
Automated Synthesis of Delay-Reduced
Reed-Muller Universal Logic Module Networks

Shahana T. K, Rekha K. James, K. Poulose Jacob
Cochin University of Science and Technology

Kochi, Kerala, India
E-mail:{shahanatk, rekhajames,

Abstract

This paper presents a new approach to implement
Reed-Muller Universal Logic Module (RM-ULM)
networks with reduced delay and hardware for
synthesizing logic functions given in Reed-Muller (RM)
form. Replication of single control line RM-ULM is
used as the only design unit for defining any logic
function. An algorithm is proposed that does exhaustive
branching to reduce the number of levels and modules
required to implement any logic function in RM form.
This approach attains a reduction in delay, and power
over other implementations of functions having large
number ofvariables.

1. Introduction

Every Boolean function can be expressed in terms of
Reed-Muller (RM) expansion. This representation has
various advantages such as ease of complementing and
testing, and reduction in number of product terms
leading to smaller circuits on-chip over the
conventional descriptions [1]. Several papers have
been published discussing design and minimization
techniques for RM logic, derivation of various
polarities, as well as conversion between RM and
Boolean forms [4, 7, 8].

RM functions can be implemented using discrete
components or more conveniently by RM-ULMs. An
RM-ULM is a device with c-control inputs, 2c data
inputs and a single output f(c) and is designated as RM-
ULM(c). The behavior of this module is described as

f(c) = bo ®) blxl ® b2x2 ® b3x2x1)

® b2C 1xcXcXI
2c -1

=®@biPi
i=O

where bi = 0 or 1, and the product term (or piterm) Pi is,

P =x x.xI ic Ic - 1 11

c-l

where i = E 2i xj
j=o

x will be present in Pi if the kth bit of binary

representation for i is 1. The logic symbol for
RM-ULM(c) is shown in Figure 1.

Sreela Sasi
Gannon University
Erie, PA, USA
sasiOO1 gannon.edu

b C

xc XI

Figure 1. Logic symbol ofRM-ULM(c)

VLSI implementations using only one type of
modular building blocks can decrease system design and
manufacturing cost. For functions in RM form speed and
cost can be reduced by using RM-ULMs connected in
tree structure. A tree network is very suitable for VLSI
realization because of the uniform interconnection
structure and the repeated use of identical modules.

The use of RM-ULM for realization of logic
functions has already been explored by researchers. A
programmed algorithm was developed by L. Xu [2],
which is analogous to the algorithm in [6], for
optimization of number of modules at sub-system level
in a tree network. The algorithm looks for possible
cascade networks, and if it is not found a tree
structure is implemented. An alternate algorithm was
presented by E. C. Tan [3], which performs similar
optimization of fixed polarity general Reed-Muller
expansions (FPGRM) with a reduced computation time.
The above algorithms do not explore all the possible
branching options of the tree structure and hence the
delay of the circuit synthesized may not be minimal.
In this research, further delay reduction is achieved by
using a novel tree-structured exhaustive branching
network using RM-ULM(1) for implementing a logic
function given in positive polarity Reed-Muller (PPRM)
form. A logic function with n-variables can be
implemented using 2_-1 RM-ULM(I)s in n - levels by
standard implementation. Any implementation using less
than 2-_1 number of modules and / or lesser number of
levels can be considered as an improvement in cost and
or speed.

The organization of this paper is as follows: First,
the problem is described and then the proposed
exhaustive branching algorithm is demonstrated with
examples. Finally, a comparison in terms of delay and
number of modules is done for standard implementation
and tree implementation [2, 3] for several functions.

