : α ∈ [0, 1]}. Let

c : IX → IX be defined as c(A) =
∧
{U ∈ =;U ⊇ A}. Then (X, c) is

a fuzzy closure space which is obviously T0 but not T1 since {yα} is not

c-closed in X.

1.3 Summary

The thesis entitled with “A STUDY ON ULTRA L-TOPOLOGIES AND

LATTICES OF L-TOPOLOGIES” is arranged into nine chapters. The

thesis starts with an introduction to the topoic of research. In the second
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chapter we determine ultra L-topologies and it is classified into principal

and non principal ultra L-topologies in the lattice of L-topologies under

certain conditions of the membership lattice L. Also we determine the

number of ultra L-topologies and study some topological properties of

them.

The lattice structure of the set of all T1-L topologies on a given set X is

investigated in the third chapter. It is a complete sublattice of the lattice

of L-topologies on X. Here we prove that the lattice of T1-L topologies

on a given set X has dual atoms if and only if membership lattice L has

dual atoms. It is also proved that this lattice is not atomic, not modular,

not complemented and not dually atomic in general.

In the fourth chapter we generalize the concept weakly induced space

introduced by Martin using the tool Scott continuous functions and study

the lattice structure of the set of all weakly induced T1-L topologies de-

fined by families of (completely)Scott continuous functions on X. It is

proved that this lattice is complete, not atomic, not distributive, not com-

plemented and not dually atomic. From this we deduce the properties of

the lattice of all weakly induced T1-L topologies on a given set X.

In the fifth chapter, we study the lattice structure of the set of all

stratified T1-L topologies on X. Here we prove that the lattice of stratified

T1-L topologies is complete and not complemented and this has atoms and

dual atoms if and only if L has atoms and dual atoms respectively. It is

also proved that this lattice is not atomic and dually atomic in general.

The lattice structure of the set of all principal L-topologies on a given

set X is investigated in the sixth chapter. We prove that the lattice of
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principal ultra L-topologies is atomic and not even modular. It is also

proved that this lattice is complete and not complemented. Again we

prove that if this lattice has dual atoms, then L has dual atoms and atoms.

Also if L is a finite pseudo complemented chain or a Boolean lattice, then

the lattice of principal ultra L-topologies has dual atoms.

In the seventh chapter we study the properties of the lattice of weakly

induced principal L-topologies defined by families of (completely) Scott

continuous functions with reference to the principal topology τ on X. This

lattice is complete, not atomic, not complemented and not distributive.

From this lattice we deduce properties of the lattice of all weakly induced

principal L-topologies on X. It is also proved that this lattice is join

complemented.

In the eighth chapter we investigate the lattice structure of the set of

all stratified principal L-topologies on a given set X. We prove that this

lattice has atoms if and only if L has atoms. If the lattice of stratified

principal L-topologies SP (X) on a set X has dual atoms, then L has dual

atoms and atoms. Also if L is a finite pseudo complemented chain or a

Boolean lattice, then SP (X) has dual atoms. It is proved that this lattice

is complete, semi complemented and not dually atomic in general.

In the last chapter we study the lattice structure of the set of all

L-closure operators on a fixed set X. We prove that this lattice is not

modular. We identify the infra L-closure operators and ultra L-closure

operators. It is also established the relation between ultra L-topologies

and ultra L-closure operators. Again we characterize T0 and T1 L-closure

spaces.





Chapter 2

Ultra L-Topologies in the

Lattice of L-Topologies

2.1 Introduction

In the paper ‘On the combination of topologies’ [11], G.Birkhoff proved

that the collection of all topologies on a given set X forms a complete

lattice. Birkhoff’s ordering was the natural one of set inclusion; that is, if

τ and τ ′ are topologies on a given set X, τ is less than or equal to τ ′ if

and only if τ is a subset of τ ′. The least element is the indiscrete topology

and the greatest element is the discrete topology. In the above lattice, the

least upperbound of a collection of topologies is the topology generated by

Some results of this chapter are included in the following paper.
Raji George and T. P. Johnson : Ultra L-Topologies in the Lattice of L-Topologies.
InternationalJournal of Engineering Research and Technology, Vol.2, no.1, 2013
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their union and the greatest lower bound is their intersection. Since 1936,

many topologists, Vaidynathaswamy [66],Otto Fröhlich [18], Hartmanis

[25], Steiner [58], Van Rooji [68] have investigated several properties of

this lattice.

In [30] Johnson studied the lattice structure of the set of all L-topologies

on a given set X. The least upper bound of a collection of L-topologies is

the L-topology generated by their union and the greatest lower bound is

their intersection. In this paper Johnson proved that this lattice is com-

plete, atomic and not complemented. Also he showed that it is neither

modular nor dually atomic in general. In [18] Fröhlich determined the

ultra spaces(ultra topologies) on a set X, and he proved that if |X| = n,

there are n(n− 1) principal ultra topologies in the lattice of topologies on

a set X. In [59] Steiner studied some topological properties of the ultra

spaces. A related problem in the lattice of L-topologies is to identify the

ultra L-topologies in the lattice of L-topologies. In this chapter we show

that if |X| = n and L is a finite pseudocomplemented chain or a Boolean

lattice, there are n(n − 1)mk principle ultra L- topologies, where m and

k are the number of dual atoms and atoms in L respectively. If X is

infinite, there are |X| principal ultra L- topologies and |X| nonprincipal

ultra L-topologies. Also we study some topological properties of the ultra

L topologies and characterise T0, T1, T2 L-topologies.

2.2 Preliminaries

Let X be a non empty ordinary set and L = L(6,∨,∧,′ ) be a completely

distributive lattice with the smallest element 0 and the largest element
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1((0 6= 1) and with an order reversing involution a → a
′

called F -lattice

[34](which is also called Hutton algebra in e.g., [47]). We denote the con-

stant function in LX taking the value α ∈ L by α. Here we call L-fuzzy

subsets as L-subsets and a subset F of LX is called an L-topology in the

sense of Chang [13] and Goguen [23] as in [34] if

(i) 0, 1 ∈ F

(ii) f, g ∈ F ⇒ f ∧ g ∈ F

(iii) fi ∈ F for each i ∈ I ⇒
∨
i∈I
fi ∈ F .

In this chapter, L-filter on X are defined according to the definition

given by Katsaras [33] and Srivastava and Gupta[56] by taking a F -lattice

L to be the membership lattice, instead of the closed unit interval [0, 1].

Definition 2.2.1. A non empty subset U of LX is said to be an

L-filter if

(i) 0 /∈ U

(ii) f, g ∈ U implies f ∧ g ∈ U and

(iii) f ∈ U , g ∈ LX and g > f implies g ∈ U .

An L-filter is said to be an ultra L-filter if it is not properly contained

in any other L-filter.
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Definition 2.2.2. Let x ∈ X,λ ∈ L An L-point xλ is defined by

xλ(y) =

{
λ if y = x

0 if y 6= x
where 0 < λ 6 1

Definition 2.2.3. In a filter U , if there is an L-subset with finite

support, then U is called a principal L-filter.

Example 2.2.1. Let U = {f ∈ LX |f > xλ,where xλ is an L-point}.
Then U is a principal L-filter.

Definition 2.2.4. In a filter U , if there is no L-subset with finite

support, then U is called a non principal L-filter.

Example 2.2.2. Let U ={f ∈ LX |f > 0 for all but finite number of points}.
Then U is a nonprincipal L-filter.

Let f be a nonzero L-subset with finite support. Then U (f) ⊂ LX

defined by U (f) = {g ∈ LX |g > f} is an L-filter onX, called the principal

L-filter at f . Every L-filter is contained in an ultra L-filter. From the

definition it follows that on a finite set X, there are only principal ultra

L-filters.

2.3 Ultra L-topologies

An L-topology F on X is an ultra L-topology if the only L-topology on

X strictly finer than F is the discrete L-topology.

Definition 2.3.1. [62] Let (X,F ) be an L-topological space and
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suppose that g ∈ LX and g /∈ F . Then the collection F (g) = {g1 ∨ (g2 ∧
g)|g1, g2 ∈ F} is called the simple extension of F determined by g.

Theorem 2.3.1. [62] Let (X,F ) be an L-topological space and sup-

pose that F (g) be the simple extension of F determined by g. Then F (g)

is an L-topology on X.

Theorem 2.3.2. [62] Let F and G be two L-topologies on a set X

such that G is a cover of F . Then G is a simple extension of F .

Theorem 2.3.3. [18] The ultraspaces on a set E are exactly the

topologies of the form S(x,U ) = ℘(E−{x})∪U where x ∈ E and U is

an ultrafilter on E not containing {x}.

Analogously we can define ultra L-topologies in the lattice of L-topologies

according to the nature of lattices. If it contains principal ultra L-filter,

then it is called principal ultra L-topology and if it contains non principal

ultra L-filter, it is called non principal ultra L-topology.

Theorem 2.3.4. [3] A principal L-filter at xλ on X is an ultra L-filter

iff λ is an atom in L.

Theorem 2.3.5. Let a be a fixed point in X and U be an ultra

L-filter not containing aα, 0 6= α ∈ L. Define Fa = {f ∈ LX |f(a) = 0}.
Then S = S(a,U ) = Fa ∪U is an L-topology.

Proof. Can be easily proved.

Theorem 2.3.6. If X is a finite set having n elements and L is a finite

pseudo complemented chain or a Boolean lattice, there are n(n − 1)mk
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principal ultra L-topologies, where m and k are the number of dual atoms

and atoms in L respectively. If k = m there are n(n − 1)m2 ultra L-

topologies.

Illustration:

1. Let X = {a, b, c}, L = {0, α, β, 1}, a pseudo complemented chain.

Here α is the atom and β is the dual atom. ( Refer figure 2.1 )

1

β

α

0

Figure 2.1:

Let S = S(a,U (bα)) = {f |f(a) = 0} ∪ {f |f > bα}, S does not

contain the L-points aα, aβ, a1. Then S(a,U (bα), aβ) = S(aβ) = simple

extension of S by aβ = {f ∨ (g ∧ aβ)|f, g ∈ S, aβ /∈ S} is an ultra L-

topology, since S(a1) is the discrete L-topology. Similarly

if S = S(a,U (cα)), then S(aβ) is an ultra L-topology.

if S = S(b,U (aα)), then S(bβ) ,,
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if S = S(b,U (cα)), then S(bβ) ,,

if S = S(c,U (aα)), then S(cβ) ,,

if S = S(c,U (bα)), then Scβ) ,,

Number of ultra L-topologies = 6 = 3 ∗ 2 ∗ 1 ∗ 1 = n(n − 1)m2, where

n = 3, k = m = 1.

2. Let X = {a, b, c}, L =Diamond lattice {0, β1, β2, 1}. (Refer figure

2.2)

1

0

β1 β2

Figure 2.2:

Here β1 and β2 are the atoms as well as the dual atoms. Let S =
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S(a,U (bβ1)) = {f |f(a) = 0} ∪ {f |f > bβ1} , does not contain the L-

points aβ1, aβ2, a1. Then the simple extension S(aβ1) contains the L-point

aβ1 also. Let S1 = S(aβ1). Then the simple extension S1(aβ2) contains all

L-points and hence it is discrete. So S(aβ1) = S(a,U (bβ1), aβ1) is an ul-

tra L-topology. Similarly the simple extension S(aβ2) = S(a,U (bβ1), aβ2)

is an ultra L-topology. If S = S(a,U (bβ2) = {f |f(a) = 0}∪{f |f > bβ2},
Then the simple extensions S(aβ1) and S(aβ2) are ultra L-topologies.

That is corresponding to the elements a and b there are 4 ultra L-topologies.

Similarly corresponding to the elements a and c , there are 4 ultra L-

topologies. So there are 8 ultra L-topologies corresponding to a. Sim-

ilarly there are 8 ultra L-topologies corresponding to b and 8 ultra L-

topologies corresponding to c. Hence total number of ultra L-topologies

= 8 + 8 + 8 = 24 = 3 ∗ 2 ∗ 2 ∗ 2 = n(n− 1)m2, where n = 3, k = m = 2.

3. LetX = {a, b, c}, L = ℘(X) = {φ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, X}.
α1 = {a}, α2 = {b}, α3 = {c}, β1 = {a, b}, β2 = {a, c}, β3 = {b, c}. Atoms

are α1, α2, α3 and dual atoms are β1, β2, β3. (Refer figure 2.3)

Let S = S(a,U (bα1)) = {f |f(a) = 0}∪{f |f > bα1}, does not contain

the L-points aα1, aα2, aα3, aβ1, aβ2, aβ3, a1. Let S1 = Simple extension of S

by aβ1 denoted by S(aβ1). Then S1 contains more L-subsets than S, but

not discrete L-topology. Let S2 = S1(aβ2), simple extension of S1 by aβ2.

Then S2 contain more L subsets than S1 but not discrete L-topology.

Let S3 = S2(aβ3), simple extension of S2 by aβ3, which is a discrete

L-topology. Hence S2 = S1(aβ2) is an ultra L-topology, which is the

L-topology generated by S(aβ1) and S(aβ2). Also L-topology generated

by S(aβ1) and S(aβ3) and L-topology generated by S(aβ2) and S(aβ3)

are ultra L-topologies. That is if S = S(a,U (bα1)), there are 3 ultra L-

topologies. Similarly if S = S(a,U (bα2)), there are 3 ultra L-topologies



2.3. Ultra L-topologies 35

1

β1 β2 β3

α3α2α1

0

Figure 2.3:

and if S = S(a,U (bα3)), there are 3 ultra L-topologies. So corresponding

to the elements a, b there are 9 ultra L-topologies. Similarly corresponding

to the elements a, c there are 9 ultra L-topologies. Hence there are 18 ul-

tra L-topologies corresponding to the element a. Similarly corresponding

to each element b and c there are 18 ultra L-topologies. So total num-

ber of ultra L-topologies = 54 = 3∗2∗3∗3 = n(n−1)m2, n = 3, k = m = 3.

4. LetX = {a, b, c, d}, L = ℘(X) = {φ, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d},
{b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {b, c, d}, {c, d, a}, X} . Let {a} = α1, {b} =

α2, {c} = α3, {d} = α4, {a, b} = γ1, {a, c} = γ2, {a, d} = γ3, {b, c} =

γ4, {b, d} = γ5, {c, d} = γ6, {a, b, c} = β1, {a, b, d} = β2, {b, c, d} = β3, {c, d, a} =

β4. (Refer figure 2.4)

If S = S(a,U (bα1)), there are 4 ultra L -topologies.
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Figure 2.4:
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If S = S(a,U (bα2)) ,,

If S = S(a,U (bα3)) ,,

If S = S(a,U (bα4)) ,,

So corresponding to the elements a, b, there are 16 ultra L-topologies. Sim-

ilarly corresponding to the elements a, c, there are 16 ultra L-topologies

and corresponding to the elements a, d, there are 16 ultra L-topologies.

Hence there are 48 ultra L-topologies corresponding to the element a.

Similarly corresponding to each elements b, c and d, there are 48 ultra

L-topologies. So total number of ultra L-topologies = 48 ∗ 4 = 192 =

4 ∗ 3 ∗ 4 ∗ 4 = n(n − 1)m2, n = 4, k = m = 4. In general if |X| = n and

L is a finite pseudo complemented chain or a Boolean lattice, there are

n(n−1)mk ultra L-topologies where m and k are the number of dual atoms

and number of atoms respectively. If k = m, it is equal to n(n− 1)m2.

Remark 2.3.1. If L is neither a finite pseudo complemented chain

nor a Boolean lattice, we cannot identify the principal ultra L-topologies

in this way. But we can identify ultra L-topology in certain cases.

Example 2.3.1. Let X = {a, b, c}, L = D12 = {1, 2, 3, 4, 6, 12}

Here the atoms are α1 = 2, α2 = 3 and dual atoms are β1 = 4, β2 = 6 .

If S = S(a,U (bα1)) = {f |f(a) = 0}∪{f |f > bα1}, L-topology generated

by S(aβ1) and S(aβ2) does not contain the L-pointaα2. It is not a discrete

L-topology. So we cannot say that S(aβ1) is a principal ultra L-topology.

But L-topology generated by S(aβ1) and S(aβ2) is a principal ultra L-

topology.
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α1 α2

β1
β2

1

Figure 2.5:

Theorem 2.3.7. If X is infinite and L is a finite pseudo com-

plemented chain or a Boolean lattice, there are |X| principal ultra L-

topologies and |X| non principal ultra L-topologies.

Illustration:

If X is countably infinite, we have |X|, cardinality of X = ℵ0 and If

X is uncountable, we have |X| > ℵ0

Case 1.

X is infinite and L is finite

Let X = {a, b, .....}, L = {0, α, β, 1} a pseudo complemented chain.
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LetS = S(a,U (bα)) = {f |f(a) = 0}∪{f |f > bα}. S does not contain the

L points aα, aβ, a1. Here S(aβ) = S(a,U (bα), aβ) is a principal ultra L-

topology since S(a1) is the discrete L-topology, where S(aβ) is the simple

extension of S by aβ. Similarly we can identify other ultra L-topologies.

Hence corresponding to the element a, there are |X| − 1 = |X| principal

ultra L-topologies. Similarly corresponding to each element b, c, d, ......

there are |X| principal ultra L-topologies. So total number of principal

ultra L-topologies = |X||X| = |X|. If S = S(a,U ) = {f |f(a) = 0} ∪U ,

where U is a nonprincipal ultra L-filter not containing aλ, 0 6= λ ∈ L.

Then the simple extension of S by aβ = S(aβ) = S(a,U , aβ) is a non-

principal ultra L-topology since S(a1) is discrete L-topology. So there are

|X| non principal ultra L topologies.

Case 2.

X and L are infinite

Let X = {a, b, c, ....}, L = ℘(X). There are |X| atoms and |X| dual

atoms. Number of principal ultra L-topologies corresponding to one el-

ement = |X||X|(|X| − 1) = |X|. Hence total number of principal ultra

L-topologies = |X||X| = |X|. Let S = S(a,U ) = {f |f(a) = 0} ∪ U ,

where U is a nonprincipal ultra filter not containing aλ, 0 6= λ ∈ L . There

are |X| nonprincipal ultra L-filters not containing aλ so that correspond-

ing to a there are |X||X| = |X| nonprincipal ultra L-topologies. So total

number of nonprincipal ultra L-topologies = |X||X| = |X|.
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2.4 Topological Properties

(a). Principal Ultra L-topologies

Let X be a non empty set and L is a finite pseudo complemented chain.

If S = S(a,U (bλ)) = {f |f(a) = 0} ∪ {f |f > bλ}, then a principal ultra

L-topology = S(a,U (bλ), aβ) = S(aβ), which is the simple extension of

S by aβ i.e., S(aβ) = {f ∨ (g ∧ aβ), f, g,∈ S, aβ /∈ S}, where a, b ∈ X,λ
and β are the atom and dual atom in L respectively.

Let X be a non empty set and L is a finite Boolean lattice. If S =

S(a,U (bλ)) = {f |f(a) = 0} ∪ {f |f > bλ} where a, b ∈ X,λ is an atom,

then a principal ultra L-topology denoted by Sβj = Sβj(a,U (bλ)) = L-

topology generated by any (m−1) S(aβi) amongmS(aβi), i = 1, 2, ...,m, j =

1, 2, ...,m, i 6= j if there are m dual atoms β1, β2, ...βm, where S(aβi) =

S(a,U (bλ), aβi).