2. N-ary exhaustive branching technique

For a given number of input variables n, there is a

well-defined number of functions, which is equal to
2 (21n) [5]. Standard implementation of a tree network
requires n-levels to implement these functions. Xu
proposed a programmed algorithm to reduce the
complexity of the network in terms of number of modules
and levels. In his approach l's, 0's, x , (where x , is a

variable xi or its complement xi, 1 < i < n) or

functions using any number of variables can be given to
any data inputs of the RM-ULM. But the control inputs
accept variables only. In this research, the performance
is further improved by an exhaustive branching
technique with x , or functions of 2 variables at
control input. Since xi or functions are also given to
control input, the utilization of all branching options are

made possible. This decreases the number of levels, and
hence the delay is reduced for any logic function
implementation using RM-ULMs.

The first level (output stage) will have a single RM-
ULM, the second level will have a maximum of (2C + c)
RM-ULMs, where c is the number of control inputs (c =
1 in this case) and so on. In general, the maximum
number ofRM-ULMs in a level can be expressed as (2C +
c)(L-1) where L indicates the number of levels. The
maximum number of RM-ULMs in the complete
network having L levels will be

L

E (2c + c)(x- 1)

x=l

A network with 1-level can realize functions up to 3
variables, since there are 3 inputs. By connecting x, to
the control input, the remaining x; variables (j i) or

constants (0 or 1) can be connected to each of the 2 data
input lines. So there are 6 possible values for each data
input line, resulting in 62 distinct functions. Selecting 1

variable as control input from the total of 3 variables
and its complements, can take 6C1 combinations. Out of
62 distinct functions implemented at level 1, 24 are 3
variable functions which require 3 levels in standard
implementation.

Level 2 allows the implementation of functions
having maximum of 9 variables, using 3 control lines
and 6 data lines. Selecting 3 variables from the total of
9 variables and its complements, results in 18C3 x 3!
combinations. The remaining 6 variables and its
complements or constants (0 or 1) at 6 data lines give
rise to 146 distinct functions with one combination at
control input. In the tree structure given by Xu [3], at
level 2, maximum number of variables possible is only
7, which result in 104 distinct functions with one

combination at control input. The proposed approach
increases the number of variables and functions
that can be implemented in level 2. As the number of
levels increases this difference becomes more and more

significant, and more delay reduction can be achieved
for functions with large number of variables. In general
with L levels, the number of functions that can be
implemented using RM-ULMs in the exhaustive
branching method is { [2 (y + 1)]Y } for one combination
at control inputs. The number of combinations possible
at the control inputs is { 2 ZL CzLI1 } X { zL ! } where

y = [ZL - z] and z 2C + c Maximum number ofvariables
at level L is nmax zL For a given function if there
are n dependent variables, the levels L required for
implementation in this approach is given as
Flog (2c + c) n 1 < L < (n - 1), whereas in the tree
structure, L can be in the range Flog(2c)n 1 < L < (n - 1)

This clearly demonstrates a reduction in delay
attained by the proposed exhaustive branching technique
over the implementation using tree structure.

A. Exhaustive Branching Algorithm

Behavior of an RM-ULM(1) can be expressed
as Fj F Fk, where Fs, Fj, Fk are functions of

t variables (1 < t < n). The number of variables of Fs, Fj
and Fk varies according to the complexity of the function
to be realized. The maximum number of variables in Fs,
Fj or Fk determines the delay of the network. The
network terminates when Fs, Fj and Fk are l's, 0's or
x i (1 < i < n). If all inputs except one terminate with a
variable x , or a logical constant and only one input
continues into the next level, a cascade is generated
where a single module is used in each level. The
proposed algorithm aims to identify x1 or functions
of 2 variables at each control input, that eliminate as
many branches as possible and reduce the number of
levels and modules required for implementation. The
algorithm for any function given piterms (Pi), is as
follows:
Exhaustive Branching Algorithm:
Step 1: Get the piterms in decimal, and the number
of variables, n. Set level, L = 1, number of modules, M
= 1 Step 2: List the piterms in n-bit binary as a piterm
table. Step 3: Check whether any column in the
table is all zeros. Eliminate the variable
corresponding to that column and get the reduced
piterm table.
Step 4: Get the reduced piterm tables for each variable x,
(one table for x, 1 and another table for x, = 0) and find
the x, for which the reduced piterm tables correspond to
constants (0 or 1) or x1 (j . i) by checking the number of
ones in each piterm table, c1. If c1 < 1, terminate.
Step 5: For each x, check the following conditions:

(i) Number of zeros > number of ones
(ii) For each (1, 0) pair, the remaining bits

are constants
(iii) Number of such pairs is equal to 2
(iv) One pair has remaining bits as all zeros and

the other has ones in one column only
Terminate if all the above conditions are satisfied.
Step 6: L = L + 1, M = M + 1. Get the reduced
piterm tables for each variable and find the x, for
which the following conditions are satisfied.

(i) One reduced piterm table corresponds to
a constant (0 or 1) or x (a i).

(ii) The other reduced piterm table is a
single module implementation by
repeating the steps 4 & 5.

Step 7: Get reduced piterm tables for each possible 1® x,
(by checking conditions (i) & (ii) of step 5), and find

the (1F xi) for which the conditions (i) & (ii) of step 6
are satisfied.
Step 8: M = M + 1. Get the reduced piterm tables for each
variable, and find the x, for which the reduced piterm
tables are single module implementations by repeating
the steps 4 & 5.
Step 9: Get reduced piterm tables for each possible P± x,
(by checking conditions (i) & (ii) of step 5), and find
that 1® x, for which the reduced piterm tables are
single module implementations by repeating the steps 4
& 5.
Step 10: Get the reduced piterm tables for each possible
x1x1, and find the x1x1 for which the conditions (i) & (ii) of
step 6 are satisfied.
Step 11: Get the reduced piterm tables for each
possible (x, ® x), and find the (x, ® x) for which the
conditions (i) & (ii) of step 6 are satisfied.
Step 12: M = M + 1. Get the reduced piterm tables for
each possible x1x, and find the x1x1 for which both reduced
piterm tables are single module implementations by
repeating the steps 4 & 5.
Step 13: Get the reduced piterm tables for each possible
(x, ® x;), and find the (x, ® x;) for which both reduced
piterm tables are single module implementations by
repeating the steps 4 & 5.

The exhaustive branching algorithm is
demonstrated in the following examples.

Example 1:
Implementation of 4-variable function F = @ (13, 14)

The delivered network has 3 modules using
only 2 levels in the proposed approach, as shown in the
Figure 2, while in the tree implementation [2, 3] the
synthesized network will have 3 modules in 3 levels as
shown in Figure 3.

0

0

Figure 2.
Exhaustive branched
implementation for
F =® L (13, 14)

Figure 3.
Tree implementation
for function
F =® L (13, 14)

x4

Figure 4.
Exhaustive branched
implementation for
F =® L (5, 6, 9, 10)

x4

Figure 5.
Tree implementation
for function
F =>L (5, 6, 9, 10)

Example 3:
Implementation of the 3-variable function, F = @ L (0,
1, 2, 4, 6) is given in Figure 6.

The delivered network has only 1 module using 1
level in the proposed approach, whereas the tree
implementation [2, 3] requires 2 modules in 2 levels. One
possible implementation is shown in Figure 7. This
example clearly indicates the reduction in delay and
number of modules.

Figure 6.
Exhaustive branched
implementation for
F =® L (0, 1, 2,4, 6)

x

Figure 7.
Tree implementation
for function
F =® L (0, 1, 2,4, 6)

Example 4:
Implementation of the 3-variable function, F = L (0,
2, 3, 4, 5) is given in Figure 8. The delivered network
has only 2 modules using 2 levels in the proposed
approach, while the tree implementation [2, 3] requires 3
modules in 2 levels as shown in Figure 9.

F

(D X3-~~~~~~~~~~~I
1X3-

X ;

Example 2:
Implementation of the 4-variable function, F = @ L (5,
6, 9, 10) has 3 modules using only 2 levels in this
approach, as shown in Figure 4, while the tree
implementation [2, 3] will have 4 modules in 3 levels or
a minimum of 3 modules in 3 levels as shown in Figure
5. In the above two examples a reduction in delay is
found using the proposed approach.