Definition 2.4.1. An L-topology F is said to be a T0-L topology if

for every two distinct L-points xλ and yγ with distinct support, there is

an open L subset containing one and not the other.

Definition 2.4.2. An L-topology F is said to be a T1-L topology

if for every two distinct L-points xλ and yγ, with distinct support, there

exists an f ∈ F such that xλ ∈ f and yγ /∈ f and another g ∈ F such that

yγ ∈ g and xλ /∈ g ∀λ, γ ∈ L\{0}.

Definition 2.4.3. An L-topology F is said to be a T2-L topology

if for every two distinct L-points xλ and yγ, with distinct support, there

exists f, g ∈ F such that xλ ∈ f and yγ ∈ g with f ∧ g = 0.
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Theorem 2.4.1. Let X be a non empty set and L is a finite pseudo

complemented chain or a Boolean lattice. Then every principal ultra L-

topology Sβj = Sβj(a,U (bλ)) is T0-L topology but not T1-L topology.

Example 2.4.1. Let X be a non empty set

Suppose that L is a finite pseudo complemented chain and a, b ∈
X,λ, β are atom and dual atom in L respectively. Take two distinct L

points a1, bλ. bλ is an open L subset contain bλ but not a1. SinceU (bλ) =

{f |f > bλ}, any open set contains a1 must contain bλ. So Sβj = Sβj(a,U (bλ))

is a T0-L topology but not T1-L topology.

Suppose that L is a finite Boolean lattice and a, b ∈ X,λ is an atom and

β1, β2, ..... are dual atoms in L. Take two distinct L-ponints a1, bλ. bλ is an

open L-subset that contains bλ but not a1 . Since U (bλ) = {f |f > bλ}, any

open set contains a1 must contain bλ. So the principal ultra L-topology

Sβj = Sβj(a,U (bλ)) is T0-L topology but not T1-L topology.

Definition 2.4.4. An L-topological space (X,F ), F ⊆ LX is called

door L-space if every L-subset g of X is either L-open or L-closed in F .

Example 2.4.2. Let X = {a, b} and L = {o, .5, 1}. Define f1(a) =

0, f1(b) = 0, f2(a) = 0, f2(b) = .5, f3(a) = 0, f3(b) = 1, f4(a) = .5, f4(b) =

0, f5(a) = .5, f5(b) = .5, f6(a) = .5, f6(b) = 1, f7(a) = 1, f7(b) = 0, f8(a) =

1, f8(b) = .5, f9(a) = 1, f9(b) = 1 . Let F = {f1, f9, f2, f3, f4, f5, f6}.
Thenf7 and f8 are closed L-subsets. So (X,F ) is a door L-space.

LetX = {a, b, c}, L = [0, 1] and the the L-topology F = {0, µ{a}, µ{b,c}, 1}.
Then (X,F ) is not a door L-space since µ{b} is neither an L-open set nor

an L-closed set.
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In a principal ultra L-topology Sβj = Sβj(a,U (bλ)) every L-subset

of X is either open or closed if L is a finite pseudo complemented chain

or a Boolean lattice . So every principal ultra L-topological space Sβj is

a door L space.

Definition 2.4.5. An L-topological space (X,F ) is said to be regular

at an L-point aλ if for every closed L subset h of X not containing aλ,

there exists disjoint open sets f, g such that aλ ∈ fand h ∈ g. (X,F ) is

said to be regular L-topology if it is regular at each of its L-points.

Theorem 2.4.2. Let X be a non empty set and L = ℘(X). Then the

principal ultra L-topology Sβj = Sβj(a,U (bλ)) is not regular if |X| > 3.

Example 2.4.3. LetX = {a, b, c}, L = ℘(X) = {φ, {a}, {b}, {c}, {a, b},
{a, c}, {b, c}, X}. α1 = {a}, α2 = {b}, α3 = {c}, β1 = {a, b}, β2 = {a, c}, β3 =

{b, c}. Atoms are α1, α2, α3 and dual atoms are β1, β2, β3 . Take λ = α1 in

the principal ultra L-topology Sβ3, which is an L-topology generated by

S(a,U (bλ), aβ1) and S(a,U (bλ), aβ2). Consider the point aβ1 and then

aα3 is a closed L subset not containing aβ1. Consider the open sets f, g

such that f(a) = β1, f(b) = α1, f(c) = α1, g(a) = β2, g(b) = 0, g(c) = 0.

f is an open set containing aβ1 and g is an open set containing aα3 but

f ∧ g 6= 0. That is f and g are not disjoint.

Definition 2.4.6. An L topological space (X,F ) is said to be normal

if for every two disjoint closed L subsets h and k , there exists two disjoint

open L subsets f, g such that h ∈ f and k ∈ g.

Theorem 2.4.3. Let X be a non empty set and L = ℘(X). Then

the principal ultra L-topology Sβj = Sβj(a,U (bλ)) is not a normal L-

topology if |X| > 3.
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Example 2.4.4. LetX = {a, b, c}, L = ℘(X) = {φ, {a}, {b}, {c}, {a, b},
{a, c}, {b, c}, X}. α1 = {a}, α2 = {b}, α3 = {c}, β1 = {a, b}, β2 = {a, c}, β3 =

{b, c}. Atoms are α1, α2, α3 and dual atoms are β1, β2, β3. Take λ = α1 in

the principal ultra L-topology Sβ3. Then aα2 and aα3 are disjoint closed

L subsets. There is no disjoint open L subsets containing aα2 and aα3.

(b). Non Principal Ultra L-topology

Let X be an infinite set and L is a finite pseudo complemented chain.

If S = S(a,U ) = {f |f(a) = 0} ∪ U where U is a non principal ultra

L-filter not containing aλ, 0 6= λ ∈ L . Then the non principal ultra L-

topology = S(a,U , aβ) = S(aβ), is the simple extension of S by aβ,i.e.,

S(aβ) = {f ∨ (g∧aβ), f, g,∈ S, aβ /∈ S}, where a ∈ X, β is the dual atom

in L.

Let X be an infinite set and L be a Boolean lattice. If S = S(a,U ),

then a non principal ultra L-topology denoted by Sβj = Sβj(a,U ) is

the L-topology generated by any (m − 1) S(aβi) among m S(aβi), i =

1, 2, ...,m, j = 1, 2, ...,m, i 6= j if there are m dual atoms β1, β2, ...βm

where S(aβi) = S(a,U , aβi).

Theorem 2.4.4. Every non principal ultra L-topology Sβj(a,U ) is

a T1-L topology.

Proof. LetX be an infinite set and Sβj = Sβj(a,U ) be a non principal

ultra L-topology. Let aα, bβ be any two distinct L-points, a, b ∈ X,α, β ∈
L. Since U is a non principal ultra L-filter, there exists L open sets

containing each L-points but not the other.
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Theorem 2.4.5. Every non principal ultra L topology Sβj(a,U ) is

a T2-L topology.

Proof. Let X be an infinite set and Sβj(a,U ) be a non principal ultra

L-topology. Take two distinct L-points aα, bβ, where a, b,∈ X,α, β ∈ L.

Since U is a non principal ultra L-filter, we can find disjoint open sets f

and g such that aα ∈ f, bβ /∈ f and bβ ∈ g, aα /∈ g.

Theorem 2.4.6. Suppose that X is an infinite set and L is a Boolean

lattice. Then every non principal ultra L-topology is a door L-space.

Proof. Let X be an infinite set, L be a Boolean lattice and Sβj(a,U )

be a non principal ultra L-topology. Since L is a Boolean Lattice, it is

complemented. So every L-subset of X is either L-closed or L-open in

Sβj(a,U ). Since a and βj are arbitrary, every non principal ultra L-

topology is door L-space.

Remark 2.4.1. If L is not a complemented F -lattice except a finite

pseudo complemented chain, Sβj(a,U ) is not a door L-space.

Example 2.4.5. LetX be a nonempty set and L = D12 = {1, 2, 3, 4, 6, 12}.
Here the atoms are α1 = 2, α2 = 3 and dual atoms are β1 = 4, β2 = 6

(Refer figure 2.5). Take the non principal ultra L topology Sβ1(a,U ).

The L point aβ2 is not open in Sβ1(a,U ). Since L is not complemented,

the L point aβ2 is not closed also in Sβ1(a,U ).

Theorem 2.4.7. If X is an infinite set and L is a finite pseudo

complemented chain or a diamond lattice, then the non principal ultra

L-topology Sβj(a,U ) is a regular L-topology.
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Proof. It is trivial.

Theorem 2.4.8. Let X be an infinite set and L = ℘(X). Then the

non principal ultra L-topology Sβj(a,U ) is not a regular L-topology.

Proof. Let X = {a, b, c....}, L = ℘(X). Let α1, α2, .... be atoms and

β1, β2, ... are dual atoms in L. Consider aβ1. Then there exists a closed L

subset aαi for some i not containing aβ1. But we cannot find disjoint open

L subsets f and g such that f contains aβ1 and g contains aαi.

Theorem 2.4.9. If X is an infinite set and L is a finite pseudo com-

plemented chain or a diamond lattice, the non principal ultra L-topology

S(a,U , aβ) is a normal L-topology.

Proof. It is trivial

Theorem 2.4.10. If X is an infinite set and L = ℘(X) having dual

atoms β1, β2, ...., then the non principal ultra L topology Sβj(a,U ), a ∈ X
is not a normal L-topology.

Proof. Let X = {a, b, c, ....}, L = ℘(X). Let α1, α2, ... be atoms and

β1, β2, ..... are dual atoms in L. Then there exists two closed L subsets

aαi and aαj for some i and j . But there does not exists disjoint open L

subsets f and g such that f contains aαi and g contains aαj.

Theorem 2.4.11. Let X is an infinite set and L is a finite pseudo

complemented chain or a Boolean lattice. An ultra L-topology F is a T1-L

topology if and only if it is a non principal ultra L-topology.
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Proof. Suppose that the ultra L-topology F is a T1-L topology. We

have to show that F is a non principal ultra L-topology. F is a principal

ultra L-topology implies F is not a T1-L topology. So we can say that F

is a T1-L topology implies F is a non principal ultra L-topology.

Next assume that F is a non principal ultra L-topology. Then by

theorem 2.4.4 F is a T1-L topology.

Theorem 2.4.12. An L-topology F on X is a T1-L topology if and

only if it is the infimum of non principal ultra L-topologies.

Proof. Necessary part

Any L-topology finer than a T1-L topology must also be a T1-L topol-

ogy. So a T1-L topology can be the infimum of only non principal ultra L

topologies.

Sufficient part

Each non principal ultra L-topology on X contains non principal ultra

L- filter. So there exists distinct L-points aλ, bγ where a, b ∈ X;λ, γ ∈ L
and L-open sets f, g such that aλ ∈ f, bγ /∈ f and aλ /∈ g, bγ ∈ g. This is

also true in the infimum of any family of non principal ultra L-topologies

since every L-points are closed in non principal ultra L-filters. So infimum

of any family of non principal ultra L-topologies is a T1-L topology.

Theorem 2.4.13. Let X is an infinite set and L is a finite pseudo

complemented chain or a Boolean lattice . Then an ultra L-topology is a

T2-L topology if and only if it is a non principal ultra L-topology.

Proof. Suppose that an ultra L-topology is a T2-L topology. This
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implies that the ultra L-topology is a T1-L topology. Hence it is a non

principal ultra L-topology.

Conversely suppose that the ultra L-topology is a non principal ultra

L-topology. Since a non principal ultra L-topology contains a non princi-

pal ultra L-filter, for any two distinct L-points in the non principal ultra

L-topology there exists disjoint L-open sets contains each L-point but not

the other. So it is a T2-Ltopology.

2.5 Mixed L- topologies

In [59] Steiner studied the mixed topologies. Analogously we can say that

a mixed L-topology on X is not a T1-L topology and does not have a

principal representation. Thus a mixed L-topology is the intersection of a

T1-L topology and a principal L-topology.

The representation of a mixed L-topology as the infimum of a T1-L

topology and a principal L-topology need not be unique.

Example 2.5.1. Let C = {µA|X − A is finite} together with 0 ,

is a T1-L topology and δ and δ′ be the principal L-topologies given by

δ =
∧

a∈X−{b,c}
Sβj , δ′ =

∧
a∈X−{b}

Sβj, if S = S(a,U (bλ)), λ is an atom and

βj’s are dual atoms in L.

C ∧ δ = {µA|b ∈ A,X − A is finite or f = 0} = C ∧ δ′ is a mixed L-

topology. Here cλ ∈ δ and cλ /∈ δ′. That is the representation of a mixed

topology as the infimum of T1-L topology and principal L-topology need

not be unique.





Chapter 3

Lattice of T1-L topologies

3.1 Introduction

In this chapter we investigate the lattice structure of the collection of all

T1-L topologies on a given set X. In [30], Johnson studied the lattice

structure of the set of all L-topologies on a given set X. It is quite natural

to find sublattices in the lattice of L-topologies and study their properties.

The collection of all T1-L topologies on a given set X forms one of the

sublattice of the lattice of L-topologies on X. One distinguishing feature

between these two lattices is that the lattice of L-topologies is atomic while

the collection of all T1-L topologies is not. Lattice of T1-L topologies is

a complete sublattice of lattice of L-topologies. Also, the collection of

Some results of this chapter are included in the following paper.
Raji George and T.P. Johnson : Lattice Properties of T1-L Topologies. Missouri
Journal of Mathematical Sciences, USA, Volume 24, Number 2, 2012

49



50 Chapter 3. Lattice of T1-L topologies

all T1-L topologies is not modular. In [64] Liu determined dual atoms in

the lattice of T1 topologies and Frolich [18] proved this lattice is dually

atomic. However, we prove that the collection of all T1-L topologies has

dual atoms if and only if L has dual atoms and that the collection of all

T1-L topologies is not dually atomic in general.

3.2 Preliminaries

Let X be a non empty ordinary set and L = L(6,∨,∧,′ ) be a F -lattice,

i.e, a completely distributive lattice with a smallest element 0 and a largest

element 1((0 6= 1) and with an order-reversing involution a → a′(a ∈ L)

[34]. Assume L has more than two elements. An L-fuzzy subset on X is

a mapping f : X → L. The family of all L-fuzzy subsets on X is denoted

by LX . We denote the constant function in LX taking the value α ∈ L
by α. Here we call L-fuzzy subsets as L-subsets and F ⊆ LX is called an

L-topology in the sense of Chang [13] and Goguen [23] as in [34], if

(i) 0, 1 ∈ F ,

(ii) f, g ∈ F ⇒ f ∧ g ∈ F ,

(iii) fi ∈ F for each i ∈ I ⇒
∨
i∈I
fi ∈ F .

Definition 3.2.1. [44] A fuzzy point xλ in a set X is a fuzzy set in
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X defined by

xλ(y) =

{
λ if y = x

0 if y 6= x
where 0 < λ 6 1

In an L-topological space xλ is called an L-point.

Definition 3.2.2. [44] An L-topological space (X,F ) is said to be a

T1 − L topological space if for every two distinct fuzzy points xp and yq,

with distinct support, there exists an f ∈ F such that xp ∈ f and yq /∈ f
and another g ∈ F such that yq ∈ g and xp /∈ g,∀p, q ∈ L\{0}.

Remark 3.2.1. We take the definition of L-points xλ, 0 < λ 6 1

so as to include all crisp singletons. Hence every crisp T1 topology is a

T1-L topology by identifying it with its characteristic function. If τ is any

topology on a finite set, then τ is T1, if and only if it is discrete. However,

the same is not true in L-topology.

Example 3.2.1. Let X = {a, b, c} and L = {0, α, β, 1} be the dia-

mond lattice, then F = {0, µ{a}, µ{b}, µ{c}, µ{a,b}, µ{a,c}, µ{b,c}, 1} is a T1−L
topology. Let aλ, bλ, cλ, 0 6= λ ∈ L are L-points. The complements of

aλ, bλ, cλ are not open in F so that aλ, bλ, cλ are not closed.

Definition 3.2.3. [22] An element p ∈ L is called prime if p 6= 1 and

whenever a, b ∈ L with a ∧ b 6 p, then a 6 p or b 6 p. The set of all

prime elements of L will be denoted by Pr(L).

Definition 3.2.4. [73] Scott topology on L is the topology generated

by the sets of the form {t ∈ L : t � p}, where p ∈ Pr(L). Let (X, τ)

be a topological space and f : (X, τ) → L be a function where L has
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its Scott topology, we say that f is Scott continuous if for every p ∈
Pr(L), f−1(t ∈ L : t � p) ∈ τ . (Some authors used the notation f← instead

of f−1, for example in [48], [49], [50], [51]).

Remark 3.2.2. When L = [0, 1], the Scott topology coincides with

the topology of topologically generated spaces of Lowen [35]. Every Scott

continuous function need not be lower semi continuous.

Example 3.2.2. Suppose k is a large positive integer. Let Dk be the

set of all devisors of k. Give the order a/b in Dk; a, b ∈ Dk such that a∧b =

gcd(a, b), a∨b = lcm(a, b) and the corresponding Scott topology. Consider

X = Dk with the Scott topology, L = Dk Then f : X → L defined as

f(x) = x is Scott continuous since f←(p,∞) = (p,∞), which is open in X

for any prime p. But not lower semi continuous since f←(n,∞) = (n,∞),

where n is not a prime is not open in X.

Remark 3.2.3. The set ωL(τ) = {f ∈ LX ; f : (X, τ) → L is scott

continuous } is an L-topology. An L-topology F onX is called an induced

L-topology if there exists a topology τ on X such that F = ωL(τ). If τ is

a T1 topology, ωL(τ) is a T1-L topology.

Note 1.

A lattice L is modular if and only if, it has no sublattice isomorphic to

N5, where N5 is a standard non modular lattice [20].

Definition 3.2.5. [34] An element of a lattice L is called an atom if

it is the minimal element of L\{0}.

Definition 3.2.6. [34] An element of a lattice L is called a dual atom

if it is the maximal element of L\{1}.
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3.3 Lattice of T1-L topologies

For any set X, the set Ω(X) of all T1-L topologies on X forms a lattice

with natural order of set inclusion. The least upper bound of a collection of

T1-L topologies belonging to Ω(X) is the T1-L topology generated by their

union and the greatest lower bound is their intersection. The smallest T1-

L topology is the cofinite topology denoted by 0 and largest T1-L topology

is the discrete L-topology denoted by 1.

Theorem 3.3.1. [18] The Ultra spaces on a set E are exactly the

topologies of the form S(x,U ) = ℘(E − x) ∪ U , where x ∈ E,U is an

ultrafilter on E not containing {x}.

Theorem 3.3.2. [62] Let (X,F ) and (X,G) be two fuzzy topological

spaces on X. Then G covers F if and only if G = F (g) for every g ∈ G−F ,

where F (g) is the simple extension of F by g.

Theorem 3.3.3. The lattice Ω(X) is complete.

Proof. Let S be a subset of Ω(X) and G =
⋂
δ∈S

δ. Then G is a T1-L

topology and G is the greatest lower bound of S. Since any join(resp.

meet) complete lattice with a smallest (resp.largest) element is complete,

Ω(X) is complete.

Note 2.

Let CFT denote the crisp cofinite topology, where CFT

= {χA|A is a subset of X whose complement is finite } together with 0,

χA is the characteristic function of A.
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Theorem 3.3.4. Ω(X) is not atomic.

Proof. Atoms in Ω(X) are the T1-L topologies generated by CFT

∪{xλ}, 0 < λ 6 1, or CFT ∪λ, 0 < λ < 1, where xλ is an L-point.

Let P = {f ∈ LX : f(x) > 0 for all but finite number of points of X}
together with 0. Then P is a T1-L topology and P cannot be expressed

as join of atoms. Hence Ω(X) is not atomic.

Theorem 3.3.5. Ω(X) is not modular.

Proof. Let x1, x2, x3 ∈ Xand α, β, γ ∈ (0, 1).

Let F be the T1-L topology generated by CFT ∪{f1, f2, f3} where f1, f2, f3

are L subsets defined by

f1(y) =

α when y = x1

0 when y 6= x1

f2(y) =



α when y = x1

β when y = x2

γ when y = x3

0 when y 6= x1, x2, x3

f3(y) =


β when y = x2

γ when y = x3

0 when y 6= x2, x3

Let F1 be the T1-L topology generated by CFT ∪{f1}.
Let F2 be the T1-L topology generated by CFT ∪{f1, f2}.
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Let F3 be the T1-L topology generated by CFT ∪{f3}.
Then, we notice that F2 ∨ F3 = F and F1 ∨ F3 = F so that {CFT,

F1, F2, F3, F} forms a sublattice of Ω(X) isomorphic to N5, where N5 is

the standard non-modular lattice. Hence Ω(X) is not modular.

Theorem 3.3.6. Ω(X) is not complemented.

Proof. Let F be the T1-L topology generated by CFT ∪{xλ}. Then

1 is not a complement of F since F ∧ 1 6= 0. Let H be any T1-L topol-

ogy other than 1, the discrete L-topology. If F ⊂ H, then H cannot

be the complement of F . Suppose that F 6⊆ H, then H cannot contain

simultaneously all characteristic functions of open sets in τ and all con-

stant L-subsets. Then the set K = {k : k is a function from (X, τ) to

L and k /∈ H} is non empty. Let F ∨ H = G and G has the subbase

{f ∧h|f ∈ F, h ∈ H}. Then G cannot be equal to the discrete L-topology,

since there exists at least one subset of K which is not contained in G.

Hence H is not a complement of F .

Theorem 3.3.7. If L has dual atoms, then Ω(X) has dual atoms.

Proof. Case 1.

Let X be a non empty set and L be a finite pseudo complemented chain.

Let τ be a dual atom in the lattice of T1 topologies on X. Then

by theorem 3.3.1, τ must be of the form S(a,U ) = ℘(X − a) ∪ U ,

where a ∈ X,U is non principal ultrafilter not containing {a}. Then

ω1L(τ) = {f |f : (X, τ) → L is a scott continuous function}. Then aλ /∈
ω1L(τ), λ ∈ L. Let β be the dual atom in L and F = ω1L(τ)∨aβ and then

F is the ultra L-topology S(aβ) in Ω(X) since the simple extension of F
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by a1 is the discrete L-topology.

Case 2.

Let X be a non empty set and L is not a finite pseudo complemented

chain.

Let τ be a dual atom in the lattice of T1 topologies on X. Then by theo-

rem 3.3.1, τ must be of the form S(a,U ) = ℘(X−a)∪U , where a ∈ X,U
is non principal ultrafilter not containing {a}. Then ω1L(τ) = {f |f :

(X, τ) → L is a scott continuous function}. Then aλ /∈ ω1L(τ), λ ∈ L.

Let β1, β2, ...., βm are dual atoms in L and F (aβ1) = ω1L(τ)∨aβ1, F (aβ2) =

ω1L(τ)∨aβ2, ......, F (aβm) = ω1L(τ)∨aβm. Let Fβj is the L-topology gener-

ated by (m− 1) F (aβi) from m F (aβi), i = 1, 2, ....m, j = 1, 2, ....m, i 6= j.

Then as in case 1. Fβj is the ultra L-topology Sβj in Ω(X) since the

simple extension of Fβj by aβj is the discrete L-topology.

In both cases since L has dual atoms, Ω(X) has dual atoms. Hence

the theorem.

Note 3.

Let τ be a dual atom in the lattice of T1 topologies on X, β be the dual

atom in L and A ⊂ X not in τ . Then ω1L(τ) ∨ aβ = ω1L(τ) ∨ µβA, µβA is

defined by µβA(x) =

{
β if x ∈ A
0 otherwise

Theorem 3.3.8. If Ω(X) has dual atoms, then L has dual atoms.

Proof. Case 1.



3.3. Lattice of T1-L topologies 57

Let X be a nonempty set and L, a finite pseudocomplemented chain.

Suppose that F is a dual atom in Ω(X). Then F is of the form S(aβ)

and β must be the dual atom in L. Otherwise there exists an element G

greater than F and less than 1. Which is a contradiction to the hypothesis.

Case 2.

Let X be a non empty set and L is not a finite pseudo complemented

chain.

Suppose that F is a dual atom in Ω(X). Then F is of the form Sβj and

β1, β2, .... must be dual atoms in L. Otherwise there exists an element G

greater than F and less than 1. Which is a contradiction to the hypothesis.

So in either case if Ω(X) has dual atoms, then L has dual atoms. Hence

the proof of the theorem is completed.

Combining theorem 3.3.7 and theorem 3.3.8, we have

Theorem 3.3.9. The lattice of T1-L topologies Ω(X) has dual atoms

if and only if L has dual atoms.

Theorem 3.3.10. Ω(X) is not dually atomic in general.

Proof. This follows from Theorem 3.3.7.





Chapter 4

Lattice of Weakly Induced

T1-L topologies

4.1 Introduction

In [11] Birkhoff proved that the set of all T1 topologies, Λ(X) is a complete

sublattice of Σ(X), the lattice of all topologies. Λ(X) possess atoms,

but is not atomic [67]. Also Λ(X) is not a complemented lattice [57].

The concept of induced fuzzy topological space was introduced by Weiss

[75]. Lowen called these spaces a topologically generated spaces. Martin

[38] introduced a generalized concept, weakly induced spaces, which was

called semi induced space by Mashhour et al.[40]. The notion of lower

Some results of this chapter are included in the following paper.
Raji George and T.P. Johnson : On the Lattice of Weakly Induced T1-L Topologies.
Annals of Pure and Applied Mathematics, Volume 2, Number 2, 2012
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semicontinuous functions plays an important tool in defining the above

concepts. In [24] Aygun et al. introduced a new class of functions from a

topological space (X, τ) to a fuzzy lattice L with its scott topology called

(completely) scott continuous functions as a generalization of (completely)

lower-semi continuous functions from (X, τ) to [0, 1]. It is known that [30]

lattice of L-topologies is complete, atomic and not complemented. In

[31] Jose and Johnson genralized weakly induced spaces introduced by

Martin [38] using the tool (completely) scott continuous functions and

studied the lattice structure of the set W (X) of all weakly induced L-

topologies on a given set X. A related problem is to find subfamilies in

W (X) having certain properties. The collection of all weakly induced T1-L

topologies W1(X) form a lattice with natural order of set inclusion. In [64]

Liu determined dual atoms in the lattice of T1 topologies and Frolich [18]

proved this lattice is dually atomic. Here we study properties of the lattice

W1τ of weakly induced T1-L topologies defined by families of (completely)

scott continuous functions with reference to a T1 topology τ on X. It has

dual atoms if and only if the membership lattice L has dual atoms and

it is not dually atomic in general. From the lattice W1τ we deduce the

lattice W1(X) of all weakly induced T1-L topologies on a given set X.

4.2 Preliminaries

Let X be a non empty ordinary set and L = L(6,∨,∧,′ ) be a completely

distributive lattice with smallest element 0 and largest element 1, 0 6= 1

and with an order reversing involution a → a′(a ∈ L). We identify the

constant function from X to L with value α by α. The fundamental
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definition of L-fuzzy set theory and L-topology are assumed to be familiar

to the reader in the sense of Chang [13].

Definition 4.2.1. [44] A fuzzy point xλ in a set X is a fuzzy set in

X defined by xλ(y) =

{
λ if y = x

0 if y 6= x
where 0 < λ 6 1

In an L-topological space xλ is called an L-point.

Definition 4.2.2. [44] An L-topological space (X,F ) is said to be a

T1-L topological space if for every two distinct L-points xp and yq, with

distinct support, there exists an f ∈ F such that xp ∈ f and yq /∈ f and

another g ∈ F such that yq ∈ g and xp /∈ g,∀p, q ∈ L\{0}

Remark 4.2.1. We take the definition of L-points xλ, 0 < λ 6 1

so as to include all crisp singletons. Hence every crisp T1 topology is a

T1-L topology by identifying it with its characteristic function. If τ is any

topology on a finite set, then τ is T1, if and only if it is discrete. But in a

T1-L topological space every L-point need not be closed.

Example 4.2.1. Let X = {a, b, c} and L = ℘(X), power set of X,

then F = {0, µ{a}, µ{b}, µ{c}, µ{a,b}, µ{a,c}, µ{b,c}, 1} is a T1-L topology. Let

aλ, bλ, cλ, 0 6= λ ∈ L are L-points. The complements of aλ, bλ, cλ are not

open in F so that aλ, bλ, cλ are not closed.

Definition 4.2.3. [22] An element p ∈ L is called prime if p 6= 1 and

whenever a, b ∈ L with a ∧ b 6 p, then a 6 p or b 6 p. The set of all

prime elements of L will be denoted by Pr(L).

Definition 4.2.4. [73] The scott topology on L is the topology gen-

erated by the sets of the form {t ∈ L : t � p}, where p ∈ Pr(L). Let
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(X, τ) be a topological space and f : (X, τ) → L be a function where

L has its scott topology, we say that f is scott continuous if for every

p ∈ Pr(L), f−1{t ∈ L : t � p} ∈ τ .

Remark 4.2.2. When L = [0, 1], the scott topology coincides with

the topology of topologically generated spaces of Lowen[35]. Every Scott

continuous function need not be lower semi continuous.

Remark 4.2.3. The set ωL(τ) = {f ∈ LX ; f : (X, τ) → L is scott

continuous} is an L-topology. It is the largest element in Wτ . If τ is a

T1 topology ωL(τ) is a T1-L topology, we can denote it by ω1L(τ). An

L-topology F on X is called an induced T1-L topology if there exists a T1

topology τ on X such that F = ω1L(τ).

Definition 4.2.5. [24] Let (X, τ) be a topological space and α ∈ X.

A function f : (X, τ) → L, where L has its scott topology, is said to be

completely scott continuous at α ∈ X if for every p ∈ Pr(L) with f(α) � p,

there is a regular open neighbourhood U of α in (X, τ) such that f(x) � p

for every x ∈ U . That is U ⊂ f−1{t ∈ L : t � p} and f is called completely

scott continuous on X, if f is completely scott continuous at every point

of X.

Note 1.

Let F be a T1-L topology on the set X, let Fc denote the 0 − 1 valued

members of F , that is, Fc is the set of all characteristic mappings in F.

Then Fc is a T1-L topology on X. Define F ∗c = {A ⊂ X : µA ∈ Fc, where

µA is the characteristic function of A}. The T1-L topological space (X,Fc)

is same as the T1 topological spaces(X,F ∗c )

Definition 4.2.6. A T1-L topological space (X,F ) is said to be a
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weakly induced T1-L topological space, if for each f ∈ F, f is a scott

continuous function from (X,F ∗c ) to L.

Definition 4.2.7. If F is the collection of all scott continuous func-

tions from (X,F ∗c ) to L, then F is an induced space and F = ω1L(F ∗c ).

Definition 4.2.8. [34] An element of a lattice L is called an atom if

it is the minimal element of L\{0}.

Definition 4.2.9. [34] An element of a lattice L is called a dual atom

if it is the maximal element of L\{1}.

Definition 4.2.10. [34] A bounded lattice is said to be complemented

if for all x in L there exists y in L such that x ∨ y = 1 and x ∧ y = 0.

4.3 Lattice of weakly induced T1−L topolo-

gies

For a given T1-topology τ on X, the family W1τ of all weakly induced T1-L

topologies defined by families of scott continuous functions from (X, τ) to

L forms a lattice under the natural order of set inclusion. The least upper

bound of a collection of weakly induced T1-L topologies belonging to W1τ

is the weakly induced T1-L topology which is generated by their union and

their greatest lower bound is their intersection. The smallest element is

the crisp cofinite topology denoted by 0 and the largest element is ω1L(τ).

Also for a T1 topology τ on X, the family CW1τ of all weakly induced T1-

L topologies defined by families of completely scott continuous functions

from (X, τ) to L forms a lattice under the natural order of set inclusion.
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Since every completely scott continuous function is scott continuous, it

follows that CW1τ is a sublattice of W1τ . We note that W1τ and CW1τ

coincide when each open set in τ is regular open. When τ = D, the discrete

topology on X, these lattices coincide with lattice of weakly induced T1-L

topologies on X.

Theorem 4.3.1. [18] The Ultra spaces on a set E are exactly the

topologies of the form S(x,U ) = ℘(E − x) ∪ U , where x ∈ E,U is an

ultrafilter on E not containing {x}.

Theorem 4.3.2. [62] Let (X,F ) and (X,G) be two fuzzy topological

spaces on X. Then G covers F if and only if G = F (g) for every g ∈ G−F ,

where F (g) is the simple extension of F by g.

Theorem 4.3.3. The lattice W1τ is complete.

Proof. Let S be a subset of W1τ and let G =
⋂
F∈S

F . Clearly G is a

T1-L topology. Let g ∈ G. Since each F ∈ S is a weakly induced T1-L

topology, g is a scott continuous mapping from (X,F ∗c ) to L. That is

g−1({t ∈ L : t � p, where p ∈ Pr(L)}) ∈ F ∗c for each F ∈ S. Therefore

g−1({t ∈ L : t � p where p ∈ Pr(L)}) ∈
⋂
F∈S

F ∗c . Hence g is a scott

continuous function from (X,G∗c) to L, where (X,G∗c) = (X,
⋂
F∈S

F ∗c ). That

is G ∈ W1τ and G is the greatest lower bound of S. Let K be the set of

upper bounds of S. Then K is non empty since 1 = ω1L(τ) ∈ K. Using

the above argument K has a greatest lower bound say H. Then this H is

a least upper bound of S. Thus every subset S of W1τ has greatest lower

bound and least upper bound. Hence W1τ is complete.
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Note 2.

Let CFT denote the crisp cofinite topology, where CFT = {µA : A is

a subset of X whose complement is finite} together with 0, µA is the

charcteristic function of A.

Theorem 4.3.4. W1τ is not atomic in general.

Example 4.3.1. Take τ = Cocountable topology on the set R of

real numbers and L = [0, 1]. The smallest element in W1τ is the crisp cofi-

nite topology CFT denoted by 0 and largest element is ω1L(τ) = {f |f :

(X, τ) → L is a scott continuous function}. Then the T1-L topologies of

the form CFT ∪α, CFT ∪µA where X−A is countably infinite are weakly

induced. But T1-L topology of the form CFT ∪ h where h is a scottcon-

tinuous function which is neither constant function nor a characteristic

function is not weakly induced. Hence weakly induced T1-L topologies of

the form CFT ∪f are atoms in W1τ and hence ω1L(τ) cannot be expressed

as join of atoms. Thus W1τ is not atomic.

Theorem 4.3.5. [4] Λ(X) is not modular and hence not distributive.

Theorem 4.3.6. W1τ is not distributive in general.

Proof. Since every distributive lattice is necessarily modular, we prove

that W1τ is not modular. This can be illustrated with an example. Take

X as any infinite set and τ = D, discrete topology on X. Then W1τ

becoms lattice of all weakly induced T1-L topology on X and Λ(X), the

lattice of T1 topologies on X(identifying by its characteristic functions) is

a sublattice of W1D. We know that by theorem 4.3.5 Λ(X) is not modular

and hence not distributive. Thus W1τ is not distributive in general.
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Theorem 4.3.7. If L has dual atoms, then W1τ has dual atoms.

Proof. Case 1.

Let X be a non empty set and L be a finite pseudo complemented chain.

Let τ be a dual atom in the lattice of T1 topologies on X. Then

by theorem 4.3.1, τ must be of the form S(a,U ) = ℘(X − a) ∪ U ,

where a ∈ X,U is non principal ultrafilter not containing {a}. Then

ω1L(τ) = {f |f : (X, τ) → L is a scott continuous function}. Then aλ /∈
ω1L(τ), 0 6= λ ∈ L. Let β be the dual atom in L and F = ω1L(τ)∨aβ Then

F is the ultra L-topology S(aβ) in Ω(X) since the simple extension of F

by a1 is the discrete L-topology. Let Fc = the 0 − 1 valued functions in

F and F ∗c = {A ⊂ X|µA ∈ Fc}. Then the weakly induced T1-L topology

defined by Scott continuous funcions from (X, (F ∗c ) to L is a dual atom in

W1τ .

Case 2.

Let X be a non empty set and L is not a finite pseudo complemented

chain.

Let τ be a dual atom in the lattice of T1 topologies on X. Then

by theorem 4.3.1, τ must be of the form S(a,U ) = ℘(X − a) ∪ U ,

where a ∈ X,U is non principal ultrafilter not containing {a}. Then

ω1L(τ) = {f |f : (X, τ) → L is a scott continuous function}. Then aλ /∈
ω1L(τ), 0 6= λ ∈ L. Let β1, β2, ...., βm are dual atoms in L and F (aβ1) =

ω1L(τ) ∨ aβ1, F (aβ2) = ω1L(τ) ∨ aβ2, ......, F (aβm) = ω1L(τ) ∨ aβm. Let

Fβj is the L-topology generated by (m − 1) F (aβi) from m F (aβi), i =

1, 2, ....m, j = 1, 2, ....m, i 6= j. Then as in case 1. Fβj is the ultra L-

topology Sβj in Ω(X) since the simple extension of Fβj by aβj is the

discrete L-topology. Let G = Fβj, Gc = The 0− 1 valued functions in G
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and G∗c = {A ⊂ X|µA ∈ GC}. Then the weakly induced T1-Ltopology

defined by Scott continuous functions from (X,G∗c) to L is a dual atom in

W1τ .

In both cases since L has dual atoms, W1τ has dual atoms. Hence the

theorem.

Theorem 4.3.8. If L has no dual atoms, then W1τ has no dual

atoms.

Proof. Let F be any weakly induced T1-L topology other than 1 =

ω1L(τ). Then we claim that there exists atleast one weakly induced T1-

L topology finer than F . Since F is a weakly induced T1-L topology

different from ω1L(τ), F cannnot contain at the same time all characteristic

functions of opensets in τ and all constant L-subsets. Since L has no dual

atoms, the collection S of L subsets not belonging to F is infinite. Since F

is a T1-L topology, g ∈ S, we have F (g), the simple extension of F by g is

also a T1-L topology. Let G = F (g), Gc denote the 0−1 valued members of

G and G∗c = {A ⊂ X|µA ∈ Gc}, where µA is the characteristic function of

A. Then there exists a weakly induced T1-L topology K defined by Scott

continuous functions from (X,G∗c) to L. Thus for any weakly induced

T1-L topology F there exists a weakly induced T1-L topology K such that

F ⊂ K 6= 1. Hence the proof of the theorem is completed.