Figure 8.
Exhaustive branched
implementation for
F =® L (0, 2, 3, 4, 5)

Figure 9.
Tree implementation
for function
F =® L (0, 2, 3, 4, 5)

Simulation is done for 2, 3 and 4-variable functions
up to 2 levels. Table 1 shows the reduction in delay
and / or hardware for certain functions. The
reduction in number of modules required will lead to
reduced power consumption.

-F

Table 1. Comparison in terms of delay and hardware
for standard implementation, tree implementation, and

exhaustive branched implementation

Standard Tree Exhaustive
Implemen Imple Branched

Functions tation menta Implementat
tion ion

D_ /M D/M D/M
F= (BY-(13, 4 15 3 3 2 3

14)

F=9 10) 4 15 3 3 2 3
, ,

F=2YO,6 3 7 2 2 1 1
1,2,4,6) 3/7 2/3 2/2

F=Y-O, 3 7 2 3 2 2
2,3, 4,5)

D / M - Delay (number of levels) / Number of modules

3. Conclusion and future work

An algorithm for the synthesis of RM-ULM
network with reduced delay is presented. The delivered
network has reduction in delay and complexity in terms
of number of modules, compared to the existing
implementations. By suitable selection of variables, its
complements or functions as control inputs, the number
of modules and delay are reduced. The reduction in
number of modules results in reduced power

consumption of the synthesized network. Theoretically,
the algorithm can handle any number of variables for
any completely specified logic function. The
computation time is not always directly proportional
to the number of variables, but this increases with the
complexity of the function to be realized. Since the
topology of the delivered network is that of a tree, VLSI
implementation of this network requires very few extra
work in routing algorithms to redesign or for circuit
layout.

This algorithm can be explored for the synthesis
of incompletely specified functions in future.
Network complexity can be reduced if the RM-ULM
considered have normal and complemented outputs.
Research may be done to consider different size RM-
ULM for an alternative implementation.

REFERENCES

[1] B. Harking, "Efficient algorithm for canonical
Reed-Muller expansions of Boolean
functions", IEE Proceedings-E, Vol. 137, No. 5,
September 1990.

[2] L. Xu, A.E.A. Almaini and J.F. Miller, L.
McKenzie, "Reed-Muller universal logic
module networks", IEE Proceedings-E, Vol.
140, No. 2, March 1993, pp. 105-108.

[3] E.C. Tan and C.Y. Chia, "Alternative algorithm
for optimization of Reed-Muller universal logic
module networks", IEE Proceedings Computers
and digital techniques, Vol. 143, No. 6,
November 1996, pp. 385-390

[4] T. Sasao, "Logic Synthesis with EXOR gates",
"Logic Synthesis and Optimization ", edited by
T. Sasao, Kluwer Academic Publishers,
London, ISBN: 0-7923-9308-2, 1993.

[5] V.P. Correia and A. I. Reis, "Classifying n -
input Boolean functions", VII Workshop
IBERCHIP 2001, Montevideo, IWS 2001, pp.
58.

[6] A.E.A. Almaini, J.F. Miller and L Xu,
"Automated synthesis of digital multiplexer
networks", IEE Proceedings-E, Vol. 139, No. 4,
July 1992, pp. 329-334.

[7] J.F. Miller and P. Thomson, "Combinational
and sequential logic optimization using Genetic
Algorithms" Genetic Algorithms in Engineering
Systems: Innovations and Applications 12-14
September 1995, Conference Publication No.
414, 1995 pp. 34-38.

[8] D.Varma, E.A.Trachtenberg, "Computation of
Reed Muller expansions of incompletely
specified Boolean functions from reduced
representations", IEE Proceedings-E, Vol. 138,
No. 2, March 1991, pp. 85-92.