Combining Theorem 4.3.7 and Theorem 4.3.8 we have

Theorem 4.3.9. The lattice of weakly induced T1-L topologies W1τ

has dual atoms if and only if L has dual atoms.

Theorem 4.3.10. W1τ is not dually atomic in general.
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Proof. This follows from Theorem 4.3.8.

4.4 Complementation in the lattice of weakly

induced T1-L topologies

Theorem 4.4.1. W1τ is not complemented in general.

Example 4.4.1. Let X = R, set of real numbers and τ = Cocount-

able topology on R. Take L = [0, 1]. The weakly induced T1-L topology

of the form F = CFT ∪ α where α ∈ (0, 1) has no complement. For,

clearly 1 is not a complement of F , since F ∧ 1 6= 0. Let G be any weakly

induced T1-L topology in W1τ other than 1. If F ⊂ G, then G is not a

complement of F . Hence suppose that F is not contained in G. Since

G 6= 1, G cannot contain simultaneously all constant L-subsets and all

characteristic functions of open sets in τ . Then F ∨G = H 6= 1 and so G

is not a complement of F .

Remark 4.4.1. When τ = D, the discrete topology on X,W1D =

W1(X), the collection of all weakly induced L-topologies on X. The fam-

ily of all weakly induced T1-L topologies is defined by scott continuous

functions where each scott continuous function is a characteristic func-

tion, is a sublattice of W1(X) and is a lattice isomorphic to the lattice

of all T1 topologies on X. The elements of this lattice are called crisp T1

topologies.

Theorem 4.4.2. The lattice of weakly induced T1-L topologies

W1(X) is not complemented.
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Proof. This follows from theorem 4.4.1.

Note 3.

Several types of T1 topologies have complements in Λ(X) [57].

Theorem 4.4.3. An induced T1-L topology has complement if the

corresponding T1 topology has complement.

Proof. Let F be an induced T1-L topology. Since F is induced, F is

the collection of all Scott continuous functions from (X,F ∗c ) to L. Let

F ∗c = τ . If τ has complement, there exists τ ′ such that τ ∧ τ ′ equal to the

cofinite topology and τ ∨ τ ′ equal to the discrete topology on X. Then

F ∧ τ ′ is CFT and F ∨ τ ′ is the discrete L-topology.





Chapter 5

Lattice of Stratified T1-L

topologies

5.1 Introduction

This chapter aims at investigating the lattice structure of the set of all

stratified T1-L topologies on a given set X. In [11] Birkhoff proved that

the set of all T1 topologies, Λ(X) is a complete sublattice of Σ(X), the

lattice of all topologies. Λ(X) possess atoms, but is not atomic [67]. Also

Λ(X) ia not a complemented lattice [57]. Λ(X) is not modular and hence

not distributive [4]. In [64], Liu determined dual atoms in Λ(X) and

Frolich [18] proved this lattice is dually atomic. In [32], Jose and Johnson

studied the lattice structure of the set L(X) of all stratified L-topologies

on a given set X. The lattice of all stratified T1-L topologies on a given set

X is denoted by S1(X). In this chapter we prove that S1(X) has atoms

71
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and dual atoms if and only if the membership lattice L has atoms and

dual atoms respectively and it is neither atomic nor dually atomic.

5.2 Preliminaries

Let X be a nonempty ordinary set and L = L(6,∨,∧,′ ) be a F -lattice, i.e,

a completely distributive lattice with a smallest element 0 and a largest

element 1((0 6= 1) and with an order-reversing involution a → a′(a ∈ L)

[34]. Assume L has more than two elements. An L-fuzzy subset on X is

a mapping f : X → L. The family of all L-fuzzy subsets on X is denoted

LX . We denote the constant function in LX taking the value α ∈ L by

α. Here we call L-fuzzy subsets as L-subsets and F ⊆ LX is called an

L-topology in the sense of Chang [13] and Goguen [23] as in [34], if

(i) 0, 1 ∈ F ,

(ii) f, g ∈ F ⇒ f ∧ g ∈ F ,

(iii) fi ∈ F for each i ∈ I ⇒
∨
i∈I
fi ∈ F .

A subset F of LX is called a stratified L-topology, if

(i) α ∈ F for all α ∈ L,

(ii) f, g ∈ F ⇒ f ∧ g ∈ F ,

(iii) fi ∈ F for each i ∈ I ⇒
∨
i∈I
fi ∈ F .
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(The idea goes up to Lowen [35], while the term “stratified” has appeared

for the first time in [42]).

Example 5.2.1. For a T1 topological space (X, τ) and a F-lattice L,

F = {µA : A ∈ τ, µA is the characteristic function ofA} is a T1-L topology

on X. If we add all constant functions α, α ∈ L in to F and consider it as

a subbase, then we get a new L-topology different from the original one,

which is a stratified T1-L topology.

Example 5.2.2. Let X = R. Then F = {f ∈ LX : f(x) > 0 for all

but finite number of points of X} together with 0. Then F is a stratified

T1-L topology.

Definition 5.2.1. [44] A fuzzy point xλ in a set X is a fuzzy set in

X defined by

xλ(y) =

{
λ if y = x

0 if y 6= x
where 0 < λ 6 1

In an L-topological space we call xλ an L-point.

Definition 5.2.2. [44] An L-topological space (X,F ) is said to be

a T1-L topological space if for every two distinct fuzzy points xp and yq,

with distinct support, there exists an f ∈ F such that xp ∈ f and yq /∈ f
and another g ∈ F such that yq ∈ g and xp /∈ g,∀p, q ∈ L\{0}.

Remark 5.2.1. We take the definition of L points xλ, 0 < λ 6 1

so as to include all crisp singletons. Hence every crisp T1 topology is a

T1-L topology by identifying it with its characteristic function. If τ is any

topology on a finite set, then τ is T1, if and only if it is discrete. However,
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the same is not true in L-topology.

Example 5.2.3. Let X be a nonempty set, A ⊂ X and L =

{0, α, β, 1}, the diamond lattice. Then F = {µA|X−A is finite}∪{α|α ∈
L} is a stratified T1-L topology. Let x ∈ X, then the complement of the

L-point xα is not open in F so that xα is not closed.

Definition 5.2.3. [22] An element p ∈ L is called prime if p 6= 1 and

whenever a, b ∈ L with a ∧ b 6 p, then a 6 p or b 6 p. The set of all

prime elements of L will be denoted by Pr(L).

Definition 5.2.4. [73] Scott topology on L is the topology generated

by the sets of the form {t ∈ L : t � p}, where p ∈ Pr(L). Let (X, τ) be a

topological space and f : (X, τ)→ L be a function where L has its Scott

topology, we say that f is Scott continuous if for every p ∈ Pr(L), f−1{t ∈
L : t � p} ∈ τ .

Remark 5.2.2. When L = [0, 1], the Scott topology coincides with

the topology of topologically generated spaces of Lowen [35]. Every Scott

continuous function need not be lower semi continuous. The set ωL(τ) =

{f ∈ LX ; f : (X, τ)→ L is Scott continuous} is an L-topology. If τ is a T1

topology ωL(τ) is a stratified T1-L topology, we can denote it by ω1L(τ).

An L-topology F on X is called an induced T1-L topology if there exists

a T1 topology τ on X such that F = ω1L(τ).

Definition 5.2.5. [34] An element of a lattice L is called an atom if

it is the minimal element of L\{0}.

Definition 5.2.6. [34] An element of a lattice L is called a dual atom

if it is the maximal element of L\{1}.
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5.3 Lattice of Stratified T1 − L topologies

Let S1(X) = {F |F is a stratified T1-L topology on X } and Λ(X) =

{τ |τ is a T1 topology on X}. The family S1(X) of all stratified T1-L

topologies form a lattice under the natural order of set inclusion. The

smallest stratified T1-L topology is CFT ∪{λ|λ ∈ L}, denoted by 0 and the

largest stratified T1-L topology is the discrete L-topology which consists

of all L-subsets denoted by 1, where the crisp cofinite topology CFT =

{µA : A is a subset of X whose complement is finite} together with 0, µA

is the charcteristic function of A.

Definition 5.3.1. [10] A lattice L is said to be join-complemented

provided that for every x in L, there exists y in L such that x ∨ y = 1.

Definition 5.3.2. [10] A lattice L is said to be meet-complemented

provided that for every x in L, there exists y in L such that x ∧ y = 0.

Definition 5.3.3. [10] A lattice L is said to be complemented pro-

vided that for every x in L, there exists y in L such that x ∧ y = 0 and

x ∨ y = 1.

Definition 5.3.4. [10] A lattice L is said to be semi-complemented

if it is either join complemented or meet-complemented.

Let Λ(X) be the set of all T1 topologies on X and let G = {G|G ⊂
X,X ∼ G is finite} ∪ {φ,X}.

Theorem 5.3.1. [11] Λ(X) is a complete sublattice of Σ(X). The

least element in Λ(X) is the cofinite topology G , and the greatest element

is the discrete topology.
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Theorem 5.3.2. [67] Λ(X) possesses atoms, but is not atomic. The

atoms are precisely the topologies of the form G ∪ {x}.

Theorem 5.3.3. [64] τ is an anti atom in Λ(X) iff τ = {G|x /∈
G orG ∈ U },where x ∈ X andU is a non principal ultrafilter on X.

Theorem 5.3.4. [18] The Ultra spaces on a set E are exactly the

topologies of the form S(x,U ) = ℘(E − x) ∪ U , where x ∈ E,U is an

ultrafilter on E not containing {x}.

Theorem 5.3.5. [18] Λ(X) is anti-atomic.

Theorem 5.3.6. [57] Λ(X) is not a complemented lattice.

Theorem 5.3.7. [4] Λ(X) is not modular and hence not distributive.

Theorem 5.3.8. The lattice of stratified T1−L topologies S1(X) on

a set X is complete.

Proof. Let S be any subset of S1(X). Then S has greatest lower

bound and least upper bound, since arbitrary intersection of stratified T1-

L topologies is a stratified T1-L topology and S1(X) has greatest element

1.

Theorem 5.3.9. The collection S ′1(X) of all induced stratified T1-L

topologies on any set X is a complete sublattice of the complete lattice

S1(X).

Proof. Clearly S ′1(X) is a subset of S1(X). Let F,G ∈ S ′1(X). Then

there exists topologies τ and τ ′ in Λ(X) such that F = ω1L(τ) and G =

ω1L(τ ′). Then F ∨G = ω1L(τ ∨ τ ′) and F ∧G = ω1L(τ ∧ τ ′). Hence F ∨G
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and F ∧G are in S ′1(X) sothat S ′1(X) is a sublattice of S1(X).

Let H be any subset of S ′1(X). Then H has the greatest lower bound

since arbitrary intersection of T1 topologies are T1 topology so that arbi-

trary intersection of induced stratified T1-L topologies are induced strati-

fied T1-L topology.

Let K be the set of upper bounds of H. Then K is nonempty, since

1 ∈ K. Using the above argument, K has the greatest lower bound, say

M . Then this M is the least upper bound of H. Thus every subset H of

S ′1(X) has the greatest lower bound and least upperbound. Hence S ′1(X)

is a complete sublattice of S1(X)

Remark 5.3.1. Let F = CFT∪{λ|λ ∈ L}∪µαA, whereX−A is count-

ably infinite, α is an atom and µαA is defined by µαA(x) =

{
α if x ∈ A
0 otherwise

ThenF is a stratified T1-L topology but it is not induced, since we cannot

find a T1 topology τ such that ω1L(τ) = F .

Proposition 5.3.1[72]

For a stratified L-topology (X,ωL(τ)), the family β = {fαA|A ∈ τ, α ∈ L}

where fαA(x) =

{
α if x ∈ A
0 otherwise

is a base for ωL(τ).

Proposition 5.3.2 [72]

For a stratified L-topology (X,ωL(τ)), the family S = {µA|µA is the char-

acteristic function of the open set A in τ} ∪ {α|α ∈ L}, is a subbase for

ωL(τ).

Theorem 5.3.10. The collection S ′1(X) of all induced stratified T1-
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L-topologies on any set X forms a lattice isomorphic to Λ(X).

Proof. Let X be a non empty set and L be a F-lattice with its Scott

topology. Define θ : Λ(X) → S ′1(X) by θ(τ) = ω1L(τ), where τ is a T1

topology on X.

Let τ1 and τ2 are two T1 topologies on X. τ1∨ τ2 = T1 topology generated

by τ1 and τ2.

ω1L(τ1) = {f |f is a Scott continuous function from (X, τ1)→ L}

= L− topology generated by {µA|A ∈ τ1} ∪ {α|α ∈ L}

ω1L(τ2) = {f |f is a Scott continuous function from (X, τ2)→ L}

= L− topology generated by {µA|A ∈ τ2} ∪ {α|α ∈ L}

ω1L(τ1 ∨ τ2) = {f |f is a Scott continuous function from (X, (τ1 ∨ τ2)→ L}

= L− topology generated by {µA|A ∈ (τ1 ∨ τ2)} ∪ {α|α ∈ L},

ω1L(τ1) ∨ ω1L(τ2) = stratified T1 − L topology generated by ω1L(τ1) and ω1L(τ2)

= L− topology generated by {µA|A ∈ τ1} ∪ {µA|A ∈ τ2}∪

{α|α ∈ L}

= L− topology generated by {µA|A ∈ (τ1 ∨ τ2)} ∪ {α|α ∈ L}

= {f |f is a Scott continuous function from (X, (τ1 ∨ τ2)→ L}

= ωPL(τ1 ∨ τ2).

Hence θ(τ1 ∨ τ2) = θ(τ1) ∨ θ(τ2).
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Similarly,

ω1L(τ1 ∧ τ2) = {f |f is a Scott continuous function from (X, τ1 ∧ τ2)→ L}

= L− topology generated by {µA|A ∈ τ1 ∧ τ2} ∪ {α|α ∈ L}

= L− topology generated by {µA|A ∈ τ1} ∪ {α|α ∈ L}∧

L− topology generated by {µA|A ∈ τ2} ∪ {α|α ∈ L}

= {f |f is a Scott continuous function from (X, τ1)→ L}∧

{f |f is a Scott continuous function from (X, τ2)→ L}

= ω1L(τ1) ∧ ω1L(τ2).

Hence θ(τ1 ∧ τ2) = θ(τ1) ∧ θ(τ2).

τ1 6= τ2 ⇒ {f |f : (X, τ1)→ (L, S) is Scott continuous} 6= {f |f : (X, τ2)→ (L, S)

is Scott continuous}

⇒ ω1L(τ1) 6= ω1L(τ2)

⇒ θ(τ1) 6= θ(τ2).

Hence θ is one-one. Corresponding to an induced stratified T1-L topology

ω1L(τ) in S ′1(X), there is a topology τ in Λ(X) such that θ(τ) = ω1L(τ).

Hence θ is on to. So θ is an isomorphism.

Remark 5.3.2. Since S ′1(X) is isomorphic to Λ(X), S ′1(X) possesses

all the properties of Λ(X). That is S ′1(X) is complete, not atomic, dually

atomic, not complemented and not modular since Λ has these properties.

But S1(X) has no atoms and dual atoms when L = [0, 1].

Theorem 5.3.11. The lattice of stratified T1-L topologies S1(X) on

a set X is not modular.
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Proof. Lattice of T1-L topologies Λ(X) is isomorphic to S ′1(X) and

Λ(X) is not modular by theorem 5.3.7. So S ′1(X) is not modular. Since

S ′1(X) is a complete sublattice of S1(X), S1(X) is not modular.

Theorem 5.3.12. If L has atoms, then the lattice of stratified T1-L

topologies S1(X) on a set X has atoms.

Proof. Let α be an atom in L and let A be a proper subset of X. The

stratified T1-L topology of the form Fα
A , where Fα

A is generated by 0∪ fαA,

where fαA(x) =

{
α if x ∈ A
0 otherwise

for each atom α in L, is an atom in

S1(X).

Theorem 5.3.13. [62] Let (X,F ) and (X,G) be two fuzzy topolog-

ical spaces on X. Then G covers F if and only if G = F (g) for every

g ∈ G− F , where F (g) is the simple extension of F by g.

Theorem 5.3.14. If the lattice of stratified T1-L topologies S1(X)

on a set X has atoms, then L has atoms.

Proof. Let F be an atom in S1(X). Since F is an atom, F is a cover

of 0(zero element of S1(X)). So by theorem 5.3.13 there exists an element

g in F − 0 such that F = 0(g), the simple extension of 0 by g. i.e

0(g) = {h ∨ (k ∧ g)|h, k ∈ 0, g /∈ 0}. This g must be of the form fαA,

where A ⊂ X,α is an atom in L. Otherwise we can find a stratified T1-L

topology G smaller than F and greater than 0, which is a contradiction

to the hypothesis.

By combining theorem 5.3.12 and theorem 5.3.14, we get
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Theorem 5.3.15. Lattice of stratified T1-L topologies S1(X) on a

set X has atoms if and only if L has atoms.

Remark 5.3.3. Atoms in S1(X) = 0(fαA), simple extension of 0 by

fαA, where 0 = CFT ∪ {λ|λ ∈ L}. Atoms in S ′1(X) = ω1L(τ), where τ

is an atom in Λ(X), lattice of T1 topologies on X. Atoms in S ′1(X) and

S1(X) are different. Atoms in S ′1(X) is independent of atoms in L. But

S1(X) has atoms if and only if L has atoms.

Theorem 5.3.16. Lattice of stratified T1-L topologies S1(X) on a

set X is not atomic even if L has atoms.

Example 5.3.1. Let X be an infinite set and L be a F -lattice with

atoms. Let P = {f |f ∈ LX and f(x) > 0 for all but finite number of

points of X} together with 0. Then P is a stratified T1-L topology on X

and it cannot be expressed as join of atoms.

Theorem 5.3.17. If the lattice of stratified T1-L topologies on a set

X has dual atoms, then L has dual atoms.

Proof. Case 1.

Let X be a nonempty set and L be a finite pseudo complemented chain.

Suppose that F is a dual atom in S1(X). Then F is of the form S(aβ)

and β must be the dual atom in L. Otherwise there exists an element G

greater than F and less than 1. Which is a contradiction to the hypothesis.

Case 2.

Let X be a non empty set and L is not a finite pseudo complemented

chain.
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Suppose that F is a dual atom in S1(X). Then F is of the form

Sβj and β1, β2, .... must be dual atoms in L. Otherwise there exists an

element G greater than F and less than 1. Which is a contradiction to

the hypothesis.

So in either case if S1(X) has dual atoms, then L has dual atoms. Hence

the proof of the theorem is completed

Theorem 5.3.18. If L has dual atoms, then the lattice of stratified

T1-Ltopologies S1(X) on a set X has dual atoms.

Proof. Case 1.

Let X be a non empty set and L be a finite pseudo complemented chain.

Let τ be a dual atom in the lattice of T1 topologies on X. Then

by theorem 5.3.4, τ must be of the form S(a,U ) = ℘(X − a) ∪ U ,

where a ∈ X,U is non principal ultrafilter not containing {a}. Then

ω1L(τ) = {f |f : (X, τ) → L is a scott continuous function}. Then aλ /∈
ω1L(τ), λ ∈ L. Let β be the dual atom in L and F = ω1L(τ) ∨ aβ. Then

F is the ultra L-topology(dual atom) S(aβ) in S1(X), since the simple

extension of F by a1 is the discrete L-topology.

Case 2.

Let X be a non empty set and L is not a finite pseudo complemented

chain.

Let τ be a dual atom in the lattice of T1 topologies on X. Then by theo-

rem 5.3.4, τ must be of the form S(a,U ) = ℘(X−a)∪U , where a ∈ X,U
is non principal ultrafilter not containing {a}. Then ω1L(τ) = {f |f :

(X, τ) → L is a scott continuous function}. Then aλ /∈ ω1L(τ), λ ∈ L.
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Let β1, β2, . . . , βm are dual atoms in L and F (aβ1) = ω1L(τ)∨aβ1, F (aβ2) =

ω1(τ)∨ aβ2, ......, F (aβm) = ω1l(τ)∨ aβm. Let Fβj is the L-topology gener-

ated by (m−1) F (aβi) from m F (aβi), i = 1, 2, ....m, j = 1, 2, . . . ,m, i 6= j.

Then as in case 1. Fβj is the ultra L-topology Sβj in S1(X) since the sim-

ple extension of Fβj by aβj is the discrete L-topology.

In both cases since L has dual atoms, S1(X) has dual atoms. Hence the

theorem.

Combining theorem 5.3.17 and theorem 5.3.18, we have

Theorem 5.3.19. The lattice of stratified T1-L topologies S1(X) has

dual atoms if and only if L has dual atoms.

Theorem 5.3.20. S1(X) is not dually atomic in general

Proof. This follows from theorem 5.3.19.

Remark 5.3.4. If τ is a dual atom in Λ(X), then ω1L(τ) need not

be a dual atom in S1(X) .

For example, take X any non empty set and L = {0, α, 1}, where

0 < α < 1. Since τ is a dual atom in the lattice of T1-topologies, the only

topology greater than τ is the discrete topology on X. Suppose A is a

subset of X such that A /∈ τ . Then ω1L(τ) consists of all Scott continuous

functions from(X, τ) to L, and the characteristic function of A does not

belong to ω1L(τ). Thus ω1L(τ) < ω1L(τ) ∨ µαA < 1 where

µαA(x) =

{
α if x ∈ A
0 otherwise

Thus ω1L(τ) is not a dual atom in S1(X).
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Theorem 5.3.21. S1(X) is not complemented.

Proof. Let F be the stratified T1-L topology generated by 0 in S1(X)

and {xλ}. Then 1 is not a complement of F , since F ∧1 6= 0. Let H be any

stratified T1-L topology other than 1, the discrete L topology. If F ⊂ H,

then H cannot be the complement of F . If F * H and let K = {k : h is

a Scott continuous function from (X, τ) to L and k /∈ H}. Then K is non

empty. Also {f ∧ h|f ∈ F, h ∈ H} is a subbase for G = F ∨H. Then at

least one subset of K is not contained in G and so G 6= 1. Hence H is not

a complement of F .



Chapter 6

Lattice of Principal

L-topologies

6.1 Introduction

The concept of fuzzy topology was introduced by Chang [13] in 1968,

and later in a different way by Lowen [35] and Hutton [27]. Mean while

Goguen [23] introduced the concept of L fuzzy sets and consequently the

Chang’s definition of a fuzzy topology has been extended to L-topology

[34]. In this chapter we investigate the lattice structure of the set β(X) of

all principal L-topologies on a given set X. In [11], Birkhoff proved that

the set Σ(X) of all topologies on a fixed set X, forms a complete lattice

* Some results of this chapter are included in the following paper.
Raji George and T.P. Johnson : On the Lattice of Principal L-topologies. Far East
Journal of Mathematical Sciences, Volume 58, Number 1, 2011
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with natural order of set inclusion. Vaidyanathaswamy [66] showed that

this lattice is not distributive in general. Steiner [58] proved that the

lattice of topologies on a set with more than two elements is not even

modular. Vaidyanathaswamy [66] determined atoms in this lattice and

proved that it is an atomic lattice. Frolich [18] determined dual atoms

of this lattice and proved that it is also dually atomic. Van Rooji [68]

and Steiner [58] independently proved that the lattice of topologies is

complemented. In [30], Johnson studied the lattice structure of the set of

all L-topologies on a given set X. It is quite natural to find sublattices in

the lattice of L-topologies and study their properties. The collection β(X)

of all principal L-topologies on a given set X forms one of the sublattice

of the lattice of L-topologies on X. Lattice of principal L-topologies is

a complete sublattice of lattice of L-topologies. Also β(X) is neither

modular nor complemented. The concept of principal topologies in the

crisp case was studied by Steiner [58]. The lattice of principal topologies

is a complete lattice whose least element is the indiscrete topology and

greatest element is the discrete topology. This lattice is both atomic and

dually atomic. It’s atoms coincide with those of Σ(X). However we prove

that the lattice β(X) has dual atoms if the membership lattice L is a

finite pseudocomplemented chain or a Boolean lattice and if the lattice

β(X) has dual atoms, then L has atoms and dual atoms. It is not dually

atomic in general. Also it is proved that induced principal L-topologies

have complements.
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6.2 Preliminaries

Let X be a non empty ordinary set and L be a F -lattice. . We denote the

constant function in LX taking the value α ∈ L by α. The fundamental

definitions of L fuzzy set theory and L-topology are assumed to be familiar

to the reader. A topological space is called principal if it is discrete or if

it can be written as the meet of principal ultra topologies. Steiner [58]

proved that this is equivalent to requiring that arbitrary intersection of

open sets is open. Analogously we define principal L-topology.

Definition 6.2.1. An L-topology is called principal L-topology if

arbitrary intersection of open L-subsets is an open L-subset.

Example 6.2.1. Let F = {f |xp 6 f} together with 0. Then F is a

principal L-topology.

Example 6.2.2. LetX = {a, b, c}, L = [0, 1] and F = {0, 1, µ{a}, µ{a,b},

f : a→ .6 g : a→ 1 h : a→ 1

b→ .5 b→ 1 b→ .5

c→ .4, c→ .4, c→ .4,

i : a→ 1 j : a→ .6 k : a→ .6

b→ .5 b→ .5 b→ 0

c→ 0, c→ 0, c→ 0


Then F is a principal L-topology.

Example 6.2.3. Let X = {x, y, z}, L = {0, a, b, 1}, diamond lattice.

Let F = {0, 1, xa, yb, xa ∨ yb}. Then F is a principal L topology.

Example 6.2.4. Let X = {x, y, z}, L = {0, a, 1}, a pseudocomple-

mented chain. Then F = {0, 1, xa} is a principal L topology.

Example 6.2.5. Let X = Set of all real numbers, L = [0, 1] and F =
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{f |f(x) > 0 for all but finite number of points} together with 0. Then F

is not a principal L topology.

Definition 6.2.2. [34] A F -lattice is a complete and completely

distributive lattice with an order reversing involution.

Definition 6.2.3. [34] An element of a lattice L is called an atom,

if it is the minimal element of L\{0}.

Definition 6.2.4. [34] An element of a lattice L is called a dual

atom, if it is the maximal element of L\{1}.

Definition 6.2.5. [15] A lattice is said to be bounded if it posses 0

and 1.

Definition 6.2.6. [34] A bounded lattice L is said to be join com-

plemented if for all x in L, there exist y ∈ L such that x ∨ y = 1.((Refer

figure 6.1)

1

c

a
b

0

Figure 6.1:
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Definition 6.2.7. [34] A bounded lattice L is said to be meet com-

plemented if for all x ∈ L, there exist y ∈ L such that x ∧ y = 0.(Refer

figure 6.2)

1

c

0

a b

Figure 6.2:

Definition 6.2.8. [34] A bounded lattice is said to be complemented

if it is both join complemented and meet complemented.(Refer figure 6.3)

Definition 6.2.9. [34] A bounded lattice L is said to be semi com-

plemented if it is either join complemented or meet complemented.

Definition 6.2.10. [22] An element p ∈ L is called prime if p 6= 1

and whenever a, b ∈ L with a ∧ b 6 p, then a 6 p or b 6 p. The set of all

prime elements of L will be denoted by Pr (L).

Definition 6.2.11. [73] The Scott topology on L is the topology S,

generated by the sets of the form {t ∈ L : t 66 p}, where p ∈ Pr(L). Let

(X, τ) be a topological space and L be a fuzzy lattice. f : (X, τ) → L is
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1

α
β

0

Figure 6.3:

said to be Scott continuous if f : (X, τ)→ (L, S) is continuous. i.e. if for

every p ∈ pr (L), f−1{t ∈ L : t 66 p} ∈ τ .

Remark 6.2.1. When L = [0, 1], the scott topology coincides with

a topology of topologically generated spaces of Lowen [35]. Every Scott

continuous function need not be lower semi continuous. The set ωL(τ) =

{f ∈ LX |f : (X, τ) → L is scott continuous } is an L-topology. An L-

topology F on X is called an induced L-topology, if there exists a topology

τ on X such that F = ωL(τ). If τ is a principal L-topology, then ωL(τ) is

a principal L-topology and is denoted by ωPL(τ).

Note.

If a lattice L is modular if and only if it has no sublattice isomorphic to

N5 where N5 is the standard non modular lattice [20].
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6.3 Lattice of principal L-topologies

The family β(X) of all principal L-topologies on a given set X forms a

lattice under the natural order of set inclusion. The least upper bound of

a collection of principal L-topologies belonging to β(X) is the principal L-

topology, which is generated by their union and the greatest lower bound

is their intersection. The smallest principal L-topology is the indiscrete L-

topology denoted by 0 and the largest principal L-topology is the discrete

L-topology denoted by 1.

Theorem 6.3.1. [18] The Ultra spaces on a set E are exactly the

topologies of the form S(x,U ) = ℘(E − x) ∪ U , where x ∈ E,U is an

ultrafilter on E not containing {x}.

Theorem 6.3.2. [62] Let (X,F ) and (X,G) be two fuzzy topological

spaces on X. Then G covers F if and only if G = F (g) for every g ∈ G−F ,

where F (g) is the simple extension of F by g.

Theorem 6.3.3. The lattice β(X) is complete.

Proof. Let S be a subset of β(X) and let G =
⋂

Hα∈S
Hα, let fα ∈ G

then fα ∈ Hα for each α. Since Hα is a principal L-topology, ∧fα ∈ Hα

for each α. Therefore ∧fα ∈ ∩Hα and so ∧fα ∈ G. Thus G is closed

under arbitrary intersection. That is G ∈ β(X) and G is the greatest

lower bound of S. Let K be the set of upper bounds of S, then K is non

empty, since 1 ∈ K. Using the above argument K has a greatest lower

bound, say H. Then this H is the least upper bound of S. Thus every

subset S of β(X) has greatest lower bound and least upper bound. Hence

β(X) is complete.
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Theorem 6.3.4. β(X) is atomic.

Proof. Atoms in β(X) are of the form F(g) = {0, 1, g}, where g is an

L-subset of X. Let P be any element of β(X), then P =
∨
g∈P
F(g). Hence

β(X) is atomic.

Theorem 6.3.5. β(X) is not modular.

For example let X = {a, b, c} and τ = {φ,X, {a}, {b}, {a, b}}. Suppose

F1 = {0, 1}, F2 = {0, 1, µ{a}}, F3 = {0, 1, µ{b}}, F4 = {0, 1, µ{a}, µ{a,b}},
F5 = {0, 1, µ{a}, µ{b}, µ{a,b}}, where µ{a}, µ{b} and µ{a,b} are the character-

istic functions of open subsets {a}, {b} and {a, b} of (X, τ) respectively.

Then each element in the collection S = {F1, F2, F3, F4, F5} belong to

β(X) and S is a sublattice of β(X), isomorphic to N5. Therefore β(X) is

not modular.

Theorem 6.3.6. If the lattice of principal L-topologies β(X) on a

set X has dual atoms, then L has dual atoms and atoms.

Proof. Case 1.

Let X be a non empty set and L be a finite pseudo complemented chain.

If S = S(a,U (bλ)) = {f |f(a) = 0} ∪ {f |f > bλ}, then the principal

ultra L-topology = S(a,U (bλ), aβ) = S(aβ) is the simple extension of S

by aβ, i.e., S(aβ) = {f ∨ (g ∧ aβ), f, g ∈ S, aβ /∈ S}, where a, b ∈ X,λ
and β are the atom and dual atom in L respectively (from chapter 2). So

S(aβ) is a dual atom in the lattice of principal L topologies. Since the

simple extension of S(aβ) by the L point a1 is 1(discrete L-topology), by

theorem 6.3.2, 1 is a cover of S(aβ).
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Suppose that F is a dual atom in β(X). Then F is of the form S(aβ)

= S(a,U (bλ), aβ) and β must be the dual atom and λ must be the atom

in L. Otherwise there exists an element G greater than F and less than

1. Which is a contradiction to the hypothesis.

Case 2.

Let X be a non empty set and L be a finite Boolean lattice.

If S = S(a,U (bλ)) = {f |f(a) = 0} ∪ {f |f > bλ}, where a, b ∈
X,λ is an atom, then a principal ultra L-topology Sβj(a,U (bλ)) = Sβj

=L-topology generated by any (m − 1) S(aβi) among m S(aβi), i =

1, 2, ....m, j = 1, 2, ....m, i 6= j if there are m dual atoms β1, β2, ...., βm,

where S(aβi) is the simple extension of S by (aβi), i.e, S(aβi) = {f ∨ (g∧
aβi), f, g ∈ S, aβi /∈ S}. So S(βj) is a dual atom in the lattice of principal

L topologies. Since the simple extension of S(βj) by the L point aβj is

1(discrete L-topology), by theorem 6.3.2, 1 is a cover of Sβj.

Suppose that F is a dual atom in β(X). Then F is of the form Sβj =

Sβj(a,U (bλ)) and β1, β2, .... must be dual atoms and λ must be atom in

L. Otherwise there exists an element G greater than F and less than 1.

Which is a contradiction to the assumption that F is a dual atom in β(X).

So in either case if β(X) has dual atoms, then L has dual atoms and atoms

. Hence the proof of the theorem is completed

Theorem 6.3.7. If L is a finite pseudo complemented chain or a

Boolean lattice, then β(X) has dual atoms.

Proof. Case 1.

Let X be a non empty set and L be a finite pseudo complemented chain.
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Since L is a finite pseudo complemented chain, it has atom and dual

atom. Let τ be a dual atom in the lattice of principal topologies on X.

Then by theorem 6.3.1, τ must be of the form S(a,U ) = ℘(X − a) ∪U ,

where a ∈ X,U is an ultrafilter not containing {a}. Since τ is a principal

topology, U is a principal ultra filter so that τ = S(a,U (b)) = ℘(X−a)∪
U (b). Then ωPL(τ) = {f > bλ|f : (X, τ)→ L is a scott continuous function}, b ∈
X and λ is an atom in L. Then aα /∈ ωPL(τ) for 0 6= α ∈ L. Let β be

the dual atom in L and F = ωPL(τ)∨ aβ. Then F is the ultra L-topology

S(aβ) in β(X) since the simple extension of F by a1 is the discrete L-

topology.

Case 2.

Let X be a non empty set and L be a finite Boolean lattice.

Since L is a Boolean lattice, it has atoms and dual atoms. Let τ be a

dual atom in the lattice of principal topologies on X. Then by theorem

6.3.1, τ must be of the form S(a,U ) = ℘(X − a) ∪U , where a ∈ X,U
is an ultrafilter not containing {a}. Since τ is a principal topology, U is

a principal ultra filter so that τ = S(a,U (b)) = ℘(X − a) ∪U (b). Then

ωPL(τ) = {f > bλ|f : (X, τ) → L is a scott continuous function}, b ∈ X
and λ is an atom. Then aα /∈ ωPL(τ) for 0 6= α ∈ L . Let β1, β2, ...., βm

are dual atoms in L and F (aβ1) = ωPL(τ) ∨ aβ1, F (aβ2) = ωPL(τ) ∨
aβ2, ......, F (aβm) = ωPL(τ) ∨ aβm. Let Fβj is the L-topology generated

by (m−1) F (aβi) from m F (aβi), i = 1, 2, ....m, j = 1, 2, ....m, i 6= j. Then

as in Case 1. Fβj is the ultra L-topology Sβj in β(X) since the simple

extension of Fβj by aβj is the discrete L-topology.

In both cases since L has dual atoms and atoms, β(X) has dual atoms(Ultra

L-topology). Hence the theorem.

Theorem 6.3.8. Lattice of principal L-topologies β(X), on a set X
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is not dually atomic in general.

Proof. This follows from Theorem 6.3.7.

Proposition 6.3.1.

If τ is a dual atom in Π, then ωPL(τ) is not a dual atom in β(X), in

general.

Proof. For example, take X as any set and L = {0, α, 1}, where 0 <

α < 1. Since τ is a dual atom in the lattice of principal topologies, the only

principal topology greater than τ is the discrete topology on X. Suppose

A is a subset of X such that A /∈ τ . Then ωPL(τ) consists of all Scott

continuous functions from (X, τ) to L and the characteristic function of A

does not belong to ωPL(τ). Thus ωPL(τ) < ωPL(τ)∨{0, 1, χαA} < 1(discrete

topology), where χαA(x) =

{
α if x ∈ A
0 otherwise

Thus ωPL(τ) is not a dual atom in β(X).

Proposition 6.3.2.

If τ is a dual atom in Π, then ωPL(τ) is a dual atom in β(X) if and only

if L = {0, 1}.

Proof. Can be easily proved.
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6.4 Complementation problem in the lat-

tice of principal L- topologies

Theorem 6.4.1. Let X be a non empty set and L be a F -lattice.

Then the lattice of principal L-topologies β(X) is not complemented in

general.

Proof. Let F = {0, 1, h}, where h is not a characteristic function of

an open set in X be a principal L topology. We claim that F has no

complement. Here 1 is not a complement of F . Let G be any principal

L-topology in β(X) other than 1. If h ∈ G, then G is not a complement

of F , since F ∧ G 6= 0. Suppose that h /∈ G. Clearly G cannot contain

simultaneously all characteristic functions of subsets of X and all constant

L-subsets. The set K = {k|k is a function from X to L and k /∈ G} is

non empty and two cases arise:

(i) K contains constant L subsets (ii) K contains at least one characteristic

function corresponding to a subset of X. In either case H = {f ∧ g|f ∈
F, g ∈ G} is a base for P = F ∨ G. Then at least one subset of K is not

contained in P . Hence P 6= 1,i.e., G is not a complement of F .

Remark 6.4.1. Let X be a non empty set and L = {0, α, 1} ordered

by 0 < α < 1. Then F = {0, 1, α} is an atom in β(X) and α is not

a characteristic function. Let G = {0, 1} ∪ {χA : A ⊂ X}, χA is the

characteristic function of A. Clearly G is a principal L-topology. Then

F ∧G = {0, 1} and F ∨G = 1. Hence G is a complement of F .

Theorem 6.4.2. If F is any principal L-topology on X such that

the topology corresponding to the characteristic functions in F is neither
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discrete nor indiscrete, then F has atleast one join complement.

Proof. Let τ be the principal topology corresponding to the charac-

teristic function in F . Since the lattice of principal topologies on X is

complemented [58], we can find a principal topology τ ′ such that τ∧τ ′ = 0

and τ ∨ τ ′ = 1 in the lattice of principal topologies. Then the principal

L-topology generated by F ∪ ωPL(τ ′) = 1 in β(X) where ωPL(τ ′) = {f ∈
LX |f : (X, τ ′)→ L is scott continuous }. Hence the proof.

Theorem 6.4.3. If F is any induced principal L-topology on X,

then F has atleast one complement in β(X).

Proof. Since F is induced there exists a principal topology τ in the

lattice of principal topologies such that ωPL(τ) = F . Since the lattice of

principal topologies is complemented [58], there exist atleast one topology

τ ′ in the lattice of principal L-topologies such that τ ∧ τ ′ = 0 and τ ∨ τ ′ =
1 in the lattice of principal L-topologies. Then F ∨ ωPL(τ ′) = 1 and

F ∧ ωPL(τ ′) = 0 in β(X).

Remark 6.4.2. For a given principal topology τ , the family Fτ of

all principal L-topologies defined by families of Scott continuous functions

from (X, τ) to L, form a lattice under the natural order of set inclusion.

From this lattice, we can deduce the properties of β(X).





Chapter 7

Lattice of Weakly Induced

Principal L-topologies

7.1 Introduction

The concept of induced fuzzy topological space was introduced by Weiss

[75]. Lowen called these spaces a topologically generated spaces. Martin

[38] introduced a generalized concept, weakly induced spaces, which was

called semi induced space by Mashhour et al. [40]. The notion of lower

semi continuous functions plays an important tool in defining the above

concepts. In ( [24],[5]), Aygun et al. introduced a new class of functions

from a topological space (X, τ) to a fuzzy lattice(F -lattice) L with its

* Some results of this chapter are included in the following paper.
Raji George and T.P. Johnson : The lattice structure of weakly induced principal
L-topologies. Annals of Fuzzy Mathematics and Informatics, Volume 4, Number 2,
2012
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scott topology called (completely) scott continuous functions, as a gener-

alization of (completely) lower semi continuous functions from (X, τ) to

[0, 1].

It is known that [30] lattice of L-topologies is complete, atomic and

not complemented. In [31], Jose and Johnson generalized weakly induced

spaces introduced by Martin [38] using the tool (completely) scott con-

tinuous functions and studied the lattice structure of the set W (X) of

all weakly induced L-topologies on a given set X. A related problem is

to find subfamilies in W (X) having certain properties. The collection of

all weakly induced principal L topologies WP (X) form a lattice with the

natural order of set inclusion. The concept of principal topologies in the

crisp case was studied by Steiner [58]. The lattice of principal topolo-

gies is both atomic and dually atomic. Analogously we study the lattice

structure of the set of all weakly induced principal L-topologies on a given

set X. Here we study properties of the lattice WPτ of all weakly induced

principal L topologies defined by families of (completely) scott continuous

functions with reference to τ on X. From the lattice WPτ we deduce the

lattice WP (X) of all weakly induced principal L-topologies on X. It is join

complemented. Also we prove that if L is a finite pseudocomplemented

chain or a complemented F -lattice, then WP (X) has dual atoms and if L

has neither dual atoms nor atoms, then WP (X) has no dual atoms.

7.2 Preliminaries

Let X be a nonempty ordinary set and L = (6,∨,∧,′ ) be a completely

distributive lattice with smallest element 0 and largest element 1, 0 6= 1,
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and with an order reversing invalution a → a′ (a ∈ L) called a F -lattice.

We identify the constant function from X to L with value α by α. The

fundamental definition of L-fuzzy set theory and L-topology are assumed

to be familiar to the reader in the sense of Chang [13].

A topological space is called principal if it is discrete or if it can be

written as the meet of principal ultra topologies. Steiner [58] proved that

this is equivalent to requiring that the arbitrary intersection of open sets

is open. Analogously we define principal L-topology as

Definition 7.2.1. An L-topology is called principal L-topology if

arbitrary intersection of open L subsets is an open L subset.

Definition 7.2.2. [34] An element of a lattice L is called an atom if

it is the minimal element of L\{0}.

Definition 7.2.3. [34] An element of a lattice L is called a dual atom

if it is the maximal element of L\{1}.

Definition 7.2.4. [15] A lattice is said to be bounded if it possess

smallest element 0 and largest element 1.

Definition 7.2.5. [34] A bounded lattice L is said to be join com-

plemented if for all x in L, there exists y in L such that x ∨ y = 1.

Definition 7.2.6. [34] A bounded lattice L is said to be meet com-

plemented if for all x in L, there exist y in L such that x ∧ y = 0.

Definition 7.2.7. [34] A bounded lattice is said to be complemented

if it is both join complemented and meet complemented.

Definition 7.2.8. [34] A bounded lattice L is said to be semi-
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complemented if it is either join complemented or meet complemented.

Definition 7.2.9. [22] An element p of L is called prime if p 6= 1

and whenever a, b ∈ L with a ∧ b 6 p, then a 6 p or b 6 p. The set of all

prime elements of L will be denoted by Pr (L).

Definition 7.2.10. [73] The scott topology on L is the topology S,

generated by the sets of the form {t ∈ L : t 66 p} where p ∈ pr (L). Let

(X, τ) be a topological space and f : (X, τ) → L be a function, where

L has its scott topology. We say that f is scott continuous if for every

p ∈ Pr (L), f−1{t ∈ L : t 66 p} ∈ τ .

Remark 7.2.1. When L = [0, 1], the scott topology coincides with

the topology of topologically generated spaces of Lowen [35].

The set ωL(τ) = {f ∈ LX ; f : (X, τ) → L is scott continuous } is an L-

topology. It is the largest element in Wτ , where Wτ is the lattice of weakly

induced L-topologies defined by families of scott continuous functions with

reference to τ on X. If τ is a principal topology ωL(τ) is a principal L-

topology, we can denote it by ωPL(τ). An L-topology F on X is called

an induced principal L-topology if there exist a principal topology τ on

X such that F = ωPL(τ).

Definition 7.2.11. ([24], [5]) Let (X, τ) be a topological space and

a ∈ X. A function f : (X, τ) → L, where L has its scott topology, is

said to be completely scott continuous at a ∈ X if for every p ∈ Pr (L)

with f(a) 66 p, there is a regular open neighbourhood U of a in (X, τ)

such that f(x) 66 p for every x ∈ U . That is U ⊂ f−1({t ∈ L : t 66 p})
and f is called completely scott continuous on X, if f is completely scott

continuous at every point of X.



7.3. Lattice of weakly induced principal L-topologies 103

Note.

Let F be a principal L-topology on the set X, let Fc denote the 0-1 valued

members of F , that is, Fc is the set of all characteristic mappings in F .

Then Fc is a principal L-topology on X. Define F ∗c = {A ⊂ X : µA ∈ Fc
where µA is the characteristic function of A}. The principal L-topological

space (X,Fc) is same as the principal topological space (X,F ∗c ).

Definition 7.2.12. A principal L-topological space (X,F ) is said to

be a weakly induced principal L topological space, if for each f ∈ F , f is

a scott continuous function from (X,F ∗c ) to L.

Definition 7.2.13. If F is the collection of all scott continuous

functions from (X,F ∗c ) to L, then F is an induced space and F = ωPL(F ∗c ).

7.3 Lattice of weakly induced principal L-

topologies

For a given principal topology τ on X, the family WPτ of all weakly in-

duced principal L-topologies defined by families of scott continuous func-

tions from (X, τ) to L forms a lattice under the natural order of set in-

clusion. The least upperbound of a collection of weakly induced principal

L-topologies belonging to WPτ is the weakly induced principal L-topology

which is generated by their union and the greatest lowerbound is their

intersection. The smallest element is the indiscrete L-topology, denoted

by 0 and the largest element is denoted by 1 = ωPL(τ).

Also for a principal topology τ on X, the family CWPτ of all weakly
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induced principal L topologies defined by families of completely scott con-

tinuous function from (X, τ) to L forms a lattice under the natural order

of set inclusion. Since every completely scott continuous function is scott

continuous, it follows that CWPτ is a sublattice of WPτ . We note that

WPτ and CWPτ coincide when each open set in τ is regular open.

When τ = D, the discrete topology on X, these lattices coincide with

lattice of weakly induced principal L-topologies on X.

Theorem 7.3.1. [18] The Ultra spaces on a set E are exactly the

topologies of the form S(x,U ) = ℘(E − x) ∪ U , where x ∈ E,U is an

ultrafilter on E not containing {x}.

Theorem 7.3.2. The lattice WPτ is complete.

Proof. Let S be a subset of WPτ and let G =
⋂
F∈S

F . Clearly G is a

principal L-topology. Let g ∈ G. Since each F ∈ S is a weakly induced

principal L topology, g is a scott continuous mapping from (X, (F ∗c ) to

L, that is g−1{t ∈ L : t 66 p where p ∈ Pr(L)} ∈ F ∗c for each F ∈ S.

Therefore g−1{t ∈ L : t 66 p where p ∈ Pr L} ∈
⋂
F∈S

(F ∗c . Hence g is a

scott continuous function from (X,G∗c) to L, where (X,G∗c) = (X,
⋂
F∈S

F ∗c ).

That is G ∈ WPτ and G is the greatest lower bound of S. Let K be the

set of upperbounds of S. Then K is non empty, since 1 = ωPL(τ) ∈ K.

Using the above argument K has a greatest lowerbound, say H, then

this H is a least upper bound of S. Thus every subset S of WPτ has

greatest lowerbound and least upperbound. Hence WPτ is complete.

Theorem 7.3.3. WPτ is not atomic in general.
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Proof. Atoms in WPτ are either of the form {0, 1, α} or {0, 1, µA},
where µA is the characteristic function of open subsets A of (X, τ) and α ∈
(0, 1). Let X = {a, b, c}, τ = {φ,X, {a}, {a, b}} and F = {0, 1, µ{a}, µ{a,b},

f : a→ .6 g : a→ 1 h : a→ 1

b→ .5 b→ 1 b→ .5

c→ .4, c→ .4, c→ .4,

i : a→ 1 j : a→ .6 k : a→ .6

b→ .5 b→ .5 b→ 0

c→ 0, c→ 0, c→ 0


Fc = {0, 1, µ{a}, µ{a,b}}. F ∗c = {φ,X, {a}, {a, b}} = τ and F ∈ WPτ .

But this F cannot be expressed as join of atoms. Hence Wpτ is not atomic.

Theorem 7.3.4. WPτ is not distributive.

Proof. Since every distributive lattice is necessarily modular, we prove

that WPτ is not modular. This can be illustrated with an example.

Let X be an infinite set and τ be the discrete topology D on X. Then

WPτ becomes lattice of all weakly induced principal L-topologies on X and

Π(X), the lattice of principal topologies on X(identifying its charecteristic

functions) is a sublattice of WPD. We know that Π(X) is not modular

and hence not distributive. Thus WPτ is not distributive in general.

Theorem 7.3.5. If L is a finite pseudo complemented chain or a

complemented F -lattice, then WP (X)) has dual atoms.

Proof. case 1.

Let X be a non empty set and L be a finite pseudo complemented chain.

Since L is a finite pseudo complemented chain, it has atom and dual

atom. Let τ be a dual atom in the lattice of principal topologies on X.
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Then by theorem 7.3.1, τ must be of the form S(a,U ) = ℘(X − a) ∪U ,

where a ∈ X,U is an ultrafilter not containing {a}. Since τ is a principal

topology, U is a principal ultra filter so that τ = S(a,U (b)) = ℘(X−a)∪
U (b) . Then ωPL(τ) = {f > bλ|f : (X, τ)→ L is a scott continuous function

from (X, τ) to L}, b ∈ X and λ is an atom in L . Then aα /∈ ωPL(τ) for

0 6= α ∈ L. Let β be the dual atom in L and F (aβ) = ωPL(τ) ∨ aβ. Then

F (aβ) is the ultra L-topology S(aβ) in β(X) since the simple extension

of F (aβ) by a1 is the discrete L-topology. Let G = F (aβ), Gc = the 0− 1

valued functions in G and G∗c = {A ⊂ X|µA ∈ Gc}. Then the weakly

induced principal L-topology defined by Scott continuous funcions from

(X, (G∗c) to L is a dual atom in WP (X).

Case 2.

Let X be a non empty set and L is a finite complemented F -lattice.

Since L is a complemented F -lattice, it has atoms and dual atoms. Let

τ be a dual atom in the lattice of principal topologies on X. Then by theo-

rem 7.3.1, τ must be of the form S(a,U ) = ℘(X−a)∪U , where a ∈ X,U
is an ultrafilter not containing {a}. Since τ is a principal topology, U is

a principal ultra filter so that τ = S(a,U (b)) = ℘(X − a) ∪U (b). Then

ωPL(τ) = {f > bλ|f : (X, τ) → L is a scott continuous function}, b ∈ X
and λ is an atom. Then aα /∈ ωPL(τ) for 0 6= α ∈ L . Let β1, β2, ...., βm

are dual atoms in L and F (aβ1) = ωPL(τ) ∨ aβ1, F (aβ2) = ωPL(τ) ∨
aβ2, ......, F (aβm) = ωPL(τ)∨aβm. Let Fβj is the principal L-topology gen-

erated by (m−1) F (aβi) from m F (aβi), i = 1, 2, ....m, j = 1, 2, ....m, i 6= j.

Then Fβj is the ultra L-topology Sβj in β(X) since the simple extension of

Fβj by aβj or a1 is the discrete L-topology. Take G = Fβj and let Gc = the

0−1 valued functions in G and G∗c = {A ⊂ X|µA ∈ Gc}. Then the weakly

induced principal L-topology defined by Scott continuous functions from
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(X,G∗c) to L is a dual atom in WP (X)

In both cases, WP (X) has dual atoms. Hence the theorem.

Theorem 7.3.6. If L has neither dual atoms nor atoms, then WP (X)

has no dual atoms.

Proof. Let F be any weakly induced principal L-topology other than

1. Then we claim that there exists at least one weakly induced principal

L-topology finer than F . Since F is a weakly induced principal L-topology

different from 1, F cannnot contain all characteristic functions of subsets

of X. Since L has neither dual atoms nor atoms, the collection S of Scott

continuous functions not belonging to F is infinite. If g ∈ S, then F (g),

the simple extension of F by g is a principal L-topology. Take G = F (g).

Let Gc denote the 0−1 valued members of G and G∗c = {A ⊂ X|µA ∈ Gc},
where µA is the characteristic function of A. Then there exists a weakly

induced principal L-topology H defined by Scott continuous functions

from (X,G∗c) to L. Thus for any weakly induced principall L-topology F

there exists a weakly induced principal L-topology H such that F ⊂ H 6=
1. Hence the proof of the theorem is completed.

Theorem 7.3.7. The lattice WP (X) of all weakly induced principal

L-topologies on any set X is not dually atomic in general.

Proof. This follows from theorem 7.3.6.
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7.4 Complementation problem in the lat-

tice of weakly induced principal L-topologies

Proposition 7.4.1

If L has no dual atoms, then atoms in WPτ of the form {0, 1, α} have no

complements in WPτ .

Proof. Let F = {0, 1, α} be atom in WPτ . We claim that F has no

complement. 1 is not a complement of F since 1 ∧ F 6= 0. Let P be

a weakly induced principal L-topology in WPτ other than 1. If F ⊂ P ,

then P cannot be the complement of F , since F ∧ P 6= 0. If F 6⊆ P , let

F ∨ P = G and G has the subbase {f ∧ p|f ∈ F, p ∈ P} . Then G cannot

be equal to 1. Hence P is not a complement of F .

Remark 7.4.1. The above proposition is not true for an arbitrary

lattice L. For example, take L = {0, α, 1} ordered by 0 < α < 1. If

(X, τ) is a principal L topological space and K = {0, 1, α}, then clearly

K is an atom in WPτ , when α is not a characteristic function. Let H =

{0, 1} ∪ {µA : A ∈ τ}. Then H is an element of WPτ and K ∧H = 0 and

K ∨H = 1. Hence H is a complement of K.

Theorem 7.4.1. WPτ is not complemented.

Proof. This follows from the Proposition 7.4.1.

Remark 7.4.2. When τ = D, the discrete topology on X then

WPD = WP (X), the collection of all weakly induced principal L-topologies

on X. Let ∆ denote the family of all weakly induced principal L-topologies
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defined by scott continuous functions where each scott continuous function

is a characteristic function. Then ∆ is a sublattice of WP (X) and is a

lattice isomorphic to the lattice of all principal topologies on X. The

elements of ∆ are called crisp principal topologies.

Theorem 7.4.2. The lattice of weakly induced principal L-topologies

WP (X) is not complemented.

Proof. This follows from theorem 7.4.1.

Theorem 7.4.3. Every atom in WP (X) of the form {0, 1, µA} has

complement.

Proof. Let F = {0, 1, µA}. Then F is an element of Π, lattice of

principal topologies on X. Since Π is complemented there exists τ in Π

such that τ ∨F equal to the discrete principal topology and τ ∧F equal to

the indiscrete principal topology on X. Then F ∨ ωPL(τ) = 1 = ωPL(D)

and F ∧ ωPL(τ) = 0.

Theorem 7.4.4. The lattice WP (X) of all weakly induced principal

L-topologies on any set X is semi complemented.

Proof. Let F ∈ WP (X). Since F is weakly induced principal L-

opology, there is a principal topology τ = F ∗c on X such that each element

f ∈ F is a scott continuous function from (X,F ∗c ) to L. Since the lattice

of principal topologies is complemented, we can find a principal topology

τ ′ such that F ∨ωPL(τ ′) = 1 = ωPL(D) where D is a discrete topology and

F ∧ ωPL(τ ′) need not be equal to 0, the indiscrete principal L-topology
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on X. Thus every F in WP (X) has a join complement. Hence WP (X) is

semi complemented.



Chapter 8

Lattice of Stratified Principal

L-topologies

8.1 Introduction

In this chapter we investigate the lattice structure of the set of all strati-

fied principal L-topologies on a given set X. In [11], Birkhoff described a

technique of comparison of topologies and noted that the set of all topolo-

gies on a fixed set forms a complete lattice with the natural order of set

inclusion. In [24], Aygün, Warner and Kundri introduced a new class

of functions from a topological space (X, τ) to a fuzzy lattice L with its

Scott topology called Scott continuous functions as a generalization of

lower semi continuous functions from (X, τ) to [0, 1]. It is known [30] that

* Some results of this chapter are included in a paper accepted for publication in
International journal of Fuzzy Information and Engineering, Springer.
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the lattice of L-topologies on a given set X is complete and atomic. In

[32], Jose and Johnson studied the lattice structure of the set L(X) of all

stratified L-topologies on a given set X. A related problem is to find sub-

families in L(X) having certain properties. The collection of all stratified

principal L-topologies SP (X) forms a lattice with the natural order of set

inclusion. The concept of principal topology in the crisp case was studied

by Steiner [58]. The lattice of principal topologies is both atomic and

dually atomic. Analogously, we study the lattice structure of the set of all

stratified principal L-topologies SP (X) on a given set X. This lattice has

atoms if and only if the membership lattice L has atoms. If the lattice

SP (X) has dual atoms, then L has dual atoms and atoms. Also if L is

a finite pseudocomplemented chain or a Boolean lattice, then SP (X) has

dual atoms. It is also complete and join-complemented.

8.2 Preliminaries

Let X be a non empty set and L be a completely distributive lattice with

an order reversing involution called F -lattice [34]. We denote the constant

function in LX taking the value α ∈ L by α. Here we call L-fuzzy subsets

as L-subsets and a subset F of LX is called an L-topology in the sense of

Chang [13] and Goguen [23] as in [34], if

i. 0, 1 ∈ F
ii. f, g ∈ F ⇒ f ∧ g ∈ F
iii. fi ∈ F for each i ∈ I ⇒ ∨i∈Ifi ∈ F .
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A subset F of LX is called a stratified L-topology, if

i. α ∈ F for all α ∈ L
ii. f, g ∈ F ⇒ f ∧ g ∈ F
iii. fi ∈ F for each i ∈ I ⇒ ∨i∈Ifi ∈ F .

(The idea goes up to Lowen [35], while the term “stratified” has appeared

for the first time in [42]). Steiner [58] proved that a topology τ is a

principal topology if and only if arbitrary intersections of open sets are

open(such kind of spaces are also called Alexandroff spaces [1]). Analo-

gously, we define principal L-topology.

Definition 8.2.1. An L-topology is called principal L-topology pro-

vided that arbitrary intersections of open L-subsets are open L-subsets.

Example 8.2.1. Let X be an infinite set. Then F = {f ∈ LX : α 6

f} together with 0, where x ∈ X and α is an atom in L, is a stratified

principal L-topology.

Example 8.2.2. Let X = R and F = {f ∈ LX : f(x) > 0 for all

but finite number of points of X} together with 0. Then F is a stratified

L-topology, which is not a principal L-topology.

Definition 8.2.2. A principal L-topology is called stratified principal

L-topology provided that it contains every constant L-subset .

Definition 8.2.3. An element p of L is called prime if p 6= 1 and

whenever a, b ∈ L with a ∧ b 6 p, then a 6 p or b 6 p. The set of all

prime elements of L will be denoted Pr(L).

Definition 8.2.4. [73] The Scott topology on L is the topology S,

generated by the sets of the form {t ∈ L : t � p where p ∈ Pr(L)}. Let
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(X, τ) be a topological space and let L be a fuzzy lattice. f : (X, τ)→ L

is said to be Scott continuous if f : (X, τ) → (L, S) is continuous, i.e., if

for every p ∈ Pr(L), f−1{t ∈ L : t � p} ∈ τ .

Remark 8.2.1. When L = [0, 1], the Scott topology coincides with

the topology of topologically generated spaces of Lowen [35]. The set

ωL(τ) = {f ∈ LX |f : (X, τ) → L is Scott continuous} is a stratified L-

topology. If τ is a principal topology, then ωL(τ) is a stratified principal

L-topology, which is denoted ωPL(τ). A stratified principal L-topology F

on X is called induced provided that there exists a principal topology τ

on X such that F = ωPL(τ).

8.3 Lattice of Stratified Principal L-topologies

Let SP (X) = {F |F is a stratified principal L-topology on X} and Π is

the lattice of principal topologies on X. The family SP (X) of all strati-

fied principal L-topologies forms a lattice under the natural order of set

inclusion. The smallest stratified L-topology is the indiscrete L-topology,

with all constant L-subsets, is denoted 0 and the largest stratified princi-

pal L-topology is the discrete L-topology, consisting of all L-subsets and

is denoted 1.

Definition 8.3.1. [10] A lattice L is said to be join-complemented

provided that for every x in L, there exists y in L such that x ∨ y = 1.

Definition 8.3.2. [10] A lattice L is said to be meet-complemented

provided that for every x in L, there exists y in L such that x ∧ y = 0.
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Definition 8.3.3. [10] A lattice L is said to be complemented pro-

vided that for every x in L, there exists y in L such that x ∧ y = 0 and

x ∨ y = 1.

Definition 8.3.4. [10] A lattice L is said to be semi-complemented

provided that it is either join-complemented or meet-complemented.

Theorem 8.3.1. [18] The Ultra spaces on a set E are exactly the

topologies of the form S(x,U ) = ℘(E − x) ∪ U , where x ∈ E,U is an

ultrafilter on E not containing {x}.

Theorem 8.3.2. [58] The lattice of topologies Σ on a set E is dis-

tributive if E has fewer than three elements. If E has three or more

elements, Σ is not even modular.

Theorem 8.3.3. [58] The lattice Π of principal topologies is a com-

plemented lattice.

Theorem 8.3.4. The lattice of stratified principal L-topologies SP (X)

on a set X is complete.

Proof. Let K be any subset of SP (X). Then K has the greatest lower

bound and the least upper bound, since arbitrary intersections of stratified

principal L-topologies are stratified principal L-topologies and SP (X) has

the greatest element 1.

Theorem 8.3.5. The collection S
′
P (X) of all induced stratified prin-

cipal L-topologies on any set X is a complete sublattice of the complete

lattice SP (X).

Proof. Clearly S
′
P (X) is a subset of SP (X). Let F,G ∈ S ′

P (X). Then
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there exists topologies τ and τ
′

in Π such that F = ωPL(τ) and G =

ωPL(τ
′
). Then F ∨ G = ωPL(τ ∨ τ ′

) and F ∧ G = ωPL(τ ∧ τ ′
). Hence

F ∨G and F ∧G are in S
′
P (X) so that S

′
P (X) is a sublattice of SP (X).

Let H be any subset of S
′
P (X). Then H has the greatest lower bound

since arbitrary intersections of principal topologies are principal topologies

so that arbitrary intersections of induced stratified principal L-topologies

are induced stratified principal L-topologies.

Let K be the set of upper bounds of H. Then K is nonempty, since

1 ∈ K. Using the above argument, K has the greatest lower bound, say

M . Then this M is the least upper bound of H. Thus every subset H

of SP
′
(X) has the greatest lower bound and least upper bound. Hence

S
′
P (X) is a complete sublattice of SP (X).

Proposition 8.3.1[72]

For a stratified L-topology (X,ωL(τ)), the family β = {fαA|A ∈ τ, α ∈ L}

where fαA(x) =

{
α if x ∈ A
0 otherwise

is a base for ωL(τ).

Proposition 8.3.2. [72]

For a stratified L-topology (X,ωL(τ)), the family S = {µA|µA is the char-

acteristic function of the open set A in τ} ∪ {α|α ∈ L} is a subbase for

ωL(τ)

Theorem 8.3.6. The collection S
′
P (X) of all induced stratified prin-

cipal L-topologies on any set X forms a lattice isomorphic to Π.

Proof. Let X be a nonempty set and L be an F-lattice with its Scott
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topology. Define θ : Π→ S
′
P (X) by θ(τ) = ωPL(τ), where τ is a principal

topology on X.

Let τ1 and τ2 are two principal topologies on X

τ1 ∨ τ2 = principal topology generated by τ1 and τ2

ωPL(τ1)) = {f |f is a Scott continuous function from (X, τ1)→ L}

= L− topology generated by {µA|A ∈ τ1} ∪ {α|α ∈ L}

ωPL(τ2) = {f |f is a Scott continuous function from (X, τ2)→ L}

= L− topology generated by {µA|A ∈ τ2} ∪ {α|α ∈ L}

ωPL(τ1 ∨ τ2) = {f |f is a Scott continuous function from (X, (τ1 ∨ τ2)→ L}

= L− topology generated by {µA|A ∈ (τ1 ∨ τ2)} ∪ {α|α ∈ L}

ωPL(τ1) ∨ ωPL(τ2) = stratified principal L− topology generated by

ωPL(τ1) and ωPL(τ2)

= L− topology generated by {µA|A ∈ τ1}∪

{µA|A ∈ τ2} ∪ {α|α ∈ L}

= L− topology generated by {µA|A ∈ (τ1 ∨ τ2)} ∪ {α|α ∈ L}

= {f |f is a Scott continuous function from (X, (τ1 ∨ τ2)→ L}

= ωPL(τ1 ∨ τ2)

Hence θ(τ1 ∨ τ2) = θ(τ1) ∨ θ(τ2)
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Similarly

ωPL(τ1 ∧ τ2) = {f |f is a Scott continuous function from (X, τ1 ∧ τ2)→ L}

= L− topology generated by {µA|A ∈ τ1 ∧ τ2} ∪ {α|α ∈ L}

= L− topology generated by {µA|A ∈ τ1} ∪ {α|α ∈ L}∧

L− topology generated by {µA|A ∈ τ2} ∪ {α|α ∈ L}

= {f |f is a Scott continuous function from (X, τ1)→ L}∧

{f |f is a Scott continuous function from (X, τ2)→ L}

= ωPL(τ1) ∧ ωPL(τ2)

Hence θ(τ1 ∧ τ2) = θ(τ1) ∧ θ(τ2)

τ1 6= τ2 ⇒ {f |f : (X, τ1)→ (L, S) is Scott continuous} 6= {f |f : (X, τ2)→ (L, S)

is Scott continuous}

⇒ ωPL(τ1) 6= ωPL(τ2)

⇒ θ(τ1) 6= θ(τ2)

Hence θ is one-one. Corresponding to an induced stratified principal L-

topology ωPL(τ) in S
′
P (X), there is a topology τ in Π such that θ(τ) =

ωPL(τ). Hence θ is on to. So θ is an isomorphism.

Remark 8.3.1. Since S
′
P (X) is isomorphic to Π, S

′
P (X) possesses

all the properties of Π. That is S
′
P (X) is complete, atomic, dually atomic,

complemented and not modular since Π has these properties [58].

Theorem 8.3.7. The lattice of stratified principal L-topologies SP (X)

on a set X is not modular.
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Proof. Lattice of principal L-topologies Π is isomorphic to S
′
P (X) and

Π is not modular [58]. So S
′
P (X) is not modular. Since S

′
P (X) is a

complete sublattice of SP (X), SP (X) is not modular.

Theorem 8.3.8. If L has atoms, then the lattice of stratified princi-

pal L-topologies SP (X) on a set X has atoms.

Proof. Let α be an atom in L and let A be a proper subset of X. The

stratified principal L-topology of the form Fα
A , where Fα

A is generated by 0∪

fαA, where 0 is the zero element of SP (X) and fαA(x) =

{
α if x ∈ A
0 otherwise

for each atom α in L, is an atom in SP (X).

Theorem 8.3.9. [62] Let (X,F ) and (X,G) be two fuzzy topological

spaces on X. Then G covers F if and only if G = F (g) for every g ∈ G−F ,

where F (g) is the simple extension of F by g.

Theorem 8.3.10. If the lattice of stratified principal L-topologies

SP (X) on a set X has atoms, then L has atoms.

Proof. Assume L has more than two elements. Let F be an atom in

SP (X). Since F is an atom, F is a cover of 0(zero element of SP (X)). So

by theorem 8.3.9 there exists an element g in F − 0 such that F = 0(g),

the simple extension of 0 by g. i.e 0(g) = {h∨(k∧g)|h, k ∈ 0, g /∈ 0}. This

g must be of the form fαA, where A ⊂ X,α is an atom in L. Otherwise we

can find a stratified principal L-topology G smaller than F and greater

than 0, which is a contradiction to the hypothesis.

Combining theorem 8.3.8 and theorem 8.3.10, we get the following
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Theorem.

Theorem 8.3.11. The lattice of stratified principal L-topologies

SP (X) on a set X has atoms if and only if L has atoms.

Remark 8.3.2. Atoms in SP (X) = 0(fαA), where 0 = {λ|λ ∈ L}.
Atoms in S

′
P (X) = ωPL(τ), where τ is an atom in Π, lattice of principal

topologies. Atoms in S
′
P (X) and SP (X) are different. Atoms in S

′
P (X)

is independent of atoms in L. But SP (X) has atoms if and only if L has

atoms.

Theorem 8.3.12. The lattice of stratified principal L-topologies

SP (X) on a set X is not atomic in general.

Proof. Follows from theorem 8.3.11.

Theorem 8.3.13. If the lattice of principal L-topologies SP (X) on

a set X has dual atoms, then L has dual atoms and atoms.

Proof. Case 1.

Let X be a non empty set and L be a finite pseudo complemented chain.

If S = S(a,U (bλ)) = {f |f(a) = 0} ∪ {f |f > bλ}, then the principal

ultra L-topology = S(a,U (bλ), aβ) = S(aβ) is the simple extension of S

by aβ, i.e., S(aβ) = {f ∨ (g ∧ aβ), f, g ∈ S, aβ /∈ S}, where a, b ∈ X,λ
and β are the atom and dual atom in L respectively (from chapter 2). So

S(aβ) is a dual atom in the lattice of principal L topologies. Since the

simple extension of S(aβ) by the L point a1 is 1(discrete L-topology), by

theorem 8.3.9, 1 is a cover of S(aβ).
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Suppose that F is a dual atom in SP (X). Then F is of the form S(aβ)

= S(a,U (bλ), aβ) and β must be the dual atom and λ must be the atom

in L. Otherwise there exists an element G greater than F and less than

1. Which is a contradiction to the hypothesis.

Case 2.

Let X be a non empty set and L be a finite Boolean lattice.

If S = S(a,U (bλ)) = {f |f(a) = 0} ∪ {f |f > bλ}, where a, b ∈
X,λ is an atom, then a principal ultra L-topology Sβj(a,U bλ)) = Sβj

=L-topology generated by any (m − 1) S(aβi) among m S(aβi), i =

1, 2, ....m, j = 1, 2, ....m, i 6= j if there are m dual atoms β1, β2, ...., βm,

where S(aβi) is the simple extension of S by (aβi), i.e, S(aβi) = {f ∨ (g∧
aβi), f, g ∈ S, aβi /∈ S}. m can be assumed infinite value (from chapter

2). So S(βj) is a dual atom in the lattice of principal L topologies. Since

the simple extension of S(βj) by the L point aβj is 1(discrete L-topology),

by theorem 8.3.9, 1 is a cover of Sβj.

Suppose that F is a dual atom in β(X). Then F is of the form Sβj =

Sβj(a,U bλ)) and β1, β2, .... must be dual atoms and λ must be atom in

L. Otherwise there exists an element G greater than F and less than

1. Which is a contradiction to the assumption that F is a dual atom in

SP (X).

So in either case if SP (X) has dual atoms, then L has dual atoms and

atoms . Hence the proof of the theorem is completed.

Theorem 8.3.14. If L is a finite pseudo complemented chain or a

Boolean lattice, then SP (X) has dual atoms.

Proof. Case 1.
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Let X be a non empty set and L be a finite pseudo complemented chain.

Since L is a finite pseudo complemented chain, it has atom and dual

atom. Let τ be a dual atom in the lattice of principal topologies on X.

Then by theorem 8.3.1, τ must be of the form S(a,U ) = ℘(X − a) ∪U ,

where a ∈ X,U is an ultrafilter not containing {a}. Since τ is a principal

topology, U is a principal ultra filter so that τ = S(a,U (b)) = ℘(X−a)∪
U (b) . Then ωPL(τ) = {f > bλ|f : (X, τ)→ L is a scott continuous function

from(X, τ) to L}, b ∈ X and λ is an atom in L . Then ωPL(τ) is a strat-

ified principal L-topology and aα /∈ ωPL(τ) for 0 6= α ∈ L. Let β be the

dual atom in L and F = ωPL(τ) ∨ aβ. Then F is the ultra L-topology

S(aβ) in SP (X) since the simple extension of F by a1 is the discrete L-

topology.

Case 2.

Let X be a non empty set and L be a finite Boolean lattice.

Since L is a Boolean lattice, it has atoms and dual atoms. Let τ be a

dual atom in the lattice of principal topologies on X. Then by theorem

8.3.1, τ must be of the form S(a,U ) = ℘(X−a)∪U , where a ∈ X,U is an

ultrafilter not containing {a}. Since τ is a principal topology, U is a princi-

pal ultra filter so that τ = S(a,U (b)) = ℘(X−a)∪U (b). Then ωPL(τ) =

{f > bλ|f : (X, τ)→ L is a scott continuous function from(X, τ) to L}, b ∈
X and λ is an atom. Then aα /∈ ωPL(τ) for 0 6= α ∈ L. Let β1, β2, ...., βm

are dual atoms in L and F (aβ1) = ωPL(τ) ∨ aβ1, F (aβ2) = ωPL(τ) ∨
aβ2, ......, F (aβm) = ωPL(τ) ∨ aβm. Let Fβj is the L-topology generated

by (m−1) F (aβi) from m F (aβi), i = 1, 2, ....m, j = 1, 2, ....m, i 6= j. Then

as in case 1, Fβj is the ultra L-topology Sβj in β(X) since the simple

extension of Fβj by aβj is the discrete L-topology.

In both cases, SP (X) has dual atoms. Hence the theorem.
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Theorem 8.3.15. The lattice of stratified principal L-topologies

SP (X) on a set X is not dually atomic in general.

Proof. Follows from theorem 8.3.14.

8.4 Complementation problem in the lat-

tice of stratified principal L-topologies

Theorem 8.4.1. If F is any stratified principal L-topology on X

such that the topology corresponding to the characteristic functions in F

is neither discrete nor indiscrete, then F has at least one join-complement.

Proof. Let τ be the principal topology corresponding to the character-

istic functions in F . Since the lattice Π is complemented [58], we can find

τ
′

in Π such that τ ∧ τ ′
= 0 and τ ∨ τ ′

= 1 in Π. Then F ∨ ωPL(τ
′
) = 1

and F ∧ ωPL(τ
′
) 6= 0 in SP (X).

Theorem 8.4.2. The lattice of stratified principal L-topologies SP (X)

on a set X is semi-complemented.

Proof. Let F be any stratified principal L-topology on X and τ be the

topology corresponding to the characteristic functions in F . Let τ
′

be a

complement of τ in Π. Then F ∨ ωPL(τ
′
) = 1 in SP (X).

Theorem 8.4.3. If F is an induced stratified principal L-topology

SP (X) on X, then F has at least one complement in SP (X).
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Proof. Since F is induced, there exists a topology τ in Π such that

ωPL(τ) = F . Since Π is complemented, there exists at least one topology

τ
′

on Π such that τ ∧ τ ′
= 0 and τ ∨ τ ′

= 1 in Π. Then F ∨ ωPL(τ
′
) = 1

and F ∧ ωPL(τ
′
) = 0 in SP (X).

Remark 8.4.1. We have analyzed the lattice structure of the set

of all stratified principal L topologies on an arbitrary set X and have

obtained characterization for certain properties of it. This study reveals

more about the interplay between L-topology and lattice theory. Also for

a given principal topology τ on X, the family Fpτ of all stratified principal

L-topologies defined by families of Scott continuous functions from (X, τ)

to L, forms a lattice under the natural order of set inclusion. From this

lattice, we can deduce properties of SP (X) and S
′
P (X).



Chapter 9

Lattice of L-closure operators

9.1 Introduction

In 1965 Zadeh [77] introduced fuzzy sets as a generalization of ordinary

sets. After that Chang [13] introduced fuzzy topology and that led to the

discussion of various aspects of L-topology by many authors. The Čech

closure spaces introduced by Čech. [12] is a generalization of the topo-

logical spaces. The theory of fuzzy closure spaces has been established by

Mashhour and Ghanim [39] and Srivastava et. al ([45],[54]). The defini-

tion of Mashhour and Ghanim is an analogue of Čech closure spaces and

Srivastava et. al. have introduced it as an analogue of the definition of

closure space given by Dikranjan et. al.[16]. Based on [54], Rekha Srivas-

* Some results of this chapter are included in the following paper.
Raji George and T.P. Johnson : On the Lattice of L-closure operators, International
Journal of Science and Research, Volume 2, Number 3, 2013

125



126 Chapter 9. Lattice of L-closure operators

tava and Manjari Srivastava studied the subspace of a fuzzy closure space.

The notion of T0-fuzzy closure spaces and T1 fuzzy closure spaces were

also introduced in [45]. In [43] Ramachandran studied some properties

of lattice of closure operators. In [28] Johnson studied some properties

of the lattice L(X) of all fuzzy closure operators on a fixed set X. In

[76] Wu-Neng Zhou introduced the concept of L-closure spaces and the

convergence in L-closure spaces. In this chapter we study properties of

the lattice LC(X) of L-closure operators and L-closure spaces which is a

generalization of the concept of fuzzy closure spaces. Here we proved that

the complete lattice LC(X) is not modular. Also we identify the infra

L-closure operator and ultra L-closure operator and establish the relation

between ultra L-topology and ultra L-closure operator. We proved that

an L-closure operator is an ultra L-closure operator if and only if it is the

L-closure operator associated with an ultra L-topology. Also proved that

infra L-closure operators are less than or equal to any non principal ul-

tra L-closure operator and no non principal ultra L-closure operator has a

complement so that the lattice of L-closure operators is not complemented

in general.

9.2 Preliminaries

A completely distributive lattice L is called a F -lattice, if there is an order

reversing involution from L to L. Let X be any nonempty set and L is a

F -lattice. The fundamental definition of L-fuzzy set theory and L-fuzzy

topology are assumed to be familiar to the reader as in [34]. Here we call

L-fuzzy subsets as L subsets and L-fuzzy topology as L-topology.
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Definition 9.2.1. [39] A Čech fuzzy closure operator on a set X is

a function χ : IX → IX , satisfying the following three axioms

(i). χ(0) = 0,

(ii). f 6 χ(f) for every f in IX ,

(iii). χ(f ∨ g) = χ(f) ∨ χ(g) where I = [0, 1].

For convenience it is called fuzzy closure operator on X and (X,χ)

is called fuzzy closure space. In [76] Wu-Neng Zhou defined L-closure

operator as follows.

Definition 9.2.2. A mapping C : LX → LX is called an L-closure

operator or an L-closure, if it satisfies the following conditions for any

A,B ∈ LX :

(i). C(0X) = 0X ,

(ii). A 6 C(A),

(iii). A 6 B implies C(A) 6 C(B),

(iv). C(C(A)) = C(A).

But in this chapter we take the definition of L-closure operator as a

generalization of fuzzy closure operator in [39]
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Definition 9.2.3. Let X be a non empty set and L be a F lattice.

An L-closure operator on LX is a mapping ψ : LX → LX satisfying the

following conditions:

(i) ψ(0) = 0,

(ii) f 6 ψ(f),

(iii) ψ(f ∨ g) = ψ(f) ∨ ψ(g) for every f, g ∈ LX .

The pair (X,ψ) is called an L-closure space. An L-subset f of X is

said to be an L-closed set in (X,ψ) if ψ(f) = f . An L-subset f of X is

open if its complement is closed in (X,ψ). The set of all open L-subsets

of (X,ψ) form an L-topology on X called the L-topology associated with

the L-closure operator ψ.

Let F be an L-topology on a set X. Then a function ψ : LX → LX

defined by ψ(f) = f̄ for all f ∈ LX , where f̄ denotes the closure of f

with respect to F is called the L-closure operator associated with the

L-topology F .

An L-closure operator on a set X is called L-topological if it is the L-

closure operator associated with an L-topology on X. That is ψ(ψ(f)) =

ψ(f) for all f ∈ LX . Note that different L-closure operators can have the

same associated L-topology. But different L-topologies cannot have the

same associated L-closure operator.

Example 9.2.1. Let X = {a, b, c}, L = {0, α, β, 1}. Let ψ1 : LX →
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LX defined by

ψ1(f) =


0 if f = 0

β if f(x) < β, ∀x ∈ X
1 otherwise

Then ψ1 is a fuzzy closure operator.

ψ2 : LX → LX defined by

ψ2(f) =

{
0 if f = 0

1 otherwise

Then ψ2 is a fuzzy closure operator.

Associated fuzzy topologies of ψ1 and ψ2 are same, which is the indiscrete

fuzzy topology.

9.3 Lattice of L-closure operators

Let ψ1 and ψ2 be L-closure operators on X. Then ψ1 6 ψ2 if and only if

ψ2(f) 6 ψ1(f) for every f in LX . The relation 6 defined above is a partial

order on the set of all L-closure operators on LX . We denote the poset by

LC(X). Then LC(X) is a lattice. The L-closure operator D on X defined

by D(f) = f for every f in LX is called the discrete L-closure operator.

The L-closure operator I on X defined by I(f) =

{
0 if f = 0

1 otherwise
is

called the indiscrete L-closure operator.

Remark 9.3.1. D and I are the L-closure operators associated with
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the discrete and indiscrete L-topologies on X respectively. Moreover D

is the unique L-closure operator whose associated L-topology is discrete.

Also I and D are the smallest and the largest elements of LC(X) respec-

tively.

Theorem 9.3.1. LC(X) is a complete lattice.

Proof. It is enough to show that every subset of LC(X) has greatest

lower bound in LC(X). Let S = {χj|j ∈ J} be a subset of LC(X). Then

sup
j∈J
{χj(f)} = inf

j∈J
{χj} is an L-closure operator and is the greatest lower

bound of S in LC(X).

Definition 9.3.1. [20] A lattice L is called modular if it satisfies the

condition x > z implies that (x ∧ y) ∨ z = x ∧ (y ∨ z),∀x, y, z ∈ L.

Lattice of L closure operators LC(X) is modular if and only if χ > η ⇒
χ ∧ (ψ ∨ η) = (χ ∧ ψ) ∨ η,∀χ, ψ, η ∈ LC(X).

Theorem 9.3.2. LC(X) is not modular.

Proof. Let X be any set and x ∈ X. Define ψx, χx, ηx from LX → LX

by

ψx(0) = 0

ψx(f)(y) =

{
f(y) if y 6= x

1 if y = x

χx(0) = 0

χx(f)(y) =

{
1 if y 6= x

f(y) if y = x
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ηx(0) = 0

ηx(f)(y) =

{
1 if y 6= x

β if y = x
and β > f(y)

Then χx(f)(y) 6 ηx(f)(y),∀y. Hence χx > ηx.

χx ∧ ψx = inf(χx, ψx)

= sup(χx(f)(y), ψx(f)(y))

= 1

(χx ∧ ψx) ∨ ηx = inf(1, ηx(f)(y))

= f(y)

ψx ∨ ηx = sup(ψx, ηx)

= inf(ψx(f)(y), ηx(f)(y))

= f(y)

χx ∧ (ψx ∨ ηx) = sup(χx(f)(y), f(y))

= 1

There fore χx ∧ (ψx ∨ ηx 6= (χx ∧ ψx) ∨ ηx
So LC(X) is not modular.

Definition 9.3.2. An L-closure operator on X is called an infra L-

closure operator if the only L-closure operator on X strictly smaller than

it is I.

Let X be any set and a, b ∈ X such that a 6= b. Define ψa,b : LX −→

LX by ψa,b(f) =


f if f = 0

gα,b if f = aα

1 otherwise

,
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α is a dual atom in L and gα,b is defined by gα,b(a) =

{
1 if a 6= b

α if a = b

In the topological context Ramachandran [43] proved that a closure oper-

ator on X is an infra closure operator if and only if it is of the form Va,b

for some a, b in X, a 6= b, where Va,b is defined by

Va,b(A) =


φ if A = φ

X − {b} if A = {a}
X otherwise

Analogously in the L-topological context we prove the following theorem.

Theorem 9.3.3. An L-closure operator is an infra L-closure operator

if and only if it is of the form ψa,b for some a, b ∈ X, a 6= b.

Proof. Let ψ be an L-closure operator on X strictly smaller than ψa,b,

then ψ(aα) will be strictly greater than ψa,b(aα) = gα,b and hence equal

to 1 so that ψ(f) = 1,∀f ∈ LX other than 0. Hence ψ = I. Thus all

L-closure operators of the form ψa,b are infra L-closure operators.

Conversely let ψ be any L closure operator other than I. Then we

can find a non zero L-subset f such that ψ(f) 6= I(f) = 1 (ie ψ(f) 6= 1)

and elements aα, bβ such that aα 6 f and bβ not in ψ(f). Then bβ is

not an element of ψ(aα). That is bβ � ψ(aα) ⇒ gα,b � ψ(aα). That is

ψa,b(aα) � ψ(aα). Also ψa,b(k) = 1 for every nonzero L-subset k other

than aα. So ψa,b(f) > ψ(f),∀f . That is ψa,b 6 ψ. Thus all infra L-closure

operators are of the form ψa,b for a, b ∈ X such that a 6= b.

Remark 9.3.2. When L = I there is no infra L-closure operator.
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Definition 9.3.3. An L-topology F on X is an ultra L-topology if

the only L-topology on X strictly finer than F is the discrete L-topology.

Let X be a non empty set and L is a finite pseudo complemented chain.

If S = S(a,U (bλ)) = {f |f(a) = 0} ∪ {f |f > bλ} , then a principal ultra

L-topology = S(a,U (bλ), aβ) = S(aβ), which is the simple extension of

S by aβ, i.e,S(aβ) = {f ∨ (g ∧ aβ), f, g ∈ S, aβ /∈ S}, where a, b ∈ X,λ
and β are the atom and dual atom in L respectively.

Let X be a nonempty set and L is a finite Boolean lattice. If S =

S(a,U (bλ)) = {f |f(a) = 0} ∪ {f |f > bλ}, where a, b ∈ X,λ is an

atom,then a principal ultra L-topology denoted by Sβj = L-topology

generated by any (m − 1) S(aβi) among m S(aβi), i = 1, 2, , ....m, j =

1, 2, ....m, i 6= j if there are m dual atoms β1, β2, , ..., βm, where S(aβi) =

simple extension of S by aβi

Let X be an infinite set and L is a finite pseudo complemented chain.

If S = S(a,U ) = {f |f(a) = 0} ∪ U where U is a non principal ultra

L-filter not containing aλ, 0 6= λ ∈ L. Then the non principal ultra L-

topology = S(a,U , aβ) = S(aβ), is the simple extension of S by aβ,

where a ∈ X, β is the dual atom in L.

Let X be an infinite set and L is a finite Boolean lattice. If S =

S(a,U ), a ∈ X, then a non principal ultra L-topology Sβj = L-topology

generated by any (m − 1) S(aβi) among m S(aβi), i = 1, 2, ....,m, j =

1, 2, ....,m, i 6= j, if there are m dual atoms β1, β2, ....., βm, where S(aβi) =

simple extension of S by aβi.

If X is a non empty set and L is a diamond lattice {0, α, β, 1} then the
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L-closure operator ψ associated with an ultra L-topology S(a,U , aβ), a ∈
X, is given by

ψ(f) =

{
f if f = 0 or aα 6 f or cf ∈ U

f ∨ aα otherwise

In topological context it is known that a closure operator on X is an

ultra closure operator if and only if it is the closure operator associated

with some ultra topology on X and in L-topological context we prove the

following theorem.

Theorem 9.3.4. Let X is a non empty set and L is a diamond

lattice {0, α, β, 1}. Then an L-closure operator on X is an ultra L-closure

operator if and only if it is the L-closure operator associated with some

ultra L-topology on X .

Proof. Let S(a,U , aβ) be an ultra L-topology on X and ψ be the

associated L-closure operator. Let ψ
′

be an L-closure operator on X

strictly larger than ψ. Then there exists an L subset f of X such that

ψ
′
(f) < ψ(f). But ψ

′
(f) 6= ψ(f). Then ψ(f) = f ∨ aα andψ

′
(f) = f ,

which means that complement of f is open in (X,ψ
′
) and not open in

(X,ψ). Also every open set in (X,ψ) is open in (X,ψ
′
) . Thus the

associated L- topology of ψ
′
is strictly larger than the ultra L-topology and

hece is discrete. Thus ψ
′

= D. Hence the L-closure operator associated

with an ultra L-topology is an ultra L-closure operator.

Next to prove that every ultra L-closure operator is the L-closure op-

erator associated with an ultra L-topology.

Let ψ be an L-closure operator on X other than D. It suffices to prove
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that there exists an L-closure operator associated with an ultra L-topology

larger than ψ. Since ψ 6= D there exists an element a of X such that aα

is not open in (X,ψ). Now consider S = {f |f(a) = 0} ∪ U where U is

an ultra L-filter not containing aλ, 0 6= λ ∈ L. Then aα is not an element

of S. Now consider the ultra L-topology S(a,U , aα) = simple extension

of S byaα. Let ψ
′

be the L-closure operator associated with it . Then

ψ 6 ψ
′

. Otherwice if ψ
′
6 ψ, then every open set in ψ

′
is open in ψ. But

aα is open in ψ
′

. So it must be open in ψ, which is a contradiction.

Remark 9.3.3. In a similar way we can prove the above theorem

when L is a finite pseudo complemented chain or other Boolean lattices.

Definition 9.3.4. Let x ∈ X,λ ∈ L. An L point xλ is defined by

xλ(y) =

{
λ if y = x

0 if y 6= x
where 0 < λ 6 1

Definition 9.3.5. An L-closure operator ψ on X is T1 if every L

point is closed. That is ψ(xλ) = xλ,∀x ∈ X,λ ∈ L.

Definition 9.3.6. [62] Let ψ1 = {f |ψ(f)) = f}. A fuzzy closure

space (X,ψ) is called quasi-separated if and only if for any two fuzzy points

xλ and yγ with xλ ∈ C(yγ), there exist f, g ∈ ψ1 such that xλ ∈ f 6 C(yγ)

and yγ ∈ g 6 C(xλ).

Theorem 9.3.5. [62]

A fuzzy closure space is quasi-separated if and only if every fuzzy point

in X is Čech-fuzzy closed.

Proposition 9.3.1.

Let ψ1 = {f ∈ LX |ψ(f)) = f}. An L-closure space (X,ψ) is said to be T1
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if for every pair of distinct L points xλ and yγ, there exist f, g ∈ ψ1 such

that xλ ∈ f 6 C(yγ) and yγ ∈ g 6 C(xλ).

Proof. Necessary part

Suppose that the L-closure operator ψ is T1. Then by definition ψ(xλ) =

xλ Then by theorem 9.3.5 the L-closure space(X,ψ) is quasi separated.

Hence for every pair of distinct L points xλ and yγ, there exist f, g ∈ ψ1

such that xλ ∈ f 6 C(yγ) and yγ ∈ g 6 C(xλ).

Sufficient part

Suppose that for every pair of distinct L points xλ and yγ, there exist

f, g ∈ ψ1 such that xλ ∈ f 6 C(yγ) and yγ ∈ g 6 C(xλ). Then by

definition (X,ψ) is quasi separated. Then by theorem 9.3.5, (X,ψ) is a

T1L-closure space.

Proposition 9.3.2. [62]

An L-closure space (X,ψ) is T1 if and only if the associated L topological

space (X,F ) is T1

Theorem 9.3.6. Infra L-closure operators are less than or equal to

any non principal ultra L-closure operator.

Proof. Let ψa,b be an infra L-closure operator and ψ be a non principal

ultra L-closure operator. Since ψa,b(f) = 1 for all f in LX other than 0

and aα, it is enough to show that ψ(aα) < ψa,b(aα) = gα,b. Since all non

principal ultra L-topologies are T1, the corresponding L-closure operators

are T1 by the above proposition. Hence by the definition ψ(aα) = aα.

That is aα < gα,b ⇒ ψ(aα) < ψa,b(aα)

That is ψ(f) 6 ψa,b(f)∀f ⇒ ψa,b 6 ψ.
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Theorem 9.3.7. No non principal ultra L-closure operator has a

complement.

Proof. Assume the contrary. Let ψ be a non principal ultra L-closure

operator with a complement ψ
′

in the lattice LC(X). Since ψ
′

is not

indiscrete there exists an infra L-closure operator ψa,b 6 ψ
′

by the proof

of the theorem 9.3.3. But ψa,b 6 ψ by theorem 9.3.6. This contradicts the

fact that ψ and ψ
′

are complements in the lattice LC(X) and hence the

proof of the theorem.

Remark 9.3.4. The lattice of L-closure operators is not comple-

mented in general.

If L is a diamond lattice, the principal ultra L-closure operator asso-

ciated with the principal ultra L-topology S(a,U (bβ), aβ) is given by

φa,b(f) =

{
f if f = 0 or aα 6 f or cf ∈ U (bβ)

f ∨ aα otherwise

Theorem 9.3.8. An infra L-closure operator ψa,b and φb,a are in

comparable if L is a diamond lattice.

Proof. We have ψa,b(aα) = gα,b and

φb,a(aα) = aα ∨ bβ
Since α and β are not comparable, ψa,b and φb,a are not comparable.

Remark 9.3.5. In a similar way, we can discuss the above theorem

if L is a finie pseudo complemented chain or other Boolean lattices.

Definition 9.3.7. An L-closure space (X,ψ) is said to be T0 if for
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all x, y ∈ X, x 6= y,∃ a closed L-subset f such that f(x) 6= f(y).

Example 9.3.1. Let X = {a, b, c} and L = {0, α, β, 1}, a diamond

lattice. Consider the L-topology

φ = {0, aα, bβ, µ{a}, µ{b}, µ{a,b}, 1,
f : a→ α g : a→ α h : a→ 1

b→ β b→ 1 b→ β

c→ 0, c→ 0, c→ 0,


Define c : LX → LX by c(f) = ∧{g ∈ φ : g > f}, for all f ∈ LX . Then

(X, c) is a T0 L-closure space.

Definition 9.3.8. An L-closure space (X,ψ) is said to be T1, if every

L point xλ is closed.

Example 9.3.2. Let X = {a, b, c} and L = {0, α, β, 1}. Consider

the discrete L-topology LX . Define c : LX → LX by c(f) = ∧{g ∈ LX :

g > f} for all f ∈ LX . Then (X, c) is a T1 L-closure space.

Remark 9.3.6. Every T1 L-closure space is T0. But the converse

need not be true.

Example 9.3.3. Let X = {a, b} and L = {0, α, β, 1}, a diamond

lattice. Consider the L-topology

φ = {0, aα, µ{a}, 1}. Define c : LX → LX by c(f) = ∧{g ∈ φ : g > f},
for all f ∈ LX . Then (X, c) is a T0 L-closure space. But it is not a T1

L-closure space, since bβ is not closed in (X, c).
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Concluding remarks and suggestions for fur-
ther study

We have identified the principal and non principal ultra L-topologies

and determined the number of ultra L-topologies on an arbitrary set.

Also we have analyzed the lattice structure of some sublattices of Lattice

of L-topologies. However it is not yet analyzed in detail that under what

condition on the F -lattice L, the above lattices are dually atomic.
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